
[image: image206.png]

coORDINATed Highways Action Response Team

state highway administration

[image: image207.wmf]CNSI

R1B3 GUI Detailed Design

Contract DBM-9713-NMS
TSR # 9901961

Document # M362-DS-010
March 16, 2001

By

Computer Sciences Corporation

PB Farradyne Inc.

Client Network Services Inc.
Integrated Technology Solutions Inc.
[image: image208.wmf][image: image209.png]

[image: image210.wmf][image: image211.wmf]

Revision
Description
Pages Affected
Date

0
Initial Release (DRAFT)
All
March 16, 2001

Table of Contents

1-11
Introduction

1.1
Purpose
1-1
1.2
Objectives
1-1
1.3
Scope
1-1
1.4
Design Process
1-1
1.5
Design Tools
1-2
1.6
Work Products
1-2
2
Key Design Concepts
2-1
2.1
Audio recording, conversion and playback
2-1
2.2
Arbitration Queue Control and Device Status
2-2
2.3
Spell checking
2-2
2.4
User and system profiles
2-3
2.5
Navigator Configuration
2-3
2.6
Use of multiple factories during object creation
2-4
2.7
Error Processing
2-4
2.8
Installable Modules
2-5
2.9
Startup and Shutdown
2-5
2.10
CORBA Object Usage And Discovery
2-6
2.11
Packaging
2-7
3
Package Designs
3-1
3.1
CORBAUtilities
3-1
3.2
DataModel
3-3
3.3
DMSUtility
3-13
3.4
GUI
3-18
3.5
GUIDMSModule
3-53
3.6
GUIFieldCommsModule
3-99
3.7
GUIHARModule
3-109
3.8
GUIMessageLibraryModule
3-163
3.9
GUIPlanModule
3-183
3.10
GUISHAZAMModule
3-199
3.11
GUIUtility
3-221
3.12
HARManagement
3-248
3.13
JavaClasses
3-253
3.14
Navigator
3-257
3.15
SystemInterfaces
3-264
3.16
Utility
3-336
Acronyms
AC-1
References
REF-1
Appendix A – Glossary
A-1
Appendix B – Text-To-Speech Playback Time Estimation
B-1
Appendix C – Prototype Screen Shots
C-1
Appendix D – Arbitration Queue Priority Algorithm
D-1

Table of Figures

3-1Figure 1. CORBAClasses

Figure 2. DataModelClasses
3-3
Figure 3. DataModel:AttachObserver
3-7
Figure 4. DataModel:ObjectAdded_
3-8
Figure 5. DataModel:ObjectRemoved
3-10
Figure 6. DataModel:ObjectUpdated
3-11
Figure 7. DataModel:UpdateObservers
3-12
Figure 8. DMSUtility
3-13
Figure 9. GUIClassDiagram
3-18
Figure 10. MiscClasses
3-22
Figure 11. GUIResourcesModuleClasses
3-28
Figure 12. GUI:ChangeUserBasic
3-32
Figure 13. GUI:CommandObjectBasic
3-33
Figure 14. GUI:DiscoveryBasic
3-34
Figure 15. GUI:EventUpdatePushedBasic
3-35
Figure 16. GUI:LoginBasic
3-36
Figure 17. GUI:LogoutBasic
3-37
Figure 12. GUI:MakeMenuMultipleSelect
3-38
Figure 39. GUI:MakeMenuNoneSelected
3-39
Figure 20. GUI:MakeMenuSingleSelect
3-40
Figure 21. GUI:ShutdownBasic
3-41
Figure 22. GUI:StartupBasic
3-43
Figure 23. GUI:SystemCommandBasic
3-44
Figure 24. GUIOperationsCenter:RemoveOperationsCenter
3-45
Figure 25. GUIOperationsCenter:RenameOperationsCenter
3-46
Figure 26. GUIOperationsCenterGroup:CreateOperationsCenter
3-47
Figure 27. GUIResourcesModule:discovery
3-48
Figure 4. GUIResourcesModule:OperationsCenterAddedEvent
3-49
Figure 5. GUIResourcesModule:OperationsCenterRemovedEvent
3-50
Figure 6. GUIResourcesModule:OperationsCenterRenamedEvent
3-51
Figure 31. GUIResourcesModule:startup
3-52
Figure 32. DMSDialogs
3-53
Figure 33. DMSModuleArchitecture
3-56
Figure 74. DMSNavigatorSupport
3-62
Figure 35. GUIDMSModule:AddDMS
3-66
Figure 36. GUIDMSModule:AddDMSStoredMessageItem
3-68
Figure 37. GUIDMSModule:BlankDMSInMaintenanceMode
3-69
Figure 38. GUIDMSModule:CreateDMSStoredMessage
3-71
Figure 39. GUIDMSModule:CreateResponsePlanItem
3-72
Figure 40. GUIDMSModule:DiscoverEventchannels
3-73
Figure 41. GUIDMSModule:DiscoverObjects
3-74
Figure 42. GUIDMSModule:DMSRemovedEvent
3-75
Figure 43. GUIDMSModule:DMSStateChangeEvents
3-76
Figure 44. GUIDMSModule:Login
3-77
Figure 45. GUIDMSModule:Logout
3-78
Figure 46. GUIDMSModule:ModifyDMSSettings
3-80
Figure 47. GUIDMSModule:ModifyDMSStoredMessage
3-82
Figure 48. GUIDMSModule:ModifyFP9500Settings
3-84
Figure 49. GUIDMSModule:PollNow
3-85
Figure 50. GUIDMSModule:PutDMSInMaintenanceMode
3-86
Figure 51. GUIDMSModule:PutOnline
3-87
Figure 52. GUIDMSModule:RemoveDMS
3-88
Figure 53. GUIDMSModule:Reset
3-89
Figure 54. GUIDMSModule:SetMessageInMaintenanceMode
3-91
Figure 55. GUIDMSModule:ShowTrueDisplay
3-92
Figure 56. GUIDMSModule:Shutdown
3-93
Figure 57. GUIDMSModule:Startup
3-94
Figure 58. GUIDMSModule:TakeOffline
3-95
Figure 59. GUIDMSModule:TrafficEventResponse-BlankDMS
3-96
Figure 60. GUIDMSModule:TrafficEventResponse-SetDMSMessage
3-97
Figure 61. GUIDMSModule:ViewArbitrationQueue
3-98
Figure 62. GUIFieldCommsModuleClasses
3-99
Figure 63. GUIFieldCommsModule:Discovery
3-103
Figure 64. GUIFieldCommsModule:Login
3-104
Figure 65. GUIFieldCommsModule:Logout
3-105
Figure 66. GUIFieldCommsModule:PortStatusChangeEvent
3-106
Figure 87. GUIFieldCommsModule:Shutdown
3-107
Figure 68. GUIFieldCommsModule:Startup
3-108
Figure 69. HARModuleArchitecture
3-110
Figure 70. NavigatorSupport
3-116
Figure 71. Dialogs
3-119
Figure 72. GUIHARModule:AddHAR
3-122
Figure 73. GUIHARModule:AddHARPlanItem
3-124
Figure 94. GUIHARModule:AssociateMessageNotifier
3-125
Figure 75. GUIHARModule:BlankHAR
3-126
Figure 76. GUIHARModule:BlankHARInMaintenanceMode
3-127
Figure 77. GUIHARModule:CreateHARStoredMessage
3-129
Figure 78. GUIHARModule:CreateResponsePlanItem
3-130
Figure 79. GUIHARModule:DeassociateMessageNotifier
3-131
Figure 80. GUIHARModule:DeleteSlotMessage
3-132
Figure 81. Discovery:Basic
3-133
Figure 82. GUIHARModule:ListenToAudioClip
3-134
Figure 83. GUIHARModule:ListenToMessage
3-136
Figure 84. GUIHARModule:ListenToTextClip
3-137
Figure 85. Login:Basic
3-138
Figure 86. GUIHARModule:Logout
3-139
Figure 87. GUIHARModule:ModifyHARSettings
3-141
Figure 88. GUIHARModule:ModifyHARStoredMessage
3-143
Figure 89. GUIHARModule:MonitorBroadcast
3-144
Figure 90. GUIHARModule:MonitorSlot
3-145
Figure 91. GUIHARModule:PutHARInMaintenanceMode
3-146
Figure 92. GUIHARModule:PutHAROnline
3-147
Figure 93. GUIHARModule:RecordAudioClip
3-148
Figure 94. GUIHARModule:RemoveHAR
3-149
Figure 95. GUIHARModule:ResetHAR
3-150
Figure 96. GUIHARModule:SetHARMessage
3-151
Figure 97. GUIHARModule:SetHARMessageInMaintenanceMode
3-153
Figure 98. GUIHARModule:SetTransmitterOff
3-154
Figure 99. GUIHARModule:SetTransmitterOn
3-155
Figure 100. GUIHARModule:Shutdown
3-156
Figure 101. Startup:Basic
3-157
Figure 102. GUIHARModule:StoreSlotMessage
3-158
Figure 103. GUIHARModule:TakeHAROffline
3-159
Figure 104. GUIHARModule:ViewArbitrationQueue
3-160
Figure 105. GUIHARModule:ViewHARSlotUsage
3-161
Figure 106. GUIHARModule:ViewHARStoredMessage
3-162
Figure 107. GUIMessageLibraryClasses
3-163
Figure 108. GUILibraryModule:CreateLibrary
3-168
Figure 109. GUILibraryModule:CreateStoredMessage
3-169
Figure 110. GUILibraryModule:DeleteLibrary
3-170
Figure 111. GUILibraryModule:DeleteStoredMessage
3-171
Figure 112. GUILibraryModule:Discovery
3-172
Figure 113. GUILibraryModule:HandleEventLibraryAdded
3-173
Figure 114. GUILibraryModule:HandleEventLibraryNameChange
3-174
Figure 115. GUILibraryModule:HandleEventLibraryRemoved
3-175
Figure 116. GUILibraryModule:HandleEventStoredMessageAdded
3-176
Figure 117. GUILibraryModule:HandleEventStoredMessageRemoved
3-177
Figure 118. GUILibraryModule:Login
3-178
Figure 119. GUILibraryModule:Logout
3-179
Figure 120. GUILibraryModule:SetLibraryName
3-180
Figure 121. GUILibraryModule:Shutdown
3-181
Figure 122. GUILibraryModule:Startup
3-182
Figure 123. GUIPlanClasses
3-183
Figure 124. GUIPlanModule:AddPlan
3-187
Figure 125. GUIPlanModule:CreatePlanItem
3-188
Figure 126. GUIPlanModule:Discovery
3-190
Figure 127. GUIPlanModule:PlanAddedEvent
3-191
Figure 128. GUIPlanModule:PlanItemAddedEvent
3-192
Figure 129. GUIPlanModule:PlanItemRemovedEvent
3-193
Figure 130. GUIPlanModule:PlanRemovedEvent
3-194
Figure 131. GUIPlanModule:RemovePlan
3-195
Figure 132. GUIPlanModule:RemovePlanItem
3-196
Figure 133. GUIPlanModule:Shutdown
3-197
Figure 134. GUIPlanModule:Startup
3-198
Figure 135. SHAZAMModuleArchitecture
3-199
Figure 136. GUISHAZAMModule:AddSHAZAM
3-203
Figure 137. GUISHAZAMModule:Discovery
3-204
Figure 138. GUISHAZAMModule:EditConfiguration
3-206
Figure 139. GUISHAZAMModule:HandleSHAZAMAddedEvent
3-207
Figure 140. GUISHAZAMModule:HandleSHAZAMConfigurationChangedEvent
3-208
Figure 141. GUISHAZAMModule:HandleSHAZAMRemovedEvent
3-209
Figure 142. GUISHAZAMModule:Login
3-210
Figure 143. GUISHAZAMModule:Logout
3-211
Figure 144. GUISHAZAMModule:ModifySHAZAMSettings
3-212
Figure 145. GUISHAZAMModule:PutSHAZAMInMaintenanceMode
3-213
Figure 146. GUISHAZAMModule:PutSHAZAMOnline
3-214
Figure 147. GUISHAZAMModule:RemoveSHAZAM
3-215
Figure 148. GUISHAZAMModule:setBeaconsOff
3-216
Figure 149. GUISHAZAMModule:setBeaconsOn
3-217
Figure 150. GUISHAZAMModule:Shutdown
3-218
Figure 151. GUISHAZAMModule:Startup
3-219
Figure 152. GUISHAZAMModule:takeSHAZAMOffline
3-220
Figure 1053. ArbitrationQueueClasses
3-221
Figure 154. DevicePropertiesDialogClasses
3-223
Figure 155. FilterClasses
3-225
Figure 156. ProfilePropertiesClasses
3-229
Figure 157. GUIUtility:ActivateFilter
3-231
Figure 158. GUIUtility:AddFilter
3-233
Figure 159. GUIUtility:BuildFilterHierarchy
3-234
Figure 160. GUIUtility:CleanupSystemFilters
3-235
Figure 161. GUIUtility:CleanupUserFilters
3-236
Figure 162. GUIUtility:InitializeSystemFilters
3-237
Figure 163. GUIUtility:InitializeUserFilters
3-238
Figure 164. GUIUtility:LoadFilters
3-239
Figure 165. GUIUtility:ModifyFilterProperties
3-240
Figure 166. GUIUtility:PrioritizeArbitrationQueue
3-241
Figure 167. GUIUtility:RemoveFilter
3-242
Figure 168. GUIUtility:StoreFilterIDs
3-243
Figure 169. GUIUtility:UpdateForFilterChange
3-245
Figure 170. GUIUtility:UpdateForObjectChanges
3-246
Figure 171. GUIUtility:ViewArbitrationQueue
3-247
Figure 172. HARManagementPkg
3-248
Figure 173. JavaClasses
3-253
Figure 174. NavigatorClasses
3-257
Figure 175. Navigator:AddNavigables
3-260
Figure 176. Navigator:Initialize
3-261
Figure 177. Navigator:RemoveNavigables
3-262
Figure 178. Navigator:TreeSelectionChange
3-263
Figure 179. AudioCommon
3-264
Figure 180. CommLogManagement
3-267
Figure 181. Common
3-269
Figure 182. DeviceManagement
3-273
Figure 183. DictionaryManagement
3-276
Figure 184. DMSControl
3-278
Figure 185. FieldCommunications
3-287
Figure 186. HARControl
3-292
Figure 187. HARNotification
3-298
Figure 188. LibraryManagement
3-301
Figure 189. LogCommon
3-304
Figure 190. PlanManagement
3-306
Figure 191. ResourceManagement
3-309
Figure 192. TrafficEventManagement
3-313
Figure 193. TrafficEventManagement2
3-318
Figure 194. TrafficEventManagement3
3-323
Figure 195. TSSManagement
3-325
Figure 196. UserManagement
3-333
Figure 197. UtilityClasses
3-336
Figure 198. UtilityClasses2
3-344
Figure 199. DatabaseLogger:getEntries
3-347
Figure 200. DefaultServiceApplication:shutdown
3-348
Figure 201. DefaultServiceApplication:Start
3-350
Figure 202. DictionaryWrapper:checkForBannedWords
3-352
Figure 203. OperationsLog:LogMessage
3-353

1 Introduction

1.1 Purpose

This document describes the detailed design of the CHART II Graphical User Interface (GUI) for release 1, build 3. This design refines the high level design presented in document M362-DS-009R0, “R1B3 High Level Design”, to show details regarding the implementation of the high level design.

This software release adds functionality to the CHART II system to allow for the configuration and control of HAR devices. Additionally, the full capabilities of the device arbitration queues are included as well as the ability to create and remove operations centers dynamically.

1.2 Objectives

The main objective of this design is to provide software developers with a framework in which to provide implementation of the software components used to satisfy the requirements of release 1, build 3 of the Chart II system user interface. This document focuses on the client side of each of the system use cases.

1.3 Scope

This design is limited to Release 1, Build 3 of the Chart II system and the requirements as stated in the aforementioned requirements document.

1.4 Design Process

As in the high level design, object-oriented analysis and design techniques were used in creating this design. As such, much of the design is documented using diagrams that conform to the Unified Modeling Language (UML), a de facto standard for diagramming object-oriented designs.

In the high level design, system interfaces were identified and specified. These interfaces were partitioned into logical groupings of packages. This design serves to fill in the details necessary to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its own class diagram and sequence diagrams for major operations included in the package’s interfaces. Additionally, packages needed for implementation but not present in the high level design are included in this design, with each of these also having its own class diagram and sequence diagrams. Packages are also included for third party software that is needed by the CHART II software, such as the ORB and Java classes. Only classes and methods shown on the sequence diagrams are included in diagrams for third party products.

The design process for each package involved starting with a class diagram including interfaces from the high level design, and filling in details to the class diagram to move toward implementation. Sequence diagrams were then used to show how the functionality is to be carried out. An iterative process was used to enhance the class diagram as sequence diagrams identified missing classes or methods.

1.5 Design Tools

The work products contained within this design are extracted from the Telelogic Tau design tool. Within this tool, the design is contained in the Chart II project, R1B3 configuration, SystemDesign phase, A system version is included for each software package.

1.6 Work Products

This design contains the following work products:

· A UML Class diagram for each package showing the low level software objects which will allow the system to implement the interfaces identified in the high level design.

· UML Sequence diagrams for non-trivial operations of each interface identified in the high level design. Additionally, sequence diagrams are included for non-trivial methods in classes created to implement the interfaces. Operations that are considered trivial are operations that do nothing more than return a value or a list of values and where interaction between several classes is not involved.

2 Key Design Concepts

This section provides a high level description of various elements of the design that warrant special attention either due to their technical complexity, central role to system operations, or deviation from previous project practice. For a thorough discussion of how the CHART II GUI fits into the architecture of the CHART II system please refer to the Software Architecture section of document M-361-DS-003R0,
“CHART II GUI High Level Design For Release 1 Build 1”.

2.1 Audio recording, conversion and playback

The CHART II GUI allows an operator to enter a message for activation on a HAR device or storage in a message library in either text or voice format. The GUI also allows operators to listen to the contents of HAR messages using the sound card and speakers attached to their workstations.

A HAR message is composed of multiple message clips. Each clip is either a text clip, an audio data clip, an audio clip, or a pre-stored message clip. Each type of message clip requires slightly different processing in order to be played back to the user in an audible format:

· A text clip must be converted into an audible format by the text-to-speech conversion engine before it can be played. The text-to-speech engine will be called to stream the audio data back to the GUI (or to the server) for playback. The conversion engine is quite slow, so it may take 20 seconds or more before the actual playback begins.

· An audio data clip is created in the GUI when the user records voice data. The GUI will use Java's Sound package to record the sound data from a microphone attached to the user's machine and save it to memory and/or a file on the hard disk. Since the data is local to the GUI machine, the GUI can simply play the data back to the user without doing any type of conversion.

· An audio clip is a lightweight message clip created by the server when it receives an audio data clip. Binary audio data is quite large and would require a relatively large amount bandwidth to pass over the network, so the purpose of the audio clip is to be able pass the attributes of the clip around without always passing the binary audio data. The clip contains a reference to a CORBA object that can be called to get the binary data via a streaming interface if the data is needed for playback. If the GUI encounters this type of clip, it will call the remote CORBA object and request that the binary data be streamed.

· A pre-stored clip is a clip that has been stored in a slot on the HAR controller. When the GUI encounters this type of message clip, it will check the HAR status object and get the message clip stored in the specified slot. The clip in the slot will then be processed as previously mentioned to get the audio data.

For all types of clips, the GUI will use Java's Sound package to play the binary audio data back through the user's workstation sound card and speakers.

The maximum playback time for a message is limited by the HAR's storage capacity and by business logic. The GUI will warn the user if the playback time is too long, and the playback length calculations are also used in the server before sending the message to the HAR. For audio clips, the playback time can be easily calculated and stored in the clip. However, for text clips, the playback time calculation is more difficult. The text-to-speech engine can be used to calculate the time accurately, but it takes a relatively long time to do the calculation because it has to convert the text to speech first. Therefore, a configurable estimating algorithm will be used to provide immediate feedback, while the more accurate calculations may be done asynchronously in the background. (See Appendix B for details about the estimation calculation.)

The output data from the text-to-speech engine will be cached in files on the server side, so that subsequent calls to convert the same text should be nearly instantaneous. The size of this cache will be limited by a configurable amount of the server machine's disk space.

2.2 Arbitration Queue Control and Device Status

The arbitration queue allows the system to determine the message that should be activated on a particular DMS or HAR based on the properties of the traffic event that the message was activated from. The software uses an algorithm to make this determination. In order to allow the user to view the contents of the arbitration queue at any point in time, the GUI provides the user with a dialog that shows the elements that are in the arbitration queue. The elements are ordered to allow the user to determine which has the highest priority. The dialog also allows the user to drag and drop the elements in the queue to change their relative priority. Each time the user moves an element in the queue window, the queue re-evaluates. If it determines that the message on the device should be modified based on the new priorities, the new message is created and activated on the target device. If the queue algorithm determines that the message should remain the same, no further action is taken. A notification mechanism is used to allow all users who have this dialog open to view each change to the status/position of all elements on the arbitration queue. In order to avoid overloading the network with status information that users are not currently interested in, this detailed notification will be sent only when the user has this window open. In addition to the arbitration queue entries display, two status windows are available on this dialog. The first allows the operator to see a textual description of the arbitration queue algorithm processing. The second allows the operator to see a textual status of communications activities of the target device. The second window contains information similar to the command status window that is used for monitoring device commands as they progress. Both of these status windows are updated via the same notification mechanism described above. See Appendix C for screen shots and a description of the user interface. See Appendix D for a detailed description of the algorithm for assigning priorities to queue entries.

2.3 Spell checking

When an operator is entering message text for display on a HAR or DMS device or for storage in a library message, the system will provide assistance in the form of a simple spelling check. The check may be performed at the operator’s request while editing the message and will be performed automatically when the operator hits the OK button if the message has been modified since the last spell check. The spell check processing will be performed as follows: Beginning at the start of the text, each word will be checked against a list of approved words in the system. If the word is not a known approved word, a list of (up to three) suggestions will be presented to the user. The suggestions will be composed of the approved words that are lexicographically closest to the word being checked. The operator will be allowed to ignore the suggestion, ignore all cases where this word exists in the message or replace the word with one of the suggested words. After the user selects an option, the system will proceed to the next word and the process will be repeated.

2.4 User and system profiles

In order to allow an operator to modify the working environment of the CHART II system and allow that environment to maintain consistency across workstations, the system will record properties in profiles. The system will use three types of profiles to store preferences; a system profile, a user profile, and a user properties file. A system profile stores properties that pertain to all users regardless of the workstation where they are working. A user profile stores properties that pertain to a particular user regardless of the workstation where the user is logged in. A user properties file stores properties that pertain to a particular user at a particular workstation. In order to make the information in a user or system profile available regardless of the workstation where the user logs in, the properties are stored in the user management database. The user’s profile and the system profile are each a collection of key/value pairs. The system profile is loaded from the database when the GUI is started, while the user profile is loaded from the database when the user logs in. The profile values are stored in a temporary Java properties object on the workstation. Queries are performed against the local properties object for efficiency sake. If the user modifies an existing property or adds a new property, the change is made to the local properties object and to the user or system profile in the user management database as appropriate. Thus, the modifications are available in the profile the next time the user logs in at any workstation (for user profiles) or restarts the GUI (for system profiles).

2.5 Navigator Configuration

Navigator filters are persistent objects that allow the Navigator to be configured. They have configurable properties which can be used to narrow the set of objects displayed in the Navigator list to only those objects of interest to the user. They also keep track of which columns are displayed in the Navigator list.

There are system filters and user filters. The system filters apply to all users and can only be changed by someone with the Configure System right. User filters can be configured by a user to further customize the display. Changes to system filters do not take effect until the next time a GUI is restarted.

Filters can be cascaded in the Navigator tree by adding new branches under an existing branch of the tree. This can be used to create an "AND" filtering effect which only displays objects which pass all of the filters in the path to the root of the Navigator tree. User filters can be added under system filters or under other user filters. System filters cannot be added under user filters, since by definition the system filters apply to all users so they need to be built on a subtree that is not user-specific.

Filters are implemented using the user and system profiles that are stored in the database. Apart from their use in filters, the user profiles are also used by the Navigator to store the size and ordering of columns in the Navigator list. The size and ordering information is stored independently for each node in the Navigator tree.

2.6 Use of multiple factories during object creation

In the CHART II system, each service that is capable of serving a particular type of object publishes a factory in the CORBA trading service. The software attempts to add the new object to each factory in the trading service, in succession, until it is successfully added to a factory. An error is reported if and only if no factory in the system can create the new object.

2.7 Error Processing

Because CHART II is a distributed object system, it is expected that any call to a remote object could cause a CORBA exception to be thrown. All software calls to remote objects handle CORBA exceptions and the processing is not shown on sequence diagrams within this design except where it serves to illustrate a design point.

Additionally, CHART II object interfaces explicitly declare exceptions that may be thrown when a particular method is invoked. All CHART II defined exceptions contain information that can be displayed to the user as well as debugging information. The CHART II GUI handles errors in the following manner. All user displayable error information is displayed to the user in a status pane at the bottom of the active dialog box or in the command status window if no dialog is available. The GUI also uses the Log utility class to maintain a flat file that contains debugging information. Each entry in the file contains the name of the class that logged the entry, the date and time the entry was logged, and descriptive text of the error that occurred. The log utility also provides the ability for a stack trace to be printed to the file to accompany the error. This feature is reserved for use when an error condition is caught and the exact cause of the error condition is not known, or when it is known that the caller of the method performing the log passed invalid data. Log files created by the Log utility class are self-cleaning and are automatically removed from the system when they reach a certain age, as specified in a configuration file.

The CHART II GUI also adds a software communications failed state to each remote object. This state is used to indicate that a remote object was not reachable the last time that the system attempted to communicate with it. This information is essential in a distributed software system where objects become unavailable temporarily due to server or network outages. The GUI tracks this state as follows. Each time the GUI attempts an operation on a remote object, if the object cannot be reached, it will be put into a software communications failed state. If the object can be reached, regardless of whether the operation succeeds or throws a defined exception, the GUI marks the object as not being in a software communications failed state.

2.8 Installable Modules

The CHART II GUI application has been designed as a core GUI module and a collection of installable modules. The core GUI module provides access to the services and data needed by any installable module and also provides the main windows of the application. Each installable module adds a coherent set of functionality and windows that are not required by other modules. This design serves to break the application into understandable packages and has the added benefit of allowing for scaled down deployments with limited functionality. At initialization the core GUI module reads a Java properties file and determines which installable modules should be instantiated. The core GUI module then coordinates the activities of each of the installed modules while the application is running. Significant events, such as a user logging in or out of the application, are passed along to each installed module providing them an opportunity to perform cleanup activities.

Throughout the design, there are instances where a particular module needs to access the services of another installable module. This type of coordination typically involves registering one module as a supporter of another module. A good example of this can be observed in the plan module. The plan module can create a plan without the support of any other module. However, it cannot add any items to the plan because the DMS or HAR installable modules must create them. Thus, the plan module provides an API for other modules to call to register as a plan item creation supporter. The plan module may then delegate creation of new plan items to the installed creation supporters. In all cases where a module relies on a call to another installable module the call is made with the expectation that an exception may be thrown indicating that the other module does not exist. If this is the case, the calling module will handle the exception and continue processing as normal. The services provided by the called module will not be available during this instance of the GUI application because the module was not installed.
2.9 Startup and Shutdown

In order to startup correctly, the CHART II GUI requires a CORBA trading service. Both the location of the CORBA trading service and the name of the default operations center that the user will log in at are configurable in the GUI properties file which resides in the GUI directory after installation. If the trading service is not available, the GUI will issue an error message to the operator and will allow the user to shut it down or retry. The GUI has no other dependencies on external services, nor does it have any dependencies on the order in which installable modules are installed. At startup the GUI will read the properties file and will construct an instance of each of the installable modules listed. After all modules have been constructed, the startup method of each module is called. This guarantees that when any particular module’s startup method is being performed, any other modules that it interacts with will have already been constructed. At shutdown, the GUI calls the shutdown method of each installed module. After shutting down all modules, it deactivates the ORB and POA and exits.
2.10 CORBA Object Usage And Discovery

Calls to CORBA objects are minimized in the GUI, as each call introduces the possibility for delays and/or failures, in addition to increasing the bandwidth usage. CORBA objects used in the GUI are wrapped within GUI "wrapper" objects. These objects cache the current state of the CORBA object in the GUI for fast access. This allows the GUI to call the CORBA object only for the purposes of getting the ID, getting the initial state, and performing operations on the object. The GUI relies on the CORBA event service and/or notification service to push status updates to all GUIs when an object's state changes. When an update is received, the GUI looks up the wrapper object based upon an ID that is passed in the update data, changes the wrapper object's cached state data, and then notifies the rest of the GUI that the wrapper's state has changed. Any part of the GUI interested in the object's state will then call the wrapper object to get the cached data.

The GUI's internal data structure for storing the wrapper objects and updating the GUI when changes occur is the DataModel. The DataModel provides fast hash table lookup of wrapper objects based upon an object's ID. It also provides a mechanism for notifying any parts of the GUI that have subscribed for updates (e.g., windows that display an object's state). It accumulates updates for a short time before notifying the rest of the GUI to avoid excessive window flashing if many updates are received in quick succession.

During the object discovery process, a GUI module looks in the trading service to get the factories it is interested in, then calls each factory to get the objects. The use of the factory to get the objects (as opposed to looking up all of the objects in the trading service) is an optimization to minimize the number of potential CORBA timeouts that would occur if the service is down or not responding. Once the CORBA objects are retrieved from a factory, the module makes one CORBA call to get the object's ID. It then tries to find the wrapper object in the DataModel. If the wrapper is not found, the module makes at least one CORBA call to get the initial state of the object. Then it creates the wrapper object, initializes it with the initial state data, and stores it in the DataModel. After that the state is maintained by the processing of CORBA notification service and/or event service events.

2.11 Packaging

This software design is broken into many packages of related classes. The table below shows each of the packages along with a description of each.

Package Name
Package Description

CORBAUtilities
This package contains classes included in the third party ORB product used for implementation. Only classes that are directly referenced from diagrams for CHART II software are included in this package’s diagrams.

DataModel
This package includes classes that are used to provide an implementation of the subject/observer design pattern. This is the core data structure used in the GUI for storing objects and propagating data changes to all parts of the GUI.

DMSUtility
This package contains utility classes that are shared among the server and GUI DMS modules. Examples of DMSUtility classes are the MultiConverter and implementation of value types defined in the DMSControl system interfaces.

GUI
This package contains the GUI basic framework classes. The package also contains the GUIResourcesModule, a mandatory module that handles the resource and operations center functionality.

GUIDMSModule
This package contains an installable GUI module that provides all DMS related functionality.

GUIFieldCommsModule
This package has functionality for displaying the status of the port managers in the system.

GUIHARModule
This package contains an installable GUI module that provides all HAR-related functionality.

GUIMessageLibaryModule
This package contains an installable GUI module that provides all message library-related functionality.

GUIPlanModule
This package contains an installable GUI module that provides all plan-related functionality.

GUISHAZAMModule
This package contains an installable GUI module that provides all SHAZAM-related functionality.

GUIUtility
This package contains classes that are used by many installable GUI modules, including Navigator Filters and the Arbitration Queue window.

HARManagement
This package contains HAR related utility classes shared by the server and GUI.

JavaClasses
This package contains many of the Java classes that are used by the CHART II system.

Navigator
This package contains the classes related to displaying a Navigator, a main window that is used to browse through the system objects in a hierarchical manner.

SystemInterfaces
This package contains the CORBA interfaces and related definitions for the CHART II system. These interfaces and classes define the IDL for the CHART II system.

Utility
This package contains utility classes used by the GUI and servers.

The remainder of this document contains detailed designs of each of the above packages.

3 Package Designs

3.1 CORBAUtilities

3.1.1 Class Diagrams

3.1.1.1 CORBAClasses

The CORBAUtilities package exists to provide reference to classes that are supplied by the ORB Vendor and are referenced by other packages' class or sequence diagrams.

[image: image1.emf]POAManager

«interface»

POA

«interface»

com.ooc.CosEventChannelAdmin.impl.EventChannel

ORB

«interface»

CosEventChannelAdmin.

EventChannel

«interface»

CosEvent.

PushConsumer

«interface»

CosTrading.Register

«interface»

CosTrading.Lookup

«interface»

activate()

deactivate()

activate_object(Servant obj)

deactivate_object(object_id)

deactivate()

the_POAManager() : POAManager

create_POA() : POA

init()

resolve_initial_references()

string_to_object()

object_to_string()

run()

for_consumers()

for_suppliers()

destroy()

push

export

withdraw

query

Figure 1. CORBAClasses

3.1.1.1.1 CosEventChannelAdmin. EventChannel

The event channel is a service that decouples the communication between suppliers and consumers of information.

3.1.1.1.2 com.ooc.CosEventChannelAdmin.impl.EventChannel

This class is the ORB vendor's implementation of a CORBA event channel. The event service provided by the vendor simply serves one of these objects. The Extended Event Service serves a factory that allows multiple instances of the vendor supplied event channel to be created.

3.1.1.1.3 CosTrading.Lookup

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published.

3.1.1.1.4 ORB

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.1.1.5 POA

This interface represents the portable object adapter used to activate and deactivate servant objects.

3.1.1.1.6 POAManager

This interface represents the portable object adapter manager used to activate and deactivate the POA.

3.1.1.1.7 CosEvent. PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.1.1.1.8 CosTrading.Register

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover.

3.2 DataModel

3.2.1 Class Diagrams

3.2.1.1 DataModelClasses

The data model classes represent a collection of objects which, when altered via the DataModel, will notify observers that they have been modified. The notification will be delivered in the form of a call to the observer's update() method and will include a collection of changes that have occurred in the system in the preceding interval. Each change is either an object added change, an object removed change, or an object updated change. If the change is an object updated change it may include hints which help an observer determine if it needs to take any action based on the change.

[image: image2.emf]ModelChange

ObjectAdded

ObjectChange

java.util.Hashtable

ChangeCollection

ModelObserver

«interface»

Identifier

ObjectRemoved

UpdateHint

«interface»

UpdatePriorityLevel

DataModel

ObjectUpdated

This is the class

which will be

used as a key to

store and look up

all Identifiable objects

java.lang.Runnable

«interface»

GUIUpdater

GUIModelObserver

«interface»

1

*

1

*

1

1

1

*

1 *

1

1

1 1

1

*

1

*

1

1

1 *

getChanges()

getChanges(Class checkClass)

getClasses()

addChanges(checkClass, changes)

hasChanges()

getObject()

m_object

getChanges()

getChangeClass()

addChange(keyObject, objectChange)

isForClass(Class checkClass)

m_class

update(ModelChanges changes)

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

m_id

isEqual(rhs)

run()

getPriority()

isAttached(observer)

attach(observer)

detach(observer)

getUpdateInterval()

objectAdded(keyObject, object)

objectUpdated(keyObject, updateHint)

objectRemoved(keyObject)

setUpdateInterval()

-getChangeCollection(Class checkClass)

-getChangesAndReset()

-getObservers()

-updateObservers()

m_delay

m_priority

getObject(keyObject)

getObjectsOfType(class)

getAllObjects()

attachObserver(modelObserver, priority)

detachObserver(modelObserver)

objectAdded(keyObject, object)

objectUpdated(keyObject, updateHint)

objectRemoved(keyObject)

setUpdateInterval(priority, interval)

getUpdateInterval(priority)

addHint()

getHints()

numHints()

run()

Figure 2. DataModelClasses

3.2.1.1.1 ChangeCollection

This class represents a collection of object changes. All object changes in the collection must be for objects of the same type. Object type is determined by making the Java call getClass(). This allows an observer to look at one object in the collection and determine if it is interested in changes to this type of object. If the observer is not, it may ignore the entire collection.

3.2.1.1.2 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.2.1.1.3 GUIModelObserver

Interface to be implemented by GUI components that would like to observe changes to the data model. Observers of this type will be notified of changes on the GUI event dispatch thread.

3.2.1.1.4 GUIUpdater

This class is used to send all changes to GUIModelObservers in the GUI event dispatch thread. It does this by storing the changes until the dispatch thread calls the run() method.

3.2.1.1.5 java.util.Hashtable

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

3.2.1.1.6 Identifier

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.2.1.1.7 ModelChange

This class is used to convey changes to observers of the DataModel. It contains all ObjectChanges for a particular update priority level for a particular period of time.

3.2.1.1.8 ModelObserver

This interface must be implemented by any object which would like to attach to the DataModel as an observer and get updated as system objects are added, deleted or changed.

3.2.1.1.9 ObjectAdded

This class is used to indicate that the object it represents was added to the DataModel.

3.2.1.1.10 ObjectChange

This class represents the changes to a particular object stored in the DataModel for a particular period. The change may be that this object was added to the model, removed from the model, or updated during this period.

3.2.1.1.11 ObjectRemoved

This class is used to indicate that the object it represents was removed from the DataModel.

3.2.1.1.12 ObjectUpdated

This class indicates that an object which was already in the model has been updated. The update may be specific to certain parts of the object, and the UpdateHint objects are used to specify which data members within the object were changed. If there are no hints in the ObjectUpdated, it signifies that the entire object has been changed so the observer must query the object for any data members that it is displaying.

3.2.1.1.13 java.lang.Runnable

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.2.1.1.14 UpdateHint

This interface must be implemented by all objects which are to be used as update hints. An update hint is a concept that is negotiated between a (subject) object and observers which are interested in that object. The data model makes no assumptions about how the hints will be used. The data model will invoke the isEqual method of the update hint to ask it to determine if it is equivalent to another hint. This allows the model to perform update optimizations by not sending notification to observers of two updates with equivalent hints in the same period. An example of how an update hint would be used follows: A DMS object has state variables that track the current message being displayed and the current latitude and longitude location of the sign controller. Because the system map requires significant processing load to redraw and needs only be notified if the latitude or longitude of the DMS changes the DMS and map view use a DMSMapChange hint. When the DMS object has a state change to the latitude or longitude property to report, that change is reported by calling objectUpdated and passing a DMSMapChange hint. When it has other changes which are not state changes to the latitude or longitude properties, it reports those changes to the DataModel by calling objectUpdated passing a DMSNonMapChange update hint. The map view will only redraw the DMS if the ObjectUpdate contains a DMSMapChange hint.

3.2.1.1.15 UpdatePriorityLevel

This class represents a particular priority update level. When an observer attaches to the data model an update priority level is specified. The system currently supports five levels of priority ranging from real time updates for animated displays to delayed updates for windows which can tolerate not being notified for a significant period of time when a change occurs to the system data model. Each time an object is modified it is added to the ChangeCollection for all priority levels. The notification of observers simply happens at longer and longer intervals as the priority level decreases. Thus, an observer of the data model connected at real time may be updated three times in one second while a lower priority observer may only be updated once at the end of the second. However, both observers will be told about the exact same changes that occurred during the second.

3.2.2 Sequence Diagrams

3.2.2.1 DataModel:AttachObserver

This diagram shows how an observer is attached to the DataModel for the purpose of receiving updates. The DataModel's attachObserver method is called, and if the priority level is supported by the DataModel, the observer will be attached at that priority level. The result of this is that the observer will be updated periodically (with the period depending on the priority level) after changes are made to the objects through the DataModel.

[image: image3.emf]First make sure the

observer is not attached to

any priority level.

See the diagram

DataModel:UpdateObservers

for a description of how

the observers are updated

on this thread once it is running.

UpdatePriorityLevel

DataModel

Observer

Attacher

attach

getPriorityLevel

attachObserver

(for each priority level)

detach

[priority level not found]

InvalidPriorityLevel

Success

Figure 3. DataModel:AttachObserver

3.2.2.2 DataModel:ObjectAdded_

This diagram shows the steps taken when an object is added to the DataModel. First, the Object and the Key are passed into the DataModel's objectAdded method. The DataModel checks whether the object was added before, and if so, the object will not be added again. The DataModel then calls each of the PriorityLevel objects' objectAdded methods so that observers of all priority levels can be updated independently. The PriorityLevel object then checks its ChangeCollection objects to see if a ChangeCollection exists for the class of object which is being added. If not, it will create a ChangeCollection to store all changes for that class. The PriorityLevel then creates an ObjectAdded object to represent the change, then adds it to the ChangeCollection.

[image: image4.emf]UpdatePriorityLevel

ObjectAdded

Value object to be added

to the data model.

Object

Creator

Object

(e.g. Identifier)

DataModel

Object

ChangeCollection

java.util.Hashtable

Key object to use for

subsequent lookups of

this value object.

getClass

put

objectAdded

create

create

previous value object with specified key

put

[* for each change collection

until matching class is found (or not)]

getClass

addChange

put

create

[no matching class found]

create

[* for each priority level]

objectAdded

Figure 4. DataModel:ObjectAdded_

3.2.2.3 DataModel:ObjectRemoved

This diagram shows what happens when an object is removed from the DataModel. The Key object is passed into the DataModel's objectRemoved method, which removes the stored object in the DataModel. If the object was removed (i.e., if it was found), the DataModel then calls the objectRemoved method for each UpdatePriorityLevel so that each priority level of observers will be updated independently. The UpdatePriorityLevel will check to see if it has a ChangeCollection to store changes for the class of the object. It will create a new ChangeCollection if necessary. The UpdatePriorityLevel will then create an ObjectRemoved object to represent the change. This object will be added to the ChangeCollection for the object's class. Java's garbage collection ensures that the object will not actually be deleted until the last reference to the object is removed; therefore, since object references are stored in the ChangeCollection objects, each object will exist at least until the last observer is updated on the lowest priority level. Observers have the responsibility to remove all of their references to the objects when their update method is called; otherwise, memory leaks will occur.

[image: image5.emf]DataModel

Stored

Object

(e.g. Identifiable)

UpdatePriorityLevel

java.util.Hashtable

Object

Remover

Key Object

(e.g. Identifier)

ObjectRemoved

ChangeCollection

equals

remove

[no matching class found]

create

getClass

[* for each priority level]

objectRemoved

[object not found]

false

objectRemoved

create

hashCode

put

addChange

create

[* for each change collection

until matching class is found (or not)]

getClass

hashCode

Figure 5. DataModel:ObjectRemoved

3.2.2.4 DataModel:ObjectUpdated

This diagram shows what happens when an object is updated through the DataModel. The caller passes in the Key object and an optional UpdateHint object. If an object is found with the Key, the DataModel will then call each UpdatePriorityLevel's objectUpdated method so that each priority level will be updated independently. The UpdatePriorityLevel checks to see if a ChangeCollection exists for the class of object that is being changed, and a ChangeCollection will be created if necessary. If there is a previous change for the object and the previous change is of the type ObjectRemoved or ObjectAdded, the newest update will be ignored. This is due to the fact that changes to a removed object are not of interest, and changes to an added object do not need to be conveyed because interested observers will always need to query all properties of the new object when they are informed that it has been added. Otherwise, the update hint will be combined with the existing update hints (if any) so that the resulting hints are a union of all hints which have been accumulated. The changes will be distributed to the observers when the next period expires for the UpdatePriorityLevel.

[image: image6.emf]Key Object

(e.g. Identifier)

ObjectUpdated

ChangeCollection

Stored

Object

(e.g. Identifiable)

UpdatePriorityLevel

java.util.Hashtable

Object

Updater

UpdateHint

DataModel

hashCode

put

[change does not

already exist]

create

[ObjectUpdated created]

addChange

equals

create

[ObjectUpdated change

already exists]

numHints

getClass

[* for each change collection

until matching class is found (or not)]

getClass

hashCode

get

create

[* for each priority level]

objectUpdated

objectUpdated

[ObjectUpdated already

existed and new UpdateHint

is not null]

addHint

[ObjectUpdated already

existed but new UpdateHint

 is null]

removeAllHints

[ObjectUpdated change already exists

but contains no hints]

return

[ObjectRemoved change

already exists]

return

[ObjectAdded change already exists]

return

[object not found]

false

[matching class found]

getChange

[no matching class found]

create

Figure 6. DataModel:ObjectUpdated

3.2.2.5 DataModel:UpdateObservers

This diagram shows how the observers are updated after changes have occurred to objects through the DataModel. The UpdatePriorityLevel thread decides that it's time to update the observers because the period has run out. It adds all of the changes which have been accumulated in the ChangeCollections and stores them in a ModelChange object. Then it distributes the ModelChange to all observers. If the observer is not a GUIObserver, it is updated on the UpdatePriorityLevel thread. However, GUIObservers must be updated on the main event thread, so the SwingUtilities.invokeLater method is called to execute the update on the main event thread. After all observers are updated, the ChangeCollections are deleted to flush them. The UpdatePriorityLevel will then sleep until the next scheduled update.

[image: image7.emf]Double-nested

loop (for each

change collection,

for each observer)

This will be executed

sometime later on the

main event dispatching

thread to eliminate

problems with updating

windows.

javax.Swing.

SwingUtilities

GUIUpdater

GUIModelObserver

This will execute the

following loop until the

program shuts down.

The timing of the execution

of the loop depends on what

time period is associated with

the priority level.

UpdatePriorityLevel

DataModel

java.lang.Thread ModelObserver

ModelChange

run

Remove

All

Change

Collections

invokeLater

[if GUI observer]

create

[If not GUIModelObserver]

update

addChanges

create

run

sleep

update

Figure 7. DataModel:UpdateObservers

3.3 DMSUtility

3.3.1 Class Diagrams

3.3.1.1 DMSUtility

This Class Diagram shows classes related to the DMS that are used by both the GUI and the DMS service. Most of these classes are implementations of value type classes defined in the system interfaces (IDL).

[image: image8.emf]Chart2DMSConfiguration

FP9500Configuration

FP9500ConfigurationImpl

Chart2DMSConfigurationImpl

Chart2DMSStatusImpl

DMSRPIDataImpl DMSPlanItemDataImpl

DMSRPIData

DMSPlanItemData

FP9500Status

FP9500StatusImpl

DMSMessage

DMSMessageImpl

DictionaryWrapper

Chart2DMSStatus

DMSConfiguration

DMSStatus

Message

«interface»

Dictionary

«interface»

1 *

1

1

getNetworkConnectionSite():NetworkConnectionSite

factory createChart2DMSConfiguration() :

 Chart2DMSConfiguration

DMSModelID m_dmsModelID

Identifier m_owningOrgID

NetworkConnectionSite m_networkConnectionSite

boolean m_pollingEnabled

long m_pollIntervalMinutes

PortLocationData m_portLocationData

CommPortConfig m_commPortConfig

string m_devicePhoneNumber

long m_deviceDropAddress

long m_deviceResponseTimeout

DMSMessage m_shazamMessage

HAR m_associatedHAR

Identifier m_associatedHARID

boolean m_enableDeviceLog

getDMS() : Chart2DMS

getMessage() : DMSMessage

setDMS(Chart2DMS) : void

setMessage(DMSMessage) : void

factory create DMSRPIData() :

 DMSRPIData

Chart2DMS m_dms

DMSMessage m_message

getDMSID() : Identifier

setDMS(DMS, Identifier) : void

getMessageID(): Identifier

setMessage (StoredMessage, Identifier) : void

factory createDMSPlanItemData():DMSPlanItemData

DMS m_dms

Identifier m_dmsID

StoredMessage m_storedMsg

Identifier m_storedMsgID

factory createFP9500Status() : FP9500Status

octet m_currentMsgNum

octet m_currentMsgSource

getBeaconState() : boolean

getMessageText():string

getMultiString() : MULTIString

getMinimumCharacters() : long

isMessageTextMulti():boolean

factory createDMSMessage(MULTIString multiStringMessage,

 boolean beaconState,

 boolean isMessageTextMulti) : DMSMessage

string m_dmsMessageString

boolean m_dmsMessageBeacon

boolean m_isMessageTextMulti

MULTIString m_dmsMessageMultiString

get():DictionaryWrapper

setWrapperSettings(ORB, CosTrading.Lookup):void

setMinimumRediscoveryPeriod(long seconds):void

getBannedWords(AccessToken):WordList

removeBannedWordList(AccessToken,WordList):void

addBannedWordList(AccessToken,WordList):void

checkForBannedWords(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):WordList

getApprovedWords(AccessToken):WordList

addApprovedWordList(AccessToken, WordList):void

removeApprovedWordList(AccessToken, WordList):void

performApprovedWordsCheck(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):SuggestionList

-DictionaryWrapper():DictionaryWrapper

-getDictionary():Dictionary

-CosTrading.Lookup m_trader

-ORB m_orb

-java.util.Vector m_dictionaries

-java.lang.Object m_lock

long m_lastTraderLookupTimestamp

factory createChart2DMSStatus() : Chart2DMSStatus

OpCenterInfo m_controllingOpCenter

validateMessageContent():void;

matches(Message): boolean

Figure 8. DMSUtility

3.3.1.1.1 Chart2DMSConfiguration

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to Chart II processing. Such information includes how to contact the sign under Chart II software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization. Such data extends beyond what would be industry-standard configuration information for a DMS.

3.3.1.1.2 Chart2DMSConfigurationImpl

The Chart2DMSConfigurationImpl class provides an implementation for the abstract Chart2DMSConfiguration class. It implements get and set methods to access and modify values of the configuration of a DMS. The configuration information stored here is normally fairly static: things like the size of the sign in characters and pixels, its name and location, and how to contact the sign (as opposed to dynamic information like the current message on the sign, which is stored in an analogous Status object).

3.3.1.1.3 Chart2DMSStatus

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to Chart II processing, such as information on the controlling operations center for the sign. This data extends beyond what would be industry-standard status information for a DMS.

3.3.1.1.4 Chart2DMSStatusImpl

The Chart2DMSStatusImpl class provides an implementation for the abstract Chart2DMSStatus class. It implements get and set methods to access and modify values of the status of a DMS. The status information stored here is relatively dynamic: things like the current message on the sign, its beacon state, its current operational mode (online, offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE) and controlling operations center. (More static information about the sign, such as its size and location, is stored in an analogous Configuration object.)

3.3.1.1.5 Dictionary

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,..

3.3.1.1.6 DictionaryWrapper

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.3.1.1.7 DMSConfiguration

The DMSConfiguration class is an abstract class which describes the configuration of a DMS device. This configuration information is normally fairly static: things like the size of the sign in characters and pixels, its name and location, and how to contact the sign (as opposed to dynamic information like the current message on the sign, which is defined in an analogous Status object).

3.3.1.1.8 DMSMessage

The DMSMessage class is an abstract class which describes a message for a DMS. It consists of two elements: a MULTI-formatted message and beacon state information (whether the message requires that the beacons be on). The DMSMessage is contained within a DMSStatus object, used to communicate the current message on a sign, and is stored within a DMSRPIData object, used to specify the message which should be on a sign when the response plan item is executed.

3.3.1.1.9 DMSMessageImpl

The DMSMessageImpl class provides an implementation for the abstract DMSMessage class. It implements get and set methods to access and modify the MULTI-formatted message and beacon state values which make up a DMS message.

3.3.1.1.10 DMSPlanItemData

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a DMS. It is derived from PlanItemData.

3.3.1.1.11 DMSPlanItemDataImpl

The DMSPlanItemDataImpl class provides an implementation for the abstract DMSPlanItemData class. It implements get and set methods to access and modify values relative to a stored Plan Item for a DMS, which associates a stored message to a specific DMS it should be placed on.

3.3.1.1.12 DMSRPIData

The DMSRPIData class is an abstract class which describes a response plan item for a DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself.

3.3.1.1.13 DMSRPIDataImpl

The DMSRPIDataImpl class provides an implementation for the abstract DMSRPIData class. It implements get and set methods to access and modify values relative to a Response Plan Item for a DMS.

3.3.1.1.14 DMSStatus

The DMSStatus class is an abstract value-type class which provides status information for a DMS. This status information is relatively dynamic: things like the current message on the sign, its beacon state, its current operational mode (online, offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More static information about the sign, such as its size and location, is defined in an analogous Configuration object.)

3.3.1.1.15 FP9500Configuration

The FP9500Configuration class is an abstract class which extends the Chart2DMSConfiguration class to provide configuration information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information.

3.3.1.1.16 FP9500ConfigurationImpl

The FP9500ConfigurationImpl class provides an implementation for the abstract FP9500Configuration class. It implements get and set methods to access and modify values specific to the static configuration of an FP9500 DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information.

3.3.1.1.17 FP9500Status

The FP9500Status class is an abstract class which extends the Chart2DMSStatus class to provide status information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information. In this case, additional information provided the FP9500 model would include things like the current message number and current message source, status bits, light status, pixel failure map, and so on.

3.3.1.1.18 FP9500StatusImpl

The FP9500StatusImpl class provides an implementation for the abstract FP9500Status class. It implements get and set methods to access and modify values specific to the dynamic status configuration of an FP9500 DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific status information.

3.3.1.1.19 Message

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.4 GUI

3.4.1 Class Diagrams

3.4.1.1 GUIClassDiagram

This class diagram depicts the core classes and interfaces necessary to provide an extensible GUI application framework for future CHART II development. Included are details of objects served from the GUI application, an installable module framework, a core data model which provides the framework for window updates when objects change, and a framework for system preference configuration.

[image: image9.wmf]FilterManager

IdentifierGenerator

GUI

UserLoginSessionImpl

UserLoginSession

«interface»

GUINavigatorDriver

EventConsumerGroup

NavigatorSupporter

«interface»

UserManager

«interface»

InstallableModule

«interface»

CommandStatusHandler

GUIToolBar

GUIOperationsCenter

1

*

1

*

1

1

1

1

1

*

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

GUIProfile

DataModel

java.util.Timer

ProfileEditorSupporter

«interface»

1

0..1

1

startup(orb)

discoverEventChannels(trader,

eventConsumerGroup)

discoverObjects(trader,

dataModel)

loggedIn()

loggedOut()

shutdown(orb)

getMenuItemReps(

accessToken,

Menuable[]) :

MenuItemRep[]

handleCommand(

actionEvent,

Menuable[]) :

boolean

CommandStatusHandler(

datamodel)

createCommandStatus(description)

addButton()

disableButton()

disableAllButtons()

enableButton()

getProfileProperty(key) : String

getAllProperties() : Properties

setProfileProperties(properties)

deleteProfileProperties(String[])

cleanupResources()

main()

startup()

shutdown()

loggedIn(

UserLoginSessionImpl)

loggedOut()

cleanupUser()

startDiscovery()

discoverEventChannels()

discoverEventChannelsOfName(name, PushConsumer)

discoverObjects()

get() : GUI

getCommandStatusHandler() : CommandStatusHandler

getDataModel() : DataModel

getFilterManager() : FilterManager

getGUIOperationsCenter() : GUIOperationsCenter

getIDGenerator() : IdentifierGenerator

getLoginSession() : UserLoginSessionImpl

getORB() : ORB

getPOA() : POA

getSystemProfile() : GUIProfile

getToken() : byte[]

getToolBar() : GUIToolBar

getTrader() : Lookup

getUserManager() : UserManager

getUserProfile() : GUIProfile

makeMenu(Object[] selected, Component invoker) :

 JMenu

handleCommand(actionEvent, Menuable[] selected)

onAbout()

onChangeUser()

onChartChat()

onCommandFailures()

onCommandStatus()

onExit()

onLogin()

onLogout()

onNavigator()

showWaitCursor()

showDefaultCursor()

showInfoDialog()

showYesNoDialog()

openAudioSourceDataLine() : SourceDataLine

getAudioSourceDataLine() : SourceDataLine

closeAudioSourceDataLine() : void

addProfileEditorSupporter(ProfileEditorSupporter) : void

getOpCenter()

getUsername()

ping()

forceLogout()

getAccessToken()

setAccessToken()

getCORBAID()

m_accessToken

getOpCenter():OperationsCenter

getUsername():UserName

ping():boolean

void forceLogout(AccessToken token)

Figure 9. GUIClassDiagram

3.4.1.1.1 CommandStatusHandler

This class provides functionality which allows the modules to deal with CommandStatus objects for calling asynchronous methods without performing the housekeeping associated with serving these objects. It provides a method for creating a CommandStatus object which will create the object, attach it to the ORB, add it to the data model, and observe the data model waiting for the CommandStatus object to complete. When it completes, this object will disconnect it from the ORB and remove it from the data model.

3.4.1.1.2 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.4.1.1.3 EventConsumerGroup

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

3.4.1.1.4 FilterManager

This class provides functionality for managing the filters in the system. As it deals with the singleton GUI and the DataModel objects, it too is a singleton object. The GUI will create and control the FilterManager. Filter supporters can be added to the FilterManager to support the creation of supporter-specific filter types.

3.4.1.1.5 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.4.1.1.6 GUINavigatorDriver

This class handles all of the Navigator-specific functionality for the GUI.

3.4.1.1.7 GUIOperationsCenter

This class is a GUI "wrapper" object which is used to wrap a OperationsCenter object. The wrapping is done to cache the data locally for faster access, and to provide GUI-specific functionality to the wrapped object.

3.4.1.1.8 GUIProfile

The GUIProfile represents configuration parameters for either the System or for a user. The configuration data consists of pairs of Strings representing the key and value for each property in the profile. The data for a profile is stored by the UserManager in the database.

3.4.1.1.9 GUIToolBar

This class will hold all of the top-level buttons and will be the launching point for invoking the functionality of the CHART2 system. It will be created at startup, and each module may add any toolbar buttons at that time. At Login, modules which have added toolbar buttons at startup should enable any toolbar buttons that should be enabled (depending on access rights). The buttons will be disabled by the GUI after they are added at startup and again at logout.

3.4.1.1.10 IdentifierGenerator

This class is used to create and manipulate identifiers which are to be used in Identifiable objects.

3.4.1.1.11 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.4.1.1.12 NavigatorSupporter

This interface must be implemented by any subsystem which supports invoking the Navigator. It must be able to supply the Navigable objects, and also can support user interaction with the selected Navigable objects through menus and drag/drop.

3.4.1.1.13 ProfileEditorSupporter

The ProfileEditorSupporter is an interface which supplies tab components to be displayed in the ProfileEditorDialog. This allows the ProfileEditor to be generic, while allowing the modules to have their own specific tabs. It supports loading the displayed input data from the profile's Properties and saving it to the profile's properties.

3.4.1.1.14 java.util.Timer

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.4.1.1.15 UserLoginSession

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system. This object is served from the GUI and provides a means for the servers to call back into the GUI process.

3.4.1.1.16 UserLoginSessionImpl

This class is the implementation of the CORBA UserLoginSession interface. It will be served from the GUI and will be passed to the OperationsCenter on login. It will also store the access token returned from the OperationsCenter.

3.4.1.1.17 UserManager

The UserManager provides access to data dealing with user management. This includes users, roles, and functional rights. The UserManager is largely an interface to the User Management database tables.

3.4.1.2 MiscClasses

This diagram shows other classes that are used in the GUI, but are not part of the fundamental framework of the GUI.

[image: image10.emf]1 1

GUI

MenuItemRep

MenuActionProxy

Menuable

«interface»

java.awt.event.

ActionListener

«interface»

Pollable

«interface»

GUIModelObserver

«interface»

CommandStatusHandler

StatusViewTableModel

javax.swing.

JFrame

javax.swing.table.

TableModel

CommandStatus

«interface»

CommandFailure

CommandStatusImpl

StatusViewable

«interface»

Poller

1

*

1

1

displays

1

1

returns report

data in

1 1

1

*

1

1

1

*

removes

completed

1

1

1

1

1 *

1 *

1 1

DefaultJFrame

GUIModelObserver

«interface»

InfoData

InfoReportable

«interface» InfoReport

DataModel

DefaultJFrame

StatusFrame

ModelObserver

«interface»

String m_property

String m_value

getInfoData()

getInfoName()

closeWindow()

MenuItemRep(String, boolean enabled)

isEnabled() : boolean

setEnabled(boolean) : void

getMenuItemString() : String

MenuActionProxy(Menuable[] selected)

getMSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

getSSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

poll()

CommandStatusHandler(datamodel)

createCommandStatus(description)

update(String status):void

completed(boolean commandSuccessful,

 String finalStatus):void

completedSameStatus(boolean commandSuccessful):void

getID()

update()

completed()

getDescription()

getCreationTime()

getLastUpdateTime()

getLastStatusString()

hasCompleted()

m_description

m_creationTime

m_lastUpdateTime

m_lastStatusString

m_hasCompleted

getStatusViewableDescription() : String

getStatusViewableStartTime() : Date

getStatusViewableStatus() :String

getStatusViewableLastUpdateTime() : Date

getStatusViewableIsFinal() : boolean

startPolling(Pollable, millis, mainThread)

stopPolling(Pollable)

Figure 10. MiscClasses

3.4.1.2.1 java.awt.event. ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.4.1.2.2 CommandFailure

This object represents a failure of a command. It implements the StatusViewable interface so that it can be displayed in the StatusFrame (i.e., the "Command Failures" window).

3.4.1.2.3 CommandStatus

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.4.1.2.4 CommandStatusHandler

This class provides functionality which allows the modules to deal with CommandStatus objects for calling asynchronous methods without performing the housekeeping associated with serving these objects. It provides a method for creating a CommandStatus object which will create the object, attach it to the ORB, add it to the data model, and observe the data model waiting for the CommandStatus object to complete. When it completes, this object will disconnect it from the ORB and remove it from the data model.

3.4.1.2.5 CommandStatusImpl

This class is the implementation of the CommandStatus CORBA interface. It will be created and passed to a server when a command is to be executed so that the GUI can stay updated as the command is executing.

3.4.1.2.6 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.4.1.2.7 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.4.1.2.8 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.4.1.2.9 GUIModelObserver

Interface to be implemented by GUI components that would like to observe changes to the data model. Observers of this type will be notified of changes on the GUI event dispatch thread.

3.4.1.2.10 InfoData

This class is used to transport property/value pairs for display in an InfoReport window.

3.4.1.2.11 InfoReport

This class represents a window that allows the user to view the current status of an InfoReportable object. The report shows two columns of data, the left hand column is a property and the right hand column is a value for the property. The InfoReport is an observer of the data model, so the data displayed will be updated each time an object notifies the data model that it has been modified.

