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1 Introduction

1.1 Purpose

This document describes the detailed design of the CHART II system software for release 1, build 3. This design refines the high level design presented in document M362-DS-009R0, “R1B3 High Level Design,” to show details regarding the implementation of the high level design. This software release adds functionality to the CHART II system to allow for the configuration and control of HAR devices.  Additionally, the full capabilities of the device arbitration queues are included as well as the ability to create and remove operations centers dynamically.

1.2 Objectives

The main objective of this design is to provide software developers with details regarding the implementation of the system components described in the high level design to fit within the existing CHART II R1B3 system.

1.3 Scope

This design is limited to components needed to fulfill the requirements of release 1, build 3 of the CHART II system.

1.4 Design Process

As in the high level design, object-oriented analysis and design techniques were used in creating this design. As such, much of the design is documented using diagrams that conform to the Unified Modeling Language (UML), a de facto standard for diagramming object-oriented designs.

In the high level design, system interfaces were identified and specified. These interfaces were partitioned into logical groupings of packages. This design serves to fill in the details necessary to implement each of the system interfaces identified in the high level design.   

In this design, each package identified in the high level design is addressed separately with its own class diagram and sequence diagrams for major operations included in the package’s interfaces. Additionally, packages needed for implementation but not present in the high level design are included in this design, with each of these also having its own class diagram and sequence diagrams. Packages are also included for third party software that is needed by the CHART II software, such as the ORB and Java classes. Only classes and methods shown on the sequence diagrams are included in diagrams for third party products.

The design process for each package involved starting with a class diagram including interfaces from the high level design, and filling in details to the class diagram to move toward implementation. Sequence diagrams were then used to show how the functionality is to be carried out. An iterative process was used to enhance the class diagram as sequence diagrams identified missing classes or methods.

1.5 Design Tools

The work products contained within this design are extracted from the Telelogic TAU (formerly Cool JEX) design tool. Within this tool, the design is contained in the CHART II project, R1B3 configuration, System Design phase. A system version is included for each software package.

1.6 Work Products

This design contains the following work products:

· A UML Class diagram for each package showing the low level software objects which will allow the system to implement the interfaces identified in the high level design.

· UML Sequence diagrams for non-trivial operations of each interface identified in the high level design. Additionally, sequence diagrams are included for non-trivial methods in classes created to implement the interfaces. Operations that are considered trivial are operations that do nothing more than return a value or a list of values and where interaction between several classes is not involved.

2 Key Design Concepts

This design builds upon the design documents for all prior releases of the CHART II software. These documents should be referenced for details on the CHART II Server and GUI frameworks and supporting packages.  This section relates key design concepts for the R1B3 version of the CHART II software.

2.1 HAR Messages and Audio Clips

This design accounts for the ability for operators to enter text or record voice at their workstation for broadcast on a HAR device. Each message consists of one or more “clips”.  A message can specify its own header clip or it can use the default header for the HAR(s) it is destined for.  A message can also specify its own trailer clip, or can use the default trailer, or it can use no trailer.  A user must specify exactly one “body” clip for a HAR message.  (A message created within the HAR service can consist of multiple body clips when HAR messages are combined.)  Each clip specified by a user can be recorded voice or text.

Because voice data can be very large, the passing of voice data with HAR messages is minimized through the use of wrapper objects and streamers. 

Recorded voice is supported in the CHART II system for 

· immediate broadcast on a HAR

· storage in a slot on a HAR for future broadcast, and

· storage in a message library.

When voice is recorded the voice data is packaged in a HARMessageAudioDataClip object, which in turn is included in a HARMessage object. Upon receiving a HARMessageAudioDataClip, the object receiving it (a HAR, a TrafficEvent’s ResponsePlanItem, or MessageLibraryDB) use a utility class called an AudioClipManager to persist the “heavyweight” HARMessageAudioDataClip audio data and obtain a HARMessageAudioClip in its place.  The HARMessageAudioClip contains a unique ID and a reference to an object known as a streamer that can provide access to the actual voice data given the ID. The AudioClipManager is a streamer and places a reference to itself in every HARMessageAudioClip it creates.

Because HARMessageAudioClip objects are small, they can be passed throughout the system as the part of the device status for a HAR without having a significant impact on network bandwidth usage. The only times the recorded voice data will be passed across the network after its initial storage will be when the user wishes to listen to the voice data or the voice needs to be recorded onto the HAR device. When this occurs, the HARMessageAudioClip is told to stream the data and the HARMessageAudioClip delegates the request to the streamer reference it contains, which is always the AudioClipManager where the data was originally stored.

As other servers gain access to HARAudioClips and find a need to have the data persisted, they register their interest in the clip with the AudioClipManager stored within the clip.  The AudioClipManager will never delete the voice data associated with a clip as long as at least one clip “owner” is registered for it.  A clip stored in a message library, specified in a ResponsePlanItem, and being broadcast on a HAR would have three servers (one owner object in each server) maintaining interest in the clip with the AudioClipManager.

2.1.1 Audio Clip Manager

Recorded voice data is cleaned up within the AudioClipManager as owners deregister interest in clips when they are no longer needed. As HARs, ResponsePlanItems, and MessagLibraryDB objects lose interest in a clip, they deregister interest in the clip, which passes the request on to their AudioClipManager.  The AudioClipManager removes the association between the clip owners and the clip as deregister requests come in, and it deletes the voice data itself when there are no registered owners left for a clip.  Because this system is not foolproof, and because audio data is large and expensive to store, the AudioClipManager will periodically request servers to revalidate their interest in the clips they are registered for.  This is expected to be a low-bandwidth operation during a period of low bandwidth usage (in the middle of the night), and is more efficient that encoding servers to be fail-safe in deregistering interest.  In other words, if the AudioClipManager happens to be down or unreachable, an audio clip owner need not take extraordinary effort to retain information about the failed deregistration attempt and undertake a complicated retry scheme.

2.2 Arbitration Queue

An arbitration queue arbitrates the usage of a device by maintaining a prioritized message queue for the associated device. As messages are requested to be displayed or broadcast on a specific device, they are assigned priorities based on a predefined message priority scheme (discussed later) and are added to the queue. The Arbitration Queue has the responsibility of determining which message should be shown/broadcast by a messaging device. It allows any number of traffic events to add entries to a device’s arbitration queue.  The queue can hold multiple entries and decides which entry is to be placed on the device based on priority.  

Each message in the queue is related to a traffic event and a traffic event can have only one message in the queue at a time. Messages are removed from the queue when the related traffic event is closed or when the traffic event deactivates them. Messages can be added to and removed from a device’s arbitration queue regardless of the current communication mode of the device. In this way, a device that has been offline will be automatically brought into the current state of the system when brought online. The queue will automatically be evaluated any time a device is placed online, in order to ensure that the correct message is placed on the device.

Any time a message is added to or removed from the arbitration queue, the queue evaluates all entries and decides which message should be shown/broadcast by the queue’s associated device as follows:

· If a message is added to the queue and the queue is empty, the message is put on the device.

· If a message is added to the queue and the queue is not empty, the queue evaluates the messages on the queue (including the new message), determines which message has the highest priority, and places the highest priority message on the device.

· If a message is removed from the queue and this leaves the queue empty, the device is blanked or a default message is broadcast depending upon the type of the device.

· If a message is removed from the queue and other messages remain on the queue, the queue evaluates the messages on the queue (excluding the removed message), determines which message has the highest priority, and places the highest priority message on the device.

In addition to the processing described above, Arbitration Queues can allow multiple messages to share a device.  In the case of a DMS two single page messages can be concatenated into a single two-page message.  In the case of a HAR, multiple messages can be concatenated if the total amount of playtime of the messages is less than the configurable limit set by the administrator. The following “matrix” or “pairing” approach will be used to combine messages on DMS’s.  

U
I
R
C
S

Urgent (U)
X
X


X

Incident (I)
X
X


X

Planned Roadwork (R)


X
X
X

Congestion (C)


X
X
X

SHAZAM (S)
X
X
X
X


A maximum of two messages will be allowed for grouping for a DMS.  Only the top five types of events (Urgent, Incident, Planned Roadwork, Congestion, and SHAZAM) will be allowed for grouping, and only in the pairs indicated by Xs in the above matrix. For instance, an “Urgent” message can only be combined with another “Urgent “ message, an “Incident” message, or a “SHAZAM” message. For HAR’s, messages can be combined up to a 2-minute limit (system-wide configurable parameter).  All types of messages are eligible for combining on a HAR (the above matrix for DMS message combining does not apply for HAR’s).  Messages will be searched in priority order until the 2-minute limit is filled up.  The search is terminated, once a message is found which will not fit rather than continuing the search to see if any lower priority messages that happen to be shorter would fit

2.2.1 Priority Scheme 

Each entry in the queue will be assigned a priority. A number will be used to indicate the priority of each message on the queue, with a higher number indicating a higher priority (and thus more likely to be placed on the device). When a message is added to a queue, it is given a default priority number that is based on the type of event from which the message originated. The agreed upon priority order of traffic events are, from highest to lowest, Urgent, Incident, Planned Roadwork, Congestion, SHAZAM, Weather, Special, Action, Safety. The concept of an "Urgent" category is to place messages in this category that will surpass all events added in the system. Only the privileged user will be able to move an event to this level. Within a level, the FIFO (first in – first out) queue concept will be used. Messages can be moved into other event type levels, this action will change the priority of the response plan and not the type of the event. For example, a congestion response plan moved to the incident level will not change the type of the event to incident. It just changes the priority of the activation of the plan on the device.
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The above diagram shows an example of a sequence of system actions that will occur when response plans are added, removed or placed on different priority levels on a device’s arbitration queue. Initially, the queue for the device is empty. When an incident response plan1 is activated it gets placed on the device’s queue. The priority number assigned is based on the pre-defined range level for the event type. In this example, the range level for incidents is between 70 and 90. The priority assigned to the event is the mean of the two limits, i.e. 80. An automatic evaluation of the queue will place the message on the device, since it is the only message on the Arbitration queue. When another incident2 gets added to the queue, the system automatically assigns it a lower priority than the previous one. Automatic evaluation of the queue at this time does not place the newly added message on the device. The message currently on the device has a higher priority and the associated response plan is still active in the system. A Safety message3 and an Incident4 response plan added will be placed in their level with an assigned priority. If at this instance, the user gives the incident5 the highest priority (a new priority will be assigned), the currently active incident response plan1 will be suspended and the higher priority message2 will be activated. Moving a congestion response plan7 between the two incident messages4, 6 will reassign the congestion event a new priority8 but will not change its event type.

In R1B3, the Chart2HARImpl and Chart2DMSImpl will implement the interface defined by the Arbitration Queue. The responsibility to manage entries, i.e. add, remove, change priority, will be delegated to the Message Queue, a utility class. The entries in the list will be ordered according to their assigned priority. The Chart2HARImpl and Chart2DMSImpl will be responsible for evaluating the queue, concatenating messages, determining the message that should be sent to the device and sending queue updates to the CHART II GUI. 

2.2.2 Detailed Device Status and Arbitration Queue Manipulation

R1B3 also adds capabilities to the CHART II GUI to allow a user to view the entries in a device’s arbitration queue. A user with the proper functional rights can manually change the priority of items on a device's queue to override the queue's automated prioritization scheme. When the priorities of messages on an arbitration queue are manually changed, the arbitration queue evaluates the priorities of the messages on the queue to determine if the message on the queue’s associated device should be changed. New messages added after a reordering will be placed in the proper relative position. When a user re-orders the queue, they do so by manually moving one message at a time to a new position in the queue.  When a message is moved, the priority number of the message that was moved is changed to be slightly higher than the priority of the message immediately following it.  In the case where a message is moved to be the last in the queue, it is given a priority number slightly less than the message prior to it. This will be accomplished by using floats to indicate priority.  If a user moves an incident message behind a roadwork message, new roadwork messages will be placed behind this message while new incident messages will be placed in the incident level below the lowest incident on that level. Each manual message repositioning will be accomplished by issuing one request to the queue, to avoid the delays that locking the entire arbitration queue would entail. 

The GUI will also allow the user to view the queue and device status, i.e. current message prioritization, active message, communication actions with the device. The CORBA notification service will be used to notify GUI’s regarding any changes to the device’s queue. The CORBA notification service gives the GUI application the ability to register for updates for only those devices that the user is currently looking at. 

The following diagram shows a representation of how the view will be organized. The top section will show all the messages on the Arbitration Queue. The privileged user will be able to drag and drop entries within the view to change priorities of the messages. The middle section shows the Queue status regarding changes to the queue as they are being executed. The bottom section shows the device status while sending the message to it.
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2.3 Field Communications

R1B3 uses the base components designed and developed under FMS R1B2 to communicate with HAR and SHAZAM devices. Refer to FMS R1B2 Detailed Design for more information on the FMS subsystem. R1B3 extends the FMS subsystem to provide another type of communication port in addition to the existing ISDN and POTS modem ports.  This new port type, known as a voice port, provides access to a port on a telephony board. 

The sections below discuss how the existing FMS components are used and extended in R1B3.

2.3.1 Communications Servers (FMS Remote Servers)

Communications servers are used in R1B3 to connect to HAR and SHAZAM devices deployed throughout the state of Maryland. A communication server is outfitted with one or more pieces of communications hardware, such as Integrated Services Digital Network (ISDN) and Plain Old Telephone System (POTS) modems or telephony cards.  Each communications server in the system contains a PortManager software object through which access to the communications resources is granted.

2.3.2 Port Manager

A Port Manager is a software object that manages access to the communications hardware on a Communications Server. The HAR or SHAZAM software object acquires a voice port from one or more Port Manager objects. HAR and SHAZAM objects use voice port objects to command HAR and SHAZAM devices via DTMF.  HAR software objects use voice port objects to play recorded voice or voice converted from text to the HAR device so that it may be used by the HAR device for broadcast over the HAR’s radio frequency.  The HAR software object also uses voice port objects to connect to a HAR device’s monitor telephone line and record a portion of the message that is playing to allow a CHART II operator to verify that the correct message is playing.

2.3.3 Voice Port

A voice port provides access to a port on a telephony board. The voice port is capable of providing software access to analog telephone lines for the following purposes:

· Playing a voice file over a telephone

· Recording voice from the telephone

· Sending DTMF signals

· Receiving DTMF signals

VoicePortImpl class implements the VoicePort class, which extends the Port interface. It implements the VoicePort connect method to open a port on a telephony board and make a telephone call. It also implements the VoicePort play, record methods to play and record 8 bit sound files on the connected call. Additionally, it also provides the capability of generating DTMF tones to command devices.

2.3.4 Voice Port Locator

Voice Port Locator is a utility class that extends the implementation of a PortLocator class to retrieve a VoicePort from a PortManager. The PortLocator class implements fail over for clients of PortManagers. Refer to FMS R1B2 Detailed Design for more information on the implementation of PortLocator class.

2.3.5 Port Status

R1B3 also provides the capability to view the status of communication ports. Events are pushed using the CORBA event service to inform the interested parties of any changes to the port status. 

2.3.6 ISS AP55 HAR Protocol Handler

The ISS AP55 HAR Protocol Handler is a utility class that encapsulates the protocol used to command and control a HAR device of ISS AP55 type. After a voice port is retrieved from a Port Manager and connected to the device, the HAR Protocol handler is used by the HAR object to send the correct sequence of DTMF and voice to the device to program messages and provide the other functionality as specified in this document.

2.3.7 Viking RC2A SHAZAM Protocol Handler

The Viking RC2A SHAZAM Protocol Handler is a utility class that encapsulates the protocol used to command and control a SHAZAM device of Viking RC2A type. After a voice port is retrieved from a Port Manager and connected to the device, the SHAZAM Protocol handler is used by the SHAZAM object to send the correct sequence of DTMF to the device to enable or disable its flashers.

2.4 Error Processing

Because CHART II is a distributed object system, it is expected that any call to a remote object could cause a CORBA exception to be thrown. All software calls to remote objects handle CORBA exceptions and the processing is not shown on sequence diagrams within this design except where it serves to illustrate a design point.

Furthermore, as with any system, most method calls, system calls, etc. can fail unexpectedly. All such errors are handled by the software and are not shown explicitly in the package design portion of this document. The default action when such an error is encountered is to reach a consistent state within the object where the error occurred and then to throw a CHART2Exception (even for non-CORBA calls). The CHART2Exception contains debugging information as well as text suitable for display to a user or administrator. These exceptions are shown on sequence diagrams to call out error conditions that are not obvious.

The Log utility class is used by modules to log error conditions to a flat file that is created by the service application hosting the module. The log file entries contain the name of the class that logged the entry, the date and time of the entry, and descriptive text of the error that occurred. The Log utility also provides the capability for a stack trace to be printed to the file to accompany the error. This feature is reserved for use when an error condition is caught and the exact cause of the error condition is not known. Log files created by the Log utility class are self-cleaning and are automatically removed from the system when they reach a certain age, as specified in a configuration file.

2.5  Packaging

This software design is broken into packages of related classes. The table below shows each of the packages to be added to CHART II for R1B3 along with a description of each.

Table 1  Package Descriptions

Package Name
Package Description

AudioClipModule
This package contains classes used during the creation and storage of HAR audio clips.

AudioCommon 
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document.  It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II AudioClipModule and other applications such as the CHART II GUI.

CORBAUtilities
This package contains classes included in the third party ORB product used for implementation. Only classes that are directly referenced from diagrams for CHART II software are included in this package’s diagrams. Changes for CHART II R1B3 include the addition of classes related to the Notification Service.

DeviceManagement
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document.  It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II ArbitrationQueue and other applications such as the CHART II GUI.

DeviceUtility
This package exists in CHART II R1B2, however portions of it relating to the ArbitrationQueue are shown in this document to provide the full details of the design of the arbitration queue and related classes.

DMSControlModule
This package contains a service application module that serves the Chart2DMSFactory and Chart2DMS objects as specified in the system interfaces.

FieldCommunications
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document.  It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART FieldCommuncationsModule service application module and other applications such as HARControl and DMSControl.

FieldCommunicationsModule
This package contains a service application module that serves the PortManager and various Port interfaces.

HARControl 
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document.  It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II HARControlModule service application module and other applications such as the CHART II GUI.

HARControlModule
This package contains a service application module that serves the Chart2HAR and Chart2HARFactory interfaces.

HARNotification 
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document.  It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II SHAZAMControlModule and other applications such as the CHART II GUI.

HARProtocols
This package contains classes needed for communication to a specific model HAR.

HARUtility
This package contains HAR related utility classes shared by the server and GUI.

LibraryManagement
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document.  It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II MessageLibraryModule and other applications such as the CHART II GUI.

MessageLibaryModule
This package exists in CHART II R1B2, however portions of it relating to the creation of a HARStoredMessage are shown in this document to provide a more complete view of message creation.

ResourceManagement
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document.  It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II ResourcesModule and other applications such as the CHART II GUI.

ResourcesModule
This package contains a service application module that serves the OperationsCenter and Organization interfaces specified in the system interfaces. This package exists in CHARTII R1B2, however portions of it relating to OperationsCenter are shown in this document to provide more information regarding the creation and maintenance of an OperationsCenter.

SHAZAMControlModule
This package contains a service application module that serves SHAZAM and SHAZAMFactory interfaces as specified in the system interfaces.

SHAZAMProtocols
This package contains classes needed for communication to a specific model SHAZAM.

SHAZAMUtility
This package contains SHAZAM related utility classes shared by the server and GUI.

SystemInterfaces
This package contains the CORBA interfaces and related definitions for the CHART II system. These interfaces and classes define the IDL for the CHART II system.

TrafficEventModule
This package exists in CHART II R1B2, however portions of it relating to the ResponsePlanItem are shown in this document to provide a more complete view of message queuing via the arbitration queue.

The remainder of this document contains detailed designs of each of the above packages

3 Package Designs

3.1 AudioClipModule

3.1.1 Classes

3.1.1.1 AudioClipModule (Class Diagram)

This class diagram shows classes that comprise the Audio Clip Service in the Chart II system.  The Audio Clip Service is a utility service, which runs to support HAR audio data processing.  When a user records a voice clip as part of a HAR message or to store as a prestored clip in a HAR, the clip (a HARMessageAudioDataClip) is created as a heavyweight object carrying all the audio data with it.  The design calls for such clips to be converted to lightweight HARMessageAudioClips at point of entry into a server where the clip will be stored and served.  The Audio Clip Service provides this conversion capability, storing the audio data in the database and providing streaming capability for retrieval of the audio data by any process that needs it.  Objects must implement the AudioClipOwner interface to store audio data clips or register interest in audio clips.  Owners deregister interest in clips when no longer needed, and when a clip has no remaining owners, the audio data itself is deleted.  This service has a cleanup routine which will run nightly to ensure that owners have properly deregistered clips, and so that obsolete audio data does not remain in the database.