3.4.1.2.12 InfoReportable

This interface must be implemented by any class that would like to have its data displayed in an InfoReport window.

3.4.1.2.13 javax.swing. JFrame

Java class that displays a frame window.

3.4.1.2.14 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.4.1.2.15 MenuActionProxy

This class catches the action performed by the menu item and stores the selected menuable objects to act on.

3.4.1.2.16 MenuItemRep

This class is used by the Menuable objects when they are called to return their menu items. It contains a flag indicating whether the menu item is to be disabled.

3.4.1.2.17 ModelObserver

This interface must be implemented by any object which would like to attach to the DataModel as an observer and get updated as system objects are added, deleted or changed.

3.4.1.2.18 Pollable

This interface provide a method so that the Poller can periodically call the object to poll it.

3.4.1.2.19 Poller

This class will periodically call the poll() method for any Pollables for which polling has been started. This happens either on the polling thread or on the AWT event thread, as specified when the polling is started.

3.4.1.2.20 StatusFrame

This class is a window that displays the StatusViewable objects in a JTable. Currently the "Command Status" and "Command Failures" windows are StatusFrames.

3.4.1.2.21 StatusViewable

This interface provides the functionality needed to add objects to the StatusViewTableModel so that they can be displayed in the StatusFrame.

3.4.1.2.22 StatusViewTableModel

This class provides the data framework needed to populate and update the JTable that displays the StatusViewable objects in the StatusFrame.

3.4.1.2.23 javax.swing.table. TableModel

This class provides the data structure that drives the population and updating of the data used by the JTable (a Java GUI component).

3.4.1.3 GUIResourcesModuleClasses

This class diagram shows classes related to the GUIResourcesModule, an installable module which is part of the GUI package that deals with Operations Centers and resources.

[image: image11.emf]creates

OperationsCenters

using

1

0..1

1

*

1

1

java.awt.event.

ActionListener

«interface»

Menuable

«interface»

CosEvent.

PushConsumer

«interface»

GUIOperationsCenterGroup

GUI DataModel

InstallableModule

«interface»

GUIResourcesModule

GUIOperationsCenter

NavListDisplayable

«interface»

NavClassFilter

ResponseParticipant

«typedef»

OperationsCenterFactory OperationsCenter

«interface»

DefaultJFrame

OperationsCenterProperties

1 1

1

1

1

*

1 * 1

1

1 *

1

*

-createOperationsCenter

getID()

getName() : String

getControlledResources() : SharedResource[]

getLoginSessions() : UserLoginSession[]

getNumLoggedInUsers() : int

loginUser(username, password) : UserLoginSessionImpl

logoutUser()

forceLogout(UserLoginSession)

getResponseParticipants() : ResponseParticipant[]

addResponseParticipant(ResponseParticipant)

removeResponseParticipant(ResponseParticipant)

responseParticipantAdded(ResponseParticipant)

responseParticipantRemoved(ResponseParticipant)

setProperties(String name):void

updateNameCache(String name):void

String m_name;

Identifier m_id;

string m_name

ResponseParticipantType m_type

Figure 11. GUIResourcesModuleClasses

3.4.1.3.1 java.awt.event. ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.4.1.3.2 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.4.1.3.3 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.4.1.3.4 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.4.1.3.5 GUIOperationsCenter

This class is a GUI "wrapper" object which is used to wrap a OperationsCenter object. The wrapping is done to cache the data locally for faster access, and to provide GUI-specific functionality to the wrapped object.

3.4.1.3.6 GUIOperationsCenterGroup

This class serves as a container for all of the GUIOperationsCenter objects in the GUI, when they are displayed in the Navigator. The GUI has one instance of this class.

3.4.1.3.7 GUIResourcesModule

The GUIResourceModule provides the capability to handle the Operations Center add, removed and renamed events. This non-optional module will reside in the GUI package. The GUI object would be responsible for creating the GUIResourcesModule manually, and since it is part of the GUI package there is no danger of not having it at run time.

3.4.1.3.8 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.4.1.3.9 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.4.1.3.10 NavClassFilter

This filter ignores all objects that are not assignable to a given class or interface. Thus, an interface or base class can be specified and all of the objects implementing the interface or extending the base class will be included.

3.4.1.3.11 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.4.1.3.12 OperationsCenter

The OperationsCenter represents a center where one or more users are located. This class is used to log users into the system. If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user. This token is then used to call privileged methods within the system. Shared resources in the system are either available or under the control of an OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control. This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

3.4.1.3.13 OperationsCenterFactory

This class is used to create new operations centers and maintain them in a collection.

3.4.1.3.14 OperationsCenterProperties

This class provides the functionality which allows the User to change the name of an existing operations center.

3.4.1.3.15 CosEvent. PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.4.1.3.16 ResponseParticipant

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response.

3.4.2 Sequence Diagrams

3.4.2.1 GUI:ChangeUserBasic

This diagram shows the steps that will be taken in the GUI when a user change occurs without first logging out. When the user clicks on Change User, a LoginDialog is displayed to get the new user's username and password. The dialog is displayed repeatedly until the user cancels out or enters a valid username and password. A new LoginSessionImpl object is created and activated in the POA so that it can be called later. Then the OperationsCenter's changeUser() method is called. If this is successful, the access token and password are stored in the UserLoginSessionImpl object, and the GUI is told that the old user is logged out. The GUI closes windows and disables toolbar buttons, then deactivates and deletes the previous login session. The old user's navigator filters are cleaned up, and the user's GUIProfile object is also cleaned up. Then the GUI is informed that the new user is logged in, at which point it enables toolbar buttons, creates a GUIProfile for the new user, initializes the user navigator filters, and informs each module that the user is logged in.

[image: image12.emf]GUIProfile

initializeUserFilters

create

(new User GUI Profile)

update toolbar

buttons

delete

(previous login session)

cancel

return from logged out

[*for each module]

loggedIn

loggedIn

cancel

loggedOut

cleanupResources

cleanupUserFilters

deactivate old login session

[*for each module]

loggedOut

setPassword

setAccessToken

return from logged in

changeUser

activate

Close Windows and

disable toolbar buttons

except Login and Exit.

This is a modal dialog

and will wait for the user

to close it.

The dialog is displayed in a

loop until a valid login or until

the user presses cancel

LoginDialog

GUIOperationsCenter POA FilterManager

create

(new login session)

getPassword

getUserName

show

create

changeUser

changeUser

GUIUserManagementModule InstallableModule OperationsCenter UserLoginSessionImpl GUI

Operator

Figure 12. GUI:ChangeUserBasic

3.4.2.2 GUI:CommandObjectBasic

This diagram shows the basic steps involved in issuing a typical command to an object. The context menu is built when the user right clicks on one or more selected objects. At this time the GUI wrapper object will be added as an ActionListener and will receive the command if any of its menu items are clicked on. (See the sequence diagrams GUI:MakeMenuSingleSelect and GUI:MakeMenuMultipleSelect for more details). If a long-running command is invoked, the object will create a CommandStatusImpl object, put it in the DataModel, and pass it to the server so that the server can call back as the command is completed. When the server calls the CommandStatusImpl's completed() method, the CommandStatusImpl will remove itself from the DataModel. If the command fails, the Command Failures window will add the command status to its displayed list.

[image: image13.emf]update

getDataModel

getToken

[a command menu

item was clicked]

actionPerformed

command queued or error

[context menu

invoked]

makeMenu

connect (CommandStatusImpl)

command queued or error

Call The Asynchronous Command

objectAdded

create

update

objectRemoved

update

Object

Service

DataModel

update

update

update() will be

called some time

later than the

DataModel

is called.

CommandStatusView

Command

Failure

View

Served

CORBA

Object

CommandStatusImpl

Operator

Menuable GUI

The command

failure view

will ignore all

updates except

ones that show

command failures.

The Menuable object was

added as an action

listener when the

menu was made.

See GUI:EventUpdatePushedBasic

for a description of how the

asynchronous command will

update data will be processed.

See the sequence diagrams:

GUI:MakeMenuSingleSelect

GUI:MakeMenuMultipleSelect

GUI:MakeMenuNoneSelected

ORB

update

objectUpdated

update

completed

OR

completedSameStatus

(select objects)

Figure 13. GUI:CommandObjectBasic

3.4.2.3 GUI:DiscoveryBasic

This diagram shows the ongoing discovery of new application CORBA event channels and CORBA application objects. In the GUI's startup, it creates Timer objects, which will repeatedly cause the GUI and the installed modules to search for new event channels and new CORBA objects until the GUI shuts down. At first the discovery intervals occur fairly frequently, but thereafter slow down to a steady-state period which is specified in the GUI's properties file. When the GUI's timer is invoked, it skips event channel discovery because it is not interested in any event channels, but during object discovery it queries the Organization objects from the Trading Service. First it gets the ID of the object, and then it checks whether a GUI wrapper object exists in the DataModel. If not, it creates a wrapper object for the discovered CORBA object and adds the wrapper to the DataModel. When an installable module's timer task runs, it calls the module to discover event channels. The module calls the GUI to discover the event channels having a given name (the name of the channel of interest to the module), which then queries the Trading service for event channels, and then it connects the PushConsumer interface to any event channels if not already connected. Then object discovery is done. The module will query the object factories of interest from the trader and ask each factory for all of its objects. Then, the module will check whether each CORBA object already has a GUI wrapper object stored in the DataModel. If it doesn't, it will create a new wrapper object and add it to the DataModel. Any observers which are attached to the DataModel will be subsequently informed of the new wrapper objects.

[image: image14.emf]CosTrading.

Lookup

The discovery timers

will periodically call the

run method. The discovery

interval is configurable in

the system properties file.

GUI

GUIDiscovery

TimerTask

Java

Module-specific

CORBA object

factory

DataModel

Identifiable

CORBA

object

The factories are

retrieved (rather than

each object) to reduce

network timeouts if the

objects are in the

trader but the server

is down.

GUI

CORBA object

wrapper

Test whether a GUI wrapper

object already exists in the

data model to avoid

unnecessary initialization

calls across the network.

query

InstallableModule

implementing class

CORBAUtilities

There is a timer for

each installable module,

and the run() methods

of multiple modules may

be executing at the

same time on different

threads.

Identifier

ModuleDiscovery

TimerTask

GUIOrganization

Organization

This will find event channels with

a given name and connect the

PushConsumer, if not already

connected.

discoverObjects

create

getID

discover

EventChannels

OfName

findAllObjects

OfType

(module-specific

event factory type)

discoverObjects

discoverEventChannels

run

[* for each

object]

[GUIOrganization created]

objectAdded

[not found]

create

getObject

getID

query

Get Initialization

Data

run

[* for

each

factory]

[* for

each

object]

getName

[error]

GUIException

Get Objects

getDataModel

getObject

[no error]

objectAdded

[wrapper object

not found in DataModel]

create

discoverEventChannels

findAllObjectsOfType(Organization)

Figure 14. GUI:DiscoveryBasic

3.4.2.4 GUI:EventUpdatePushedBasic

This diagram shows how updates to the served CORBA objects propagate to the GUI windows. The server will push the event data to the event service. The CORBA event service will then push the event data to the PushConsumer (which would typically be the GUI or an InstallableModule). The event data must contain some identification data so that the GUI wrapper object can be looked up in the DataModel. After the PushConsumer retrieves the GUI wrapper object from the DataModel, it will update any relevant data within the object and will call the DataModel one or more times with update hints to indicate what part of the object's data changed. The DataModel will accumulate all of the update hints for some short time period until it distributes them to all of the attached ModelObservers (which would typically be windows displaying the object data).

[image: image15.emf]objectUpdated

ModelObserver

implementing class

GUI

CORBA object

wrapper DataModel GUI

CosEvent.PushConsumer

implementing class

CORBA

Event

Service

This represents

any view(s)

displaying the

object's data.

They must have

attached to the

DataModel to receive

the updates.

The update

data must contain

some sort of identification

tag so that the object

can be looked up.

The update will happen sometime

later on the appropriate data model

update thread.

update

push (update data)

getObject

getDataModel

Update

Object

Wrapper

Figure 15. GUI:EventUpdatePushedBasic

3.4.2.5 GUI:LoginBasic

This diagram shows what steps must be taken at login. The GUI creates a UserLoginSessionImpl and passes it to the OperationsCenter for login. The GUI will then store the AccessToken in the UserLoginSessionImpl for later use. The GUI then enables the basic buttons on the GUI toolbar. Then it creates the users GUIProfile and it initializes the user Navigator filters. Then the GUI calls each InstallableModule to allow them to handle post-login processing.

[image: image16.emf]InstallableModule

UserLoginSessionImpl

GUIProfile (User)

LoginDialog

GUI

"Enable The Basic

GUI Buttons Except

Login"

loggedIn

initializeUserFilters

create

[until

successful

or cancel

[cancel]

show

create

loginUser

setAccessToken

[Error]

showInfoDialog

[* for each module]

loggedIn

[failure]

delete

create

actionPerformed

loginUser

FilterManager

OperationsCenter

GUIOperationsCenter

Operator

Figure 16. GUI:LoginBasic

3.4.2.6 GUI:LogoutBasic

This diagram shows what processing happens when the user logs out. The GUI calls the GUIOperationsCenter, which in turn calls the OperationsCenter object. If any shared resources are still assigned to the Op Center and the user logging out is the last user at the Op Center, the logout will fail and the user will need to transfer the shared resources to another Op Center. In this case a dialog will be displayed. If the logout is successful, the GUI will call each installable module's loggedOut() method. Then it will close all windows and disable the toolbar buttons, deactivate the UserLoginSessionImpl, and clean up the user Navigator filters and GUIProfile objects.

[image: image17.emf]Operator

FilterManager GUIProfile

UserLogin

SessionImpl

OperationsCenter

GUIOperationsCenter

PortableServer.

POA

InstallableModule

[* for each installable module]

loggedOut

[error]

[other error aside from

HasControlledResources]

"Display Error To User"

[successful logout]

loggedOut

[resources error]

HasControlledResources

[LogoutFailure]

GUIException

[has controlled

resources]

[controlled resources]

"Display Transfer

Resources Dialog"

[logout failure]

LogoutFailure

[last user to log out and op ctr

is controlling resources]

HasControlledResources

logoutUser

[user logged in]

logoutUser

[clicks on Logout button]

actionPerformed

onLogout

"Return From loggedOut"

cleanupResources (User Profile)

cleanupUserFilters

GUI

deactivate_object (UserLoginSessionImpl)

getCORBAID

"Disable All Toolbar

Buttons Except Login And Exit"

"Return From logoutUser"

"Close All Windows

Except Toobar And

Save Window Positions"

Figure 17. GUI:LogoutBasic

3.4.2.7 GUI:MakeMenuMultipleSelect

This diagram shows how a menu is created when two or more GUI wrapper objects are selected. The GUI's makeMenu method determines that there are multiple objects selected, and it creates a BucketSet which it will use to count the menu items. Then it asks each selected object to supply the multiple-selection menu item reps. If the user does not have sufficient rights, those menu items will be grayed out. The menu item strings are put into the BucketSet and then retrieved. The only reps that are retrieved from the BucketSet are those which have the same number of instances as there are selected objects. The GUI then creates menu items for the reps and attaches a new MenuActionProxy as an ActionListener to each representative menu item.

[image: image18.emf]BucketSet

javax.swing.JMenuItem

or

java.awt.MenuItem

Menuable

GUI

getElements

addActionListener(proxy)

[any of the selected

objects are not Menuable]

return

Any

GUI

View

Operator

MenuItemRep

MenuActionProxy

InstallableModule

Menu or

JMenu

create

Display Menu

[not handled

by a module]

[* for each selected

object]

[* for each module]

handleCommand

handleCommand

create

getMenuItemReps

[* for each

rep returned

from the

bucket set]

repeat

add

setEnabled

isEnabled

makeMenu

[* for each item rep]

add

create

create

[* for each selected

Menuable object]

getMSMenuItemReps

[any matching menu reps

are disabled]

setEnabled(false)

create

create

[user clicked on menu item]

actionPerformed

[operator invokes

context menu with

multiple objects selected]

Invoke Menu

Figure 12. GUI:MakeMenuMultipleSelect

3.4.2.8 GUI:MakeMenuNoneSelected

This diagram shows how a menu is created when no GUI wrapper objects are selected. The GUI's makeMenu method determines that there are no objects selected, and the GUI then adds its own global menu items and calls each module to get their menu item reps. The GUI then creates a MenuActionProxy and attaches it as an ActionListener to the menu items so that it will be called when the user clicks on the menu items. If the user does not have rights to perform the action associated with a menu item, it will be grayed out.

[image: image19.emf]MenuActionProxy

create

Display Menu

[operator invokes

context menu

with no objects selected]

Invoke Menu

[*for each menu item]

create

[* for each

menu item]

repeat

[* for each module]

handleCommand

handleCommand

[user clicks on a menu item]

actionPerformed

setEnabled

isEnabled

addActionListener(proxy)

create

add

create

makeMenu

Operator

The access token

is used to restrict

the user's actions,

if applicable, depending

on the users' rights. If

the user does not have

rights, the menu items

will be grayed out.

InstallableModule

GUI

javax.swing.JMenuItem

or

java.awt.MenuItem

Any

GUI

View

JMenu or

Menu

MenuItemRep

[* for each system menu item]

create

[* for each module]

getMenuItemReps

Figure 39. GUI:MakeMenuNoneSelected

3.4.2.9 GUI:MakeMenuSingleSelect

This diagram shows how a menu is created when exactly one GUI wrapper object is selected. The GUI's makeMenu method determines that there is one object selected, and it asks the Menuable object for the single-select menu item strings. The GUI will then create all of the menu items and attach a new MenuActionProxy as the ActionListener to each of the menu items.

[image: image20.emf][not handled by a module]

actionPerformed

handleCommand

handleCommand

[user clicked on menu item]

actionPerformed

add

create

[* for each

menu item]

repeat

setEnabled(false)

isEnabled

create

[* for each menu item]

create

[* for each menu item]

create

Menuable GUI

Menu

or

JMenu

MenuActionProxy

MenuItemRep

InstallableModule

[* for each module]

getMenuItemReps

addActionListener(proxy)

create

[implements Menuable]

getSSMenuItemReps

[operator invokes

context menu with

one object selected]

makeMenu

Display Menu

Any

GUI

View

javax.swing.JMenuItem

or

java.awt.MenuItem

Figure 20. GUI:MakeMenuSingleSelect

3.4.2.10 GUI:ShutdownBasic

This diagram shows steps necessary for a shutdown. The operator either closes the GUIToolBar or clicks on the Exit button. Either of these actions will result in the GUI's shutdown method being called. If the user is logged in, he or she will be logged out. If this happens, the GUI calls the GUIOperationsCenter, which in turn calls the OperationsCenter object. If any shared resources are still assigned to the Op Center and the user logging out is the last user at the Op Center, the logout will fail and the user will need to transfer the shared resources to another Op Center. In this case a dialog will be displayed. If the logout is successful, the GUI will call each installable module's loggedOut() method. Then it will close all windows and disable the toolbar buttons, deactivate the UserLoginSessionImpl, and clean up the system and user Navigator filters and GUIProfile objects. Once the user is logged out, the GUI shuts down the discovery timers and informs all of the modules that the GUI is being shut down. Finally, the GUI process exits.

[image: image21.emf][has controlled

resources]

[resources error]

HasControlledResources

[LogoutFailure]

GUIException

[has controlled

resources]

[controlled resources]

"Display controlled

Resources Dialog"

[closes window]

closeWindow

[clicks on Exit]

actionPerformed

UserLogin

SessionImpl

OperationsCenter

"Exit GUI Process"

[for each discovery Timer]

cancel

[logout failure]

LogoutFailure

closeWindow

[last user to log out and op ctr

is controlling resources]

HasControlledResources

GUIOperationsCenter

PortableServer.

POA

Either of these

actions will

initiate shutdown.

GUIToolBar

InstallableModule

GUI

Operator

java.util.Timer

FilterManager GUIProfile

deactivate_object (UserLoginSessionImpl)

getCORBAID

"Disable All Toolbar

Buttons Except Login And Exit"

"Close All Windows

Except Toobar And

Save Window Positions"

[* for each installable module]

loggedOut

[other error

and user chooses

to not exit]

[other error

and user chooses

to not exit]

[other error]

"Display Dialog To

Allow User To Exit"

[successful logout]

loggedOut

"Return From logoutUser"

"Return From loggedOut"

cleanupResources (User Profile)

"Save The ToolBar

Window Position"

cleanupUserFilters

cleanupResources(SystemProfiles)

cleanupSystemFilters

[* for each module]

shutdown

logoutUser

[user logged in]

logoutUser

shutdown

Figure 21. GUI:ShutdownBasic

3.4.2.11 GUI:StartupBasic

When the GUI is invoked, it initializes the ORB and creates the root and persistent POA's for activating CORBA objects and activates them. Because the ORB's run() method blocks the main thread, the rest of the initialization must be done on another thread, so the GUIStartupCommand is created to be executed from the AWT event thread just before the ORB is started. The command creates the GUI object, which reads the system properties file. This file contains the trader address, the operations center name, and the installable module names. The GUI then creates each of the installable module objects, then attempts to connect to the CORBA trading service to find the OperationsCenter that is specified in the system properties file. It then gets the UserManager from the trading service and calls it to get the system profile properties, which it uses to initialize the system filters. The GUI toolbar is created, and the installable modules' startup() methods are called to allow them to do any processing at startup. Then the discovery timers are started. These will periodically call the GUI and the installable modules to discover new event channels and objects that may have been published in the CORBA trading service.

[image: image22.emf]newInstance

"Return from startup"

init

[starts GUI]

main

forName

create

create

create

ReadSystemProperties "File"

getEligible

Response

Participants

create

[* for each

module

name found

in System

Properties

file]

[* while

Trader not

found and

user

chooses

to retry]

[Trading Service

not found]

"Display Retry

Dialog"

resolve_initial_references

(Root POA)

resolve_initial_references

(Trading Service)

Event

Consumer

Group

Installable modules will

add their toolbar buttons

here.

GUIToolbar

OperationsCenter

GUIOperations

Center

CosTrading.

Lookup

FilterManager

Poller

DataModel

GUISystemProperties

Command

Status

Handler

The asynchronous

invocation of the

GUIStartupCommand

object on Java's AWT

event thread allows

us to bypass the

ORB's run() method

being a blocking call.

It is also necessary

for thread-safe

interaction between

the GUI startup code

and the GUI

components such

as the toolbar.

This is a

synchronous

(blocking)

call to the ORB

and will tie up

the main thread

until the

application exits.

GUIStartup

Command

javax.swing.

SwingUtilities

POAManager

Two POA objects are created::

A root POA (which assigns CORBA

IDs for the application), and a

persistent POA which accepts the

application IDs.

POA

ORB

GUI

Operator

This will instantiate

the specific type of

InstallableModule

implementing object

based on the specified

class name.

InstallableModule

java.lang.

Class

system profile

GUIProfile

GUIResourcesModule

PreferenceHelper

start

create

invokeLater

run

startup

[error]

"Log Error and Exit GUI Process"

run

create

create

[error]

activate

the_POAManager

create_POA (Persistent POA)

create

create

create

create

"Enable Login

and Exit Buttons"

[*for each

subsequent

toolbar button]

addButton

[*for each installableModule]

startup

initializeSystemFilters

create

[* for each initial

toolbar button]

addButton

query(User Manager)

objectAdded

query(OperationsCenter)

getOpCenterName

addFilterSupporter

create

create

getModuleNames

getGUISystemProperties

"Start Discovery

Timers"

getDiscoveryPeriodString

Figure 22. GUI:StartupBasic

3.4.2.12 GUI:SystemCommandBasic

This diagram shows how a system command is handled. A system command is one which does not apply to any served CORBA objects. (For those commands, see the GUI:CommandObjectBasic diagram). First, a context menu is invoked by the user when there are no objects selected (see the GUI:MakeMenuNoneSelected for details on how the menu is made). The GUI, or an InstallableModule, will be attached to the menu items as an ActionListener when the menu is built. When the user clicks on the menu item, Java will invoke the actionPerformed() method of the ActionListener implementing class, which will allow the ActionListener to execute the command.

[image: image23.emf]This may be either

the GUI or an

InstallableModule

Operator

[context menu

invoked with

no objects

selected]

makeMenu

Perform

Action

[a menu item

was clicked on]

actionPerformed

java.lang.ActionListener

GUI

The listener

was attached

when the menu

was made.

See the sequence diagram:

GUI:MakeMenuNoneSelected

Figure 23. GUI:SystemCommandBasic

3.4.2.13 GUIOperationsCenter:RemoveOperationsCenter

This diagram shows how an operations center is removed from the system. First, the user right clicks on the Operations Center in the navigator and selects "Remove". If the operations center has users logged in, warning is shown to user. The system automatically forces all users to logout and removes the operations center. The server sends the OperationsCenterRemoved Event. The GUI catches the event and updates the DataModel and the GUIOperationsCenter wrapper object.

[image: image24.emf]create

Operator

This menu item will be

disabled if the user does

not have rights or if its the

op Center the user is logged

in at..

GUIOperationsCenter OperationsCenter GUI

CommandStatus

CommandStatusHandler

[error]

AccessDenied or CHART2Exception

or UsersLoggedInFailure

getToken

[success]

[Failure]

completed

LogoutFailure

[break out of the loop]

createCommandStatus

[Failure]

completed

[Success]

completed

[clicks on

delete operations center

menu item]

actionPerformed

getCommandStatusHandler

[if users logged in]

showYesNoDialog

remove

forceLogout

[*for all

login

sessions]

[if user selected OK]

getLoginSessions

getNumLoggedInUsers

showDefaultCursor

[Error]

showInfoDialog

showWaitCursor

[Error]

[Error]

showInfoDialog

showDefaultCursor

showWaitCursor

Figure 24. GUIOperationsCenter:RemoveOperationsCenter

3.4.2.14 GUIOperationsCenter:RenameOperationsCenter

This diagram shows the steps taken to change the name of an existing operations center. The user right clicks on an operations center and selects the Properties option. A dialog is displayed and the user is allowed to enter a new name. On pressing OK the name is changed. The OperationsCenter is updated with the new name.

[image: image25.emf]CommandStatus

OperationsCenterProperties

create

createCommandStatus

showWaitCursor

[cancel]

closeWindow

doProperties

[Success]

completed

[Error]

completed

getCommandStatusHandler

getToken

setProperties

[user clicks OK or Cancel]

actionPerformed

"Display Dialog"

getName

show

create

[Cancel]

[clicks on

properties

menu item]

actionPerformed

closeWindow

showDefaultCursor

[Error]

DisplayError

[Error]

GUIException

CommandStatusHandler GUI

Operator

GUIOperationsCenter OperationsCenter

[Success]

[AccessDenied or Chart2Exception]

setConfiguration(token, config)

Figure 25. GUIOperationsCenter:RenameOperationsCenter

3.4.2.15 GUIOperationsCenterGroup:CreateOperationsCenter

This diagram shows how a new operations center is created. When the user clicks on the Add Operations Center menu item in the Navigator, it calls the GUIOperationsCenterGroup, which creates a temporary GUIOperationsCenter object and calls it to invoke the properties dialog. When the user enters the necessary information and clicks OK, the dialog calls the GUIOperationsCenter to set the properties, which in turn queries the OperationsCenterFactory objects from the CORBA trading service. Then the factories are called to create the OperationsCenter until one is successful. If successful, the properties dialog is closed and the server will push a CORBA event indicating that a new operations center has been created.

[image: image26.emf]GUI CORBAUtilities

OperationsCenterProperties

DataModel

GUIOperationsCenterGroup

Operator

GUIOperationsCenter

OperationsCenterFactory

The real GUIOperationsCenter

object will be created when the

CORBA event is caught.

CommandStatusHandler

findAllObjectsOfType(OperationsCenterFactory)

getCommandStatusHandler

doProperties

create

showDefaultCursor

for each

factory until

critical error

or op center

is created

showWaitCursor

createCommandStatus

createOperationsCenter

[cancel]

closeWindow

[success]

closeWindow

[error]

displayError

create

CommandStatus

[operations center created]

completed

[error]

completed

getToken

[no factories found]

[no factories found]

completed

[Add Operations Center

menu item selected]

actionPerformed

create

[error]

AccessDenied or Chart2Exception

createOperationsCenter

setProperties

[User clicks OK or Cancel]

actionPerformed

show

[Cancel]

Figure 26. GUIOperationsCenterGroup:CreateOperationsCenter

3.4.2.16 GUIResourcesModule:discovery

This diagram shows how the GUIResourcesModule event channels and the operations center factories and associated operations centers are discovered and added to the system. The GUI will call the GUIResourcesModule periodically. When the GUI asks the module to discover event channels, it looks up the operations center event channels in the trader. It then creates a PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the consumer to the channel and reattaches it if the event service is restarted (duplicate channels are ignored). The GUI then calls the module to discover objects. At this time, the module will query the operations center factories objects from the trader. If any are found, it will call the factory to get its OperationsCenter objects. Then it gets the ID for each OperationsCenter and attempts to find the GUIOperationsCenter wrapper object in the DataModel. If it is not found, the GUIOperationsCenter object is created to wrap the CORBA OperationsCenter object, and the wrapper object is added to the DataModel.

[image: image27.emf]CORBAUtilities GUIResourcesModule GUI

[not found]

objectAdded

[not found]

create

[* for each

op center]

getObject

getID

getOperationsCenters

[* for each

factory]

query

findAllObjectsOfType(OperationsCenterFactory)

discoverObjects

discoverEventChannels of Name

discoverEventChannels

GUIOperationsCenter

OperationsCenterFactory DataModel OperationsCenter CosTrading.lookup

Figure 27. GUIResourcesModule:discovery

3.4.2.17 GUIResourcesModule:OperationsCenterAddedEvent

This diagram shows how the GUIResourcesModule receives information when a operations center is added to the system from the CORBA Event service and displays it to the user once the DataModel is updated.

[image: image28.emf]DataModel

CORBA

Event

Service

GUIOperationsCenter

GUIResourcesModule

Identifier

Check if the object is already known to the GUI. If so, there is

nothing to do. If not, create a new wrapper object and add it

to the data model. This will cause it to appear in the navigator and

other windows.

create

push (OperationsCenterAdded)

[object == null]

objectAdded(GUIOperationsCenter)

getObject(opCtrID)

[if object == null]

create

if(object != null)

Figure 4. GUIResourcesModule:OperationsCenterAddedEvent

3.4.2.18 GUIResourcesModule:OperationsCenterRemovedEvent

This diagram shows the GUI processing after an OperationsCenter has been removed. The OperationsCenterRemoved CORBA event is pushed to the GUIResourcesModule, which removes the GUIOperationsCenter wrapper object from the DataModel. The rest of the GUI will be subsequently updated.

[image: image29.emf]create

push(OperationsCenterRemoved)

The DataModel will

update the rest of the

GUI after a slight delay.

Identifier

DataModel

GUIResourcesModule

CORBA

Event

Service

objectRemoved

Figure 5. GUIResourcesModule:OperationsCenterRemovedEvent

3.4.2.19 GUIResourcesModule:OperationsCenterRenamedEvent

This diagram shows how the GUIResourcesModule receives information when an operations center name is changed from the CORBA Event service and displays it to the user once the DataModel is updated.

[image: image30.emf][if object != null]

updateNameCache(Name)

getObject(opCtrID)

[if object == null]

return

create

GUIResourcesModule

DataModel GUIOperationsCenter

CORBA

Event

Service

Identifier

objectUpdated(opCtrID)

push(OpCtrNameChange)

Figure 6. GUIResourcesModule:OperationsCenterRenamedEvent

3.4.2.20 GUIResourcesModule:startup

This diagram shows the steps taken to initialize the GUIResourcesModule. The module calls the POA to activate itself so that it can receive CORBA events. Then the module calls the FilterManager to get all of the filters owned by the module that were loaded from the database. If no filters are returned, it creates a GUIOperationsCenterGroup navigator filter, and activates all filters that were either found or created so they will be displayed in the Navigator.

[image: image31.emf]GUIOperationsCenterGroup

NavTreeFilter POA FilterManager GUIResourcesModule GUI

[*for each filter found or created]

activate

[no filters found]

create

getOwnedFilters(GUIOperationsCenterGroup)

get

activate_object

startup

Figure 31. GUIResourcesModule:startup

3.5 GUIDMSModule

3.5.1 Class Diagrams

3.5.1.1 DMSDialogs

This diagram shows all of the classes representing GUI windows that exist within the GUIDMSModule.

[image: image32.emf]DefaultDMSPropertiesDialog FP9500PropertiesDialog DMSStoredMsgItemPropertiesDialog DMSMessageEditor

java.awt.event.

ActionListener

«interface»

java.awt.event.

KeyListener

«interface»

DefaultJFrame

JComponent

FieldCommsPropertiesControl PixelStatusControl HardwareStatusControl DisplayPropertiesControl GeneralPropertiesControl

1

*

1

*

Figure 32. DMSDialogs

3.5.1.1.1 java.awt.event. ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.5.1.1.2 DefaultDMSPropertiesDialog

This dialog is used to view and edit the DMS properties of those models that support a standard set of DMS operational parameters and status information. It uses the control classes derived from JComponent for formatting, display and user editing features.

3.5.1.1.3 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.5.1.1.4 DisplayPropertiesControl

This class is derived from JComponent and is capable of graphical display of DMS display Properties and allows the user to edit these properties. Some examples of DMS display properties are sign height, sign width, character height and character width.

3.5.1.1.5 DMSMessageEditor

This class is responsible for allowing an operator to set the current message on a DMS. It also updates a MessageView to allow the operator to preview the message as it will look on the selected sign, prior to sending the message to the sign controller.

3.5.1.1.6 DMSStoredMsgItemPropertiesDialog

This dialog is used for creation, viewing and editing of the properties of DMSStoredMsgItem and GUIDMSStoredMsgItem objects.

3.5.1.1.7 FieldCommsPropertiesControl

This class is derived from JComponent and is capable of graphical display of DMS field communication properties and allows the user to edit these properties. Some examples of DMS field communication properties are DMS phone number and comm loss time.

3.5.1.1.8 FP9500PropertiesDialog

This dialog is used to view and edit the FP9500 DMS configuration information. It also allows the FP9500 DMS extended status information to be viewed. It delegates the formatting, display and user editing functions to the classes derived from JComponent like GeneralPropertiesControl, PixelStatusControl and other control classes. The control classes used by this class depend on the configuration and status information supported by the FP9500 DMS model.

3.5.1.1.9 GeneralPropertiesControl

This class is derived from JComponent and is capable of graphical display of general DMS Properties and allows the user to edit these properties. Some examples of general DMS properties are DMS name, DMS type and DMS location.

3.5.1.1.10 HardwareStatusControl

This class is derived from JComponent and is capable of graphical display of DMS controller status. It does not allow the user to edit the information displayed.

3.5.1.1.11 JComponent

This is a Java Swing base class that may be derived by any class having a graphical representation that can be displayed on the screen and that can interact with the user.

3.5.1.1.12 java.awt.event. KeyListener

Interface that a class must realize in order for objects of that class to be notified when the user presses a key.

3.5.1.1.13 PixelStatusControl

This class is derived from JComponent and is capable of graphical display of DMS Pixel status. It does not allow the user to edit the information displayed.

3.5.1.2 DMSModuleArchitecture

This diagram shows the data hierarchy of the GUIDMSModule and the objects that it supports. The GUIDMSModule:NavigatorSupport class diagram shows how these objects are laid out on the GUI navigator.

[image: image33.emf]GUIDMS

DataModel

DMSNavGroup

PlanItemCreationSupporter

«interface»

GUIResponsePlanItemCreator

«interface»

GUIDMSResponsePlanItem

GUIDMSStoredMessage

ResponsePlanItem

«interface»

GUIMessageLibrary

GUIDMSStoredMsgItem

InstallableModule

«interface»

GUIDefaultDMS

GUILibrarySupporter

«interface»

Chart2DMS

«interface»

GUIHARMessageNotifier

«interface»

ResponseDataCreator

«interface»

DMSFactory

«interface»

GUIArbitrationQueue

GUIFP9500ModelSupporter GUIDefaultDMSModelSupporter

GUIFP9500

GUI

CosEvent.

PushConsumer

«interface»

GUITrafficEventHolder

GUIPlan

StoredMessage

«interface»

GUIStoredMessage

GUIPlanItem

GUIResponsePlanItem

GUIDMSModelSupporter

GUIDMSModule

1

*

1

*

1

*

1

*

*

1

1

1

1

1

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1 1

1

1

*

*

1 1

1 *

1 *

1

1

GUIDMS(dms)

takeOffline()

putOnline()

blankSign()

remove()

pollNow()

resetController()

doProperties()

getConfiguration()

setConfiguration()

setMessage()

setMessageThin()

getMessage()

updateMessageCache()

showTrueDisplay()

viewArbitrationQueue()

getPlanItemCreationMenuReps(accessToken) : MenuItemRep[]

createGUIPlanItem(planItem, itemID, plan) : GUIPlanItem

createNewGUIPlanItem(accessToken, menuString, plan) : boolean

createGUIResponsePlanItem(Identifier, name,

 ResponsePlanItemData) : GUIResponsePlanItem

createGUIResponsePlanItem(ResponsePlanItem) :

 GUIResponsePlanItem

remove

execute

getID()

remove()

doProperties()

setMessage()

getMessageContent

startup(orb)

discoverEventChannels(trader, eventConsumerGroup)

discoverObjects(trader, dataModel)

loggedIn()

loggedOut()

shutdown(orb)

getMenuItemReps(accessToken, Menuable[]) : MenuItemRep[]

handleCommand(actionEvent, Menuable[]) : boolean

createGUIStoredMessage(StoredMessage, Message) : GUIStoredMessage

getStoredMessageCreationMenuReps(accessToken) : MenuItemRep[]

createNewGUIStoredMessage(accessToken, menuString, guiLibrary) : boolean

createLibraryType():LibraryType

getName():String

setAssociatedHAR(HAR)

getAssociatedHAR() : GUIHAR

isHARNoticeActive() : boolean

getNotifier() : HARMessageNotifier

Identifier m_notifierID

HARMessageNotifier m_notifier

GUIHAR m_har

push

createGUIDMSModel(dms, dmsID):GUIDMS

createNewGUIDMSModel(token, menuString):bool

getDMSCreationMenuReps(token):MenuItemRep[]

get()

addDMS()

getDictionary()

getLibraryNavGroup()

getDMSNavGroup()

getFonts()

getGeometries()

Figure 33. DMSModuleArchitecture

3.5.1.2.1 Chart2DMS

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the Chart II-specific DMS objects within Chart II. It provides a method for getting the DMSArbitrationQueue for a Chart II DMS, which can then be used by traffic events to provide input as to what each traffic event desires to be on the sign. It also provides a method to perform testing on a sign. This method can be extended by derived classes for specific models of signs, which know how to perform certain types of testing on their specific model of sign. Chart II business rules include concepts such as shared resources, arbitration queues, and linking devices usage to traffic events, concepts which go beyond what would be industry-standard DMS control.

3.5.1.2.2 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.5.1.2.3 DMSFactory

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a method to get a list of DMS devices currently in the system.

3.5.1.2.4 DMSNavGroup

This class serves as a container for all of the GUIDMS objects in the GUIDMSModule, when they are displayed in the Navigator. The GUIDMSModule has one instance of this class.

3.5.1.2.5 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.5.1.2.6 GUIArbitrationQueue

This class is GUI wrapper for the ArbetrationQueue class. It adds functionality for caching the data and for adding GUI specific functionality.

3.5.1.2.7 GUIDefaultDMS

This class is derived from the GUIDMS class and represents a standard model DMS. This class can handle the configuration requirements and status information that are standard across all DMS types.

3.5.1.2.8 GUIDefaultDMSModelSupporter

This class provides functionality for the creation of a standard DMS model object, by implementing the GUIDMSModelSupporter interface.

3.5.1.2.9 GUIDMS

This class is a GUI "wrapper" object which is used to wrap a CHART2DMS object. This is a abstract class that needs to be extended by the GUI DMS model specific classes.

3.5.1.2.10 GUIDMSModelSupporter

This interface must be implemented by any class that intends to provide functionality for the creation of DMS objects of a specific model type. The GUIDMSModelSupporter provides methods to return the specific menu string, which when selected on the GUI by the user, results in the creation of the DMS object of that type. There are methods in the interface that help in the creation of the model specific DMS object.

3.5.1.2.11 GUIDMSModule

The GUIDMSModule is an installable module in the GUI that handles all of the DMS specific functionality. Only one GUIDMSModule object may exist within the GUI. This class implements the interfaces to support the frameworks of the GUIPlanModule, the GUILibraryModule, and the GUITrafficEventModule. It handles the creation of model specific GUI DMS objects using the model supporters.

3.5.1.2.12 GUIDMSResponsePlanItem

This class is a GUI "wrapper" object which is used to wrap a ResponsePlanItem object which contains a DMSRPIData object.

3.5.1.2.13 GUIDMSStoredMessage

This class is a GUI "wrapper" object which is used to wrap a StoredMessage object of DMSMessage type. It helps in the creation of a DMS stored message using a DMSMessageEditor.

3.5.1.2.14 GUIDMSStoredMsgItem

This class is a GUI "wrapper" object which is used to wrap a PlanItem object which contains the DMSPlanItemData. It helps in the creation of a DMS plan item data using the DMSStoredMsgItemProperties object.

3.5.1.2.15 GUIFP9500

This class is derived from the GUIDMS class and represents a FP9500 model type DMS. This class can handle the specialized configuration requirements of a FP9500 model DMS and interpret the model specific status information.

3.5.1.2.16 GUIFP9500ModelSupporter

This class provides functionality for the creation of FP9500 type DMS object, by implementing the GUIDMSModelSupporter interface.

3.5.1.2.17 GUIHARMessageNotifier

This interface must be supported by any GUI object that represents a HARMessageNotifier object such as a SHAZAM or DMS object. Objects of this type will be presented to the user when he/she attempts to associate message notifiers with a HAR device.

3.5.1.2.18 GUILibrarySupporter

This class allows the GUILibraryModule to maintain stored messages which have differing formats. When an object of this type is installed the user can create, maintain, and use the specific type of libraries and stored messages that the object supports.

3.5.1.2.19 GUIMessageLibrary

This class is a GUI "wrapper" object which is used to wrap a MessageLibrary object. The wrapping is done to cache the data locally for faster access, as well as to give the MessageLibrary some GUI-specific functionality such as menus and command handling.

3.5.1.2.20 GUIPlan

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data locally for faster access, as well as to give the Plan some GUI-specific functionality such as menus and command handling.

3.5.1.2.21 GUIPlanItem

This is a GUI base class for all the plan items. Each GIUPlanItem object will serve as a GUI wrapper to cache the plan item data locally and also to handle all user interaction in the GUI, such as menus and command handling.

3.5.1.2.22 GUIResponsePlanItem

This is a base class for the GUI wrapper object which is used to wrap a ResponsePlanItem. The ResponsePlanItem represents a proposed action to perform on a target object in response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the response plan item.

3.5.1.2.23 GUIResponsePlanItemCreator

This interface is used to enable the creation of specific types of GUIResponsePlanItem wrapper objects depending upon which type of ResponsePlanItem is being wrapped. Any class wishing to create GUIResponsePlanItems must implement this interface and add themselves to the GUITrafficEventModule at GUI startup time. When the GUITrafficEventModule discovers a ResponsePlanItem or catches a CORBA event indicating that a new response plan item has been created, it will call each known GUIResponsePlanItemCreator to give it an opportunity to create a specific type of GUI wrapper object.

3.5.1.2.24 GUIStoredMessage

This class is a GUI "wrapper" object which is used to wrap a StoredMessage object. It provides a user interface object which can implement whatever interfaces are necessary for the object to exist within the GUI framework (for example, an object must support the NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.5.1.2.25 GUITrafficEventHolder

 This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent. This class contains generic data and operations which apply to any type of TrafficEvent. It also "holds" a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the old GUITrafficEvent object (stored within this "holder" class) will be switched out for a new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in existence.

3.5.1.2.26 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.5.1.2.27 PlanItemCreationSupporter

This interface must be implemented in any modules that wish to support the plan module. The modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule will then call the supporter when it is time to display the Plan menu or to create a specific type of plan item or GUIPlanItem.

3.5.1.2.28 CosEvent. PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.5.1.2.29 ResponseDataCreator

This interface enables the creation of type-specific ResponsePlanItemData objects, which are used for creating the appropriate type of ResponsePlanItem. An object implementing this interface can be added to the response plan of a traffic event. Implementers of this interface include plan items and response devices.

3.5.1.2.30 ResponsePlanItem

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.5.1.2.31 StoredMessage

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.5.1.3 DMSNavigatorSupport

This diagram shows the user interface relationships of the objects supported by the GUIDMSModule.

[image: image34.emf]Navigable

«interface»

NavListDisplayable

«interface»

NavTreeDisplayable

«interface»

GUIDMSStoredMessage GUIDMSStoredMsgItem

GUIDMSResponsePlanItem

java.awt.event.ActionListener

«interface»

Menuable

«interface»

DMSNavGroup

GUIDMS

Droppable

«interface»

1 *

getDesc():String

allowSetDesc():boolean

setDesc(String):void

getImage():void

getPropertyValue(property) : Object

comparePropertyValues(NavListDisplayable,

 String, result) : void

getNavParent() : NavTreeDisplayable

containsChildNavigable(Navigable) : boolean

getChildNavigables() : Navigable[]

getNavPropertyList() : String []

getMSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

getSSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

Figure 74. DMSNavigatorSupport

3.5.1.3.1 java.awt.event.ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.5.1.3.2 DMSNavGroup

This class serves as a container for all of the GUIDMS objects in the GUIDMSModule, when they are displayed in the Navigator. The GUIDMSModule has one instance of this class.

3.5.1.3.3 Droppable

This interface must be implemented by any object wishing to take part in a drag and drop operation. It is used by the DropHandler class to determine if a drop action should be allowed and to delegate the handling of the drop action after it is performed.

3.5.1.3.4 GUIDMS

This class is a GUI "wrapper" object which is used to wrap a CHART2DMS object. This is a abstract class that needs to be extended by the GUI DMS model specific classes.

3.5.1.3.5 GUIDMSResponsePlanItem

This class is a GUI "wrapper" object which is used to wrap a ResponsePlanItem object which contains a DMSRPIData object.

3.5.1.3.6 GUIDMSStoredMessage

This class is a GUI "wrapper" object which is used to wrap a StoredMessage object of DMSMessage type. It helps in the creation of a DMS stored message using a DMSMessageEditor.

3.5.1.3.7 GUIDMSStoredMsgItem

This class is a GUI "wrapper" object which is used to wrap a PlanItem object which contains the DMSPlanItemData. It helps in the creation of a DMS plan item data using the DMSStoredMsgItemProperties object.

3.5.1.3.8 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.5.1.3.9 Navigable

This interface will be implemented by any class which supports the Navigator on either the left or right side (the tree or list view). This includes the functionality common to both the tree and list.

3.5.1.3.10 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.5.1.3.11 NavTreeDisplayable

This interface must be implemented by any objects which are to be added to the left side of the Navigator (the tree view). This contains all of the functionality to support the tree data structure and also provides the property list (column headers) which will be displayed in the list view when the NavTreeDisplayable is selected.

3.5.2 Sequence Diagrams

3.5.2.1 GUIDMSModule:AddDMS

This sequence shows how an operator adds a new DMS to the system. The processing shown here is for adding a DMS of the default type. The processing involved in adding a model specific DMS is much the same, except that the GUI DMS and the Properties Dialog objects are the model specific derivatives. When the user right clicks on the GUIDMS object, the model supporters registered in the system are called on to return the menu item string that is to be displayed to the user in order to create the DMS model that it supports. The operator selects the DMS model that he/she wishes to create. If the user does not have the appropriate functional rights, the corresponding menu items are disabled. All the DMS model supporters are then called upon to create a GUIDMS object. Only one of the supporters will identify the menu item that was selected(in this case the default supporter), and proceeds to create the appropriate DMS model. The operator will be shown a DMS properties dialog box with default configuration information which he/she may modify to alter the configuration of the DMS. When the operator presses OK, the new DMS will be added to the system. The DMS will be added to the DMS factory that the user selected in the properties dialog. If the user did not make a selection, each of the factories in the CORBA trader is called one by one(starting with the factory closest to the GUI's trader) to create the DMS, and the first factory that successfully creates it, will be the home of the DMS. Once the DMS is added successfully, a DMSAdded event will be pushed from the server through the DMS event channel and the new GUIDMS object will be added to the DataModel, which will update all windows after a short delay.

[image: image35.emf]CorbaUtilities

Break Loop

A menu is displayed

wherefrom the user

can choose to create

any of the DMS model

supported by the system.

If the user does not have

the appropriate rights,

the corresponding menu

items are disabled.

A DMS Properties

dialog is displayed and

it allows the user to

edit the model specfic

configuration parameters.

The user can press the

OK button to add the DMS or

CANCEL to cancel the

operation.

The DMS Properties dialog

allows the user to select the

factory to which the DMS is

to be added. If the user does not

make a selection, each of the

factory in trader will be called on

to add the DMS, and the first

one that successfully adds it,

will be the one that houses

the DMS.

DMSFactory

DMSNavGroup

This temporary GUIDMS object is

deleted after creation proces. When

 the DMSAdded event is received from

the server (or when the DMS is

discovered during the next

discovery cycle), the actual GUIDMS

object will be added to the GUI's

DataModel.

The creation of a DMS is not

instantaneous. The DMS factory

needs to add the DMS to the FMS

which in turn may contact the device

to set certain configuration information

on the device. The progress of the

DMS addition is tracked in the GUI using

the command status object, which is

periodically updated by the factory with

the current status. Once the DMS is created

a DMSAdded event is pushed.

DefaultDMSPropertiesDialog

GUIDMS

CommandStatus

CommandStatusHandler GUI

GUIDMSModelSupporter GUIDMSModule

The GUIDMS wrapper object

created would be a DMS model

specific one, that gets the model

specific configuration information

from the user and requests the

DMS factory to create this new

DMS object. The model specific DMS

PropertiesDialog is used to obtain the

user input. Refer to the class diagrams

DMSDialogs and DMSModuleArchitecture

for details.

Administrator

Each of the supporter is

called to create a GUIDMS

object. This process stops

when a supporter successfully

creates a GUIDMS object or

none of the supporters could

create the GUIDMS object.

findObjectsOfType (DMSFactory)

[user did not select factory]

[*for each dms factory in

trader

 until create succeeds]

[no rights]

AccessDenied

actionPerformed (OK orCANCEL)

show

create

[user right clicks on

dms]

getSSMenuItemReps

closeWindow

success

create

[error]

GUIException

doProperties

createCommandStatus

getCommandStatusHandler

[user clicks on

add DMS model]

actionPerformed

[*for each model supporter]

createNewGUIDMSModel

create

operation cancelled

[cancel]

closeWindow

setConfiguration

[user did not select factory]

findAllObjectsOfType

getToken

get

createDMS

[error]

"Display error"

[any other error]

CHART2Exception

[any other error]

CHART2Exception

[no rights]

AccessDenied

[user selected factory]

createDMS

[*for each model supporter]

getDMSCreationMenuReps

getModelSupporters

error

Figure 35. GUIDMSModule:AddDMS

3.5.2.2 GUIDMSModule:AddDMSStoredMessageItem

This diagram shows how a PlanItem is added to the system. The user clicks on the GUIPlan object in the Navigator and chooses "Create DMS Plan Item". The GUIPlan then calls all the PlanItemCreationSupporters (the GUIDMSModule is one) to create the GUIPlanItem. The processing stops with the first supporter that returns the new object after successful creation. The menu selection being a DMS plan item, the GUIDMSModule recognizes the menu item string. The module creates a temporary GUI wrapper for a plan item and calls it to display its properties, which invokes the DMSStoredMsgItemPropertiesDialog. When the user clicks Apply or OK, the dialog calls back to the GUIDMSStoredMsgItem wrapper object to set the item data. Since the wrapper contains no served PlanItem, it calls the CHART2DMS to create one. If successful, the server will push a PlanItemAdded event to all GUIs, which the GUI will catch to create a new GUIDMSStoredMsgItem wrapper object (the temporary wrapper will be deleted).

[image: image36.emf]GUIPlan

GUI

DMSPlanItemData

At this point all the DMS's

in the system along with the

the DMS Stored messages are

displayed to the user for

selection

When the add succeeds the server

pushes the PlanItemAdded event.

This event is caught by the GUIPlanModule

and a new GUIDMSStoredMsgItem is created.

The GUIDMSStoredMsgItem created in the

process shown in this diagram is temporary

and is deleted when user closes the dialog.

This dialog will allow

the user to select

a DMS and a Stored Message

to associate with it.

Operator

DMSStoredMsgItemProperties

GUIDMSStoredMsgItem

This menu item

will be disabled if

the user does not

have sufficient rights.

The window is

left open to allow

the user to create

multiple plan items

in succession

Plan DataModel

GUIDMSModule

setDMS

show

success

create

getDataModel

getPlan

getObjectsOfType

(GUIDMS)

create

create

createNewGUIPlanItem

["Create DMS Plan Item"

menu item clicked]

actionPerformed

getObjectsOfType

(GUIDMSStoredMessage)

get

doProperties

[error]

[error]

"Display Error"

[other error]

CHART2Exception

[no rights]

AccessDenied

addItem

cancel

setMsgItemData

actionPerformed (OK or CANCEL)

[user cancelled op.]

closeWindow

setMessage

Figure 36. GUIDMSModule:AddDMSStoredMessageItem

3.5.2.3 GUIDMSModule:BlankDMSInMaintenanceMode

This sequence diagram shows how a user with appropriate rights can blank a DMS when the device is in maintenance mode. The sequence is initiated when the user right clicks on a GUIDMS object in the navigator and selects the "Blank" menu item. The GUIDMS object creates a CommandStatus object and then calls the Chart2DMS object that it wraps to perform the blank operation. The progress of the blank operation is displayed to the user on the command status window, which is updated as and when the server updates the CommandStatus object that was passed to it along with the blank command. If successful, the server will push CORBA events indicating the changed display status.

[image: image37.emf][no rights]

AccessDenied

[other error]

CHART2Exception

Chart2DMS

GUIDMS

This menu item will be

disabled if the user does

not have the rights or the

device is not in maintenance

mode.

Administrator

GUI

The progress of the blank

operation is monitored using

the command status object.

The server updates the

the CommandStatus with

the progress of the command.

In case of failure the

CommandStatus contains the

reason for the failure.

If successful, this will push a

DMSStatusChanged event. If the

DMS was in use, it may also push

a ControllingOpCtrChanged event.

These events are handled in the GUI

by notifying the relevant GUI

components via the DataModel.

CommandStatusHandler

CommandStatus

create

[user clicks on blank menu item]

actionPerformed

get

createCommandStatus

getCommandStatusHandler

blankSign

getToken

[DMS controlled by different

op center and no

override rights]

ResourceControlConflict

Figure 37. GUIDMSModule:BlankDMSInMaintenanceMode

3.5.2.4 GUIDMSModule:CreateDMSStoredMessage

This diagram shows how a DMS stored message is created. When the user right clicks on the GUIMessageLibrary object, the library supporters registered in the system are called on to return the menu item string that is to be displayed to the user in order to create the library message that it supports. In this case, the operator selects the menu item to create a DMS message that is supported by the GUIDMSModule. If the user does not have the appropriate functional rights, the corresponding menu items are disabled. All the library supporters are then called upon to create the library message object. Only one of the supporters will identify the menu item that was selected(in this case it is the GUIDMSModule), and proceeds to create the appropriate library message. The GUIDMSModule creates a temporary GUIDMSStoredMessage object to edit, and calls doProperties to show the DMSMessageEditor dialog. As the user types, banned words will be shown to the user. When the user clicks OK, the message editor will check for disapproved words and provides suggestions to replace these words. A new DMSMessage object is created and the setMessage method is called on the GUIDMSStoredMessage wrapper object. Since the wrapper does not contain a served StoredMessage object, it calls the message library to create one. If successful, the server will create a new StoredMessage object and will push an event to update all of the GUIs.

[image: image38.emf]GUIMessageLibrary

Operator

GUILibraryModule

GUIDMSModule

GUIDictionary

GUI

NavTree

returns

suggested words

If successful, the

server will push a

StoredMessageAdded

event

This temporary GUIDMSStoredMessage

object will be deleted. When the server

pushes the StoredMessageAdded event,

the GUILibraryModule will catch the event

and call the appropriate GUIStoredMessageCreator

object to create a new GUIStoredMessage.

When one does, the GUILibraryModule will

add the GUIStoredMessage to the DataModel.

MessageLibrary

DMSMessage

DMSMessageEditor

GUIDMSStoredMessage

create

"allow user to replace

or ignore

dispproved words"

[*for each disapproved word]

[disapproved words]

WordList

createStoredMessage

""Display

Menu"

JMenu

MenuItemRep[]

MenuItemRep[]

getSSMenuItemReps

[right click]

mousePressed

doProperties

performApprovedWordsCheck

[types text for message]

keyPressed

[banned words]

WordList

checkForBannedWords

getStoredMessageCreationMenuReps

[right click]

makeMenu

createNewGUIStoredMessage

[user clicks on "Create

DMS Stored Message"]

actionPerformed

getLibrarySupporters

get

success

[error]

create

create

[user cancelled operation]

closeWindow

[banned words]

"Display banned words"

closeWindow

[error]

"Display error"

show

[other error]

CHART2Exception

[bad message content]

DisapprovedMessageContent

[no rights]

AccessDenied

createStoredMessage

getToken

get

setMessage

[cancel]

actionPerformed (OK or CANCEL)

Figure 38. GUIDMSModule:CreateDMSStoredMessage

3.5.2.5 GUIDMSModule:CreateResponsePlanItem

This diagram shows how a DMS response plan item is added to the system. The user drags a GUIDMS or a GUIDMSStoredMsgItem object over the GUITrafficEventHolder (the object representing the traffic event in the GUI) and drops it. Since the GUIDMS and GUIDMSStoredMsgItem objects both implement the ResponseDataCreator interface, the GUITrafficEventModule can use either of these to create a DMSResponsePlanItemData, which it then uses to create a ResponsePlanItem. See the sequence diagram: GUITrafficEventModule:AddResponsePlanItem for details.

[image: image39.emf]The dragging of GUIDMS or GUIDMSStoredMessageItem objects to a

GUITrafficEventHolder to create a response plan item is described in the

sequence diagram: GUITrafficEventModule:AddResponsePlanItem. Both

the GUIDMS and the GUIDMSStoredMessageItem serve as

ResponseDataCreators (an interface which they implement).

Figure 39. GUIDMSModule:CreateResponsePlanItem

3.5.2.6 GUIDMSModule:DiscoverEventchannels

This diagram shows the processing involved in the DMS event channel discovery, which takes place at startup of GUIDMSModule and periodically from thereon. The GUIDMSModule queries the event channels from the trading service, creates a PushConsumer to receive the CORBA events, and adds the PushConsumer objects to the EventConsumerGroup for maintenance of the event channels.

[image: image40.emf]EventConsumerGroup

PushEventConsumer

This queries the

trader for event channel

objects for DMS control

events

CORBAUtilities GUIDMSModule

GUI

Discovery

Thread

create

[*for each event channel found]

findObjects

discoverEventChannels

add

Figure 40. GUIDMSModule:DiscoverEventchannels

3.5.2.7 GUIDMSModule:DiscoverObjects

This diagram shows the processing involved in the discovery of Chart2DMS corba objects, which takes place at startup of GUIDMSModule and periodically from thereon. The GUIDMSModule queries the trading service for all the DMS Factory objects. Each factory object is called on to return the DMS objects that it serves. If the object discovered is already in the data model, no action is required. Otherwise, each of the objects discovered in this fashion, is passed on to the GUIDMSModelFactory that is capable of identifying the DMS model type using its collection of GUIDMSModelSupporter objects, and creating a GUIDMS object that wraps this Chart2DMS corba object. Thus the GUIDMS object created in this manner, is model specific(refer to the DMSModuleArchitecture class diagram for the classes that derives from GUIDMS to represent specific DMS models). It is then added to the data model.

[image: image41.emf]GUIDMS

CHART2DMS GUIDMSModelFactory GUIDMSModelSupporter

Query the

trader for DMS

factory objects

GUIHAR

create

[*for each

DMS]

findAllObjectsOfType

getResources

[*for each

DMS facory

found]

objectAdded

[*for each model

supporter registered]

createGUIDMSModel

getObject

getID

discoverObjects

addMsgNotifier

[dms is har notifier]

getObject

getAssociatedHAR

getStatus

getConfiguration

[object not found in data model]

createGUIDMSModel

GUIDMSModule

GUI Discovery Thread

DataModel CORBAUtilities

The GUI DMS wrapper

created will be model

specific if it was created

by a model supporter, or

a Default DMS otherwise.

DMSFactory

Figure 41. GUIDMSModule:DiscoverObjects

3.5.2.8 GUIDMSModule:DMSRemovedEvent

This diagram shows how a DMSDeleted event is handled in the GUI. First, an attempt is made to get the GUIDMS object from the DataModel. If it exists, the GUIDMS is removed from the DataModel. The DataModel notifies all the observers about the removal of the DMS from the system. This change will be reflected on all the observer windows.

[image: image42.emf]The DataModel notifies

all observers about

the DMS removal. This

will cause the observers to

remove their references

to the GUIDMS. The object

is eventually removed

by the Java garbage

collection.

GUIDMS

Looks up the DMS

in the data model using

the DMS ID

GUI DataModel

push(DMS id, event info)

delete

[DMSDeleted]

objectRemoved(GUIPlan)

getObject

getDataModel

GUIDMSModule

CORBA

Event

Service

Figure 42. GUIDMSModule:DMSRemovedEvent

3.5.2.9 GUIDMSModule:DMSStateChangeEvents

This sequence diagram shows the processing involved in handling a DMS configuration change or a DMS Status Change event that is pushed by the server. The event info. accompanying the event includes the DMS ID whose state has changed and the changed state information. The GUIDMS object corresponding to the DMS ID in the event info is looked up in the data model. This GUIDMS object updates itself with the current state and alerts the data model, which informs all the registered observers about the change. The data passed on to the GUIDMS is DMS model dependent. Since the GUIDMS is of the same model type as the data, it can interpret the event data and update its state.

[image: image43.emf]GUIDMSModule

CORBA Event

Service

The GUIDMS object corresponding

to the DMS ID in the event info is

looked up in the data model. This

GUIDMS object updates itself with

the current state and alerts the

data model, which informs all the

registered observers about the change.

The data passed on to the GUIDMS is

DMS model dependent. Since the

GUIDMS is of the same model type as

the data, it can interpret the event

data and update its state.

The type of event

pushed here can be

DMSConfigChanged or

DMSStatusChanged.

The event info. contains

the DMS ID and the data

asssociated to

the DMS configuration or

DMS status as the case

 may be.

GUI GUIDMS DataModel

push

getDataModel

getObject

"update cache"

get

getDataModel

get

objectUpdated

Figure 43. GUIDMSModule:DMSStateChangeEvents

3.5.2.10 GUIDMSModule:Login

This sequence of events is initiated when a user logs in to the system using either the login or change user commands from the toolbar window. These commands cause the GUI:LoginBasic sequence or GUI:ChangeUserBasic to be performed. As part of either of these sequences, the GUI will call each of the installed modules giving them a chance to perform necessary operations to set up data specific to a particular user. The GUIDMSModule does not currently need to perform any processing when a user logs in.

[image: image44.emf]GUI

User

GUIDMSModule

See GUI:LoginBasic and

GUI:ChangeUserBasic

sequence to see details

on login operation processing.

Currently the module

does not perform any

work on login.

login or changeUser

loggedIn

Figure 44. GUIDMSModule:Login

3.5.2.11 GUIDMSModule:Logout

This sequence of events is initiated when a user logs out of the system using either the logout or change user commands from the toolbar window. These commands cause the GUI:LogoutBasic or GUI ChangeUserBasic sequences to be performed. As part of these sequences, the GUI will call each of the installed modules giving them a chance to perform necessary operations to clean up data for a particular user. The GUIDMSModule does not currently need to perform any processing when a user logs out.

[image: image45.emf]GUI

User

GUIDMSModule

See GUI:LogoutBasic and

GUI:ChangeUserBasic

sequence to see details

on logout operation processing.

Currently the module

does not perform any

work on logout.

logout or changeUser

loggedOut

Figure 45. GUIDMSModule:Logout

3.5.2.12 GUIDMSModule:ModifyDMSSettings

This sequence shows how an operator may alter the configuration of a Default DMS. Refer to the ModifyFP9500Settings sequence diagram for the processing required for a specific DMS model. The operator initiates this action by right clicking on the DMS in a window and selecting the "Properties" menu item. If the user does not have the appropriate functional rights, this menu item will not be made available. The GUIDefaultDMS object creates a DefaultDMSPropertiesDialog, which displays the current DMS configuration and allows the user to modify the current configuration. When the operator is done editing the configuration, clicking on the "OK" button on the dialog causes the GUIDefaultDMS module to create a CommandStatus object, and a DMSConfiguration object and then call the Chart2DMS object to reconfigure itself by calling the setConfiguration method. The setConfiguration return control immediately and performs the DMS reconfiguration operation asynchronously, barring any user privilege issues. The operation may involve field communication for certain device models. The progress of the command is communicated to the user via the CommandStatus object, which is updated by the server.

[image: image46.emf]CommandStatus

create

doProperties

[error]

"Display error message

to the user"

actionPerformed (OK or CANCEL)

getConfiguration

closeWindow

create

create

[error]

[user cancelled operation]

closeWindow

[other error]

CHART2Exception

setConfiguration

[no rights]

AccessDenied

[user pressed OK]

setConfiguration

success

getToken

createCommandStatus

getCommandStatusHandler

get

show

There are certain DMS model dependent

paramaters that need to be set to configure

a DMS. Hence the DMSProperties dialog

varies for different DMS models. The model

specific class that sub-classes GUIDMS

displays the appropriate DMSProperties dialog

for operator input. This diagram shows the

processing for a default DMS object.

This menu item will be

grayed out if the user

does not have

sufficient rights.

The setConfiguration returns control

immediately and performs the DMS

reconfiguration operation asynchronously,

barring any user privilege issues. The operation

 may involve field communication for

certain device models. The progress of

the command is communicated to the user

via the CommandStatus object, which is

updated by the server.

At this point the user

will be shown the

DMS Properties dialog.

This dialog is modeless

and will apply the changes

to the DMS when the user

presses the OK button.

DefaultDMSPropertiesDialog

GUIDefaultDMS

Operator

CommandStatusHandler GUI Chart2DMS

DMSConfiguration

This is a model

dependent CORBA

value type object

At this point, the user can

track progress of the command

through command status window.

Once the DMS is successfully re-configured,

the server pushes a DMSConfigChanged

event that is caught by the GUI and the

updated configuration is reflected in

the data model.

Figure 46. GUIDMSModule:ModifyDMSSettings

3.5.2.13 GUIDMSModule:ModifyDMSStoredMessage

This diagram shows how the contents of a stored message are modified. The user clicks on an existing GUIDMSStoredMessage object, and clicks on the "Properties" menu item. The GUIDMSStoredMessage then invokes the DMSMessageEditor dialog. On initialization, the dialog calls back to the GUIDMSStoredMessage wrapper object to get the message content, which calls back to the StoredMessage object in the server, if necessary. When the DMSMessage is returned, the dialog can be initialized from the existing message contents. As the user types in text for the message, banned words will be displayed. When the user clicks OK, the message editor will check for disapproved words and provides suggestions to replace these words. A new DMSMessage object is created with the user modifications. The GUIDMSStoredMessage is called to set the message, which in turn calls the StoredMessage object in the server. If successful, the server will push a CORBA event to update the clients.

[image: image47.emf]DMSMessage

This represents the

modified message that

will be stored.

The menu item will

be disabled if the

user does not

have rights

GUI GUIDictionary

DMSMessage StoredMessage GUIDMStoredMessage

DMSMessageEditor

Operator

If successful, the

server will push a

StoredMessageChanged

event

getToken

[no rights]

AccessDenied

success

[contains banned words]

DisapprovedMessageContent

setMessage

setMessage

[clicks on

"Properties"]

actionPerformed

create

[other error]

CHART2Exception

get

closeWindow

[error]

[error]

"Display Error"

[cancel]

[user cancelled operation]

closeWindow

[banned words]

"Display Banned Words"

[banned words]

WordList

checkForBannedWords

[unapproved words]

WordList

performApprovedWordsCheck

[types text for message]

keyPressed

"Initialize Dialog"

getBeaconState

geMultiString

getMessageContent

actionPerformed (OK or CANCEL)

show

create

"allow user to replace

or ignore unapproved words"

[*for each unapproved word]

Figure 47. GUIDMSModule:ModifyDMSStoredMessage

3.5.2.14 GUIDMSModule:ModifyFP9500Settings

This sequence shows how an operator may alter the configuration of a FP9500 DMS. In fact the processing shown here will be the same for any other model of DMS in the system. Refer to the ModifyDMSSettings sequence diagram for the processing required for a default DMS. The operator initiates this action by right clicking on the DMS in a window and selecting the "Properties" menu item. If the user does not have the appropriate functional rights, this menu item will not be made available. The GUIFP9500 object creates a FP9500PropertiesDialog, which displays the current DMS configuration and allows the user to modify the current configuration. When the operator is done editing the configuration, clicking on the "OK" button on the dialog causes the GUIFP9500 module to create a CommandStatus object, and a DMSConfiguration object and then call the Chart2DMS object to reconfigure itself by calling the setConfiguration method. The setConfiguration return control immediately and performs the DMS reconfiguration operation asynchronously, barring any user privilege issues. The operation may involve field communication for certain device models. The progress of the command is communicated to the user via the CommandStatus object, which is updated by the server.

[image: image48.emf]FP9500Configuration

This is a model

dependent CORBA

value type object

There are certain DMS model dependent

paramaters that need to be set to configure

a DMS. Hence the DMSProperties dialog

varies for different DMS models. The model

specific class that sub-classes GUIDMS

displays the appropriate DMSProperties dialog

for operator input. This diagram shows the

processing required for a FP9500 DMS

[user cancelled operation]

closeWindow

create

setConfiguration

create

[other error]

CHART2Exception

doProperties

[no rights]

AccessDenied

[user pressed OK]

setConfiguration

success

getToken

createCommandStatus

getCommandStatusHandler

get

show

[error]

"Display error message

to the user"

actionPerformed (OK or CANCEL)

getConfiguration

closeWindow

create

[error]

CommandStatus

At this point, the user can

track progress of the command

through command status window.

Once the DMS is successfully re-configured,

the server pushes a DMSConfigChanged

event that is caught by the GUI and the

updated configuration is reflected in

the data model.

This menu item will be

grayed out if the user

does not have

sufficient rights.

The setConfiguration returns control

immediately and performs the DMS

reconfiguration operation asynchronously,

barring any user privilege issues. The operation

iinvolves field communication. The progress of

the command is communicated to the user

via the CommandStatus object, which is

updated by the server.

At this point the user

will be shown the

DMS Properties dialog.

This dialog is modeless

and will apply the changes

to the DMS when the user

presses the OK button.

FP9500PropertiesDialog

FP9500DMS

Operator

CommandStatusHandler GUI Chart2DMS

Figure 48. GUIDMSModule:ModifyFP9500Settings

3.5.2.15 GUIDMSModule:PollNow

This sequence diagram shows how a user with appropriate rights can perform a forced polling of a DMS, when the device is in maintenance mode. The sequence is initiated when the user right clicks on a GUIDMS object and selects the "Poll Now" menu item. The GUIDMS object creates a CommandStatus object and then calls the Chart2DMS object that it wraps to perform the operation. The progress of the poll now operation is displayed to the user on the command status window, which is updated as the server updates the CommandStatus object that was passed to it along with the poll command. If successful, the server will push CORBA events indicating the changed DMS status.

[image: image49.emf]The progress of the pollNow

operation is monitored using

the command status object.

The server updates the

the CommandStatus with

the progress of the command.

In case of failure the

CommandStatus contains the

reason for the failure.

Chart2DMS

GUIDMS

This menu item will be

disabled if the user does

not have the rights or the

device is not in maintenance

mode.

Administrator

GUI CommandStatusHandler

CommandStatus

If successful, this will push a

DMSStatusChanged event.

The event is handled in the GUI

by notifying the relevant GUI

components via the DataModel.

[no rights]

AccessDenied

[other error]

CHART2Exception

create

pollNow

[user clicks on pollNow menu item]

actionPerformed

get

createCommandStatus

getCommandStatusHandler

getToken

[DMS controlled by different

op center and no

override rights]

ResourceControlConflict

Figure 49. GUIDMSModule:PollNow

3.5.2.16 GUIDMSModule:PutDMSInMaintenanceMode

This diagram shows how a DMS is put into maintenance mode. The Administrator right clicks on a GUIDMS and clicks on the "Put In Maintenance Mode" menu item. The GUIDMS creates a CommandStatus object to monitor the progress of the command and calls the CHART2DMS object (which it wraps) to put it in maintenance mode. If successful, the server will push a CORBA event indicating that the comm mode has been changed.

[image: image50.emf]CommandStatusHandler

GUI

This menu item will be

disabled if the user does not

have rights or if the device is

already in maintenance mode.

CHART2DMS

GUIDMS

Administrator

If successful, this will push a

DMSStatusChanged event.

If the DMS was in use, it may

also push ControllingOpCtrChanged

and ResponsePlanItemStatusChanged

 events. The GUI will catch these events

and will update the GUI wrapper

objects as needed.

The server will

update the CommandStatus

object with the progress

of the command, which is

shown to the user on a GUI

Window. In case of a failure,

the reason for the failure is also

shown to the user.

CommandStatus

create

putInMaintenanceMode

get

[clicks on "Put In Maintenance

 Mode" menu item]

actionPerformed

createCommandStatus

getCommandStatusHandler

getToken

[DMS controlled by

different op ctr and

no override rights]

ResourceControlConflict

[no rights]

AccessDenied

[in maintenance mode]

CHART2Exception

Figure 50. GUIDMSModule:PutDMSInMaintenanceMode

3.5.2.17 GUIDMSModule:PutOnline

This diagram shows how a DMS is put online. The Administrator right clicks on a GUIDMS and clicks on the "Put Online" menu item. The GUIDMS creates a CommandStatus object to monitor the progress of the command and calls the CHART2DMS object (which it wraps) to put it online. If successful, the server will push a CORBA event indicating that the comm mode has been changed.

[image: image51.emf]getCommandStatusHandler

getToken

[DMS controlled by different

op center and no

override rights]

ResourceControlConflict

[other error]

CHART2Exception

create

[no rights]

AccessDenied

The progress of the

operation is monitored using

the command status object.

The server updates the

the CommandStatus with

the progress of the command.

In case of failure the

CommandStatus contains the

reason for the failure.

Chart2DMS GUIDMS

This menu item will be

disabled if the user does

not have the rights or the

device is not in maintenance

mode.

GUI CommandStatusHandler

CommandStatus

If successful, this will push a

DMSStatusChanged event.

The event is handled in the GUI

by notifying the relevant GUI

components via the DataModel.

Administrator

putOnline

[user clicks on"Put Online" menu item]

actionPerformed

get

createCommandStatus

Figure 51. GUIDMSModule:PutOnline

3.5.2.18 GUIDMSModule:RemoveDMS

This diagram shows how a DMS is removed from the system. The Administrator right clicks on a GUIDMS object and clicks on the "Remove" menu item. The GUIDMS creates a CommandStatus object to monitor the progress of the command and calls the remove() method of the Chart2DMS object (which it wraps). If successful, the server will push a CORBA event indicating that the DMS was removed.

[image: image52.emf]GUIDMS

The completion status

will be shown in the command

status window. In case of a failure,

the error message returned from

the server is also displayed

in the command status.

Gets User

confirmation

CommandStatus

CommandStatusHandler

Administrator

GUI

This menu item

will be disabled

if the user does

not have the

correct rights.

If successful, this

will cause a DMSDeleted

event to be pushed through

the event service. When

caught, the GUIDMS will

be removed from the DataModel.

Refer to DMSRemovedEvent sequence

diagram.

Chart2DMS

createCommandStatus

getCommandStatusHandler

completed

success

[user clicks on the

"Remove"

menu item]

remove

getToken

get

[CHART2Exception]

[AccessDenied]

[any other error]

CHART2Exception

[no rights]

AccessDenied

remove

[user cancelled operation]

completed

showYesNoDialog

create

Figure 52. GUIDMSModule:RemoveDMS

3.5.2.19 GUIDMSModule:Reset

This sequence diagram shows how a user with appropriate rights can reset a DMS, when the device is in maintenance mode. The sequence is initiated when the user right clicks on a GUIDMS object and selects the "Reset" menu item. The GUIDMS object creates a CommandStatus object and then calls the Chart2DMS object that it wraps to perform the operation. The progress of the reset operation is displayed to the user on the command status window, which is updated as the server updates the CommandStatus object that was passed to it along with the reset command. If successful, the server will push a CORBA event indicating the changed DMS status.

[image: image53.emf]If successful, this will push a

DMSStatusChanged event. If the

DMS was in use, it may also push

a ControllingOpCtrChanged event.

These events are handled in the GUI

by notifying the relevant GUI

components via the DataModel. Refer

to the DMSStateChangeEvents

sequence diagram.

The progress of the reset

operation is monitored using

the command status object.

The server updates the

the CommandStatus with

the progress of the command.

In case of failure the

CommandStatus contains the

reason for the failure.

Chart2DMS

GUIDMS

This menu item will be

disabled if the user does

not have the rights or the

device is not in maintenance

mode.

Administrator

GUI CommandStatusHandler

CommandStatus

[user clicks on reset menu item]

actionPerformed

resetController

get

createCommandStatus

getCommandStatusHandler

[other error]

CHART2Exception

getToken

[DMS controlled by different

op center and no

override rights]

ResourceControlConflict

[no rights]

AccessDenied

create

Figure 53. GUIDMSModule:Reset

3.5.2.20 GUIDMSModule:SetMessageInMaintenanceMode

This shows how a message is set on a DMS when it is in maintenance mode. The user right clicks on the GUIDMS object and clicks on the "Edit Message (Auto)" or "Edit Message (Manual)" menu item. The GUIDMS object invokes the DMSMessageEditor dialog. The DMSMessageEditor dialog is initially populated with the current message displayed on the DMS, if any. The user may use this dialog to type in a new message and preview what that message will look like formatted for the selected DMS. As the user types a text message, the banned words are displayed. When the user clicks OK, the message editor will check for disapproved words and provides suggestions to replace these words. A DMSMessage object is created and GUIDMS is called to set the message. The GUIDMS object creates a CommandStatus to monitor the progress of the command, then calls the CHART2DMS object which it wraps. If successful, the server will push CORBA events to update the clients for any state changes.

[image: image54.emf]Command

Status

Handler

GUI

CommandStatus

CHART2DMS GUIDictionary GUIDMSModule

GUIDMS

MultiFormatter

This menu item will

be disabled if the DMS is

not in maintenance mode

or the user does not have

rights.

If successful, this will cause

the server to push an event

through the event channel.

The module will catch the event

and will update the rest of the

GUI via the DataModel.

At this point the user

has a message editor

and can alter the

message in the entry

field.

DMSMessageView

MultiConverter

DMSMessageEditor

Administrator

When the user

presses OK or

Cancel on the

message editor.

Each time the user

changes the text on

the message editor.

MessageContent

Displays the

current message

in the editor

showMessage

setMessage

create

createCommandStatus

plainTextToMulti

getCommandStatusHandler

getToken

setMessageThin

[OK]

plainTextToMulti

[cancel]

actionPerformed (OK or CANCEL)

keyPressed

parseMulti

setMessage

[cancel]

closeWindow

plainTextToMulti

showMessage

checkForBannedWords

getDictionary

get

create

success

show

[*for each disapproved word]

"allow user to replace

or ignore disapproved

words"

[banned words]

"Display banned words

to user"

[disapproved Words]

WordList

performApprovedWordsCheck

[success]

closeWindow

error

[error]

"Display error

message"

[error]

GUIException

[other error]

CHART2Exception

[no rights]

AccessDenied

[DMS controlled by another op center

and no override permission]

ResourceControlConflict

create

get

create

Figure 54. GUIDMSModule:SetMessageInMaintenanceMode

3.5.2.21 GUIDMSModule:ShowTrueDisplay

This sequence shows how an operator may view the current message displayed on a particular DMS. The view will be formatted to show the message as it looks on the sign. The operator initiates this sequence by right clicking on the desired DMS in a window and selecting the "Show Display" menu item.

[image: image55.emf]GUI

This occurs when

the message changes on

the DMS in the field and

the event has been caught

by this GUI. The data model

updates all attached observers.

DataModel

DMSMessageView

DMSTrueDisplay

GUIDMS

Operator

MultiConverter

attachObserver

getDataModel

get

update

show

showMessage

create

create

showTrueDisplay

parseMulti

showMessage

getMessage

[not for this DMS]

Check if update

is for this DMS

parseMulti

Figure 55. GUIDMSModule:ShowTrueDisplay

3.5.2.22 GUIDMSModule:Shutdown

This diagram shows processing involved in the shutdown of the GUIDMSModule. At the time of GUI shutdown all of the installable modules including the GUIDMSModule is called on to perform cleanup operations by calling their shutdown method. On shutdown, the GUIDMSModule disconnects itself from the ORB.

[image: image56.emf]GUIDMSModule

User

POA GUI

shutdown

shutdown

Exit Toolbar

Window

delete

deactivate_object

Figure 56. GUIDMSModule:Shutdown

3.5.2.23 GUIDMSModule:Startup

This diagram shows the processing involved during startup of the GUIDMS module. At GUI startup time, each of the installable module including the GUIDMSModule is initialized by calling their startup routines. The GUIDMSModule connects itself to the ORB in order to receive DMS related CORBA events from the event service. A DMSNavGroup object is created to manage the GUIDMS related objects in the GUI navigator. A GUIDMSModelFactory object is created which will aid the GUIDMSModule in the creation of model specific GUIDMS objects. Finally, the GUIDMSModule registers itself with the GUIPlanModule, GUILibraryModule and the GUITrafficEventModule in order to be able to support GUIPlanItem, GUIDMSStoredMessage and GUIDMSResponsePlanItem objects respectively.

[image: image57.emf]DMSNavGroup

Connect to the

ORB to receive

CORBA events

pushed through

the event channel.

GUITrafficEventModule GUILibraryModule

A note for the developer:

At startup time the CORBA valuetype

factories need to be registered for DMS

module valuetypes like DMSConfiguration,

DMSStatus and so on.

GUIPlanModule GUIDMSModuleProperties GUIDMSModelSupporter

The GUIDMSModelSupporter

interface is implemented by

each of the DMS Models

supported in the system. Refer

to the DMSModuleArcitecture

class diagram for details on the

model supporters

GUIDMSModelFactory

These registration methods should be

within a try block. If any of those modules

are not installed, the exceptions thrown are

caught and ignored. The GUIDMSModule

initialization is not affected.

POA

The module will exist throughout

the life of the application and

will be cleaned up at shutdown.

GUIDMSModule

GUI

DataModel

objectAdded

get

getMultiFormatters

get

get

addLibrarySupporter

get

activate_object

addResponsePlanItemCreator

"store the menu string

supporter mapping"

addPlanItemSupporter

getDMSCreationMenuReps

objectAdded

getDataModel

create

startup

[*for each DMS

model supporter

known to the

system]

startup

create

Figure 57. GUIDMSModule:Startup

3.5.2.24 GUIDMSModule:TakeOffline

This sequence diagram shows how an operator with the appropriate rights can take a DMS offline. The sequence is initiated when the user right clicks on a GUIDMS object in the navigator and selects the "Take Offline" menu item. The GUIDMS creates a CommandStatus object and calls the CHART2DMS object(that it wraps) to execute the offline command. The progress of the operation is displayed to the user on the command status window, which is updated as the server updates the CommandStatus object that was passed to it along with the offline command. If successful, the server will push a CORBA event indicating that the DMS has been taken offline.

[image: image58.emf]GUI CommandStatusHandler

CommandStatus

If successful, this will push a

DMSStatusChanged event.

The event is handled in the GUI

by notifying the relevant GUI

components via the DataModel.

The progress of the

operation is monitored using

the command status object.

The server updates the

the CommandStatus with

the progress of the command.

In case of failure the

CommandStatus contains the

reason for the failure.

Chart2DMS GUIDMS

This menu item will be

disabled if the user does

not have the rights or the

device is not in maintenance

mode.

Administrator

getCommandStatusHandler

[other error]

CHART2Exception

create

[no rights]

AccessDenied

takeOffline

[user clicks on"Take Offline" menu item]

actionPerformed

get

createCommandStatus

getToken

[DMS controlled by different

op center and no

override rights]

ResourceControlConflict

Figure 58. GUIDMSModule:TakeOffline

3.5.2.25 GUIDMSModule:TrafficEventResponse-BlankDMS

This diagram shows how the closing of a traffic event blanks a DMS that was earlier used to display a message in response to the event. A DMS may also be blanked when the response item associated to this DMS is removed from the traffic event. The user right clicks on the GUIDMSResponsePlanItem or the GUITrafficEvent objects and selects the appropriate menu item. In both cases, the remove method of the GUIDMSResponsePlanItem wrapper object will be called, which will in turn call the served ResponsePlanItem object that it wraps. If successful, the server will push events to all GUIs indicating the changed status.

[image: image59.emf]GUI

When a ResponsePlanItem of DMS

variety is removed, a device command

is sent to blank the earlier message that

was set, when the item was executed.

If the sign was successfully blanked, the

server pushes a DMSStatusChanged event,

ControllingOpCtrChanged event, and

ResponsePlanStatusChanged event.

The GUIDMSModule listens to these events

and causes the updates to happen on the

appropriate GUIDMS object.

ResponsePlanItem

GUIDMSResponsePlanItem

Operator

The server updates the progress

of the command on the traffic

event dialog. This is possible

because the ResponsePlanItem object

is also a CommandStatus.

remove

[not online]

CHART2Exception

[no rights]

AccessDenied

[DMS in use by a

different op ctr and

no override rights]

ResourceControlConflict

getToken

get

[removes response

item from event or

closes event]

remove

Figure 59. GUIDMSModule:TrafficEventResponse-BlankDMS

3.5.2.26 GUIDMSModule:TrafficEventResponse-SetDMSMessage

This diagram shows how a message is set on a DMS in response to a traffic event. The operator right clicks on a GUIDMSResponsePlanItem object and clicks on the "Execute" menu item. The GUIDMSResponsePlanItem calls the execute() method of the ResponsePlanItem object that it wraps. If successful, the server will push CORBA events indicating the changes to the state of the DMS. The server will also push events to keep the GUIs updated with the current status of the command.

[image: image60.emf]When a ResponsePlanItem of DMS

variety is executed, a pre-fabricated

message is set on the DMS in response

to the traffic event.

If the message was set successfully, the

server pushes a DMSStatusChanged event,

ControllingOpCtrChanged event, and

ResponsePlanStatusChanged event.

The GUIDMSModule listens to these events

and causes the updates to happen on the

appropriate GUIDMS object.

GUI

The server updates the progress

of the command on the traffic

event dialog. This is possible

because the ResponsePlanItem object

is also a CommandStatus.

ResponsePlanItem

GUIDMSResponsePlanItem

Operator

This menu item

will be disabled if

the user does not

have rights.

[banned words]

DisapprovedMessageContent

[DMS in use by a

different op ctr and

no override rights]

ResourceControlConflict

[not online]

CHART2Exception

[no rights]

AccessDenied

execute

execute

[clicks on "Execute"]

actionPerformed

getToken

get

Figure 60. GUIDMSModule:TrafficEventResponse-SetDMSMessage

3.5.2.27 GUIDMSModule:ViewArbitrationQueue

This diagram shows how the Arbitration Queue is viewed. The user clicks on View Queue and the GUIDMS creates an ArbitrationQueueProperties dialog, passing the ArbitrationQueue object. See GUIUtility:ViewArbitrationQueue or GUIUtility:ProritizeArbitrationQueue for details.

[image: image61.emf]ArbitrationQueueProperties

GUIDMS

Operator

The user right clicks on a DMS

in the Navigator and selects

View Queue. If the user does

not have the appropriate rights the

menu option will be grayed out.

See GUIUtility:ViewQueue or

GUIUtility:PrioritizeQueue

for details.

[clicks on View Queue]

actionPerformed

create

Figure 61. GUIDMSModule:ViewArbitrationQueue

3.6 GUIFieldCommsModule

3.6.1 Class Diagrams

3.6.1.1 GUIFieldCommsModuleClasses

This diagram shows the classes in the GUIFieldCommsModule package.

[image: image62.emf]PortType

«enumeration»

CosEvent.PushConsumer

«interface»

GUIPort

NavFilterSupporter

«interface»

NavListDisplayable

«interface»

NavClassFilter

GUIPortManagerGroup

GUIPortManager

DataModel

GUI

InstallableModule

«interface»

GUIFieldCommsModule

PortStatus

«enumeration»

PortManager

«interface»

1

1

1 *

1

1

stored in

1

1

1

1

stored in

1 *

creates

1

1

stores objects in

1

1

1 *

ISDN_MODEM

POTS_MODEM

DIRECT_RS232

TELEPHONY

updateStatusInCache(PortStatus):void

m_id

m_name

m_type

m_status

Hashtable m_ports

STATUS_OK

STATUS_MARGINAL

STATUS_FAILED

STATUS_DISABLED-future

Figure 62. GUIFieldCommsModuleClasses

3.6.1.1.1 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.6.1.1.2 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.6.1.1.3 GUIFieldCommsModule

The GUIFieldsCommsModule is an installable module in the GUI, and provides all functionality specific to port managers and associated ports. Only one GUIFieldCommsModule object may exist within the GUI. This class provides the functionality needed to support the viewing of the status of the port associated with a port manager.

3.6.1.1.4 GUIPort

This class represents a port object. It will provide the status of the port it represents.

3.6.1.1.5 GUIPortManager

This class is a GUI "wrapper" object which is used to wrap a Port Manager object. The wrapping is done to cache the data locally for faster access, as well as to give the PortManager some GUI-specific functionality such as menus and command handling.

3.6.1.1.6 GUIPortManagerGroup

This class serves as a container for all of the GUIPortManager objects in the GUIFieldCommsModule, when they are displayed in the Navigator. The GUIFieldCommsModule has one instance of this class.

3.6.1.1.7 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.6.1.1.8 NavClassFilter

This filter ignores all objects that are not assignable to a given class or interface. Thus, an interface or base class can be specified and all of the objects implementing the interface or extending the base class will be included.

3.6.1.1.9 NavFilterSupporter

This interface is used to allow type-specific filters to be created by external classes such as the installable modules. It is called to get the menu items for filter creation, as well as to create the filter when those menu items are clicked on.

3.6.1.1.10 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.6.1.1.11 PortManager

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.6.1.1.12 PortStatus

This enumeration specifies the values used to represent a Port's status. OK signifies the port is working properly. MARGINAL signifies errors have been experienced during recent use of the port. FAILED indicates the port is not working at all.

3.6.1.1.13 PortType

This enumeration defines the types of ports that may be requested from a PortManager.

3.6.1.1.14 CosEvent.PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.6.2 Sequence Diagrams

3.6.2.1 GUIFieldCommsModule:Discovery

This diagram shows how the GUI FieldComms Module event channels and the Port Manager and associated ports are discovered and added to the system. This will be a periodic process, and the GUI will call the GUIFieldCommsModule repeatedly. When the GUI asks the module to discover event channels, it looks up the port manager event channels in the trader. It then creates a PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the consumer to the channel and reattaches it if the event service is restarted. (Duplicate channels will be ignored). The GUI then calls the module to discover objects. At this time the module will query the Port Manager objects in the trader. If any are found it will create an Identifier to be used as a lookup key for use with the DataModel. For each port manager found and added to the DataModel the module finds all the associated ports. It creates a GUIPort for each port associated with the port manager.

[image: image63.emf]Identifier

GUIPortManager

GUIPort

GUI

GUIFieldCommsModule CORBAUtilities DataModel PortManager

discovers event chaneels and installs

them in the GUI's EventConsumerGroup

framework.

GUI

pass in the ID,

name, type and

current status of the

port in the constructor

create

getName

[error]

CorbaUtilException, Exception

ObjectAdded

add to the Hashtable

create

[if object

not found]

create

discoverEventChannelsOfName(PortManager event channels)

discoverObjects

findAllObjectsOfType(Port Manager)

discoverEventChannels

getPortsStatus

[*for each

port manager]

* for each

Port

getID

getObject

Figure 63. GUIFieldCommsModule:Discovery

3.6.2.2 GUIFieldCommsModule:Login

This diagram shows what happens when the user logs on.

[image: image64.emf]GUIFieldCommsModule

The module currently

does not perform

any work at login.

GUI

User

"Login"

or

"Change User"

loggedIn

Figure 64. GUIFieldCommsModule:Login

3.6.2.3 GUIFieldCommsModule:Logout

This diagram shows what happens when the user logs out.

[image: image65.emf]GUIFieldCommsModule

The module currently

does not perform

any work at logout.

GUI

User

loggedOut

"Logout"

or

"Change User"

Figure 65. GUIFieldCommsModule:Logout

3.6.2.4 GUIFieldCommsModule:PortStatusChangeEvent

This diagram shows how the GUI receives information when the ports associated with a port manager change status. The status change is received from the CORBA Event service and displays it to the user once the DataModel is updated.

[image: image66.emf]GUIPort

GUIFieldCommsModule

GUI

Identifier

DataModel

GUIPortManager

CORBA

Event

Service

[if object not found]

find the port in

the Vector

updateStatus

[for each

port in the

status list]

objectUpdated(PortMgrID)

push(PortStatusChange)

[if object found]

updateStatus(PortStatusInfo[])

get

getDataModel

create

getObject(PortMgrID)

Figure 66. GUIFieldCommsModule:PortStatusChangeEvent

3.6.2.5 GUIFieldCommsModule:Shutdown

This diagram shows what happens when the GUI shuts down. The GUI calls all of the InstallableModule objects' shutdown() methods, and the GUIFieldCommsModule disconnects from the ORB.

[image: image67.emf]Log

GUI

GUIFieldCommsModule

POA

shutdown

log

deactivate_object

Figure 87. GUIFieldCommsModule:Shutdown

3.6.2.6 GUIFieldCommsModule:Startup

This diagram shows the steps taken to initialize the GUIFieldCommsModule. On startup the module creates the GUIPortManagerGroup for display of the port managers in the navigator and connects to the ORB.

[image: image68.emf]POA

GUI

GUIFieldCommsModule

GUIPortManagerGroup

On construction, the module

must call

FilterManager.addFilterSupporter()

activate

activate_object

startup

create

Figure 68. GUIFieldCommsModule:Startup

3.7 GUIHARModule

3.7.1 Class Diagrams

3.7.1.1 HARModuleArchitecture

This diagram shows the data hierarchy of the GUIHARModule and the objects it supports. It does not contain the user interface relationships of these objects - those are contained in the GUIHARModule:NavigatorSupport class diagram.

[image: image69.emf]PlanItem

«interface»

ResponsePlanItem

«interface»

GUIMessageLibrary

InstallableModule

«interface»

GUIHARModule

GUIHAR

DataModel

HARNavGroup

TTSConverter

«interface»

HARFactory

«interface»

GUILibrarySupporter

«interface»

GUIHARMessageNotifier

«interface»

ResponseDataCreator

«interface»

PlanItemCreationSupporter

«interface»

CosEvent.

PushConsumer

«interface»

GUIResponsePlanItemCreator

«interface»

SHAZAMFactory

«interface»

*

1

1

1 1

GUIHARPlanItem

GUI

GUITrafficEventHolder

GUIPlan

StoredMessage

«interface»

GUIStoredMessage

GUIPlanItem

GUIResponsePlanItem

GUIHARResponsePlanItem

GUIHARStoredMessage

NavFilterSupporter

«interface»

GUIArbitrationQueue

1

1

1

*

1

1

1 1

1

*

1

*

0..1

*

1

*

1

*

1

1

1

1

1

1

1

*

1

1

1 *

1

*

1

*

1

*

1

*

1

*

1

*

1

startup(orb)

discoverEventChannels(trader, eventConsumerGroup)

discoverObjects(trader, dataModel)

loggedIn()

loggedOut()

shutdown(orb)

getMenuItemReps(accessToken, Menuable[]) : MenuItemRep[]

handleCommand(actionEvent, Menuable[]) : boolean

get() : GUIHARModule

getHARFactories() : HARFactory[]

convertTextToSpeech(AudioPushListener, String) : void

createTextClip(String text) : HARMessageTextClip

createAudioDataClip(byte[]) : HARMessageAudioDataClip

doProperties()

setConfiguration(HARConfiguration)

getConfiguration(): HARConfiguration

getStatus():HARStatus

viewHARSlotUsage()

storeSlotMessage()

deleteSlotMessage()

associateMsgNotifier(GUIHARMessageNotifier)

deassociateMsgNotifier(GUIHARMessageNotifier)

setMessage()

blank()

reset()

setTransmitterOn()

setTransmitterOff()

putHAROnline()

takeHAROffline()

putHARInMaintenanceMode()

remove()

viewArbitrationQueue()

monitorBroadcast()

monitorSlot()

listenToHARMessage()

Identifier m_harID

HAR m_har

HARConfiguration m_harConfiguration

HARStatus m_harStatus

createHAR()

createGUIStoredMessage(StoredMessage, Message) : GUIStoredMessage

getStoredMessageCreationMenuReps(accessToken) : MenuItemRep[]

createNewGUIStoredMessage(accessToken, menuString, guiLibrary) : boolean

createLibraryType():LibraryType

getName():String

setAssociatedHAR(HAR)

getAssociatedHAR() : GUIHAR

isHARNoticeActive() : boolean

getNotifier() : HARMessageNotifier

Identifier m_notifierID

HARMessageNotifier m_notifier

GUIHAR m_har

getPlanItemCreationMenuReps(accessToken) : MenuItemRep[]

createGUIPlanItem(planItem, itemID, plan) : GUIPlanItem

createNewGUIPlanItem(accessToken, menuString, plan) : boolean

createGUIResponsePlanItem(Identifier, name,

 ResponsePlanItemData) : GUIResponsePlanItem

createGUIResponsePlanItem(ResponsePlanItem) :

 GUIResponsePlanItem

doProperties()

getPlanItemData()

setPlanItemData()

remove()

GUIHAR m_har

GUIHARStoredMessage m_msg

Direction m_dir

doProperties()

setItemData()

execute()

remove()

doProperties()

setMessage()

getMessageContent()

remove()

getFilterCreationMenuItems(accessToken, NavTreeFilter parent) : MenuItemRep[]

createNavFilter(accessToken, menuItemString, NavTreeFilter parent) : boolean

canInstantiateFilterOfClass(String) : boolean

GUIArbitrationQueue(ArbitrationQueue)

update():void

Figure 69. HARModuleArchitecture

3.7.1.1.1 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.7.1.1.2 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.7.1.1.3 GUIArbitrationQueue

This class is GUI wrapper for the ArbetrationQueue class. It adds functionality for caching the data and for adding GUI specific functionality.

3.7.1.1.4 GUIHAR

This class provides a GUI "wrapper" object which is used to wrap the CHART2HAR CORBA interface and to supply GUI-specific functionality.

3.7.1.1.5 GUIHARMessageNotifier

This interface must be supported by any GUI object that represents a HARMessageNotifier object such as a SHAZAM or DMS object. Objects of this type will be presented to the user when he/she attempts to associate message notifiers with a HAR device.

3.7.1.1.6 GUIHARModule

The GUIHARModule is an installable module in the GUI, and provides all functionality specific to HAR control. It requires that the GUIPlanModule, the GUILibraryModule, and the GUITrafficEventModule all be installed in order to be fully functional. If any of the other modules is not available, the functionality provided by that module will not be available. For example, if the GUILibraryModule is not installed, the user will not be able to create or utilize HAR library messages. Only one GUIHARModule object may exist within the GUI. This class implements the interfaces to support the frameworks of the GUIPlanModule, the GUILibraryModule, and the GUITrafficEventModule.

3.7.1.1.7 GUIHARPlanItem

This class provides a GUI "wrapper" object that is used to wrap a PlanItem CORBA interface that contains HAR-specific plan item data and to supply GUI-specific functionality

3.7.1.1.8 GUIHARResponsePlanItem

This class provides a GUI "wrapper" object which is used to wrap a ResponsePlanItem CORBA interface that contains HAR-specific data and to supply GUI-specific functionality.

3.7.1.1.9 GUIHARStoredMessage

This class provides a GUI "wrapper" object which is used to wrap a StoredMessage CORBA interface that contains HAR-specific data and to supply GUI-specific functionality.

3.7.1.1.10 GUILibrarySupporter

This class allows the GUILibraryModule to maintain stored messages which have differing formats. When an object of this type is installed the user can create, maintain, and use the specific type of libraries and stored messages that the object supports.

3.7.1.1.11 GUIMessageLibrary

This class is a GUI "wrapper" object which is used to wrap a MessageLibrary object. The wrapping is done to cache the data locally for faster access, as well as to give the MessageLibrary some GUI-specific functionality such as menus and command handling.

3.7.1.1.12 GUIPlan

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data locally for faster access, as well as to give the Plan some GUI-specific functionality such as menus and command handling.

3.7.1.1.13 GUIPlanItem

This is a GUI base class for all the plan items. Each GIUPlanItem object will serve as a GUI wrapper to cache the plan item data locally and also to handle all user interaction in the GUI, such as menus and command handling.

3.7.1.1.14 GUIResponsePlanItem

This is a base class for the GUI wrapper object which is used to wrap a ResponsePlanItem. The ResponsePlanItem represents a proposed action to perform on a target object in response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the response plan item.

3.7.1.1.15 GUIResponsePlanItemCreator

This interface is used to enable the creation of specific types of GUIResponsePlanItem wrapper objects depending upon which type of ResponsePlanItem is being wrapped. Any class wishing to create GUIResponsePlanItems must implement this interface and add themselves to the GUITrafficEventModule at GUI startup time. When the GUITrafficEventModule discovers a ResponsePlanItem or catches a CORBA event indicating that a new response plan item has been created, it will call each known GUIResponsePlanItemCreator to give it an opportunity to create a specific type of GUI wrapper object.

3.7.1.1.16 GUIStoredMessage

This class is a GUI "wrapper" object which is used to wrap a StoredMessage object. It provides a user interface object which can implement whatever interfaces are necessary for the object to exist within the GUI framework (for example, an object must support the NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.7.1.1.17 GUITrafficEventHolder

 This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent. This class contains generic data and operations which apply to any type of TrafficEvent. It also "holds" a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the old GUITrafficEvent object (stored within this "holder" class) will be switched out for a new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in existence.

3.7.1.1.18 HARFactory

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR objects under the domain of the specific HARFactory object.

3.7.1.1.19 HARNavGroup

This class has one instance in the GUIHARModule. It serves as a container for all of the GUIHAR objects in the module when they are displayed in the Navigator.

3.7.1.1.20 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.7.1.1.21 NavFilterSupporter

This interface is used to allow type-specific filters to be created by external classes such as the installable modules. It is called to get the menu items for filter creation, as well as to create the filter when those menu items are clicked on.

3.7.1.1.22 PlanItem

This class represents an action within the system that can be planned in advance. This CORBA interface is subclassed for specific actions that can be planned in the system.

3.7.1.1.23 PlanItemCreationSupporter

This interface must be implemented in any modules that wish to support the plan module. The modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule will then call the supporter when it is time to display the Plan menu or to create a specific type of plan item or GUIPlanItem.

3.7.1.1.24 CosEvent. PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.7.1.1.25 ResponseDataCreator

This interface enables the creation of type-specific ResponsePlanItemData objects, which are used for creating the appropriate type of ResponsePlanItem. An object implementing this interface can be added to the response plan of a traffic event. Implementers of this interface include plan items and response devices.

3.7.1.1.26 ResponsePlanItem

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.7.1.1.27 SHAZAMFactory

This CORBA interface allows new SHAZAM objects to be added to the system. It can also provide a list of all SHAZAM objects to a requester.

3.7.1.1.28 StoredMessage

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.7.1.1.29 TTSConverter

This interface represents the Text to Speech converter object which allows text to be passed in and speech to be returned.

3.7.1.2 NavigatorSupport

This diagram shows the user interface relationships of the objects supported by the GUIHARModule.

[image: image70.emf]Droppable

«interface»

Navigable

«interface»

NavListDisplayable

«interface»

NavClassFilter

HARNavGroup

GUIHAR

java.awt.event.ActionListener

«interface»

Menuable

«interface»

GUIHARResponsePlanItem

GUIHARPlanItem

GUIHARStoredMessage

1

*

getDesc():String

allowSetDesc():boolean

setDesc(String):void

getImage():void

getPropertyValue(property) : Object

comparePropertyValues(NavListDisplayable,

 String, result) : void

getMSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

getSSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

Figure 70. NavigatorSupport

3.7.1.2.1 java.awt.event.ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.7.1.2.2 Droppable

This interface must be implemented by any object wishing to take part in a drag and drop operation. It is used by the DropHandler class to determine if a drop action should be allowed and to delegate the handling of the drop action after it is performed.

3.7.1.2.3 GUIHAR

This class provides a GUI "wrapper" object which is used to wrap the CHART2HAR CORBA interface and to supply GUI-specific functionality.

3.7.1.2.4 GUIHARPlanItem

This class provides a GUI "wrapper" object that is used to wrap a PlanItem CORBA interface that contains HAR-specific plan item data and to supply GUI-specific functionality

3.7.1.2.5 GUIHARResponsePlanItem

This class provides a GUI "wrapper" object which is used to wrap a ResponsePlanItem CORBA interface that contains HAR-specific data and to supply GUI-specific functionality.

3.7.1.2.6 GUIHARStoredMessage

This class provides a GUI "wrapper" object which is used to wrap a StoredMessage CORBA interface that contains HAR-specific data and to supply GUI-specific functionality.

3.7.1.2.7 HARNavGroup

This class has one instance in the GUIHARModule. It serves as a container for all of the GUIHAR objects in the module when they are displayed in the Navigator.

3.7.1.2.8 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.7.1.2.9 NavClassFilter

This filter ignores all objects that are not assignable to a given class or interface. Thus, an interface or base class can be specified and all of the objects implementing the interface or extending the base class will be included.

3.7.1.2.10 Navigable

This interface will be implemented by any class which supports the Navigator on either the left or right side (the tree or list view). This includes the functionality common to both the tree and list.

3.7.1.2.11 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.
3.7.1.3 Dialogs

This diagram shows all of the classes representing windows that exist within the GUIHARModule.

[image: image71.emf]1

1

ClipEditListener

«interface»

ClipEditorControl

JPanel

AudioPushConsumer

«interface»

DefaultJFrame

HARPlanItemPropertiesDialog

HARMessageEditor

HARPropertiesDialog

java.awt.event.

KeyListener

«interface»

java.awt.event.

ActionListener

«interface»

1

1

1

HARResponsePlanItemPropertiesDialog

*

AudioPushListener

«interface»

Figure 71. Dialogs

3.7.1.3.1 java.awt.event. ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.7.1.3.2 AudioPushConsumer

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.7.1.3.3 AudioPushListener

This is called by one or more AudioPushConsumerImpls when an audio clip is being pushed.

3.7.1.3.4 ClipEditListener

This interface should be implemented by the HARMessageEditor and the HARPropertiesDialog in order for objects of these classes to be notified when a message clip has been changed in the ClipEditControl.

3.7.1.3.5 ClipEditorControl

This control is used by both HARMessageEditor and HARPropertiesDialog (SlotData tab). It allows to view, create and modify message clips, record a new audio clip and listen to a clip's content.

3.7.1.3.6 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.7.1.3.7 HARMessageEditor

This dialog is used for creating a new HAR stored message, viewing or modifying an existing HAR stored message, and setting the message while the HAR is in maintenance mode.

3.7.1.3.8 HARPlanItemPropertiesDialog

This dialog is used for creating, viewing, or editing the properties of HARPlantem / GUIHARPlanItem objects.

3.7.1.3.9 HARPropertiesDialog

This dialog is used to view and edit the HAR's configuration, and to view and edit the current slot contents.

3.7.1.3.10 HARResponsePlanItemPropertiesDialog

This dialog is used for setting HAR Response Plan Item properties.

3.7.1.3.11 JPanel

The generic Java container object.

3.7.1.3.12 java.awt.event. KeyListener

Interface that a class must realize in order for objects of that class to be notified when the user presses a key.

3.7.2 Sequence Diagrams

3.7.2.1 GUIHARModule:AddHAR

This diagram shows how a HAR is added to the system. The user right clicks on the HARNavGroup in the Navigator and clicks "Add HAR". The HARNavGroup then creates a temporary GUIHAR wrapper object and calls it to display its properties, which invokes the HAR Properties dialog. When the user clicks OK, the dialog calls the GUIHAR to set the configuration. The GUIHAR wrapper object does not contain a served HAR object, so it calls the HARFactory to create one. If a new HAR object is successfully created, the server will push out an event and the GUI will create a new GUIHAR object to wrap it. The temporary GUIHAR object will be deleted.

[image: image72.emf][no rights]

AccessDenied

[other error]

CHART2Exception

setConfiguration

[no factory found]

GUIException

showDefaultCursor

The menu item will be

grayed out if the user

does not have rights.

Administrator

If successful,

a HARAdded event will be

pushed by the server.

[No factory found]

"Display Error"

[factory not found]

createHAR

[error]

GUIException

[error]

"Display Error"

[error]

closeWindow

[* for next factory]

get

doProperties

[cancel]

closeWindow

actionPerformed

showWaitCursor

getToken

get

["Add HAR"

menu item clicked]

actionPerformed

create

create

show

getHARFactories

[cancel]

GUI

GUIHARModule

This temporary GUIHAR object

will be deleted. When the

HARAdded event is received from

the server (or when the HAR is

discovered during the next

discovery cycle), the "real" GUIHAR

object will be added to the GUI's

DataModel.

HARNavGroup

HARFactory

GUIHAR

HARPropertiesDialog

Figure 72. GUIHARModule:AddHAR

3.7.2.2 GUIHARModule:AddHARPlanItem

This diagram shows how a PlanItem is added to the system. The user clicks on the GUIPlan object in the Navigator and chooses "Create HAR Plan Item". The GUIPlan then calls the PlanItemCreationSupporters (of which the GUIHARModule is one) to create the GUIPlanItem, and the GUIHARModule recognizes the menu item string. The module creates a temporary GUI wrapper for a plan item and calls it to display its properties, which invokes the HARPlanItemPropertiesDialog. When the user clicks Apply or OK, the dialog calls back to the GUIHARPlanItem wrapper object to set the item data. Since the wrapper contains no served PlanItem, it calls the HAR to create one. If successful, the server will push a PlanItemAdded event to all GUIs, which the GUI will catch to create a new GUIHARPlanItem wrapper object (the temporary wrapper will be deleted).

[image: image73.emf]GUIHARPlanItem

Operator

This dialog will allow the user to add

multiple HARPlanItems. For each item

the user will be able to select a HAR, a

Stored Message to play on it when the

item is activated, and a direction for

activating SHAZAMs.

This temporary GUIHARPlanItem object

will be deleted. When the

PlanItemAdded event is pushed,

the GUIPlanModule will catch it and

ask the PlanItemCreationSupporters

to create a GUIPlanItem. The

GUIHARModule will then create a

GUIHARPlanItem and add it into the

DataModel.

GUI

GUIPlan

GUIHARModule

DataModel

Plan

The window is

left open to allow

the user to create

multiple plan items

in succession

This menu item

will be disabled if

the user does not

have sufficient rights.

HARPlanItemPropertiesDialog

HARPlanItemData

get

getDataModel

["Create Plan Item"

menu item clicked]

actionPerformed

createNewGUIPlanItem

create

actionPerformed

[Cancel]

[error]

getObjectsOfType

(GUIHAR)

getObjectsOfType

(GUIHARStoredMessage)

notification about whether or not the PlanItem has been added

[error]

"Display Error"

show

create

[error]

GUIException

[error]

GeneralException

showDefaultCursor

[otherError] CHART2Exception

[no rights] AccessDenied

addItem

getToken

get

showWaitCursor

addItem

setDirection

setMessage

setHAR

create

setPlanItemData

Figure 73. GUIHARModule:AddHARPlanItem

3.7.2.3 GUIHARModule:AssociateMessageNotifier

This diagram shows how a HAR message notifier (SHAZAM or DMS) is associated with a HAR. The administrator drags the GUIHARMessageNotifier object over the GUIHAR object in the Navigator. The drop will be rejected if the HARNotifier is active. When the object is dropped onto the GUIHAR, the GUIHAR wrapper calls the HAR server object to add the message notifier. If successful, the server will push an event and the GUI will catch the event and associate the GUIHAR wrapper object with the GUIHARMessageNotifier.

[image: image74.emf]GUIHAR CommandStatusHandler

CommandStatus

GUI

Administrator

GUIHARProperties GUIHARMessageNotifier

HAR

If successful, the server will push a

HARConfigurationChanged event,

and a SHAZAMConfigurationChanged

or DMSConfiguration changed event

[error]

DisplayError

[error]

GUIException

[error] CHART2Exception

[no rights] AccessDenied

setConfiguration

showDefaultCursor

showWaitCursor

create

get

getToken

[GUIHARMessageNotifier

object dropped

on the GUIHARProperties object]

handleDrop

[GUIHARMessageNotifier

object dragged over

GUIHARProperties window]

allowDrop

getAssociatedHAR

[no rights]

"Reject Drag Operation"

[This HARMessageNotifier is already associated

with a HAR object]

"Reject Drag Operation"

[This HARMessageNotifier is not associated

with any HAR objects]

"Accept Drag Operation"

[error]

"Reject Drop Operation"

createCommandStatus

getCommandStatusHandler

Figure 94. GUIHARModule:AssociateMessageNotifier

3.7.2.4 GUIHARModule:BlankHAR

This diagram shows how a HAR is blanked when it is online. To blank the HAR, the response item must be removed from the event or the event must be closed. This may be done by right clicking on the GUIHARResponsePlanItem or on the GUITrafficEvent objects, respectively, and choosing the appropriate menu item. Either way, the remove method of the GUIHARResponsePlanItem wrapper object will be called, which will in turn call the served ResponsePlanItem object which it wraps. If successful, the server will push events to all GUIs indicating the changed status.

[image: image75.emf]When the HAR is online, the device is only blanked

if there are no traffic events that have currently

requested that a message be placed on the device

Operator

GUIResponsePlanItem ResponsePlanItem

Assuming that the ResponsePlanItem is a

HAR ResponsePlanItem:

If successful,remove will cause the server to

push a HARStatusChanged, ControllingOpCtrChanged,

ResponsePlanStatusChanged, and SHAZAMStatusChanged or

DMSStatusChanged events.

The GUI will be updated with the HARStatus information supplied

by the HarStatusChanged event

GUI

remove

[removes response

item from event or

closes event]

remove

get

getToken

[no rights]

AccessDenied

[not online]

CHART2Exception

[HAR in use by a

different op ctr and

no override rights]

ResourceControlConflict

Figure 75. GUIHARModule:BlankHAR

3.7.2.5 GUIHARModule:BlankHARInMaintenanceMode

This diagram shows how a HAR is blanked when it is in maintenance mode. The user right clicks on the GUIHAR object and chooses the "Blank" menu item. The GUIHAR object creates a CommandStatus and then calls the blank() method of the HAR server object, which this GUIHAR wraps. If successful, the server will push events indicating the changed status.

[image: image76.emf]Administrator

HAR

This menu item will be

disabled if the user does not

have rights or if the device is

not in maintenance mode.

GUI CommandStatusHandler

showDefaultCursor

[error]

GUIException

showWaitCursor

blank

blank

[clicks on "Blank" menu item]

actionPerformed

get

getToken

getCommandStatusHandler

createCommandStatus

[not in maintenance mode]

CHART2Exception

[no rights]

AccessDenied

[HAR controlled by

different op ctr and

no override rights]

ResourceControlConflict

create

The server will update

the CommandStatus

to show the progress

or failure of the command.

GUIHAR

CommandStatus

If successful, this will push a

HARStatusChanged event.

If the HAR was in use, it

may also push a

ControllingOpCtrChanged event.

Figure 76. GUIHARModule:BlankHARInMaintenanceMode

3.7.2.6 GUIHARModule:CreateHARStoredMessage

This diagram shows how a HAR stored message is created. First, the user right clicks on the GUIMessageLibrary object, which calls the GUILibraryModule to get the installed message creators. Each message creator returns menu items for message types that it can create. When the user clicks on the appropriate message type, the GUIMessageLibrary object is called again, and this time it asks each message creator to create the correct type of message based on the menu item. The GUIHARModule creates a temporary GUIHARStoredMessage object to edit, and calls doProperties to show the HARMessageEditor dialog. As the user types, any banned words will be shown to the user. Also, a real-time check of message voice length will be performed at this point using the getVoiceLength() server call. When the user clicks OK, the non-approved words will be displayed to the user. Once the results of the approved words check are accepted by the user, the message editor will create a new HARMessage object and will call setMessage() on the GUIHARStoredMessage wrapper object. Since the wrapper does not contain a served StoredMessage object, it calls the message library to create one. If successful, the server will create a new StoredMessage object and will push an event to update all of the GUIs.

[image: image77.emf]GUIHARModule

GUILibrarySupporter

GUILibraryModule

GUIMessageLibrary

GUI NavTree

MessageLibrary

GUIDictionary

HARMessageEditor

GUIHARStoredMessage

The list of suggested

words will be displayed

in the Spell Checker

window. It is not shown

here due space limitations

The TTSConvertor's getVoiceLength() method

will be used for real-time evaluation of the spoken

message length. This method calculates the

approximate voice length based on such text string

properties as total number of characters, number of

vowels and consonants, etc. This approximation

will be used to calculate message's total time and

alert the user if it exceeds 2 minutes. A separate

thread, which is not shown here, will be responsible

for getting clip's exact length (using server's

pushVoiceLength() method, which is asynchronous)

and updating the HARMessageEditor with the new

value.

ClipEditControl

HARMessage

If successful, the

server will push a

StoredMessageAdded

event.

closeWindow

[success]

[error]

[error]

"Display Error"

[error]

GUIException

[error]

GUIException

[other error] CHART2Exception

getClip

"Display Suggested

Words"

[non-approved words found]

list of suggestions

"Display

 Menu"

JMenu

MenuItemRep[]

MenuItemRep[]

[* for each GUILibrarySupporter]

getStoredMessageCreationMenuReps

getLibrarySupporters

get

getSSMenuItemReps

[rightClick]

makeMenu

[right click]

mousePressed

[voice was recorded] createAudioDataClip (byte[])

[text was entered] createTextClip (String)

"Display Clip"

closeWindow

[CANCEL clicked] actionPerformed

createStoredMessage (HARMessage)

setMessage

setBody

setTrailer

setHeader

create

createStoredMessage (HARMessage)

getToken

get

"Display Banned

Words"

bannedWordsFound

createNewGUIStoredMessage

[user clicks on

"New HAR Stored Message"]

actionPerformed

[bad message content] DisapprovedMessageContent

[no rights] AccessDenied

clipContentChanged

create

doProperties

create

[types text for message header, body or trailer]

keyPressed

success

show

create

[banned words found]

list of words

checkForBannedWords

[APPLY clicked] actionPerformed

performApprovedWordsCheck

[OK clicked] actionPerformed

Figure 77. GUIHARModule:CreateHARStoredMessage

3.7.2.7 GUIHARModule:CreateResponsePlanItem

This diagram shows how a HAR response plan item is added to the system. The user drags a GUIHAR or a GUIPlanItem object over the GUITrafficEventHolder (the object representing the traffic event in the GUI) and drops it. Since the GUIHAR and GUIHARPlanItem objects both implement the ResponseDataCreator interface, the GUITrafficEventModule uses either of these to create a HARResponsePlanItemData, which it then uses to create a ResponsePlanItem. See the sequence diagram: GUITrafficEventModule:AddResponsePlanItem for details.

[image: image78.emf]The dragging of GUIHAR and GUIHARPlanItem objects to a

GUITrafficEventHolder to create a response plan item is described in the

sequence diagram: GUITrafficEventModule:AddResponsePlanItem. Both

the GUIHAR and the GUIHARPlanItem serve as ResponseDataCreators

(an interface which they implement).

Figure 78. GUIHARModule:CreateResponsePlanItem

3.7.2.8 GUIHARModule:DeassociateMessageNotifier

The diagram shows how an association between a HAR and a HARMessageNotifier (SHAZAM or DMS) is deleted. The administrator selects a HAR message notifier from a HARProperties dialog and clicks Delete. The actual configuration will change when the user presses OK on the HARProperties dialog causing a setConfiguration call to the HAR object. If setConfiguration is successful, the server will push an event and the GUI will catch the event and removes an association between the GUIHAR object and the GUIHARMessageNotifier.

[image: image79.emf]This option will be available

only when a HAR is in the

maintenance mode and

only for the user with right

privileges

HAR

GUI

CommandStatusHandler

CommandStatus

Administrator

GUIHarProperties

A HARConfigurationChanged

event will be pushed.

GUIHAR

[success]

[no rights] AccessDenied

click to remove

GUIHarMessageNotifier object

actionPerformed

[error]

[error]

DisplayError

[error]

GUIException

showNormalCursor

[error] CHART2Exception

setConfiguration

getToken

create

createCommandStatus

getCommandStatusHandler

get

showWaitCursor

[success]

removeMsgNotifier

Figure 79. GUIHARModule:DeassociateMessageNotifier

3.7.2.9 GUIHARModule:DeleteSlotMessage

This diagram shows how a message is deleted from a HAR controller's slot. The administrator does this from the HAR Properties Dialog (Slot Data tab), when the user clicks Delete when viewing the slot contents. The dialog calls the GUIHAR wrapper object to delete the clip, which in turn calls the HAR object which it wraps (after creating a CommandStatus object).

[image: image80.emf]GUIHAR

The server will

update the

CommandStatus

object to show the

progress or failure

of the command.

Administrator

HARPropertiesDialog

CommandStatus

CommandStatusHandler

GUI

HAR

If successful, this will push

push a HARStatusChanged

message

create

deleteSlotMessage

deleteSlotMessage

[no rights]

accessDenied

[not in maintenance mode]

CHART2Exception

[error]

"Display Error"

[error]

[HAR under control of

another op ctr and no rights]

ResourceControlConflict

[error]

GUIException

[clicks on "Delete Message"]

actionPerformed

get

getToken

getCommandStatusHandler

createCommandStatus

showDefaultCursor

showWaitCursor

Figure 80. GUIHARModule:DeleteSlotMessage

3.7.2.10 Discovery:Basic

This diagram shows the event channel and object discovery, which is done after startup and periodically thereafter. In event channel discovery, the module queries the event channels from the trading service and creates a PushConsumer to receive the CORBA events, then adds each to the EventConsumerGroup for maintenance of the event channel. In object discovery, the HAR module looks for any HARFactory objects in the trader, and asks for all of the HARs served by each factory. A GUIHAR wrapper object is created and added to the DataModel. The HAR module also queries the TTSConverter objects from the trader, to call when text-to-speech conversion is required.

[image: image81.emf]HAR DataModel

GUI

Discovery

Thread

GUIHARModule

CosTrading.