Details in this diagram are shown generally only for classes that exist specifically for the Audio Clip Service.  Auxiliary classes used from other various utility or system interface packages are generally shown by name only.
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Figure 1. AudioClipModule (Class Diagram)



3.1.1.1.1 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process.  The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data.  The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip.  When a clip no longer has any interested owners, it can be (and is) deleted from the database. 

3.1.1.1.2 AudioClipManagerDB (Class)

This class contains all the database interactions for the Audio Clip Service.  This class provides the ability to store and retrieve audio data into the database.  The AudioClipManagerDB also provides storage of owner registration information.  Objects must implement the AudioClipOwner interface to store audio data clips or register interest in audio clips, and the identification of the owners storing or registering interest in clips is also stored in the database.  As owners deregister interest in clips, this registration information is removed, and when a clip has no remaining owners, the audio data itself is purged from the database.

3.1.1.1.3 AudioClipManagerImpl (Class)

This class implements the AudioClipManagerImpl interface as defined by the IDL specified in the System Interfaces section.  This class, as the AudioClipManager, is the one entry point into the AudioClipService for storing and retrieving, and streaming clips, and registering and deregistering interest in them.  Since it is possible that AudioClipOwners could fail to deregister interest in clips (for instance, if the Audio Clip Service is down), this implementation also provides a cleanup routine to make sure that obsolete clip data gets purged from the database nightly.

3.1.1.1.4 AudioClipModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for publishing the AudioClipManager object within the service application.  This AudioClipModule is the controlling class for the Audio Clip Service, providing for the initialization and overall operation of the module.  In addition to publishing the AudioClipManager, this class creates and starts a CleanupLostClipsTimerTask which ensures that unneeded audio clips are properly purged from the database.

3.1.1.1.5 AudioClipModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by objects within the Audio Clip Service for the current instance of the application.  These settings are read during the module initialization.  The module must be restarted to apply any changes made to the properties file.  Properties include the number of threads to use for pushing audio data, the time of day (in the middle of the night) to run the cleanup task, and how often to check to see if that time of day has arrived. 

3.1.1.1.6 AudioClipStreamer (Class)

This interface is implemented by objects that can push an audio clip given its ID.  The audio data, previously stored within the streamer's implementation, is pushed to the AudioPushConsumer supplied by the user of this interface.  See AudioPushConsumer for details.

3.1.1.1.7 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer.  One call to pushAudioProperties() will always precede any calls to pushAudio().  When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing.  PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data.  In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.1.1.8 AudioPushThread (Class)

This class is a thread which is used to push audio clip information to an AudioPushConsumer.

3.1.1.1.9 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to push audio clip information back to the client.  It provides the functionality to manage access to the AudioPushThreads.

3.1.1.1.10 CleanupLostClipsTimerTask (Class)

This timer task, expected to run every night, in the middle of the night, verifies that all clips stored in the Audio Clip Service database are still legitimately needed by the objects which are registered as having interest in them.  Objects which store audio data clips or register interest in audio clips must implement the AudioClipOwner interface, and, as AudioClipOwners, must respond to queries about their continued interest in clips for which they have registered interest.  It is possible that due to errors in the system (for instance, the Audio Clip Service being down or unreachable), that owners may fail to deregister interest in clips when they are done with them.  Because this mechanism is in place, owners do not have to perform excessive record keeping or implement fail-safe retry techniques when they fail to deregister a clip.  Any such failures will be detected by this timer task.  This task runs the cleanupListClips() method of the AudioClipManagerImpl, which handles the details of the cleanup activity (basically querying owners about clips they have registered for in order to ascertain continuing interest in their clips).

3.1.1.1.11 ClipOwnerData (Class)

This class is used to store data pertaining to the owner of a HARMessageAudioClip.

3.1.1.1.12 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.1.1.13 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.1.1.14 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

3.1.1.1.15 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

3.1.1.1.16 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.1.1.17 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.1.1.18 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.1.1.19 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagrams

3.1.1.2 AudioClipModule:clipMgrCleanupLostClips (Sequence Diagram)

This method, executed periodically during low-volume time periods (middle of the night), verifies that all clips stored in the Audio Clip Service database are still legitimately needed by the objects which are registered as having interest in them.  Objects which store audio data clips or register interest in audio clips must implement the AudioClipOwner interface, and, as AudioClipOwners, must respond to queries about their continued interest in clips for which they have registered interest.  It is possible that due to errors in the system (for instance, the Audio Clip Service being down or unreachable), that owners may fail to deregister interest in clips when they are done with them.  Because this mechanism is in place, owners do not have to perform excessive record keeping or implement fail-safe retry techniques when they fail to deregister a clip.  

This method puts together a list of AudioClipOwners and the clips they are registered for, and sends one query to each owner identifying the clips (by ID) that the Audio Clip Service believes it is still interested in.  Each AudioClipOwner sends one response: a subset (normally empty) of those clips which in fact it is no longer interested in.  The AudioClipManagerImpl then removes the owner as an registrant for the clips thus returned.  As each owner is deregistered in the database, the database process removes the clip if the last remaining owner is being deregistered. 



[image: image4.emf]AudioClipManagerImpl CleanupLostClipsTask

java.util.Timer

AudioClipOwner

AudioClipManagerDB

AudioClipIDList

Hashtable

Ask each owner in turn about the

complete list of clips it is registered for.

Owner will return a list of any clips

which it is NOT interested in anymore.

Build Hashtable 

containing an 

array of clipIDs for 

each owner found 

in DB.  Below, we 

will ask each owner 

about all its clips on 

one call.

[*for each

clipID in

returned

unneededClipList

removeOwner(clipID, owner)

[*for each 

clipID in

requested

clipIDList]

[*for each entry

in Hashtable]

[owner not found]

null

add(clipID)

confirmClipInterest(clipIDList)

[*for each

ClipOwnerData

(a clipID,owner pair)]

create with clipID

[owner found]

AudioClipIDList

put(owner, clipList)

get(owner)

[no clips in DB]

[no clips in DB]

create

[all clips still needed]

zero length unneededClipList

removeOwner(clipID, owner)

[one or more clips no longer needed]

non-emptyl unneededClipList

CORBA.SystemException (other than OBJECT_NOT_EXIST)

OBJECT_NOT_EXIST

cleanupLostClips

run

getOwnerList

ClipOwnerData()


Figure 2. AudioClipModule:clipMgrCleanupLostClips (Sequence Diagram)





3.1.1.3 AudioClipModule:DeregisterInterest (Sequence Diagram)

This method implements the deregisterInterest method of the AudioClipManager interface.  This method allows a registered owner of a clip to deregister interest in an audio clip when that owner no longer has a need for it.  The database method called to remove the registration from the database will also delete the clip itself, if the owner making the call is the last registered owner of the clip.
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Figure 3. AudioClipModule:DeregisterInterest (Sequence Diagram)



3.1.1.4 AudioClipModule:Initialize (Sequence Diagram)

This sequence diagram shows the processing that takes place when the Audio Clip Service is initialized.  The module creates the AudioClipManager and the AudioPushThreads to be used for streaming.  The database interface object is created.  The cleanup timer tasks is started.  When all is ready the AudioClipManager is published in the trader and ready for business.
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Figure 4. AudioClipModule:Initialize (Sequence Diagram)



3.1.1.5 AudioClipModule:RegisterInterest (Sequence Diagram)

This method implements the registerInterest method of the AudioClipManager interface.  This method allows an AudioClipOwner to register interest in a clip which already exists within the Audio Clip Service.  If the clip is not found, a SpecifiedObjectNotFound exception is thrown.  If the owner is already registered for the clip, the neither the database process nor this method will complain; in other words, duplicate registrations (for the same clip, same owner) are silently ignored.



[image: image7.emf]ORB

AudioClipManagerDB

AudioClipManagerImpl

ORB

For details, see sequence diagram

AudioClipModule:DBaddOwner.

DB class must convert owner to

IOR text (object_to_string()).

DB class allows a registrant to register

again (with no effect) without complaint.

So DBException would be for clip not

found.

object_to_string(owner)

[success]

SpecifiedObjectNotFound

[failure]

DBException

addOwner(audioClipID, ownerIOR)

registerInterest(audioClipID, owner)


Figure 5. AudioClipModule:RegisterInterest (Sequence Diagram)



3.1.1.6 AudioClipModule:Shutdown (Sequence Diagram)

When the AudioClipService is shut down by the ServiceApplication, it stops its timer based processing, disconnects the audio clip manager from the ORB, and releases any resources it is using.  A shutdown flag is set which forces all threads currently streaming to abort as soon as the current pushAudio() call returns, with a pushFailure() call.  The shutdown is complete when all active threads have been aborted.
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Figure 6. AudioClipModule:Shutdown (Sequence Diagram)



3.1.1.7 AudioClipModule:StoreClip (Sequence Diagram)

This method implements the storeClip method of the AudioClipManager interface.  This method converts a HARMessageAudioDataClip into a lightweight HARMessageAudioClip, and registers the requester as an owner of the new clip in the process.  The new HARMessageAudioClip is returned to the requester.
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Figure 7. AudioClipModule:StoreClip (Sequence Diagram)



3.1.1.8 AudioClipModule:StreamAudioClip (Sequence Diagram)

This method implements the AudioStreamer method streamAudioClip().  This method acquires the clip from the database, throwing a SpecifiedObjectNotFound exception as necessary.  A ByteArrayInputStream is used to buffer the audio wav data to the push process.  The AudioPushThreadManager is informed of the push request, and passes the request off to one of the push threads immediately, or, if all are in use, as soon as one becomes available.  The push thread pushes the audio properties to the consumer first, then pushes chunks of data, of up to the size requested, by calling pushAudio() on the consumer.  This is repeated until the all audio has been pushed, unless an error occurs, the Audio Clip Service is shut down, or the consumer returns a value of false indicating that it no longer wishes to continue receiving the data.  In all cases except the last, the thread completes the process by calling pushCompleted() or pushFailure() on the consumer.  Finally the thread releases itself back into the free thread pool.
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Figure 8. AudioClipModule:StreamAudioClip (Sequence Diagram)

Chart2Service

3.1.2 Classes

3.1.2.1 CHART2ServiceClasses (Class Diagram)

The diagram shows classes of an application which helps in installation and termination of the modules related to CHART II system.
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Figure 9. CHART2ServiceClasses (Class Diagram)



3.1.2.1.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in CHART II system.

3.1.2.1.2 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface.  This class is passed a properties file during construction.  This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available,  provide database connectivity, etc.  The properties file also contains the class names of service modules that should be served by the service application.  During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service.  Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization.  The DefaultServiceApplication stores all offer IDs in a file during its startup.  Each module is expected to remove its offers from the trader during a shutdown.  If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start.  This keeps  multiple offers for the same object from being placed in the trader. 

3.1.2.1.3 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown externally.  All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

3.1.2.1.4 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.2.1.5 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagrams

3.1.2.2 CHART2Service:Shutdown (Sequence Diagram)

This sequence diagram shows shutdown of CHART2Service.  This service calls shutdown on DefaultServiceApplication object which shuts down the modules that are served by the CHART II system. Refer to DefaultServiceApplication's Shutdown sequence diagram in Utility package for details.  The CHART2Service deactivates itself using the POA and the CHART2Service calls the deactivate method on the POAManager to exit the event loop and shudown.
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Figure 10. CHART2Service:Shutdown (Sequence Diagram)



3.1.2.3 CHART2Service:Startup (Sequence Diagram)

This sequence diagram shows startup of CHART2Service.  This service creates and starts a DefaultServiceApplication object and the modules that are served by the CHART II system. Refer to DefaultServiceApplication's Start sequence diagram in Utility package for details.  The CHART2Service is activated using the POA and the CHART2Service activates the POAManager to enter the event loop and start serving the CORBA requests.
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Figure 11. CHART2Service:Startup (Sequence Diagram)



CommLogModule

3.1.3 Classes

3.1.3.1 CommLogModuleClassDiagram (Class Diagram)

This Class Diagram displays classes used for managing the Communications Log.  Operators can add entries directly to the Communications Log, and entries are also added indirectly with certain Traffic Events manipulations.  Operators can view or search entries in the Communications Log, but cannot edit them. 
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Figure 12. CommLogModuleClassDiagram (Class Diagram)



3.1.3.1.1 CommLog (Class)

This class manages log entries.  These can be general Communications Log entries or specific log entries for a specific Traffic Event.  This class is the primary interface for the CommLog service.  It is used to persist log entries in the CHART II system and retrieve them for review.  Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events. 

3.1.3.1.2 CommLogClient (Class)

This class is a wrapper to be used by clients of the Communications Log.  It provides services such as discovering instances of the CommLog in the trader and caching entries to the comm log that are added when the comm log is not available.

3.1.3.1.3 CommLogImpl (Class)

This class implements the CommsLog interface; that is, it implements the methods defined by CommsLog, allowing user interface processes access to the Communications Log for adding entries and selecting entries for viewing. 

3.1.3.1.4 CommLogModule (Class)

This class implements the ServiceApplicationModule for controlling the CommLog.  This class starts up the CommsLog service, and shuts it down when requested. 

3.1.3.1.5 CommLogModuleProperties (Class)

This class represents an object that provides access to properties that are specific to the CommLog module.

3.1.3.1.6 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively.  The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover. 

3.1.3.1.7 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database.  This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.1.3.1.8 IteratorCleanupTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process to cleanup LogIterators that are no longer being used.  

3.1.3.1.9 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string.  A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list. 

3.1.3.1.10 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.3.1.11 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.3.1.12 LogEntry (Class)

This class represents a typical log entry that is stored in the database.  This can be a general Communications Log entry or it can be a historical entry for a Traffic Event.  Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event. 

3.1.3.1.13 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication.  The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.3.1.14 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.3.1.15 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.3.1.16 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.3.1.17 TokenManipulator (Class)

This class contains all functionality required for user rights in the system.  It is the only code in the system which knows how to create, modify and check a user's functional rights.  It encapsulates the contents of an octet sequence which will be passed to every secure method.  Secure methods should call the checkAccess method to validate the user.  Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method.  The token contains the following information.  Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

Sequence Diagrams

3.1.3.2 CommLogModule:addEntries (Sequence Diagram)

This sequence is initiated by a process (GUI) which is adding one or more entries into the Communications Log.  (A process normally adds entries one at a time as events are created.  More than one entry may be queued up if the CommsLog service has been unavailable.)  The CommsLog service adds each entry on the list to the database. 
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Figure 13. CommLogModule:addEntries (Sequence Diagram)



3.1.3.3 CommLogModule:destroy (Sequence Diagram)

This sequence is executed by a user process (GUI) when it is done with a LogIterator (due to no more entries left or operator cancel).  Each LogEntry conceptually on the LogIterator's list which was never returned to the caller (if any) is removed from the cache and destroyed if necessary, then the LogIterator itself is deleted. 
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Figure 14. CommLogModule:destroy (Sequence Diagram)



3.1.3.4 CommLogModule:getEntries (Sequence Diagram)

This sequence shows how the CommsLog service responds to a request from another process (GUI) for entries from the Communications Log.  The request may be constrained by a filter (based on time, originating Op Center, author, etc.).  If the amount of data is larger than the requestor-specified size, the first clump is returned immediately, together with a LogIterator which can be used to later retrieve additional data, which is cached as the initial request is processed.
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Figure 15. CommLogModule:getEntries (Sequence Diagram)



3.1.3.5 CommLogModule:initialize (Sequence Diagram)

This sequence is executed by the Service Application to start a CommsLog service if required.  The CommLogModule creates a CommLog service object and makes it ready to begin servicing requests.  The CommLog service allows for creation and retrieval of Communications Log Entries.  New entries are pushed through the CORBA event service.
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Figure 16. CommLogModule:initialize (Sequence Diagram)



3.1.3.6 CommLogModule:runIteratorCleanup (Sequence Diagram)

This sequence diagram shows the processing done to clean up any stray iterators that may have been left around by clients.
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Figure 17. CommLogModule:runIteratorCleanup (Sequence Diagram)



3.1.3.7 CommLogModule:shutdown (Sequence Diagram)

This sequence is used to shutdown the CommsLog service as part of an orderly shutdown.  The CommsLog deletes all memory associated with cached retrieval requests and exits.  No attempt is made to persist cached data or iterators.  GUIs must re-request at a later time. 
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Figure 18. CommLogModule:shutdown (Sequence Diagram)



CORBAUtilities

3.1.4 Classes

3.1.4.1 CORBAClasses (Class Diagram)

The CORBAUtilities package exists to provide reference to classes that are supplied by the ORB Vendor and are referenced by other packages' class or sequence diagrams.
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Figure 19. CORBAClasses (Class Diagram)



3.1.4.1.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor's implementation of a CORBA event channel.  The event service provided by the vendor simply serves one of these objects.  The Extended Event Service serves a factory that allows multiple instances of the vendor supplied event channel to be created.

3.1.4.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel. 

3.1.4.1.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and consumers of information.

3.1.4.1.4 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively.  The CosTrading.Lookup is the interface that applications use to discover objects, which have previously been published. 

3.1.4.1.5 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively.  The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover. 

3.1.4.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication.  The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.4.1.7 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

3.1.4.1.8 POAManager (Class)

This interface represents the portable object adapter manager used to activate and deactivate the POA.

DeviceUtility

3.1.5 Classes

3.1.5.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device control.
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Figure 20. DeviceUtility (Class Diagram)



3.1.5.1.1 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event.  (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents.  In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.5.1.2 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

3.1.5.1.3 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

3.1.5.1.4 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.  This table is used to log details about any comm failure that occurs in the system.

3.1.5.1.5 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

3.1.5.1.6 MessageQueue (Class)

This class represents a message queue object.  It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.  

3.1.5.1.7 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.5.1.8 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.5.1.9 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the deployment of many PortManagers.  The PortLocator is initialized by specifying a preferred PortManager and optionally one or more alternate PortManagers using a PortLocationData object.  

When asked to get a connected port, the PortLocator first attempts to acquire a port from the preferred PortManager and then calls its abstract connectPort() method (implemented by derived classes) to attempt to connect to the port.  If a failure occurs, the PortLocator retries the sequence using the next PortManager in the list.  The list may contain the same port manager multiple times to have retries occur on the same port manager prior to moving to another.  In the event that the PortLocator will perform a retry on the same port manager, it holds the previously acquired port while performing the retry to avoid having the port manager return the same port during the retry.  When a different port is acquired during a retry on the same port manager, the port is released (prior to connecting the 2nd port).

3.1.5.1.10 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

3.1.5.1.11 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.  Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

3.1.5.2 PortLocatorClasses (Class Diagram)

This class diagram shows utility classes that can be used to get a free port.
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Figure 21. PortLocatorClasses (Class Diagram)



3.1.5.2.1 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

3.1.5.2.2 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

3.1.5.2.3 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.  This table is used to log details about any comm failure that occurs in the system.

3.1.5.2.4 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

3.1.5.2.5 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.5.2.6 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.5.2.7 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the deployment of many PortManagers.  The PortLocator is initialized by specifying a preferred PortManager and optionally one or more alternate PortManagers using a PortLocationData object.  

When asked to get a connected port, the PortLocator first attempts to acquire a port from the preferred PortManager and then calls its abstract connectPort() method (implemented by derived classes) to attempt to connect to the port.  If a failure occurs, the PortLocator retries the sequence using the next PortManager in the list.  The list may contain the same port manager multiple times to have retries occur on the same port manager prior to moving to another.  In the event that the PortLocator will perform a retry on the same port manager, it holds the previously acquired port while performing the retry to avoid having the port manager return the same port during the retry.  When a different port is acquired during a retry on the same port manager, the port is released (prior to connecting the 2nd port).

3.1.5.2.8 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

3.1.5.2.9 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.  Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

Sequence Diagrams

3.1.5.3 MessageQueue:addEntry (Sequence Diagram)

This diagram shows the processing involved when a request to change the priority for the passed event is sent to the arbitration queue. A check is first made to ensure the existence of the event on the arbitration queue. Priorities assigned, will be based on the traffic event type. Each traffic event type, will have a range in which priorities will be assigned. If the priority number passed is within the range of the event type, then based on the current events in the range, a new number will be assigned. For e.g., if an event of the same priority already exists then the number assigned = mean of (event of same priority & next event (or upper boundary limit)). If the new priority falls in the range of a different event type, then again a guess will be taken depending on the assigned priority & the events in that range. 
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Figure 22. MessageQueue:addEntry (Sequence Diagram)

3.1.5.4 MessageQueue:changePriority (Sequence Diagram)

This diagram shows the processing involved when an entry is added to an arbitration queue. Before adding the entry to the arbitration queue, it is assigned a priority number based on the event type. Each traffic event type, will have a range in which priorities will be assigned. The next priority number assigned = mean of (last priority number in the range & upper boundary limit) 
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Figure 23. MessageQueue:changePriority (Sequence Diagram)



3.1.5.5 MessageQueue:getEntries (Sequence Diagram)

This diagram shows the processing involved when a request is made to the arbitrarion queue to return the list of entries it currently holds. The list is internally stored in an ascending order based on the assigned priority number for the event. 
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Figure 24. MessageQueue:getEntries (Sequence Diagram)



3.1.5.6 MessageQueue:purgeUnresolvedEntries (Sequence Diagram)

After startup, the arbitration queue entries with unresolved traffic event references are purged when the arbitration queue is evaluated as a result of an arbitration queue entry addition or removal from the queue.