Lookup PushEvent

Consumer

Event

Consumer

Group

GUIHAR

TTSConverter

This can be done using the

CORBAUtilities function

findAllObjectOfType()

HARFactory

The HAR configuration includes a list of HAR

Message Notifier IDs. This will allow us to obtain

the GUIHARMessageNotifier objects from the DataModel

when needed (for Properties and Set Message dialogs)

query

HARFactory

objects

getObject

getConfiguration

getResources

[not found in DataModel]

create

storeFormats

[* for each TTSConverter until one returns successfully]

getSupportedFormats

query

TTSConverter

objects

create

getID

discoverEventChannels

query

(HAR

event channels)

add

[* for each

event channel

found]

[* for each

HARFactory]

discoverObjects

objectAdded

[* for each

HAR]

Figure 81. Discovery:Basic

3.7.2.11 GUIHARModule:ListenToAudioClip

This diagram shows how an audio clip is played from the GUI. When the user clicks on the "Listen To Clip" button of the ClipEditControl in the message editor or HAR properties dialog, the control calls the HARMessageAudioClip to stream the message. The server will then call the ClipEditControl, which implements the AudioPushConsumer interface, to report the format of the audio and to stream the chunks of data. The ClipEditControl dialog will open, write to, and close the SourceDataLine which represents the audio output.

[image: image82.emf]stream

pushFailure

or

pushCompleted

[* for each

chunk of

audio data]

pushAudio

open

pushAudioProperties

write

get

getPOA

activate_object (ClipEditControl)

ClipEditControl

javax.sound.sampled.

SourceDataLine

System

This button will be

disabled if a clip is

already being played

in the dialog.

org.omg.PortableServer.

POA

GUI

Operator

HARMessageAudioClip

Implements AudioPushConsumer

close

[error]

"Display Error"

[error]

"Display Error"

[error]

AudioClipNotFound

or CHART2Exception

[failure]

"Display Error"

[clicks on play button]

actionPerformed

Figure 82. GUIHARModule:ListenToAudioClip

3.7.2.12 GUIHARModule:ListenToMessage

This diagram shows how the user can listen to a HAR message, which consists of a list of clips that can include message header, body clips and message trailer. The user clicks on the "Listen to Message" button on the HARMessageEditor. For each clip in the message, the HARMessageEditor creates an AudioPushConsumerImpl object, activates it via the CORBA POA, and calls the HARMessageClip to stream the clip. In order to later match the audio data streamed back from the server and a message clip, the HARMessageEditor implements the AudioPushListener interface and maintains a hashtable, MessagePlaybackStatus, that stores information about each streamed clip: its sequence number within the message, the reference to its AudioPushConsumerImpl, clip playback status and the clip audio data.

For each streamed clip, the server calls the AudioPushConsumerImpl to report the clip's audio format and to stream the chunks of data. This data is then reported to the HARMessageEditor, which it its turn updates the MessagePlaybackStatus table. To assure that this table is updated in a thread-safe way, auxiliary objects PlayDataReceived that implement Runnable interface and are activated using SwingUtilities asynchronous method invokeLater() are introduced. When all the data for a clip has been received by the GUI (i.e. after getting pushCompleted() call), the HARMessageEditor will check if the previous clip has already been played. If it was, the current clip will be played using the javax.sound.sampled.SourceDataLine APIs.

[image: image83.emf][* for each

chunk of

audio data]

deactivate_object (AudioPushConsumerImpl)

pushCompleted

deactivate_object (AudioPushConsumerImpl)

[not last clip]

move to the

next clip

getPOA

create

activate_object(AudioPushConsumerImpl)

stream

[error]

AudioClipNotFound or CHART2Exception

add a row to the

MessagePlaybackStatus

table (status - not played yet)

[error]

"Display error"

[* for each clip

in the message]

Operator

System

HARMessageEditor

AudioPushConsumerImpl

HARMessageClip

GUI

org.omg.PoratbleServer

POA

javax.sound.sampled

SourceDataLine

pushAudio

PlayDataReceived

create

write data from the MessagePlaybackStatus row for the given clip

close

updateMessagePlaybackStatus

(set status to Completed)

PlayDataReceived

updateMessagePlaybackStatus

(set AudioDataFormat in the AudioPushConsumerImpl)

pushAudio

create

create

updateMessagePlaybackStatus

(append audio data)

pushAudioProperties

PlayDataReceived

The PlayDataReceived object implements the Runnable

interface. It is introduced to assure that the hashtable

MessagePlaybackStatus is updated in the thread-safe

way. Its constructor should include a reference to the

HARMessageEditor object, audio data or audio

properties data, and a row status to set in the hashtable.

The SwingUtilities.invokeLater() method should be

used for asynchronously activating this object.

The HARMessageEditor will maintain

a MessagePlaybackStatus hashtable

with the following structure:

-AudioPushConsumerImpl reference

-clip sequential number in the message

- clip playback status (not played yet,

ready to play, playing, completed or failed)

-clip data (byte stream)

No need to stream the AudioData clips.

For this type of clips we can set the row

status to Ready.

[clicks on "Listen To Message" button]

actionPerformed

pushFailure

listenToMessage

[previous clip status is Completed] open

get

[* for each

streamed

clip]

PlayDataReceived

pushFailure

[failure]

"Display Error"

pushCompleted

create

updateMessagePlaybackStatus

(set status to Ready)

pushAudioProperties

updateMessagePlaybackStatus

(set status to Failed)

Figure 83. GUIHARModule:ListenToMessage

3.7.2.13 GUIHARModule:ListenToTextClip

This diagram shows how text is played as audio for the user for review. From the HAR Message Editor or HAR Properties Dialog, the user would click on the "Listen To Clip" button. If a text clip is being played, the dialog would get the text from the clip. Then it would call the GUIHARModule to convert text to speech. The module would get the playback format stored in the system profile (or use the default format if no playback format property is found), and call the TTSConverter to convert the text to speech. The system would then call back to the ClipEditControl, which implements the AudioPushConsumer interface, to stream the data. The ClipEditControl would then cause the AudioPushListener to be called on the main thread to report the results.

[image: image84.emf]GUIHARModule

GUIProfile

GUI

Operator

ClipEditControl

TTSConverter

System

This button will be

disabled if a clip is

already being played

in the dialog.

org.omg.PortableServer.

POA

javax.sound.sampled.

SourceDataLine

open

[error]

"Display Error"

[* for each

chunk of

audio data]

get

[text clip]

convertTextToSpeech

get

write

[failure]

"Display Error"

[format not

supported by the

TTSConverter]

GUIException

[error]

"Display Error"

[error]

[error]

AudioClipNotFound

or CHART2Exception

close

getSystemProfile

getProperty ("Audio playback format")

getSupportedFormats

pushAudioProperties

pushFailure

or

pushComplete

[clicks on play button]

actionPerformed

get

getPOA

activate_object ()

convertTextToSpeech

[error]

"Display Error"

pushAudio

[error]

GUIException

Figure 84. GUIHARModule:ListenToTextClip

3.7.2.14 Login:Basic

This diagram shows what happens during login. The GUI calls each InstallableModule's loggedIn() method, but the GUIHARModule does not do any work at login.

[image: image85.emf]GUI

"Login"

or

"Change User"

loggedIn

Currently the module

does not perform any

work on login.

User

GUIHARModule

Figure 85. Login:Basic

3.7.2.15 GUIHARModule:Logout

This diagram shows what happens when the user logs out. The GUI calls all of the InstallableModule objects' loggedOut() methods, but the GUIHARModule currently does nothing during logout.

[image: image86.emf]The module currently

does not perform

any work at logout.

GUIHARModule GUI

User

loggedOut

"Logout"

or

"Change User"

Figure 86. GUIHARModule:Logout

3.7.2.16 GUIHARModule:ModifyHARSettings

This diagram shows how the HAR settings are modified. The user right clicks on the GUIHAR object in the Navigator and clicks on the "Properties" menu item. The GUIHAR object then creates a HARPropertiesDialog, which calls back to the GUIHAR to get the configuration and slot usage to initialize itself with. The GUIHAR wrapper object then calls the HAR object in the server to get this information. After the administrator is done editing the configuration, clicking on the "OK" button will cause the dialog to call the GUIHAR object's setConfiguration() method. The GUIHAR will create a CommandStatus object and will call the HAR which it wraps to set the configuration. If successful, the server will push a CORBA event indicating that the configuration has changed.

[image: image87.emf]HARConfiguration

There may also be messages to delete

from the slots (very similar to storeSlotMessage())

but deleteSlotMessage() is not shown here due to

space limitations. See the DeleteHARMessageFromController

diagram for details.

The server will update

the CommandStatus

object to show the

progress or failure of

the command.

See the ViewHARSlotUsage

sequence diagram for more

details.

CommandStatus

GUI

CommandStatusHandler

GUIHAR

HARPropertiesDialog

The menu item will be

grayed out if the user

does not have rights

Administrator

HAR

If successful, a

HARConfigurationChanged

event will be pushed by the server

and caught by the GUI.

If successful, a

HARStatusChanged event will

be pushed by the server.

createCommandStatus

getToken

[clicks on "HAR Properties"

menu item]

actionPerformed

create

show

actionPerformed

setConfiguration

[cancel]

setConfiguration

[status not cached]

getStatus

[no rights]

AccessDenied

[other error]

CHART2Exception

[error]

GUIException

create

[not in maintenance mode]

CHART2Exception

[no rights]

AccessDenied

[error]

GUIException

[error]

"Display Error"

[error]

closeWIndow

storeSlotMessage

[error]

"Display Error"

success or failure

create

InitializeDialig

getConfiguration

getStatus

get

getCommandStatusHandler

[* for each

changed slot]

storeSlotMessage

Figure 87. GUIHARModule:ModifyHARSettings

3.7.2.17 GUIHARModule:ModifyHARStoredMessage

This diagram shows how the contents of a stored message are modified. The user clicks on an existing GUIHARStoredMessage object in the Navigator, and clicks on the "Properties" menu item. The GUIHARStoredMessage then invokes the HARMessageEditor dialog. On initialization, the dialog calls back to the GUIHARStoredMessage wrapper object to get the message content, which calls back to the StoredMessage object in the server if the message is not already cached in the wrapper object. When the HARMessage is returned, the dialog can be initialized from the existing message contents. As the user types in text for the message, the banned words will be displayed and a quick voice length check will be performed (using the getVoiceLength() method). If message length exceeds two minutes, the user will be alerted. When the user clicks "OK", the dialog first checks the non-approved words and displays them, or if all words are approved, it calls the GUIHARModule to create the audio or text clips for the header, body, and trailer of the message. These clips are then set into the HARMessage, and the dialog calls the GUIHARStoredMessage to set the message, which in turn calls the StoredMessage object in the server. If successful, the server will push a CORBA event to update the GUIs.

[image: image88.emf]The TTSConvertor's getVoiceLength() method

will be used for real-time evaluation of the spoken

message length. This method calculates the

approximate voice length based on such text string

properties as total number of characters, number of

vowels and consonants, etc. This approximation

will be used to calculate message's total time and

alert the user if it exceeds 2 minutes. A separate

thread, which is not shown here, will be responsible

for getting clip's exact length (using server's

pushVoiceLength() method, which is asynchronous)

and updating the HARMessageEditor with the new

value.

[CANCEL clicked] actionPerformed

getClip

"Display Suggested

Words"

HARMessageClip

Spell Checker Dialog will

be invoked for displaying

suggested words

If at least one clip's length is not gotten

yet, the OK button should be greyed out.

TTSConverter

ClipEditControl

GUIHARStoredMessage

These methods may return

exceptions, which are not shown

here due to space limitations.

If an exception is caught, the error

will be displayed in the dialog

and the dialog will remain open.

If successful, the server will push

a StoredMessageChanged event.

Operator

HARMessageEditor

The user may also listen to the

contents of the message.

See the ListenToHARMessage

sequence diagram for details.

StoredMessage

HARMessage

GUIDictionary

GUI

The menu item will

be disabled if the

user does not

have rights

GUIHARModule

create

[* for each selected clip]

setClip

[selects a clip by navigating

through message clips table]

keyPressed or mouseClicked

[text was changed] createTextClip(String)

setMessage

getBody

getTrailer

"Initialize Dialog"

HARMessage

setHeader

setBody

setTrailer

[types text for message]

keyPressed

performApprovedWordsCheck

[non-approved words] list of suggestions

checkForBannedWords

[banned words] list of words

setMessage

[no rights]

AccessDenied

getToken

[error]

GUIException

[OK clicked] actionPerformed

closeWindow

clipContentChanged

[error]

"Display Error"

[error]

closeWindow

[APPLY clicked] actionPerformed

get

[other error]

CHART2Exception

[clicks on

a StoredMessage

"Properties"]

actionPerformed

[contains banned words]

DisapprovedMessageContent

create

show

getMessageContent

get

[audio was recorded] createAudioDataClip(byte[])

[message not cached]

getMessage

HARMessage

getHeader

"Display

 New Clip"

[* for each

Header, Body or Trailer

clip]

getRunTime

getVoiceSeconds

getDescription

"Display

Banned Words"

bannedWordsFound

Figure 88. GUIHARModule:ModifyHARStoredMessage

3.7.2.18 GUIHARModule:MonitorBroadcast

This diagram shows how the user can listen to the message that is currently being broadcast by a HAR device. When the user clicks on the "Monitor Broadcast" button on the HAR Properties dialog, a monitorBroadcast() method of the corresponding GUIHAR is activated. The GUIHAR creates an AudioPushConsumerImpl object and activates it with the POA, then creates a CommandStatus object and issues a monitorBroadcast() call on the wrapped HAR object. The server will then call the AudioPushConsumerImpl object to report the format of the audio and to stream the chunks of data. The HARProperties dialog will get this data via the AudioPushListener interface it implements. The Java Sound APIs will be used to play the voice data to the user.

[image: image89.emf]POA

An auxiliary dialog box prompting

the user to enter the number of

seconds to be monitored should

be displayed at this point

javax.sound.sampled.

SourceDataLine

HARPropertiesDialog

System

Operator

The button 'Monitor Broadcast'

will be located on the 'Current

Status' tab of the Properties

dialog.

CommandStatus

CommandStatusHandler

HAR

Do we need to have the 'Monitor

Broadcast' option in the right-click

menu for a HAR as well? If so,

which modes it should be available

in? Online and maintenance mode

OR online mode only?

GUIHAR

GUI

[clicks on Monitor Broadcast]

action performed

pushAudioProperties

showDefaultCursor

open

[error]

GUIException

activate_object (AudioPushConsumerImpl)

create

getPOA

[offline]

CHART2Exception

[no rights]

AccessDenied

monitorBroadcast

[error]

Display Error

openAudioSourceDataFile

pushAudioProperties

[line in use, invalid format, other error]

GUIException

createCommandStatus

getCommandStatusHandler

monitorBroadcast

create

pushAudio

pushAudio

[error]

DIsplay Error

write

[failure]

Display Error

pushFailure

pushFailure or pushCompleted

[* for each

chunk of

audio data]

close

getToken

get

showWaitCursor

AudioPushConsumerImpl

Figure 89. GUIHARModule:MonitorBroadcast

3.7.2.19 GUIHARModule:MonitorSlot

This diagram shows how the user can listen to the clip that supposed to be stored in a given slot of a HAR device. This option is available from the SlotData tab of the HARProperties dialog. When the user highlights a line in the slot data table and selects the "Monitor Slot" from the right-click menu, a monitorSlot() method of the corresponding GUIHAR is activated. The GUIHAR creates an AudioPushConsumerImpl object and activates it with the POA, then creates a CommandStatus object and issues a monitorSlot() call on the wrapped HAR object. The server will then call the AudioPushConsumerImpl object to report the format of the audio and to stream the chunks of data. The HARProperties dialog will get this data via the AudioPushListener interface it implements. The javax.sound.sampled.SourceDataLine Java APIs will be used to play the voice data to the user.

[image: image90.emf]CommandStatus

CommandStatusHandler

HAR GUIHAR

GUI

HARPropertiesDialog

System

Operator

It may be possible to use a

ClipEditControl as an AudioPushConsumer

AudioPushConsumerImpl

POA

An auxiliary dialog box prompting

the user to enter the number of

seconds to be monitored should

be displayed at this point

javax.sound.sampled.

SourceDataLine

create

pushAudio

pushAudio

[error]

DIsplay Error

write

[failure]

Display Error

pushFailure

pushFailure or pushCompleted

[* for each

chunk of

audio data]

close

getToken

get

showWaitCursor

monitorSlot

[clicks on Monitor Slot]

action performed

pushAudioProperties

showDefaultCursor

open

[error]

GUIException

activate_object (AudioPushConsumerImpl)

create

getPOA

[offline]

CHART2Exception

[no rights]

AccessDenied

monitorSlot

[error]

Display Error

openAudioSourceDataFile

pushAudioProperties

[line in use, invalid format, other error]

GUIException

createCommandStatus

getCommandStatusHandler

Figure 90. GUIHARModule:MonitorSlot

3.7.2.20 GUIHARModule:PutHARInMaintenanceMode

This diagram shows how a HAR is put into maintenance mode. The Administrator right clicks on a GUIHAR in the Navigator and clicks on the "Put In Maintenance Mode" menu item. The GUIHAR creates a CommandStatus object to monitor the progress of the command and calls the HAR object (which it wraps) to put it in maintenance mode. If successful, the server will push a CORBA event indicating that the comm mode has been changed.

[image: image91.emf]The server will

update the CommandStatus

object to show the progress

or failure of the command.

If successful, this will push a

HARStatusChanged event. It will

also push ControllingOpCtrChanged

and ResponsePlanItemStatusChanged

 events. The GUI will catch these events

and will update the GUI wrapper

objects as needed.

Administrator

GUIHAR

HAR

This menu item will be

disabled if the user does not

have rights or if the device is

already in maintenance mode.

GUI

CommandStatusHandler

CommandStatus

create

[clicks on "Put In Maintenance

 Mode" menu item]

actionPerformed

putInMaintenanceMode

[in maintenance mode]

CHART2Exception

[no rights]

AccessDenied

get

getToken

getCommandStatusHandler

putInMaintenanceMode

showWaitCursor

createCommandStatus

showDefaultCursor

[error]

GUIException

Figure 91. GUIHARModule:PutHARInMaintenanceMode

3.7.2.21 GUIHARModule:PutHAROnline

This diagram shows how a HAR is put online. The Administrator right clicks on a GUIHAR in the Navigator and clicks on the "Put Online" menu item. The GUIHAR creates a CommandStatus object to monitor the progress of the command and calls the HAR object (which it wraps) to put it online. If successful, the server will push a CORBA event indicating that the comm mode has been changed.

[image: image92.emf]CommandStatusHandler

CommandStatus

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

Administrator

GUIHAR

HAR

This menu item will be

disabled if the user does not

have rights or if the device is

already online.

GUI

If successful, this will push a

HARStatusChanged event.

putOnline

[clicks on "Put Online" menu item]

actionPerformed

get

getToken

getCommandStatusHandler

createCommandStatus

create

[online]

CHART2Exception

[no rights]

AccessDenied

[HAR controlled by

different op ctr and

no override rights]

ResourceControlConflict

showWaitCursor

putOnline

showDefaultCursor

[error]

GUIException

Figure 92. GUIHARModule:PutHAROnline

3.7.2.22 GUIHARModule:RecordAudioClip

A user with appropriate rights can create a new clip by recording an audio message in a binary audio file format (based on the properties specified in the system profile). The Record option will be available from the ClipEditControl. When a user selects this option, the ClipEditControl obtains the voice recording format from the GUI Profile, then gets a reference to a thread that is dedicated specifically for audio recording (or creates one, if not exists). This thread will be shared between all ClipEditControl objects in the GUI as only one active voice recording is possible at a time. The recording thread creates an AudioFileWriter objects and writes spoken data to a binary audio data file until the user presses "Stop recording" button.

[image: image93.emf]This button will be grayed out

if the user does not have rights

or if recording is already active.

Only one recording can be made

at a time; therefore, we need to

prevent the user from pushing

''Record' again FROM ANY PLACE

until the current recording is

completed.

The recording must

also be stopped if

Cancel is pressed or

if the OK button is

pressed.

javax.sound.sampled.spi.

AudioFileWriter

GUI

GUIProfile

ClipEditControl

Operator

AudioRecorderThread

The AudioInputStream

will be created for the recording

device before calling this. Also,

a FIle will be opened. These

are left for implementation.

This thread should be a singleton,

i.e. it should be shared between

all ClipEditControl objects.

interrupt

write(AudioInputStream,

fileType, File)

[clicks on "Record"]

actionPerformed

[clicks on "Stop

Recording"]

actionPerformed

stopRecording

getSystemProfile

[* while not

interrupted]

get

getProperty("voice recording format")

"Remove reference

to thread"

create (or get one, if exists)

create

start

Figure 93. GUIHARModule:RecordAudioClip

3.7.2.23 GUIHARModule:RemoveHAR

This diagram shows how a HAR is removed from the system. The Administrator right clicks on a GUIHAR object in the Navigator and clicks on the "Remove HAR" menu item. The GUIHAR creates a CommandStatus object to monitor the progress of the command and calls the remove() method of the HAR object (which it wraps). If successful, the server will push a CORBA event indicating that the HAR was removed.

[image: image94.emf]This menu item will

be disabled if the user

does not have rights or

the device is not offline

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

CommandStatusHandler

CommandStatus

Administrator

GUIHAR

HAR

GUI

If successful, the server will push

a HARRemoved event, and also

SHAZAMStatusChanged,

SHAZAMConfigurationChanged,

and HARConfigurationChanged events

if appropriate. The GUI will catch

these events and will remove the GUIHAR

object from the DataModel

and will update the GUISHAZAM object.

[no rights]

AccessDenied

[device busy]

InvalidOperation

[another op center is controlling

and no override rights]

ResourceControlConflict

remove

[clicks on the

"Remove HAR" menu item]

actionPerformed

getToken

get

getCommandStatusHandler

createCommandStatus

create

[error]

GUIException

showDefaultCursor

removeHAR

showWaitCursor

Figure 94. GUIHARModule:RemoveHAR

3.7.2.24 GUIHARModule:ResetHAR

This diagram shows how a HAR is reset in maintenance mode. The Administrator right clicks on a GUIHAR object in the Navigator and clicks on the "Reset" menu item. The GUIHAR creates a CommandStatus object to monitor the progress of the command and calls the reset() method of the HAR object (which it wraps). If successful, the server will push a CORBA event indicating the changes to the state of the HAR.

[image: image95.emf]showWaitCursor

showDefaultCursor

[error]

GUIException

CommandStatus

CommandStatusHandler

GUI

This menu item will be

disabled if the user does not

have rights or if the device is

not in maintenance mode.

CHART2HAR

GUIHAR

getCommandStatusHandler

[HAR controlled by

different op ctr and

no override rights]

ResourceControlConflict

[no rights]

AccessDenied

[in maintenance mode]

CHART2Exception

create

reset

createCommandStatus

getToken

get

[clicks on "Reset" menu item]

actionPerformed

Reset

Administrator

If successful, this will push HARStatusChanged

and SHAZAMStatusChanged or

DMSStatusChanged events.

events. If the HAR was in use, it may also push a

ControllingOpCtrChanged event.

The server wil update

the CommandStatus

to show the progress

or failure of the command.

Figure 95. GUIHARModule:ResetHAR

3.7.2.25 GUIHARModule:SetHARMessage

This diagram shows how a HAR message is set. The Operator right clicks on a GUIHARResponsePlanItem object and clicks on the "Execute" menu item. The GUIHARResponsePlanItem calls the execute() method of the ResponsePlanItem object (which it wraps). If successful, the server will push CORBA events indicating the changes to the state of the HAR. The server will also push events to keep the GUIs updated with the current status of the command.

[image: image96.emf]GUI

get

getToken

execute

[clicks on "Execute"]

actionPerformed

[no rights]

AccessDenied

[banned words]

DisapprovedMessageContent

execute

The server will update the

ResponsePlanItem, which

is also a CommandStatus.

The server will also cause a

ResponsePlanStatusChanged

event to be pushed.

This menu item

will be disabled if

the user does not

have rights.

Operator

GUIHARResponsePlanItem

ResponsePlanItem

If successful, this will cause the server to

push a HARStatusChanged event,

and possibly SHAZAMStatusChanged,

DMSStatusChanged, or

ResponsePlanStatusChanged events when

the item is activated.

Figure 96. GUIHARModule:SetHARMessage

3.7.2.26 GUIHARModule:SetHARMessageInMaintenanceMode

This shows how a message is set on a HAR when it is in maintenance mode. The user clicks on the GUIHAR object in the Navigator and clicks on the "Set Message" menu item. The GUIHAR object invokes the HARMessageEditor dialog. As the user types a text message, any banned words are displayed. When the user clicks "OK", the dialog checks the words (if it's a text message) and displays any suggestions. If no suggestions are made, the dialog calls the GUIHARModule to create message clips for the header, trailer, and body of the message. The dialog then creates a HARMessage object and inserts the clips into it, then calls the GUIHAR to set the message. The GUIHAR object creates a CommandStatus to monitor the progress of the command, then calls the HAR object which it wraps. If successful, the server will push CORBA events to update the GUIs for any state changes.

[image: image97.emf]GUIHARMessage

Notifier

Two classes, ClipEditControl and SpellChecker,

are not shown on this diagram due to space

limitations. Their functions are shown as the

HARMessageEditor's ones. Please see the

 ModifyHARStoredMessage SD for more details.

HAR CommandStatusHandler

CommandStatus

HARMessageEditor

GUIDictionary

HARMessage

This menu item

will be disabled

if the HAR is not

in maintenance mode

or if the user does not

have proper rights.

The server will update

the command status

object to update the GUI

with information regarding

the progress or failure

of the command.

If successful,

the server may push

HARStatusChanged,

ControllingOpCtrChanged,

and SHAZAMStatusChanged

or DMSStatusChanged

events.

GUIHARModule

Administrator

GUIHAR

The GUIHARConfiguration includes a list

of references to the HARMessageNotifiers

as well as their IDs. If a GUIHARMessageNotifier

object has already been added to the DataModel,

we get the Notifier name from it. If no, we are

using the reference to the HARMessageNotifier

object to obtain the name.

HARMessageNotifier

DataModel

[text clip] createTextClip

[clicks on "Set Message"]

actionPerformed

create

show

[types text for message]

keyPressed

[text clip]

performApprovedWordsCheck

[non-approved words] String[]

"Display Suggested Words"

[text clip]

checkForBannedWords

[banned words]

String[]

"Display Banned Words"

[CANCEL]

actionPerformed

closeWindow

create

setHeader

setBody

setTrailer

[GUIHARMessageNotifier object not found in DataModel] getName()

[GUIHARMessageNotifier objectfound in DataModel] getName()

getObject

(m_harNotifierID)

setMessage

[* for each

m_harNotifierID

associated with

the HAR]

getConfiguration

selects HARMessageNotifiers to activate

[* for header, body

and trailer clips]

[OK clicked]

actionPerformed

setMessage

createCommandStatus

create

setMessage

[not in maintenance mode]

CHART2Exception

closeWindow

[error]

[no rights]

AccessDenied

[error]

GUIException

[error]

"Display Error"

[HAR controlled by

another op center and no override rights]

ResourceControlConflict

[APPLY clicked]

actionPerformed

[suggested words]

[audio clip] createAudioDataClip

Figure 97. GUIHARModule:SetHARMessageInMaintenanceMode

3.7.2.27 GUIHARModule:SetTransmitterOff

This diagram shows how a HAR's transmitter is turned off in maintenance mode. The Administrator right clicks on a GUIHAR object in the Navigator and clicks on the "Turn Off Transmitter" menu item. The GUIHAR creates a CommandStatus object to monitor the progress of the command and calls the setTransmitterOff() method of the HAR object (which it wraps). If successful, the server will push a CORBA event indicating the changes to the state of the HAR.

[image: image98.emf]GUI

CommandStatusHandler

showDefaultCursor

[error]

GUIException

showWaitCursor

setTransmitterOff

[in maintenance mode]

CHART2Exception

CommandStatus

The server will update

the CommandStatus

to show the progress

or failure of the command.

If successful, the server

will push a

HARStatusChanged event.

Administrator

GUIHAR

HAR

This menu item will be

disabled if the user does not

have rights or if the device is

not in maintenance mode.

[no rights]

AccessDenied

[HAR controlled by

different op ctr and

no override rights]

ResourceControlConflict

setTransmitterOff

[clicks on "Turn Off

HAR Transmitter" menu item]

actionPerformed

get

getToken

getCommandStatusHandler

createCommandStatus

create

Figure 98. GUIHARModule:SetTransmitterOff

3.7.2.28 GUIHARModule:SetTransmitterOn

This diagram shows how a HAR's transmitter is turned on in maintenance mode. The Administrator right clicks on a GUIHAR object in the Navigator and clicks on the "Turn On Transmitter" menu item. The GUIHAR creates a CommandStatus object to monitor the progress of the command and calls the setTransmitterOn() method of the HAR object (which it wraps). If successful, the server will push a CORBA event indicating the changes to the state of the HAR.

[image: image99.emf]The server wil update

the CommandStatus

to show the progress

or failure of the command.

If successful, the server

will push a

HARStatusChanged event.

Administrator

GUIHAR

HAR

This menu item will be

disabled if the user does not

have rights or if the device is

not in maintenance mode.

GUI

CommandStatusHandler

CommandStatus

getToken

getCommandStatusHandler

createCommandStatus

setTransmitterOn

create

[in maintenance mode]

CHART2Exception

[no rights]

AccessDenied

[HAR controlled by

different op ctr and

no override rights]

ResourceControlConflict

[error]

GUIException

showDefaultCursor

showWaitCursor

setTransmitterOn

get

[clicks on "Turn On

HAR Transmitter" menu item]

actionPerformed

Figure 99. GUIHARModule:SetTransmitterOn

3.7.2.29 GUIHARModule:Shutdown

This diagram shows what happens when the GUI shuts down. The GUI calls all of the InstallableModule objects' shutdown() methods, and the GUIHARModule uses this method to disconnect itself from the ORB.

[image: image100.emf]POA

GUIHARModule

User

GUI

delete

deactivate_object

(GUIHARModule)

shutdown

shutdown

"Exit"

Figure 100. GUIHARModule:Shutdown

3.7.2.30 Startup:Basic

This diagram shows the processing that occurs at the GUI's startup. The GUI calls each InstallableModule's startup() method. The GUIHARModule connects itself to the ORB so that it can receive the CORBA events from the Event Service. The GUIHARModule installs itself into the frameworks of the GUIPlanModule, GUILibraryModule, and GUITrafficEventModule so that it can support GUIPlanItem objects, GUIHARStoredMessage objects, and GUIHARResponsePlanItem objects, respectively. It also creates a HARNavGroup which will contain all of the GUIHAR objects in the Navigator.

[image: image101.emf]addPlanItemSupporter

get

get

POA

These calls will throw

a ClassNotFound exception

if the GUIPlanModule or the

GUITrafficEventModule or the

GUILibraryModule are

not installed. In this case, exception

will be caught and the module will

not provide plan or traffic event or

library functionality.

NavTreeFilter

FilterManager

GUILibaryModule

GUITrafficEventModule

GUIPlanModule

HARNavGroup

GUIHARModule

GUI

Connect to the ORB to

be able to receive CORBA

events pushed through the

event channel.

[* for each filter found or created]

activate

getOwnedFilters (HAR)

get

[filters not found]

create

startup

activate_object

addResponsePlanItemCreator

get

addLibrarySupporter

Figure 101. Startup:Basic

3.7.2.31 GUIHARModule:StoreSlotMessage

This diagram shows how a message clip is stored in a HAR slot in the controller, while the HAR is in maintenance mode. With the HAR Properties Dialog open, the user selects the "Store Clip" option. The dialog calls the GUIHARModule to create a HARMessageClip of the appropriate type (text or voice), depending on the contents of the message, and the GUIHARModule will call the HARFactory to create the clip. The dialog then calls the GUIHAR wrapper object to store the slot message. The GUIHAR object creates a CommandStatus object to monitor the progress of the command, then calls the HAR to store the slot message. If successful, the server will push a CORBA event update the GUIs with the new state of the HAR.

[image: image102.emf]HAR

If successful, this will push

push a HARStatusChanged

event

The server will

update the

CommandStatus

object to show the

progress or failure

of the command.

The type of the clip

will be a derived

class which will

depend on which

format of clip is being

stored (text or voice).

GUIHARModule

This feature will

be disabled if the

HAR is not in

maintenance mode.

Operator

ClipEditControl

May involve reading a file

(forAudioData clips)

HARPropertiesDialog

CommandStatus

CommandStatusHandler GUI

GUIHAR

getClip

createCommandStatus

create

storeSlotMessage

storeSlotMessage

[clicks on

"Store Clip"]

actionPerformed

createAudioClip or createTextClip

HARMessageClip

showDefaultCursor

HARMessageClip

showWaitCursor

[banned words]

DisapprovedMessageContent

get

getToken

getCommandStatusHandler

[error]

"Display Error"

[no rights]

AccessDenied

[not in maintenance mode]

CHART2Exception

[HAR under control of

another op ctr and no rights]

ResourceControlConflict

[error]

GUIException

[error]

Figure 102. GUIHARModule:StoreSlotMessage

3.7.2.32 GUIHARModule:TakeHAROffline

This diagram shows how a HAR is taken offline. The Administrator right clicks on a GUIHAR object in the Navigator and clicks on the "Take Offline" menu item. The GUIHAR creates a CommandStatus object to monitor the progress of the command and calls the CHART2HAR object (which it wraps) to take it offline. If successful, the server will push a CORBA event indicating that the comm mode has been changed.

[image: image103.emf][no rights]

AccessDenied

[HAR controlled by

different op ctr and

no override rights]

ResourceControlConflict

create

[error]

GUIException

showDefaultCursor

showWaitCursor

CommandStatusHandler

takeOffime

takeOffline

[clicks on "Take Offline" menu item]

actionPerformed

get

getToken

getCommandStatusHandler

createCommandStatus

[offline]

CHART2Exception

CommandStatus

If successful,

this will push a

HARStatusChanged event.

Administrator

GUIHAR HAR

This menu item will be

disabled if the user does not

have rights or if the device is

already offline.

GUI

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

Figure 103. GUIHARModule:TakeHAROffline

3.7.2.33 GUIHARModule:ViewArbitrationQueue

This diagram shows how the Arbitration Queue is viewed. The user clicks on View Queue and the GUIHAR creates an ArbitrationQueueProperties dialog, passing the ArbitrationQueue object. See GUIUtility:ViewArbitrationQueue or GUIUtility:ProritizeArbitrationQueue for details.

[image: image104.emf]See GUIUtility:ViewQueue or

GUIUtility:PrioritizeQueue

for details.

The user right clicks on a HAR

in the Navigator and selects

View Queue. If the user does

not have the appropriate rights the

menu option will be grayed out.

ArbitrationQueue

GUIHAR

Operator

create

viewQueue

Figure 104. GUIHARModule:ViewArbitrationQueue

3.7.2.34 GUIHARModule:ViewHARSlotUsage

This diagram shows how the HAR slot usage is viewed. The HARPropertiesDialog will call the GUIHAR object to get the slot usage, which will call the HAR object in the server (which it wraps). The HAR object will createHARMessageClip objects, one for each slot, and the type of the clip object will depend on whether voice or text is being used. The dialog can then display the contents of the clip for each slot which is in use.

[image: image105.emf]get

[click on Properties]

actionPerformed

create

show

HARPropertiesDialog

created

[status cached]

HARStatus

HARConfiguration

"Initialize from

HARConfiguration

and HARStatus"

HARStatus

HARStatus

[error]

"Display Error"

getStatus

getConfiguration

showWaitCursor

[error]

GUIException

[error]

CHART2Exception

showDefaultCursor

getStatus

getToken

doProperties

Operator

HARPropertiesDialog

HAR GUI

GUIHAR

If HAR status has been cached

in the GUIHAR, get a cached

version. Otherwise, GUIHAR will

get it from the server (HAR object).

The Properties option will be

disabled if the user has no

proper rights to view HAR

Properties

Figure 105. GUIHARModule:ViewHARSlotUsage

3.7.2.35 GUIHARModule:ViewHARStoredMessage

This diagram shows how a HAR stored message is viewed. This is a subset of the ModifyHARStoredMessage sequence diagram, so refer to that diagram for details.

[image: image106.emf]See the ModifyHARStoredMessage

sequence diagram for details on how

the user may view a HAR stored message.

Figure 106. GUIHARModule:ViewHARStoredMessage

3.8
GUIMessageLibraryModule

3.8.1 Class Diagrams

3.8.1.1 GUIMessageLibraryClasses

This diagram shows the classes in the GUILibraryModule package.

[image: image107.emf]1

1

created

using

*

1

1

1

StoredMessageData

«typedef»

Message

«interface»

HARMessage

*

1

InstallableModule

«interface»

*

1

1 1

1

1

*

1 1

1

1

1 1

1 1

1 1

LibraryTypeFilter

NavClassFilter

The following objects

are stored in the DataModel:

GUIMessageLibraryGroup,

GUIMessageLibrary,

GUIMessageLibraryFilter,

LibraryType,

LibraryTypeFIlter,

GUIStoredMessage

1

GUIMessageLibraryFilter

NavTreeFilter

java.awt.event.

ActionListener

«interface»

DefaultJFrame

1..*

1

creates new

MessageLibrary

using

* 1

1

MessageLibraryProperties

MessageLibrary

«interface»

CosEvent.

PushConsumer

«interface»

GUIHARStoredMessage

Menuable

«interface»

java.awt.event.

ActionListener

«interface»

1

NavListDisplayable

«interface»

GUIStoredMessage

GUILibraryModule

StoredMessage

«interface»

* 1

NavTreeDisplayable

«interface»

GUIMessageLibrary

MessageLibraryFactory

«interface»

java.awt.event.

KeyListener

«interface»

GUIMessageLibraryGroup

LibraryType

GUILibrarySupporter

«interface»

1

1

Menuable

«interface»

NavListDisplayable

«interface»

NavFilterSupporter

«interface»

1

*

initializeAppData(GUIMessageLibrary)

GUIMessageLibrary m_library

Identifier msgID

Identifier libID

string description

string category

string lastModifiedBy

Message msg

validateMessageContent():void;

matches(Message): boolean

m_columnNames

m_lib

MessageLibraryProperties()

show()

setName(AccessToken token, string name):void

createStoredMessage(AccessToken token,

 Message msg,

 string description,

 string category):StoredMessage

getStoredMessages():StoredMessageList

isUsedByAnyPlan():boolean

isMessageUsedByAnyPlan(Identifier msgID):boolean

removeMessage(AccessToken, Identifier ,msgID):void

remove(AccessToken):void

remove()

editMessage()

m_name

get()

addLibrarySupporter(GUILibrarySupporter)

getLibrarySupporters()

createLibrary()

getMessageData():StoredMessageData

getMessage():Message

setMessage(AccessToken, Message):void

setMessageData(AccessToken token,

 string description,

 string category,

 Message msg):void

 remove(AccessToken):void

GUIMessageLibrary(token,name)

createLibraryTypes()

addMessage(GUIStoredMessage)

removeMessage()

setName(string):void

remove():void

createStoredMessage()

messageAdded()

messageRemoved()

createLibrary(AccessToken token,string name):MessageLibrary

getLibraryList():MessageLibraryList

getMessageTypeName():string

getMessageTypeClass():Class

setName()

m_columnnames

m_name

m_class

createGUIStoredMessage(StoredMessage, Message) : GUIStoredMessage

getStoredMessageCreationMenuReps(accessToken) : MenuItemRep[]

createNewGUIStoredMessage(accessToken, menuString, guiLibrary) : boolean

createLibraryType():LibraryType

Figure 107. GUIMessageLibraryClasses

3.8.1.1.1 java.awt.event. ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.8.1.1.2 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.8.1.1.3 GUIHARStoredMessage

This class provides a GUI "wrapper" object which is used to wrap a StoredMessage CORBA interface that contains HAR-specific data and to supply GUI-specific functionality.

3.8.1.1.4 GUILibraryModule

The GUILibraryModule is an installable module in the GUI, and provides all functionality specific to stored message libraries and messages. Only one GUILibraryModule object may exist within the GUI. This class provides the functionality needed to support stored messages and stored message libraries.

3.8.1.1.5 GUILibrarySupporter

This class allows the GUILibraryModule to maintain stored messages which have differing formats. When an object of this type is installed the user can create, maintain, and use the specific type of libraries and stored messages that the object supports.

3.8.1.1.6 GUIMessageLibrary

This class is a GUI "wrapper" object which is used to wrap a MessageLibrary object. The wrapping is done to cache the data locally for faster access, as well as to give the MessageLibrary some GUI-specific functionality such as menus and command handling.

3.8.1.1.7 GUIMessageLibraryFilter

This filter represents one message library in the Navigator tree.

3.8.1.1.8 GUIMessageLibraryGroup

This filter represents the Libraries node in the Navigator tree and contains all of the libraries in the tree.

3.8.1.1.9 GUIStoredMessage

This class is a GUI "wrapper" object which is used to wrap a StoredMessage object. It provides a user interface object which can implement whatever interfaces are necessary for the object to exist within the GUI framework (for example, an object must support the NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.8.1.1.10 HARMessage

This utility class represents a message which is capable of being stored on a HAR. It stores the HAR message as a HAR message header, body and footer. The HARMessage can be configured to use the default header or can provide a custom header clip. The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided. The body can consist of one or more body clips. Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.8.1.1.11 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.8.1.1.12 java.awt.event. KeyListener

Interface that a class must realize in order for objects of that class to be notified when the user presses a key.

3.8.1.1.13 LibraryType

This object stores information pertaining to each type of stored message library that is supported within the system. It is needed to display different types of messages which have different attributes.

3.8.1.1.14 LibraryTypeFilter

This filter represents a subtype of a message library in the Navigator tree.

3.8.1.1.15 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.8.1.1.16 Message

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.8.1.1.17 MessageLibrary

This class represents a logical collection of messages which are stored in the database.

3.8.1.1.18 MessageLibraryFactory

This class is used to create new message libraries and maintain them in a collection.

3.8.1.1.19 MessageLibraryProperties

This dialog allows the user to edit the properties of a library, or specify properties for a new library.

3.8.1.1.20 NavClassFilter

This filter ignores all objects that are not assignable to a given class or interface. Thus, an interface or base class can be specified and all of the objects implementing the interface or extending the base class will be included.

3.8.1.1.21 NavFilterSupporter

This interface is used to allow type-specific filters to be created by external classes such as the installable modules. It is called to get the menu items for filter creation, as well as to create the filter when those menu items are clicked on.

3.8.1.1.22 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.8.1.1.23 NavTreeDisplayable

This interface must be implemented by any objects which are to be added to the left side of the Navigator (the tree view). This contains all of the functionality to support the tree data structure and also provides the property list (column headers) which will be displayed in the list view when the NavTreeDisplayable is selected.

3.8.1.1.24 NavTreeFilter

This class serves as a node in the Navigator tree and filters objects to be displayed in the Navigator. It is an observer to the DataModel so that it can create the NavTreeFilteredObjectInstance objects for any FilterNavTreeDisplayables that it contains. (Multiple instances can appear to represent one FilterNavTreeDisplayable object). Filters can be cascaded to achieve a cumulative filtering effect if the "Subset of parent" flag is used; that is, a filter appearing under a parent filter will call the parent filter first to filter the objects, and then it will apply its own filtering method. The cascading of filters is therefore an "AND" operation. A filter can either be a system filter or a user-specific filter. System filters can only be modified by someone with the correct administrative rights, and they can only be added as a child of other system filters.

3.8.1.1.25 CosEvent. PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.8.1.1.26 StoredMessage

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.8.1.1.27 StoredMessageData

This structure defines the data stored in a StoredMessage.

3.8.2 Sequence Diagrams

3.8.2.1 GUILibraryModule:CreateLibrary

This diagram shows how a stored message library is created. First, the user right clicks on the Message Library in the navigator and selects Add Library on the menu. This calls the GUILibraryModule which checks the functional rights of the user and will, if the user has the correct rights, display the Properties dialog. The user enters information about the new library and presses enter. The GUILibraryModule is called to create a library. For each different type of stored message supported in the system, the GUILibraryModule creates a LibraryType object which allows the system to properly display message types with different attributes.

[image: image108.emf]Operator

GUIMessageLibrary

MessageLibraryFactory

GUILibraryModule

MessageLibraryProperties

DataModel

GUIMessageLibraryGroup

The fact that the

library is not initialized

indicates that this is a

new library "wrapper" and

that a library object should

be created.

create

doProperties

[library is not initialized]

createLibrary

[Library is not initialized]

createLibraryTypes

[error]

AccessDenied

setProperties

"Display Dialog"

show

[User presses OK button]

actionPerformed

[Add Library menu

 item selected]

actionPerformed

[Library is not initialized]

objectAdded (this)

[error]

Chart2Exception

create

Figure 108. GUILibraryModule:CreateLibrary

3.8.2.2 GUILibraryModule:CreateStoredMessage

This diagram shows how a stored message is created. First, the user right clicks on the GUIMessageLibrary object, which calls the GUILibraryModule to get the installed library supporters. Each library supporter returns menu items for message types that it can create. When the user clicks on the appropriate message type, the GUIMessageLibrary object is called again, and this time it asks each library supporter to create the correct type of message based on the menu item. When the correct creator is found it opens its message editor. The operator enters the stored message data. When the data is saved, the information is stored in the database and the server will push a StoredMessageAdded event. The GUILibraryModule catches the event and ask all of the GUILibrarySupporter objects to attempt to create the correct type of GUIStoredMessage, then the GUIStoredMessage will be added to the DataModel.

[image: image109.emf]GUILibrarySupporter

NavTree

GUI

GUILibraryModule

Operator

GUIMessageLibrary

Message

MessageLibrary

These operations would

be invoked via a

message editor for the specific

type of message being edited

This would be the specific

type of message editor

supported by the

GUILibrarySupporter

The type of message would actually

be a derived class, based on the type

of message being created.

If successful,

the server will push

a StoredMessageAdded

event. The GUILibraryModule

will catch the event and ask

all of the GUIStoredMessageCreator

objects to attempt to create the

correct type of GUIStoredMessage,

then the GUIStoredMessage will

be added to the DataModel.

[unknown menu item]

false

[correct menu item]

"Display Message

Editor Dialog"

[error]

"Display Error"

getLibrarySupporterss

create

createStoredMessage

createStoredMessage

[right click]

mousePressed

get

getLibrarySupporters

createNewGUIStoredMessage

MenuItemRep[]

[* for each GUILibrarySupporter]

getStoredMessageCreationMenuReps

"Display Menu"

[user clicks on menu item]

actionPerformed

MenuItemRep[]

JMenu

get

[no rights]

AccessDenied

[bad message content]

DisapprovedMessageContent

[other error]

CHART2Exception

for each

Library supporter

[correct menu item]

true

get

getToken

[right click]

makeMenu getSSMenuItemReps

Figure 109. GUILibraryModule:CreateStoredMessage

3.8.2.3 GUILibraryModule:DeleteLibrary

This diagram shows how a stored message library is removed from the system. First, the user right clicks on the Message Library in the navigator and selects Delete Library on the menu. If the library contains messages being used in Plans or the library is not empty, a warning is thrown to the user. This calls the MessageLibrary object which removes the library and any stored messages contained in the library. The server sends the LibraryRemoved Event. The GUILibraryModule catches the event and updates the DataModel and the GUIMessagelibrary wrapper object and the wrapped stored messages are removed.

[image: image110.emf]GUI

remove(Access Token)

[success]

[success]

[Delete Library selected]

actionPerformed

[error]

showInfoDialog

[error]

"Show error message"

[no rights]

AccessDenied

[other error]

Chart2Exception

IsUsedByAnyPlan

[Warning:Valid messages

in the Library]

[Warning Dialog:

Library used by Plans]

remove

[yes]

remove

getToken

Operator

GUIMessageLibrary

MessageLibrary

If successful the

server will push a

library removed event.

The GUI will warn the user if the

messages in the library are used by

any plans. It will also warn the user

if there are messages in the library that

will be deleted as a result of this

action. If the user chooses to

remove anyway, then remove() is called.

Figure 110. GUILibraryModule:DeleteLibrary

3.8.2.4 GUILibraryModule:DeleteStoredMessage

This diagram shows how a stored message is deleted. First, the user right clicks on the GUIMessageLibrary object, which calls the GUIStoredMessage to remove itself from the system. Once the object is removed from the system the HandleEventStoredMessageRemoved diagram shows how the navigator is updated for all users. A warning is displayed to the user if the stored message is being used by Plans. However, the user can opt to remove the message anyway. Doing so, will leave the plan in an incomplete state (which can be observed in the navigator).

[image: image111.emf][no rights]

AccessDenied

[other error]

Chart2Exception

[error]

"display error message"

showInfoDialog

IsUsedByAnyPlan

[Warning:There are plans using Stored Message]

remove

removeMessage(token,message)

[Delete Stored Message

item selected]

actionPerformed

getToken

This would actually

be the derived class

object.

If successful,a

StoredMessageRemoved

event is pushed.

GUIMessageLibrary

MessageLibrary

GUI

Operator

GUIStoredMessage

The user is warned if the

message is currently used in a plan.

If the user chooses to remove the

message anyway, the remove

method will be called.

removeMessage(Identifier)

success

success

Figure 111. GUILibraryModule:DeleteStoredMessage

3.8.2.5 GUILibraryModule:Discovery

This diagram shows how the Library Module event channels and the library and stored message objects are discovered and added to the system. This will be a periodic process, and the GUI will call the GUILibraryModule repeatedly. When the GUI asks the module to discover event channels, it looks up the library event channels in the trader. It then creates a PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the consumer to the channel and reattaches it if the event service is restarted. (Duplicate channels will be ignored). The GUI then calls the module to discover objects. At this time the module will query the Library objects in the trader. If any are found it will create an Identifier to be used as a lookup key for use with the DataModel. For each library found and added to the DataModel the module finds all stored messages. To create a GUIStoredMessage wrapper object, the module attempts to create the stored message using each installed GUILibrarySupporter. When the correct supporter is used the wrapper object is created and added to the DataModel and the GUIMessageLibrary objects.

[image: image112.emf]LibraryType

For each storedMessage defined in th system,

attempt to create the GUIStoredMessage with each

GUILibrarySupporter. When the correct supporter

is found, a GUIStoredMessage object is returned.

MessageLibraryFactory

GUIMessageLibrary

MessageLibary

CosTrading.Lookup EventConsumerGroup

PushEventConsumer

DataModel

GUIStoredMessage

GUI Discovery Thread

GUILibraryModule

The GUI library object checks to see if

it has already created a GUI

wrapper object for the stored

message. If not, it will create a new one.

An object is added to this

library for each type of supporter.

That object will be used to display

the messages of that supporter's

type.

GUILibrarySupporter

[not found]

create

*for each factory

getObject

discoverEventChannels

[message not wrapped]

createGUIStoredMessage

*for each

 library

query

(Library Event Channels)

[for each channel found]

add

getStoredMessages

[for each event channel]

create

discoverObjects

(Message Library

Factory objects)

[MessageLibrary]

getID

create

*for all

messages

createLibraryType

create

objectAdded(GUIStoredMessage)

objectUpdated(GUIMessageLibrary)

getLibraryList

objectAdded(GUIMessageLibrary)

*for each

supporter until

created

getLibrarySupporters

*for each

supporter

Figure 112. GUILibraryModule:Discovery

3.8.2.6 GUILibraryModule:HandleEventLibraryAdded

This diagram shows how the GUI receives information when a library is added to the system from the CORBA Event service and displays it to the user once the DataModel is updated.

[image: image113.emf]GUIMessageLibrary

GUIStoredMessage

When the library is created, it

must contain a place holder for each

type of message available in the system.

Each message type has a unique column

structure.

LibraryType

CORBA

Event

Service

GUILibraryModule

GUI

DataModel

Each supporter is given a chance to create

the message until one of them creates a wrapper

and returns a non-null object reference, at which

point the newly-created object is added to the data

model.

Identifier

create

for each supporter

objectAdded

create

objectAdded

objectAdded

push(LibraryAdded)

get

getDataModel

getObject

create

[GUIMessageLibrary

 found in DataModel]

create

getLibrarySupporters

for each supporter

Figure 113. GUILibraryModule:HandleEventLibraryAdded

3.8.2.7 GUILibraryModule:HandleEventLibraryNameChange

This diagram shows how the GUI receives information when a library name is changed from the CORBA Event service and displays it to the user once the DataModel is updated.

Figure 114. GUILibraryModule:HandleEventLibraryNameChange

3.8.2.8 GUILibraryModule:HandleEventLibraryRemoved

This diagram shows how the GUI receives information when a library is removed from the system from the CORBA Event service and displays it to the user once the DataModel is updated.

[image: image114.emf]Corba Event Service

GUILibraryModule GUI

DataModel

GUIMessageLibrary

After all observers remove their

reference to this object, it will be

deleted by Java garbage collection.

GUIStoredMessage

objectRemoved(GUIMessageLibrary)

push(library removed)

getDataModel

getObject

[library not found]

Log error

Figure 115. GUILibraryModule:HandleEventLibraryRemoved

3.8.2.9 GUILibraryModule:HandleEventStoredMessageAdded

This diagram shows how the GUI receives information when a stored message is added to the system from the CORBA Event service and displays it to the user once the DataModel is updated.

[image: image115.emf]push(StoredMessageAdded)

get

getDataModel

getObject(Identifier)

create

[GUIMessageLibrary

not found in DataModel]

createGUIStoredMessage

[unknown type of Message]

null

[correct type of

Message]

create

for each

GUILibrarySupporter

until GUIStoredMessage

created

CORBA

Event

Service

GUILibraryModule

GUI

Identifier

GUILibrarySupporter

DataModel

GUIMessageLibrary

GUIStoredMessage

This will actually

be a derived class

with a type specific

to the type of

message.

objectAdded(GUIStoredMessage)

objectUpdated(GUIMessageLibrary)

addMessageWrapper(GUIStoredMessage)

GUIStoredMessage

Figure 116. GUILibraryModule:HandleEventStoredMessageAdded

3.8.2.10 GUILibraryModule:HandleEventStoredMessageRemoved

This diagram shows how the GUI receives information from the CORBA Event service when a stored message is removed from the system, and displays it to the user once the DataModel is updated.

[image: image116.emf]GUIMessageLibrary

Corba Event Service

GUILibraryModule GUI

DataModel

GUIStoredMessage

After all observers remove their

reference to this object, it will be

deleted by Java garbage collection.

objectUpdated(GUIMessageLibrary)

removeMessageWrapper

objectRemoved(GUIStoredMessage)

getDataModel

getObject

[message not found]

Log error

push(message id)

Figure 117. GUILibraryModule:HandleEventStoredMessageRemoved

3.8.2.11 GUILibraryModule:Login

This diagram shows what happens when the user logs on.

[image: image117.emf]GUILibraryModule

The module currently

does not perform

any work at login.

GUI

User

"Login"

or

"Change User"

loggedIn

Figure 118. GUILibraryModule:Login

3.8.2.12 GUILibraryModule:Logout

This diagram shows what happens when the user logs out of the system.

[image: image118.emf]GUILibraryModule

The module currently

does not perform

any work at logout.

GUI

User

loggedOut

"Logout"

or

"Change User"

Figure 119. GUILibraryModule:Logout

3.8.2.13 GUILibraryModule:SetLibraryName

This diagram shows the steps taken to change the name of an existing library. The user right clicks on a library and selects the Properties option. A dialog is displayed and the user is allowed to enter a new name. On pressing enter, the name is changed. The MessageLibrary is updated with the new name.

[image: image119.emf]GUIMessageLibraryGroup GUI

Operator

GUIMessageLibrary

MessageLibraryProperties

MessageLibrary

[user clicks on menu item]

actionPerformed

MenuItemRep[]

JMenu

"Display Menu"

[right click]

mouse pressed

[right click]

makeMenu

getSSMenuItemReps

Create

getToken

show()

setProperties(token,name)

[User Closes Dialog]

"Display Dialog"

closeWindow

setName

getName

[AccessDenied or

 Chart2Exception]

"Show Error Message"

[User enters new library name]

actionPerformed

[error]

"Show error message"

Figure 120. GUILibraryModule:SetLibraryName

3.8.2.14 GUILibraryModule:Shutdown

This diagram shows what happens when the GUI shuts down. The GUI calls all of the InstallableModule objects' shutdown() methods, and the GUILibraryModule disconnects from the ORB.

[image: image120.emf]User

GUI

GUILibraryModule

The module currently does

not perform any work at shutdown

Exit

shutdown

shutdown

Figure 121. GUILibraryModule:Shutdown

3.8.2.15 GUILibraryModule:Startup

This diagram shows the steps taken to initialize the GUILibraryModule. On startup the module creates the LibraryNavGroup for display of the libraries in the navigator and connects to the ORB.

[image: image121.emf]GUIMessageLibraryGroup

DataModel

GUI

POA

GUILibraryModule

The module will stay for

the life of the application and

will be cleaned up at shutdown.

activate

objectAdded(this)

create

activate_object

startup

Figure 122. GUILibraryModule:Startup

3.9 GUIPlanModule

3.9.1 Class Diagrams

3.9.1.1 GUIPlanClasses

This diagram shows the classes used by the GUIPlan module and their relationships.

[image: image122.emf]1

0..1

1

*

1

*

GUIPlanItem

GUIDMSStoredMsgItem

GUIHARStoredMsgItem

GUIPlanNavGroup

CosEvent.

PushConsumer

«interface»

PlanItem

«interface»

GUIPlanModule

PlanItemCreationSupporter

«interface»

Menuable

«interface»

java.awt.event.

ActionListener

«interface»

InstallableModule

«interface»

NavListDisplayable

«interface»

NavTreeDisplayable

«interface»

Plan

«interface»

DataModel

GUIPlan

Response

DataCreator

«interface»

NavFilterSupporter

«interface»

Menuable

«interface»

NavListDisplayable

«interface»

NavClassFilter

NavTreeFilter

* 1

1 1

1

*

1

1

1 *

1 1

GUIPlanItem(PlanItem, GUIPlan)

-setName(name)

getName()

getPlan()

-remove()

setData()

m_name

get()

addPlanItemSupporter()

getPlanItemSupporters()

getPlanItemCreationMenuReps(accessToken) : MenuItemRep[]

createGUIPlanItem(planItem, itemID, plan) : GUIPlanItem

createNewGUIPlanItem(accessToken, menuString, plan) : boolean

setName(AccessToken,string):void

addItem(AccessToken,PlanItemData):PlanItem

removeItem(AccessToken,PlanItem):void

getItems():PlanItemList

remove(AccessToken):void

isUsingObject(IdentifierList objectIDs)

setName(item)

getName()

removeItem(guiPlanItem)

addItemtoCache(planItem, planItemID)

removeItemFromCache(planItemID)

doProperties()

setProperties()

-remove()

getItemsFromPlan()

createResponsePlanItemData() :

 ResponsePlanItemData

getResponseTargetID() : Identifier

Figure 123. GUIPlanClasses

3.9.1.1.1 java.awt.event. ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.9.1.1.2 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.9.1.1.3 GUIDMSStoredMsgItem

This class is a GUI "wrapper" object which is used to wrap a PlanItem object which contains the DMSPlanItemData. It helps in the creation of a DMS plan item data using the DMSStoredMsgItemProperties object.

3.9.1.1.4 GUIHARStoredMsgItem

This class provides a GUI "wrapper" object which is used to wrap the HARStoredMsgItem CORBA interface and to supply GUI-specific functionality.

3.9.1.1.5 GUIPlan

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data locally for faster access, as well as to give the Plan some GUI-specific functionality such as menus and command handling.

3.9.1.1.6 GUIPlanItem

This is a GUI base class for all the plan items. Each GIUPlanItem object will serve as a GUI wrapper to cache the plan item data locally and also to handle all user interaction in the GUI, such as menus and command handling.

3.9.1.1.7 GUIPlanModule

This is an installable GUI module which handles the Plan functionality in the GUI. Other modules which support plan items must attach their PlanItemCreationSupporters to the GUIPlanModule at startup. The plan module will call the supporters when it is necessary to create a specific type of GUIPlanItem.

3.9.1.1.8 GUIPlanNavGroup

This class serves as a container for all of the GUIPlan objects in the GUIPlanModule, when they are displayed in the navigator. It provides functionality for displaying menus. The GUIPlanModule has one instance of this class.

3.9.1.1.9 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.9.1.1.10 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.9.1.1.11 NavClassFilter

This filter ignores all objects that are not assignable to a given class or interface. Thus, an interface or base class can be specified and all of the objects implementing the interface or extending the base class will be included.

3.9.1.1.12 NavFilterSupporter

This interface is used to allow type-specific filters to be created by external classes such as the installable modules. It is called to get the menu items for filter creation, as well as to create the filter when those menu items are clicked on.

3.9.1.1.13 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.9.1.1.14 NavTreeDisplayable

This interface must be implemented by any objects which are to be added to the left side of the Navigator (the tree view). This contains all of the functionality to support the tree data structure and also provides the property list (column headers) which will be displayed in the list view when the NavTreeDisplayable is selected.

3.9.1.1.15 NavTreeFilter

This class serves as a node in the Navigator tree and filters objects to be displayed in the Navigator. It is an observer to the DataModel so that it can create the NavTreeFilteredObjectInstance objects for any FilterNavTreeDisplayables that it contains. (Multiple instances can appear to represent one FilterNavTreeDisplayable object). Filters can be cascaded to achieve a cumulative filtering effect if the "Subset of parent" flag is used; that is, a filter appearing under a parent filter will call the parent filter first to filter the objects, and then it will apply its own filtering method. The cascading of filters is therefore an "AND" operation. A filter can either be a system filter or a user-specific filter. System filters can only be modified by someone with the correct administrative rights, and they can only be added as a child of other system filters.

3.9.1.1.16 Plan

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items.

3.9.1.1.17 PlanItem

This class represents an action within the system that can be planned in advance. This CORBA interface is subclassed for specific actions that can be planned in the system.

3.9.1.1.18 PlanItemCreationSupporter

This interface must be implemented in any modules that wish to support the plan module. The modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule will then call the supporter when it is time to display the Plan menu or to create a specific type of plan item or GUIPlanItem.

3.9.1.1.19 CosEvent. PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.9.1.1.20 Response DataCreator

This interface enables the creation of type-specific ResponsePlanItemData objects, which are used for creating the appropriate type of ResponsePlanItem. An object implementing this interface can be added to the response plan of a traffic event. Implementers of this interface include plan items and response devices.

3.9.2 Sequence Diagrams

3.9.2.1 GUIPlanModule:AddPlan

This diagram shows how a new plan is added to the system. The user clicks on the Add Plan menu item in the GUIPlanNavGroup's context menu. (This menu item will only be displayed if the user has rights.) The GUIPlanNavGroup will create an uninitialized GUIPlan object with default properties and will call its doProperties method. This is a temporary object, used only for displaying the properties. The temporary GUIPlan will create a modeless PlanPropertiesDialog and display it. When the user clicks OK, the dialog will ask the GIUPlan to create a Plan from the properties entered from the dialog. A CommandStatus object is created to keep the user informed about the progress of the command. The GUIPlan queries the trader for all of the Plan Factories. It then tries to create the plan by calling each plan factory in the trader passing it the access token, until a factory successfully creates the Plan object. If the Plan was created, the PlanAdded event will be pushed from the plan server through the plan event channel to update all of the GUIs. See the GUIPlanModule:PlanAddedEvent diagram for more details.

[image: image123.emf]CommandStatus

Handler

This queries the

trader for all the

Plan factories

GUIPlan

PlanProperties

PlanFactory

CorbaUtilities

If successful, the server

pushes a PlanAdded event.

See PlanAddedEvent

sequence diagram for

details.

GUI

This menu item will

be disabled if the user

does not have rights.

The completion status

will be shown in the command

status window. In case of a failure,

an error message is also displayed

in the command status.

CommandStatus

The Plan that was

added here is discovered

through the CORBA event

generated by the server.

This is the reason for

deleting the GUIPlan here.

Refer to PlanAddedEvent

sequence for details.

Operator

GUIPlanNavGroup

create

doProperties

[plan created]

completed

[operator clicks

on create plan

menu item]

actionPerformed

create

setVisible

[*for each PlanFactory found, until plan is created]

createPlan

[no factories found]

completed

getToken

[user clicks OK]

actionPerformed

[no factories found]

[error]

completed

setProperties

getCommandStatusHandler

createCommandStatus

create

findAllObjectsOfType

[error]

AccessDenied or CHART2Exception

Figure 124. GUIPlanModule:AddPlan

3.9.2.2 GUIPlanModule:CreatePlanItem

This diagram shows how a plan item is created. When the user invokes the menu on the GUIPlan object, the GUIPlan object asks the GUIPlanModule for all of the attached PlanItemCreationSupporters. It then asks each of the supporters for the strings to use for the plan item creation menu items. Each string is associated with the supporter which supplied it, and the associations are stored in the GUIPlan object for use when a menu item is clicked on. When the user clicks on one of these menu items, the GUIPlan's actionPerformed method will be called, and the GUIPlan will find the matching string stored in the association, and will call the corresponding PlanItemCreationSupporter to create the new plan item. See the modules which support plan item creation for more details on how plan items are created.

[image: image124.emf]GUI

CommandStatusHandler

PlanItemData

This will be actually of type

derived class.

PlanItemCreation

Supporter

GUIPlan

These menu items will

be disabled if the user

does not have rights.

This will cause the

PlanItemCreationSupporter

to display a plan item properties

dialog for the specific type of

plan item. If the user successfully

enters all pertinent data,

the supporter will take care its own data,

then it will call GUIPlan's "addItem" method

See GUIDMSModule:AddSoredMsgItem and

GUIHARModule:AddHARPlanItem

Each plan item

supporter will

have to check the

access token

before returning

the string for the

menu item, and

if the user does

not have permission,

return null.

GUIPlanModule

Operator

The server adds the

Plan Item and pushes the

PlanItemAddedEvent. See

GUIPlanModule:PlanItemAddedEvent

sequence diagram.

Plan

CommandStatus

[success]

addItem

completed

[success]

[success]

create

[* for each supporter]

getPlanItemCreationMenuReps

[user clicks on

add specific plan item]

actionPerformed

[user right clicks

on plan]

getSSMenuItemReps

[creation supporter found

for action string]

createNewGUIPlanItem

[* for each menu string]

"storeSupporterMenuStringAssociation"

getPlanItemSupporters

create

addItem

createCommandStatus

getCommandStatusHandler

Figure 125. GUIPlanModule:CreatePlanItem

3.9.2.3 GUIPlanModule:Discovery

This diagram shows what happens during the discovery process, in which the module has a chance to find out about event channels and objects. The GUI will periodically call the module, first to discover event channels and then to discover objects. During the event channel discovery phase, the module looks for Plan event channels in the trader. If it finds any, it creates a PushEventConsumer and attaches itself to the Event Consumer Group. This will attach the module to the event channel and will reattach it automatically if the event service is restarted. If the module was previously attached to the event channel, it will be ignored. During the object discovery phase, the GUI calls the module to discover objects. The module will query the Plan objects in the trader. If the Plan does not already exist in the DataModel, a new GUIPlan wrapper object will be created and added to the DataModel. When the GUIPlan object is created, it asks the Plan for all of its PlanItems. For each item which is not already in the DataModel, it will call all of the attached PlanItemCreationSupporters and ask each one to attempt to create the specific type of GUIPlanItem wrapper object for the generic PlanItem object. Each PlanItemCreationSupporter will check whether the generic PlanItem object is of its own specific class of plan item. If so, the PlanItemCreationSupporter must create an object of its own specific class of GUIPlanItem object to wrap the PlanItem. If a wrapper object was created, it will be added to the DataModel. After a short delay, the changes made through the DataModel will update any windows that are attached to the DataModel.

[image: image125.emf]discover Event

ChannelsOfName

[error]

CorbaUtilException, Exception

[not found]

create

discoverObjects

findAllObjectsOfType

[GUIPlan created]

ObjectAdded

getName

getItems

* for each plan

GUI

GUIPlanModule CORBAUtilities

DataModel

Plan

GUIPlanItem

PlanItem

Creation

Supporter

PlanFactory

Identifier

GUIPlan

PlanItem

discoverEventChannels

[error]

TRANSIENT, NO_RESPONSE, OBJECT_NOT_EXIST, COMM_FAILURE, Exception

* for

 each

PlanItem

getPlans

getID

getObject

[error]

COMM_FAILURE, OBJECT_NOT_EXIST,

TRANSIENT, NO_RESPONSE, Exception

[correct type

of data]

create

createGUIPlanItem

* for each

support until

GUIPlanItem

created

getData

[error]

[error]

Corba excep.

* for each

factory

until

successful

create

Figure 126. GUIPlanModule:Discovery

3.9.2.4 GUIPlanModule:PlanAddedEvent

This diagram shows how the event is handled when a Plan is added. The GUIPlanModule makes sure that the GUIPlan does not already exist in the DataModel, and assuming it does not, it creates the GUIPlan wrapper object for the Plan. The GUIPlan object is then added to the DataModel and the GUIPlanNavGroup, and the DataModel will update all attached observers to show the change.

[image: image126.emf]GUIPlanItem

DataModel

CORBA

Event

Service

GUIPlanModule

GUIPlan

Plan GUI

IPlanItem

CreationSupporter

IPlanItem

push (PlanAdd)

* for each

supporter

until

GUIPlanItem

created

[error]

Corba except.

getData

create

getName

[error]

[correct

data

type]

create

GUIPlanItemCreated

getDataModel

objectAdded(GUIPlan)

getItems

* for

each

 planitem

objectAdded

getObject

[plan found]

Figure 127. GUIPlanModule:PlanAddedEvent

3.9.2.5 GUIPlanModule:PlanItemAddedEvent

This diagram shows the handling of the event after a new PlanItem has been created. First, the GUIPlan to which the new PlanItem belongs is retrieved from the DataModel. Then the module will ask each PlanItemCreationSupporter to attempt to create a specific GUIPlanItem wrapper object if the generic PlanItem is a correct type for the supporter. If a GUIPlanItem object was created by one of the creation supporters, it is added to the GUIPlan and to the DataModel. The GUIPlan is also updated through the DataModel to make sure that any windows will be updated.

[image: image127.emf][PlanItemData matches the

supporters' specific class]

create

getObject(planItemID)

[GUIPlanItem

already exists]

GUIPlanItem

GUIPlanModule

GUIPlan DataModel

GUI

The plan item

supporter will

create its own

specific type of

GUIPlanItem.

Corba

Event

Service

PlanItem

CreationSupporter

objectAdded(planItemId)

objectUpdated(planId)

addItemToCache

getPlanItemSupporters

[* for each plan item supporter

until a GUIPlanItem is returned]

createGUIPlanItem

[no plan item created]

getDataModel

[no plan item created]

getObject(planId)

[plan not found]

push

(plan id, planItemId, plan item

iemdata)

Figure 128. GUIPlanModule:PlanItemAddedEvent

3.9.2.6 GUIPlanModule:PlanItemRemovedEvent

This diagram shows how a PlanItemRemoved event is handled, after a plan item is deleted. The GUIPlanModule receives the PlanItem identifier and looks up the GUIPlanItem object in the DataModel. If found, the module gets the GUIPlan and asks it to remove the GUIPlanItem from its collection. The GUIPlan object is then updated through the DataModel, and the GUIPlanItem is removed from the DataModel. Any attached observers (e.g., windows) will be updated after a short delay. The GUIPlanItem will then be removed from memory by Java when the observers remove their references to it.

[image: image128.emf]CORBA

Event

Service

GUIPlanModule GUI DataModel GUIPlanItem GUIPlan

After a short delay,

the DataModel

will call all attached

observers. After

all observers remove

their references to

the GUIPlanItem, the

object will be deleted

from memory by

Java garbage collection.

getDataModel

objectUpdated(GUIPlan)

objectRemoved(GUIPlanItem)

removeItemFromCache

[GUIPlan

not found]

push(planID, planItemId)

getObject(planID)

Figure 129. GUIPlanModule:PlanItemRemovedEvent

3.9.2.7 GUIPlanModule:PlanRemovedEvent

This diagram shows how a PlanRemoved event is handled. First, an Identifier is created using the removed planID. Then the Identifier is used to send objectRemoved() to the DataModel to remove the plan object. The DataModel will cause any attached observers to display the change.

[image: image129.emf]GUIPlan

After a short

delay, the DataModel

will notify all observers.

After the observers

remove their references

to the GUIPlan, it will

be deleted at some time

by the Java garbage

collection.

CORBA

Event

Service

GUIPlanModule

DataModel

GUI

push(plan id)

getDataModel

objectRemoved(GUIPlan)

Figure 130. GUIPlanModule:PlanRemovedEvent

3.9.2.8 GUIPlanModule:RemovePlan

This diagram shows how a plan is removed from the system. The operator clicks on the Delete Plan menu item. A CommandStatus object is created to keep the user informed about the progress of the command. The GUIPlan then gets the access token and calls the Plan to remove itself. If successful, it will cause the server to push a PlanRemoved event to be pushed through the event channel. See the diagram GUIPlanModule:PlanRemovedEvent for details on how the GUIs are updated after the plan is removed.

[image: image130.emf][error]

completed

[success]

CommandStatus

Gets User

confirmation

Operator

This menu item will be

disabled if the user does

not have rights.

If successful, the server

removes all the plan items

within the plan and the

plan itself. The server

then pushes a PlanRemoved

event. Refer to the

GUIPlanModule:PlanRemovedEvent

for more details.

GUIPlan Plan GUI

The GUIPlan object is

actually deleted in

the data model, when

the Plan server sends

out a PlanRemoved event.

This process is shown

in the PlanRemovedEvent

sequence diagram.

The completion status

will be shown in the command

status window. In case of a failure,

an error message is also displayed

in the command status.

CommandStatus

Handler

getCommandStatusHandler

[success]

completed

createCommandStatus

create

showYesNoDialog

[user cancelled operation]

completed

[clicks on

delete plan

menu item]

actionPerformed

remove

[error]

AccessDenied or CHART2Exception

getToken

Figure 131. GUIPlanModule:RemovePlan

3.9.2.9 GUIPlanModule:RemovePlanItem

This diagram shows how a plan item is removed from a plan and deleted. The operator selects the plan item and invokes the item's context menu, then clicks on Delete Item. The GUIPlanItem calls the GUIPlan that it is contained in to remove the item. The GUIPlan then calls the Plan to remove the item. The served Plan object will then remove the item and push a PlanItemRemoved event through the event channel. See the diagram GUIPlanModule:PlanItemRemovedEvent for more details on this event.

[image: image131.emf]removeItem

error

getDatatModel

ObjectUpdated

success

getGUIPlan

removeItem

createCommandStatus

DataModel

The remove command completion

status will be shown in the command

status window. In case of a failure,

an error message is also displayed

in the command status.

CommandStatus

Handler

CommandStatus

Plan

If successful,

a PlanItemRemoved

event will be pushed

by the server.

See the diagram

GUIPlanModule:

PlanItemRemovedEvent

for more details on GUI

handling of this event.

This menu item

will be disabled if

the user does not

have rights.

PlanItem

GUIPlan

GUIPlanItem

Operator

GUI

getToken

[no rights]

AccessDenied

[user clicks on

Remove

menu item]

actionPerformed

getCommandStatusHandler

remove

[other error]

CHART2Exception

create

Figure 132. GUIPlanModule:RemovePlanItem

3.9.2.10 GUIPlanModule:Shutdown

When the GUI calls the module's shutdown method, the module deactivates from the POA to clean up.

[image: image132.emf]Log

GUI

GUIPlanModule

POA

shutdown

log

deactivate_object

Figure 133. GUIPlanModule:Shutdown

3.9.2.11 GUIPlanModule:Startup

The startup for the GUIPlanModule begins when the GUI calls the startup method. At this time the module activates itself with the POA so that it can be called as a PushConsumer. It also creates a Navigator group to hold the GUIPlan objects and adds the group to the DataModel. NOTE - Any modules wishing to support plan item creation should attach themselves to the GUIPlanModule in their startup methods.

[image: image133.emf]The module must call the filter

manager's addFilterSupporter

in the modules constructor.

POA

In the modules which

implement PlanItemCreationSupporter,

they should call the Plan Module's

addPlanItemSupporter from within

their startup methods.

GUI

GUIPlanModule

FilterManager

GUIPlanNavGroup

This gets the module's filter

subtree if it was previously

stored in the DB.

startup

[no filter returned]

create

[* for each filter returned or created]

activate

getOwnedFilter

getFilterManager

activate_object

Figure 134. GUIPlanModule:Startup

3.10 GUISHAZAMModule

3.10.1 Class Diagrams

3.10.1.1 SHAZAMModuleArchitecture

This diagram shows the relationships between the classes that compose the GUISHAZAMModule.

[image: image134.emf]Menuable

«interface»

NavListDisplayable

«interface»

NavClassFilter

java.awt.event.ActionListener

«interface»

SHAZAMPropertiesDialog

PhoneNumberListener

PortManagerSelectionControl

PhoneNumberControl

PollIntervalControl

NavFilterSupporter

«interface»

DefaultJFrame

SHAZAMNavGroup

CosEvent.

PushConsumer

«interface»

InstallableModule

«interface»

GUI

DataModel

GUISHAZAMModule

SHAZAM

«interface»

GUIHARMessageNotifier

«interface»

GUISHAZAM

1

*

1

1

1

1

1

1 1

1

1

*

1

1

1

1

1 *

1

*

1 1

SHAZAMPropertiesDialog(GUISHAZAM shazam)

showError(String, Color)

closeWindow

GUISHAZAM m_shazam

createSHAZAM()

push

startup(orb)

discoverEventChannels(trader, eventConsumerGroup)

discoverObjects(trader, dataModel)

loggedIn()

loggedOut()

shutdown(orb)

getMenuItemReps(accessToken, Menuable[]) : MenuItemRep[]

handleCommand(actionEvent, Menuable[]) : boolean

get():GUISHAZAMModule

getSHAZAMFactories(): SHAZAMFactory[]

createSHAZAMConfiguration():SHAZAMConfiguration

getName():String

setAssociatedHAR(HAR)

getAssociatedHAR() : GUIHAR

isHARNoticeActive() : boolean

getNotifier() : HARMessageNotifier

Identifier m_notifierID

HARMessageNotifier m_notifier

GUIHAR m_har

doProperties()

setConfiguration(SHAZAMConfiguration)

updateConfigurationCache(SHAZAMConfiguration)

updateStatusCache()

setBeaconsOn()

setBeaconsOff()

setSWCommFailed(boolean)

Figure 135. SHAZAMModuleArchitecture

3.10.1.1.1 java.awt.event.ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.10.1.1.2 DataModel

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

3.10.1.1.3 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.10.1.1.4 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.10.1.1.5 GUIHARMessageNotifier

This interface must be supported by any GUI object that represents a HARMessageNotifier object such as a SHAZAM or DMS object. Objects of this type will be presented to the user when he/she attempts to associate message notifiers with a HAR device.

3.10.1.1.6 GUISHAZAM

This class is a GUI wrapper object which is used to wrap a SHAZAM CORBA interface and to provide GUI-specific functionality.

3.10.1.1.7 GUISHAZAMModule

The GUISHAZAMModule is an installable module in the GUI, and provides all functionality specific to SHAZAM devices.

3.10.1.1.8 InstallableModule

This class is the basic interface which all installable modules must implement. It contains functionality that all modules must support to be installable modules. This includes functionality for startup, shutdown, login, logout, and the handling of system and user preferences.

3.10.1.1.9 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.10.1.1.10 NavClassFilter

This filter ignores all objects that are not assignable to a given class or interface. Thus, an interface or base class can be specified and all of the objects implementing the interface or extending the base class will be included.

3.10.1.1.11 NavFilterSupporter

This interface is used to allow type-specific filters to be created by external classes such as the installable modules. It is called to get the menu items for filter creation, as well as to create the filter when those menu items are clicked on.

3.10.1.1.12 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.10.1.1.13 PhoneNumberControl

This class provides a GUI component that allows a user to edit a phone number. The component will only accept phone numbers that conform to specified formats.

3.10.1.1.14 PhoneNumberListener

This interface can be implemented by any class that would like to watch a PhoneNumberControl and be notified when the user changes the phone number.

3.10.1.1.15 PollIntervalControl

This class represents a GUI component that allows the user to enable/disable the polling for a device. The user is also able to specify the interval (in minutes) between polls.

3.10.1.1.16 PortManagerSelectionControl

This class represents a GUI component that allows the user to select the port manager(s) that will be used to contact a device.

3.10.1.1.17 CosEvent. PushConsumer

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.10.1.1.18 SHAZAM

This interface class is used to identify the SHAZAM-specific methods which can be used to interface with a SHAZAM field device. This interface is implemented by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command and control.

3.10.1.1.19 SHAZAMNavGroup

This class has one instance in the GUISHAZAMModule. It serves as a container for all of the GUISHAZAM objects in the module when they are displayed in the Navigator.

3.10.1.1.20 SHAZAMPropertiesDialog

This dialog is used for viewing and editing the properties (configuration) of a SHAZAM.

3.10.2 Sequence Diagrams

3.10.2.1 GUISHAZAMModule:AddSHAZAM

This diagram shows how a SHAZAM is added to the system. The user right clicks on the SHAZAM NavGroup object in the Navigator and clicks "Add SHAZAM". The SHAZAMNavGroup then creates a temporary GUISHAZAM wrapper object and calls it to display its properties, which invokes the SHAZAM Properties dialog. When the user clicks OK, the dialog calls the GUISHAZAM to set the configuration. If the GUISHAZAM wrapper object does not contain a server SHAZAM object, it calls the SHAZAMFactory to create one. If a new SHAZAM is successfully created, the server will push out an event and the GUI will create a new GUISHAZAM object to wrap it. The temporary GUISHAZAM object will be deleted.

[image: image135.emf]DataModel

SHAZAMConfiguration

This menu option

will be disabled if the

user does not have the

appropriate rights.

If successful,

a SHAZAMAdded

event will be pushed

 by the server.

This temporary GUISHAZAM object

will be deleted. When the

SHAZAMAdded event is received from

the server (or when the HAR is

discovered during the next

discovery cycle), the "real" GUISHAZAM

object will be added to the GUI's

DataModel.

GUI

CommandStatusHandler

CommandStatus

Administrator

SHAZAMNavGroup

SHAZAMFactory

GUISHAZAM

SHAZAMPropertiesDialog

GUISHAZAMModule

The server will update the

commandStatus object to

show the progress or failure

of the command.

["Add SHAZAM"

menu item clicked]

actionPerformed

create

create

actionPerformed

setConfiguration

createSHAZAMConfiguration

createSHAZAM

[error]

"Display Error"

closeWindow

[cancel]

[no rights]

AccessDenied

[other error]

CHART2Exception

[error]

GUIException

getCommandStatusHandler

doProperties

[cancel]

closeWindow

getToken

get

show

(* for each factory until

created or access denied)

[success]

[no facrory found]

getObjectsOfType(GUIHAR)

getSHAZAMFactories

No factory found

"Display Error"

createCommandStatus

Figure 136. GUISHAZAMModule:AddSHAZAM

3.10.2.2 GUISHAZAMModule:Discovery

This diagram shows the event channel and object discovery processing performed by the GUISHAZAMModule, which is done after startup and periodically thereafter. The module first queries the system trader looking for event channels that carry SHAZAM related events. A PushEventConsumer object is created for each channel found and this consumer object is added to the EventConsumerGroup. The SHAZAM module then gets the SHAZAMFactory objects from the trader and gets all of the SHAZAM objects served by each factory. For each returned SHAZAM object, the GUI checks the DataModel to see if it is an object which has previously been discovered. If it is, then no further processing is performed. If it is not, then the SHAZAM CORBA object is queried to get the current information for the SHAZAM.

[image: image136.emf]GUISHAZAMModule CORBAUtilities GUI

SHAZAMFactory

DataModel

GUISHAZAM

SHAZAM

GUI

Discovery

Thread

discoverEventChannelsOfName

[not found in DataModel]

getStatus()

[not found in DataModel]

getConfiguration

[* for each

SHAZAM]

[not found in DataModel]

objectAdded

getID

getResources

findAllObjectsOfType

[not found in DataModel]

create

discoverEventChannels

discoverObjects

[* for each

SHAZAMFactory]

getObject

Figure 137. GUISHAZAMModule:Discovery

3.10.2.3 GUISHAZAMModule:EditConfiguration

This diagram shows the details of how the SHAZAMPropertiesDialog allows the user to modify the configuration of a SHAZAM. When the dialog is invoked, it gets the configuration for the GUISHAZAM that was clicked on. It then creates controls that allow the user to edit the configuration properties. Each time the user presses a key while the focus is on the PhoneNumberControl the control will check if the phone number is valid. If it is, the phone number control will notify the properties dialog that the user has changed the number. This results in the properties dialog setting the default phone number for the PortManagerSelectionControl. This will be the phone number assigned to any newly selected port managers in the control. If the user presses the cancel button, the dialog will cleanup any application level resources it is using to avoid memory leaks. It will then return control to the user. If the user presses the OK button, the dialog will check each of the controls to validate the user inputs. If any inputs are invalid, an error message will be displayed for the user. If all inputs are valid, the data from each of the controls will be collected and a new SHAZAMConfiguration object will be created and populated. The GUISHAZAM setConfiguration method will then be called to make this configuration active. If the GUISHAZAM setConfiguration method throws an exception, then an error message will be shown to the user. Otherwise, the dialog will cleanup any resources it is using and will close itself. Control is then returned to the user.

[image: image137.emf]SHAZAMConfiguration

At this point

the dialog is

displayed to the

user.

GUISHAZAM

Administrator

PollIntervalControl

PortManagerSelectionControl

PhoneNumberControl

SHAZAMPropertiesDialog

[cancel]

closeWindow

actionPerformed

[cancel]

setDefaultPhoneNumber

[valid number]

phoneNumberChanged

validateInputs

keyReleased

show

getConfiguration

create

actionPerformed

create

create

create

closeWindow

cleanupResources

cleanupResources

cleanupResources

[Exception]

showError

[invalid input]

showError

setConfiguration

[all inputs valid]

create

getPollEnabled

getPollIntervalMinutes

getPortLocationData

getPhoneNumber

validateInputs

validateInputs

validateInputs

actionPerformed

[OK]

[cancel]

cleanupResources

cleanupResources

cleanupResources

Figure 138. GUISHAZAMModule:EditConfiguration

3.10.2.4 GUISHAZAMModule:HandleSHAZAMAddedEvent

This diagram shows how the GUISHAZAMModule handles a SHAZAMAdded CORBA event. When the event is caught, the module checks the DataModel to see if this is a SHAZAM that is already known. If it is, no further action is taken. If it is not, then a GUISHAZAM wrapper object is created for this object and it is added to the DataModel.

[image: image138.emf]CORBA Event

Service

SHAZAM GUISHAZAMModule

Identifier

GUI DataModel

GUISHAZAM

getStatus

push(SHAZAMAdded)

create

getDataModel

getObject

[GUISHAZAM not exist]

create

getConfiguration

objectAdded

Figure 139. GUISHAZAMModule:HandleSHAZAMAddedEvent

3.10.2.5 GUISHAZAMModule:HandleSHAZAMConfigurationChangedEvent

This diagram shows the GUISHAZAMModule updating the GUISHAZAM configuration when it receives the SHAZAMConfigurationChanged Event from the server. The new configuration data is stored in the GUISHAZAM object and the DataModel is notified that the object has been updated. Other GUI objects that are interested in changes to the configuration of the GUISHAZAM will be observing the DataModel and will be notified after the objectUpdated call completes.

[image: image139.emf]At this point, all

DataModel observers

will be notified of the

change and will modify

their displays appropriately.

GUISHAZAM DataModel

CORBA Event

Service

GUISHAZAMModule

objectUpdated

push(SHAZAMConfiguration

ChangedEvent)

updateConfigurationCache

Figure 140. GUISHAZAMModule:HandleSHAZAMConfigurationChangedEvent

3.10.2.6 GUISHAZAMModule:HandleSHAZAMRemovedEvent

This diagram shows how a GUISHAZAM object is removed when the server pushes the SHAZAMRemovedEvent. The GUISHAZAMModule receives the event, gets the Identifier for the SHAZAM and looks it up in the DataModel. If the object is found, it is removed from the system by calling the objectRemoved() method of the DataModel. This call will notify all ModelObservers of the removal of the GUISHAZAM.

[image: image140.emf]Identifier

After this call completes, all

DataModel observers will be aware

that this GUISHAZAM object has been

removed from the system.

GUISHAZAMModule GUI DataModel

The GUISHAZAM object

will be garbage collected when

the observers remove their

erferences.

CORBA Event Service

create

[object found]

objectRemoved

push

getDataModel

getObject

Figure 141. GUISHAZAMModule:HandleSHAZAMRemovedEvent

3.10.2.7 GUISHAZAMModule:Login

This diagram shows what happens during login. The GUI calls each InstallableModule's loggedIn() method, but the GUISHAZAMModule does not do any work at login.

[image: image141.emf]Currently this module does not

perform any processing at login

GUISHAZAMModule GUI

loggedIn

login

Figure 142. GUISHAZAMModule:Login

3.10.2.8 GUISHAZAMModule:Logout

This diagram shows what happens when the user logs out. The GUI calls all of the InstallableModule objects' loggedOut() methods, but the GUISHAZAMModule currently does nothing during logout.

[image: image142.emf]This module currently does

not perform any opertions during

Logout.

GUISHAZAMModule GUI

User

LoggedOut

Logout

Figure 143. GUISHAZAMModule:Logout

3.10.2.9 GUISHAZAMModule:ModifySHAZAMSettings

This diagram shows how the SHAZAM settings are modified. The user right clicks on the GUISHAZAM object in the Navigator and clicks on the "Properties" menu item. The GUISHAZAM object then creates a SHAZAMPropertiesDialog, which calls back to the GUISHAZAM to get the configuration to initialize itself with. After the administrator is done editing the configuration, clicking on the "OK" button will cause the dialog to call the GUISHAZAM object's setConfiguration() method. The GUISHAZAM will create a CommandStatus object and will call the SHAZAM which it wraps to set the configuration. If successful, the server will push a CORBA event indicating that the configuration has changed.

[image: image143.emf]See EditConfiguration

diagram for details of the

operations of the properties

dialog.

GUI CommandStatusHandler

GUISHAZAM

SHAZAMPropertiesDialog

The menu item will be

grayed out if the user

does not have rights or

if the SHAZAM is in

maintenance mode.

Administrator

SHAZAM

If successful, a

SHAZAMConfigurationChanged

event will be pushed by

the server and caught

by the GUI for display to all users.

DataModel

SHAZAMConfiguration

The server will update

the CommandStatus

object to show the

progress or failure of

the command.

CommandStatus

create

getObjectsOfType(HAR)

getCommandStatusHandler

[clicks on "SHAZAM Properties"

menu item]

actionPerformed

setConfiguration

create

show

[OK clicked]

actionPerformed

setConfiguration

get

getToken

createCommandStatus

closeWIndow

[not in maintenance mode]

CHART2Exception

AccessDenied

[error]

GUIException

create

[error]

showError

getConfiguration

Figure 144. GUISHAZAMModule:ModifySHAZAMSettings

3.10.2.10 GUISHAZAMModule:PutSHAZAMInMaintenanceMode

This diagram shows how a SHAZAM is put into maintenance mode. The Administrator right clicks on a GUISHAZAM object in the Navigator and clicks on the "Put In Maintenance Mode" menu item. The GUISHAZAM creates a CommandStatus object to monitor the progress of the command and calls the SHAZAM object (which it wraps) to put it in maintenance mode. If successful, the server will push a CORBA event indicating that the mode has been changed.

[image: image144.emf]CommandStatus

CommandStatusHandler

GUI

This menu item will be

disabled if the user does not

have rights or if the device is

already in maintenance mode.

SHAZAM

GUISHAZAM

Administrator

If successful, this will push a

SHAZAMStatusChanged

event. If the SHAZAM was

in use, it may also push a

ControllingOpCtrChanged event.

The GUI will catch these events

and will update the GUI wrapper

object as needed.

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

getCommandStatusHandler

getToken

get

[clicks on "Put In Maintenance

 Mode" menu item]

actionPerformed

putInMaintenanceMode

create

createCommandStatus

[SHAZAM controlled by

different op ctr and

no override rights]

ResourceControlConflict

[no rights]

AccessDenied

[in maintenance mode]

CHART2Exception

Figure 145. GUISHAZAMModule:PutSHAZAMInMaintenanceMode

3.10.2.11 GUISHAZAMModule:PutSHAZAMOnline

This diagram shows how a SHAZAM is put online. The Administrator right clicks on a GUISHAZAM object in the Navigator and clicks on the "Put Online" menu item. The GUISHAZAM creates a CommandStatus object to monitor the progress of the command and calls the SHAZAM object (which it wraps) to put it online. If successful, the server will push a CORBA event indicating that the mode has been changed.

[image: image145.emf]CommandStatus

CommandStatusHandler

GUI

This menu item will be

disabled if the user does not

have rights or if the device is

already online.

SHAZAM

GUISHAZAM

Administrator

If successful,

the server will push a

SHAZAMStatusChanged event.

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

putOnline

create

createCommandStatus

getCommandStatusHandler

getToken

get

[clicks on "Put Online" menu item]

actionPerformed

[online]

CHART2Exception

[SHAZAM controlled by

different op ctr and

no override rights]

ResourceControlConflict

[no rights]

AccessDenied

Figure 146. GUISHAZAMModule:PutSHAZAMOnline

3.10.2.12 GUISHAZAMModule:RemoveSHAZAM

This diagram shows how a SHAZAM is removed from the system. The Administrator right clicks on a GUISHAZAM object in the Navigator and clicks on the "Remove SHAZAM" menu item. The GUISHAZAM creates a CommandStatus object to monitor the progress of the command and calls the remove() method of the SHAZAM object (which it wraps). If successful, the server will push a CORBA event indicating that the SHAZAM was removed.

[image: image146.emf]This call must be made from

the finally clause of the try...catch

block.

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

CommandStatusHandler

CommandStatus

Administrator

GUISHAZAM

SHAZAM

This menu item will

be disabled if the user

does not have the

correct rights.

If successful,

this will push a

SHAZAMRemoved event,

which will be caught by

the GUI and the

GUISHAZAM will be removed

from the DataModel as well

as removed from any

associations with a HAR.

GUI

The device must be offline to be

removed.

showDefaultCursor

[unexpected exception]

completed(false, "Unable to contact server")

[unexpected exception]

setSWCommFailed(true)

[success or defined exception]

setSWCommFailed(false)

showWaitCursor

[not in offline]

Chart2Exception

[clicks on the

"Remove" menu item]

actionPerformed

remove

getToken

get

getCommandStatusHandler

createCommandStatus

create

[no rights]

accessDenied

[another op center is controlling

and no override rights]

ResourceControlConflict

Figure 147. GUISHAZAMModule:RemoveSHAZAM

3.10.2.13 GUISHAZAMModule:setBeaconsOff

This diagram shows how the system allows a suitable privileged user to disable the beacons for a SHAZAM device. The user clicks on the SHAZAM they would like to control and selects the "Disable Beacons" menu item. The GUI then creates a command status object to track the progress of the command and calls the SHAZAM object in the server to disable the beacons.

[image: image147.emf]CommandStatus

CommandStatusHandler GUI

This menu item will be

disabled if the user does not

have rights, or if the device is not

in maintenance mode.

SHAZAM

GUISHAZAM

Administrator

If successful,

this will push a

SHAZAMStatusChanged event.

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

get

[clicks on "Disable Beacons" menu item]

actionPerformed

setBeaconsOff

[no rights]

AccessDenied

[not in maint mode]

CHART2Exception

create

[SHAZAM controlled by

different op ctr and

no override rights]

ResourceControlConflict

createCommandStatus

getCommandStatusHandler

getToken

Figure 148. GUISHAZAMModule:setBeaconsOff

3.10.2.14 GUISHAZAMModule:setBeaconsOn

This diagram shows how the system allows a suitable privileged user to enable the beacons for a SHAZAM device. The user clicks on the SHAZAM they would like to control and selects the "Enable Beacons" menu item. The GUI then creates a command status object to track the progress of the command and calls the SHAZAM object in the server to enable the beacons.

[image: image148.emf]CommandStatusHandler GUI

This menu item will be

disabled if the user does not

have rights, or if the device is not

in maintenance mode.

SHAZAM

GUISHAZAM

Administrator

If successful,

this will push a

SHAZAMStatusChanged event.

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

[clicks on "Enable Beacons" menu item]

actionPerformed

createCommandStatus

getCommandStatusHandler

getToken

get

setBeaconsOn

[no rights]

AccessDenied

[not in maint mode]

CHART2Exception

create

[SHAZAM controlled by

different op ctr and

no override rights]

ResourceControlConflict

CommandStatus

Figure 149. GUISHAZAMModule:setBeaconsOn

3.10.2.15 GUISHAZAMModule:Shutdown

This diagram shows what happens when the GUI shuts down. The GUI calls all of the InstallableModule objects' shutdown() methods, and the GUISHAZAMModule uses this method to disconnect itself from the ORB.

[image: image149.emf]POA GUISHAZAMModule GUI

deactivateobject

(this)

shutdown

shutdown

"Exit"

Figure 150. GUISHAZAMModule:Shutdown

3.10.2.16 GUISHAZAMModule:Startup

The startup for the GUISHAZAMModule begins when the GUI calls the startup method. At this time the module activates itself with the POA so that it can be called as a PushConsumer. It also needs to verify that there is a filter (group) available in the navigator to display the GUISHAZAM objects. It does this by calling the filter manager to get all filters that it has previously created. If the filter has been previously created it activates the returned filter. If not, it creates a new filter and activates it.

[image: image150.emf]GUISHAZAMModule

FilterManager

POA

These calls will throw

a ClassNotFound exception

if the GUIPlanModule or the

GUITrafficEventModule or the

GUILibraryModule are

not installed. In this case, exception

will be caught and the module will

not provide plan or traffic event or

library functionality.

SHAZAMNavGroup

GUI

Connect to the ORB to

be able to receive CORBA

events pushed through the

event channel.

[* for each filter found or created]

activate

getOwnedFilters (SHAZAM)

get

[filters not found]

create

startup

activate_object

Figure 151. GUISHAZAMModule:Startup

3.10.2.17 GUISHAZAMModule:takeSHAZAMOffline

This diagram shows how a SHAZAM is taken offline. The Administrator right clicks on a GUISHAZAM object in the Navigator and clicks on the "Take Offline" menu item. The GUISHAZAM creates a CommandStatus object to monitor the progress of the command and calls the SHAZAM object (which it wraps) to take it offline. If successful, the server will push a CORBA event indicating that the mode has been changed.

[image: image151.emf]The software will consider the object software comm failed

if and only if the server object cannot be contacted. Therefore,

success or any of the IDL defined exceptions should result in

a call to setSWCommFailed(false) and any other type of exception

should result in a call to setSWCommFailed(true).

This calls should be made in

the finally clause of the

try...catch block.

CommandStatus

CommandStatusHandler

GUI

This menu item will be

disabled if the user does not

have rights or if the device is

already offline.

SHAZAM

GUISHAZAM

Administrator

If successful,

this will push a

SHAZAMStatusChanged event.

The server will update

the CommandStatus

object to show the

progress or failure of the

command.

createCommandStatus

getCommandStatusHandler

getToken

get

[clicks on "Take Offline" menu item]

actionPerformed

[unexpected exception]

completed

[unexpected exception]

setSWCommFailed(true)

[success || defined exception]

setSWCommFailed(false)

showDefaultCursor

showWaitCursor

takeOffline

[no rights]

AccessDenied

[offline]

CHART2Exception

create

[SHAZAM controlled by

different op ctr and

no override rights]

ResourceControlConflict

Figure 152. GUISHAZAMModule:takeSHAZAMOffline

3.11
GUIUtility

3.11.1 Class Diagrams

3.11.1.1 ArbitrationQueueClasses

This diagram shows the GUI classes used for viewing and prioritizing an Arbitration Queue.

[image: image152.emf]ArbitrationQueueTableModel

DefaultJFrame

ArbitrationQueue

«interface»

ArbitrationQueueProperties

ArbQueueEntry

java.awt.event.ActionListener

«interface»

1

1

1

*

1 1

* 1

addEntry(ArbQueueEntry):void

removeEntry(ArbQEntry):void

Vector m_entries

addEntry(AccessToken, ArbQueueEntry):void

removeEntry(AccessToken, byte[] trafficEventID):void

changePriority(AccessToken token,

 ArbQueueEntry entry, double priority):void

getEntries():ArbQueueEntry[]

getEntriesStatus():ArbQueueEntryStatusList

ArbitrationQueueProperties(ArbitrationQueue)

update():void

getTrafficEvent():TrafficEvent

getTrafficEventType():int

getTrafficEventID():byte[]

setActive(AccessToken token, string deviceName):void

setInactive(AcessToken token,

 string deviceName,

 string reason):void

setFailed(AccessToken token,

 string deviceName,

 string errorMsg):void

setUpdated(AccessToken token, string deviceName):void

getMessage():Message

getPriority():double

setPriority(AccessToken token, double newpriority):void

getOpCenterName():string

matches(ArbQueueEntry entry):boolean

ArbQueueEntryIndicator m_indicator

int m_trafficEventType

Message m_message

double m_priority

string m_opCenter

Figure 1053. ArbitrationQueueClasses

3.11.1.1.1 java.awt.event.ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.11.1.1.2 ArbitrationQueue

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.11.1.1.3 ArbitrationQueueProperties

This dialog is the user interface for viewing and reprioritizing an arbitration queue.

3.11.1.1.4 ArbitrationQueueTableModel

This class provides the data framework needed to populate and update the JTable that displays the arbitration queue entries.

3.11.1.1.5 ArbQueueEntry

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.11.1.1.6 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.11.1.2 DevicePropertiesDialogClasses

This diagram contains classes that are commonly used in the configuration dialogs of devices.

[image: image153.emf]PortManagerSelectionControl

PhoneNumberListener

PhoneNumberControl

PollIntervalControl

CommPortConfig

«typedef»

CommPortConfigControl

1

1

edits settings of

1 1

getPortLocationData(): PortLocationData

validateInputs(): void

phoneNumberChanged(PhoneNumberControl, String)

phoneNumberControl(String, int[])

getPhoneNumber(): String

addPhoneListener(PhoneNumberListener):void

PollIntervalControl(int, boolean)

getPollIntervalMinutes(): int

getPollEnabled(): boolean

long m_baudRate

DataBits m_dataBits

StopBits m_stopBits

Parity m_parity

FlowControl m_flowControl

CommPortConfigControl(CommPortConfig)

validateInputs(): void

getConfig():CommPortConfig

Figure 154. DevicePropertiesDialogClasses

3.11.1.2.1 CommPortConfig

This structure is used to pass comm port configuration values during a connection request.

3.11.1.2.2 CommPortConfigControl

This class represents a GUI component that allows the user to specify the parameters of a communications port.

3.11.1.2.3 PhoneNumberControl

This class provides a GUI component that allows a user to edit a phone number. The component will only accept phone numbers that conform to specified formats.

3.11.1.2.4 PhoneNumberListener

This interface can be implemented by any class that would like to watch a PhoneNumberControl and be notified when the user changes the phone number.

3.11.1.2.5 PollIntervalControl

This class represents a GUI component that allows the user to enable/disable the polling for a device. The user is also able to specify the interval (in minutes) between polls.

3.11.1.2.6 PortManagerSelectionControl

This class represents a GUI component that allows the user to select the port manager(s) that will be used to contact a device.

3.11.1.3 FilterClasses

This diagram shows the classes that are used to implement Navigator filters in the GUI. A navigator filter is a node of the Navigator tree that is used to display a specified subset of the objects in the system. Filters are configurable through the System and User profiles.

[image: image154.emf]Only those NavListDisplayable

children which are not NavTreeFilters

or NavTreeFilteredObjectInstances are

stored here, the others are stored

 elsewhere.

NavListDisplayable

«interface»

This is the default

filter properties dialog unless

NavTreeFilter.doProperties()

is overridden.

FilterNavTreeDisplayable

«interface»

GUIModelObserver

«interface»

NavTreeFilter

NavPropertySearchFilter

NavClassFilter

NavFolderFilter

NavTreeDisplayable

«interface»

DefaultJFrame

NavFilterProperties

DisplayedDialog

NavProperty

SearchFilter

Dialog

NavTreeFilter

PropertiesDialog

FilterManager

Droppable

«interface»

Menuable

«interface»

NavTreeFiltered

ObjectInstance

NavFilterSupporter

«interface»

GUI

1

*

has children

1 1

1

1

has parent

1

*

has children

1

0..1

has parent

1

*

has children

1

1

1 *

allowSetDesc() : boolean

containsChildNavigable(Navigable) : boolean

getChildNavListDisplayables() : NavListDisplayable[]

getDesc() : String

getNavPropertyList() : NavigatorProperty[]

setDesc(String) : void

NavTreeFilter(ownerID, filterID, filterName,

 parentFilter, isSystemFilter)

activate()

activateInMemory()

filterObjects(Object[]):Object[]

addChildFilter(NavTreeFilter) : void

cleanupResources() : void

doProperties() : void

getChildFilters() : NavTreeFilter[]

getFilterID() : String

getName() : String

getOwnerID() : String

getParent() : NavTreeFilter

getParentID() : String

getProfileKeysBelongingToFilter() : String[]

getProfilePrefix() : String

hasBeenActivated() : boolean

initFromProperties(filterID, profilePrefix, properties)

isSystemFilter() : boolean

remove() : void

removeFromMemory() : void

saveChanges() : void

saveToProperties(Properties) : void

setDisplayedNavProperties(String[]) : void

setName(String) : void

setParent(NavTreeFilter) : void

setUsesSubsetOfParentFlag(boolean) : void

usesSubsetOfParent() : boolean

m_filterID : String

m_filterOwnerID : String

m_parentFilterID : String

m_filterName : String

m_displayedPropertyNames : String[]

m_isSystemFilter

m_useSubsetOfParent

getSearchProperty() : String

getSearchText() : String

isCaseSensitive() : boolean

setSearchProperty(String) : void

setSearchText(String) : void

m_caseSensitive : boolean

m_searchProperty : String

m_searchText : String

m_classesToKeep : Class[]

addFilter(NavTreeFilter) : void

addFilters(NavTreeFilter[]) : void

addFilterIDsToProfile(String[], GUIProfile) : void

addFilterSupporter(NavFilterSupporter) : void

addFilterToMemory(NavTreeFilter) : void

-buildFilterHierarchy(NavTreeFilter[]) : void

-cleanupProfile(GUIProfile) : void

cleanupSystemFilters() : void

cleanupUserFilters() : void

getMenuItemReps(byte[] token, Menuable[]) : MenuItemRep[]

getOwnedFilters(NavTreeFilter subtreeRoot, String ownerID) : NavTreeFilter[]

getOwnedFilters(String filterOwnerID, String subtreeRootFilterID) : NavTreeFilter[]

getRootFilter() : NavTreeFilter

handleCommand(ActionEvent, Menuable[] selected) : boolean

initializeSystemFilters() : void

initializeUserFilters() : void

-loadFilterFromProperties(Properties, filterID) : NavTreeFilter

-loadFilters(GUIProfile) : NavTreeFilter[]

removeFilter(NavTreeFilter) : void

removeFilterFromMemory(NavTreeFilter) : void

-removeFilterHierarchy(NavTreeFilter root, Properties inputProperties,

 Vector filterIDsToRemoveFromSystemProperties,

 Vector filterIDsToRemoveFromUserProperties) : String[]

-removeFilterIDsFromProfile(String[] filterIDs, GUIProfile) : void

cleanupResources() : void

getWrappedObject() : FilterNavTreeDisplayable

getFilterCreationMenuItems(accessToken, NavTreeFilter parent) : MenuItemRep[]

createNavFilter(accessToken, menuItemString, NavTreeFilter parent) : boolean

canInstantiateFilterOfClass(String) : boolean

Figure 155. FilterClasses

3.11.1.3.1 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.11.1.3.2 Droppable

This interface must be implemented by any object wishing to take part in a drag and drop operation. It is used by the DropHandler class to determine if a drop action should be allowed and to delegate the handling of the drop action after it is performed.

3.11.1.3.3 FilterManager

This class provides functionality for managing the filters in the system. As it deals with the singleton GUI and the DataModel objects, it too is a singleton object. The GUI will create and control the FilterManager. Filter supporters can be added to the FilterManager to support the creation of supporter-specific filter types.

3.11.1.3.4 FilterNavTreeDisplayable

This interface must be implemented by any class that is not a NavTreeFilter that wishes to appear in the Navigator tree. Note that the FilterNavTreeDisplayable object can never be more than a leaf in the tree; that is, no NavTreeFilters or other FilterNavTreeDisplayables may appear under it. However, FilterNavTreeDisplayable objects may appear in more than one branch of the tree. If an application object wishes to not be a leaf of the tree, it must extend NavTreeFilter (or one of its derived classes) instead of implementing this interface.

3.11.1.3.5 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.11.1.3.6 GUIModelObserver

Interface to be implemented by GUI components that would like to observe changes to the data model. Observers of this type will be notified of changes on the GUI event dispatch thread.

3.11.1.3.7 Menuable

This interface allows an object to provide menu item strings and receive commands when the corresponding menu items are clicked on. It supports both single selection and multiple selection of Menuable objects. The getSSMenuItems() method should return the menu items to display if the object is singly selected. The getMSMenuItems() method should return the menu items that the Menuable object wishes to display if other Menuable objects are selected. The access token is passed to these methods to allow the Menuable object to check the user's access rights before supplying the strings, so the user's actions may be restricted.

3.11.1.3.8 NavClassFilter

This filter ignores all objects that are not assignable to a given class or interface. Thus, an interface or base class can be specified and all of the objects implementing the interface or extending the base class will be included.

3.11.1.3.9 NavFilterProperties DisplayedDialog

This dialog allows the user to select which properties (columns) are displayed in the Navigator list when the filter is selected in the Navigator tree.

3.11.1.3.10 NavFilterSupporter

This interface is used to allow type-specific filters to be created by external classes such as the installable modules. It is called to get the menu items for filter creation, as well as to create the filter when those menu items are clicked on.

3.11.1.3.11 NavFolderFilter

This filter does not actually filter any objects. Its purpose is to allow the user to group other filters under it in the Navigator tree to allow them to organize child filters into groups.

3.11.1.3.12 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.11.1.3.13 NavProperty SearchFilter Dialog

This dialog allows the user to edit the properties of a NavPropertySearchFilter, which searches for objects having the specified text in the specified Navigator column.

3.11.1.3.14 NavPropertySearchFilter

This filter will show any objects whose text value listed in the specified navigator column contains the specified text.

3.11.1.3.15 NavTreeDisplayable

This interface must be implemented by any objects which are to be added to the left side of the Navigator (the tree view). This contains all of the functionality to support the tree data structure and also provides the property list (column headers) which will be displayed in the list view when the NavTreeDisplayable is selected.

3.11.1.3.16 NavTreeFilter

This class serves as a node in the Navigator tree and filters objects to be displayed in the Navigator. It is an observer to the DataModel so that it can create the NavTreeFilteredObjectInstance objects for any FilterNavTreeDisplayables that it contains. (Multiple instances can appear to represent one FilterNavTreeDisplayable object). Filters can be cascaded to achieve a cumulative filtering effect if the "Subset of parent" flag is used; that is, a filter appearing under a parent filter will call the parent filter first to filter the objects, and then it will apply its own filtering method. The cascading of filters is therefore an "AND" operation. A filter can either be a system filter or a user-specific filter. System filters can only be modified by someone with the correct administrative rights, and they can only be added as a child of other system filters.

3.11.1.3.17 NavTreeFilter PropertiesDialog

This dialog allows the user to edit the properties of a basic NavTreeFilter. It is by default the properties dialog that is displayed if the user clicks on Properties, unless the doProperties() method of NavTreeFilter is overridden by the derived class to show a more specific properties dialog.

3.11.1.3.18 NavTreeFiltered ObjectInstance

This class represents an instance of an object which is displayed under a filter. The object being represented is a FilterNavTreeDisplayable object which passes through the parent filter. There can be more than one instance of the wrapped object appearing in the Navigator tree at a given time, under different branches. This object will delegate all GUI functionality to the object which it represents. The filter will watch the DataModel to determine when objects are eligible to be displayed under the filter, at which time it will create a NavTreeFilteredObjectInstance and add it to the DataModel. The NavigatorDriver will then add the instance to the Navigator tree.

3.11.1.4 ProfilePropertiesClasses

This class diagram shows the classes involved in the user interface for editing the system or user profile.

[image: image155.emf]ProfileEditorSupporter

«interface»

GUI

javax.swing.JComponent

ProfileEditor

DefaultJFrame

GUIProfile

1 *

1

*

creates

1

*

1 *

1 *

1 1

1 *

getProfileTabs(isSystemProfile) : TabbedPageInfo[]

updateProfileTabFromProperties(TabbedPageInfo, Properties) : void

saveProfileTabToProperties(TabbedPageInfo, Properties) : void

cleanupProfileTabResources(TabbedPageInfo) : void

Figure 156. ProfilePropertiesClasses

3.11.1.4.1 DefaultJFrame

This class provides a default implementation of the WindowManageable interface, and may be used as a base class for other frame windows in the GUI. It handles all interactions with the WindowManager for attaching and detaching, as well as saving the window position.

3.11.1.4.2 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.11.1.4.3 GUIProfile

The GUIProfile represents configuration parameters for either the System or for a user. The configuration data consists of pairs of Strings representing the key and value for each property in the profile. The data for a profile is stored by the UserManager in the database.

3.11.1.4.4 ProfileEditor

The ProfileEditor is a dialog that provides a user interface for editing the properties stored in a system or user profile.

3.11.1.4.5 ProfileEditorSupporter

The ProfileEditorSupporter is an interface which supplies tab components to be displayed in the ProfileEditorDialog. This allows the ProfileEditor to be generic, while allowing the modules to have their own specific tabs. It supports loading the displayed input data from the profile's Properties and saving it to the profile's properties.

3.11.2 Sequence Diagrams

3.11.2.1 GUIUtility:ActivateFilter

This diagram shows what happens when a filter is activated. If the filter is new, it is added to the FilterManager's internal tree hierarchy in memory and its properties are persisted to the system or user profile in the database. Then, if the filter is not already in the DataModel, it will be attached to the DataModel as an observer to pick up any changes in the filter hierarchy or the filtered objects, then it is added to the DataModel so that it will appear in the Navigator.

[image: image156.emf]create

[parent null]

setParent(root filter)

[user filter]

getUserProfile

isSystemFilter

buildFilterHierarchy

[system filter]

getSystemProfile

getClassName

[not found]

objectAdded

[not found]

attachObserver

addFilterIDsToProfile

saveToProperties

get

get

getDataModel

return from addFilter

getObject

[filter already in

FilterManager's lookup table]

activate

GUI

java.util.Properties

DataModel

Stores the class name

so we know what type

of filter object to instantiate

when depersisting.

Stores the filter's

properties in the

database.

Add the filter to the

DataModel so that it will

show up in the Navigator.

If the filter is not already in the

DataModel, attach to the

DataModel so that the filter is

informed of changes in its

parents or children so that

it can re-filter the objects if they

change, or delete itself if the

parent is deleted.

FilterManager

This will add the filter to the filter

lookup table in memory and set up

the parent / child relationships. See

the BuildFilterHierarchy sequence

diagram for details.

GUIProfile

Store the filter ID so that

the filter can be instantiated

from the database. See

the StoreFilterIDs sequence

diagram for details.

NavTreeFilter

System

getParent

addFilter

setProperty("NavFilter.<filterID>.ClassName", className)

[* for each property]

setProperty(key,value)

setProfileProperties

Figure 157. GUIUtility:ActivateFilter

3.11.2.2 GUIUtility:AddFilter

This diagram shows how filters are added to the system. To add a filter, the user must click on an existing filter. The FilterManager will then call all of the filter supporters to get the filter creation menu items. If the filter being clicked on is a system filter, either system or user filters may be added as children. If the filter is a user filter, only user filters may be added as children. The menu items will also be grayed out if the user does not have rights to add the appropriate type of filter. After the user clicks on a menu item, the FilterManager calls each of the filter supporters to create a NavTreeFilter. If the supporter recognizes the menu item string, it will create the appropriate type of NavTreeFilter and open the properties dialog corresponding to the filter type. When the user clicks "OK", the filter will be added to the FilterManager and to the profile properties in the database so that the filters can be reconstructed when the GUI is restarted or when a new user logs in (for user filters). Then, the filter attaches itself to the DataModel so that it can listen for changes in its children (the filter caches the child objects for efficiency, so it must update its cache when the objects change). Finally, the filter is added to the DataModel so that it will be found by the GUINavigatorDriver to be displayed in the Navigator.

[image: image157.emf]This adds the filter to the

FilterManager's tree structure,

persists the filter to the database,

adds the filter to the DataModel,

and attaches the filter to the

DataModel as an observer.

See the "ActivateFilter" sequence

diagram for details.

[error]

"Display Error"

The type of dialog depends

on the type of filter that was created.

Use owner ID of parent

if not specified

FilterManager

NavFilterSupporter

IdentifierGenerator

Identifier

"Filter Properties Dialog"

NavTreeFilter

The type of filter will depend on

which menu item was clicked on.

GUI

activate

[owner not specified

but parent specified]

parent.getOwnerID

toString

"Set owner ID, filter ID,

and parent filter"

[no error]

closeWindow

[enters filter properties and clicks on OK]

actionPerformed

"Set Filter Properties"

"Add Any 'System' Filter

Menu Item(s)"

MenuItemRep[]

MenuItemRep[]

[* for each

FilterSupporter

"Add any 'User' Filter

Menu Item(s)"

[no ConfigureUsers right]

User Filter MenuItemRep[]

doProperties

create

handleCommand

createNavFilter

[wrong menu string]

false

[no rights]

false

create

[user right clicks on

object in navigator]

getMenuItemReps

[selection NOT

consisting of

exactly one

NavTreeFilter]

getFilterCreationMenuItems

[no ConfigureSelf right]

null

get

getIdentifierGenerator [filter owner not specified]

createIdentifier(filterID) create

show

true

[* for each

FilterSupporter

until one returns

true]

true if handled

false if not handled

Figure 158. GUIUtility:AddFilter

3.11.2.3 GUIUtility:BuildFilterHierarchy

This diagram shows the building of the filter hierarchy in memory, given an existing hierarchy and some new filters to be added. It may make several passes through the filters to be added, each time searching for existing parent filters to add the new filters to. It will set up the parent/child relationship and add the filter to the FilterManager's lookup table.

[image: image158.emf]If no more filters

could be added to the

lookup table, then the

parents of all remaining

filters in the list could not

be found, so stop trying

to look for them.

java.util.

Hashtable

NavTreeFilter

NavFilter

(parent)

It is the root of the tree,

add it to the lookup table.

FilterManager

System

[parent is null]

getParentID()

[parent is null but parent ID exists]

get (parentID)

[parent and parent ID are both null]

put (filterID, filter)

[found parent in table]

addChildFilter

[found parent in table]

setParent

[parent exists]

put (filterID, filter)

[added to table]

"Remove From

List To Add"

[* for each

NavTreeFilter

"set numAdded = 0"

[* while

filters

to add]

[added to table]

"Increment numAdded"

[numAdded == 0]

buildFilterHierarchy

getParent()

[not duplicate]

"Add Child"

Figure 159. GUIUtility:BuildFilterHierarchy

3.11.2.4 GUIUtility:CleanupSystemFilters

This diagram show the cleanup of the system filters at shutdown. The GUI calls the FilterManager, which removes all of the NavTreeFilter objects from the DataModel. When each filter receives the DataModel update, each filter detaches itself from the DataModel as an observer and cleans up any NavTreeFilteredObjectInstance objects that it contains.

[image: image159.emf]"Remove All

References"

shutdown

[clicks on Exit]

actionPerformed

update

"Remove Filters From

Lookup Table"

GUI

Other processing is done during shutdown

that is not shown here.

System

The DataModel will cause

update to be called soon.

NavTreeFiltered

ObjectInstance

User

FilterManager DataModel

NavTreeFilter

getAllObjectsOfType

(NavTreeFilter)

[* for each NavTreeFilter]

objectRemoved

cleanup

"Remove Reference

To Object"

detachObserver

[* for each

NavTreeFilteredObjectInstance]

objectRemoved

cleanupSystemFilters

get

getDataModel

Figure 160. GUIUtility:CleanupSystemFilters

3.11.2.5 GUIUtility:CleanupUserFilters

This diagram show the cleanup of the user filters at logout. The GUI calls the FilterManager, which gets all of the NavTreeFilter objects from the DataModel which are user filters and removes each from the DataModel and from the filter lookup table. When each filter receives the DataModel update, it detaches itself from the DataModel as an observer and cleans up any NavTreeFilteredObjectInstance objects and other references that it contains.

[image: image160.emf]Other processing is done during loggedOut

that is not shown here.

System

The DataModel will cause

update to be called soon.

GUI

NavTreeFiltered

ObjectInstance

User

FilterManager DataModel

NavTreeFilter

getDataModel

"Remove User Filters

From Lookup Table"

"Remove All

References"

getAllObjectsOfType

(NavTreeFilter)

[* for each user

NavTreeFilter]

objectRemoved

cleanup

"Remove Reference

To Object"

detachObserver

[* for each

NavTreeFilteredObjectInstance]

objectRemoved

cleanupUserFilters

get

loggedOut

logs out

update

Figure 161. GUIUtility:CleanupUserFilters

3.11.2.6 GUIUtility:InitializeSystemFilters

This diagram shows the initialization of the system filters at GUI startup. The GUI calls the FilterManager, which gets the system profile and attempts to load any existing system filters from the database to instantiate them. Only filters that are supported by the NavFilterSupporters will be created. If any filters are loaded, a tree hierarchy is built to represent the filters in memory. These filters are not yet in the DataModel (and hence are not in the Navigator), and will only be added on demand. The FilterManager then checks the filter hierarchy for any filters that it owns, including the root and any other filters in the tree that are owned by it. (These extra owned filters include filters added manually by users, and can be either system or user filters...the module-specific filters are owned by the modules). If no owned filters are found, then there is no root filter in the database, so a root filter is created. Then all owned filters are activated, which adds them to the hierarchy (if not already there), saves them in the database (if not already there), and adds them to the DataModel so that the filters will appear in the Navigator.

[image: image161.emf]Get all loaded filters under the root filter whose

owner is the same as the root filter's owner.

Each NavFilterSupporter

must have added itself

to the FilterManager in its

constructor, before startup

is called

If it is a new filter, it will add the filter to the filter hierarchy in

memory and save it to the database. Then it will add each

filter (new or existing) to the DataModel so that it will appear

in the Navigator. See the sequence diagram "ActivateFilter"

for details.

getOwnedFilters

[not found]

create (root filter)

[* for each filter found

or created]

activate

NavTreeFilter

GUI

FilterManager

This returns all of the filters stored in

the profile which are supported by

any of the NavFilterSupporters.

See the sequence diagram: "LoadFilters"

for details.

This builds a tree hierarchy of

filters in memory, but not in the DataModel

so they are not yet visible in the Navigator.

See the sequence diagram: "BuildFilterHierarchy"

for details

NavFolderFilter

initializeSystemFilters

startup

[filters loaded]

buildFilterHierarchy

getSystemProfile

loadNavFilters

Figure 162. GUIUtility:InitializeSystemFilters

3.11.2.7 GUIUtility:InitializeUserFilters

This diagram shows the creation of the user-specific Navigator filters at login. The GUI calls the FilterManager to load the user filters. The FilterManager then loads the filters (see the LoadFilters diagram) and builds the filter hierarchy for the new filters in memory, but does not automatically add them to the DataModel. Then, the FilterManager activates the filter only if the most distant ancestor with the same owner ID has already been activated. (It does this because there may already be system filters active in the DataModel/Navigator from a previous login which should display the new user's filters as children when the new user logs in.)