[image: image27.emf]m_messageQueue:

Vector

newMessageQueue:

Vector

MessageQueue

HARImpl

or

DMSImpl

[entry.m_trafficEvent is non-null (i.e., resolved)]

add

purgeUnresolvedEntries

delete original m_messageQueue

"set newMessageQueue

to be m_messageQueue"

[*for each

ArbQueueEntry on

m_messageQueue


Figure 25. MessageQueue:purgeUnresolvedEntries (Sequence Diagram)



3.1.5.7 MessageQueue:removeEntry (Sequence Diagram)

This diagram shows the processing involved when an entry is removed from the arbitration queue.  The ID of the traffic event to be removed is used to find the corresponding queue entry and the entry is marked for deletion.  
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Figure 26. MessageQueue:removeEntry (Sequence Diagram)



3.1.5.8 MessageQueue:validateEntries (Sequence Diagram)

At startup, arbitration queue entries are validated by finding the responsible traffic event in the CORBA Trader.  If the traffic event was not found i.e. an OBJECT_NOT_EXIST exception is encountered while narrowing the object, the entry is deleted. If a TRANSIENT exception is encountered while narrowing the object, the entry is marked for resolving the traffic event at a later time. 
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Figure 27. MessageQueue:validateEntries (Sequence Diagram)



3.1.5.9 ModemPortLocator:connectPort (Sequence Diagram)

This sequence shows the ModemPortLocator processing involved when its base class invokes the virtual connectPort method.  The ModemPortLocator casts the port retrieved by the base class into a ModemPort and calls its connect method.  The ModemPortLocator then interprets the results of the connect call and returns a code to the base class to indicate success, failure - retries should not be attempted, or failure - retries may be attempted.  The failure - retries should not be attempted result code is used in situations where a retry on a different port would likely yield the same result or when a software failure is encountered.  If a failure occurs, detailed comm failure data is logged to the database comm failure table.  Note this feature is controlled by the constructor of the class, allowing test programs to use this class without requiring a database connection.



[image: image30.emf]CommFailureData

Base class protected

member.

m_commFailureDB

The remainder of this sequence shows the error handling.  When an error occurs in the ModemPort connect call,

an exception is thrown.  The ModemPortLocator logs the error and decides if the type of error should halt retries (if any)

See the specific Exceptions on the returns from ModemPortLocator to PortLocator.

ModemPort PortManagerCommsData

Virtual Function

call on derived class

ModemPortLocator

PortLocator

[failure]

Exception Specific to Failure Type

[success]

CONN_RSLT_OK

[success]

connect

get phone number

connectPort

[ConnectFailure]

CONN_RSLT_FAIL_NO_RETRY

[PortOpenFailure]

CONN_RSLT_FAIL_RETRY

[OBJECT_NOT_EXIST]

CONN_RSLT_FAIL_RETRY

[TRANSIENT]

CONN_RSLT_FAIL_RETRY

[CORBA_COMM_FAILURE]

CONN_RSLT_FAIL_RETRY

[failure and m_commFailureDB != null]

addCommFailureLogEntry

[failure and m_commFailureDB != null]

create

[ModemNotResponding]

CONN_RSLT_FAIL_RETRY

[CHART2Exception]

CONN_RSLT_FAIL_NO_RETRY

[ModemConnectFailure

And ModemResponseCode NOT 

NO_CARRIER, NO_DIALTONE,

ERROR, or UNKNOWN]

CONN_RSLT_FAIL_NO_RETRY

[ModemConnectFailure

And ModemResponseCode == 

NO_CARRIER, NO_DIALTONE,

ERROR, or UNKNOWN]

CONN_RSLT_FAIL_RETRY 

[ModemInitFailure]

CONN_RSLT_FAIL_RETRY


Figure 28. ModemPortLocator:connectPort (Sequence Diagram)

3.1.5.10 PortLocator:getConnectedPort (Sequence Diagram)

The getConnectedPort method of the PortLocator utility uses the list of PortManager names and associated connection information (such as phone number to use) to attempt to acquire a port and connect it to the remote destination.  Retry logic exists to try each PortManager in succession until a port is successfully connected or an attempt to connect fails and the type of failure is not likely to benefit from a retry on a different port.  The list of port manager names can contain duplicate entries to cause the port locator to use a different port on the same port manager.  When this is the case, the port locator must hold the previously acquired port while it attempts to get an additional port from the port manager to ensure the port manager doesn't return the same port twice.

The connection logic is carried out in the derived class connectPort() method, for this logic varies depending on the type of port requested.  A private getPort() method handles logic to retrieve a port from a single port manager and process errors.  Sequences for these methods exist in the ModemPortLocator:connectPort() sequence and the PortLocator:getPort() sequence.
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Figure 29. PortLocator:getConnectedPort (Sequence Diagram)



3.1.5.11  PortLocator:ReleasePort (Sequence Diagram)

When the PortLocator releasePort method is called, the PortLocator uses the port manager reference that it stored in the getPort method to release the port from the correct PortManager.
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Figure 30. PortLocator:ReleasePort (Sequence Diagram)



3.1.5.12 VoicePortLocator:connectPort (Sequence Diagram)

This sequence shows the VoicePortLocator processing involved when its base class invokes the virtual connectPort method.  The VoicePortLocator casts the port retrieved by the base class into a VoicePort and calls its connect method.  The VoicePortLocator then interprets the results of the connect call and returns a code to the base class to indicate success, failure - retries should not be attempted, or failure - retries may be attempted.  The failure - retries should not be attempted result code is used in situations where a retry on a different port would likely yield the same result or when a software failure is encountered.  If a failure occurs, detailed comm failure data is logged to the database comm failure table.  Note this feature is controlled by the constructor of the class, allowing test programs to use this class without requiring a database connection.
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Figure 31. VoicePortLocator:connectPort (Sequence Diagram)



DictionaryModule

3.1.6 Classes

3.1.6.1 DictionaryModClassDiagram (Class Diagram)

The DictionaryModule is a Service Application module that creates and serves the Dictionary implementation to the rest of the Chart2 system.
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Figure 32. DictionaryModClassDiagram (Class Diagram)



3.1.6.1.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,.. 

3.1.6.1.2 DictionaryDB (Class)

This class provides API calls to add, remove and retrieve banned words and approved words from the database. The connection to the database is acquired from the Database object which manages all the database connections.

3.1.6.1.3 DictionaryImpl (Class)

This class implements the Dictionary as specified by the IDL. It provides functionality to add, delete and check for words that are banned or approved from being used in a DMS message. 

3.1.6.1.4 DictionaryModule (Class)

This class implements the Service Application module interface. It publishes the dictionary implementation.

3.1.6.1.5 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a substitute for the word that could not be found in the approved words dictionary database. 

3.1.6.1.6 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that qualifies the type of devices that the word applies to.

3.1.6.1.7 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.   

3.1.6.1.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.6.1.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.6.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagram

3.1.6.2 DictionaryImpl:addApprovedWordList (Sequence Diagram)

The given list of words is added to the approved words dictionary database. The newly added words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege. 
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Figure 33. DictionaryImpl:addApprovedWordList (Sequence Diagram)



3.1.6.3 DictionaryImpl:addBannedWordList (Sequence Diagram)

The given list of words is added to the banned words dictionary database and the copy of the dictionary in memory is also updated. The newly added banned words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege. 
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Figure 34. DictionaryImpl:addBannedWordList (Sequence Diagram)



3.1.6.4 DictionaryImpl:checkForBannedWords (Sequence Diagram)

The string provided by the operator is scanned for any banned words by looking up the database. Any character from the given set of delimiters is taken to be a valid delimiter of words in the string. The list of banned words present in the string is returned.
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Figure 35. DictionaryImpl:checkForBannedWords (Sequence Diagram)



3.1.6.5 DictionaryImpl:getApprovedWords (Sequence Diagram)

The list of approved words in the dictionary is read from the database and returned to the operator. Access is denied to any operator without the "Manage Dictionary" privilege.
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Figure 36. DictionaryImpl:getApprovedWords (Sequence Diagram)



3.1.6.6 DictionaryImpl:getBannedWords (Sequence Diagram)

The list of banned words in the dictionary is read from the database and returned to the operator. Access is denied to any operator without the "Manage Dictionary" privilege.
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Figure 37. DictionaryImpl:getBannedWords (Sequence Diagram)



3.1.6.7 DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)

The string provided by the operator is scanned for any words that are not present in the approved words dictionary database. Any character from the given set of delimiters is taken to be a valid delimiter of words in the string. For each word not present in the approved word list, a list of suggested words is formulated. The suggested words are those in the approved words dictionary, that have close lexical match with the disapproved word.
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Figure 38. DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)



3.1.6.8 DictionaryImpl:removeApprovedWordList (Sequence Diagram)

The given list of words is removed from the approved words dictionary database. The removed words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.
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Figure 39. DictionaryImpl:removeApprovedWordList (Sequence Diagram)



3.1.6.9 DictionaryImpl:removeBannedWordList (Sequence Diagram)

The given list of words is removed from the banned words dictionary database. The removed words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege. 
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Figure 40. DictionaryImpl:removeBannedWordList (Sequence Diagram)



3.1.6.10 DictionaryModule:initialize (Sequence Diagram)

When the DMS service calls the initialize method of Dictionary module, the dictionary objects are created, connected to the ORB, exported to the CORBA trading service. The dictionary objects are now available to serve the consumers.
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Figure 41. DictionaryModule:initialize (Sequence Diagram)



3.1.6.11 DictionaryModule:shutdown (Sequence Diagram)

When the host service application calls shutdown in the Dictionary module, the dictionary object is withdrawn from the CORBA trading service and disconnected from the ORB. The  objects are then deleted.
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Figure 42. DictionaryModule:shutdown (Sequence Diagram)



DMSControlModule

3.1.7 Classes

3.1.7.1 DMSControlClassDiagram (Class Diagram)

This Class Diagram shows the classes of the DMS Control Module.  The DMS Control Module is an installable module that serves the DMS objects and DMSFactory to the rest of the Chart2 system.  This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions. 
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Figure 43. DMSControlClassDiagram (Class Diagram)



3.1.7.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device.  The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries.  When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue.  The priority of the queue entries can be modified after they are added to the queue.  The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online. 

3.1.7.1.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event.  (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents.  In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.7.1.3 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the Chart II-specific DMS objects within Chart II.  It provides an interface for traffic events to provide input as to what each traffic event desires to be on the sign via the ArbitrationQueue interface.  Through the HARMessageNotifier interface a HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic message.   Chart II business rules include concepts such as shared resources, arbitration queues, and linking devices usage to traffic events, concepts which go beyond what would be industry-standard DMS control. 

3.1.7.1.4 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to Chart II processing.  Such information includes how to contact the sign under Chart II software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization.  Such data extends beyond what would be industry-standard configuration information for a DMS. 

3.1.7.1.5 Chart2DMSData (Class)

This class is used to store data associated with a DMS such as last contact time etc.

3.1.7.1.6 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional Chart II specific capability.  This factory creates Chart2DMS objects (extensions of DMS objects).  It implements the SharedResourceManager capability to control DMS objects as shared resources. 

3.1.7.1.7 Chart2DMSFactoryImpl (Class)

The Chart2DMSFactoryImpl class provides an implementation of the Chart2DMSFactory interface (and its DMSFactory and SharedResourceManager interfaces) as specified in the IDL.  The Chart2DMSFactoryImpl maintains a list of Chart2DMSImpl objects and is responsible for publishing DMS objects in the Trader on startup and as new DMS objects are created.   Whenever a DMS is created or removed, that information is persisted to the database.  This class is also responsible for performing the checks requested by the timer tasks:  to poll the DMS devices, to look for DMS devices with timeout exceeded, to look for DMS devices with no one logged in at the controlling operations center, and to initiate recovery processing as needed. 

3.1.7.1.8 Chart2DMSImpl (Class)

The Chart2DMSImpl class provides an implementation of the Chart2DMS interface, and by extension the DMS, SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable, ArbitrationQueue and UniquelyIdentifiable interfaces, as specified by the IDL.  

This class contains a CommandQueue object that is used to sequentially execute long running operations (field communications to the device) in a thread separate from the CORBA request threads, thus allowing quick initial responses.  The Chart2DMSImpl also contains a MessageQueue, which is used by the ArbitrationQueue interface methods to handle requests from TrafficEvents to display or remove messages from the signs in online mode.  When the Chart2DMSImpl evaluates its messages in the MessageQueue, it combines the highest priority messages into a single message which is placed into an appropriate QueueableCommand object (subclass of QueueableCommand) and added to the CommandQueue.  

Also contained in this class are Chart2DMSConfiguration and Chart2DMSStatus objects (used to store the configuration and status of the sign), and a Chart2DMSData object (used to store internal status information which is persisted but not pushed out to clients), a list of ArbQueueEntry objects from the MessageQueue that are currently active on the sign, and a copy of the last QueueableCommand to put a message on the sign.

The Chart2DMSImpl contains *Impl methods that map to methods specified in the IDL, including requests to put a message on the sign or remove a message (in maintenance mode only), put the sign online, put the sign offline, put the sign in maintenance mode, or to change (set) the configuration of the sign.  All of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue.  The queueable command objects simply call the appropriate Chart2DMSImpl method as the command is executed by the CommandQueue in its thread of execution.  

The Chart2DMSImpl also contains methods called by the Chart2DMSFactory to support the timer tasks of the DMS Service: to poll the DMS devices, to look for DMS devices with communications timeout exceeded, to look for maintenance mode DMS devices with no one logged in at the controlling operations center, and to initiate recovery processing if needed.   

3.1.7.1.9 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to Chart II processing, such as information on the controlling operations center for the sign.  This data extends beyond what would be industry-standard status information for a DMS. 

3.1.7.1.10 CheckCommLossTask (Class)

The CheckCommLossTask class is responsible for determining when communications to a DMS device have been down long enough to decide that the sign is or should be blank or considered to be blank.  The anticipated time interval for making such a determination is on the order of ten minutes (however, this task is called much more frequently than that, so that the timeout can be detected soon after it has expired). This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects each time this task is called.  

3.1.7.1.11 CheckForAbandonedDMSTask (Class)

The CheckForAbandonedDMSTask class is responsible for detecting any DMS device in maintenance mode with a message on it which has no one logged it at the controlling operations center.  This would only occur as a result of an anomaly, such as a reboot of a user's machine, because during a normal Chart II logout attempt, the logout is prohibited by Chart II system if the user is the last user on his/her operations center and that operations center is controlling a sign.  However, because anomalies happen, this task runs periodically to look for abandoned DMS devices.  This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects and controlling operations centers of each DMS every time this task is called.  

3.1.7.1.12 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects.  The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order.  As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.7.1.13 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted.  When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.1.7.1.14 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.7.1.15 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error.  This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done.  In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary.  If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference.  When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system.  During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.1.7.1.16 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign (DMS) objects within Chart II.  It specifies methods for setting messages and clearing messages from a sign (in maintenance mode), polling a sign, changing the configuration of a sign, and resetting a sign.  (Setting messages on a sign in online mode are not accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic events, which use an ArbitrationQueue interface or by manipulating HARs, which use a HARMessageNotifier interface.  This activity involves the DMS extension, Chart2DMS, which defines interactions with signs under Chart II business rules.) 

3.1.7.1.17 DMSControlDB (Class)

The DMSControlDB class provides an interface between the DMS service and the database used to persist the DMS objects and their configuration and status in the database.  It contains a collection of methods that perform database operations on tables pertinent to DMS Control.  The class is constructed with a DBConnectionManager object, which manages database connections.   Methods exist to insert and delete DMS objects from the database, and to get and set their configuration and status information.  All information about a sign is persisted, including its current displayed message, communications status, and time of last contact, so that a momentary glitch or restart of the software will not interrupt messages on signs.

3.1.7.1.18 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS factory.  It implements the ServiceApplicationModule interface.  It creates and serves a single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects.  It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and PushEventSupplier and NotificationChannel objects. 

3.1.7.1.19 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the DMS Control Module.  This class wraps properties that are passed to it upon construction.  It adds its own defaults and provides methods to extract properties specific to the DMS Control Module. 

3.1.7.1.20 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system.  It also provides a method to get a list of DMS devices currently in the system. 

3.1.7.1.21 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating FP9500 models of DMS signs.  It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific DMS control.  For instance, the FP9500DMS has a performPixelTest method, which knows how to invoke and interpret a pixel test as supported by the FP9500 model DMS. 

3.1.7.1.22 FP9500DMSConfiguration (Class)

This class is used to provide configuration information specific to Chart II processing that is unique to a FP9500 model of sign.

3.1.7.1.23 FP9500DMSImpl (Class)

The FP9500DMSImpl class provides a specific implementation to implement the FP9500DMS interface, providing any specific functionality unique to this brand and model of sign.  This class is exemplary of a whole suite of implementation classes which may be created, on a case-by-case basis, to support specific capabilities of speciifc brands and models of signs. 

3.1.7.1.24 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to the FP9500 model of sign.  It is exemplary of potentially a whole suite of Chart2DMSStatus subclasses specific to a specific brand and model of sign. 

3.1.7.1.25 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.7.1.26 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR.  A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.  This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message. 

3.1.7.1.27 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string.  A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list. 

3.1.7.1.28 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.7.1.29 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.7.1.30 MessageQueue (Class)

This class represents a message queue object.  It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.  

3.1.7.1.31 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.7.1.32 PollDMSTask (Class)

The PollDMSTask class is responsible for polling all the DMS devices.  This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to request each DMS to poll itself (its poll interval has expired) each time this task is called.  

3.1.7.1.33 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.7.1.34 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution.  Derived classes implement the execute method to specify the actions taken by the command when it is executed.  This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.  

3.1.7.1.35 RecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process.  During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called.  This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the DMSService last went down, an essential piece of information for recovery during DMSService startup.  When the DMSService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkDMSRecovery) which requests all DMS objects to check and see if their recovery period has expired.  (The recovery period is defined to be their poll interval times a system-wide multiplier (expected to be 2), or, if the DMS has no poll interval, a system-wide constant (on the order of 10-15 minutes.)  Each DMS, therefore terminates its recovery period independently of the others.  (When all DMSes have terminated their recovery period, checkDMSRecovery is no longer called.)  

When each DMS checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its MessageQueue to take one last try at resolving traffic events on its queue, then the DMS makes final a determination as to what message (or blank) belongs on the sign, and it requests the DMS to set the sign appropriately. 

3.1.7.1.36 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.7.1.37 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.7.1.38 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign during normal operations (online mode).  It is created by the Chart2DMSImpl during successful processing of its setMessageFromQueue and evaluateQueue methods.  When the CommandQueue invokes the execute method of this class, it merely calls the setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.1.39 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.  

3.1.7.1.40 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.7.1.41 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.7.2 QueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for DMS Control.  A class exists for each type of command that can be executed asynchronously on a DMS object. 
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Figure 44. QueueableCommandClassDiagram (Class Diagram)



3.1.7.2.1 BlankDMSCmd (Class)

The BlankDMSCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to blank the sign in maintenance mode.  It is created by the Chart2DMSImpl during successful processing of its blankSign and deactivateHARNotice methods.  When the CommandQueue invokes the execute method of this class, it merely calls the blankSignImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.2 BlankDMSFromQueueCmd (Class)

The BlankDMSFromQueueCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to blank the sign during normal operations (online mode).  It is created by the Chart2DMSImpl during successful processing of its evaluateQueue method.  When the CommandQueue invokes the execute method of this class, it merely calls the blankSignFromQueueImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.3 PollDMSNowCmd (Class)

The PollDMSNowCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to poll its device.  It is created by the Chart2DMSImpl during successful processing of its pollNow method in maintenance mode (triggered by a user request) or during processing of the pollIfNecessary method (triggered by the automatic polling of the PollDMSTask object).  When the CommandQueue invokes the execute method of this class, it merely calls the pollNowImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.4 PutDMSInMaintModeCmd (Class)

The PutDMSInMaintModeCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put the sign in maintenance mode (from either offline or online mode).  It is created by the Chart2DMSImpl during successful processing of its putInMaintMode method.  When the CommandQueue invokes the execute method of this class, it merely calls the putInMaintModeImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.5 PutDMSOnlineCmd (Class)

The PutDMSOnlineCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put the sign online (from either offline or maintenance mode).  It is created by the Chart2DMSImpl during successful processing of its putDMSOnline method.  When the CommandQueue invokes the execute method of this class, it merely calls the putDMSOnlineImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution.  Derived classes implement the execute method to specify the actions taken by the command when it is executed.  This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down. 

3.1.7.2.7 ResetDMSCmd (Class)

The ResetDMSCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put reset the sign (in maintenance mode only).  It is created by the Chart2DMSImpl during successful processing of its resetController method.  When the CommandQueue invokes the execute method of this class, it merely calls the resetControllerImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.8 SetDMSConfigCmd (Class)

The SetDMSConfigCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to update its configuration (in maintenance mode only).  It is created by the Chart2DMSImpl during successful processing of its setConfiguration method.  When the CommandQueue invokes the execute method of this class, it merely calls the setConfigurationImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.9 SetDMSMessageCmd (Class)

The SetDMSMessageCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign in maintenance mode.  It is created by the Chart2DMSImpl during successful processing of its setMessage and activateHARNotice methods.  When the CommandQueue invokes the execute method of this class, it merely calls the setMessageImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.10 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign during normal operations (online mode).  It is created by the Chart2DMSImpl during successful processing of its setMessageFromQueue and evaluateQueue methods.  When the CommandQueue invokes the execute method of this class, it merely calls the setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

3.1.7.2.11 TakeDMSOfflineCmd (Class)

The TakeDMSOfflineCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put the sign offline (from either online or maintenance mode).  It is created by the Chart2DMSImpl during successful processing of its takeOffline method.  When the CommandQueue invokes the execute method of this class, it merely calls the takeOfflineImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.   

Sequence Diagram

3.1.7.3 DMSControlModule:ActivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request to be used as a SHAZAM by a HAR.  The operator (making the original HAR request) must have proper functional rights for the sign.  If the DMS is in maintenance mode, this method verifies that no TrafficEvents are supplied (as might happen if the HAR expected the DMS to be in online mode).  A check for resource conflict is done and then a SetDMSMessageCmd is created (using the SHAZAM message) and added to the CommandQueue.  When this command is executed, setMessageImpl is executed to put the SHAZAM message on the sign.

If the DMS is not in maintenance mode, this method verifies that a list of TrafficEvents has been supplied.  Calls to this method during recovery mode force recovery mode to end.  Before setting recovery mode to false one final attempt is made to get the TrafficEvents to validate themselves.

After verifying there is no HARNotifierArbQueueEntry in its own MessageQueue, this method creates a HARNotifierArbQueueEntry and adds it to the MessageQueue via the MessageQueue's addEntry command.  EvaluateQueue is called to (re)evaluate the MessageQueue to determine what goes on the sign.  If there are no other messages in the queue, the SHAZAM message will be displayed on the sign immediately.

Typically, SHAZAM messages will have a low priority and will not replace a "real" DMS message.  However, the SHAZAM message may be combined with other message types and be displayed on the sign.  It may also be queued up to wait for an opportunity to display later when there is room on the sign. 
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Figure 45. DMSControlModule:ActivateHARNotice (Sequence Diagram)



3.1.7.4 DMSControlModule:AddEntry (Sequence Diagram)

The addEntry method defined in the ArbitrationQueue interface is used to queue a message for a DMS to display when the DMS is online.  This method delegates the storage of the entry to the MessageQueue, then, if the DMS is online, the evaluateQueue() method is called to determine whether this new entry should result in a new message being displayed on the DMS.  The details of the evaluateQueue processing are shown in the DMSControlModule:evaluateQueue sequence diagram.  AddEntry can be called while the DMS is in any mode.  If the DMS is not online, the queue will be evaluated the next time the queue is placed online. 
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Figure 46. DMSControlModule:AddEntry (Sequence Diagram)



3.1.7.5 DMSControlModule:BlankSign (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object processes a request to blank its message in maintenance mode.  (In online mode blanking is initiated from evaluateQueue.) The DMS must be in maintenance mode, the requesting operator must have proper functional rights, and if there is a message on the sign from another operations center, the user must have override authority.  This method creates a BlankDMSCmd (a QueueableCommand) and adds it to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  Requests to communicate with the sign are processed on a first-come, first-served basis.  When the CommandQueue is ready, it executes the BlankDMSCmd, which calls the blankSignImpl method. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 
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Figure 47. DMSControlModule:BlankSign (Sequence Diagram)



3.1.7.6 DMSControlModule:BlankSignFromQueueImpl (Sequence Diagram)

The sequence diagram shows how a Chart2DMSImpl object executes a command to blank the sign in online mode.  This happens when the last message in the MessageQueue is removed from the queue while the device is online.  

When a message is requested to be removed from the sign, it is actually removed from the MessageQueue and the MessageQueue is re-evaluated in order to put the next message on the sign.  If there are no more messages to display, a BlankFromQueueCmd is created and added to the CommandQueue to remove the last message that was displayed on the sign.  This is all done in the evaluateQueue method.  When the BlankFromQueueCmd is executed, the BlankSignFromQueueImpl method is called.

BlankSignFromQueueImpl calls blankSignNow to blank the sign.  If successful, requestSuccessful is called to take care of notifying the corresponding TrafficEvents that the message was removed from the sign.  If there is a failure, requestFailed is called to take care of notifying the corresponding TrafficEvents that the message was not removed from the sign.
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Figure 48. DMSControlModule:BlankSignFromQueueImpl (Sequence Diagram)



3.1.7.7 DMSControlModule:BlankSignImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to blank its message in maintenance mode.  (The analogous method in online mode is blankFromQueueImpl.)  An operator request to blank the sign has already been received and pre-processed by the blankSign or deactivateHARNotice methods.  When the blankSignImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it) and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center).  Assuming no problems, the method blankSignNow is called to command the sign, update the database, handle any status change, and push a CurrentDMSStatus event into the event channel so that any user (with rights) can immediately see that the sign is now blank.  The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 
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Figure 49. DMSControlModule:BlankSignImpl (Sequence Diagram)



3.1.7.8 DMSControlModule:BlankSignNow (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object actually blanks the sign.  This is a utility method called at many points during DMS operations.  The sign must be blanked when requested by the user in maintenance mode, when implicitly requested when online by removing a message, when changing modes (online, offline, maintenance mode), and when resetting the sign.  This method blanks the sign by creating an empty message, getting a port via the fmsGetConnectedPort helper method, and requesting, via DMSProtocolHdlr, that the sign display the blank message.  The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comm failure, or hardware failure) reported by the DMSProtocolHdlr during this operation.  Throughout, report() is called to report progress and status information to a CommandStatus object and to the TrafficEvents/ResponsePlanItems in the active ArbQueEntry objects (which are being removed from the sign), so that progress can be monitored by the users.   RequestSuccessful and requestFailed are called to notify the ArbQueueEntry objects that they have been removed from the sign or that an error has occurred.  A CurrentDMSStatus event is pushed into the event channel, so that any user (with rights) can immediately see that the sign is now blank. 



[image: image52.emf]complete flag false here (this method doesn't know if the operation is completed or 

not -- e.g. if taking DMS offline that operation will continue) 

DMSMessage

m_status:

Chart2DMSStatus

OperationsLog PushEventSupplier

This method is called by several methods to actually blank the

sign, after all checks have been performed.  This method just 

goes to FMS and does it.  This method is called by blankSignImpl,

blankFromQueueImpl, PutDMSInMaintMode, PutDMSOnline, 

TakeDMSOffline, and resetController.

DMSProtocolhndlr

Chart2DMSImpl

Chart2DMSImpl

[falure and online]

requestFailed(null)

[failure]

false

report("blanking sign", false, true, cmdStatus, 

m_activeArbQEntries)

On failure, calls handleOpStatus which updates, persists, 

and pushes status if necessary.  See DMSControlModule:fmsGetConnectedPort 

and DMSControlModule:handleOpStatus sequence diagrams for details.

complete is false (this method doesn't know if the operation is completed or 

not -- e.g. if taking DMS offline that operation will continue) and notify is true.

complete is false and notify is true

See DMSControlModule:fmsDisconnectPort

sequence diagram for details.

complete is false and notify is true

log(token, "DMS blanked")

setCurrentMessage

create DMSMessage with blank multiMsg, beacon false

handleOpStatus(result, cmdStatus)

[failure]

false

setStatus(m_status)

[online]

requestSuccesssful(null, false)

[failure and online]

requestFailed(null)

fmsGetConnectedPort

[failure]

report("blank failed", false, true, cmdStatus, 

m_activeArbQEntries)

report("sign blanked", false, true, cmdStatus, 

m_activeArbQEntries)

[failure]

report("blank failed", false, true, cmdStatus, 

m_activeArbQEntries)

fmsDisconnectPort

true

push(CurrentDMSStatus)

create "Any" DMSEvent of type CurrentDMSStatus

dmsSetMessage(port, multiMsg, beacon)

create a multiMsg

containing the empty string

DMSEvent

DMSControlDB

complete is false and notify is true

Updates cmdStatus, updates

& pushes new DMSStatus

if necessary

blankSignNow(token, cmdStatus)


Figure 50. DMSControlModule:BlankSignNow (Sequence Diagram)



3.1.7.9 DMSControlModule:ChangePriority (Sequence Diagram)

This method, defined by the ArbitrationQueue interface, allows a user to modify the priority of a message existing in the message queue.  Since queued ArbQueueEntry objects are maintained by the MessageQueue, this request is delegated to the MessageQueue for processing.  If the DMS is currently online, the queue is reevaluated to determine whether the new priority should result in a new message being placed on the DMS.  See DMSControlModule:evaluateQueue for details.
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Figure 51. DMSControlModule:ChangePriority (Sequence Diagram)



3.1.7.10 DMSControlModule:CheckResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object checks a sign for a resource conflict prior to performing some other sort of operation on it.  This check is only done if the DMS is in maintenance mode.  This utility method is called from several other methods within the DMS service. If the DMS is currently is maintenance mode, and therefore has a controlling operations center, and it is not equal to the caller's operations center, and the user does not have override authority, there is a resource control conflict.  Otherwise, there is not.  If there is a resource control conflict, a message to this effect is written to the CommandStatus object, which may be monitored by the requesting user. 
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Figure 52. DMSControlModule:CheckResourceConflict (Sequence Diagram)



3.1.7.11 DMSControlModule:CreateDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactoryImpl creates a new DMS on behalf of an operator.  The operator must possess the proper functional rights to create a DMS.  The request to create a new DMS contains all data necessary to create it in a DMSConfiguration object, most likely one of some specific subclass, such as FP9500DMSConfiguration (unless it is to be a truly generic Chart2DMS, one which has no extended capabilities, or one of a new type whose extended capabilities are not yet encoded in Chart II software).  When a request to create DMS is received by the DMSFactory, the DMSControlDB is asked to create and persist it to the database.  A (subclassed) Chart2DMSImpl object and its corresponding MessageQueue, ProtocolHdlr, PortLocator and CommandQueueImpl are created, and the CommandQueue thread is started (see DMSControlModule:restoreDMS sequence diagram for details).  The object is connected to the ORB and is ready for operations.  A DMSAddedEvent is then pushed into the event channel.  A DMS is initially in offline mode when it is created. 
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Figure 53. DMSControlModule:CreateDMS (Sequence Diagram)



3.1.7.12 DMSControlModule:DeactivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request to discontinue operation as a SHAZAM by a HAR.  The operator (ending the HAR request) must have proper functional rights for the sign.  If the DMS is in maintenance mode, this method verifies that the online flag passed to the method is false.  A check for resource conflict is done and then a BlankDMSCmd is created and added to the CommandQueue.  When this command is executed, blankSignImpl is executed to blank the sign.

If the DMS is not in maintenance mode, this method verifies that the online flag is true.  The one (and only one) HARNotifierArbQueueEntry in its MessageQueue is obtained.  removeEntry is called on the MessageQueue passing the HARNotifierArbQueueEntry as the entry to delete.  If the HARNotifierArbQueueEntry was not active at this time, its TrafficEvents must be notified (here, rather than in RequestSuccessful as would normally occur when they are removed from the DMS) that they've been removed from the queue.

If the DMS is online, evaluateQueue is called to (re)evaluate the MessageQueue and display the next message(s) in the MessageQueue or blank the sign, as appropriate. 
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Figure 54. DMSControlModule:DeactivateHARNotice (Sequence Diagram)



3.1.7.13 DMSControlModule:EvaluateQueue (Sequence Diagram)

This diagram shows the processing done by the Chart2DMSImpl's implementation of the ArbitrationQueue interface's evaluateQueue abstract method.  The evaluate queue evaluates the ArbQueueEntry messages on the message queue and determines the message (or messages) to put on the device or determines if the device should be blanked.  The maximum number of  pages worth of messages which can be combined on a sign is a DMS property expected to be set at two.  Assume for discussion that two messages can be combined together.  If the highest priority message is more than two pages but within the maximum number of pages displayable on the sign (say, 3 for an FP9500), then that message will be displayed and can not be combined with any other message, as that would exceed the maximum number of pages (2) that can be displayed by a combined message.

When told to evaluate the queue, the Chart2DMSImpl looks at the ordered (by priority) list of ArbQueueEntries returned from the MessageQueue to decide the processing that must occur.  If there are no entries and there is still a message on the sign, the last message that is on the sign is in the process of being removed.  A BlankDMSFromQueueCmd is created to blank the sign and added to the CommandQueue.  Later, when the sign is blanked, the appropriate TrafficEvents will be notified that their message has been removed from the sign.

If there are any entries, the first entry is always to be displayed on the sign (if it is not there already).  Subsequent entries may be combined with the first according to the "matrix" approach defined for combining messages on a sign:


U
I
R
C
S

Urgent (U)
X
X


X

Incident (I)
X
X


X

Planned Roadwork (R)


X
X
X

Congestion (C)


X
X
X

SHAZAM (S)
X
X
X
X


That is, only five types of events may be combined: Urgent, Incident, Planned Roadwork, Congestion, SHAZAM (in order of priority) and only in pairs indicated by the x's in the matrix above.  For example, an Urgent message can be combined with another Urgent message, an Incident message, or a SHAZAM message, but not with a Roadwork or a Congestion message.

Once the (combined) message is complete, a DMSMessageImpl object is created with the new message.  Steps are taken to ensure that duplicate messages are not sent to the sign.  The new message and the trafficEvents from the corresponding ArbQueEntries are compared to the last SetDMSMessageFromQueueCmd.  If they are the same, the new message is identical to what is already queued and it is not queued again.  If there is no m_lastSetDMSMessageFromQueueCmd, the currently displayed message and its corresponding active ArbQueueEntries are compared to the new message and its ArbQueEntries.  If they are the same, the new message is already being displayed.  This last check is skipped if the skipMessageCheck flag is true (during some recovery operations when the persisted state is not being trusted).

If the new message and its corresponding TrafficEvents is unique, a SetDMSMessageFromQueueCmd is created and the message and the corresponding ArbQueEntries are passed to it.  Any previous SetDMSMessageFromQueueCmd's in the CommandQueue are removed, and the new conmand is added to the CommandQueue.

Finally, a copy of the SetDMSMessageFromQueueCmd is stored in the Chart2DMSImpl object.  At some point later, the CommandQueue will execute the SetMessageFromQueueImpl or BlankSignFromQueueImpl methods to actually blank the sign or display the requested message.



[image: image57.emf]List returned consists of 0..* ArbQueueEntry

objects, each with a DMSMessage object.  This 

list is ordered by Priority

Remove any SetDMSMessageFromQueueCmds 

already queued if they have not started execution yet.

We don't want to set one message when we already 

know we have another message queued up to replace it

immediately.  (There would only ever be one to remove, 

so keep reference to it in m_queuedSetMsgFromQueueCmd 

and pass to new CommandQueue.remove() method.

SetDMSMessageFromQueueCmd

Search list in order 

(already in priority order) 

for next one that will fit 

according to its length and 

event type.

If a BlankDMSCmd or SetDMSMessageCmd was created

above, the command queue executes it (whichever 

one was created) here, asynchronously.

Refer to setMessageFromQueueImpl and 

blankSignFromQueueImpl sequence diagrams 

for details on processing that occurs when the 

SetDMSMessageFromQueueCmd and 

BlankDMSFromQueueCmd are executed.

Don't care if it succeeds or

fails.  If it fails, it's too late, 

but at least we tried.

Message is combinable if it is the first message OR it may be paired 

with the first message according to the "matrix" approach without 

exceeding the maximum # pages for combiining msgs

Builds new list of ArbQueueEntries 

to add to SetDMSMessageFromQueueCmd

ArbQueueEntry

BlankDMSFromQueueCmd

DMSMessageImpl

CommandQueue

DMSMessage

MessageQueue DMSImpl

DMSImpl

store command in

m_lastQueuedSetMsgCmd

addCommand

create(new message, new ArbQueueEntries)

Currently set to 2, different than 

the max number of pages on a sign.

Message is converted to Multi and then 

combined with <NP> separating the messages

ArbQueueEntry

Compares traffic events

Verify that the new 

message is not a duplicate.

execute

[new ArbQueueEntry list 

"equals" current 

ArbQueueEntry list]

[m_lastQueuedSetMsgCmd not null]

removeCommand(m_lastQueuedSetMsgCmd)

[If message is combinable]

append message to final message

[last SetMsgCmd message equals new one]

for each ArbQEntry in m_lastQueuedSetMsgCmd

getTrafficEventType

matches(ArbQEntry in Cmd)

create

create

[while messages left 

AND <= max # combinable pages]

evaluateQueue(skipMessageCheck)

[current message equals new one]

for each in 

m_activeArbQueueEntries

matches(current ArbQEntry)

[m_lastQueuedSetMsgCmd is null and skipMessageCheck is false]

equals(current message)

[new ArbQueueEntry list 

"equals" pending 

ArbQueueEntry list]

getEntries

until message 

is combinable

get max # combinable pages

[m_lastQueuedSetMsgCmd is not null]

equals(DMS msg in m_lastQueuedSetMsgCmd)

getMessageLength

[list empty and 

DMS not blank]

[list empty and DMS not blank]

addCommand

[list empty and DMS not blank]

create

[list empty and DMS blank]


Figure 55. DMSControlModule:EvaluateQueue (Sequence Diagram)



3.1.7.14 DMSControlModule:FmsGetConnectedPort (Sequence Diagram)

This sequence diagram shows how a DMSImpl object gets a connected port.  This method is called from several other methods in the DMS service.  A modem port is obtained from the ModemPortLocator object.  On failure, a call is made to the helper method handleOpStatus to deal with the case where the operational status has changed.  The command status is either updated or completed during the call to the ModemPortLocator object based on a flag passed into this method.
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Figure 56. DMSControlModule:FmsGetConnectedPort (Sequence Diagram)



3.1.7.15 DMSControlModule:FmsReleasePort (Sequence Diagram)

This helper method releases an FMS port which is no longer needed.  It disconnects the port first, then calls the PortLocator to release it.  Errors are logged, but not reported, as the port will be released or reclaimed in any case, and errors relating to releasing a port would mask an otherwise successful status or more a useful error status.
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Figure 57. DMSControlModule:FmsReleasePort (Sequence Diagram)



3.1.7.16 DMSControlModule:GetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request for its configuration.  Its configuration is always maintained in current form in a Chart2DMSConfiguration object, so this object is just returned immediately. 
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Figure 58. DMSControlModule:GetConfiguration (Sequence Diagram)



3.1.7.17 DMSControlModule:GetControlledResources (Sequence Diagram)

This Sequence Diagram shows how the Chart2DMSFactoryImpl handles a request to get a list of controlled resources for an operations center.  The Chart2DMSFactoryImpl simply asks each Chart2DMSImpl for its controlling operations center, and if it matches the OperationsCenter in question, the DMS is added to a list.  This list is returned to the caller. 
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Figure 59. DMSControlModule:GetControlledResources (Sequence Diagram)



3.1.7.18 DMSControlModule:GetEntriesStatus (Sequence Diagram)

This method, part of the ArbitrationQueueInterface, allows a client to retrieve the all entries on the queue of a device, with their current status.  This method is implemented by retrieving the list from the MessageQueue, then building a list of ArbQueueEntryStatus from that, appending status information not known by the MessageQueue.
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Figure 60. DMSControlModule:GetEntriesStatus (Sequence Diagram)



3.1.7.19 DMSControlModule:GetStatus (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request for its status.  Its status is always maintained in current form in a Chart2DMSStatus object, so this object is just returned immediately. 
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Figure 61. DMSControlModule:GetStatus (Sequence Diagram)



3.1.7.20 DMSControlModule:HandleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl handles the task of detecting and responding to changes in its operational status (whether it is in "OK", "COMM_FAILURE" or "HARDWARE_FAILURE" status).  A DMS is normally "OK", but falls into "COMM_FAILURE" when FMS reports that it cannot communicate with the device, and into "HARDWARE_FAILURE" when the FMS can communicate with the device but the device or FMS is detecting some sort of hardware problem with the device itself.  At this point, HARDWARE_FAILURE and COMM_FAILURE are treated virtually identically.  This method is called, with the status reported back from FMS, after every attempt to communicate with the device, and processing falls into one of three cases, depending on the status reported (although the two failure cases are nearly identical).  