[image: image162.emf]NavTreeFilter

Find the most distant ancestor with the same owner ID,

and if that ancestor has been activated, then we need

to activate this filter too, because activating the ancestor

is supposed to activate all child filters in the subtree

with the same owner ID. See the sequence diagram:

"ActivateFilter" for details.

[most distant

ancestor with same

owner ID was

activated]

activate

getParent

[* while ancestor

has same owner ID]

FilterManager

Loads the NavTreeFilters from

the user profile in the database

which are supported by any of the

NavFilterSupporters. See the

sequence diagram: "LoadFilters"

for details.

This builds a tree hierarchy of

filters in memory, but not in the

DataModel so they are not yet

visible in the Navigator. See the

sequence diagram:

"BuildFilterHierarchy" for details

GUI

initializeUserFilters

getUserProfile

loadNavFilters

buildFilterHierarchy

loggedIn

[* for each filter]

getOwnerID

Figure 163. GUIUtility:InitializeUserFilters

3.11.2.8 GUIUtility:LoadFilters

This diagram shows how the filters are loaded, given a GUIProfile object (which can be either a system profile or a user profile). The FilterManager asks the GUIProfile for all of its cached properties, then the FilterManager gets the number of filter IDs in the list of filter IDs. Then, it gets the filter ID for each element in the list of filter IDs. It gets the filter class name, and asks all of the NavFilterSupporters whether they are interested in a filter of the given class name. If any supporters returned true, it creates a new NavTreeFilter and then calls it to initialize its data members, given the properties from the GUIProfile.

[image: image163.emf]java.util.

Properties

NavFilterSupporter

NavTreeFilter

The type of filter created

will depend on the class of

the filter that was saved.

create

[* for each filter ID in the

list of filter IDs]

NavTreeFilter

or null

[a supporter returned true]

newInstance

create

[filter created]

initFromProperties

[* for each property of the filter]

getProperty

NavTreeFilter, or GUIException if any required property could not be read

getProperty("Number of filters")

getProperty("Filter ID #n")

loadFilterFromProperties

getProperty("Filter Class Name")

canInstantiateFilterOfClass(class name)

All of the properties

specific to a filter will

be keyed with the filter ID.

[a supporter returned true]

forName

System

FilterManager

GUIProfile

Class

NavTreeFilter[]

loadFilters(GUIProfile)

getAllProperties

[* for each

supporter]

Figure 164. GUIUtility:LoadFilters

3.11.2.9 GUIUtility:ModifyFilterProperties

This diagram shows how a filter is modified. The user right clicks on the "Properties" menu item, from the filter's context menu. The filter calls doProperties() on itself, which invokes the appropriate filter properties dialog corresponding to the specific type of filter. When the user clicks "OK", the dialog will set the attributes of the filter by calling mutator methods, which will update the DataModel. Then, the dialog will create a Properties object and ask the filter to save its attributes into the Properties. The dialog will then get the GUIProfile object (either the system profile or user profile, depending on which type of filter it is) and will save the properties into the GUIProfile.

[image: image164.emf]Properties

java.util.

Properties

This will update the properties

in the database.

"Set Attribute"

[* for each

attribute in

dialog]

create

saveToProperties

[* for each filter attribute]

setProperty

NavTreeFilter

"Filter

Properties

Dialog"

The type of filter

and dialog depend

on which type of filter

was clicked on.

GUI GUIProfile

The DataModel will update

the observers of the changed

filter properties.

This menu item and dialog

will be disabled if the user does

not have rights to view or edit the

filter.

DataModel

User

setProperties

[clicks on "Properties"]

actionPerformed

objectUpdated

doProperties

create

show

[edits properties and clicks OK]

actionPerformed

get

[system filter]

getSystemProfile

[user filter]

getUserProfile

[error]

GUIException

[error]

"Display Error"

[error]

closeWindow

Figure 165. GUIUtility:ModifyFilterProperties

3.11.2.10 GUIUtility:PrioritizeArbitrationQueue

This diagram shows how status of the Arbitration Queue is displayed and reprioritized. When the user clicks on View Queue or Prioritize Queue, the GUIHAR or GUIDMS will create the ArbitrationQueueProperties dialog. The dialog will make calls to the DMS/HAR server to get the queue entries and their status to display. Then it will connect to the CORBA Notification Service to receive updates as the queue's status changes. When the user drags and drops the entry up or down in the list, it will determine a priority relative to other entries, or relative to the predefined levels. Then it will make a call to the ArbitrationQueue to change the priority. The ArbitrationQueue will then be reevaluated by the server and the updated status will be pushed via the Notification Service. The dialog then updates itself to show the changes.

[image: image165.emf]Unregister for any

CORBA nortification events.

ArbitrationQueue

The changePriority command

returns control immediately and,

barring any exceptions,

performs the reprioritization,

evaluation, and any device commands

asynchronously. The progress of the

commands are communicated to the GUI

using the CORBA Notification Service.

Connect to the NotificationService

to receive updates of the arbitration

queue and the device status.

Operator

ArbitrationQueueProperties

If the user does not have the

appropriate rights, the menu

option will be grayed out.

At this point the user

will be shown the Arbitration

Queue Dialog. This dialog is

modeless and will display the

status of the queue and the

status of the device if a

user re-prioritizes by dragging

and dropping an Entry to a new

location in the queue.

GUI

To display an indicator(s)

for the active entry

(may be more than one)

we will need the current

status.

Asynchronously, the

Notification service will

push updates which

will be received on another

thread.

GUIDMS

or

GUIHAR

ArbQueueUpdateCmd

javax.swing.

SwingUtilities

ORB

showDefaultCursor

create

invokeLater (ArbQueueUpdateCmd)

run

update

connect

[no rights]

AccessDenied

[other error]

CHART2Exception

success

getEntries

disconnect

create

[clicks on Prioritize

Queue menu item]

actionPerformed

showWaitCursor

showDefaultCursor

showWaitCursor

Notification Service

Java

This command will be

invoked later on the

AWT event thread for

thread safety.

get

changePriority

getToken

getEntriesStatus

push

closeWindow

[Cancel clicked]

actionPerformed(Cancel)

[error]

"Display error message

to the user"

[user drags entry to new location]

drop

show

Figure 166. GUIUtility:PrioritizeArbitrationQueue

3.11.2.11 GUIUtility:RemoveFilter

This diagram shows how a filter is removed from the system. The user clicks on the "Remove Filter" menu item from the filter's context menu item. The FilterManager's removeFilterHierarchy() method is called, which removes the all filters in the subtree from the FilterManager's lookup table and from the DataModel, while accumulating the property keys to delete from the system and user profiles. Then it causes a call the server to refresh the profile's cache, which minimizes the possibility of wiping out changes to the filter ID list made recently by another GUI. Then it gets the current filter ID list, removes the appropriate filter IDs from that list, and stores the updated ID list back into the database. It also deletes from the database all of the profile keys for all of the attributes of all of the deleted filters.

[image: image166.emf][filter found]

objectRemoved

[filter not found]

cleanupResources

return from

removeFilterHierarchy:

all profile keys to

remove, all system

filter ids to delete,

and all user filter ids

to delete

removeFilterIDsFromProfile

refreshPropertiesCache

getAllProperties

"Find all filter IDs

 in the profile and

remove the appropriate

IDs from the

list of IDs to store"

java.util.Properties

This will store in the database

the list of IDs of filters to keep.

Any leftover IDs will be removed

from the database the next time

cleanupProfile() called at the next GUI

startup or login.

This will delete from the database

all of the properties belonging

to the filters to be deleted.

create

setProperty (number of IDs key)

[for each ID to keep]

setProperty

setProfileProperties

deleteProfileProperties

[* for both the

system and user

profiles, if any filters

are to be deleted from

the profiles]

If the filter is in the DataModel,

then it was also attached as an

observer to the DataModel so it

will clean itself up when it receives

the update. If it is not in the DataModel,

need to call cleanupResources()

explicitly.

This is a recursive call.

The entire subtree is to be

removed.

This will cause the filter and

its subtree to be removed

from memory.

This will cause the GUI to query

the server for the latest profile data.

Because the GUIProfile's cached

properties are not updated,

we have to do this to avoid wiping

out any changes made by other

GUIs.

getProfileKeysBelongingToFilter

"Remove Filter From

Lookup Table"

"Accumulate Keys

To Remove"

getChildFilters

[* for each

child

filter]

removeFilterHierarchy

get

getDataModel

User

NavTreeFilter

This menu item will be

disabled if the user does

not have rights to remove

the filter.

FilterManager

GUI

GUIProfile

DataModel

[clicks on "Remove Filter"]

actionPerformed

get

getFilterManager

removeFilter

isSystemFilter

[system filter]

getSystemProfile

[user filter]

getUserProfile

get

getObject

removeFilterHierarchy

Figure 167. GUIUtility:RemoveFilter

3.11.2.12 GUIUtility:StoreFilterIDs

This diagram shows how the filter IDs are stored in a GUIProfile. Storing the IDs enables the filters to be reconstructed at startup (for system filters) or login (for user filters). First the GUIProfile is called to refresh its cache of properties, which calls the server to get the current properties. This is done to reduce the probability of overwriting another GUI's recent changes. Then it gets the number of existing filters in the profile, and sets the final number by adding in the number of new filters. Then the new Filter IDs in the list are indexed so that they are appended to the current list of filter IDs. Then the GUIProfile is called to set the properties, which calls the server again to set the properties into the database.

[image: image167.emf]getProperty("Number of filter IDs")

create

setProperty("Num existing filters IDs + num to add")

[* for each filter ID to add]

setProperty("FilterID #N")

refreshPropertiesCache

setProfileProperties

java.util.

Properties

Index the new filter IDs

to append them to

the end of the list

of existing filterIDs.

Make a call to the

server to make sure

we're working with

an up-to-date list of

filter IDs.

Makes a call to the server

to set the profile properties.

Note - this only affects the number

of filter IDs and the end of the list

of filter IDs...it doesn't overwrite the

existing filter IDs in the list.

getAllProperties

create

FilterManager GUI

GUIProfile

System

addFilterIDsToProfile

Figure 168. GUIUtility:StoreFilterIDs

3.11.2.13 GUIUtility:UpdateForFilterChange

This diagram shows the processing that occurs when a filter has been added, modified, or removed from the DataModel. The filter is an observer of the DataModel, so it also catches the updates for any changes to itself. If the filter was added or changed, the filter gets all of the NavTreeDisplayable objects from the DataModel and filters them. The root filter is called first, then each ancestor down to this filter. Any NavTreeObjectInstances that were contained in the filter, but whose objects they represent are not in the newly filtered set, are removed. Any NavTreeDisplayable objects in the newly filtered set but not currently contained in the filter are wrapped with NavTreeFilteredObjectInstance objects, which then are added to the DataModel and the filter. If the filter was removed from the DataModel, then all of the NavTreeFilteredObjectInstance objects are removed from the filter and the DataModel.

[image: image168.emf][* for each newly-filtered object

which is a NavTreeDisplayable

but is not a NavTreeFilter or

NavTreeFilteredObjectInstance]

The resulting array should now

contain only those Objects which

pass the filter(s).

DataModel

NavTreeFilter

NavTreeFilter

(parent)

GUI

DataModel

This will recursively call the parent

to filter the objects until the root is called.

The root will filter the objects first, then

the root's child, etc..

NavTreeFiltered

ObjectInstance

[parent not null]

filterObjects

[parent not null]

filterObjects

[Object in set of newly-filtered set but nav instance not contained in filter]

create

[created NavTreeFilteredObjectInstance]

objectAdded

[created nav instance]

"Add

NavTreeFilteredObjectInstance

To Collection"

[nav instance contained in filter but Object not in newly-filtered set]

objectRemoved

[removed nav instance]

"Remove

NavTreeFilteredObjectInstance

From Collection"

(see note)

[this NavTreeFilter was removed

from the DataModel]

detachObserver

cleanup

"Remove References"

cleanup

objectRemoved

"Remove References"

[* for each

NavTreeFilteredObjectInstance

contained in filter]

[filter removed]

[* for each

NavTreeFilteredObjectInstance

contained in filter]

"Remove

NavTreeFilteredObjectInstance

From Collection"

[filter removed]

"Remove All References"

update

[this NavTreeFilter was

added or updated via

the DataModel]

refreshObjects

get

getDataModel

getAllObjectsOfType(NavTreeDisplayable)

"Filter The Objects"

Object[]

"Filter The Objects"

Figure 169. GUIUtility:UpdateForFilterChange

3.11.2.14 GUIUtility:UpdateForObjectChanges

This diagram shows the processing that occurs when objects have been added, modified, or removed from the DataModel. The filter is an observer of the DataModel, so it catches the updates for any changes to objects. It takes all of the objects that were added or changed and filters them. If the "subset of parent" flag is used, the parent filter is used to filter the objects in addition to the current filter. Any NavTreeObjectInstances that were contained in the filter, but whose objects they represent are not in the newly-filtered set, are removed. Any FilterNavTreeDisplayable objects in the newly-filtered set but not currently contained in the filter are wrapped with NavTreeFilteredObjectInstance objects, which then are added to the DataModel and the filter. If the filter was removed from the DataModel, then all of the NavTreeFilteredObjectInstance objects are removed from the filter and the DataModel. For any objects that were removed from the DataModel, if they have NavTreeFilteredObjectInstance objects wrapping them, these wrappers are removed from the DataModel and from the filter.

[image: image169.emf]The resulting array should now

contain only those Objects which

pass the filter(s).

DataModel

NavTreeFilter

NavTreeFilter

(parent)

This will recursively call the parent

to filter the objects if the "subset of parent"

flag is set.

GUI

DataModel

NavTreeFiltered

ObjectInstance

[* for each Object

added or changed

via the DataModel]

"Add To Array To Filter"

[parent not null and using

subset of parent flag]

filterObjects

[nav instance contained in filter but Object not in newly-filtered set]

objectRemoved

getDataModel

get

[removed nav instancel]

"Remove

NavTreeFilteredObjectInstance

 From Collection"

[* for each

NavTreeFilteredObjectInstance

contained in filter]

[Object in newly-filtered set but nav instance not contained in filter]

create

[created NavTreeFilteredObjectInstance]

objectAdded

[created nav instance]

"Add

NavTreeFilteredObjectInstance

To Collection"

[* for each newly filtered

FilterNavTreeDisplayable]

[corresponding nav instance in filter]

objectRemoved

"Remove

NavTreeFilteredObjectInstance

From Collection"

[* for each Object

that was removed

from DataModel]

cleanup

"Remove References"

[removed nav instance from DataModel]

cleanup

"Remove References"

update

[parent not null and using

subset of parent flag]

filterObjects

"Filter Objects"

Object[]

"Filter Objects"

Figure 170. GUIUtility:UpdateForObjectChanges

3.11.2.15 GUIUtility:ViewArbitrationQueue

This diagram shows how status of the Arbitration Queue is viewed. When the user clicks on View Queue, the GUIHAR or GUIDMS will create the ArbitrationQueueProperties dialog. The dialog will make calls to the DMS/HAR server to get the queue entries and their status to display. Then it will connect to the CORBA Notification Service to receive updates as the queue's status changes. If the status of the queue changes, the updated status will be pushed via the Notification Service. The dialog then updates itself to show the changes.

[image: image170.emf]getEntries

disconnect

create

[clicks on View

Queue menu item]

actionPerformed

showWaitCursor

showDefaultCursor

create

invokeLater (ArbQueueUpdateCmd)

run

update

This command will be

invoked later on the

AWT event thread for

thread safety.

Connect to the NotificationService

to receive updates of the arbitration

queue and the device status.

Operator

ArbitrationQueueProperties

If the user does not have the

appropriate rights, the menu

option will be grayed out.

At this point the user

will be shown the Arbitration

Queue Dialog. This dialog is

modeless and will display the

status of the queue and the

status of the device..

GUI

To display an indicator(s)

for the active entry

(may be more than one)

we will need the current

status.

Unregister for any

CORBA nortification events.

ArbitrationQueue

push

closeWindow

[Cancel clicked]

actionPerformed(Cancel)

show

connect

getEntriesStatus

Asynchronously, the

Notification service will

push updates which

will be received on another

thread.

GUIDMS

or

GUIHAR

ArbQueueUpdateCmd

javax.swing.

SwingUtilities

ORB

Notification Service

Java

Figure 171. GUIUtility:ViewArbitrationQueue

3.12 HARManagement

3.12.1 Class Diagrams

3.12.1.1 HARManagementPkg

This class diagram shows classes related to the HAR that are used by both the GUI and the server. Many of these classes are implementations of value type classes defined in the system interfaces (IDL).

[image: image171.emf]HARRPIData

java.util.Vector

1

*

1 1

1

1

1

1 validates

message

content

using

1

*

AudioClipManagerWrapper

AudioClipManager

«interface»

HARPlanItemData

HARPlanItemDataImpl

HARMessageAudioDataClip

HARMessageAudioDataClipImpl

HARMessageClip

HARMessageImpl

HARMessage

DictionaryWrapper

HARMessageAudioClip HARMessageTextClip

HARMessagePrestoredClip

HARMessageAudioClipImpl HARMessageTextClipImpl

HARMessagePrestoredClipImpl

HARRPIDataImpl

storeClip(HARMessageAudioDataClip, AudioClipOwner owner):

 HARMessageAudioClip

getAudioClip(Identifier audioClipID): HARMessageAudioClip

AudioClipManager m_localAudioClipManager

storeClip(HARMessageAudioDataClip, AudioClipOwner owner):

 HARMessageAudioClip

registerInterest(Identifier audioClipID,

 AudioClipOwner owner): HARMessageAudioClip

deregisterInterest(Identifier audioClipID, AudioClipOwner owner): void

HARPlanItemDataImpl()

HARPlanItemDataImpl(byte[] harIDData, byte[] msgIDData)

getAudioData(): byte[]

HARRPIDataImpl()

HARRPIDataImpl(String description, byte[] harIDData,

 HARMessage, ORB, Lookup)

-verifyHARReachable(String desc, CommandStatus): void

-verifyHARResolved(String desc, CommandStatus): void

String m_harName

Lookup m_lookup

ORB m_orb

Figure 172. HARManagementPkg

3.12.1.1.1 AudioClipManager

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

3.12.1.1.2 AudioClipManagerWrapper

The AudioClipManagerWrapper wraps access to an AudioClipManager, hiding the details communicating with the Trader/ORB in acquiring and maintaining references to AudioClipManager(s) and actually communicating with an AudioClipManager from the classes which use this class.

3.12.1.1.3 DictionaryWrapper

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.12.1.1.4 HARMessage

This utility class represents a message which is capable of being stored on a HAR. It stores the HAR message as a HAR message header, body and footer. The HARMessage can be configured to use the default header or can provide a custom header clip. The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided. The body can consist of one or more body clips. Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.12.1.1.5 HARMessageAudioClip

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is passed around the system, wherever possible instead of passing the actual voice data contained in the initial HARMessageAudioDataClip. When the actual voice data is needed to play to the user or to program the HAR device, this object's streamer is used to stream the actual voice data back to an AudioPushConsumer specified by the requester.

3.12.1.1.6 HARMessageAudioClipImpl

This class defines HARMessageAudioClip as defined in the IDL. Refer to HARMessageAudioClip for details.

3.12.1.1.7 HARMessageAudioDataClip

This class is a message clip that contains audio data and the format of the audio data. Because audio data can be very large, this type of clip is reserved for use when recorded voice is first entered into the system. Recorded voice that already exists in the system is passed throughout the system using HARMessageAudioClip to avoid sending the large audio data when possible. A HARMessageAudioClip can stream the associated data back to an audio consumer when needed, by contacting its AudioClipManager.

3.12.1.1.8 HARMessageAudioDataClipImpl

This class implements the HARMessageAudioDataClip as defined in the IDL. Refer to HARMessageAudioDataClip for details.

3.12.1.1.9 HARMessageClip

This class represents a section of a HAR message. A HARMessage can contain up to three clips: a header, trailer, and body. See HARMessage for details. A HARMessageClip can be either plain text which would need to be converted to audio prior to broadcast, or audio (WAV) format, or it can refer to a clip which is prestored in a specific target HAR already. Audio clips are normally passed around as lightweight HARMessageAudioClips, which are created from HARMessageAudioDataClips at the point where the HARMessageAudioClip first enters a server.

3.12.1.1.10 HARMessageImpl

This class is a concrete implementation of the HARMessage abstract class generated from IDL.

3.12.1.1.11 HARMessagePrestoredClip

This class stores data used to identify the usage of a clip that has already been stored on a specific HAR device.

3.12.1.1.12 HARMessagePrestoredClipImpl

This class implements HARMessagePrestoredClip as defined in IDL. Refer to HARMessagePrestoredClip for details.

3.12.1.1.13 HARMessageTextClip

This class represents a HAR message content object which is in plain text format. This message can be checked for banned words and will be converted into a voice message using a speech engine, for downloading to a HAR device or to preview the voice audio to a user.

3.12.1.1.14 HARMessageTextClipImpl

This class implements HARMessageTextClip as defined in the IDL. Refer to HARMessageTextClip for details.

3.12.1.1.15 HARPlanItemData

This class is used to associate a message with a HAR for use in Plans.

3.12.1.1.16 HARPlanItemDataImpl

The HARPlanItemDataImpl class provides an implementation for the abstract HARPlanItemData class. It implements get and set methods to access and modify values relative to a stored Plan Item for a HAR, which associates a stored message to a specific HAR it should be placed on.

3.12.1.1.17 HARRPIData

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and when the message is being broadcast on the HAR.

3.12.1.1.18 HARRPIDataImpl

The HARRPIDataImpl class provides an implementation for the abstract HARRPIData class. It implements the execute and revokeExecution methods to request that the plan item be executed or un-executed on a specific HAR. It implements get and set methods to access and modify values relative to a Response Plan Item for a HAR.

3.12.1.1.19 java.util.Vector

A Vector is a growable array of objects.

3.13 JavaClasses

3.13.1 Class Diagrams

3.13.1.1 JavaClasses

This package is included for reference to classes included in the Java programming language that are used in class and sequence diagrams for other packages within this design.

[image: image172.emf]java.awt.event.WindowListener

«interface»

java.awt.event.ActionListener

«interface»

javax.swing.table.

AbstractTableModel

javax.swing.tree.

MutableTreeNode

«interface»

java.util.LinkedList

java.util.Vector javax.comm.SerialPort

java.util.Timer

java.util.TimerTask

javax.sound.sampled.AudioSystem java.io.File java.io.InputStream

java.lang.ThreadGroup

java.sql.Statement java.sql.Connection

java.util.TreeMap

java.awt.Component

javax.swing.JTabbedPane

javax.swing.table.

TableModel

java.lang.Thread

java.util.Hashtable java.util.Properties

java.lang.Runnable

«interface»

javax.swing.JOptionPane

javax.swing.JFrame

javax.swing.tree.

DefaultTreeModel

java.awt.event.ItemListener

java.awt.event.KeyListener

«interface»

java.lang.Object

windowClosing()

windowOpened()

actionPerformed()

getFirst():Object

add(Object)

schedule

cancel

run

executeQuery(string query):ResultSet

executeUpdate(string):int

createStatement():Statement

put(Object key, Object value)

get(Object key):value

start()

interrupt()

setDaemon(boolean)

run():void

getProperty()

setProperty()

run()

showMessageDialog

showOptionDialog

show

keyPressed

keyReleased

keyTyped

hashCode()

equals()

Figure 173. JavaClasses

3.13.1.1.1 java.awt.Component

This class is the base class for all graphical user interface components such as buttons and panels.

3.13.1.1.2 java.awt.event.ActionListener

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.13.1.1.3 java.awt.event.ItemListener

This interface allows the implementing class to listen for changes to an item such as a list item or combo box item.

3.13.1.1.4 java.awt.event.KeyListener

Interface that a class must realize in order for objects of that class to be notified when the user presses a key.

3.13.1.1.5 java.io.File

This class is an abstract representation of file and directory pathnames.

3.13.1.1.6 java.io.InputStream

Java class that represents a input stream of bytes.

3.13.1.1.7 java.lang.Object

This is the base class from which all Java classes inherit.

3.13.1.1.8 java.lang.Runnable

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.13.1.1.9 java.lang.Thread

This class represents a java thread of execution.

3.13.1.1.10 java.lang.ThreadGroup

A thread group represents a set of threads.

3.13.1.1.11 java.sql.Connection

This class represents a connection (session) with a specific database.

3.13.1.1.12 java.sql.Statement

Java class used for executing a static SQL statement and obtaining the results produced by it.

3.13.1.1.13 java.util.Hashtable

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

3.13.1.1.14 java.util.LinkedList

This class is an implementation of List interface for a linked list.

3.13.1.1.15 java.util.Properties

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

3.13.1.1.16 java.util.Timer

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.13.1.1.17 java.util.TimerTask

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.13.1.1.18 java.util.TreeMap

This class is an implementation of the SortedMap interface. This class guarantees that the map will be in ascending key order, sorted according to the natural order for the key's class, or by the comparator provided at creation time, depending on which constructor is used.

3.13.1.1.19 java.util.Vector

A Vector is a growable array of objects.

3.13.1.1.20 javax.comm.SerialPort

This class provides access to a computer's serial port. It allows the port to be opened and closed and allows data to be sent and received.

3.13.1.1.21 javax.sound.sampled.AudioSystem

The AudioSystem class acts as the entry point to the sampled-audio system resources. This class lets you query and access the mixers that are installed on the system.

3.13.1.1.22 javax.swing.JFrame

Java class that displays a frame window.

3.13.1.1.23 javax.swing.JOptionPane

This class is used to display popup messages to an end user.

3.13.1.1.24 javax.swing.JTabbedPane

This class is a component that has tabbed pages, and the user can click on a tab to flip to a certain page.

3.13.1.1.25 javax.swing.table. AbstractTableModel

This class provides a base implementation of the TableModel interface. This data structure will be used to supply a JTable with data.

3.13.1.1.26 javax.swing.table. TableModel

This class provides the data structure that drives the population and updating of the data used by the JTable (a Java GUI component).

3.13.1.1.27 javax.swing.tree. DefaultTreeModel

This class is the data structure which is used as a foundation for the JTree class.

3.13.1.1.28 javax.swing.tree. MutableTreeNode

This interface extends the TreeNode interface and provides the ability to add and remove children from nodes. It may be used in a TreeModel.

3.14 Navigator

3.14.1 Class Diagrams

3.14.1.1 NavigatorClasses

[image: image173.wmf]javax.swing.tree.

DefaultTreeModel

javax.swing.tree.

MutableTreeNode

«

interface»

javax.swing.table.

AbstractTableModel

java.util.

Hashtable

Navigator

NavigatorSupporter

«

interface»

Navigable

«

interface»

NavList

ModelObserver

«

interface»

NavListDisplayable

«

interface»

NavTree

NavTreeDisplayable

«

interface»

NavTableModel

NavTreeModel

GUINavigatorDriver

GUI

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

*

1

1

1

*

*

1

1

1

openNavigator(

NavigatorSupporter) : Navigator

addNavigables(

navigables)

updateNavigables(

navigables)

removeNavigables(

navigables)

getNavList

getNavigables() : Navigable []

makeMenu(

selectedNavigables) :

JMenu

dragOver(

selectedNavigables,DropTargetDragEvent)

drop(

selectedNavigables,DropTargetDropEvent)

navigatorClosing(Navigator)

getDesc():String

allowSetDesc():

boolean

setDesc(String):void

addNavigables

updateNavigables

removeNavigables

getNavTreeDisplayable

setNavTreeDisplayable

m

_navTreeDisplayable

getImage():void

getPropertyValue(property) : Object

comparePropertyValues(

NavListDisplayable,

 String, result

) : void

addNavigables

updateNavigables

removeNavigables

setSelectedNavTreeDisplayable

-

removeTreeNode

getNavParent() :

NavTreeDisplayable

containsChildNavigable(Navigable) :

boolean

getChildNavigables() : Navigable[]

getNavPropertyList() : String []

Figure 174. NavigatorClasses

3.14.1.1.1 javax.swing.table. AbstractTableModel

This class provides a base implementation of the TableModel interface. This data structure will be used to supply a JTable with data.

3.14.1.1.2 javax.swing.tree. DefaultTreeModel

This class is the data structure which is used as a foundation for the JTree class.

3.14.1.1.3 GUI

This class is a singleton which contains all of the centralized functionality in the GUI. This includes startup, shutdown, login, and logout. It manages the installable modules and controls all functionality which requires the modules to be called. In addition, it stores all of the CORBA object wrappers in the DataModel, which allows access to the objects and supports an update mechanism to notify interested observers whenever the objects change.

3.14.1.1.4 GUINavigatorDriver

This class handles all of the Navigator-specific functionality for the GUI.

3.14.1.1.5 java.util. Hashtable

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

3.14.1.1.6 ModelObserver

This interface must be implemented by any object which would like to attach to the DataModel as an observer and get updated as system objects are added, deleted or changed.

3.14.1.1.7 javax.swing.tree. MutableTreeNode

This interface extends the TreeNode interface and provides the ability to add and remove children from nodes. It may be used in a TreeModel.

3.14.1.1.8 Navigable

This interface will be implemented by any class which supports the Navigator on either the left or right side (the tree or list view). This includes the functionality common to both the tree and list.

3.14.1.1.9 Navigator

This class represents one instance of the Navigator window. It supplies methods for opening the Navigator window and for maintaining the collection of Navigables after the Navigator is open.

3.14.1.1.10 NavigatorSupporter

This interface must be implemented by any subsystem which supports invoking the Navigator. It must be able to supply the Navigable objects, and also can support user interaction with the selected Navigable objects through menus and drag/drop.

3.14.1.1.11 NavList

This class represents the right hand side of the Navigator window (the list or report). It contains functionality for changing the NavTreeDisplayable to refill the list, and also for maintaining the Navigables in the list after the Navigables belonging to the NavTreeDisplayable are already displayed.

3.14.1.1.12 NavListDisplayable

This interface must be implemented by any object to be displayed on the right hand side of the Navigator window, in the list view. In addition to the Navigable methods, it must also support getting and comparing the strings for a given property (column) in the list.

3.14.1.1.13 NavTableModel

This class will serve as the data structure for the right hand side of the Navigator, and will be the foundation of the JTable which will display the data stored in the model.

3.14.1.1.14 NavTree

This class represents the left hand side of the Navigator window - the tree view. It contains functionality for maintaining the NavTreeDisplayable objects which are in the tree.

3.14.1.1.15 NavTreeDisplayable

This interface must be implemented by any objects which are to be added to the left side of the Navigator (the tree view). This contains all of the functionality to support the tree data structure and also provides the property list (column headers) which will be displayed in the list view when the NavTreeDisplayable is selected.

3.14.1.1.16 NavTreeModel

This class will provide the data structure which will support the tree structure on the left hand side of the Navigator.

3.14.2 Sequence Diagrams

3.14.2.1 Navigator:AddNavigables

This diagram shows what happens in the Navigator when Navigable objects are added. First, the Navigables are passed to the NavTree. The NavTree will then build a list of any NavTreeDisplayables to add. For each element in the list, it checks the hash table to determine whether the parent (if any) is already in the tree. If the parent is in the tree or there is no parent, a new MutableTreeNode will be created and inserted into the DefaultTreeModel, and the NavTreeDisplayable will be put into the hash table. Each NavTreeDisplayable which is added to the tree is removed from the list to be inserted. As long as one or more nodes were inserted during a given pass through the list, another pass is attempted (for the next level of the tree). Then the Navigables are added to the NavList. This will check each Navigable to see if it is a NavListDisplayable and if its parent is the selected NavTreeDisplayable. If both are true, the NavListDisplayable will be added to the list.

[image: image174.emf]javax.swing.tree.

MutableTreeNode

Navigable

Adder

java.util.

Hashtable

javax.swing.tree.

DefaultTreeModel

NavTreeDisplayable

NavList

Navigator

NavListDisplayable

NavTree

A hash table of

MutableTreeNodes

which have already

been inserted into

the tree.

addNavigables

[* for each Navigable

implementing NavTreeDisplayable]

add to list to be inserted

turn off

redraw

[is child]

insert into list

getNavTreeDisplayable

containsChildNavigable

addNavigables

[NavListDisplayables

added to list]

repaint window

turn redraw on

[* for next Navigable

implementing

NavListDisplayable]

repeat

[* for each property]

getPropertyValue

[* for next

NavTreeDisplayable

in list]

repeat

[list is not

empty and

at least one

node was inserted

on this pass]

repeat

[NavTreeDisplayable does not have parent

or parent already in tree]

create

[inserted MutableTreeNode]

put

getParent

[NavTreeDisplayable has parent]

get

[created MutableTreeNode]

insertNodeInto

addNavigables

[inserted MutableTreeNode]

remove NavTreeDisplayable from

list to be inserted

Figure 175. Navigator:AddNavigables

3.14.2.2 Navigator:Initialize

This diagram shows how the Navigator is initialized. The openNavigator method will create a new Navigator window and the tree and list views. The Navigator will then query the NavigatorSupporter to provide it with all Navigable objects. The Navigables are added to the NavTree (see the Navigator:AddNavigables diagram for details). Then the root node is set as the selected node in the NavTree. See the Navigator:TreeSelectionChange sequence diagram for details on the effects of this.

[image: image175.emf]Navigator

Opener

See the AddNavigables

sequence diagram for

more details.

Navigator

NavList

NavTree

Navigator

Supporter

See TreeSelectionChange

sequence diagram

for more details.

Navigator

setSelectedNavTreeDisplayable

getNavigables

create

openNavigator

addNavigables

create

Figure 176. Navigator:Initialize

3.14.2.3 Navigator:RemoveNavigables

This diagram shows how Navigables are removed from the Navigator. Each NavTreeDisplayable to removed causes removeTreeNode to be called. This is a recursive call, which calls removeTreeNode first on each of its children. The children are removed first so that every tree node below the current node is cleaned out of the hash table. If the NavList is displaying the children of the node which is being destroyed, then we set the NavTreeDisplayable in the list to the parent. Then the NavTreeDisplayable is removed from the hash table and also from its parent. The Navigables to be removed are then passed to the NavList, which removes and NavListDisplayables in the list matching any of the Navigables to be removed.

[image: image176.emf]java.util.

Hashtable

removeTreeNode

does this...

This is a recursive call.

The child nodes are

removed first to allow them

to be removed from the

hash table.

NavTreeDisplayable

Navigator

Navigable

Remover

NavList

javax.swing.tree.

DefaultTreeModel

NavTree

For each Navigable

being removed

[found]

remove

find

removeNavigables

turn off redraw

getNavTreeDisplayable

[* for each Navigable

implementing

NavTreeDisplayable]

removeTreeNode

removeNavigables

[current node in NavList ==

node to be removed]

getParent

getNavTreeDisplayable

getChildNavigables

[* for each child

implementing NavTreeDisplayable]

removeTreeNode

remove

[node found]

removeNodeFromParent

[current tree node in NavList == node to be removed]

setNavTreeDisplayable(parent)

getNavList

removeNavigables

Figure 177. Navigator:RemoveNavigables

3.14.2.4 Navigator:TreeSelectionChange

This diagram shows what happens when a tree selection change takes place. The NavTree calls the NavList and sets the NavTreeDisplayable. This will cause all objects to be removed from the NavList. The NavList will ask the new NavTreeDisplayable for its properties (columns). Then the NavList will ask the NavTreeDisplayable for its children, which will all be inserted into the list. Each item inserted will be called for each column/property to supply the property value.

[image: image177.emf]NavTreeDisplayable

NavList Navigator

Java

Swing

or other

Selection

Changer

NavListDisplayable

NavTree

repaint window

turn on redraw

turn off

redraw

remove all

NavListDisplayables

[* for each

NavListDisplayable]

insert into list

getChildNavigables

setNavTreeDisplayable

getNavList

selection change

notification

or

setSelectedNavTreeDisplayable

[* for each property]

insert column

getPropertyList

[* for each NavListDisplayable]

[* for each property]

Figure 178. Navigator:TreeSelectionChange

3.15 SystemInterfaces

3.15.1 Class Diagrams

3.15.1.1 AudioCommon

This class diagram shows the classes relating to Audio.

[image: image178.emf]*

1

*

* *

1

*

1

*

1

1

AudioClipIDList

AudioDataFormat

«typedef»

TTSPriority

«enumeration»

AudioPushConsumer

«interface»

TextEmbeddedTag

«type»

AudioClipStreamer

«interface»

AudioData

«type»

UniquelyIdentifiable

«interface»

TTSConverter

«interface»

UnsupportedAudioFormat

«exception»

AudioEncoding

«enumeration»

UniquelyIdentifiable

«interface»

AudioClipOwner

«interface»

AudioClipManager

«interface»

1 *

1

1 replaces

1 *

1

*

1

Identifer[] m_clipIDList

AudioEncoding m_encoding;

float m_sampleRate;

long m_sampleSizeInBits;

long m_channels;

long m_frameSize;

float m_frameRate;

boolean m_bigEndian;

USER

SYSTEM

pushAudio(AudioData data):boolean

pushAudioProperties(AudioDataFormat format,

 long seconds,

 long size):void

pushFailure(string errMsg):void

pushCompleted()

string dateStamp = "<DATESTAMP>"

streamAudioClip(Identifier id,

 long maxChunkSize,

 AudioPushConsumer consumer):void

getID()

getName()

getSupportedFormats(void):AudioDataFormatList;

convertTextToSpeech(string text,

 AudioDataFormat format,

 long maxChunkSize,

 TTSPriority priority,

 AudioPushConsumer consumer)

pushVoiceLength(string text,

 AudioDataFormat format,

 AudioPushConsumer consumer)

getVoiceLength(string text, AudioDataFormat format):

 long

AudioDataFormatList supportedFormats;

PCM_SIGNED

PCM_UNSIGNED

A_LAW

U_LAW

confirmClipInterest(AudiClipIDList):

 AudioClipIDList

storeClip(HARMessageAudioDataClip, AudioClipOwner owner):

 HARMessageAudioClip

registerInterest(Identifier audioClipID,

 AudioClipOwner owner): HARMessageAudioClip

deregisterInterest(Identifier audioClipID, AudioClipOwner owner): void

Figure 179. AudioCommon

3.15.1.1.1 AudioClipIDList

This typedef (struct) is a list of Identifiers of HARMessageAudioClip objects. A list of this type is passed to AudioClipOwners in a confirmClipInterest call identifying audio clips for which to confirm interest, and the AudioClipOwner returns an AudioClipIDList in response, indicating the subset of those clips for which there is no longer any interest. (It is therefore anticipated that the list returned will be null or of short length.)

3.15.1.1.2 AudioClipManager

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

3.15.1.1.3 AudioClipOwner

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.15.1.1.4 AudioClipStreamer

This interface is implemented by objects that can push an audio clip given its ID. The audio data, previously stored within the streamer's implementation, is pushed to the AudioPushConsumer supplied by the user of this interface. See AudioPushConsumer for details.

3.15.1.1.5 AudioData

This typedef is a sequence of bytes that contain audio data. This data is used in conjunction with AudioDataFormat to decode the data into voice.

3.15.1.1.6 AudioDataFormat

This struct specifies the format of audio data.

3.15.1.1.7 AudioEncoding

This enum defines the supported types of encoding for audio data.

3.15.1.1.8 AudioPushConsumer

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.15.1.1.9 TextEmbeddedTag

This interface defines constants for tags that may be embedded in text that is passed to the TTSConverter. The TTSConverter replaces the tags it finds in text prior to converting the text to speech. The DateStamp tag is replaced with a date string in the format "DayOfWeek, Month Date" (e.g. "Wednesday, July 14"). This tag is replaced with new text every day immediately after midnight.

3.15.1.1.10 TTSConverter

This interface represents the Text to Speech converter object which allows text to be passed in and speech to be returned.

3.15.1.1.11 TTSPriority

This enum defines the types of priorities that can be used when asking the TTSConverter to convert text to speech.

3.15.1.1.12 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.1.13 UnsupportedAudioFormat

This exception is thrown when a specific AudioDataFormat is requested from an object that does not support the given format.

3.15.1.2 CommLogManagement

This Class Diagram shows the classes used for passing information between processes to enable creating, pushing, viewing, and searching Communications Log entries.

[image: image179.emf]LogEntryList

«type»

CommLogEventType

«enumeration»

LogEntryDataList

«type»

LogEntryData

«typedef»

LogIterator

«interface»

LogEntry

«interface»

LogFilter

«interface»

CommLog

«interface»

1 *

1

*

1

*

1 *

1 1

sequence LogEntry

LogEntryAdded

LogEntryUpdated

sequence LogEntryData

String entryText

Identifier trafficEventID

Source entrySource getMoreEntries(long maxCount) : LogEntryList

destroy():void

long m_timeOfLastUse

getID():Identifier

matchesFilter(LogFilter filter) : boolean

factory createLogEntry() : LogEntry

Identifier m_id

TimeStamp m_timestamp

Identifier m_eventID

string m_text

string m_author

string m_opCenterName

string m_hostname

Source m_source

factory createLogFilter() : LogFilter

Source m_source

boolean m_sourceIsUsed

string m_author

TimeStamp m_startDate

TimeStamp m_endDate

Identifier m_eventID

Identifier m_logEntryID

string m_opCenterName

string m_containsText

boolean isCaseSensitive

getEntries(AccessToken token, LogFilter filter,

 long maxCount) : LogQueryResults

addEntries(AccessToken token, LogEntryDataList logEntries) : void

overrideEntryTime(AccessToken token, Identifier logEntryID,

 TimeStamp logEntryTime):void

Figure 180. CommLogManagement

3.15.1.2.1 CommLog

This class manages log entries. These can be general Communications Log entries or specific log entries for a specific Traffic Event. This class is the primary interface for the CommLog service. It is used to persist log entries in the CHART II system and retrieve them for review. Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events.

3.15.1.2.2 CommLogEventType

This enumeration lists the possible events which the CommsLog service may push via the CORBA event service. At present, only one event is defined, the addition of a new LogEntry to the database.

3.15.1.2.3 LogEntry

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

3.15.1.2.4 LogEntryData

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate.

3.15.1.2.5 LogEntryDataList

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which contain the data needed to create one Log Entry. Normally each LogEntryDataList will contain only one LogEntryData object, but if the CommLog service is unavailable for a time, it is possible that multiple LogEntryData objects may be queued up for insertion into the database.

3.15.1.2.6 LogEntryList

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting process in one clump. (Some requests return so much data that data is returned in clumps. The initial request returns a LogIterator from which additional LogEntryList sequences can be requested, in order to complete the entire query.

3.15.1.2.7 LogFilter

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

3.15.1.2.8 LogIterator

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

3.15.1.3 Common

This class diagram shows classes used by multiple modules.

[image: image180.emf]UnsupportedOperation

«exception»

InvalidState

«exception»

SpecifiedObjectNotFound

«exception»

TimeStamp

«type»

UserName

«type»

Password

«type»

AccessDenied

«exception»

CHART2Exception

«exception»

GeoLocatable

«interface»

UniquelyIdentifiable

«interface»

RouteType

«enumeration»

SourceTypeValues

«interface»

CommandStatus

«interface»

Service

«interface»

NetworkConnectionSite

«type»

DirectionValues

«interface»

Direction

«typedef»

TrafficParameters

«typedef»

DuplicateData

«exception»

Source

«typedef»

RouteTypeInfo

«typedef»

ApplicationVersion

«typedef»

ComponentVersion

«typedef»

1 1

string reason string reason string reason string reason

string requiredRights

string reason

string debug

String getLocationDesc() getID()

getName()

I

MD

US

const short SOURCE_OTHER_NO_ADDL_INFO

const short SOURCE_OTHER_WITH_INFO

const short CCTV

const short SYSTEM_ALARM

const short STATE_POLICE

const short LOCAL_POLICE

const short CHART_UNIT

const short CITIZEN

const short MCTMC

const short MEDIA

update(String status):void

completed(boolean commandSuccessful,

 String finalStatus):void

completedSameStatus(boolean commandSuccessful):void

ping():void

getName():string;

getVersion():ApplicationVersion

getNetConnectionSite():string;

oneway shutdown(AccessToken token):void

const short OTHER_NO_ADDITIONAL_INFO

const short OTHER_ADDITIONAL_INFO

const short NORTH

const short NORTH_EAST

const short EAST

const short SOUTH_EAST

const short SOUTH

const short SOUTH_WEST

const short WEST

const short NORTH_WEST

const short INNER_LOOP

const short OUTER_LOOP

short int m_speedData;

int m_volumeData;

int m_percentOccupancy;

string reason

SourceType theSourceType

string otherDescription

RouteType typeOfRoute

string nameOfRouteType

string applicationName

ComponentVersionList componentVersions

string name

string version

Figure 181. Common

3.15.1.3.1 AccessDenied

This class represents an access denied, or "no rights" failure.

3.15.1.3.2 ApplicationVersion

This structure contains the name of the application and information about the versions of its components.

3.15.1.3.3 CHART2Exception

Generic exception class for the CHART2 system. This class can be used for throwing very generic exceptions which require no special processing by the client. It supports a reason string which may be shown to any user and a debug string which will contain detailed information useful in determining the cause of the problem.

3.15.1.3.4 CommandStatus

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.15.1.3.5 ComponentVersion

This structure contains the name and version number of the software component.

3.15.1.3.6 Direction

This type defines a short value that is used to indicate a direction of travel as defined in DirectionValues.

3.15.1.3.7 DirectionValues

This interface contains constants for directions as defined in the TMDD.

3.15.1.3.8 DuplicateData

This exception is thrown when an object is to be added to the system, but the system already contains an object with equivalent data.

3.15.1.3.9 GeoLocatable

This interface is implemented by objects that can provide location information to their users.

3.15.1.3.10 InvalidState

This exception is thrown when an operation is attempted on an object that is not in a valid state to perform the operation.

3.15.1.3.11 NetworkConnectionSite

The NetworkConnectionSite class contains a string that is used to specify where a service is running. This field is useful for administrators in debugging problems should an object become "software comm failed".. It is included in the Chart2DMSStatus.

3.15.1.3.12 Password

Typedef used to define the type of a Password.

3.15.1.3.13 RouteType

This enumeration is used to specify the classification of a road (interstate, MD, etc.)

3.15.1.3.14 RouteTypeInfo

This structure contains information about the classification type of a road.

3.15.1.3.15 Service

This interface is implemented by all services in the system that allow themselves to be shutdown externally. All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

3.15.1.3.16 Source

This structure contains information about the source of the data being added to the system.

3.15.1.3.17 SourceTypeValues

This enumeration contains the possible sources of information that can be used for adding CommLog entries and/or traffic event data.

3.15.1.3.18 SpecifiedObjectNotFound

Exception used to indicate that an operation was attempted that involves a secondary object that cannot be found by the invoked object.

3.15.1.3.19 TimeStamp

This typedef defines the type of TimeStamp fields.

3.15.1.3.20 TrafficParameters

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535 is used to indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent. (thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a missing or invalid value.

3.15.1.3.21 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.3.22 UnsupportedOperation

This exception is used to indicate that an operation is not supported by the object on which it is called.

3.15.1.3.23 UserName

This typedef defines the type of UserName fields used in system interfaces.

3.15.1.4 DeviceManagement

This class diagram shows device interfaces that are common among devices.

[image: image181.emf]ArbQueueEntryIndicator

1

1

1 1

ArbQueueEntryStatusList

«typedef»

ArbQueueEntryStatus

«typedef»

CommunicationMode

«enumeration»

OperationalStatus

«enumeration»

DisapprovedMessageContent

«exception»

CommFailure

«exception»

ArbitrationQueue

«interface»

Message

«interface»

CommEnabled

«interface»

MessageQueue

ArbQueueEntryKey

«typedef»

ArbQueueEntryList

«typedef»

ArbQueueEntry

PortManagerCommsData

«typedef»

PortLocationData

«typedef»

1

*

1

1

1 *

1 *

1 *

ArbQueueEntryKey m_key

TrafficEvent m_trafficEvent

Identifier trafficEventID

boolean isActive

string currMessage

double priority

ONLINE

OFFLINE

MAINT_MODE

OK

COMM_FAILURE

HARDWARE_FAILURE

WordList disapprovedWords

string reason

string reason;

string debug;

long errorCode;

addEntry(AccessToken, ArbQueueEntry):void

removeEntry(AccessToken, byte[] trafficEventID):void

changePriority(AccessToken token,

 ArbQueueEntry entry, double priority):void

getEntries():ArbQueueEntry[]

getEntriesStatus():ArbQueueEntryStatusList

validateMessageContent():void;

matches(Message): boolean

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

byte[] m_trafficEventID

byte[] m_rpiID

getTrafficEvent():TrafficEvent

getTrafficEventType():int

getTrafficEventID():byte[]

setActive(AccessToken token, string deviceName):void

setInactive(AcessToken token,

 string deviceName,

 string reason):void

setFailed(AccessToken token,

 string deviceName,

 string errorMsg):void

setUpdated(AccessToken token, string deviceName):void

getMessage():Message

getPriority():double

setPriority(AccessToken token, double newpriority):void

getOpCenterName():string

matches(ArbQueueEntry entry):boolean

ArbQueueEntryIndicator m_indicator

int m_trafficEventType

Message m_message

double m_priority

string m_opCenter

string m_portManagerName;

string m_devicePhoneNumber;

PortManagerCommsList m_prtManagerList

PortType m_portType;

int m_portWaitTimeSecs;

Figure 182. DeviceManagement

3.15.1.4.1 ArbitrationQueue

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.15.1.4.2 ArbQueueEntry

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.15.1.4.3 ArbQueueEntryIndicator

The ArbQueueEntryIndicator contains data necessary to specify a unique ArbQueueEntry object; in addition, it contains a reference to the TrafficEvent which is responsible for the entry.

3.15.1.4.4 ArbQueueEntryKey

This class contains the Traffic Event ID and RPI ID and is used to identify a specific ArbQueueEntry. In some cases (e.g., for HARNotifierArbQueueEntry objects), the RPI ID is the string representing a null Identifier.

3.15.1.4.5 ArbQueueEntryStatus

This structure is used to provide the status of the arbitration queue entries that were queued for execution on a device.

3.15.1.4.6 ArbQueueEntryStatusList

Collection of ArbQueueEntryStatus objects.

3.15.1.4.7 CommEnabled

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.15.1.4.8 CommFailure

This exception is to be thrown when an error is detected connecting to or communicating with a device.

3.15.1.4.9 CommunicationMode

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.

3.15.1.4.10 DisapprovedMessageContent

This exception is thrown when a text message to be put on a device contains words that are not approved. This exception is also thrown if an attempt is made to put the device in an invalid display state, such as putting the Beacons ON for a blank DMS.

3.15.1.4.11 Message

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.15.1.4.12 MessageQueue

This class represents a message queue object. It will provide the ability to manage traffic event entries in a prioritized list.

3.15.1.4.13 OperationalStatus

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

3.15.1.4.14 PortLocationData

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.15.1.4.15 PortManagerCommsData

This class contains values that identify a port manager and the phone number to dial to access a device from the given port manager. This class exists to allow for the phone number used to access a device to differ based on the port manager to take into account the physical location of the port manager within the telephone network. For example, when dialing a device from one location the call may be long distance but when dialing from another location the call may be local.

3.15.1.5 DictionaryManagement

This class diagram shows the interfaces used for the dictionaries.

[image: image182.emf]1

*

1

*

DictionaryEventInfo

«typedef»

DictionaryEventType

«enumeration»

DictionarySuggestion

«interface»

DictionaryWord

«interface»

WordList

«typedef»

SuggestionList

«typedef»

Dictionary

«interface»

DictionaryWordType

«enumeration»

UniquelyIdentifiable

«interface»

1

*

1

1

1 *

Identifier dictionaryID

WordList listOfWords

BannedWordsAdded

BannedWordsRemoved

ApprovedWordsAdded

ApprovedWordsRemoved

getUnapprovedWord():string

getReplacements():StringList

factory create(string unapprovedWord,

 StringList replacements):DictionarySuggestion

DictionaryWord m_unapprovedWord

StringList m_replacements

getWord():string;

setApplicabilityToType(DictionaryWordType wordType,

 boolean isApplicable):void

isWordApplicableToType(DictionaryWordType wordType):boolean

factory create(string word,WordTypeList wordType):DictionaryWord

string m_word

long m_wordTypeBitmask

getBannedWords(AccessToken):WordList

removeBannedWordList(AccessToken,WordList):void

addBannedWordList(AccessToken,WordList):void

checkForBannedWords(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):WordList

getApprovedWords(AccessToken):WordList

addApprovedWordList(AccessToken, WordList):void

removeApprovedWordList(AccessToken, WordList):void

performApprovedWordsCheck(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):SuggestionList

DMS_WORD

HAR_WORD

getID()

getName()

Figure 183. DictionaryManagement

3.15.1.5.1 Dictionary

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device such as a DMS or HAR.

3.15.1.5.2 DictionaryEventInfo

This interface encapsulates the data that is passed with a dictionary CORBA event. It contains information identifying the dictionary, and the list of words affected by the event.

3.15.1.5.3 DictionaryEventType

This represents the enumerations used for the different CORBA event types applicable to the dictionary module.

3.15.1.5.4 DictionarySuggestion

A DictionarySuggestion represents a list of suggested words that may be used to substitute a word that could not be found in the approved words dictionary database.

3.15.1.5.5 DictionaryWord

A DictionaryWord represents a word in the chart2 dictionary. It contains information that qualifies the type of devices to which the word applies.

3.15.1.5.6 DictionaryWordType

This enumeration is used to tag words that are placed in a dictionary. Words may apply to a specific messaging device or many.

3.15.1.5.7 SuggestionList

This interface represents the IDL sequence typedef for the DictionarySuggestion.

3.15.1.5.8 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.5.9 WordList

This interface represents the IDL sequence typedef for the DictionaryWord.

3.15.1.6 DMSControl

This Class Diagram shows the CORBA system interface classes and methods used to manipulate DMS services within the CHART II system.

[image: image183.emf]DMSEventType is

DMSAdded or

DMSConfigChanged

DMSEventType is

CurrentDMSStatus

ArbQueueEntry

DMSArbQueueEntry

CommunicationMode

«enumeration»

ShortErrorStatus

«type»

MULTIString

«type»

DMSConfiguration

Chart2DMSConfiguration

DMSStatus

Chart2DMSStatus

DMS

«interface»

Chart2DMS

«interface»

Chart2DMSFactory

«interface»

SharedResourceManager

«interface»

HARMessageNotifier

«interface»

SharedResource

«interface»

DMSFactory

«interface»

DMSList

«type»

DMSMessage

DMSStatusEventInfo

«typedef»

SignMetrics

«typedef»

FontMetrics

«typedef»

DMSConfigurationEventInfo

«typedef»

BeaconTypeValues

«interface»

SignTypeValues

«interface»

ResponsePlanItemData

DMSRPIData

HARNotifierArbQueueEntry

Message

«interface»

UniquelyIdentifiable

«interface»

GeoLocatable

«interface»

FP9500DMS

«interface»

FP9500Status

MessageQueue

NetworkConnectionSite

«type»

MULTIParseFailure

«exception»

DMSEvent

«typedef»

DMSEventType

«enumeration»

ArbitrationQueue

«interface»

CommEnabled

«interface»

DMSModelID

«enumeration»

OperationalStatus

«enumeration»

FP9500Configuration

SignType

«type»

BeaconType

«type»

PlanItemData

DMSPlanItemData

1

1

1

1

1 1

1

1

1

1

1

1

DMSEventType is

DMSAdded or

DMSConfigChanged

*

1

1

1

1 1

1

1

1

1

DMSEventType is

CurrentDMSStatus

1

*

1 *

1

1

1

1

*

*

*

*

*

1

1

1

*

1

1

1

1 *

1 1

1

*

1

1

1 1

1 1

1

1

getTrafficEvent():TrafficEvent

getTrafficEventType():int

getTrafficEventID():byte[]

setActive(AccessToken token, string deviceName):void

setInactive(AcessToken token,

 string deviceName,

 string reason):void

setFailed(AccessToken token,

 string deviceName,

 string errorMsg):void

setUpdated(AccessToken token, string deviceName):void

getMessage():Message

getPriority():double

setPriority(AccessToken token, double newpriority):void

getOpCenterName():string

matches(ArbQueueEntry entry):boolean

ArbQueueEntryIndicator m_indicator

int m_trafficEventType

Message m_message

double m_priority

string m_opCenter

getResponsePlanItem():ResponsePlanItem

factory createDMSArbQueueEntry(TrafficEvent trafficEvt,

 ResponsePlanItem rpi,

 DMSMessage message):DMSArbQueueEntry

ResponsePlanItem m_responsePlanItem

ONLINE

OFFLINE

MAINT_MODE

factory createDMSConfiguration() :

 DMSConfiguration

string m_name

string m_deviceLocation

SignType m_dmsSignType

SignMetrics m_signMetrics

FontMetrics m_fontMetrics

long m_pages

long m_dmsTimeCommLoss

BeaconType m_dmsBeaconType

long m_defaultJustificationLine

long m_defaultPageOnTime

long m_defaultPageOffTime

getNetworkConnectionSite():NetworkConnectionSite

factory createChart2DMSConfiguration() :

 Chart2DMSConfiguration

DMSModelID m_dmsModelID

Identifier m_owningOrgID

NetworkConnectionSite m_networkConnectionSite

boolean m_pollingEnabled

long m_pollIntervalMinutes

PortLocationData m_portLocationData

CommPortConfig m_commPortConfig

string m_devicePhoneNumber

long m_deviceDropAddress

long m_deviceResponseTimeout

DMSMessage m_shazamMessage

HAR m_associatedHAR

Identifier m_associatedHARID

boolean m_enableDeviceLog

factory createDMSStatus() : DMSStatus

boolean m_performingPixelTest

DMSMessage m_currentMessage

CommunicationsMode m_commMode

OperationalStatus m_opStatus

ShortErrorStatus m_shortErrorStatus

long m_statusChangeTime

factory createChart2DMSStatus() : Chart2DMSStatus

OpCenterInfo m_controllingOpCenter

blankSign(AccessToken token, CommandStatus status) : void

getConfiguration(AccessToken token) : DMSConfiguration

getStatus() : DMSStatus

isBlank() : boolean

pollNow(AccessToken token, CommandStatus status) : void

remove(AccessToken token) : void

resetController(AccessToken token, CommandStatus status) : void

setConfiguration(AccessToken token, DMSConfiguration config,

 CommandStatus status) : void

setMessage(AccessToken token, DMSMessage message,

 CommandStatus status) : void

getID()

getName()

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

createDMS(AccessToken token, DMSConfiguration config) : DMS

getDMSList() : DMSList

sequence DMSList

getBeaconState() : boolean

getMessageText():string

getMultiString() : MULTIString

getMinimumCharacters() : long

isMessageTextMulti():boolean

factory createDMSMessage(MULTIString multiStringMessage,

 boolean beaconState,

 boolean isMessageTextMulti) : DMSMessage

string m_dmsMessageString

boolean m_dmsMessageBeacon

boolean m_isMessageTextMulti

MULTIString m_dmsMessageMultiString

Identifier dmsID

DMSStatus status

long vmsSignHeightPixels

long vmsSignWidthPixels

short vmsCharacterHeightPixels

short vmsCharacterWidthPixels

short fontHeight

short characterWidth

DMS theDMS

Identifier dmsID

DMSConfiguration config

other = 1

none = 2

oneBeacon = 3

twoBeaconSyncFlash = 4

etc.

other = 1

bos = 2

cms = 3

vmsChar = =4

etc.

getDMS() : Chart2DMS

getMessage() : DMSMessage

setDMS(Chart2DMS) : void

setMessage(DMSMessage) : void

factory create DMSRPIData() :

 DMSRPIData

Chart2DMS m_dms

DMSMessage m_message

getCommandStatus():CommandStatus

factory createHARNotifierArbQueueEntry(ArbQueueEntryIndicator,

 TrafficEvent[],

 DMSMessage,

 CommandStatus):HARNotifierArbQueueEntry

CommandStatus m_status

TrafficEvent[] m_trafficEventList

performPixelTest(AccessToken token,

 CommandStatus status) : void

getExtendedStatus(AccessToken token,

 CommandStatus status):FP9500DMSStatus

factory createFP9500Status() : FP9500Status

octet m_currentMsgNum

octet m_currentMsgSource

string reason

DMSEventType <discriminator>

 Identifier dmsID - forDMSDeleted

 or

 DMSConfigurationEventInfo dmsConfigInfo

 or

 DMSStatusEventInfo statusInfo

DMSAdded

DMSDeleted

CurrentDMSStatus

DMSConfigChanged

addEntry(AccessToken, ArbQueueEntry):void

removeEntry(AccessToken, byte[] trafficEventID):void

changePriority(AccessToken token,

 ArbQueueEntry entry, double priority):void

getEntries():ArbQueueEntry[]

getEntriesStatus():ArbQueueEntryStatusList

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

DMS_ADDCO

DMS_FP1001

DMS_FP2001

DMS_FP9500

DMS_PCMS

DMS_SYLVIA

DMS_TS3001

OK

COMM_FAILURE

HARDWARE_FAILURE

getDMSID() : Identifier

setDMS(DMS, Identifier) : void

getMessageID(): Identifier

setMessage (StoredMessage, Identifier) : void

factory createDMSPlanItemData():DMSPlanItemData

DMS m_dms

Identifier m_dmsID

StoredMessage m_storedMsg

Identifier m_storedMsgID

Figure 184. DMSControl

3.15.1.6.1 ArbitrationQueue

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.15.1.6.2 ArbQueueEntry

This class is used for an entry on the arbitration queue for a single message, and for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.15.1.6.3 BeaconType

The BeaconType class defines the beacon type for a DMS. Its values are defined by the BeaconTypeValues class. It is a part of a DMSConfiguration object.

3.15.1.6.4 BeaconTypeValues

The BeaconTypeValues class enumerates the various beacon types used on DMS devices (number of beacons and whether and in what manner they flash).

3.15.1.6.5 Chart2DMS

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the Chart II-specific DMS objects within Chart II. It provides an interface for traffic events to provide input as to what each traffic event desires to be on the sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic message. Chart II business rules include concepts such as shared resources, arbitration queues, and linking device usage to traffic events. These concepts go beyond what would be industry-standard DMS control.