If the device now being reported OK and it was already OK, there is no change in status, and all that is necessary is to update the m_lastContactTime of the device. (This variable is used to determine when to poll [see runPollDMSTask] and when to declare that a "Communications Timeout" has occurred [see runCheckCommLossTask].)  If the status has just become OK, this fact is logged, and the new DMSStatus is persisted and pushed out into the event channel.  The DMS is polled to determine its current status.  If the device is online, and m_needsReevaluation is true, this means an earlier attempt to set the device to the correct condition (new message, default message) has failed since the device went COMM_FAILED, so evaluateQueue is called to ensure that the correct message is put on the DMS.  

If the device is now being reported with a failure and the device was already in that failure condition, there is no change in status, and nothing is done.  If the status is just now changing, this is logged, and the DMSStatus is persisted and pushed out into the event channel.  Note that if the device has gone into COMM_FAILURE, and it remains in this condition for the timeout period, the CheckCommLossTask's run method will detect and handle it (see runCheckCommLossTask).  Until the timeout period expires, it is assumed that the message is still on the sign, so no further action is taken now.  If the device has gone into HARDWARE_FAILURE, FMS is still in contact with it, and changes in status (e.g., loss of a message) can be detected by other means, for instance, by polling (see runPollDMSTask) 
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Figure 62. DMSControlModule:HandleOpStatus (Sequence Diagram)



3.1.7.21 DMSControlModule:HasControlledResources (Sequence Diagram)

This Sequence Diagram shows how the Chart2DMSFactoryImpl handles a request to see if an operations center has any controlled resources.  The Chart2DMSFactoryImpl simply asks each Chart2DMSImpl for its controlling operations center, and if it matches the OperationsCenter in question, a value of true is immediately returned to the caller.  If the Chart2DMSFactoryImpl makes it through its whole list of DMS objects without finding an OperationsCenter match, a value of false is returned. 
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Figure 63. DMSControlModule:HasControlledResources (Sequence Diagram)



3.1.7.22 DMSControlModule:Initialize (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is started.  This module is created by a service application that will host this module's objects.  A ServiceApplication is passed to this module's initialize method and provides access to basic objects needed by this module.  This module creates a DMSFactory, which creates the known DMS objects which have been persisted into the database.  Two PushEventSupplier objects, one for status, configuration, and existence changes and one for abandoned DMSs (active DMSs with no one logged in at the controlling operations center), are created.  In addition, NotificationChannel and DMSControlDB objects are created.

The DMSFactory and DMS objects are published via the CORBA Trading Service to make them available for general status updates and as candidates for control (given the proper access rights).  In addition, this service also performs regularly recurring maintenance functions controlled by timer tasks started by this initialize method. 
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Figure 64. DMSControlModule:Initialize (Sequence Diagram)



3.1.7.23 DMSControlModule:ModifyHARNotice (Sequence Diagram)

This sequence diagram shows how a Chart2DMSImpl object responds to a request by a HAR to update the list of TrafficEvents in the ArbQueueEntry associated with the HAR in the Chart2DMSImpl's MessageQueue.  This ArbQueueEntry (actually a HARNotifierArbQueueEntry) was previously created when the HAR called activateHARNotice to put a SHAZAM message on the DMS.  The HARNotifierArbQueueEntry is obtained from the MessageQueue and its currently assigned TrafficEvents are retrieved.  Then the HARNotifierArbQueueEntry is removed from the MessageQueue.  The HARNotifierArbQueueEntry is then updated with a new ArbQueueEntryIndicator which contains the new list of TrafficEvents.  The updated HARNotifierArbQueueEntry is then added to the MessageQueue.  The TrafficEvents that are no longer associated with the HARNotifierArbQueueEntry are notified, as are the TrafficEvents that are new to the HARNotifierArbQueueEntry.
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Figure 65. DMSControlModule:ModifyHARNotice (Sequence Diagram)

3.1.7.24 DMSControlModule:PollNow (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by an operator to immediately poll the device.  The DMS must be in maintenance mode and operator must possess proper functional rights. This method creates a PollDMSNowCmd (a QueueableCommand) and adds it to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  Requests to communicate with the sign are processed on a first-come, first-served basis.  When the CommandQueue is ready, it executes the PollDMSNowCmd, which calls the pollNowImpl method. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 
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Figure 66. DMSControlModule:PollNow (Sequence Diagram)



3.1.7.25 DMSControlModule:PollNowImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object implements the polling of the DMS device.  The poll request could come from the operator (via the pollNow method) or from the automated polling thread within the DMS service itself (PollDMSTask's run method).  The pollNowImpl method gets a port via the fmsGetConnectedPort helper method and polls the sign via the getStatus method call to DMSProtocolHdlr.  HandleOpStatus handles any changes to the operational status of the sign (OK, comms failure, or hardware failure).  

If the sign does not have the expected message, the expected message is displayed on the sign via a call to SetMessage on the DMSProtocolHdlr.  This synchronizes what the Chart2DMSImpl thinks is on the sign (i.e., its active ArbQueueEntry objects) with what is actually on the sign.  If an error occurs displaying the message, the report() helper method is used to update the CommandStatus of each of the currently active ArbQueueEntry objects and then setInactive is called on each of the currently active ArbQueueEntry objects.  If successful, the status returned is persisted to the database and pushed out as a CurrentDMSStatus event on the event channel.  Updates are also written to a CommandStatus object, so that if a user issued this request, he or she can see monitor its progress. 
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Figure 67. DMSControlModule:PollNowImpl (Sequence Diagram)



3.1.7.26 DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a user to go into maintenance mode. The requesting operator must have proper functional rights.  If the DMS is in maintenance mode already, otherwise the request is immediately returned as successful.  A PutDMSInMaintModeCmd (a QueueableCommand) is created and added to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  When the CommandQueue is ready, it executes the PutDMSInMaintModeCmd, which calls the putInMaintModeImpl method, also shown on this diagram.  The putInMaintModeImpl method double checks to make sure it is not already in maintenance mode (from some other queued command).   Assuming no problems, the method blankSignNow is called to request FMS to actually blank the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel, so that any user can immediately see that the sign is now blank.  Regardless of whether blankSignNow works, the method continues on, since the sign may likely be non-functional when it is put in maintenance mode.  The DMSStatus is updated to show that the sign is in maintenance mode, it is persisted to the database, and it is pushed into the event channel. Additionally, the controlling operations center is stored.  The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 
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Figure 68. DMSControlModule:PutDMSInMaintMode (Sequence Diagram)



3.1.7.27 DMSControlModule:PutDMSOnline (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a user to go online. The requesting operator must have proper functional rights, and if there is a (maintenance mode) message on the sign from another operations center, the user must have override authority.  A PutDMSOnlineCmd (a QueueableCommand) is created and added to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  When the CommandQueue is ready, it executes the PutDMSOnlineCmd, which calls the putOnlineImpl method, also shown on this diagram.  The putOnlineImpl method double checks to make sure it is not already online (from some other queued command).   Assuming no problems, the method blankSignNow is called to request FMS to actually blank the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel.  If blankSignNow does not work, the sign cannot be brought online, and the method ends.  The DMSStatus is updated to show that the sign is online, it is persisted to the database, and it is pushed into the event channel.  In addition, the stored operations center is cleared.  The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. The MessageQueue is re-evaluated so the Chart2DMSImpl can determine if it has a message to display on the sign. 
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Figure 69. DMSControlModule:PutDMSOnline (Sequence Diagram)



3.1.7.28 DMSControlModule:RemoveDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactoryImpl removes a DMS from the system on behalf of an operator.  A DMS must be offline to be removed, and the requesting operator must possess the proper functional rights. The DMSFactory removes the reference to the Chart2DMSImpl from its internal list of DMSs, removes the Chart2DMSImpl and its associated information from the database, withdraws the DMS's offer from the trading service, pushes a DMSDeletedEvent into the event channel, and shuts down the Chart2DMSImpl.  Chart2DMSImpl shutdown processing includes shutting down the CommandQueue and destroying the MessageQueue.   
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Figure 70. DMSControlModule:RemoveDMS (Sequence Diagram)



3.1.7.29 DMSControlModule:RemoveEntry (Sequence Diagram)

The removeEntry method defined in the ArbitrationQueue interface is used to dequeue a message for a DMS when it is no longer needed by the originating traffic event.  This method delegates the storage of the queue to a MessageQueue object, so the request is passed down to the MessageQueue.  If the ArbQueueEntry was not active at this time, its TrafficEvents must be notified (here, rather than in RequestSuccessful as would normally occur when they are removed from the DMS) that they've been removed from the queue via the report() helper method.

Then, if the DMS is online, the evaluateQueue() method is called to determine whether the removal of this entry should result in a new message being placed on the DMS.  The details of the Chart2DMSImpl's evaluateQueue processing are shown in the DMSControlModule:evaluateQueue sequence diagram.  RemoveEntry can be called while the DMS is in any mode.  (If the DMS is not online, the message will already be off (or may have never been on) the device.) 
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Figure 71. DMSControlModule:RemoveEntry (Sequence Diagram)



3.1.7.30 DMSControlModule:Report (Sequence Diagram)

Report is a helper method that takes a string to be passed to a commandStatus, to the NotificationChannel, or to the ResponsePlanItems or TrafficEvents contained in a supplied list of ArbQueueEntry objects.  If a CommandStatus is passed to this method, complete or update is called on the CommandStatus depending on the value of the complete flag.  If the notify flag is true, notify is called on the NotificationChannel.  If a list of ArbQueueEntry objects is passed to this method, processing depends on the type of ArbQueueEntry.  Each DMSArbQueueEntry contains a ResponsePlanItem.  Complete or update is called on each of these ResponsePlanItems, based on the value of the complete flag.  Each HARNotifierArbQueueEntry contains one or more TrafficEvents.  AddLogEntry is called on each of these TrafficEvents.
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Figure 72. DMSControlModule:Report (Sequence Diagram)



3.1.7.31 DMSControlModule:RequestFailed (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode fails.  This method provides proper notifications to all interested traffic events: those which were active and shouldn't be anymore, those which were active and should still active, and those which weren't active but should be now.  The helper method report() is called to inform the corresponding ResponsePlanItems in each of the ArbQueueEntry objects of the failure as well as to notify the NotificationChannel of the failure.
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Figure 73. DMSControlModule:RequestFailed (Sequence Diagram)



3.1.7.32 DMSControlModule:RequestSuccessful (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode completes successfully.  This method provides proper notifications to all interested traffic events: those which were active but aren't anymore, those which were active and are still active, and those which weren't active before but are now.  The list of ArbQueueEntry objects which have just become active are stored with the DMS.  These are a copy of the objects on the MessageQueue which caused the new message to go active.  This separate list of active ArbQueueEntry objects is necessary because the entries on the MessageQueue could be changed or deleted at any time, and the DMS needs to maintain the list of entries actually active on the device until their message is actually removed.
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Figure 74. DMSControlModule:RequestSuccessful (Sequence Diagram)



3.1.7.33 DMSControlModule:ResetController (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to reset a DMS.  The DMS must be in maintenance mode, the requesting operator must have proper functional rights, and if there is a (maintenance mode) message on the sign from another operations center, the user must have override authority.  This method creates a ResetDMSCmd (a QueueableCommand) and adds it to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  Requests to communicate with the sign are processed on a first-come, first-served basis.  When the CommandQueue is ready, it executes the ResetDMSCmd, which calls the resetControllerImpl method, also shown on this diagram. When the resetControllerImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it), and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center).  Assuming no problems, the method blankSignNow is called to actually change the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel, so that any user (with rights) can immediately see that the sign is now blank.  After obtaining a port via the helper method fmsGetConnectedPort, the DMSProtocolHndlr is requested to reset the device with the reset method.  HandleOpStatus handles any changes to the operational status of the sign (OK, comms failure, or hardware failure) and the port is released via the fmsReleasePort helper method.  The DMSStatus is persisted to the database.  The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 
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Figure 75. DMSControlModule:ResetController (Sequence Diagram)



3.1.7.34 DMSControlModule:RestoreDMS (Sequence Diagram)

This Sequence Diagram shows how a DMSImpl is initialized (whether being depersisted or created from scratch).  DMSProtocolHdlr, ModemPortLocator, CommandQueue, and MessageQueue objects are created.  If the DMS is being depersisted, after the MessageQueue is depersisted, the MessageQueue method validateEntries() is called to attempt to contact the TrafficEvent IDs on the list to validate their existence.  If not in recovery mode, this is the only chance the TrafficEvents get.  If still within the recovery mode, another attempt to contact the traffic events will be made when the recovery period is over.  This diagram also shows a summary of what happens when an entry is added to or reprioritized in the message queue during recovery mode, and what happens when the recovery mode period expires.
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Figure 76. DMSControlModule:RestoreDMS (Sequence Diagram)



3.1.7.35 DMSControlModule:RunCheckCommLossTask (Sequence Diagram)

This Sequence Diagram shows how the CheckCommLossTask object executes its task when directed to run by the Java timer object.  The run method of CheckCommLossTask calls the checkCommLoss method of Chart2DMSFactoryImpl, which calls checkCommLoss on each DMS.  Each Chart2DMSImpl object immediately returns if its comm loss check is disabled, there is no message on the sign, or its m_lastContactTime variable indicates that it has had some (any) communication with the device within the Comm Loss Timeout period (the PollDMSTask periodically updates m_lastContactTime).  If the timeout has been exceeded and there was a message on the sign, the Chart2DMSStatus is updated to reflect a blank message and no controlling operations center, this fact is logged, and the new status is persisted and pushed into the event channel.  In addition, setInactive is called on each of the active ArbQueueEntries.  (If the timeout has been exceeded, but there is no message on the sign, there is nothing to do, no one to notify.  The COMM_FAILURE status has already been detected, on the first failed poll if nothing else.)  If a comm loss situation is determined while in recovery mode, this terminates the recovery mode (since there is no longer a message on the sign to try to save). 
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Figure 77. DMSControlModule:RunCheckCommLossTask (Sequence Diagram)



3.1.7.36 DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedDMSTask object executes its task when directed to run by the Java Timer object.  Chart2DMSFactoryImpl's checkForAbandonedDMS method is called, which gets the controlling op center of each DMS and builds a list of OperationsCenter objects with control of one or more signs.  Each OperationsCenter is then queried for the number of users logged in.  If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledControlledResources event is pushed into the event channel. 
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Figure 78. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)



3.1.7.37 DMSControlModule:RunPollDMSTask (Sequence Diagram)

This Sequence Diagram shows how the PollDMSTask object executes its task when directed to run by the Java timer object.  The run method of PollDMSTask calls the pollDMSObjects method of Chart2DMSFactoryImpl, which calls pollIfNecessary on each DMS.  Each Chart2DMSImpl object immediately returns if its m_lastContactTime variable indicates that it has had some (any) communication with the device within the poll interval period.  If it has been longer than the poll interval since the last communication with the device, this method creates a PollDMSNowCmd (a QueueableCommand) and adds it to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  Requests to communicate with the sign are processed on a first-come, first-served basis.  Most likely, the CommandQueue is empty (which is why we now feel a need to poll), but any communication with the device will have the desired effect, so if there are one or more requests to communicate with the device on the queue ahead of this PollDMSNowCmd, that is fine, too.  When the CommandQueue is ready, it executes the PollDMSNowCmd, which calls the pollNowImpl method. 
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Figure 79. DMSControlModule:RunPollDMSTask (Sequence Diagram)



3.1.7.38 DMSControlModule:RunRecoveryTimerTask (Sequence Diagram)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process.  During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called.  This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the DMSService last went down, an essential piece of information for recovery during DMSService startup.  When the DMSService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkDMSRecovery) which requests all DMS objects to check and see if their recovery period has expired.  (The recovery period is defined to be their poll interval times a system-wide multiplier (expected to be 2), or, if the DMS has no poll interval, a system-wide constant (on the order of 10-15 minutes.)  Each DMS, therefore, terminates its recovery period independently of the others.  Besides strictly time-based termination, if a DMS manages to contact all of its TrafficEvents prior to normal expiration of its recovery period, its recovery period will end prematurely.  A DMS's recovery period also ends prematurely if there is any change to its MessageQueue (a call to add or remove or reprioritize an entry).  (When all DMSes have terminated their recovery period, checkDMSRecovery is no longer called.)  

When each DMS checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its message queue to take one last try at resolving traffic events on its queue and, if the device is online, calls evaluateQueue to make a determination as to what message (or blank) belongs on the sign, and to queue a command for the DMS to set the sign appropriately.
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Figure 80. DMSControlModule:RunRecoveryTimerTask (Sequence Diagram)



3.1.7.39 DMSControlModule:SetAssociatedHAR (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request to be associated as a HARMessageNotifier of a HAR.  This association is HAR-centric.  That is, the association is initiated when an operator modifies the HAR's configuration after placing the HAR in maintenance mode.  The HAR, then, notifies the DMS that it is being associated with a HAR.  The operator (making the association request) must have proper functional rights for the sign.  If the DMS is already associated with a HAR, that HAR is notified that this DMS is to be removed as its HARMessageNotifier via a call to the HAR's msgNotifierRemoved method.  The configuration is updated to include the new HAR, and this configuration is persisted and pushed into the event channel.
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Figure 81. DMSControlModule:SetAssociatedHAR (Sequence Diagram)



3.1.7.40 DMSControlModule:SetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to change the configuration of a DMS.  The DMS must be in maintenance mode, the requesting operator must have proper functional rights, and if there is a (maintenance mode) message on the sign from another operations center, the user must have override authority.  This method creates a SetDMSConfigCmd (a QueueableCommand) and adds it to the DMS's CommandQueue.  The CommandQueue is required since some configuration changes require field communications to the sign, and field communications are relatively slow and can queue up.  Requests to communicate with the sign are processed on a first-come, first-served basis.  When the CommandQueue is ready, it executes the SetDMSConfigCmd, which calls the setConfigurationImpl method, also shown on this diagram. When the setConfigurationImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it), and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center).  Assuming no problems,  the Chart2DMSConfiguration is locked down, and all parameters which need to change are changed.  If any of these parameter changes require communications to the sign (e.g., setting the Comm Loss Timeout in an FP9500), a new PortLocator is created using the new parameters.  Then, FMS is requested to make the specified change(s).  The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comms failure, or hardware failure) reported by FMS during this operation.  The new configuration is persisted and pushed into the event channel.  The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 
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Figure 82. DMSControlModule:SetConfiguration (Sequence Diagram)



3.1.7.41 DMSControlModule:SetMessage (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object processes a request to change its message in maintenance mode.  (For setting messages online, see addEntry and evaluateQueue.)  The DMS must be in maintenance mode, and the requesting operator must have proper functional rights.  This method asks the message to validate itself one last time (for banned words, and to ensure that the beacons are not set on with an empty message).  Then a SetDMSMessageCmd (a QueueableCommand) is created and added to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  Requests to communicate with the sign are processed on a first-come, first-served basis.  When the CommandQueue is ready, it executes the SetDMSMessageCmd, which calls the setMessageImpl method. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 
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Figure 83. DMSControlModule:SetMessage (Sequence Diagram)



3.1.7.42 DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to change its message while it is online.  (The analogous method in online mode is setMessageImpl.)  This command is created and added to the CommandQueue in the evaluateQueue method.  When the setMessageFromQueueImpl method runs, it checks that the DMS is still online (a previously queued command could have changed it).  It gets a port via the fmsGetConnectedPort method and sets the message on the sign via DMSProtocolHndlr's setMessage method.  The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comms failure, or hardware failure) reported during this operation.  RequestFailed is called in failure cases to notify all of the TrafficEvents involved of the error.  The port is released via the helper method fmsReleasePort and the new status is persisted and pushed into the event channel.  If everything works, requestSuccessful is called to notify all of the TrafficEvents involved.  This includes TrafficEvents for any message that was removed from the sign by the successful display of the new message.  The TrafficEvents for the new message are also kept up to date via calls to the report() helper method.
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Figure 84. DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)



3.1.7.43 DMSControlModule:SetMessageImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to change its message in maintenance mode.  (The analogous method in online mode is SetMessageFromQueueImpl.)  An operator request to set the message has already been received and pre-processed by the setMessage or activateHARNotice methods.  When the setMessageImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it) and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center).  A port is obtained via the fmsGetConnectedPort helper method.  Then the message is displayed on the sign via the DMSProtocolHdlr's setMessage method.  The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comms failure, or hardware failure) reported during this operation.  The port is released via the fmsReleasePort helper method.  If successful, the current status is persisted and a CurrentDMSStatus event is pushed into the event channel, so that any user (with rights) can immediately see the new content of the sign.  The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.    
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Figure 85. DMSControlModule:SetMessageImpl (Sequence Diagram)



3.1.7.44 DMSControlModule:Shutdown (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is terminated.  The DMSControlModule is shut down by the ServiceApplication that started it.  When told to shut down, the DMSControlModule disconnects the DMSFactory from the ORB, withdraws its offer from the trader, and shuts down the object.  When the DMSFactory is shut down, it withdraws the offers of each DMS, disconnects each DMS from the ORB, and shuts down each Chart2DMSImpl.  Chart2DMSImpl shutdown processing includes destroying the MessageQueue and shutting down the CommandQueue.  No information needs to be persisted to the database during shutdown, as information is written to the database as it is updated. 
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Figure 86. DMSControlModule:Shutdown (Sequence Diagram)



3.1.7.45 DMSControlModule:TakeDMSOffline (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a user to go offline. The requesting operator must have proper functional rights, and (in maintenance mode only) if there is a message on the sign from another operations center, the user must have override authority.  A TakeDMSOfflineCmd (a QueueableCommand) is created and added to the DMS's CommandQueue.  The CommandQueue is required since field communications to the sign are relatively slow and can queue up.  When the CommandQueue is ready, it executes the TakeDMSOfflineCmd, which calls the takeOfflineImpl method, also shown on this diagram.  The takeOfflineImpl method double checks to make sure it is not already offline (from some other queued command) and there are no maintenance mode resource conflicts.   Assuming no problems, the method blankSignNow is called to request FMS to actually blank the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel, so that any user (with rights) can immediately see that the sign is now blank.  Regardless of whether blankSignNow works, the method continues on, since the sign may likely be non-functional when it is taken offline.  The DMSStatus is updated to show that the sign is offline and there is no controlling operations center, it is persisted to the database, and it is pushed into the event channel. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. 