3.15.1.6.6 Chart2DMSConfiguration

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to Chart II processing. Such information includes how to contact the sign under Chart II software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization. Such data extends beyond what would be industry-standard configuration information for a DMS.

3.15.1.6.7 Chart2DMSFactory

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS objects). It implements the SharedResourceManager capability to control DMS objects as shared resources.

3.15.1.6.8 Chart2DMSStatus

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to Chart II processing, such as information on the controlling operations center for the sign. This data extends beyond what would be industry-standard status information for a DMS.

3.15.1.6.9 CommEnabled

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.15.1.6.10 CommunicationMode

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.

3.15.1.6.11 DMS

The DMS class defines an interface to be used in manipulating Dynamic Message Sign (DMS) objects within Chart II. It specifies methods for setting messages and clearing messages from a sign (in maintenance mode), polling a sign, changing the configuration of a sign, and resetting a sign. (Setting messages on a sign in online mode are not accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic events, which interfaces with the ArbitrationQueue of a sign. This activity involves the DMS extension, Chart2DMS, which defines interactions with signs under Chart II business rules.)

3.15.1.6.12 DMSArbQueueEntry

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used for most standard entries placed on the arbitration queue. When its setActive, setInactive, and setFailed methods are called, it adds a log entry to its traffic event and calls the appropriate method on its response plan item (setActive, setInactive, or update).

3.15.1.6.13 DMSConfiguration

The DMSConfiguration class is an abstract class which describes the configuration of a DMS device. This configuration information is normally fairly static: things like the size of the sign in characters and pixels, its name and location, and how to contact the sign (as opposed to dynamic information like the current message on the sign, which is defined in an analogous Status object).

3.15.1.6.14 DMSConfigurationEventInfo

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType DMSConfigChanged. It contains a DMSConfiguration object which details the new configuration for a Chart II DMS object.

3.15.1.6.15 DMSEvent

The DMSEvent class is a union which can be any one of four events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities. The four types of events, defined by the enumeration DMSEventType, are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

3.15.1.6.16 DMSEventType

The DMSEventType is an enumeration which defines the four types of events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities. The four types of events are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

3.15.1.6.17 DMSFactory

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a method to get a list of DMS devices currently in the system.

3.15.1.6.18 DMSList

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory and other classes for maintaining the list or other lists of DMS objects.

3.15.1.6.19 DMSMessage

The DMSMessage class is an abstract class which describes a message for a DMS. It consists of two elements: a MULTI-formatted message and beacon state information (whether the message requires that the beacons be on). The DMSMessage is contained within a DMSStatus object, used to communicate the current message on a sign, and is stored within a DMSRPIData object, used to specify the message which should be on a sign when the response plan item is executed.

3.15.1.6.20 DMSPlanItemData

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a DMS. It is derived from PlanItemData.

3.15.1.6.21 DMSRPIData

The DMSRPIData class is an abstract class which describes a response plan item for a DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself.

3.15.1.6.22 DMSStatus

The DMSStatus class is an abstract value-type class which provides status information for a DMS. This status information is relatively dynamic: things like the current message on the sign, its beacon state, its current operational mode (online, offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More static information about the sign, such as its size and location, is defined in an analogous Configuration object.)

3.15.1.6.23 DMSStatusEventInfo

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType CurrentDMSStatus. It contains a DMSStatus object which details the new status for a Chart II DMS object.

3.15.1.6.24 FontMetrics

The FontMetrics class is a non-behavioral class (structure) which contains information regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

3.15.1.6.25 FP9500Configuration

The FP9500Configuration class is an abstract class which extends the Chart2DMSConfiguration class to provide configuration information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information.

3.15.1.6.26 FP9500DMS

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest method, which knows how to invoke and interpret a pixel test as supported by the FP9500 model DMS.

3.15.1.6.27 FP9500Status

The FP9500Status class is an abstract class which extends the Chart2DMSStatus class to provide status information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information. In this case, additional information provided the FP9500 model would include things like the current message number and current message source, status bits, light status, pixel failure map, and so on.

3.15.1.6.28 GeoLocatable

This interface is implemented by objects that can provide location information to their users.

3.15.1.6.29 HARMessageNotifier

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message.

3.15.1.6.30 HARNotifierArbQueueEntry

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry used for entries that are placed on the arbitration queue to put a "SHAZAM" message on a DMS. These types of messages have a low priority and are not allowed to overwrite any standard message (from a DMSArbQueueEntry) that is currently displayed on a device. These types of messages are also different in that they are not added to the queue directly by a response plan item and are instead included as a sub-task of activating a message on a HAR. The HAR uses a command status object to track the progress of the HAR notifier message.

3.15.1.6.31 Message

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.15.1.6.32 MessageQueue

This class represents a message queue object. It will provide the ability to manage traffic event entries in a prioritized list.

3.15.1.6.33 MULTIParseFailure

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS message cannot be correctly parsed.

3.15.1.6.34 MULTIString

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class contains a MULTIString value to specify the content of the sign, in addition to the beacon state value.

3.15.1.6.35 NetworkConnectionSite

The NetworkConnectionSite class contains a string that is used to specify where a service is running. This field is useful for administrators in debugging problems should an object become "software comm failed".. It is included in the Chart2DMSStatus.

3.15.1.6.36 OperationalStatus

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

3.15.1.6.37 PlanItemData

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.15.1.6.38 ResponsePlanItemData

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.15.1.6.39 SharedResource

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.15.1.6.40 SharedResourceManager

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.15.1.6.41 ShortErrorStatus

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined by the NTCIP center to field standard for DMS that specifies error conditions that may be present on the device. This class is used to encapsulate the bit mask and provide a user friendly interface to the error conditions. The DMSStatus class contains a value of this type.

3.15.1.6.42 SignMetrics

The SignMetrics class is a non-behavioral class (structure) which contains information regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration object.

3.15.1.6.43 SignType

The SignType class defines the sign type for a DMS. Its values are defined by the SignTypeValues class. It is a part of a DMSConfiguration object.

3.15.1.6.44 SignTypeValues

The SignTypeValues class enumerates the various sign types DMS devices. Examples are bos, cms, vmsChar, etc.

3.15.1.6.45 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.7 FieldCommunications

This diagram shows system interfaces relating to field communications. These interfaces, typedefs, and enums specify the IDL for the FieldCommunications package.

[image: image184.emf]DataPort

«interface»

ModemPort

«interface»

DirectPort

«interface»

EVENT_CHANNEL_PORT_STATUS

«type»

Parity

«enumeration»

DataPortIOException

«exception»

Port

«interface»

VoicePort

«interface»

NoPortsFound

«exception»

CommPortConfig

«typedef»

StopBits

«enumeration»

DataBits

«enumeration»

FlowControl

«enumeration»

ModemInitFailure

«exception»

PortStatusInfo

«typedef»

PortStatusChangedEventInfo

«typedef»

PortEventType

«enumeration»

ModemResponseCode

«enumeration»

ModemConnectFailure

«exception»

ModemNotResponding

«exception»

PortOpenFailure

«exception»

DisconnectException

«exception»

GetPortTimeout

«exception»

PortStatus

«enumeration»

UniquelyIdentifiable

«interface»

PortManager

«interface»

ConnectFailure

«exception»

PortType

«enumeration»

Priority

«enumeration»

Other port types

such as VoicePort

VoicePortConnectFailure

«exception»

1 *

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis,

 long maxReadDurationMillis):byte[]

connect(CommPortConfig config,

 String phoneNo):void

connect(CommPortConfig config):void

string

PARITY_EVEN

PARITY_ODD

PARITY_NONE

PARITY_MARK

PARITY_SPACE

string reason

getStatus():PortStatus

disconnect():void

connect(String phoneNo):void

playDTMFTones(String dtmfCodes,

 boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

long m_baudRate

DataBits m_dataBits

StopBits m_stopBits

Parity m_parity

FlowControl m_flowControl

STOPBITS_1

STOPBITS_2

STOPBITS_1_5

DATABITS_5

DATABITS_6

DATABITS_7

DATABITS_8

FLOWCONTROL_NONE

FLOWCONTROL_RTS_CTS

FLOWCONTROL_XON_XOFF

string modemCmd;

ModemResponseCode rspCode;

Identifier id

string name

PortType type

PortStatus status

PortStatusInfo[] info PortStatusChanged

MODEM_RSP_OK

MODEM_RSP_CONNECT

MODEM_RSP_RING

MODEM_RSP_NO_CARRIER

MODEM_RSP_ERROR

MODEM_RSP_CONNECT_1200

MODEM_RSP_NO_DIAL_TONE

MODEM_RSP_BUSY

MODEM_RSP_NO_ANSWER

MODEM_RSP_UNKNOWN

string modemCmd;

ModemResponseCode rspCode;

string reason

string reason

string reason;

long timeoutMillis

STATUS_OK

STATUS_MARGINAL

STATUS_FAILED

STATUS_DISABLED-future

getPortsStatus():PortStatusInfo[]

getPort(PortType type, long maxWaitMillis,

 Priority requestPriority):Port

releasePort(Port thePort):void

string reason

ISDN_MODEM

POTS_MODEM

DIRECT_RS232

TELEPHONY

PRIORITY_POLLING

PRIORITY_ON_DEMAND

string reason

Figure 185. FieldCommunications

3.15.1.7.1 CommPortConfig

This structure is used to pass comm port configuration values during a connection request.

3.15.1.7.2 ConnectFailure

This exception is a catch-all for exceptions that do not fit in a more specific exception that can be thrown during a connection attempt.

3.15.1.7.3 DataBits

This enumeration defines the valid values for data bits that may be set in a CommPortConfig structure.

3.15.1.7.4 DataPort

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.15.1.7.5 DataPortIOException

This exception is used to indicate an Input/Output error has occurred.

3.15.1.7.6 DirectPort

A DirectPort is a Port that is directly connected to the target of communications. The connect call needs only to open the communications port.

3.15.1.7.7 DisconnectException

This exception is thrown when an error is encountered while disconnecting. There is no action that can be taken by the catch handler for this exception except to warn the user. The port will be closed and should be released as normal even if this exception is caught.

3.15.1.7.8 EVENT_CHANNEL_PORT_STATUS

This is a static string that contains the name of the event channel used to push events relating to the change in Port status. The following PortEventTypes are pushed on EVENT_CHANNEL_PORT_STATUS channel: PortStatusChanged

3.15.1.7.9 FlowControl

This enumeration defines the valid types of flow control that may be set in a CommPortConfig structure.

3.15.1.7.10 GetPortTimeout

This class is an exception that is thrown by a PortManager when a request to acquire a port of a given type cannot be fulfilled within the timeout specified.

3.15.1.7.11 ModemConnectFailure

This exception is thrown when there is an error establishing a remote connection via a modem during a connection attempt on a ModemPort. This exception is generated when there is an unfavorable result to the ATDT command on the modem.

3.15.1.7.12 ModemInitFailure

This exception is thrown when there is an error initializing the modem during a connection attempt on a ModemPort.

3.15.1.7.13 ModemNotResponding

This exception is thrown when there is a failure to command a modem because the modem is not responding to commands.

3.15.1.7.14 ModemPort

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN and POTS modems can be implemented under this interface.

3.15.1.7.15 ModemResponseCode

This enum defines the result codes for a standard modem.

3.15.1.7.16 NoPortsFound

This exception is thrown when a port is requested from a PortManager that does not have any of the requested type of port (available or in-use).

3.15.1.7.17 Parity

This enumeration defines the valid values for parity that may be set in a CommPortConfig structure.

3.15.1.7.18 Port

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All ports must be able to supply their status when requested.

3.15.1.7.19 PortEventType

This enum defines the types of CORBA events that are pushed on a Field Communications event channel.

3.15.1.7.20 PortManager

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.15.1.7.21 PortOpenFailure

This exception is thrown if there is an error opening the port while attempting a connection. This exception would most likely only occur if there is another application accessing the physical com port, which would be true if debugging activities were being done on a port while the FieldCommunications service is still running.

3.15.1.7.22 PortStatus

This enumeration specifies the values used to represent a Port's status. OK signifies the port is working properly. MARGINAL signifies errors have been experienced during recent use of the port. FAILED indicates the port is not working at all.

3.15.1.7.23 PortStatusChangedEventInfo

This class contains data that is pushed on a Field Communications event channel with a PortStatusChanged event.

3.15.1.7.24 PortStatusInfo

This class contains the data of status of a particular port.

3.15.1.7.25 PortType

This enumeration defines the types of ports that may be requested from a PortManager.

3.15.1.7.26 Priority

This enumeration specifies the priority levels used when requesting a port from a PortManager. ON_DEMAND is given higher priority than POLLING.

3.15.1.7.27 StopBits

This enumeration defines the valid values for stop bits that may be set in a CommPortConfig structure.

3.15.1.7.28 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.7.29 VoicePort

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.15.1.7.30 VoicePortConnectFailure

This exception is thrown when the voice port fails to connect because of one of the following reasons: no dial tone, line busy or no answer.

3.15.1.8 HARControl

This class diagram contains the interfaces used relating to the control of Highway Advisory Radio (HAR).

[image: image185.emf]1

1

*

1 1

1

*

Message

«interface»

HARMessage

HARMessageNotifierStruct

CommEnabled

«interface»

UniquelyIdentifiable

«interface»

HARMessageNotifierList

«typedef»

Body

Header/Trailer (optional)

ArbQueueEntry

HARArbQueueEntry

HARMessageClip

HARMessageAudioDataClip

HARMessageAudioClip

HARMessageTextClip

HARMessagePrestoredClip

SharedResourceManager

«interface»

HARFactory

«interface»

HAR

«interface»

HARMessageNotifier

«interface»

SharedResource

«interface»

HARMessageClipList

«typedef»

HARSlotUsageIndicator

«enumeration»

ArbitrationQueue

«interface»

HARSlotData

«typedef»

HARSlotNumber

«type»

HARList

«typedef»

GeoLocatable

«interface»

StoredMessage

«interface»

HARPlanItemData

HARStatusEventInfo

«typedef»

HARConfigurationEventInfo

«typedef»

HAREventType

«enumeration»

HARSlotDataList

«typedef»

HARRPIData

HARStatus

«typedef»

HARConfiguration

«typedef»

AudioClipOwner

«interface»

1

*

*

1

* 1

* 1

*

1

1

* 1

1

* *

1

*

1

*

1 1

* *

1

1

1

*

1

1

* *

1 1

1

setConfiguration(AccessToken, HARConfiguration, CommandStatus):void

getConfiguration() : HARConfiguration

getStatus():HARStatus

putInMaintModeWithSHAZAMs(AccessToken, HARMsgNotiferIDList, CommandStatus): void

putOnlineWithSHAZAMs(AccessToken, HARMsgNotifierIDList, CommandStatus): void

setMessage(AccessToken, HARMessage, HARMsgNotifierIDList, CommandStatus):void

blank(AccessToken, CommandStatus):void

getClipInSlot(HARSlotNumber): HARMessageClip

storeSlotMessage(AccessToken, HARSlotNumber, HARMessageClip,

 CommandStatus):void

deleteSlotMessage(AccessToken, HARSlotNumber, CommandStatus):void

isBlank():boolean

isMessageActive():boolean

reset(AccessToken, CommandStatus):void

setup(AccessToken, CommandStatus):void

setTransmitterOff(AccessToken, CommandStatus):void

setTransmitterOn(AccessToken, CommandStatus):void

monitorBroadcast(AccessToken, long seconds, long maxChunkSize,

 AudioPushConsumer, CommandStatus):void

monitorSlot(AccessToken, long seconds, HARSlotNumber, long maxChunkSize,

 AudioPushConsumer, CommandStatus)

remove(AccessToken, CommandStatus):void

msgNotifierDeactivated(AccessToken, Identifier notifierID): void

msgNotifierRemoved(AccessToken, Identifier notifierID): void

shouldHARNoticeBeActive(Identifier notifierID): void

DEFAULT_HEADER

DEFAULT_TRAILER

DEFAULT_MESSAGE

IMMEDIATE

USER

HARSlotNumber m_slotNumber

HARMessageClip m_slotMessageClip

HARSlotUsageIndicator m_slotUsageIndicator

setHAR(HAR theHAR):void

getHARID():Identifier

setMessage(StoredMessage msg):void

getMessageID():Identifier

factory createHARPlanItemData():

 HARPlanItemData

HAR m_har

Identifier m_harID

StoredMessage m_storedMsg

Identifier m_storedMsgID

Direction m_direction

Identifier id

HARStatus status

HAR theHAR

Identifier id

HARConfiguration config

HARAdded

HARRemoved

HARStatusChanged

HARConfigurationChanged

setHAR(HAR har):void

getHAR():HAR

setMessage(HARMessage msg):void

getMessage():HARMessage

factory createHARRPIData():HARRPIData

HAR m_har

HARMessage m_message

HARMsgNotifierList m_notifiersToActivate

HARMessage m_currentMessage

HARSlotDataList m_slotData

boolean m_transmitterOn

CommMode m_commMode

OperationalStatus m_OpStatus

OpCenterInfo m_controllingOpCenter

long m_statusChangeTime

long m_lastContactTime

string m_name

string m_deviceLocation

string m_devicePhoneNumber

string m_deviceMonitorPhoneNumber

string m_deviceAccessCode

HARMessageClip m_defaultMessage

HARMessageClip m_defaultHeader

HARMessageClip m_defaultTrailer

long m_maxStoredVoiceSeconds

int m_maxNumberOfSlots

HARMessageNotifierList m_msgNotifiers

Identifier m_owningOrgID

string m_networkConnectionSite

PortLocationData m_portLocationData

PortLocationData m_monitorPortLocationData

getHeader():HARMessageClip

getTrailer():HARMessageClip

getBody():HARMessageClipList

useDefaultHeader():boolean

useTrailer():boolean

useDefaultTrailer():boolean

setUseDefaultHeader(boolean):void

setUseTrailer(boolean):void

setUseDefaultTrailer(boolean):void

setHeader(HARMessageClip):void

setTrailer(HARMessageClip):void

setBody(HARMessageClip):void

addBodyClip(HARMessageClip):void

getBodyRunTime(): long

getTotalRunTime() : long

getNewDataRuntTime(): long

factory createHARMessage():HARMessage

HARMessageClipList m_body

boolean m_useDefaultHeader

HARMessageClip m_header

boolean m_useTrailer

boolean m_useDefaultTrailer

HARMessageClip m_trailer

HARMessageNotifier m_harNotifier

Identifier m_harNotifierID

ResponsePlanItem m_responsePlanItem

HARMsgNotifierList m_notifiersToActivate

getDescription():string

setDescription(string):void

getVoiceSeconds():long

setVoiceSeconds(long voiceSeconds):void

matches(HARMessageClip): boolean

string m_description

long m_voiceSeconds

factory createAudioDataClip(in AudioDataFormat format,

 in AudioData data):HARMessageAudioDataClip

AudioDataFormat m_audioDataFormat

AudioData m_audioData

registerInterest(AudioClipOwner owner): void

deregisterInterest(AudioClipOwner owner): void

stream(in long maxChunkSize,

 in AudioPushConsumer consumer:void

)factory createAudioClip(Identifier,

 AudioClipManager):HARMessageAudioClip

Identifier m_audioClipID

AudioClipManager m_clipMgr

getMessageText():string

setMessageText(string):void

stream(in AudioDataFormat format,

 in long maxChunkSize,

 in TTSPriority priority,

 in AudioPushConsumer consumer):void

factory createTextClip(string text):HARMessageTextClip

string m_messageText

getSlotNumber():HARSlotNumber

setSlotNumber(HARSlotNumber):void

stream(in AudioDataFormat format,

 in long maxChunkSize,

 in TTSPriority priority,

 in AudioPushConsumer consumer):void

factory createPrestoredClip():HARMessagePrestoredClip

HARSlotNumber m_slotNumber

Identifier m_harID

createHAR(AccessToken,

 HARConfiguration) : HAR

getHARs():HARList

Figure 186. HARControl

3.15.1.8.1 ArbitrationQueue

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.15.1.8.2 ArbQueueEntry

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.15.1.8.3 AudioClipOwner

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.15.1.8.4 CommEnabled

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.15.1.8.5 GeoLocatable

This interface is implemented by objects that can provide location information to their users.

3.15.1.8.6 HAR

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler. This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

3.15.1.8.7 HARArbQueueEntry

This class is an arbitration queue entry used to set the message on a HAR on behalf of a traffic event. This entry also specifies the HARMessageNotifiers to be activated when the message is activated.

3.15.1.8.8 HARConfiguration

This class (struct) contains configuration data for a HAR device. It is used to transmit current configuration data from the HAR to the client, and to transmit proposed new configuration data from the client to the HAR. It is also used internally by the HARService to maintain its configuration in memory, and is used to transmit configuration data to/from the HAR to the HARControlDB database interface class.

3.15.1.8.9 HARConfigurationEventInfo

This class defines data (HARConfiguration, and HAR ID and reference) pushed with a HARConfigurationChanged and HARAdded CORBA event.

3.15.1.8.10 HAREventType

This enumeration defines the types of CORBA events that are pushed on a HARControl event channel.

3.15.1.8.11 HARFactory

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR objects under the domain of the specific HARFactory object.

3.15.1.8.12 HARList

The HARList class is a collection of HAR objects.

3.15.1.8.13 HARMessage

This utility class represents a message which is capable of being stored on a HAR. It stores the HAR message as a HAR message header, body and footer. The HARMessage can be configured to use the default header or can provide a custom header clip. The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided. The body can consist of one or more body clips. Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.15.1.8.14 HARMessageAudioClip

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is passed around the system, wherever possible instead of passing the actual voice data contained in the initial HARMessageAudioDataClip. When the actual voice data is needed to play to the user or to program the HAR device, this object's streamer is used to stream the actual voice data back to an AudioPushConsumer specified by the requester.

3.15.1.8.15 HARMessageAudioDataClip

This class is a message clip that contains audio data and the format of the audio data. Because audio data can be very large, this type of clip is reserved for use when recorded voice is first entered into the system. Recorded voice that already exists in the system is passed throughout the system using HARMessageAudioClip to avoid sending the large audio data when possible. A HARMessageAudioClip can stream the associated data back to an audio consumer when needed, by contacting its AudioClipManager.

3.15.1.8.16 HARMessageClip

This class represents a section of a HAR message. A HARMessage can contain up to three clips: a header, trailer, and body. See HARMessage for details. A HARMessageClip can be either plain text which would need to be converted to audio prior to broadcast, or audio (WAV) format, or it can refer to a clip which is prestored in a specific target HAR already. Audio clips are normally passed around as lightweight HARMessageAudioClips, which are created from HARMessageAudioDataClips at the point where the HARMessageAudioClip first enters a server.

3.15.1.8.17 HARMessageClipList

The HARMessageClipList is a collection of HARMessageClip objects. It is used to specify multiple clips contained in the body of a HARMessage. While a HARMessage specified by a user can contain only one body clip, a HARMessage generated by the HAR Service can contain multiple body clips, as a result of combining more than one message into a single message for download to and broadcast by a HAR.

3.15.1.8.18 HARMessageNotifier

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message.

3.15.1.8.19 HARMessageNotifierList

This class defines a list of HARMessageNotifierStruct objects.

3.15.1.8.20 HARMessageNotifierStruct

This class (struct) defines structure used for specifying a HARMessageNotifier, containing the notifier's ID and reference.

3.15.1.8.21 HARMessagePrestoredClip

This class stores data used to identify the usage of a clip that has already been stored on a specific HAR device.

3.15.1.8.22 HARMessageTextClip

This class represents a HAR message content object which is in plain text format. This message can be checked for banned words and will be converted into a voice message using a speech engine, for downloading to a HAR device or to preview the voice audio to a user.

3.15.1.8.23 HARPlanItemData

This class is used to associate a message with a HAR for use in Plans.

3.15.1.8.24 HARRPIData

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and when the message is being broadcast on the HAR.

3.15.1.8.25 HARSlotData

This struct defines the data used to identify the contents and usage of a slot in the HAR controller.

3.15.1.8.26 HARSlotDataList

The HARSlotDataList class is simply a collection of HARSlotData objects.

3.15.1.8.27 HARSlotNumber

The HARSlotNumber is an integer used to specify slot numbers on a HAR controller.

3.15.1.8.28 HARSlotUsageIndicator

This enum defines indicators used to show the usage of a given slot in the HAR controller.

3.15.1.8.29 HARStatus

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains other private status data elements which are not elements of this class.)

3.15.1.8.30 HARStatusEventInfo

This class contains data (HARStatus) that is pushed when the HARStatusChanged CORBA event is pushed on the HARControl event channel.

3.15.1.8.31 Message

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.15.1.8.32 SharedResource

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.15.1.8.33 SharedResourceManager

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.15.1.8.34 StoredMessage

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.15.1.8.35 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.9 HARNotification

This Class Diagram shows the classes involved in manipulating HAR message notifications. The HAR notifiers can be SHAZAMs or DMS devices that are acting as SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from overwriting another type of DMS message.

[image: image186.emf]*

*

1

*

1

*

1 1 1 1

1 *

HARMessageNotifier

«interface»

SHAZAM

«interface»

CommEnabled

«interface»

GeoLocatable

«interface»

SharedResource

«interface»

UniquelyIdentifiable

«interface»

SHAZAMStatusChangeEventInfo

«typedef»

SHAZAMConfigurationEventInfo

«typedef»

SHAZAMEventType

«enumeration»

Identifier

HARMsgNotifierIDList

«typedef»

SHAZAMStatus

«typedef»

SHAZAMConfiguration

«typedef»

SharedResourceManager

«interface»

SHAZAMFactory

«interface»

DMSFactory

«interface»

boolean m_activated

CommunicationMode m_commMode

OperationalStatus m_opStatus

OpcenterInfo m_controllingOpCenter

long m_lastContactTime

long m_lastStatusChangeTime

string m_name

string m_location

Direction m_direction

string m_devicePhoneNumber

PortLocationData m_portLocationData

long m_refreshIntervalMins

NetworkConnectionSite m_networkConnectionSite

Identifier m_associatedHARID

HAR m_associatedHAR

createSHAZAM(AccessToken,

 SHAZAMConfigData) : SHAZAM

getSHAZAMList():SHAZAMList

getID()

getName()

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

setBeaconsOn(AccessToken, CommandStatus):void

setBeaconsOff(AccessToken, CommandStatus):void

refresh(AccessToken, CommandStatus):void

setConfiguration(AccessToken, SHAZAMConfiguration, CommandStatus)

getConfiguration(AccessToken) : OnOffDeviceConfiguration

getStatus() : SHAZAMStatus

remove(AccessToken):void

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

String getLocationDesc() getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

getID()

getName()

Identifier id

SHAZAMStatus status

SHAZAM theSHAZAM

Identifier id;

SHAZAMConfiguration config

SHAZAMAdded

SHAZAMRemoved

SHAZAMStatusChanged

SHAZAMConfigurationChanged

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

m_id

Figure 187. HARNotification

3.15.1.9.1 CommEnabled

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.15.1.9.2 DMSFactory

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a method to get a list of DMS devices currently in the system.

3.15.1.9.3 GeoLocatable

This interface is implemented by objects that can provide location information to their users.

3.15.1.9.4 HARMessageNotifier

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message.

3.15.1.9.5 HARMsgNotifierIDList

This typedef is a sequence of HARMessageNotifier identifiers.

3.15.1.9.6 Identifier

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.15.1.9.7 SharedResource

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.15.1.9.8 SharedResourceManager

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.15.1.9.9 SHAZAM

This interface class is used to identify the SHAZAM-specific methods which can be used to interface with a SHAZAM field device. This interface is implemented by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command and control.

3.15.1.9.10 SHAZAMConfiguration

This class contains data that specifies the configuration of a SHAZAM device. This class is used to store configuration within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

3.15.1.9.11 SHAZAMConfigurationEventInfo

This class contains data (a SHAZAMConfiguration object) that is pushed on the SHAZAMControl CORBA event channel with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

3.15.1.9.12 SHAZAMEventType

This enum defines the types of CORBA events that are pushed on a SHAZAM control event channel.

3.15.1.9.13 SHAZAMFactory

This CORBA interface allows new SHAZAM objects to be added to the system. It can also provide a list of all SHAZAM objects to a requester.

3.15.1.9.14 SHAZAMStatus

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

3.15.1.9.15 SHAZAMStatusChangeEventInfo

This class contains data (a SHAZAMStatus object) that is pushed on a SHAZAMControl event channel with a SHAZAMStatusChanged event.

3.15.1.9.16 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.10 LibraryManagement

This class diagram shows all classes and relationships relating to message libraries.

[image: image187.emf]UniquelyIdentifiable

«interface»

StoredMessage

«interface»

MessageLibrary

«interface»

LibraryAddedEventInfo

«typedef»

LibraryNameChangedEventInfo

«typedef»

StoredMessageRemovedEventInfo

«typedef»

StoredMessageAddedEventInfo

«typedef»

StoredMessageData

«typedef»

LibraryEventType

«enumeration»

Message

«interface»

MessageLibraryList

«typedef»

MessageLibraryFactory

«interface»

StoredMessageList

«typedef»

1 *

1 *

1

1

1

*

*

*

setName(AccessToken token, string name):void

createStoredMessage(AccessToken token,

 Message msg,

 string description,

 string category):StoredMessage

getStoredMessages():StoredMessageList

isUsedByAnyPlan():boolean

isMessageUsedByAnyPlan(Identifier msgID):boolean

removeMessage(AccessToken, Identifier ,msgID):void

remove(AccessToken):void

Identifier id;

MessageLibrary lib;

string name;

Identifier id;

string name;

Identifier msgID

Identifier libID

StoredMessage storedMsg;;

StoredMessageData msgData;

Identifier msgID

Identifier libID

string description

string category

string lastModifiedBy

Message msg

LibraryAdded

LibraryRemoved

LibraryNameChanged

StoredMessageAdded

StoredMessageRemoved

StoredMessageChanged

validateMessageContent():void;

matches(Message): boolean

createLibrary(AccessToken token,string name):MessageLibrary

getLibraryList():MessageLibraryList

getID()

getName()

getMessageData():StoredMessageData

getMessage():Message

setMessage(AccessToken, Message):void

setMessageData(AccessToken token,

 string description,

 string category,

 Message msg):void

 remove(AccessToken):void

Figure 188. LibraryManagement

3.15.1.10.1 LibraryAddedEventInfo

This struct defines data passed with a DMSLibraryAdded event.

3.15.1.10.2 LibraryEventType

This enum defines the types of events that can be pushed on a LibraryManagement event channel.

3.15.1.10.3 LibraryNameChangedEventInfo

This struct defines data passed with a LibraryNameChanged event.

3.15.1.10.4 Message

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.15.1.10.5 MessageLibrary

This class represents a logical collection of messages which are stored in the database.

3.15.1.10.6 MessageLibraryFactory

This class is used to create new message libraries and maintain them in a collection.

3.15.1.10.7 MessageLibraryList

A collection of MessageLibrary objects.

3.15.1.10.8 StoredMessage

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.15.1.10.9 StoredMessageAddedEventInfo

This struct defines the data passed with a StoredMessageAdded event.

3.15.1.10.10 StoredMessageData

This structure defines the data stored in a StoredMessage.

3.15.1.10.11 StoredMessageList

A collection of StoredMessage objects.

3.15.1.10.12 StoredMessageRemovedEventInfo

This struct defines data passed with a StoredMessageRemoved event.

3.15.1.10.13 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.11 LogCommon

This class diagram contains all interfaces that are necessary to multiple log types within the CHART II system.

[image: image188.emf]LogEntryDataList

«type»

LogIterator

«interface»

LogQueryResults

LogFilter

«interface»

LogEntry

«interface»

LogEntryList

«type»

LogEntryData

«typedef»

1

*

1 *

1

0..1

1

1

sequence LogEntryData

getMoreEntries(long maxCount) : LogEntryList

destroy():void

long m_timeOfLastUse

LogEntryList initialEntries

boolean hasAdditionalEntries

LogIterator additionalEntriesIterator

factory createLogFilter() : LogFilter

Source m_source

boolean m_sourceIsUsed

string m_author

TimeStamp m_startDate

TimeStamp m_endDate

Identifier m_eventID

Identifier m_logEntryID

string m_opCenterName

string m_containsText

boolean isCaseSensitive

getID():Identifier

matchesFilter(LogFilter filter) : boolean

factory createLogEntry() : LogEntry

Identifier m_id

TimeStamp m_timestamp

Identifier m_eventID

string m_text

string m_author

string m_opCenterName

string m_hostname

Source m_source

sequence LogEntry

String entryText

Identifier trafficEventID

Source entrySource

Figure 189. LogCommon

3.15.1.11.1 LogEntry

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

3.15.1.11.2 LogEntryData

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate.

3.15.1.11.3 LogEntryDataList

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which contain the data needed to create one Log Entry. Normally each LogEntryDataList will contain only one LogEntryData object, but if the CommLog service is unavailable for a time, it is possible that multiple LogEntryData objects may be queued up for insertion into the database.

3.15.1.11.4 LogEntryList

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting process in one clump. (Some requests return so much data that data is returned in clumps. The initial request returns a LogIterator from which additional LogEntryList sequences can be requested, in order to complete the entire query.

3.15.1.11.5 LogIterator

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

3.15.1.11.6 LogFilter

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

3.15.1.11.7 LogQueryResults

This structure contains the data that is the results of a log entry query, including the first batch of entries (if any).

3.15.1.12 PlanManagement

This class diagram contains the interfaces used in the creation and management of plans. A plan is a group of actions that are set-up in advance to be used in response to a traffic event. Given the unpredictable nature of traffic events, pre-defined plans are usually only useful for congestion, safety messages, and weather related messages.

[image: image189.emf]PlanItemChangedEventInfo

«typedef»

PlanEventType

«enumeration»

PlanItemData

PlanList

«typedef»

PlanItemList

«typedef»

PlanItem

«interface»

Plan

«interface»

PlanFactory

«interface»

PlanItemAddedEventInfo

«typedef»

PlanItemRemovedEventInfo

«typedef»

PlanAddedEventInfo

«typedef»

PlanNameChangeEventInfo

«typedef»

UniquelyIdentifiable

«interface»

1 * 1 *

1

1

1

*

1

*

PlanItem thePlanItem;

PlanItemData itemData;

string itemName;

Identifier planID;

Identifier planItemID;

PlanAdded

PlanRemoved

PlanItemAdded

PlanItemRemoved

PlanNameChanged

PlanItemChanged

isUsingObject(IdentifierList objectIDs):boolean

setName(AccessToken, string):void

setData(AccessToken, PlanItemData):void

getData():PlanItemData

remove(AccessToken):void

getPlanID():Identifier

isUsingObject(IdentifierList):boolean

setName(AccessToken,string):void

addItem(AccessToken,PlanItemData):PlanItem

removeItem(AccessToken,PlanItem):void

getItems():PlanItemList

remove(AccessToken):void

isUsingObject(IdentifierList objectIDs)

createPlan(AccessToken token,

 string name):Plan

getPlans():PlanList

PlanItem planItem

Identifier planID

Identifier planItemID

Identifier planID

Identifier planItemID

Plan thePlan

Identifier planID

Identifier planID

string newName

getID()

getName()

Figure 190. PlanManagement

3.15.1.12.1 Plan

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items.

3.15.1.12.2 PlanAddedEventInfo

The PlanAddedEventInfo class defines the data passed in the PlanAdded event.

3.15.1.12.3 PlanEventType

The PlanEventType class is an enumeration which describes the types of events that can be pushed for plans. When a plan item is added or modified it is up to the derived item type to push the appropriate type of event.

3.15.1.12.4 PlanFactory

This class creates, destroys, and maintains the collection of plans which can be used in the system.

3.15.1.12.5 PlanItem

This class represents an action within the system that can be planned in advance. This CORBA interface is subclassed for specific actions that can be planned in the system.

3.15.1.12.6 PlanItemAddedEventInfo

The PlanItemAddededEventInfo class defines the data passed in the PlanItemAdded event.

3.15.1.12.7 PlanItemChangedEventInfo

The PlanItemChangedEventInfo class defines the data passed in the PlanItemChanged event.

3.15.1.12.8 PlanItemData

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.15.1.12.9 PlanItemList

The PlanItemList class is simply a collection of PlanItem objects.

3.15.1.12.10 PlanItemRemovedEventInfo

The PlanItemRemovedEventInfo defines the data passed in the PlanItemRemoved event.

3.15.1.12.11 PlanList

The PlanList class is simply a collection of Plan objects.

3.15.1.12.12 PlanNameChangeEventInfo

The PlanNameChangeEventInfo class defines the data passed in the PlanNameChanged event.

3.15.1.12.13 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.13 ResourceManagement

This class diagram contains the interfaces pertaining to shared resources, operations centers, user login sessions, and organizations.

[image: image190.emf]ResponseParticipantEventInfo

«typedef»

SharedResource

«interface»

TransferrableSharedResource

«interface»

LogoutFailure

«exception»

LoginFailure

«exception»

ResourceControlConflict

«exception»

HasControlledResources

«exception»

Organization

«interface»

UnhandledControlledResourcesInfo

«typedef»

ResponseParticipant

«typedef»

ResponseParticipantType

«enumeration»

OpCenterInfo

«typedef»

SharedResourceList

«typedef»

LoginSessionList

«typedef»

ControllingOpCtrChangeEventInfo

«typedef»

ResourceEventType

«enumeration»

UniquelyIdentifiable

«interface»

OperationsCenter

«interface»

OperationsCenterFactory

SharedResourceManager

«interface»

UserLoginSession

«interface»

InvalidOperationsCenter

«exception»

1

*

1*

1 1

1 *

1

1

*

*

* *

Identifier opCtrID

ResponseParticipant participant

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

void setControllingOpCenter(AccessToken token,

 Identifier opCtrID,

 string opCtrName)

string reason string reason

string reason

string controllingOpCenterName

string reason

OpCenterInfo opCtrInfo

string m_name

ResponseParticipantType m_type

TYPE_UNSPECIFIED

TYPE_AGENCY

TYPE_RESOURCE

TYPE_SPECIAL_NEEDS

TYPE_CHART_UNIT

Identifier m_id

string m_name

Identifier resourceID

string opCtrName

Identifier opCtrID

UnhandledControlledResourcesEvent

ResponseParticipantAdded

ResponseParticipantRemoved

getID()

getName()

loginUser(UserLoginSession loginSession,

 UserName name,

 string password,

 string hostname):AccessToken

logoutUser(AccessToken token,

 UserLoginSession loginSession):void

changeUser(AccessToken token,

 UserLoginSession oldSession,

 UserLoginSession newSession,

 UserName userName,

 string password):AccessToken

getControlledResources():SharedResourceList

getLoginSessions():LoginSessionList

forceLogout(AccessToken token,

 UserLoginSession loginSession):void

isUserLoggedIn(UserName userName):boolean

getNumLoggedInUsers():long

transferSharedResources(AccessToken token,

 TransferableSharedResourceList resources,

 OperationsCenter targetOpCenter):void

verifyUserPassword(UserName userName,

 string password):boolean

addResponseParticipant(AccessToken token,

 ResponseParticipant participant) : void

removeResponseParticipant(AccessToken token,

 ResponseParticipant participant) : void

getAllSystemResponseParticipants() : ResponseParticipant[]

getEligibleResponseParticipants() : ResponseParticipant[]

addEligibleResponseParticipants(AccessToken token,

 ResponseParticipant participant) :void

removeEligibleResponseParticipants(AccessToken token,

 ResponseParticipant participant) :void

remove(AccessToken token):void

setConfiguration(AccessToken token,

OpCenterConfig config):void

getOperationCenterList():OpCenterList

createOperationsCenter(AccessToken token):

 OperationsCenter

getResources() : SharedResourceList

getControlledResources(Identifier opCtrID) : SharedResourceList

hasControlledResources(Identifier opCtrID) : boolean

getOpCenter():OperationsCenter

getUsername():UserName

ping():boolean

void forceLogout(AccessToken token)

string reason

Figure 191. ResourceManagement

3.15.1.13.1 ControllingOpCtrChangeEventInfo

The ControllingOpCtrChangeEventInfo class defines data to be passed on a ControllingOpCtrChange event.

3.15.1.13.2 HasControlledResources

This class represents an exception which describes a failure caused when the user tries to do something which requires that no resources be controlled, yet the Operations Center which the user is logged in to is still controlling one or more shared resources.

3.15.1.13.3 InvalidOperationsCenter

Exception which describes a failure caused when the operations center specified is not valid for the attempted operation.

3.15.1.13.4 LoginFailure

This class represents an exception which describes a login failure.

3.15.1.13.5 LoginSessionList

A LoginSessionList is simply a collection of UserLoginSession objects.

3.15.1.13.6 LogoutFailure

This exception is thrown when an error occurs while logging a user out of the system.

3.15.1.13.7 OpCenterInfo

This structure contains the information about an OperationsCenter.

3.15.1.13.8 OperationsCenter

The OperationsCenter represents a center where one or more users are located. This class is used to log users into the system. If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user. This token is then used to call privileged methods within the system. Shared resources in the system are either available or under the control of an OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control. This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

3.15.1.13.9 OperationsCenterFactory

This class is used to create new operations centers and maintain them in a collection.

3.15.1.13.10 Organization

The Organization interface extends the UniquelyIdentifiable interface and will represent an organization, that is an administrative body which can control or own resources.

3.15.1.13.11 ResourceControlConflict

This exception is thrown when attempt to gain control of a shared resource fails because the resource is under the control of a different operations center and the requesting user does not have the functional right to override the restriction.

3.15.1.13.12 ResourceEventType

The ResourceEventType enumeration defines all of the resource related event types.

3.15.1.13.13 ResponseParticipant

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response.

3.15.1.13.14 ResponseParticipantEventInfo

This structure contains information about an eligible response participant that is added to an operations center.

3.15.1.13.15 ResponseParticipantType

The ResponseParticipantType enumeration defines a type of entity participating in a response to an event. This could be an external organization, a mobile unit, a mobile device or special purpose vehicle, or a special needs vehicle equipped to handle unusual or hazardous situations.

3.15.1.13.16 SharedResource

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.15.1.13.17 SharedResourceList

A SharedResourceList is simply a collection of SharedResource objects.

3.15.1.13.18 SharedResourceManager

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.15.1.13.19 TransferrableSharedResource

The TransferrableSharedResource interface extends the SharedResource interface, which is implemented by SharedResource objects whose control can be transferred from one operations center to another.

3.15.1.13.20 UnhandledControlledResourcesInfo

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that an OperationsCenter is controlling one or more controlled resources but has no users logged in.

3.15.1.13.21 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.13.22 UserLoginSession

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system. This object is served from the GUI and provides a means for the servers to call back into the GUI process.

3.15.1.14 TrafficEventManagement

This class diagram contains all classes relating to Traffic Events

[image: image191.emf]1

1 *

RoadwayEvent

«interface»

Incident

«interface»

WeatherServiceEvent

«interface»

DisabledVehicleEvent

«interface»

WeatherSensorEvent

«interface»

SpecialEvent

«interface»

PlannedRoadwayClosure

«interface»

SafetyMessageEvent

«interface»

CongestionEvent

«interface»

ActionEvent

«interface»

TrafficEvent

«interface»

TrafficEventFactory

«interface»

LaneState

«enumeration»

ResponsePlanItemStatus

«typedef»

LaneConfigurationList

«typedef»

ResponsePlanItemList

«typedef»

ResponseParticipationList

«typedef»

LaneType

«enumeration»

TrafficEventList

«typedef»

ResponsePlanItemData

HARRPIData DMSRPIData

Lane

LaneConfiguration

ResponsePlanItem

«interface»

CommandStatus

«interface»

ResourceDeployment

«interface»

OrganizationParticipation

«interface»

ResponseParticipation

«interface»

1 1

1 *

1

*

1

1

1 *

1

*

1 *

1

*

1 1

1 1

1

*

1

isRecurring(AccessToken token)

setRecurring(AccessToke token,

 boolean isRecurring):void

m_recurring

getType():TrafficEventTypeValues

addLogEntry(AccessToken token,

 string text):void

addResponseParticipation(AccessToken token,

 ResponseParticipationData rpdata):void

addResponseItem(AccessToken token,

 ResponsePlanItemData rpid):void

associateEvent(AccessToken token,

 TrafficEvent eventToAssociate,

 boolean primary): void

removeEventAssociation(AccessToken token,

 TrafficEvent associatedEvent,

 Identifier associatedEventID):void

close(AccessToken token):void

isClosed(TimeStamp closureTme):boolean

overrideClosureTime(AccessToken token,

 TimeStamp closeTime);void

executeResponse(AccessToken token):void

getAssociatedEvents():Identifier[]

getHistory(LogFilter filter, long maxCount,

 LogEntry[] entries):LogQueryResults

isPrimary():boolean

setPrimary(AccessToken token):void

setSecondary(AccessToken token):void

getResponseParticipations():ResponseParticipation[]

getBasicEventData():BasicEventData

getResponsePlanItems():ResponsePlanItem[]

addRPIStatusLogEntry(AccessToken token,string text,

 Identifier deviceID, boolean beaconState,

 boolean isMessageSet):void

getName() : string

createTrafficEvent(AccessToken token,

 TrafficEventType type,

 BasicEventData eventData,

 LogEntry[] initialEntries):TrafficEvent

getTrafficEvents():TrafficEventList

getStandardLaneConfigurations():LaneConfigurationList

getEORSPermits():PermitList

LANE_OPEN

LANE_CLOSED

LANE_NOT_EXIST

string lastKnownState

boolean isActive

boolean hasBeenExecuted

boolean m_modified

ON_RAMP

OFF_RAMP

SHOULDER

TRAFFIC_LANE

COLLECTOR_DISTRIBUTOR

getTargetID():Identifier

isExecutable() : boolean

execute(AccessToken token,

 TrafficEvent trafficEvt,

 CommandStatus status):void

revokeExecution(AccessTiken token,

 TrafficEvent trafficEvt):void

isUsingObject(Identifier[] objectIDs):boolean

eventTransferred(AccessToken token,

 TrafficEvent newTrafficEvt):void

getVerboseDescription(): string

getTrafficEventType(): int

string m_description

-int m_trafficEventType

LaneState m_currentState

Direction m_directionOfTravel

TimeStamp m_timeStateChanged

long m_offsetFromLeft

LaneType m_type

string m_description

getLanes():Lane[]

string m_configurationName

string m_configurationDescription

Lane[] m_lanes

getTargetID():Identifier

execute(AccessToken token):void

setItemData(AccessToken token,

 ResponsePlanItemData data):void

getItemData(AccessToken token):ResponsePlanItemData

isActive():boolean

hasBeenExecuted():boolean

setActive(AccessToken token):void

setInactive(AccessToken token):void

getDescription():string

setDescription(AccessToken token,

 string description):void

eventTransferred(AccessToken token,

 TrafficEvent newTrafficEvt,

 Identifier opCenterID,

 string opCenterName):void

isUsingObject(Identifier[] objectIDs):boolean

remove(AccessToken token):void

getItemStatus():ResponsePlanItemStatus

setArrivedOnScene(AccessToken token,

 boolean hasArrived) : void

setDepartedFromScene(AccessToken token,

 boolean hasDeparted) : void

overrideArrivalTime(AccessToken token,

 TimeStamp arrivalTime) : void

overrideDepartureTime(AccessToken token,

 TimeStampdepartureTime) : void

setRespondedToEvent(AccessToken token,

 boolean hasResponded) : void

overrideRespondedTime(AccessToken token,

 TimeStamp respondedTime) : void

getParticipationData() : ResponseParticipationData

setNotified(AccessToken token,

 boolean hasBeenNotified) : void

overrideNotificationTime(AccessToken token ,

 TimeStamp notificationTime) : void

remove(AccessToken token) : void

getLaneConfiguration():LaneConfiguration

setLaneConfiguration(AccessToken token,

 LaneConfiguration laneConfig)

overrideLaneOpenCloseTime(AccessToken token,

 Lane changedLane):void

setVehicleData(AccessToken token,

 IncidentVehicleData vehicleData):void

setType(AccessToken token,

 IncidentType type):void

setRoadConditions(AccessToke token,

 RoadConditionsData roadConditions):void

overrideLaneOpenCloseTime(

 AccessToken token,

 long laneOffsetFromLeft,

 TimeStamp timeOpenedOrClosed):void

Figure 192. TrafficEventManagement

3.15.1.14.1 ActionEvent

This class models roadway events that require an operations center to take action but do not fit well into the other event categories. An example of this type of event would be debris in the roadway.

3.15.1.14.2 CommandStatus

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.15.1.14.3 CongestionEvent

This class models roadway congestion which may be tagged as recurring or non-recurring through the use of an attribute.

3.15.1.14.4 DisabledVehicleEvent

This class models disabled vehicles on the roadway.

3.15.1.14.5 DMSRPIData

The DMSRPIData class is an abstract class which describes a response plan item for a DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself.

3.15.1.14.6 HARRPIData

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and when the message is being broadcast on the HAR.

3.15.1.14.7 Incident

This class models objects representing roadway incidents. An incident typically involves one or more vehicles and roadway lane closures.

3.15.1.14.8 Lane

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.15.1.14.9 LaneConfiguration

This class contains data that represents the configuration of the lanes.

3.15.1.14.10 LaneConfigurationList

A collection of LaneConfiguration objects.

3.15.1.14.11 LaneState

This enumeration lists the possible states that a traffic lane may be in.

3.15.1.14.12 LaneType

This enumeration lists the types of lanes.

3.15.1.14.13 OrganizationParticipation

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

3.15.1.14.14 PlannedRoadwayClosure

This class models planned roadway closures such as road construction. This interface will be expanded in future releases to include interfacing with the EORS system.

3.15.1.14.15 ResourceDeployment

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

3.15.1.14.16 ResponseParticipation

This interface represents the involvement of one particular resource or organization in response to a particular traffic event.

3.15.1.14.17 ResponseParticipationList

A collection of ResponseParticipation objects.

3.15.1.14.18 ResponsePlanItem

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.15.1.14.19 ResponsePlanItemData

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.15.1.14.20 ResponsePlanItemList

A collection of ResponsePlanItem objects.

3.15.1.14.21 ResponsePlanItemStatus

This structure contains data that describes the current state of a response plan item.

3.15.1.14.22 RoadwayEvent

This class models any type of incident that can occur on a roadway. This point in the hierarchy provides a break off point for traffic event types that pertain to other modals.

3.15.1.14.23 SafetyMessageEvent

This type of event is created by an operator when he/she would like to send a safety message to a device.

3.15.1.14.24 SpecialEvent

This class models special events that affect roadway conditions such as a concert or professional sporting event.

3.15.1.14.25 TrafficEvent

Objects of this type represent traffic events that require action from system operators.

3.15.1.14.26 TrafficEventFactory

This interface is supported by objects that are capable of creating traffic event objects in the system.

3.15.1.14.27 TrafficEventList

A collection of TrafficEvent objects.

3.15.1.14.28 WeatherSensorEvent

This class models roadway weather events such as snow or fog that are reported by the system's weather monitoring devices. Operators will need to manually enter the information in these events for this release. In future releases, these events will be automatically generated by the system.

3.15.1.14.29 WeatherServiceEvent

This class models roadway weather events such as snow or fog that are manually entered by an operator in response to receiving an alert from the national weather service.

3.15.1.15 TrafficEventManagement2

[image: image192.emf]ResponseParticipationData

IncidentType

«type»

ResponseParticipationChangedInfo

«typedef»

ResponseParticipationRemovedInfo

«typedef»

ResponseParticipationAddedInfo

«typedef»

ResponsePlanItemsRemovedInfo

«typedef»

WeatherConditions

«typedef»

WeatherServiceEventData

RevokeExecutionFailure

«exception»

UnknownEventType

«exception»

CountyState

«enumeration»

RoadCondition

«enumeration»

IncidentTypeValues

«interface»

TrafficEventType

«type»

TrafficEventTypeValues

«interface»

ResponsePlanItemInfo

«typedef»

TrafficEventTypeChangedInfo

«typedef»

LaneConfigurationChangedInfo

«typedef»

TrafficEventAssociationRemovedInfo

«typedef»

TrafficEventAssociatedInfo

«typedef»

LogEntriesAdded

«typedef»

TrafficEventAddedInfo

«typedef»

TrafficEventEventType

«enumeration»

PlannedRoadwayClosureEventData

ResponseParticipant

«typedef»

ActionEventData

IncidentData

IncidentVehicleData

«typedef»

BasicEventData

DisabledVehicleData

ResourceDeploymentData

OrganizationParticipationData

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1 1

Identifier m_participationID

ResponseParticipant m_participant

boolean m_notified

TimeStamp m_timeNotified

Identifier trafficEventID

ResponseParticipationData participationData

Identifier trafficEventID

Identifier participationID

Identifier trafficEventID

ReponseParticipationData participationData

ResponseParticipation participation

Identifier trafficEventID

Identifier[] planItemIDs

boolean hurricane

boolean tornado

boolean blizzard

boolean severeWind

boolean rain

boolean reducedVisibility

boolean ozone

boolean highWater

boolean flood

boolean landslide

boolean other

string otherDescription

RoadCondition m_roadCondition

WeatherConditions m_weatherConditions

boolean m_evacuationRequired

boolean m_cleanupRequired

string reason

string debug

IdentifierList targetIDs

ROAD_CONDITION_UNSPECIFIED

DRY

WET

ICE_OR_SNOW

CHEMICAL_WET

OTHER_NO_ADDL_INFO

OTHER_ADDL_INFO

VEHICLE_FIRE

WEATHER

DEBRIS_IN_ROADWAY

PERSONAL_INJURY

PROPERTY_DAMAGE

FATALITY

DISABLED_IN_ROADWAY

ROADWORK

COLLISION

MAINTENANCE

SIGNAL_CALL

POLICE_ACTIVITY

OFF_ROAD_ACTIVITY

DECLARATION_OF_EMERGENCY

TYPE_PLANNED_ROADWAY_CLOSURE

TYPE_INCIDENT

TYPE_DISABLED_VEHICLE

TYPE_WEATHER_SENSOR_ALERT

TYPE_WEATHER_SERVICE_ALERT

TYPE_ACTION

TYPE_CONGESTION

TYPE_RECURRING_CONGESTION

TYPE_SAFETY

TYPE_SPECIAL_EVENT

Identifier trafficEventID

Identifier planItemID

string planItemName

ResponsePlanItem planItem

ResponsePlanItemData planItemData

Identifier eventID

TrafficEvent newTrafficEvent

BasicEventData newEventData

Identifier eventID

LaneConfiguration newConfiguration

Identifier trafficEventAID

Identifier trafficEventBID

Identifier primaryEventID

TrafficEvent primaryEvent

Identifier secondaryEventID

TrafficEvent secondaryEvent

Identifier trafficEventID

LogEntry[] logEntries

TrafficEvent theTrafficEvent

BasicEventData trafficEventData

LogEntryList logEntries

ActionEventAdded

CongestionEventAdded

DisabledVehicleEventAdded

HistoryLogEntriesAdded

HistoryLogEntriesUpdated

IncidentAdded

LaneConfigurationChanged

OrganizationParticipationAdded

OrganizationParticipationChanged

ParticipationRemoved

PlannedRoadwayClosureEventAdded

ResourceDeploymentAdded

ResourceDeploymentChanged

ResponsePlanItemAdded

ResponsePlanItemModified

ResponsePlanItemRemoved

ResponsePlanStatusChanged

SafetyEventAdded

SpecialEventAdded

TrafficEventAssociated

TrafficEventAssociationRemoved

TrafficEventClosed

TrafficEventDeleted

TrafficEventStateChanged

WeatherServiceEventAdded

string m_eorsPermitTrackingNumber

string m_name

ResponseParticipantType m_type

boolean m_signal

boolean m_debris

boolean m_utility

boolean m_other

string m_otherDescription

IncidentType m_incidentType

RoadCondition m_roadConditions

IncidentVehicleData m_vehicleData

boolean m_hazmat

long numCarsInvolved

long numCarsOverturned

long numPickupVanSuvsInvolved

long numPickupVanSuvsOverturned

long numSingleUnitTrucksInvolved

long numSingleUnitTrucksOverturned

long numSingleUnitTrucksLostLoad

long numTractorTrailersInvolved

long numTractorTrailersOverturned

long numTractorTrailersLostLoad

long numTractorTrailersJackKnifed

long numMotorcyclesInvolved

getID():Identifier

Identifier m_id

string m_name

string m_locationDesc

Direction m_direction

string m_source

string m_countyState

string m_description

boolean m_isSceneCleared

TimeStamp m_sceneClearedTime

boolean m_isDelayCleared

TimeStamp m_delayClearedTime

boolean m_isConfirmed

TimeStamp m_confirmedTime

boolean m_isFalseAlarm

boolean m_isClosed

TimeStamp m_closedTime

long m_maxQueueLength

OpCenterInfo m_controllingOpCenter

boolean m_primary

string m_tagStateOfIssue

string m_tagNumber

boolean m_tireChange

boolean m_hotShot

boolean m_water

boolean m_gas

boolean m_directions

boolean m_ownDisposition

boolean m_callForService

boolean m_goneOnArrival

boolean m_abandonedVehicle

boolean m_relayOperator

boolean m_other

string m_otherDescription

boolean m_arrived

TimeStamp m_timeArrived

boolean m_departed

TimeStamp m_timeDeparted

boolean m_responded

TimeStamp m_timeResponded

Figure 193. TrafficEventManagement2

3.15.1.15.1 ActionEventData

This class represents all data specific to an Action event type traffic event.

3.15.1.15.2 BasicEventData

This class represents the data common to all traffic events. All derived data types will inherit all data shown in this class.

3.15.1.15.3 CountyState

This enumeration defines the various counties in Maryland and the states surrounding Maryland that will be used for defining the traffic event.

3.15.1.15.4 DisabledVehicleData

This class represents all data specific to a disabled vehicle traffic event.

3.15.1.15.5 IncidentData

This class represents data specific to an Incident type traffic event.

3.15.1.15.6 IncidentType

This typedef defines the type of the incident.

3.15.1.15.7 IncidentTypeValues

This interface lists all possible incident types.

3.15.1.15.8 IncidentVehicleData

This class represents the vehicles involved data for incidents. Its purpose is to simplify the exchange of data between GUI and server.

3.15.1.15.9 LaneConfigurationChangedInfo

This structure contains the data that is broadcast when the lane configuration of a traffic event is changed.

3.15.1.15.10 LogEntriesAdded

This structure contains the data that is broadcast when new entries are added to the event history log of a traffic event.

3.15.1.15.11 OrganizationParticipationData

This class represents the data required to describe an organization's participation in the response to a traffic event.

3.15.1.15.12 PlannedRoadwayClosureEventData

This class contains data specific to the PlannedRoadwayEvent type of traffic event.

3.15.1.15.13 ResourceDeploymentData

This class represents the data required to describe a resource's participation in the response to a traffic event.

3.15.1.15.14 ResponseParticipant

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response.

3.15.1.15.15 ResponseParticipationAddedInfo

This structure contains the data that is broadcast when a response participant is added to the response to a particular traffic event.

3.15.1.15.16 ResponseParticipationChangedInfo

This structure contains the data pushed in a CORBA event any time any type of response participation object changes state.

3.15.1.15.17 ResponseParticipationData

This class contains all data pertinent to any class that represents a response participation.

3.15.1.15.18 ResponseParticipationRemovedInfo

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

3.15.1.15.19 ResponsePlanItemInfo

This structure contains the data that is broadcast any time a new response plan item is added or an existing response plan item is modified.

3.15.1.15.20 ResponsePlanItemsRemovedInfo

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

3.15.1.15.21 RevokeExecutionFailure

This class defines a exception thrown when failed to revoke a response plan item's execution.

3.15.1.15.22 RoadCondition

This enumeration lists the possible roadway conditions at the scene of a traffic event.

3.15.1.15.23 TrafficEventAddedInfo

This structure contains the data that is broadcast when a new traffic event is added to the system.

3.15.1.15.24 TrafficEventAssociatedInfo

This structure contains the data that is broadcast when two traffic events are associated.

3.15.1.15.25 TrafficEventAssociationRemovedInfo

This structure contains the data that is broadcast when the association between two traffic events is removed.

3.15.1.15.26 TrafficEventEventType

his enumeration defines the types of CORBA events that can be broadcast on a Traffic Event related CORBA Event channel.

3.15.1.15.27 TrafficEventType

This typedef defines the type of traffic event.

3.15.1.15.28 TrafficEventTypeChangedInfo

This structure contains the data that is broadcast when a traffic event changes types. The traffic event object that represented the traffic event previously is removed from the system and is replaced by the newTrafficEvent reference contained in this structure. If the consumer of this CORBA event has stored any references to the traffic event previously, those references should be replaced with this new reference.

3.15.1.15.29 TrafficEventTypeValues

This interface defines the types of traffic events that are supported by the system.

3.15.1.15.30 UnknownEventType

This class defines a exception thrown when the type of a traffic event type is not known and is not defined in TrafficEventTypeValues.

3.15.1.15.31 WeatherConditions

This structure contains all possible weather conditions. Each member should be set to true if that condition applies, false otherwise. The m_otherDescription member will only be considered valid if the m_other member is set to true.

3.15.1.15.32 WeatherServiceEventData

This class contains data specific to the WeatherServiceEvent type of traffic event.

3.15.1.16 TrafficEventManagement3

[image: image193.emf]TrafficEventDataChangedList

«typedef»

TrafficEventDataChanged

«enumeration»

CountyState

«enumeration»

ResponsePlanStatusChangedInfo

«typedef»

TrafficEventStateChangedInfo

«typedef»

ResponsePlanItemStatusUpdateList

ResponsePlanItemStatusUpdate

«typedef»

1 1

1

1

1 *

1 *

TRAFFIC_EVENT_NAME

TRAFFIC_EVENT_LOCATION_DESC

TRAFFIC_EVENT_DIRECTION

TRAFFIC_EVENT_SOURCE

TRAFFIC_EVENT_COUNTY_STATE

TRAFFIC_EVENT_DESCRIPTION

TRAFFIC_EVENT_IS_SCENE_CLEARED

TRAFFIC_EVENT_SCENE_CLEARED_TIME

TRAFFIC_EVENT_IS_DELAY_CLEARED

TRAFFIC_EVENT_DELAY_CLEARED_TIME

TRAFFIC_EVENT_IS_CONFIRMED

TRAFFIC_EVENT_CONFIRMED_TIME

TRAFFIC_EVENT_IS_FALSE_ALARM

TRAFFIC_EVENT_IS_CLOSED

TRAFFIC_EVENT_CLOSED_TIME

TRAFFIC_EVENT_MAX_QUEUE_LENGTH

TRAFFIC_EVENT_CONTROLLING_OP_CENTER

TRAFFIC_EVENT_PRIMARY

INCIDENT_TYPE

INCIDENT_ROAD_CONDITION

INCIDENT_HAZMAT

INCIDENT_VEHICLE_DATA

DISABLED_VEHICLE_TAG_STATE_OF_ISSUE

DISABLED_VEHICLE_TAG_NUMBER

DISABLED_VEHICLE_TIRE_CHANGE

DISABLED_VEHICLE_HOT_SHOT

DISABLED_VEHICLE_WATER

DISABLED_VEHICLE_GAS

DISABLED_VEHICLE_DIRECTIONS

DISABLED_VEHICLE_OWN_DISPOSITION

DISABLED_VEHICLE_CALL_FOR_SERVICE

DISABLED_VEHICLE_GONE_ON_ARRIVAL

DISABLED_VEHICLE_ABANDONED_VEHICLE

DISABLED_VEHICLE_RELAY_OPERATOR

DISABLED_VEHICLE_OTHER

DISABLED_VEHICLE_OTHER_DESCRIPTION

ACTION_EVENT_SIGNAL

ACTION_EVENT_DEBRIS

ACTION_EVENT_UTILITY

ACTION_EVENT_OTHER

ACTION_EVENT_OTHER_DESCRIPTION

WEATHER_SERVICE_ROAD_CONDITION

WEATHER_SERVICE_WEATHER_CONDITIONS

WEATHER_SERVICE_EVACUATION_REQUIRED

WEATHER_SERVICE_STORM_CLEANUP_REQUIRED

CONGESTION_EVENT_IS_RECURRING

PLANNED_ROADWAY_CLOSURE_EORS_TRACKING_NUMBER

COUNTY_STATE_UNSPECIFIED

ALLEGANY_COUNTY

ANNEARUNDEL_COUNTY

BALTIMORE_CITY

BALTIMORE_COUNTY

CALVERT_COUNTY

CAROLINE_COUNTY

CARROL_COUNTY

CECIL_COUNTY

CHARLES_COUNTY

DORCHESTER_COUNTY

FREDERICK_COUNTY

GARRETT_COUNTY

HARFORD_COUNTY

HOWARD_COUNTY

KENT_COUNTY

MONTGOMERY_COUNTY

PRINCEGEORGES_COUNTY

QUEENANNES_COUNTY

SAINTMARYS_COUNTY

SOMERSET_COUNTY

TALBOT_COUNTY

WASHINGTON_COUNTY

WICOMICO_COUNTY

WORCESTER_COUNTY

WASHINGTON_DC

WEST_VIRGINIA

VIRGINIA

DELAWARE

PENNSYLVANIA

Identifier trafficEventID

ResponsePlanItemStatusUpdateList itemStatusList

BasicEventData data

TrafficEventDataChangedList dataChangedList

Identifier planItemID

ResponsePlanItemStatus planItemStatus

Figure 194. TrafficEventManagement3

3.15.1.16.1 CountyState

This enumeration defines the various counties in Maryland and the states surrounding Maryland that will be used for defining the traffic event.

3.15.1.16.2 ResponsePlanItemStatusUpdate

This structure contains data that describes a status change to a particular response plan item.

3.15.1.16.3 ResponsePlanItemStatusUpdateList

This is a collection of ResponsePlanItemStatus objects.

3.15.1.16.4 ResponsePlanStatusChangedInfo

This structure contains the data that is broadcast when one or more response plan items in the response plan of a traffic event change state.

3.15.1.16.5 TrafficEventDataChanged

This enumeration lists all the possible traffic event data fields. These will be used to indicate which data has changed in basic event data and the derived events data when the event state changes are broadcast via CORBA event service.

3.15.1.16.6 TrafficEventDataChangedList

A collection of TrafficEventDataChanged items.

3.15.1.16.7 TrafficEventStateChangedInfo

This structure contains the data that is broadcast when the traffic event state changes.

3.15.1.17 TSSManagement

This class diagram contains the interfaces, structs, and typedefs that are to be defined in IDL and provide the external interface to the TSSManagement package of the CHART II system.

[image: image194.emf]Mode

Changed

OpStatus

Changed

discriminator

equals

ObjectAdded

discriminator

equals

ConfigChanged

discriminator

equals

ObjectRemoved

discriminator

equals

CurrentStatus

1 1

acquires port

using

1

1

discriminator

equals

ObjectRemoved

RTMSFactory

«interface»

TransportationSensorSystemFactory

«interface»

TransportationSensorSystem

«interface»

CommEnabled

«interface»

UniquelyIdentifiable

«interface»

PortManagerCommsData

«typedef»

PortLocationData

«typedef»

DirectionValues

«interface»

Direction

«typedef»

RTMS

«interface»

Identifier

TSSStatus

«typedef»

TSSEventType

«enumeration»

TSSEvent

«typedef»

TSSConfiguration

«typedef»

GeoLocatable

«interface»

DataPort

«interface»

PortManager

«interface»

OperationalStatus

«enumeration»

CommunicationMode

«enumeration»

TrafficParameters

«typedef»

EVENT_CHANNEL_TSS_DATA

«type»

EVENT_CHANNEL_TSS_STATUS

«type»

ModeChangedEventInfo

«typedef»

OpStatusChangedEventInfo

«typedef»

ZoneGroupTrafficParms

«typedef»

ZoneGroup

«typedef»

TSSListEntry

«typedef»

ObjectAddedEventInfo

«typedef»

ZoneGroupTrafficParmsList

«typedef»

1

*

discriminator

equals

CurrentStatus

1

1

* 1 1 1

1

*

1 1

1 1

1 1

1

1

1

*

1

*

* 1

1

1

pushes

updates

within

1 1 1 *

1

1

Mode

Changed

1

1

OpStatus

Changed

1

*

returns TSS objects in

list using

1

1

discriminator

equals

ObjectAdded

1

*

1

*

1

1

discriminator

equals

ConfigChanged

1

1

communicates to

field device with

byte[] m_id

CommunicationMode m_mode

byte[] m_id

OperationalStatus m_opStatus

int m_zoneGroupNum

TrafficParameters m_trafficParms

int m_zoneGroupNum

string m_description

Direction m_direction

int[] m_zoneNumbers

int m_defaultSpeed

TransportationSensorSystem m_tssRef

byte[] m_tssID

TransportationSensorSystem m_tss

TSSConfiguration m_config

TSSStatus m_status

createRTMS(byte[] token, TSSConfiguration):RTMS

getList():TSSListEntry[]

remove(byte[] token, byte[] id):void

getStatus():TSSStatus

getConfiguration(byte[] token):TSSConfiguration

setConfiguration(byte[] token, TSSConfiguration):void

remove(byte[] token);

byte[] m_id;

ZoneGroupTrafficParms[] m_zoneGrpTrafficParms

CommunicationMode m_mode;

OperationalStatus m_opStatus;

long m_trafficParameterTimestamp;

ObjectAdded

ObjectRemoved

CurrentStatus

ConfigChanged

ModeChanged

OpStatusChanged

discriminator():TSSEventType

configInfo():TSSConfiguration

statusInfo():TSSStatus

opStatusInfo():OpStatusChangedEventInfo

modeChangeInfo():ModeChangedEventInfo

objAddedInfo():ObjectAddedEventInfo

id():byte[]

byte[] m_id

String m_name

String m_location

Identifier m_ownerOrg

int m_dropAddress

ZoneGroup[] m_zoneGroups

int m_pollIntervalSecs

CommPortConfig m_commPortCfg

PortLocationData m_portLocData

boolean m_debugComms

int m_speedData;

int m_volumeData;

int m_percentOccupancy;

string

string

Figure 195. TSSManagement

3.15.1.17.1 CommEnabled

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.15.1.17.2 CommunicationMode

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.

3.15.1.17.3 DataPort

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.15.1.17.4 Direction

This type defines a short value that is used to indicate a direction of travel as defined in DirectionValues.

3.15.1.17.5 DirectionValues

This interface contains constants for directions as defined in the TMDD.

3.15.1.17.6 EVENT_CHANNEL_TSS_DATA

This is a static string that contains the name of the event channel used to push events that contain Transportation Sensor System traffic parameter data. The following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_DATA channels:

CurrentStatus

3.15.1.17.7 EVENT_CHANNEL_TSS_STATUS

This is a static string that contains the name of the event channel used to push events relating to the change in a Transportation Sensor System status and/or configuration. The following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_STATUS channels:

ObjectAdded

ObjectRemoved

ConfigChanged

ModeChanged

OpStatusChanged

3.15.1.17.8 GeoLocatable

This interface is implemented by objects that can provide location information to their users.

3.15.1.17.9 Identifier

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.15.1.17.10 ModeChangedEventInfo

This struct contains information pushed with a ModeChanged event.

m_id - The ID of the TSS whose communication mode has changed.

m_mode - The new communication mode for the TSS.

3.15.1.17.11 ObjectAddedEventInfo

This structure contains information passed in the ObjectAdded event pushed on a TSS status event channel. It contains the object reference that has been added along with its configuration values and current status values.

3.15.1.17.12 OperationalStatus

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

3.15.1.17.13 OpStatusChangedEventInfo

This struct contains data passed with an OpStatusChanged event.

m_id - The ID of the TSS whose operational status has changed.

m_opStatus - The new operational status for the device.

3.15.1.17.14 PortLocationData

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.15.1.17.15 PortManager

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.15.1.17.16 PortManagerCommsData

This class contains values that identify a port manager and the phone number to dial to access a device from the given port manager. This class exists to allow for the phone number used to access a device to differ based on the port manager to take into account the physical location of the port manager within the telephone network. For example, when dialing a device from one location the call may be long distance but when dialing from another location the call may be local.

3.15.1.17.17 RTMS

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc. capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a roadway at a single location. This interface serves to identify TransportationSensorSystem objects as being of the type RTMS. It also provides a place holder for future operations that may not apply to TSS objects in general and are instead RTMS specific.

3.15.1.17.18 RTMSFactory

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

3.15.1.17.19 TrafficParameters

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535 is used to indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent. (thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a missing or invalid value.

3.15.1.17.20 TransportationSensorSystem

A Transportation Sensor System (TSS) is a generic term used to describe a class of technology used for detection within the transportation industry. Examples of TSS devices range from the advanced devices, such as RTMS, to basic devices, such as single loop detectors. This software interface is implemented by objects that provide access to the traffic parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are capable of providing detection for one or more detection zones. A single loop detector would have one detection zone, while an RTMS would have 8 detection zones.

3.15.1.17.21 TransportationSensorSystemFactory

This interface is implemented by objects that are used to create and serve TransportationSensorSystem (TSS) Objects. All factories of TSS objects can return the list of TSS objects which they have created and serve. Derived interfaces are used to provide factories to create specific make, models, and types of TransportationSensorSystem objects.

3.15.1.17.22 TSSConfiguration

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this TSS. When enabled, command and response packets exchanged with the device are logged to a debugging log file.

3.15.1.17.23 TSSEvent

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo object.

3.15.1.17.24 TSSEventType

This enumeration defines the types of events that may be pushed on an event channel by a Transportation Sensor Status object. The values in this enumeration are used as the discriminator in the TSSEvent union.

ObjectAdded - a TransportationSensorSystem has been added to the system.

ObjectRemoved - a TransportationSensorSystem has been removed from the system.

CurrentStatus - The event contains the current status of one or more Transportation Sensor System objects.

ConfigChanged - One or more configuration values for the Transportation Sensor System have been changed.

ModeChanged - The communications mode of the TransportationSensorSystem has changed.

OpStatusChanged - The operational status of the TransportationSensorSystem has changed.

3.15.1.17.25 TSSListEntry

This struct is used to pass a TransporationSensorSystem object together with its ID. This struct is provided for convenience because when discovering an object, it is usually required to make a call to the object's getID() method.

3.15.1.17.26 TSSStatus

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data was collected from the device.

3.15.1.17.27 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.15.1.17.28 ZoneGroup

This class is used to group one or more detection zones of a Transportation Sensor System into a logical grouping. Traffic parameters for all detection zones included in the group are averaged to provide a single set of traffic parameters for the group.

3.15.1.17.29 ZoneGroupTrafficParms

This struct contains traffic parameters for a ZoneGroup.

m_zoneGroupNumber - The number of the zone group for which the traffic parameters apply.

m_trafficParms - The traffic parameter values for the zone group.

3.15.1.17.30 ZoneGroupTrafficParmsList

A collection of ZoneGroupTrafficParms

3.15.1.18 UserManagement

This class diagram contains the interfaces necessary to manage and utilize user profiles.

[image: image195.emf]IncorrectPassword

«exception»

UnknownUser

«exception»

InvalidUserName

«exception»

RoleName

«type»

1

*

1 1

1

*

1

*

1

*

UserManager

«interface»

ProfilePropertyList

«typedef»

FunctionalRightList

«typedef»

UserList

«typedef»

RoleList

«typedef»

ProfileProperty

«typedef»

FunctionalRight

«typedef»

Role

«typedef»

UserName

«type»

InvalidFunctionalRight

«exception»

RoleInUse

«exception»

InvalidRole

«exception»

DuplicateRole

«exception»

InvalidPassword

«exception»

UserLoggedIn

«exception»

createUser(AccessToken,UserName,Password):void

deleteUser(AccessToken,UserName):void

getUsers(AccessToken):UserList

getRoles(AccessToken):RoleList

getUserRoles(AccessToken,UserName):RoleList

getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList

setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void

createRole(AccessToken, Role):void

deleteRole(AccessToken,RoleName):void

changeUserPassword(AccessToken, UserName,Password,Password):void

setUserRoles(AccessToken, UserName, RoleList):void

grantRole(AccessToken, UserName,RoleName):void

revokeRole(AccessToken,UserName,RoleName):void

setUserPassword(AccessToken, UserName,Password):void

ping():void

setUserProfileProperties(AccessToken, ProfilePorpertyList):void

deleteUserProfileProperties(AccessToken, ProfilePropertyKeyList):void

setSystemProfileProperties(AccesssToken, ProfilePropertyList):void

deleteSystemProfileProperties(AccessToken, ProfilePropertyKeyList):void

getSystemProfileProperties(AccessToken):ProfilePropertyList

getUserProfileProperties(AccessToken):ProfilePropertyList

string key

string value

long id

Identifier orgFilter

string description

RoleName name

FunctionalRight right

string reason

Password password

string reason

UserName name

string reason

Figure 196. UserManagement

3.15.1.18.1 DuplicateRole

This class represents an exception thrown when an attempt is made to define a role which already exists.

3.15.1.18.2 FunctionalRight

A functional right represents a particular user capability. A functional right grants a particular capability to perform system functions. Each functional right may be limited by attaching the identifier of a particular organization to which this right is constrained. This capability allows an administrator to grant a particular Role the ability to modify only shared resources owned by the identified organization. The orgFilter identifier CHART2 will allow access to any organizations shared resources.

3.15.1.18.3 FunctionalRightList

A list of functional rights.

3.15.1.18.4 IncorrectPassword

This class represents an exception thrown when the password specified for a user does not match that user's password in the database.

3.15.1.18.5 InvalidFunctionalRight

This class represents an exception thrown when an attempt is made to add an invalid functional right to a role.

3.15.1.18.6 InvalidPassword

This class represents an exception thrown when the password specified is invalid.

3.15.1.18.7 InvalidRole

This class represents the exception thrown when the specified role name does not exist in the database.

3.15.1.18.8 InvalidUserName

This class represents an exception thrown when the username specified is not valid.

3.15.1.18.9 ProfileProperty

This class represents a key value pair that can be used to store system properties in the system database.

3.15.1.18.10 ProfilePropertyList

A list of profile properties.

3.15.1.18.11 Role

A Role is a collection of functional rights. A Role can be granted to a user, thus granting the user all functional rights contained within the role.

3.15.1.18.12 RoleInUse

This class represents an exception thrown when an attempt is made to delete a role which has users assigned to it.

3.15.1.18.13 RoleList

This structure contains a list of roles.

3.15.1.18.14 RoleName

Name assigned to a role. The role name must be unique and must be no longer than 32 bytes.

3.15.1.18.15 UnknownUser

This class represents an exception thrown when a user name is passed that is not in the user database.

3.15.1.18.16 UserList

A list of user names.

3.15.1.18.17 UserLoggedIn

This class represents an exception thrown when an attempt is made to delete a user who is currently logged in.

3.15.1.18.18 UserManager

The UserManager provides access to data dealing with user management. This includes users, roles, and functional rights. The UserManager is largely an interface to the User Management database tables.

3.15.1.18.19 UserName

This typedef defines the type of UserName fields used in system interfaces.

3.16 Utility

3.16.1 Class Diagrams

3.16.1.1 UtilityClasses

[image: image196.emf]DBUtility

MultiParseListener

«interface»

IdentifiableLookupTable

EventConsumer

«interface»

java.lang.Thread

RecurringTimer

Log

MultiFormatter

DBConnectionManager

Identifier

PushEventSupplier

OpLogQueue

UniquelyIdentifiable

«interface»

ObjectRemovalListener

«interface»

CommandStatusWatcher

CorbaUtilities

DictionaryWrapper

Dictionary

«interface»

DMSHardwarePage

POA

«interface»

IdentifierGenerator

BucketSet

OpLogMessage

PushEventConsumer

LogFile

OperationsLog

ServiceApplicationModule

«interface»

FMS

QueueableCommand

CommandQueue

TokenManipulator

MultiConverter

FunctionalRightType

java.lang.Runnable

«interface»

java.util.Properties

EventConsumerGroup

CosEventChannelAdmin.EventChannel

«interface»

ServiceApplicationProperties

ServiceApplication

«interface»

DefaultServiceApplication

1 *

*

1

1 *

1

*

1

1

1

*

1

*

* 1

* 1

1 1

logs message

using

1

1

1 *

1

1

1

*

1

1

1

*

11

1 *

1

*

escapeSingleQuotes(string):string

executeSQLStatement(conn, query, string, int):void

messageTxt(text)

lineJustification(justify)

newLine(pixelSkip)

newPage()

pageDisplayTime(timeOn, timeOff)

unknownTag(tag)

parseComplete()

put(Identifiable)

find(identifier)

remove(identifier)

elements()

size()

verifyConnection()

connect()

isEqual(consumer)

start()

interrupt()

setDaemon(boolean)

run():void

addTimerListener(TimerUpdatable):void

removeTimerListener(TimerUpdatable):void

getIntervalMillis():long

setIntervalMillis(long):void

shutdown():void

-long m_intervalMillis

get():Log;

log()

logStack()

m_instance

plainTextToMulti(text)

getConnection():java.sql.Connection

releaseConnection();

shutdown();

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

m_id

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)

getChannel():EventChannel;

getMaxReconnectInterval(void):int;

setMaxReconnectInterval(int seconds):void;

push(Any data):void;

disconnectPushConsumer(void):void;

OpLogQueue()

put()

flush()

getFirstMessage()

removeFirstMessage()

m_logQueueTime

getID()

getName()

objectRemoved(Object obj):void;

add(CommandStatus):void

start(long intervalMillis):void

stop():void

waitForCompletion():void

Vector m_cmdStatusList

CommandStatus m_masterStatus

String m_masterStatusText

long m_total

long m_success

long m_failure

long m_undetermined

findAllObjectsOfType(ORB, lookup, type):Object[]

char[][] m_pageText

int m_pageOnTime

int m_pageOffTime

activate_object(Servant obj)

deactivate_object(object_id)

deactivate()

the_POAManager() : POAManager

create_POA() : POA

createIdentifier()

areIdentifiersEqual()

add(comparable)

remove(comparable)

removeAll()

getElements(int)

size()

isEmpty()

m_comparables

String m_actionDesc

String m_actionType

String m_opCenter

Date m_timeStamp

String m_user

PushEventConsumer(channel, pushConsumer)

m_event_channel

m_pushConsumer

log(Object obj, String message, int level)

logStack(Object obj, String message, int level, Throwable th)

setKeepDays(int days)

setLogFileName(String fileName)

getKeepDays()

getLogFileName()

OpenLogFile()

setLogLevel(int level)

getLogLevel()

deleteLogFiles(Date presentTime)

m_logFileName

m_keepDays

m_logFile

m_creationDate

m_defFileName

m_logLevel

OperationsLog(DBConnectionManager db)

log()

flushLog

shutdown

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

addDMS

removeDMS

blankSign

stopPolling

startPolling

forcedPoll

resetController

setMessage

getMessage

setPollInterval

getPollInterval

setCommLostTimeout

getCommLostTimeout

getAsyncPollingResults

execute()

interrupted()

getCmdStatus():CommandStatus

getToken():byte[]

addCommand(QueueableCommand cmd)

removeCommand(QueueableCommand cmd)

shutdown()

-getNextCommand():QueueableCommand

m_commands

m_shutdown

TokenManipulator()

createToken(userName, opCenterID, opCenterName)

optimize(operation, orgFilter)

add(userToken, operation, orgFilter)

add(userToken, operation)

remove(userToken, operation, orgFilter)

remove(userToken, operation)

getOpCenterName(userToken)

getOpCenterID(userToken)

getHostName(userToken)

getUserName(userToken)

checkAccess(userToken, operation, orgFilter)

checkAccess(userToken, operation)

hasRight(userToken, operation, orgFilter)

validateToken(userToken)

calcCheckSum(userToken)

printToken(userToken)

printNybble(nybble)

multiToPlainText(multi)

plainTextToMulti(text, formatter)

parseMulti(multi, listener)

hardwareMsgToMulti(DMSHardwarePage[] msg):String

description()

enumerate()

fromInt()

name()

value()

ConfigureDMS

ConfigureSelf

ConfigureUsers

ForceDMSPoll

ManageDeviceComms

ManageDictionary

ManageUserLogins

ModifyMessageLibrary

ModifyPlans

ResetDMSGroup

SetDMSMessage

TransferAnySharedResource

UsePlans

ViewDictionary

ViewUserConfig

ViewUserLogins

run()

getProperty()

setProperty()

add(consumer)

setInterval()

remove(consumer)

-hasConsumer(consumer)

-verifyConnections()

for_consumers()

for_suppliers()

destroy()

ServiceApplicationProperties(

String propertiesFilename)

getProperties()

getDefaultProperties()

getThreadModel():int

getThreadPoolSize():int

getDatabaseConnectString():String

getDatabaseUserName():String

getDatabasePassword():String

getModuleNames():String[]

getNetConnectionSite():String

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

DefaultServiceApplication(String propertiesFilename)

-writeOffersToFile(String moduleName, int[] offerIDs):boolean

-removeOffersFromFile(String moduleName):boolean

Figure 197. UtilityClasses

3.16.1.1.1 BucketSet

This class is designed to contain a collection of comparable objects. All of the objects added to this collection must be of the same concrete type. Each element in the collection has an associated counter which tracks how many times this element has been added. It is then possible to get only the elements which have been added to the collection n times where n is a positive integer value. This class is very useful for creating GUI menu's for multiple objects as it allows all objects to insert their menu items and then allows the user to get only those items which all objects inserted.

3.16.1.1.2 CommandQueue

The CommandQueue class provides a queue for QueuableCommand objects. The CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.16.1.1.3 CorbaUtilities

This class is a collection of static CORBA utility methods that can be used by both server and GUI for CORBA Trader service transactions.

3.16.1.1.4 DBConnectionManager

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.16.1.1.5 DBUtility

This class contains methods that allow interaction with the database.

3.16.1.1.6 DefaultServiceApplication

This class is the default implementation of the ServiceApplication interface. This class is passed a properties file during construction. This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available, provide database connectivity, etc. The properties file also contains the class names of service modules that should be served by the service application. During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service. Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization. The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is expected to remove its offers from the trader during a shutdown. If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start. This keeps multiple offers for the same object from being placed in the trader.

3.16.1.1.7 Dictionary

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,..

3.16.1.1.8 DictionaryWrapper

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.16.1.1.9 DMSHardwarePage

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware. A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character. This format maps well to the way DMS protocols return the current message being displayed in a status query. This class can then be passed to a MultiConverter object to convert the message into MULTI format.

3.16.1.1.10 CosEventChannelAdmin.EventChannel

The event channel is a service that decouples the communication between suppliers and consumers of information.

3.16.1.1.11 EventConsumer

This interface provides the methods which any EventConsumer object that would like to be managed in an EventConsumerGroup must implement.

3.16.1.1.12 EventConsumerGroup

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

3.16.1.1.13 FMS

This class represents the CHART II system's interface to the FMS SNMP manager. Most methods included in this class have an associated method in the FMS SNMP Manager DLL provided by the FMS Subsystem. The other methods in this class exist to provide easier interface to the DLL. As an example, this class contains a blankSign method that actually calls setMessage on the FMS Subsystem with the message set to blank and beacons off.

3.16.1.1.14 FunctionalRightType

This class acts as an enumeration that lists the types of functional rights possible in the CHART2 system. It contains a static member for each possible functional right.

3.16.1.1.15 IdentifiableLookupTable

This class uses a hash table implementation to store Identifiable objects for fast lookups.

3.16.1.1.16 Identifier

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.16.1.1.17 IdentifierGenerator

This class is used to create and manipulate identifiers which are to be used in Identifiable objects.

3.16.1.1.18 Log

Singleton log object to allow applications to easily create and utilize a LogFile object for system trace messages.

3.16.1.1.19 LogFile

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.16.1.1.20 MultiConverter

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text. It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

3.16.1.1.21 MultiFormatter

This interface must be implemented by classes which convert plain text DMS messages to MULTI formatted messages.

3.16.1.1.22 MultiParseListener

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs. An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

3.16.1.1.23 ObjectRemovalListener

This interface is implemented by objects that wish to be notified of objects being removed from the system. This is typically used by objects that store a collection of other objects, such as a factory, to allow them to remove objects from their collection when the object is to be removed from the system.

3.16.1.1.24 OperationsLog

This class provides the functionality to add a log entry to the Chart II operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.

3.16.1.1.25 OpLogMessage

This class holds data for a message to be stored in the system's Operations Log.

3.16.1.1.26 OpLogQueue

This class is a queue for messages that are to be put into the system's Operations Log. Messages added to the queue can be removed in FIFO order.

3.16.1.1.27 POA

This interface represents the portable object adapter used to activate and deactivate servant objects.

3.16.1.1.28 java.util.Properties

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

3.16.1.1.29 PushEventConsumer

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

3.16.1.1.30 PushEventSupplier

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.16.1.1.31 QueueableCommand

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.16.1.1.32 java.lang.Runnable

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.16.1.1.33 ServiceApplication

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.16.1.1.34 ServiceApplicationModule

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.16.1.1.35 ServiceApplicationProperties

This class provides methods which allow the DefaultServiceApplication to access the necessary properties from the java properties configuration file. It also provides a default properties file which can be retrieved by anyone holding a ServiceApplication interface reference. This gives each installed service module the opportunity to load default values before retrieving property values from the properties file.

3.16.1.1.36 java.lang.Thread

This class represents a java thread of execution.

3.16.1.1.37 TokenManipulator

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information. Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

3.16.1.1.38 UniquelyIdentifiable

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.16.1.2 UtilityClasses2

[image: image197.emf]ValueType

LogFilter

«interface» DatabaseLogger

LogEntry

«interface»

LogIterator

«interface»

LogIteratorImpl LogEntryCache

CachedLogEntry

ValueType

Constructor sets m_refCount to 1.

Additional references recorded by LogEntryCache

with incdRefCount() and decrRefCount()

LogEntryCache deletes a CachedLogEntry from

hashtable when its refCount hits 0.

m_keys is an ordered array of

slots in the cache for the LogEntries

which match the filter. Each key

is used to extract the appropriate

LogEntry from the LogEntryCache.

m_nextEntry indexes into array

of m_entrySlots, pointing to the

next entry to extract.

* 1

1

*

* 1 1 *

1

1

1 *

factory createLogFilter() : LogFilter

Source m_source

boolean m_sourceIsUsed

string m_author

TimeStamp m_startDate

TimeStamp m_endDate

Identifier m_eventID

Identifier m_logEntryID

string m_opCenterName

string m_containsText

boolean isCaseSensitive

DatabaseLogger(tableName)

addEntry(logEntry) : void

checlExpiredEntries() : void

getEntries(filter, maxCount) : LogIterator

shutdown() : void

getID():Identifier

matchesFilter(LogFilter filter) : boolean

factory createLogEntry() : LogEntry

Identifier m_id

TimeStamp m_timestamp

Identifier m_eventID

string m_text

string m_author

string m_opCenterName

string m_hostname

Source m_source

getMoreEntries(long maxCount) : LogEntryList

destroy():void

long m_timeOfLastUse

addEntry(LogEntry entry)

Object[] m_keys

int m_nextEntry

addEntry(LogEntry entry) : Object

getEntry (Object key) : LogEntry

java.util.Hashtable hashTable

decrRefCount() : void

equals() : boolean

getEntry() : LogEntry

getRefCount() : int

hashCode() : int

incrRefCount() : void

m_logEntry

m_refCount

Figure 198. UtilityClasses2

3.16.1.2.1 CachedLogEntry

This class represents a reference-counting object stored in a memory-efficient LogEntryCache. The object of this class encapsulates the stored log entry and adds a reference count.

3.16.1.2.2 DatabaseLogger

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.16.1.2.3 LogEntry

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

3.16.1.2.4 LogEntryCache

The LogEntryCache caches log entries returned from a database query which are in excess of the requestor-specified maximum number of entries to return at one time. The LogIterator stores references to the LogEntry objects thus cached, and requests additional objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate copies of LogEntry objects, and it deletes LogEntry objects when they are no longer needed.

3.16.1.2.5 LogFilter

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

3.16.1.2.6 LogIterator

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

3.16.1.2.7 LogIteratorImpl

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work which clients can request via the LogIterator interface. The LogIteratorImpl stores data relating to cached LogEvents for a single retrieval request, and implements the client request to get additional clumps of data pertaining to that request.

3.16.2 Sequence Diagrams

3.16.2.1 DatabaseLogger:getEntries

This diagram shows how log entries are retrieved from the database and returned to the caller. The entry data is retrieved from the database and the LogEntry objects are created. If more entries are returned than the requested count, then a LogIteratorImpl is created and the log entries are added to the iterator (or if the entries were already cached, the entries are retrieved from the cache). When the caller requests the next set of entries, the LogIteratorImpl gets the entries from the cache and returns them in the list. If no more iterators are referencing the cache entries, the entries are deleted from the cache.

[image: image198.emf]First clump of entries is returned, plus an

iterator from which requestor can get more.

Next clump of LogEntry

objects is returned. If maxCount

entries are returned, caller can

call getMoreEntries() again.

This LogEntry is

retrieved

When LogEntryList comes back with less than maxCount entries, user should call destroy() on the iterator, see

CommLogModule::destroy for details. If user fails to call destroy, iterator will be destroyed by cleanup thread after

a period of disuse.

LogEntryList

CachedLogEntry

LogEntry

LogEntryCache

CachedLogEntry

Hashtable

LogEntry

Later, when

ready for more

DatabaseLogger

LogEntryList

LogEntry

LogIteratorImpl

Really the

CachedLogEntry,

cast as an Object,

and known only as

a "key" by the

LogIterator

LogEntryList &

LogIterator

LogEntryList

addEntry(LogEntry)

[if not currently cached]

create

[if already cached]

incrRefCount

[if not currently cached]

put()

Object

[*for each

row returned,

until no more]

add LogEntry

to LogEntryList

getEntries(maxCount)

create

"Request data

matching filter

from database"

[if no matching data]

LogEntryList (empty)

create

add LogEntry to LogEntryList

[*for each

row returned,

until maxCount

or done]

[if done]

LogEntryList

create

create

addEntry(LogEntry)

getEntry(key)

[*maxCount

times, or

until no more]

decrRefCount()

[if refCount ==0]

remove()

getMoreEntries(maxCount)

create

get()

CachedLogEntry

getEntry()

Figure 199. DatabaseLogger:getEntries

3.16.2.2 DefaultServiceApplication:shutdown

When the DefaultServiceApplication is shutdown, each of the ServiceApplicationModule object it created is shutdown. For those modules whose shutdown was successful, the offers they made are removed from the file that recorded the offers during the start of service. The connection to the database is cleared and the database object is deleted. The ServiceApplicationModule objects are deleted.

[image: image199.emf]Service

DefaultServiceApplication ServiceApplicationModule ServiceApplicationProperties Database OperationsLog

delete

getOffersFileName

delete

delete

shutdown

[*for each module]

shutdown

[*for each module successfully shutdown]

removeOffersFromFile

getModuleNames

clearAllConnections

delete

flushLog

Figure 200. DefaultServiceApplication:shutdown

3.16.2.3 DefaultServiceApplication:Start

When a CHART2 service starts the DefaultServiceApplication, the ServiceApplicationProperties object, that encapsulates the operational parameters of the Chart2 system, is created. The CORBA objects ORB and BOA are initialized and their concurrency model and thread pool is configured. The Trader and Event Channel factory are acquired and the database object is created. During the start of a service, all the offers made by the service modules are recorded in a file (as will be seen later) and at the time of shutdown these offers are removed from the file. The presence of the offers in the file during start of service would indicate an improper previous shutdown. These lingering offers in the trader from the previous run of this service are withdrawn. The Service Application modules to be started by the service are determined from the ServiceApplicationProperties and the corresponding module class objects are instantiated. The modules are then initialized and the offers they made to the trader are recorded in a file.

[image: image200.emf]conc_model

narrow(Event Channel Factory)

getThreadPoolSize

resolve_initial_references("Trading Service")

narrow(Trader Object)

getDatabaseConnectString

ServiceApplicationModule

ORB

POA

Create a POA that will be used

to activate persistent CORBA

objects.

CHART2Exception

(Cannot Resolve Event Service)

create

create

getOffersFileName

success

CHART2Exception

(Cannot Resolve Trader)

start

create

CHART2Exception

(Invalid Properties file)

getDatabaseUserName

getDatabasePassword

getModuleNames

[*for each module]

create

[*for each module]

initialize

CHART2Exception

(Cannot narrow Trader Object)

[refresh_offers or withdraw flag set]

[*for each offer in OffersFile]

withdraw(offerID)

resolve_initial_references("Extended Event Service")

CHART2Exception

(Cannot narrow Event Channel)

create

getThreadModel

[module Initialize error]

CHART2Exception

init

OperationsLog

CosTrading.Register

The offer IDs file is populated

as objects are published to the

trader through the registerObject

method. The default service

app cleans up these offers from

the trader when the refresh

property is set or the withdraw

flag is set.

EventChannelFactory

Database

CosTrading.Lookup

Service

DefaultServiceApplication

ServiceApplicationProperties

Figure 201. DefaultServiceApplication:Start

3.16.2.4 DictionaryWrapper:checkForBannedWords

This diagram shows processing performed by the DictionaryWrapper that is representative of all methods which it duplicates in the Dictionary interface. When a method is called that is to be delegated to a system dictionary, the DictionaryWrapper first attempts to use the dictionary references (if any) that it has already discovered during a previous method invocation. If no references exist (this is true for the first usage of the wrapper) or if all existing references return CORBA failures when used, the DictionaryWrapper queries the trader for all Dictionaries in the system and then attempts to use each until a "live" reference is found or all of the newly discovered references return CORBA failures when used.

A timestamp is used to prevent a flurry of trader queries when no Dictionary objects are available. Prior to doing a trader query to (re)discover dictionaries, the DictionaryWrapper makes sure that at least a minimum amount of time has elapsed since the last time it tried to find a dictionary. The use of synchronization around the discovery process also helps to prevent a flood of trader queries.

[image: image201.emf]DictionaryWrapper DMSMessage CorbaUtilities Dictionary

DMS

m_lock

If Dictionary.checkForBannedWords is

able to be called, the results are returned

to the user and this method is finished.

Otherwise, if the minimum time has elapsed

since the last time it tried, the method will

try to find a different DictionaryRef to use.

[Dictionary.checkForBannedWords

did not throw a CORBA

exception]

results

[All refs threw CORBA

exception]

CHART2Exception

"set discovery timestamp"

synchronized

"end synchronization"

[*while more refs in vector

and checkForBannedWords

has thrown a CORBA

exception]

[CORBA exception caught]

"remove reference from

vector"

[Dictionary.checkForBannedWords

did not throw a CORBA

exception]

results

checkForBannedWords

[current time minus

discovery timestamp

less than min discovery period]

CHART2Exception

findAllObjectsOfType

checkForBannedWords

[*while more refs in vector

and checkForBannedWords

has thrown a CORBA

exception]

"Narrow each object

returned to a Dictionary

and store in vector"

checkForBannedWords

[CORBA exception caught]

"remove reference from

vector"

validateMessageContents

get()

Figure 202. DictionaryWrapper:checkForBannedWords

3.16.2.5 OperationsLog:LogMessage

When a log operation is invoked on the OperationsLog object, it creates a OpMessageLog and adds this object to the OpLogQueue. The OpLogQueue driver thread wakes up at a pre-configured interval and writes all the queued messages to the database.

[image: image202.emf]OpLogQueue OperationsLog

write

[written log]

delete

log

create

add

Application

OpLogMessage

The writing of the log

message to the database

is not immediate.

The OpLogQueue driver

thread wakes up at a

preconfigured interval and

writes the queued log

messages to the database

Figure 203. OperationsLog:LogMessage

Acronyms

The following acronyms appear throughout this document:

API
Application Program Interface

BAA
Business Area Architecture

CORBA
Common Object Request Broker Architecture

DMS
Dynamic Message Sign

EORS
Emergency Operations Reporting System

FMS
Field Management Station

GUI
Graphical User Interface

IDL
Interface Definition Language

ITS
Intelligent Transportation Systems

NTCIP
National Transportation Communications for ITS Protocol

OMG
Object Management Group

ORB
Object Request Broker

POA
Portable Object Adapter

R1B3
Release 1, Build 3 of the CHART II System

TTS
Text To Speech

UML
Unified Modeling Language

References

CHART II GUI High Level Design For Release 1 Build 1, document number M361-DS-003R0, Computer Sciences Corporation and PB Farradyne, Inc.
CHART II Release 4 Interim BAA Report, document number M361-BA-004R0, Computer Sciences Corporation and PB Farradyne.
CHART II System Requirements Specification Release 1 Build 2, document number M361-RS-002R1, Computer Sciences Corporation and PB Farradyne.

R1B2 High Level Design, document number M362-DS-005R0, Computer Sciences Corporation and PB Farradyne.

FMS R1B1 High Level Design, document number M303-DS-001R0, Computer Sciences Corporation and PB Farradyne.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

Appendix A – Glossary

Action Event
A Traffic Event related to the disposition of actions in response to device failures and non-blockage events (e.g. signals, debris, utility, and signs).

Approved Word
A word that is known to the system and has been approved for use when communicating with the motoring public via a messaging device. The dictionary will suggest words to the operator when it encounters a word that has not been previously approved.

Arbitration Queue
A prioritized queue containing messages for display or broadcast on a traveler information device.

Banned Word
A word that may not be used when communicating with the motoring public via a messaging device such as a HAR or DMS.

Comm Log
A collection of information received from any source that requires no action.

Congestion Event
A Traffic Event related to roadway congestion situations. Congestion Events may be recurring or non-recurring.

CORBA Event
A CORBA mechanism using which different Chart2 components exchange information without explicitly knowing about each other.

CORBA Trader
A CORBA service that facilitates object location and discovery. A server advertises an object in the Trading Service based on the kind of service provided by the object. A client locates objects of interest by asking the Trading Service to find all objects that provide a particular service.

Data Model
An object repository that keeps track of changes to the various objects in the repository and informs about these changes as they occur, to observers who are interested in the objects in the repository. A Data Model identifies the subject in a Subject/Observer design pattern.

Dictionary

A collection of banned and approved words.

Deployable Resource
Any resource that can be deployed to the scene in order to provide assistance during a traffic event.

DMS
A Dynamic Message Sign that can be controlled by one Operations Center at a time.

DMS Stored Message Item
A plan item that is used to set a specific message on a specific DMS when added to a Traffic Event response plan and activated.

Emergency Operations Reporting System
A system external to CHART II that (among other things) keeps track of planned roadway closures and permits.

Factory
A CORBA object that is capable of creating other CORBA objects of a particular type. The newly created object will be served from the same process as the factory object that creates it.

FMS
Field Management Station through which the CHART II system communicates with the devices in the field.

Functional Right
A privilege that gives a user the right to perform a particular system action or related group of actions. A functional right may be limited to pertain only to those shared resources owned by a particular organization or can pertain to the shared resources of all organizations.

Graphical User Interface
Part of a software application that provides a graphical interface to its user.

GUI Wrapper Object
A GUI wrapper object is one that wraps a server object to provide it with GUI functionality such as menu handling. It also helps in performance enhancement by caching data locally thereby avoiding network calls when not necessary.

HAR
A Highway Advisory Radio which can be controlled by one Operations Center at a time.

HAR Message
A message which is capable of being stored on a HAR. It is composed of a message header, body and footer.

HAR Message Clip
A message clip is part of a HAR message that could be a header or body or footer. It can be stored either as a text or in one of the binary forms (WAV, MP3 etc).

HAR Message Slot
A message slot is one of the numbered message stores inside the HAR device that can be used to store pre-fabricated messages useful for quick retrieval and playing.

Incident Event
A Traffic Event that is entered by an Operator in response to one of the following types of incidents: Disabled in roadway, Personal injury, Property damage, Fatality, Debris in roadway, Vehicle fire, Maintenance, Signal call, Police activities, Off-road activity, Declaration of emergency, Weather, or Other.

Installable Module
A pluggable GUI module that provides a specific function, which when registered with the GUI is called on to initialize itself at the time of GUI startup and shut down at the time of GUI shut down.

Lane Closure
The closure of one or more roadway lanes resulting from a Traffic Event.

Message Library
A collection of stored messages that can be displayed on the DMS or broadcast on a HAR.

Modal
Indicates that a dialog does not allow the user to click on other parts of the application until it is closed.

Modeless
Indicates that a dialog allows the user to click on other parts of the application while it is open.

Navigator
A Navigator is a GUI window that contains a tree on the left-hand side and a list on the right hand side. Tree elements represent groups of objects and the list on the right hand side represents the objects in the selected group.

Object Discovery
A GUI mechanism in which the client periodically asks the CORBA Trading Service to find objects of those types that are of interest to the GUI, such as DMS, HAR, Plan etc.

Operations Center
A center where one or more users may log in to operate the Chart II system. Operations centers are assigned responsibility for shared resources that are controlled by users who are logged in at that operations center.

Operator
A Chart II user that works at an Operations Center.

Organization

An organization is an agency that participates in the CHART II system and owns one or more Shared Resources.

Plan
A collection of plan items that can be added to the response plan of a traffic event as a group.

Plan Item
An action in the system that can be set up in advance to be activated one or more times in the future. Plan items must be contained in a plan. Specific types of plan items exist for specific functionality. A plan item may be copied to a traffic event response plan and subsequently activated.

Response Plan
A collection of response plan items created in response to a traffic event that can be activated as a group..

Response Plan Item
An action in the system that can be set up in response to a traffic event. Response plan items must be contained in a response plan. Specific types of response plan items exist for specific functionality. A response plan item carries out its specific task when activated

Role
A Role is a collection of functional rights that a user may perform. The roles that pertain to a particular user for a particular login session are determined when he/she logs into the system.

Safety Message Event
A Traffic Event that is entered by an Operator to display and/or broadcast safety messages.

Service Application
A software application that can be configured to run one or more service application modules and provides them basic services needed to serve CORBA objects.

Service Application Module
A software module that serves a related group of CORBA objects and can be run within the context of a service application.

Shared Resource
A resource that is owned by an organization. A user may be granted access to a shared resource owned by an organization through the functional rights scheme.

SHAZAM
A device with blinking lights that is used to notify the traveling public of the broadcast of a HAR message.

Sign
see DMS

Stored Message
A message that may be broadcast on a HAR or displayed on a DMS.

System Profile
Information used to define the configuration of the system. Properties stored in the system profile apply to all users when they are logged in.

Token
A token or access token is a security blob that encloses information about a user and the functional rights associated with the user. All secured Chart2 operations require a token to be passed to it and based on the functional rights found in a token a user is allowed or denied access.

Traffic Event
A traffic event represents a roadway event that is affecting traffic conditions and requires action from system operators.

Transferable Shared Resource
A shared resource that can be transferred from one operations center to another by a user with the appropriate functional rights.

User
A user is somebody who uses the CHART II system. A user can perform different operations in the system depending upon the roles they have been granted.

User Profile
A set of information used to correctly configure an individual user’s GUI on startup.

Weather Service Alert Event
A Traffic Event that is entered by an Operator in response to National Weather Service advisories.

Appendix B – Text-To-Speech Playback Time Estimation

The playback time of the text-to-speech needs to be calculated in various places in the GUI and server due to device storage limitations and also to satisfy business logic. The COTS text-to-speech engine can be used to calculate the time accurately, but it takes a long time to do the calculation. For example, it takes approximately 20-45 seconds to calculate the length of a message having a playback time of 30-120 seconds. The slow performance is due to the fact that the text-to-speech engine must actually convert the text to speech data before the playback time can be determined.

To provide an estimate of the audio length of a text message a calculation is performed based on proportions of consonants, vowels, punctuation, numbers, and spaces to the entire message length. The algorithm used is as follows:

Where C = # of consonants

V = # of vowels

P = # of punctuation

N = # of numbers

S = # of spaces

T = total text length

Time Estimate (ms) = 70C + 100V(T-V)/T + 350P + 500N + 100SS/T

This simple estimation formula was determined by experimentation and is completely empirical and has no theoretical foundation.

To test the effectiveness of the formula, various text strings were estimated via the formula and compared with the actual length of speech generated by the COTS text-to-speech engine:

Actual Length (sec)
Estimated Length (sec)
Error (sec)

25.856
25.956
0.1

28.007
29.118
1.111

101.751
100.218
-1.533

39.710
40.680
0.97

94.732
96.338
1.606

18.408
18.304
-0.104

18.715
18.394
-0.321

44.392
44.202
-0.19

117.005
118.116
1.111

119.336
119.634
0.298

118.888
119.270
0.382

115.794
116.590
0.796

111.160
112.382
1.222

114.366
114.642
0.276

122.990
122.638
-0.352

114.604
116.414
1.81

114.345
115.730
1.385

122.479
121.990
-0.489

115.031
113.850
-1.181

122.822
121.606
-1.216

115.976
117.126
1.15

116.480
113.750
-2.73

116.067
114.954
-1.113

73.302
72.479
-0.823

85.847
86.062
0.215

86.712
88.016
1.304

87.079
87.874
0.795

From these measurements, the standard deviation of the error is about 1.1 seconds, indicating that about 68% of the estimates are expected to be within 1.1 seconds of the actual playback time, while about 95% of the estimates are expected to be within 2.2 seconds of the playback time. (This assumes that the test samples were "random" and representative of real-life usage).

The GUI can use the error measurements to provide feedback to the user. For example, if the estimated length is in the interval (max_time - 2*standard_deviation, max_time + 2*standard_deviation), a warning indication could be displayed, while if the estimated time is greater than (max_time + 2*standard_deviation), an error indication could be displayed.

Appendix C – Prototype Screen Shots

Arbitration Queue

This screen shows a prototype of the dialog used for viewing and prioritizing the Arbitration Queue for a device.

[image: image203.png]DMS FP35001Test Arbitration Queue.

Show Levels]

[ECI Wessage [Gorter | Type | Aetve
Incident [m]
Accident Ahead-Left Lane Closed S0C Inc 2]
Construction Ahead - 2 Right Lanes... TOC3 Constr]
Accident Ahead TOC4 Inc. a
Planned Roadway [
Construction Starting 8PM 80C Constr a
Congestion [
Congestion Ahead - Expect Delays ~ 50C Cong [
Congestion Next 2 Miles A0C Cong [
Special Event O
[Abiration Gueus Evaluation

fihe highest priority message is curzently active

[Device: DMS FP95001Test Arbitration Queue

ox] e] o

The queue items are listed in order of decreasing priority. To change the priority of an item, the user drags the item up or down in the list relative to other items or relative to the levels on the left. The levels on the left are placeholders that represent the highest default priority that a type of event can be given by the system. The levels are necessary because if there were no items of a particular type in the queue, it would otherwise be ambiguous what priority the dragged entry should be assigned relative to any new entries that are added in the future. The Arbitration Queue Evaluation pane shows the status of the queue as it is being reprioritized or evaluated. When something changes so that the queue is reevaluated and a new message is sent to the device, the Device pane will show status messages as the device communications occurs. Then, the queue item(s) that have been activated on the device will be marked as "active" in the table. The user will be able to navigate to the Event Properties dialog by right clicking on a queue item. Similarly, the user will be able to view an Arbitration Queue by right clicking on an item in the Response tab in the Event Properties dialog.

HAR Message Editor

This screen is a prototype of the HAR Message Editor, which will be used for setting a HAR Message in maintenance mode, creating and editing HAR library messages, and editing HAR response plan items. This dialog will appear in different forms depending on the situation.

[image: image204.png]L=[ofx]

Message To Activate

Description Ty Voice (sec)

Header = - Use Default Heater

Body } I

[
—

2 I —
Traier [T I Use DefaultTrailer
Total run time (sec)
Cilp Edtor
Deseription T

Tyne & Tet O Audio Insert Date

Ifthis is a text lip, enter clip body here

HAR Message Notifiers To Activate

Name Type Activate
[[Erazan
[s 7
ez
Licton To Wessage o cancel | Help

ERROR PANEL.

Message To Activate

This section contains a description of all of the clips in the message. There is a header, body, and trailer section (the body will actually be a table instead of a group of text fields as shown here). The header and trailer combos can be set to none, default, or a custom clip. When a clip is selected in this panel, the contents the clip are displayed in the Clip Editor panel. However, if editing a library message, the contents of the default header and trailer are not known because they are device-specific, so they cannot be displayed to the user. If the default header/trailer are used and the device is known, the default header or trailer will be displayed as read-only in the Clip Editor panel. There will always be an extra blank row in the body table, and if the user selects the blank row, edits a clip, and presses Apply in the Clip Editor panel, the new clip will be added to the table. The table will also support a popup menu for inserting clips between other clips or deleting clips. The running length of all clips and the total length of the message are displayed.

Clip Editor

The Clip Editor displays the contents of the clip selected above. It is shown here displaying a text clip, although if the user clicks on the Audio button, the Clip Editor will transform into an audio clip editor to support Play, Record, and Stop. For a text clip, the user can insert a date tag which will be updated by the HAR server. Any changes in the Clip Editor section are temporary and will not be committed to the Message To Activate section until the user clicks Apply. If there are unsaved changes in this panel and the user selects a different clip or clicks OK, the user will be prompted to save the changes in the Clip Editor.

HAR Message Notifiers To Activate

This panel contains a table of SHAZAMs and DMSs to activate. (This will not be displayed when editing HAR library messages, as the device is not known.) The table will display all of the SHAZAMs and DMSs associated with the HAR.

Slot Data Editor

This screen shows the general concept of the Slot Data Editor that will be part of the HAR Properties dialog. This will allow the user to edit the clips that are stored in the slots of the HAR for using as prestored clips in messages or as the default header/trailer. There will be a table of slots, which will show the slot number, type, clip description, and running length of the clips.

When a clip is selected, the contents will appear in the Clip Editor panel below, and the user can then edit the clip stored in the slot. When the user clicks on Apply, the clip data will be temporarily stored in the GUI until the user clicks on OK, when the changed clips will be sent to the device. If the user makes changes in the Clip Editor and either changes the selection in the Slot Data table or clicks OK, the user will be prompted to save changes.

[image: image205.png]=[ofx]

“rsiotata = o

Slot Number Slot Type. Clip Description Voice (sec).
Description [

oK Cancel Help

ERROR PANEL.

Appendix D – Arbitration Queue Priority Algorithm

This appendix describes the algorithm used to assign priority levels to Arbitration Queue entries.

The levels in the arbitration queue will be internally represented as double precision floating point numbers. Each level will be given a fixed number, such as:

Urgent: 100.0

Incident: 90.0

Planned Roadway Closure: 80.0

Congestion: 70.0

etc.

A new entry will be assigned a priority that is between the level of the corresponding event type and the next lowest level. If there are entries existing in the "bin" (i.e., the interval between the adjacent levels), the new entry is given a priority below the lowest entry in the bin (but above the level beneath it). This ensures a first in, first out order of activation within a given bin.

If an entry is moved up or down in the queue and assigned a new priority by the user, a priority is chosen that is between the levels and/or other entries in the bin based upon where the entry was dragged and dropped.

When an entry is added to a bin or its priority is changed, the server will assign new priorities to all of the entries in that bin based on how many entries are in the bin. The new priorities will be spaced evenly across the interval between the two levels, ensuring that no two entries are very close together. The reassignment of all priorities within the bin will eliminate any numerical problems that might have otherwise occurred due to floating point roundoff errors when assigning a new priority based on the priorities of existing entries. The new priorities of all entries are then pushed to any interested GUIs via the CORBA notification service.

� EMBED MSPhotoEd.3 ���

� EMBED Word.Picture.8 ���

� EMBED WangImage.Document ���

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxr7AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxt.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxr7AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxt.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyLqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyLqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyMGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyMGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyIrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyIrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyJOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyJuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyJuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyHDAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyIHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2a6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_c8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2a6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_c8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.XZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.XZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_joAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.ofAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_oHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.FPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.BHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.BHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_.1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_.1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_ymAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_ymAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_vlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_vlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_8sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_8sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_6IAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_6IAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.IKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_faAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.Q9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_5WAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_5WAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.KoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.KoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_rhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_rhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.NcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.NcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.t7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.t7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.syAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.syAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.sEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.sEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.q5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp.q5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_uhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp2b_AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_uhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy4MAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy4MAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy_pAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy_pAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy9XAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy9XAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy53AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy53AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy93AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy93AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyywAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyywAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy8BAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy8BAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy30AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy30AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy8MAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy8MAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy7sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy7sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy67AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy67AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy_JAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy_JAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy2xAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy2xAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy8wAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy8wAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy5YAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy5YAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy7SAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy7SAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy2fAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy2fAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy3CAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy3CAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy9GAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy9GAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy15AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy15AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy2NAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy2NAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy4vAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy4vAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy0BAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy0BAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy1lAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy1lAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy0hAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy0hAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy1NAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy1NAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy6dAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy6dAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy6sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy6sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyyXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpy_aAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzMzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzMzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzMNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzMNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzK1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzK1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzKiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzKiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzLFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzLFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzL7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzL7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzLoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwZ5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwZ5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwYhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwYhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwYQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwYQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwQ2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwQ2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwk3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwk3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwkXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwkXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwlaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwlaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwZKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwZKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwlqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwlqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwY.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwY.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwj_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwj_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwnRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwnRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwbNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwbNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwifAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwifAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTqswe0CigCEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTqswe0CigCEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwiyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwiyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwc4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwc4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwcpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwcpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwmoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwmoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwjJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwjJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwg_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwg_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwhlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwn1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwn1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwnkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwnkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwh5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwh5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwm_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwm_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwWQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwWQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwUwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwUwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwacAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwacAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwO2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwO2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwK2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwK2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwcWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwcWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwZbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwmQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwmQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwM2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwM2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwUOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwUOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwb1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwcLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp21zAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwcLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzJlAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzLoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzWTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzWTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzTLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzTLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzXEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzXEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzS8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzS8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzSfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzSfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzViAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzViAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzVKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzVKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzU0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzUiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzUiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzUDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzUDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzTnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzTnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzOnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzOnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzNxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzNxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzRgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzRgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzRQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzRQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzNYAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzWwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwrWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwrWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwpNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwpNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwtpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwtpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwstAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwstAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwsLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwsLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwqVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwqVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwovAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwovAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwqEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwqEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwtYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwtYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwq3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwq3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwpyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwpyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwr2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpwoWAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpwr2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzfUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzfUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzehAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzYyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzYyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzbhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzbhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzeOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzeOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzcwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzcwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzdFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzdFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzfyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzfyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzYEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzYEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzdWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzdWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzcNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzcNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzcfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzcfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzduAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzduAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpza2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpza2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzbPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzbPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzZQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzZQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzYYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzYYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzfCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzXrAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzfCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz2aAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz2HAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz2HAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz0bAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz5OAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz5OAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqmKH4BtAF2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqmKH4BtAF2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzwcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzwcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzzoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzzoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz0JAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz0JAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzzIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzzIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz6zAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzy3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzy3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzx3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzx3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzvzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpzvzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz7XAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz1EAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz6AAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz6AAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz6bAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz6bAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz1kAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpzvaAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpz5jAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03dAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03dAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0.aAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1AdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0.aAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1AdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxT2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxT2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxV4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxV4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxVcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxVcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxU6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxU6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxRkAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxURAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3H7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3H7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3K7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3K7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3AmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3AmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3C1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3C1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3HNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3HNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3FpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3FpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3I_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3I_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3CNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3CNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3IUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3IUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3JcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3JcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3EWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3EWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3EuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3EuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3KbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3KbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyjCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyjCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyjzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyjzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyk0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyk0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyl2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyl2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpymUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpymUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpykRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpykRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpylfAGcAAQAAAAEA

PAGE
ii
R1B2 GUI Detailed Design Rev. 0

3/19/01

[image: image212.emf][image: image213.wmf]CNSI

_1046010958.doc

javax.swing.tree.

DefaultTreeModel

javax.swing.tree.

MutableTreeNode

«interface»

javax.swing.table.

AbstractTableModel

java.util.

Hashtable

Navigator

NavigatorSupporter

«interface»

Navigable

«interface»

NavList

ModelObserver

«interface»

NavListDisplayable

«interface»

NavTree

NavTreeDisplayable

«interface»

NavTableModel

NavTreeModel

GUINavigatorDriver

GUI

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

*

1

1

1

*

*

1

1

1

openNavigator(NavigatorSupporter) : Navigator

addNavigables(navigables)

updateNavigables(navigables)

removeNavigables(navigables)

getNavList

getNavigables() : Navigable []

makeMenu(selectedNavigables) : JMenu

dragOver(selectedNavigables,DropTargetDragEvent)

drop(selectedNavigables,DropTargetDropEvent)

navigatorClosing(Navigator)

getDesc():String

allowSetDesc():boolean

setDesc(String):void

addNavigables

updateNavigables

removeNavigables

getNavTreeDisplayable

setNavTreeDisplayable

m_navTreeDisplayable

getImage():void

getPropertyValue(property) : Object

comparePropertyValues(NavListDisplayable,

 String, result) : void

addNavigables

updateNavigables

removeNavigables

setSelectedNavTreeDisplayable

-removeTreeNode

getNavParent() : NavTreeDisplayable

containsChildNavigable(Navigable) : boolean

getChildNavigables() : Navigable[]

getNavPropertyList() : String []

_1046012944.doc

FilterManager

IdentifierGenerator

GUI

UserLoginSessionImpl

UserLoginSession

«interface»

GUINavigatorDriver

EventConsumerGroup

NavigatorSupporter

«interface»

UserManager

«interface»

InstallableModule

«interface»

CommandStatusHandler

GUIToolBar

GUIOperationsCenter

1

*

1

*

1

1

1

1

1

*

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

GUIProfile

DataModel

java.util.Timer

ProfileEditorSupporter

«interface»

1

0..1

1

startup(orb)

discoverEventChannels(trader, eventConsumerGroup)

discoverObjects(trader, dataModel)

loggedIn()

loggedOut()

shutdown(orb)

getMenuItemReps(accessToken, Menuable[]) : MenuItemRep[]

handleCommand(actionEvent, Menuable[]) : boolean

CommandStatusHandler(datamodel)

createCommandStatus(description)

addButton()

disableButton()

disableAllButtons()

enableButton()

getProfileProperty(key) : String

getAllProperties() : Properties

setProfileProperties(properties)

deleteProfileProperties(String[])

cleanupResources()

main()

startup()

shutdown()

loggedIn(UserLoginSessionImpl)

loggedOut()

cleanupUser()

startDiscovery()

discoverEventChannels()

discoverEventChannelsOfName(name, PushConsumer)

discoverObjects()

get() : GUI

getCommandStatusHandler() : CommandStatusHandler

getDataModel() : DataModel

getFilterManager() : FilterManager

getGUIOperationsCenter() : GUIOperationsCenter

getIDGenerator() : IdentifierGenerator

getLoginSession() : UserLoginSessionImpl

getORB() : ORB

getPOA() : POA

getSystemProfile() : GUIProfile

getToken() : byte[]

getToolBar() : GUIToolBar

getTrader() : Lookup

getUserManager() : UserManager

getUserProfile() : GUIProfile

makeMenu(Object[] selected, Component invoker) :

 JMenu

handleCommand(actionEvent, Menuable[] selected)

onAbout()

onChangeUser()

onChartChat()

onCommandFailures()

onCommandStatus()

onExit()

onLogin()

onLogout()

onNavigator()

showWaitCursor()

showDefaultCursor()

showInfoDialog()

showYesNoDialog()

openAudioSourceDataLine() : SourceDataLine

getAudioSourceDataLine() : SourceDataLine

closeAudioSourceDataLine() : void

addProfileEditorSupporter(ProfileEditorSupporter) : void

getOpCenter()

getUsername()

ping()

forceLogout()

getAccessToken()

setAccessToken()

getCORBAID()

m_accessToken

getOpCenter():OperationsCenter

getUsername():UserName

ping():boolean

void forceLogout(AccessToken token)

_989147791.bin

_1037099059.doc

CNSI

_968676586.bin