[image: image89.emf][maint mode]

checkResourceConflict

[resource conflict]

[resource conflict]

[maint mode]

checkResourceConflict

DMSControlDB

OperationsLog PushEventSupplier

Chart2DMSImpl

blankSignNow

(cmdStat)

clear controlling op ctr

execute

[resource conflict]

ResourceControlConflict

checkAccess

m_status.m_opStatus= OFFLINE

takeOffline(token, cmdStat)

delete

completed("sign offline")

[alreadly offline]

completed("already offline")

[no rights]

log(token, "unauth. access attempt")

addCommand(TakeDMSOfflineCmd)

log(token, "DMS taken offline")

takeOfflineImpl

setStatus(m_status)

[resouce conflict]

completed("resource conflict")

update("command queued")

push(CurrentDMSStatus)

create "Any" DMSEvent of type CurrentDMSStatus

update ("taking offline")

create

[no rights]

completed("no rights")

[already offline]

completed("already offline")

[no rights]

AccessDenied

[already offline]

[already offline]

BlankSignNow calls requestSuccessful, 

which will Inactivate all active ArbQueueEntries.

We continue on regardless of whether blankSignNow() works.  We don't want

to stop a sign from going offline because it doesn't work.

CommandQueue executes 

command asynchronously.

TokenManipulator

DMSEvent

ORB

CommandQueue

TakeDMSOfflineCmd

CommandStatus

[already offline]
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DMSProtocols

3.1.8 Classes

3.1.8.1 DMSProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to DMS control.
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send(byte[] data):void
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3.1.8.1.1 ADDCOProtocolHdlr (Class)

This protocol handler contains the protocol for communicating with an ADDCO portable DMS.

3.1.8.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received.  Ports of this type support a receive method that allows a chunk of all available data to be received.  This method prevents callers from having to issue many receive calls to parse a device response.  Instead, this receive call returns all available data received within the timeout parameters.  The caller can then parse the data within a local buffer.  Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.8.1.3 DMSDeviceStatus (Class)

This class contains data returned by all DMS protocol handlers getStatus() method.  DMSs that support more detailed status return a derivation of this class.

3.1.8.1.4 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware.  A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character.  This format maps well to the way DMS protocols return the current message being displayed in a status query.  This class can then be passed to a MultiConverter object to convert the message into MULTI format.

3.1.8.1.5 DMSProtocolHandlerException (Class)

This exception is thrown when a DMS device fails to respond to a command or a protocol error is detected in the response packet.

3.1.8.1.6 DMSProtocolHdlr (Class)

This interface defines the methods that must be supported by DMS prototocol handlers.  Note - some handlers support methods in addition to these standard methods.

3.1.8.1.7 DMSProtocolHdlrConfig (Class)

This class contains the configuration parameters for the DMS Protocol handlers.

3.1.8.1.8 FP1001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP1001 DMS.

3.1.8.1.9 FP2001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP2001 DMS.

3.1.8.1.10 FP9500DMSDeviceStatus (Class)

This class contains status data that is returned from the FP9500 protocol handler in the getStatus call. 

3.1.8.1.11 FP9500ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP9500 DMS.  The performPixelTest method causes a pixel test to be run on the sign.  The status of pixels reported in the getStatus method contains the status since the last time a pixel test was run.

3.1.8.1.12 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text.  It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

3.1.8.1.13 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs.  An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

3.1.8.1.14 PCMSDMSDeviceStatus (Class)

This class contains status data that is returned from the Display Solutions PCMS protocol handler in the getStatus call. 

3.1.8.1.15 PCMSProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Display Solutions (Winkomatic) Portable DMS.

3.1.8.1.16 SylviaDMSDeviceStatus (Class)

This class contains status data that is returned from the Sylvia protocol handler in the getStatus call. 

3.1.8.1.17 SylviaProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Sylvia DMS.

3.1.8.1.18 TS3001DMSDeviceStatus (Class)

This class contains data returned from the TS3001 protocol handler's getStatus() method.

3.1.8.1.19 TS3001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Telespot 3001 series DMS.

3.1.8.2 ProtocolSupportClasses (Class Diagram)

This diagram contains the support classes used by the various DMS protocol handlers to provide extended status reporting.
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3.1.8.2.1 ASCIICode (Class)

This class is a holder for ASCII codes used by protocol handlers when communicating with a DMS.

3.1.8.2.2 BitMap (Class)

This structure is used to pass status data that maps to pixels on a DMS, such as pixel status or lamp status.  Each row of the bmap member corresponds to a row of pixels on the DMS.  A value of 1 in a cell indicates the status for that pixel is OK while a zero indicates a failure.

3.1.8.2.3 FP9500BBRamStatus (Class)

This enumeration defines the valid values for the Battery Backed RAM Status in a FP9500 device.

3.1.8.2.4 FP9500CmdMsgStatus (Class)

This enumeration defines the valid values that indicate the status of the message selection command sent to a FP9500 device.

3.1.8.2.5 FP9500DisplayStatus (Class)

This enumeration defines the valid values that indicate the message error status of a previous message display operation on a FP9500 device.

3.1.8.2.6 FP9500ExtBBRamStatus (Class)

This enumeration defines the values that indicate a corrupt logical block that was reported as a result of Battery backed RAM error on a FP9500 device.

3.1.8.2.7 FP9500HWStatus (Class)

This enumeration defines the valid values that indicate the sign controller hardware error status of a FP9500 device.

3.1.8.2.8 FP9500LastError (Class)

This enumeration defines the reasons for the failure of the last device command sent to a FP9500 device.

3.1.8.2.9 FP9500MsgSource (Class)

This enumeration defines the valid values for a originator of the current message displayed on a FP9500 device.

3.1.8.2.10 FP9500PWRFailureStatus (Class)

This enumeration defines the valid values that indicate the power failure condition in a FP9500 device.

3.1.8.2.11 FP9500SerialCommStatus (Class)

This enumeration defines the valid values that indicate the serial communication port status of the FP9500 device. 

3.1.8.2.12 PCMSDeviceMobility (Class)

This enumeration defines the valid values that indicate the mobility type of a Display solutions PCMS device.

3.1.8.2.13 PCMSDispModule (Class)

This enumeration defines the valid values that indicate the type of display module used in a Display Solutions PCMS device.

3.1.8.2.14 PCMSGeneratorMode (Class)

This enumeration defines the valid values that indicate the Generator mode of the Display Solutions PCMS device.

3.1.8.2.15 PCMSGeneratorStatus (Class)

This enumeration defines the valid values that indicate the Generator status of a Display Solutions PCMS device.

3.1.8.2.16 PCMSMessageType (Class)

This enumeration defines the valid values that indicate the various message types used in a Display Solutions PCMS device.

3.1.8.2.17 PCMSPowerType (Class)

This enumeration defines the valid values that indicate the Power type of a Display Solutions PCMS device.

3.1.8.2.18 PCMSSignColorType (Class)

This enumeration defines the valid values that indicate the color of a Display Solutions PCMS device.

3.1.8.2.19 PCMSSignStatus (Class)

This enumeration defines the valid values that indicate the Sign status of a Display Solutions PCMS device.

3.1.8.2.20 PCMSSignType (Class)

This enumeration defines the valid values that indicate the sign module type of a Display Solutions PCMS device.

3.1.8.2.21 SylviaControllerStatus (Class)

This enumeration defines the valid values that indicate the controller status of a Sylvia device. 

3.1.8.2.22 SylviaDNCmdStatus (Class)

This enumeration defines the valid values for the Day/Night command status of a Sylvia device.

3.1.8.2.23 SylviaDNSensorStatus (Class)

This enumeration defines the valid values for the Day/Night Sensor status of a Sylvia device.

3.1.8.2.24 SylviaLocalDisplayMessage (Class)

This enumeration defines the valid values for the local display message of a Sylvia device.

3.1.8.2.25 SylviaMessageSource (Class)

This enumeration defines the valid values for a originator of the current message displayed on a Sylvia device.

3.1.8.2.26 SylviaOBCmdStatus (Class)

This enumeration defines the valid values for the Overbrightness command status of a Sylvia device.

3.1.8.2.27 SylviaOBSensorStatus (Class)

This enumeration defines the valid values for the Overbrightness Sensor status of a Sylvia device.

3.1.8.2.28 SylviaSensorFunctionStatus (Class)

This enumeration defines the valid values for the sensor function status of a Sylvia device.

3.1.8.2.29 SylviaShutterServiceStatus (Class)

This enumeration defines the valid values for the shutter service status of a Sylvia device.

3.1.8.2.30 SylviaSignStatus (Class)

This enumeration defines the valid values that indicate the sign module status of a Sylvia device. 

3.1.8.2.31 TS3001IlluminationMode (Class)

This enumeration defines the valid values that indicate the sign illumination control setting on a TS3001 device.

3.1.8.2.32 TS3001Mode (Class)

This enumeration defines the operational modes of a TS3001 device.

Sequence Diagram

3.1.8.3 DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram)

This sequence shows typical processing of a protocol handler to set the message of a DMS.  All protocol handlers have slightly different implementations due to the different protocols being implemented, however all protocol handlers have a general goal of formatting a byte array according to the device protocol, sending the byte array to the device, and receiving a response from the device to determine if the command was successful. Because DMS messages are specified in the MULTI format, part of the processing required to format a byte array to command the DMS includes converting the MULTI message into the proper sequence of bytes the DMS expects.  The MultiConverter class helps to parse through the MULTI tags and pull apart the message into simple pieces that the protocol handler can use to format the byte array.  Once told to parse a multi string, the MultiConverter calls back into the parse listener (which happens to be the protocol handler in our case) as it encounters multi tags and message text. After the protocol handler has formatted the byte array, it sends it to the device using the DataPort interface, which may actually be a modem or a direct connect port.  After sending the command, the protocol handler reads the response from the device and determines if the command was successful.  Failures are indicated though the use of exceptions which contain a specific reason for the failure.
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Figure 90. DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram)



3.1.8.4 FP9500ProtocolHdlr:GetStatus (Sequence Diagram)

This sequence shows the processing involved in getting the status from the FP9500 device. Since the device updates the pixel status information internally only during a pixel test operation, the caller must have issued a pixel test command prior to get status operation in order to receive the most current status from the device. During get status operation, the Status record is downloaded from the device using the "Parameter Upload" command. Next the lamp status and pixel status bitmaps are downloaded from the device using the "Display Upload" command. If any of the above device commands fail due to response timeout or response format error, a DMSProtocolHandlerException is thrown detailing the failure. On successful completion of all the above command sequences, the device responses are reformatted and stored in a FP9500DMSDeviceStatus struct and returned to the caller. 
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Figure 91. FP9500ProtocolHdlr:GetStatus (Sequence Diagram)



3.1.8.5 FP9500ProtocolHdlr:PixelTest (Sequence Diagram)

This sequence shows the processing involved in running a pixel test on the FP9500 device. The FP9500 message selection command with Pixel test option is sent to the device. The response from the device is trivial and indicates the successful start of the pixel test on the sign. The caller may need to allow for a brief interval of time, before any other command is sent to the device. This is to allow the device to run atleast one iteration of the pixel test without interruption and compile the results of the test. 
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Figure 92. FP9500ProtocolHdlr:PixelTest (Sequence Diagram)



3.1.8.6 TS3001ProtocolHdlr:GetStatus (Sequence Diagram)

This sequence shows the processing involved in getting the status from the TS3001 device. First a Sign Status Enquiry command of enquiry type 'S1' is sent to the device. The response to this command contains various sign status information including a brief pixel status and lamp status information. If the response indicates a pixel error, a Sign Status Enquiry command of enquiry type 'S3' is sent to the device. The device responds with a pixel status bitmap. If the 'S1' enquiry response also indicated a lamp error, a Sign Status Enquiry command of enquiry type 'S4' is sent to the device. The device responds with a lamp status bitmap. On successful completion of all the above command sequences, the device responses are reformatted and stored in a TS3001DMSDeviceStatus struct and returned to the caller.
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Figure 93. TS3001ProtocolHdlr:GetStatus (Sequence Diagram)



DMSUtility

3.1.9 Classes

3.1.9.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device control.
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3.1.9.1.1 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event.  (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents.  In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.9.1.2 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

3.1.9.1.3 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

3.1.9.1.4 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.  This table is used to log details about any comm failure that occurs in the system.

3.1.9.1.5 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

3.1.9.1.6 MessageQueue (Class)

This class represents a message queue object.  It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.  

3.1.9.1.7 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.9.1.8 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.9.1.9 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the deployment of many PortManagers.  The PortLocator is initialized by specifying a preferred PortManager and optionally one or more alternate PortManagers using a PortLocationData object.  

When asked to get a connected port, the PortLocator first attempts to acquire a port from the preferred PortManager and then calls its abstract connectPort() method (implemented by derived classes) to attempt to connect to the port.  If a failure occurs, the PortLocator retries the sequence using the next PortManager in the list.  The list may contain the same port manager multiple times to have retries occur on the same port manager prior to moving to another.  In the event that the PortLocator will perform a retry on the same port manager, it holds the previously acquired port while performing the retry to avoid having the port manager return the same port during the retry.  When a different port is acquired during a retry on the same port manager, the port is released (prior to connecting the 2nd port).

3.1.9.1.10 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

3.1.9.1.11 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.  Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

FieldCommunicationsModule

3.1.10 Classes

3.1.10.1 FieldCommunicationsModulePkg (Class Diagram)

This Class Diagram displays classes that implement the interfaces related to field communications and used for managing the ports.
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org.omg.PortableServer.Servant m_servant;

open():void
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javax.comm.CommPortIdentifier m_portIdentifier;

byte[] m_id;

org.omg.PortableServer.Servant m_servant;
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boolean m_marginal;

run

-retrieveAvailablePort(PortType):InstallablePort

-relinquishPort(InstallablePort, PortType):boolean

getStatus():PortStatus

disconnect():void

connect(String phoneNo):void

playDTMFTones(String dtmfCodes, 

                           boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

getServant():org.omg.PortableServer.Servant

isOpen():boolean

-dial(String phoneNo):int

-hangup():int

String m_name

byte[] m_id

org.omg.PortableServer.Servant m_servant

serialEvent(SerialPortEvent evt);

getDefaultInactivityTimeoutMillis():int

getPortReclaimerIntervalMillis():int

getProperty()

setProperty()

schedule

cancel

getPortsStatus():PortStatusInfo[]

getPort(PortType type, long maxWaitMillis, 

            Priority requestPriority):Port

releasePort(Port thePort):void

init(PortConfig config, long inactivityTime) :void

isInactive():boolean

shutdown():boolean

getServant():org.omg.PortableServer.Servant

send(byte[] data):void

receive(long initialTimeoutMillis, 

             long interCharTimeoutMillis, 

             long maxReadDurationMillis):byte[]

connect(CommPortConfig config, 

               String phoneNo):void

String m_comPortName

String m_initString
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String m_className

PortType m_type

boolean m_disabled

int m_interToneDelay

string m_channelID


Figure 95. FieldCommunicationsModulePkg (Class Diagram)



3.1.10.1.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in CHART II system.

3.1.10.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received.  Ports of this type support a receive method that allows a chunk of all available data to be received.  This method prevents callers from having to issue many receive calls to parse a device response.  Instead, this receive call returns all available data received within the timeout parameters.  The caller can then parse the data within a local buffer.  Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.10.1.3 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications.  The connect call needs only to open the communications port.

3.1.10.1.4 DirectPortConfig (Class)

This class holds configuration data for a direct connect port, which includes only the name of the comm port.

3.1.10.1.5 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL.  Its connect method opens a javax.comm.SerialPort object and sets the port settings according to the baud, data bits, stop bits, and parity that was passed.  Its disconnect method closes the javax.comm.SerialPort.  This class also implements the send and receive functions as specified in the DataPort IDL interface.  The send and receive methods use the read and write methods of the javax.comm.SerialPort object to send and receive bytes on the com port.  While the send method contains little processing other than calling the javax.comm.SerialPort object's write method, the receive method contains logic that allows it to receive a burst of bytes before returning.  This causes the receive method to return all available bytes on the port and thus helps to prevent the need for multiple calls to receive for a single command response. This class updates a timestamp each time send or receive is called.  When its isInactive() method is called, it checks the current time vs. the last send/receive time and if the difference is greater than the current inactivity timeout, it returns true.

3.1.10.1.6 FieldCommunicationsModuleDB (Class)

This class provides methods used access Field Communications configuration data.  The getPorts() method returns an array of PortConfig derived objects that contain configuration data specific to the type of port that has been configured.  The configuration data is retrieved from a configuration file where PortConfig objects were previously persisted.

3.1.10.1.7 FieldCommunicationsModulePkg (Class)

This class is a service application module that can be installed into a CHART2Service.  This module serves one PortManager object which provides access to one or more Port objects.  It publishes the reference to this PortManager in the CORBA Trader.  This class contains a FieldCommunicationsModuleDB object used to provide database access to the other classes within the package.

3.1.10.1.8 FieldCommunicationsProperties (Class)

This class provides access to properties in the Chart2Service properties file that are specific to the FieldCommunicationsModule.

3.1.10.1.9 InstallablePort (Class)

This interface is implemented by Port implementations that can be installed into the FieldCommunicationsModule and PortManager generically.  The PortManagerImpl instantiates the specific impl using the class name that is part of a port's configuration data.  The PortManager then calls each port's init method to allow each port to initialize its internal state.  The PortManagerImpl's use of this interface allows it to manage all types of ports (current and future) in a generic way.

3.1.10.1.10 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class. 

3.1.10.1.11 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string.  A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list. 

3.1.10.1.12 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.10.1.13 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.10.1.14 java.util.Vector (Class)

A Vector is a growable array of objects.

3.1.10.1.15 javax.comm.SerialPort (Class)

This class provides access to a computer's serial port.  It allows the port to be opened and closed and allows data to be sent and received.

3.1.10.1.16 javax.comm.SerialPortEventListener (Class)

This interface is implemented by objects that wish to be notified of events that occur on a javax.comm.SerialPort.

3.1.10.1.17 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem.  ISDN and POTS modems can be implemented under this interface.

3.1.10.1.18 ModemPortConfig (Class)

This class holds configuration data that is specific to modem ports.  The com port name is included as well as the type of modem port (ISDN or POTS) and a default modem initialization string.

3.1.10.1.19 ModemPortImpl (Class)

This class implements the ModemPort interface as defined in IDL.  The ModemPortImpl's connect method calls its base class connect method which opens a communications port.  The connect method then goes on to initialize and dial the modem and determine if the modem has connected to a remote modem.  The disconnect method interrupts the modem, hangs up the modem, and calls the base class disconnect method which closes the com port. This class inherits its base class (DirectPortImpl) send and receive methods which send and receive data over the connected modem.  

3.1.10.1.20 Port (Class)

A Port is an object that models a physical communications resource.  Derived interfaces specify various types of ports.  All ports must be able to supply their status when requested.

3.1.10.1.21 PortConfig (Class)

This class holds data that is common to all types of ports.  The PortManager uses this data to generically construct port objects.

3.1.10.1.22 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources.  The getPort method is used to request the use of a port from the PortManager.  Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available.  When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.10.1.23 PortManagerImpl (Class)

This class implements the PortManager interface as specified in the IDL.  Hashtables are used to keep lists of ports according to their port type.  Three of these hashtables are used to separate ports based on their current state - in use, available, or marginal.  Ports that are in the marginal hashtable are available but are in a marginal state.  The getPort method looks for an available port in the available list prior to the marginal list. 

3.1.10.1.24 PortReclaimer (Class)

This class is a timer task that is scheduled to run periodically and cause the PortManager to determine if any in-use ports have had excessive idle time.  When the PortManager discovers ports that are in-use but have not had activity within a configurable time period, the port manager disconnects the object, deactivates the object in the POA, and puts the port back in the free list.

3.1.10.1.25 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.10.1.26 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.10.1.27 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.10.1.28 VoicePort (Class)

A voice port provides access to a port on a telephony board.  It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.10.1.29 VoicePortConfig (Class)

This class holds configuration data for a voice port, which includes the delay in milliseconds between DTMF tones to be dialed.

3.1.10.1.30 VoicePortImpl (Class)

This class implements the VoicePort interface as defined in IDL.  The VoicePortImpl's connect method acquires a port from the telephony board, dials the destination number to connect the call.  The disconnect method hangs up, sets the telephone line connection on hook and releases the port being used. This class also implements the recordWAV method to record a message being heard on a connected call and playWAV method to play a message on the connected call. It also implements the playDTMF method to generate DTMF tones.

3.1.10.1.31 WaitListEntry (Class)

This class contains values that are placed on a wait list to allow prioritized fulfillment of requests for ports.

3.1.10.2 OnlyModuleClasses (Class Diagram)

This Classes Diagram shows the classes used to serve field communication related objects.
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3.1.10.2.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in CHART II system.

3.1.10.2.2 FieldCommunicationsModulePkg (Class)

This class is a service application module that can be installed into a CHART2Service.  This module serves one PortManager object which provides access to one or more Port objects.  It publishes the reference to this PortManager in the CORBA Trader.  This class contains a FieldCommunicationsModuleDB object used to provide database access to the other classes within the package.

3.1.10.2.3 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.10.2.4 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.10.3 OnlyPortImpls (Class Diagram)

This Class Diagram shows the various Port implementation classes related to field communications. 
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3.1.10.3.1 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received.  Ports of this type support a receive method that allows a chunk of all available data to be received.  This method prevents callers from having to issue many receive calls to parse a device response.  Instead, this receive call returns all available data received within the timeout parameters.  The caller can then parse the data within a local buffer.  Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.10.3.2 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications.  The connect call needs only to open the communications port.

3.1.10.3.3 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL.  Its connect method opens a javax.comm.SerialPort object and sets the port settings according to the baud, data bits, stop bits, and parity that was passed.  Its disconnect method closes the javax.comm.SerialPort.  This class also implements the send and receive functions as specified in the DataPort IDL interface.  The send and receive methods use the read and write methods of the javax.comm.SerialPort object to send and receive bytes on the com port.  While the send method contains little processing other than calling the javax.comm.SerialPort object's write method, the receive method contains logic that allows it to receive a burst of bytes before returning.  This causes the receive method to return all available bytes on the port and thus helps to prevent the need for multiple calls to receive for a single command response. This class updates a timestamp each time send or receive is called.  When its isInactive() method is called, it checks the current time vs. the last send/receive time and if the difference is greater than the current inactivity timeout, it returns true.

3.1.10.3.4 InstallablePort (Class)

This interface is implemented by Port implementations that can be installed into the FieldCommunicationsModule and PortManager generically.  The PortManagerImpl instantiates the specific impl using the class name that is part of a port's configuration data.  The PortManager then calls each port's init method to allow each port to initialize its internal state.  The PortManagerImpl's use of this interface allows it to manage all types of ports (current and future) in a generic way.

3.1.10.3.5 javax.comm.SerialPort (Class)

This class provides access to a computer's serial port.  It allows the port to be opened and closed and allows data to be sent and received.

3.1.10.3.6 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem.  ISDN and POTS modems can be implemented under this interface.

3.1.10.3.7 ModemPortImpl (Class)

This class implements the ModemPort interface as defined in IDL.  The ModemPortImpl's connect method calls its base class connect method which opens a communications port.  The connect method then goes on to initialize and dial the modem and determine if the modem has connected to a remote modem.  The disconnect method interrupts the modem, hangs up the modem, and calls the base class disconnect method which closes the com port. This class inherits its base class (DirectPortImpl) send and receive methods which send and receive data over the connected modem.  

3.1.10.3.8 Port (Class)

A Port is an object that models a physical communications resource.  Derived interfaces specify various types of ports.  All ports must be able to supply their status when requested.

3.1.10.3.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.10.3.10 VoicePort (Class)

A voice port provides access to a port on a telephony board.  It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.10.3.11 VoicePortImpl (Class)

This class implements the VoicePort interface as defined in IDL.  The VoicePortImpl's connect method acquires a port from the telephony board, dials the destination number to connect the call.  The disconnect method hangs up, sets the telephone line connection on hook and releases the port being used. This class also implements the recordWAV method to record a message being on a connected call and playWAV method to play a message on the connected call. It also implements the playDTMF method to generate DTMF tones.

Sequence Diagrams

3.1.10.4 DirectPortImpl:close (Sequence Diagram)

A DirectPortImpl processes a close request by delegating the call to the javax.comm.SerialPort object and then setting associated member variables to null.
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Figure 98. DirectPortImpl:close (Sequence Diagram)



3.1.10.5 DirectPortImpl:Connect (Sequence Diagram)

The DirectPortImpl processes a connect request by first calling its open method (See DirectPortImpl:open) and then setting the serial port settings according to the parameters passed by the caller. 
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Figure 99. DirectPortImpl:Connect (Sequence Diagram)



3.1.10.6 DirectPortImpl:disconnect (Sequence Diagram)

The DirectPortImpl processes the disconnect request by calling its own close method.  If disconnect is called on a port that is already disconnected, the method simply returns fast and no exception is thrown.
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Figure 100. DirectPortImpl:disconnect (Sequence Diagram)



3.1.10.7 DirectPortImpl:init (Sequence Diagram)

When a DirectPortImpl is initialized by the PortManagerImpl, it retrieves information specific to this port type from the database, which in this case is only the com port name this object provides access to.  A CommPortIdentifier is retrieved using the specified com port name.  If the com port name given is not an existing serial port on the machine where the DirectPortImpl is running, an exception is thrown.
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Figure 101. DirectPortImpl:init (Sequence Diagram)



3.1.10.8 DirectPortImpl:open (Sequence Diagram)

When a DirectPortImpl's open method is called, it retrieves an instance of a javax.comm.SerialPort from the CommPortIdentifier that was created during initialization.  After the SerialPort object is retrieved, its input and output streams are retrieved for later use during send and receive operations.  The DirectPortImpl adds itself as an EventListener on the SerialPort and enables events that signify data is available on the port.  This asynchronous notification of data being available is used in the receive method's processing. If the port is in use by another application, this method throws a PortOpenFailure exception.
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Figure 102. DirectPortImpl:open (Sequence Diagram)



3.1.10.9 DirectPortImpl:receive (Sequence Diagram)

The DirectPortImpl receive method is customized for use with command / response devices by returning all bytes in a response burst in a single call to receive.  Two timeouts are specified by the caller, the time to wait for the first byte to arrive and the maximum time to wait to determine that a complete burst of bytes has been received.  Using this mechanism, in most cases a single call to this receive method will return the complete device response.  In the unlikely event that the entire device response is not received in a single call to receive(), the caller can call receive again to get the remainder of the packet.  (Protocol handlers are coded to handle this condition should it arise). 
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Figure 103. DirectPortImpl:receive (Sequence Diagram)



3.1.10.10 DirectPortImpl:Send (Sequence Diagram)

The DirectPortImpl processes a send request by delegating the request to the output stream of the javax.comm.Serial port object.  If a java.io.IOException is thrown by the output stream, the exception is caught and re-thrown as a CORBA exception. 
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Figure 104. DirectPortImpl:Send (Sequence Diagram)



3.1.10.11 DirectPortImpl:shutdown (Sequence Diagram)

When a DataPortImpl object is shutdown by the PortManagerImpl, the DataPortImpl closes itself if it is currently open.
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Figure 105. DirectPortImpl:shutdown (Sequence Diagram)



3.1.10.12 FieldCommunicationsModulePkg:initialize (Sequence Diagram)

When the FieldCommunicationsModule is initialized from the Chart2Service, it obtains objects  it will need during processing from the Chart2Service via the ServiceApplication interface.  The FieldCommunicationsModule constructs a single PortManagerImpl object.  The PortManagerImpl creates four Hashtables: three to manage ports and one to manage port requests that are waiting for a port to free up.  Each hash table contains a number of vectors, one for each type of port that is being managed by the PortManagerImpl.  These Vectors are added as the first port of a given type is encountered, thus after initialization, each Hashtable contains one vector for each type of port being managed by this particular instance of the PortManagerImpl. All synchronization done by the PortManagerImpl is done using the freeList Vector for the specific type of port that is being dealt with, thus getPort() and releasePort() calls for one port type do not synchronize with getPort and releasePort() calls for other port types.  The synchronization on the freeList is used to synchronize access to all the other lists, including the wait list, because the getPort() and release() port operations typically manipulate more than one list during their processing. The PortManagerImpl creates a Timer to be used to periodically wake the PortManagerImpl and have it check its inUseList for inactive ports. After the PortManagerImpl has been created the FieldCommunicationsModule activates the object on the persistent POA to keep the object reference for the PortManager consistent across multiple object / server life times.  The FieldCommunicationsModule uses the ServiceApplication interface's registerObject method to publish the object in the Trader and  to take care of withdrawal from the trader when necessary.
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Figure 106. FieldCommunicationsModulePkg:initialize (Sequence Diagram)



3.1.10.13 FieldCommunicationsModulePkg:Shutdown (Sequence Diagram)

When the FieldCommunicationsModule is shutdown by the Chart2Service it cancels the timer used to periodically run the ReclaimPorts task.  Each list for each port type is then emptied, shutting down each port object that exists.  The ports that are in the inUse list are deactivated from the POA prior to being shutdown.  The port's shutdown method takes care of disconnecting any port that is currently connected.
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Figure 107. FieldCommunicationsModulePkg:Shutdown (Sequence Diagram)



3.1.10.14 ModemPortImpl:Connect (Sequence Diagram)

A ModemPortImpl processes a connect request by first calling its base class (DirectPortImpl) connect method.  This opens the communications port and readies it for send and receive calls.  The ModemPortImpl then calls the base class send and receive methods to send modem commands to the modem, first to initialize the modem and then to dial the modem.  The ModemPortImpl parses the modem responses and passes a detailed exception should any problems occur.
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Figure 108. ModemPortImpl:Connect (Sequence Diagram)



3.1.10.15 ModemPortImpl:disconnect (Sequence Diagram)

When the ModemPortImpl processes a disconnect request, it uses its base class (DirectPortImpl) send and receive methods to command the modem to hang up.  Before issuing the hangup command the +++ command must be issued to the modem to put the modem back into command mode.  One second of inactivity must exist prior to and after the +++ command to interrupt the modem. After hanging up the modem, the ModemPortImpl calls the base class close method to close the serial port.
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Figure 109. ModemPortImpl:disconnect (Sequence Diagram)



3.1.10.16 ModemPortImpl:init (Sequence Diagram)

When a ModemPortImpl is initialized by the PortManagerImpl it reads its specific configuration data from the database, which includes the com port name and the default modem init string.  Because most configuration values exist in the base class and the base class provides methods that use these values, the base class setConfig method is called to store the configuration values in the base class.  NOTE - the normal way of doing this would be to call the base class constructor during construction, however because the InstallablePorts are instantiated generically by the PortManagerImpl, the constructors are not afforded the opportunity to take varying arguments.



[image: image112.emf]FieldCommunicationsModuleDB ModemPortImpl

PortManagerImpl

javax.comm.CommPortIdentifier

The port manager generically  instantiates a 

object of type InstallablePort and

calls the init method on the InstallablePort. This

diagram shows the processing required for

a ModemPort that is an InstallblePort.

The base class setConfig

method is called to store

the configuration values

that are common between

DirectPortImpl and ModemPortImpl

init

super.setConfig

[db error]

CHART2Exception

getModemPortConfig

[port does not exist]

CHART2Exception

getPortIdentifier

"Store the default

modem init string"


Figure 110. ModemPortImpl:init (Sequence Diagram)




ModemPortImpl:shutdown (Sequence Diagram)

When a ModemPortImpl is shutdown by the PortManagerImpl, it disconnects if it is currently connected.
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Figure 111. ModemPortImpl:shutdown (Sequence Diagram)



3.1.10.17 PortManagerImpl:getPort (Sequence Diagram)

When a request to get a port is received by the PortManagerImpl, it retrieves an available port (see PortManagerImpl:retrieveAvailablePort), activates it with the POA to make it available for CORBA calls, and returns the Port to the requester. In the event that a port is not available, getPort method creates a WaitList entry and inserts the entry into the wait list based on the priority of the request, using an insertion sort to keep the list ordered by order of decreasing priority and a secondary ordering of fifo based on the time added to the list.  After adding an entry to the wait list, the getPort method waits on the entry's monitor for the releasePort method to notify it that a port has been handed off.  If not notified within the timeout specified by the requester, the getPort method marks its wait list entry as abandoned and returns an exception to the requester.
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Figure 112. PortManagerImpl:getPort (Sequence Diagram)



3.1.10.18 PortManagerImpl:GetPortsStatus (Sequence Diagram)

When a request to get status of all Ports is received by the PortManagerImpl, it collects all the port status data and returns it to the caller. Subsequently, when port status changes a PortStatusChanged event is pushed using the CORBA Event Service to notify listeners of the new status. 
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Figure 113. PortManagerImpl:GetPortsStatus (Sequence Diagram)



3.1.10.19 PortManagerImpl:ReclaimPorts (Sequence Diagram)

The PortManagerImpl contains a Timer that periodically calls the PortManagerImpl's reclaimPorts method.  The PortManagerImpl checks each port in its inUseList to see if it meets its own criteria for being deemed inactive.  If a port is found to be inactive, it is deactivated from the POA, preventing any further calls to the port by its current user.  The inactive port is then removed from the inUseList and returned to the freeList.
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Figure 114. PortManagerImpl:ReclaimPorts (Sequence Diagram)



3.1.10.20 PortManagerImpl:ReleasePort (Sequence Diagram)

When a Port is released, the PortManagerImpl finds the port in its inUseList, disconnects the port and deactivates the object from the POA.  The private relinquishPort method is called to hand off the port to the highest priority requester of the given port type.  If there was no one waiting for the port, the port is removed from the inUseList and returned to the freeList.  See the PortManagerImpl:reqlinquishPort sequence diagram for details on the hand off process.
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Figure 115. PortManagerImpl:ReleasePort (Sequence Diagram)



3.1.10.21 PortManagerImpl:RelinquishPort (Sequence Diagram)

The PortManagerImpl relinquishPort method is a private helper method used to "hand off" a releasedPort to the top priority waiter (if any).  The port is passed to the waiter through the WaitListEntry object that the waiter placed on the wait list.  It is possible that a waiter put an entry on the wait list and then timed out.  When this occurs the waiter marks the entry as abandoned.  When the relinquishPort method encounters such entries, it simply removes them from the wait list and attempts to give the port to the next waiter in the list.
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Figure 116. PortManagerImpl:RelinquishPort (Sequence Diagram)



3.1.10.22 PortManagerImpl:retrieveAvailablePort (Sequence Diagram)

The PortManagerImpl's retrieveAvailablePort method is a private helper method that manages removing a port from the free or marginal list, placing it in the inUseList, and returning the port.  While searching for a port in the free list, any ports encountered that do not have a status of OK are moved to the end of the marginal list.  Ports in the marginal list are only retrieved if a port is not available in the free list.
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Figure 117. PortManagerImpl:retrieveAvailablePort (Sequence Diagram)



3.1.10.23 VoicePortImpl:Connect (Sequence Diagram)

When a request is received to connect a call by the VoicePort object, it calls the dialogic api to dial and connect the call given a telephone number. 
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Figure 118. VoicePortImpl:Connect (Sequence Diagram)



3.1.10.24 VoicePortImpl:Disconnect (Sequence Diagram)

A VoicePortImpl processes the disconnect call by calling the dialogic api to hangup the call and returns. 
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Figure 119. VoicePortImpl:Disconnect (Sequence Diagram)



3.1.10.25 VoicePortImpl:init (Sequence Diagram)

When a VoicePortImpl is initialized by the PortManagerImpl it reads its specific configuration data from the database, which includes the voice port name.
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Figure 120. VoicePortImpl:init (Sequence Diagram)



3.1.10.26 VoicePortImpl:shutdown (Sequence Diagram)

When a VoicePortImpl is shutdown by the PortManagerImpl, it disconnects if it is currently connected.
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Figure 121. VoicePortImpl:shutdown (Sequence Diagram)



HARControlModule

3.1.11 Classes

3.1.11.1 HARControlModule (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR) devices in the Chart II system.  Details are only shown for classes that exist specifically for HAR control.  Auxiliary classes used from other various utility or system interface packages are shown by name only.
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ReadWriteLock m_rwLock

POA m_poa

HARSlotNumber m_slot

HARMessageClip m_clip

HARSlotUsageIndicator m_usage

String m_fileName

getTimeDown()

HARFactoryImpl m_factory

long m_interMessageSpacing

boolean m_shouldBeReevaluated

HARMessageNotifierIDList m_NotifiersCurrentlyActive

ArbQueueEntry[] m_activeEntries

long m_lastDateStampUpdateTime

WavFileWriter(HARMessageClip clip, 

                        String filename)

go(): void

HARMessageClip m_clip

FileOutputStream m_file

String reason

HARFactoryImpl m_factory

HARFactoryImpl m_factory

prepareWavFile(SlotClipFileData) : SlotClipFileData

prepareImmedWavFiles(HARMessage, CommandStatus): SlotClipFileData[]

prepareAllWavFiles(CommandStatus): SlotClipFileData[]

collectWavFiles(SlotClipFileData[], CommandStatus): SlotClipFileData[]

store(Port, SlotClipFileData, CommandStatus): void

storeImmedMsg(Port, HARMessage, CommandStatus):void

remove(Port, long slot):void

removeImmedMsg(Port):void

restoreAll(Port, SlotClipFileData[]): void

getCurrentUsage():HARSlotDataList

getSecsAvailImmediate() : int

getSecsAvailForPrestore() : int

isUsingClip(Identifier audioClipID)(): boolean

deregisterAllClips(): void

int m_totalSecsOnHAR;

int m_secsUsedPreStore;

int m_secsUsedImmediate;

int m_firstImmediateSlotNumber;

int m_lastSlotNumber;

HARMsgNotifierWrapper(byte[] ID)

getID():byte[]

putInMaintenanceMode():void

takeOffline():void

isHARNoticeActive():boolean

activateHARNotice(AccessToken, 

                                TrafficEvent, 

                                CommandStatus):void

deactivateHARNotice(AccessToken, 

                                   TrafficEvent, 

                                   CommandStatus):void

-getRefFromTrader():HARMessageNotifier

byte[] m_notifierID

HARMessageNotifier m_notifier

HARControlDB(db)

getObjects():HARImpl[]

getConfiguration(AccessToken):Chart2HARConfiguration

getStatus(Identifier):Chart2HARStatus

insertHAR(Chart2HARConfiguration):void

removeHAR(harID):void

setConfiguration(Identifier, Chart2HARConfiguration):void

setStatus(Identifier, Chart2HARStatus):void

DBConnectionMgr  m_db

getDateStampRefreshTimeOfDay():string

getFirstImmediateSlotNumber(): int

getHARRuntimeSafetyMarginSecs():int

getMaxMsgRunTimeSecs(): int

getPollPortWaitTimeSecs(): int

getPollTimerDelaySecs(): int

getRecoveryPeriodMins(): int

getRecoveryTimerDelaySecs(): int

getSharedResMonIntSecs():int

getSHAZAMActivateTimeoutSecs():int

getSHAZAMDeactivateTimeoutSecs():int

getSHAZAMOfflineTimeoutSecs(): int

getSHAZAMOnlineTimeoutSecs(): int

getSHAZAMMaintTimeoutSecs(): int

getTotalCombinedMsgRunTime(): int

getHARFactoryID():Identifier

getDictionary():Dictionary

-registerTraderTypes():void

blankImpl(AccessToken, boolean mode, CommandStatus) : void

checkDateTimeFields() : void

checkRecoveryTime(int timeDown): boolean

monitorSlotImpl(AccessToken, long seconds, long slot,

                           AudioPushConsumer, CommandStatus): void

putInMaintModeImpl(AccessToken, CommandStatus) : void

putInMaintModeWithSHAZAMsImpl(AccessToken, CommandStatus,

                                                         HARMessageNotifierList): void

putOfflineImpl(AccessToken, CommandStatus) : void

setConfigurationImpl(AccessToken, HARConfiguration,

                                  CommandStatus) : void

setMessageImpl(AccessToken, HARMessage, boolean mode, 

        CommandStatus, HARMessageNotifierList,

        ArbQueueEntryList, HARSetMsgCmd) : void

setOneUpNum(long oneUpNumber): void

setTransmitterState(boolean desiredState): void

takeOfflineImpl(AccessToken, CommandStatus) : void

-activateNotifiersMaint(HARMessageNotifierIDList): void

-activateNotifiersOnline(NotifierTfcEvtList[]): void

-deactivateNotifiersMaint(HARMessageNotifierIDList): void

-deactivateNotifiersOnline(NotifierTfcEvtList[]): void

-evaluateQueue(): void

-fmsGetConnectedPort(boolean pgm, CommandStatus): ConnectedPortInfo

-fmsReleasePort(ConnectedPortInfo, boolean pgm): void

-handleMaintNotifierActivation(MsgNotifier[]): void

-handleMaintNotifierDeactivation(MsgNotifier[]): void

-handleOnlineNotifierActivation(MsgNotifier[], TfcEvt[]):void

-handleOnlineNotifierDeactivation(MsgNotifier[], TfcEvt[]):void

-handleOpStatus(OperationalStatus, CommandStatus, 

                            boolean complete): boolean

-modifyNotifiers(NotifierTfcEvList[]): void

-removalCleanupImpl(): void

-requestFailed(ArbQueueEntry[] newEntries, boolean oldMsgStillUp): void

-requestSucceeded(ArbQueueEntry[] newEntries): void

-setupHAR(Port, CommandStatus) : boolean

-verifyNoResourceConflict(AccessToken, CommandStatus): void

ArbQueueEntry[] m_activeEntries

boolean m_recoveryMode

boolean m_updateDateTimeFailed

QueueableCommand m_lastQueuedSetMsgCmd

checkForAbandonedHAR(): void

removeHAR(Identifier id):void

shutdown():void

checkForAbandonedResources():void

checkDateTimeFieldUpdates():void

checkHARRecovery(): void

getFirstImmediateSlotNumber(): int

getHARRuntimeSafetyMarginSecs():int

getMaxMsgRunTimeSecs(): int

getPollPortWaitTimeSecs(): int

getRecoveryPeriodMins(): int

getSHAZAMActivateTimeoutSecs():int

getSHAZAMDeactivateTimeoutSecs():int

getSHAZAMOfflineTimeoutSecs(): int

getSHAZAMOnlineTimeoutSecs(): int

getSHAZAMMaintTimeoutSecs(): int

getTotalCombinedMsgRunTime(): int

java.lang.Vector m_harList;

Identifier m_notifierID

ArbQueueEntryIndicator m_primeEntry

HashSet m_tfcEvts
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3.1.11.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device.  The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries.  When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue.  The priority of the queue entries can be modified after they are added to the queue.  The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online. 

3.1.11.1.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event.  (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents.  In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.11.1.3 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process.  The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data.  The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip.  When a clip no longer has any interested owners, it can be (and is) deleted from the database. 

3.1.11.1.4 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer.  One call to pushAudioProperties() will always precede any calls to pushAudio().  When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing.  PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data.  In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.11.1.5 CheckForAbandonedHARTask (Class)

This class is a timer task that is executed periodically by a timer.  When the run method in this class is called, it calls the HARFactoryImpl's checkForAbandonedResources() method, which causes the factory to evaluate each HAR in the factory and issue an abandoned resource event for any HARs which have a controlling op center with no users logged in.

3.1.11.1.6 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects.  The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order.  As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.11.1.7 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation.  This is normally used when field communications are involved to complete a method call.  The most common use is to allow a GUI to show the user the progress of an operation.  It can also be used and watched by a server process when it needs to call on another server process to complete an operation.  The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed.  The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.11.1.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted.  When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.1.11.1.9 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.11.1.10 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.11.1.11 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device.  A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler.  This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

3.1.11.1.12 HARConfiguration (Class)

This class (struct) contains configuration data for a HAR device.  It is used to transmit current configuration data from the HAR to the client, and to transmit proposed new configuration data from the client to the HAR.  It is also used internally by the HARService to maintain its configuration in memory, and is used to transmit configuration data to/from the HAR to the HARControlDB database interface class.

3.1.11.1.13 HARControlDB (Class)

This class contains all the database interaction for the HARControlModule.  This class provides the ability to retrieve all HAR information on initialization, update of the configuration and status information,  and insert or remove a HAR device from the system. 

3.1.11.1.14 HARControlModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for publishing HAR objects and the HARFactory object within a service application.  This class is the controlling class for the HAR module, providing for the initialization and overall operation of the module.  This class creates and starts the timer tasks necessary for refreshing datestamps on the HAR, checking for abandoned shared resources, and recovery processing.

3.1.11.1.15 HARControlModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by objects within the HARControlModule for the current instance of the application.  These settings are read during the module initialization.  The module must be restarted to apply any changes made to the properties file.

3.1.11.1.16 HARData (Class)

This class is used to store and persist data pertaining to a HAR which is not part of the HARStatus (i.e., not transmitted to clients in status updates or at any other time).

3.1.11.1.17 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system.  It also allows a requester to acquire a list of HAR objects under the domain of the specific HARFactory object.

3.1.11.1.18 HARFactoryImpl (Class)

This class implements the HARFactory interface as defined by the IDL specified in the System Interfaces section.  This class maintains the HAR objects served by this HAR service.

3.1.11.1.19 HARImpl (Class)

This class implements HAR as defined by IDL specified in the System Interfaces section.  Since there is only one model of HAR currently envisioned for CHART II, this HARImpl class is implementing the ISS AP55 HAR specifically.

3.1.11.1.20 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR.  A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.  This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message. 

3.1.11.1.21 HARMsgNotifierWrapper (Class)

This wrapper class is used to wrap HAR message notifiers associated with a HAR.  This class handles finding the reference of the notifier object given only the object's ID.  The object discovery is done at the point of first use or if a currently held reference produces a CORBA failure when used.

3.1.11.1.22 HARRecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process.  During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called.  This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the HARService last went down, an essential piece of information for recovery during HARService startup.  When the HARService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkHARRecovery) which requests all HAR objects to check and see if their recovery period has expired.  (The recovery period is a system-wide constant, on the order of 10-15 minutes.)  Each HAR terminates its recovery period as soon as all its TrafficEvents are resolved, or when the message queue is modified through an addEntry or changePriority call, or, if neither of those cases happens, at the end of the recovery period timer.  (When all HARs have terminated their recovery period, checkHARRecovery is no longer called.)  

When each HAR checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its MessageQueue to take one last try at resolving traffic events on its queue, then the HAR makes final a determination as to what message (or blank) belongs on the sign, and it requests the HAR to set its message appropriately (either to the message(s) at the top of the queue, or to the default message, if no messages are queued. 

3.1.11.1.23 HARSlotManager (Class)

This class manages the slot usage for the HARImpl.  When a clip is to be stored in the HAR controller, this class is called instead of calling the ISSAP55HARProtocolHdlr directly.  This class ensures the reserved slot numbers (default header, default trailer, default message, immediate message slots) are not overlaid with other clips stored in the controller.  When clips are stored in slots in the controller, this class keeps track of the run time for each and the total run time for the device and provides an error when the storage of a clip exceeds the configured available run time of the device.

This class also manages the condition when multiple slots are needed for the current (immediate) message.  This will be true any time multiple messages are combined into one message on the HAR (up to the maximum play time for a combined message).  A HAR has many immediate slots available for cases such as this.

3.1.11.1.24 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device.  The data contained in this class is that status information which can be transmitted from the HAR to the client as necessary.  This struct is also used to within the HAR Service to transmit data to/from the HARControlDB database interface class.  (The HAR implementation also contains other private status data elements which are not elements of this class.)

3.1.11.1.25 ISSAP55HARProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an ISS AP55 HAR device.

3.1.11.1.26 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.11.1.27 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.11.1.28 MessageQueue (Class)

This class represents a message queue object.  It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.  

3.1.11.1.29 NoSpaceAvailableException (Class)

This exception is thrown by the HARSlotManager when there is not enough room in the HAR to store the desired message as requested.  This exception is local to the HAR service only.  If the exception needs to propagate out to a user (GUI), it is converted to a CHART2Exception first.  The distinction is required within the HAR service since a NoSpaceAvailableException is not to be considered a failure of the device or the communications.

3.1.11.1.30 NotifierTfcEvtList (Class)

This class is used to keep track of the relationships between HAR notifiers, and the traffic events which are requesting that they be activated.  One traffic event is chosen to be the primary one, and is used as part of the ArbQueueEntryIndicator stored within this class.  The m_primeEntry and m_tfcEvents are used as parameters to activate and/or modify the HAR notice on the notifier.

3.1.11.1.31 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.11.1.32 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution.  Derived classes implement the execute method to specify the actions taken by the command when it is executed.  This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down. 

3.1.11.1.33 ReadWriteLock (Class)

This class is typically used to track and control read requests and write requests on a particular object, such as a file.  Many threads can simultaneously read from a file, but only one thread can write to a file at a time, and no objects can be reading while the write is in progress.  This process allows incoming read requests and write requests, and also requires that each object terminate its read or write request with a read completed or write completed call.  This process queues requests which need to blocked pending completion of previously executing requests, allowing multiple reads or one write at a time in the order requested.  This class blocks the thread on which a request is made until the earlier incompatible operation(s) are completed and the new request is allowed.  Requests can be specified with a timeout, thus alleviating the possibility that a thread which fails to complete its request will not block the other requesting threads indefinitely.  This class can also used (and is used) for other purposes within CHART II to track multiple operations of one type and and a single operation of a second type.  For instance, The HARControlModule uses this class to track multiple prerequisite operations (the "reads") to conclusion before a final concluding HAR operation (the "write") can be performed.

3.1.11.1.34 RefreshDateStampsTask (Class)

This class is a timer task that is executed periodically by a timer.  When executed, the run method of this class calls the HARFactoryImpl's checkDateTimeFieldUpdates(), which in turn calls each HAR in the factory to have it determine if it needs to update any field messages that use datestamp fields.  These messages are reconverted to voice, and the datestamp tag, in the format "<DATESTAMP>" is replaced by text words for the day of week, month, and day of month (e.g. "Wednesday, July 14").  The reconverted messages are then queued to be resent to the HAR.

3.1.11.1.35 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.11.1.36 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.11.1.37 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.  

3.1.11.1.38 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.11.1.39 SlotClipFileData (Class)

This class is used to help keep track of and pass around slot data.  This class associates a clip with a particular slot and usage, and with a file name which contains its audio (wav) data.  The fileName is passed to the ISSAP55ProtocolHdlr to store the wav data in the slot.

3.1.11.1.40 SyncCommandStatus (Class)

A SyncCommandStatus implements the CommandStatus interface and performs a notification when it is completed.  It is used by the HAR service to track the activity of HARMessageNotifiers, which may operate asynchronously and provide status later via a CommandStatus.

3.1.11.1.41 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.11.1.42 VoicePort (Class)

A voice port provides access to a port on a telephony board.  It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.11.1.43 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.  Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

3.1.11.1.44 WavFileWriter (Class)

This object is used to stream a HARMessageClip and write the streamed audio .wav data to a .wav file.  It is used as a utility by the HARSlotManager to prepare HARMessageClips for download into the HAR (which is accomplished via the ISSAP55HARProtocolHdlr by passing the file name of the .wav file into it). 

3.1.11.2 HARQueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for HAR Control.  A class exists for each type of command that can be executed asynchronously on a HAR object. 
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3.1.11.2.1 HARBlankCmd (Class)

This command object is used to blank the message on the HAR, which involves setting the message to the HAR's default message.

3.1.11.2.2 HARDeleteSlotMsgCmd (Class)

This class is used to hold data necessary to execute a maintenance mode request to delete a message from a slot on the HAR device.

3.1.11.2.3 HARMonitorBcastCmd (Class)

This class contains data needed to execute a request to monitor the current message being broadcast on the HAR.

3.1.11.2.4 HARMonitorSlotCmd (Class)

This class contains data needed to execute a maintenance mode request to monitor a particular slot on a HAR.

3.1.11.2.5 HARPutInMaintModeCmd (Class)

This class contains data needed to execute a request to put a HAR into maintenance mode.

3.1.11.2.6 HARPutOnlineCmd (Class)

This class contains data needed to execute a request to put a HAR online.

3.1.11.2.7 HARRefreshDateStampCmd (Class)

This class contains data needed to execute a request to update the datestamp fields in a clip which is stored on the HAR device.  This QueueableCommand, unlike most, does not reflect a user action, but reflects an action of the HARImpl itself to update its datestamp(s).  The HARImpl checks for the need to update its datestamps every night shortly after midnight and queues these requests as necessary.

3.1.11.2.8 HARRemovalCleanupCmd (Class)

This class contains data needed to execute a request to clean up a HARImpl as it is being deleted.  Unlike most other QueueableCommands, this command is queued by the HAR Service itself, not by a client.  When a HAR is removed from the CHART II system, it may have any number of HARMessageAudioClips stored in it, and the HAR's interest in those clips needs to be deregistered with the Audio Clip Service.  Rather than do this synchronously as the client request to remove the HAR is being processed, the client request is processed quickly by queuing this command for the HAR.  This command, being the only command on the CommandQueue at this point, will then immediately be executed.  When the command completes, this command, the HAR, and its CommandQueue will be deleted, in order, having no other references to them, and the HAR's removal will have been completed.

3.1.11.2.9 HARResetCmd (Class)

This class contains data needed to execute a maintenance mode request to reset a HAR controller.

3.1.11.2.10 HARSetConfigurationCmd (Class)

This class contains data needed to execute a request to change the configuration values of a HAR.

3.1.11.2.11 HARSetMsgCmd (Class)

This class contains data needed to execute a request to set the message played on a HAR.  A flag is used to indicate if the message was set via a maintenance mode command or via the arbitration queue.

3.1.11.2.12 HARSetTransmitterStateCmd (Class)

This class contains data needed to execute a maintenance mode request to change the state (on or off) of the transmitter on a HAR device.

3.1.11.2.13 HARSetupCmd (Class)

This class contains data needed to execute a maintenance mode request to issue the setup command for the HAR.

3.1.11.2.14 HARStoreSlotMsgCmd (Class)

This class contains data needed to execute a maintenance mode request to store a message clip into a slot within the HAR controller.

3.1.11.2.15 HARTakeOfflineCmd (Class)

This class contains data needed to execute a request to take a HAR offline.

3.1.11.2.16 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution.  Derived classes implement the execute method to specify the actions taken by the command when it is executed.  This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down. 

Sequence Diagrams

3.1.11.3 HARControlModule:activateNotifiersMaint (Sequence Diagram)

This helper method is used to request a HARNotice on a list of HARMessageNotifiers when running in maintenance mode.  Since the HAR is in maintenance mode, the notifiers are assumed to be, too, and they must be in order for the activateHARNotice() call on them to work.  The activateHARNotice() call is made with an empty TrafficEvent list, since in maintenance mode there are no traffic events.
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Figure 124. HARControlModule:activateNotifiersMaint (Sequence Diagram)



3.1.11.4 HARControlModule:activateNotifiersOnline (Sequence Diagram)

This helper method is used to request a HARNotice on a list of HARMessageNotifiers when the HAR is online.  Since the HAR is online, the notifiers are assumed to be, too, and they must be online in order for the activateHARNotice() call on them to work.  The activateHARNotice() call is made with a TrafficEvent list specifying the TrafficEvents for which the notice is requested.  Each notifier will make entries in each TrafficEvent's history log as the notice is activated, and later when it is deactivated (even if deactivated not through the HAR, such as if the notifier is taken offline).
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Figure 125. HARControlModule:activateNotifiersOnline (Sequence Diagram)



3.1.11.5 HARControlModule:AddEntry (Sequence Diagram)

The addEntry method defined in the ArbitrationQueue interface is used to queue a message for a HAR when the HAR is online.  This method delegates the storage of the entry down to the MessageQueue, then, if the HAR is online, the evaluateQueue() method is called to determine whether this new entry should result in a new message being stored to the HAR.  The details of the HARArbitrationQueueImpl's evaluateQueue processing are shown in the HARControlModule:evaluateQueue sequence diagram.  AddEntry can be called while the HAR is in any mode.  If the HAR is not online, the queue will be evaluated the next time the queue is placed online.
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Figure 126. HARControlModule:AddEntry (Sequence Diagram)



3.1.11.6 HARControlModule:Blank (Sequence Diagram)

A user with proper functional rights can blank a HAR when it is in maintenance mode.  This command is executed asynchronously by placing a HARBlankCmd on the CommandQueue.  The HARBlankCmd is used in maintenance mode and online mode, so a flag in it is set to indicate that in this case it is a maintenance mode command.  When the CommandQueue executes this command, the blankImpl method is invoked on the HAR.  Refer to the HARControlModule:blankImpl sequence diagram for details.
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Figure 127. HARControlModule:Blank (Sequence Diagram)



3.1.11.7 HARControlModule:blankImpl (Sequence Diagram)

The sequence diagram shows the processing that occurs when a HARBlankCmd is executed.  This command is placed on the command queue by the HAR blank method when in maintenance mode or by evaluateQueue() when operating online.  A flag in the command object is used to distinguish the origin of the command to allow for the proper mode check to be done and to allow for specific processing that is to be done when the HAR is blanked online.

The HAR is blanked using the ISSAP55HARProtocolHdlr object and having it command the HAR to play the message in its default message slot.  If the default message is successfully set to be played, if any previous immediate message existed it is removed from the HAR slot(s) it occupied and the HAR object deregisters interest it had in any recorded audio data used in the previous immediate message.  See HARControlModule:slotMgrRemove for further details.
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Figure 128. HARControlModule:blankImpl (Sequence Diagram)



3.1.11.8 HARControlModule:ChangePriority (Sequence Diagram)

This method, defined by the ArbitrationQueue interface, allows a user to modify the priority of a message existing in the message queue.  Since queued ArbQueueEntry objects are maintained by the MessageQueue, this request is delegated to the MessageQueue for processing.  If the HAR is currently online, the queue is reevaluated to determine whether the new priority should result in a new message being placed on the HAR.  See HARControlModule:evaluateQueue for details.
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Figure 129. HARControlModule:ChangePriority (Sequence Diagram)



3.1.11.9 HARControlModule:ConfirmClipInterest (Sequence Diagram)

This method, which comprises the AudioClipOwner interface, allows the AudioClipManager to periodically query the owners registered as having interest in various audio clips to verify that they are still interested.  This is necessary because there are certain windows where it is possible that an AudioClipOwner may fail to be able to deregister interest in its clips (if the AudioClipManager is down, for instance).  The AudioClipManager passes in a list of clips that it believes the owner (the HAR, in this case) is still interested in, and the owner returns any of those clips which it is NOT interested in (as this will normally be a much smaller list than the list it IS interested in, particularly for a message library).  For its part, the HARImpl builds its response based on querying the HARSlotManager about each clip in the query.
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Figure 130. HARControlModule:ConfirmClipInterest (Sequence Diagram)



3.1.11.10 HARControlModule:CreateHAR (Sequence Diagram)

A user with the proper functional rights can add a HAR to the system.  The HAR object is created by the HARControlDB object, which takes care of adding the appropriate data to the database and constructing a HARImpl object.  The factory connects the object to the ORB, registers it with the ServiceApplication (which causes the object to be published in the trader), and pushes an event to notify others that a HAR has been added to the system.  The HAR is added in offline mode and therefore no field communications are necessary.
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Figure 131. HARControlModule:CreateHAR (Sequence Diagram)



3.1.11.11 HARControlModule:deactivateNotifiersMaint (Sequence Diagram)

This helper method is used to deactivate a HARNotice on a list of HARMessageNotifiers when running in maintenance mode.  Since the HAR is in maintenance mode, the notifiers are assumed to be, too, and they must be in order for the deactivateHARNotice() call on them to work.  The deactivateHARNotice() call is made with an empty TrafficEvent list, since in maintenance mode there are no traffic events.
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Figure 132. HARControlModule:deactivateNotifiersMaint (Sequence Diagram)



3.1.11.12 HARControlModule:deactivateNotifiersOnline (Sequence Diagram)

This helper method is used to deactivate a HARNotice on a list of HARMessageNotifiers when the HAR is online.  Since the HAR is online, the notifiers are assumed to be, too, and they must be online in order for the deactivateHARNotice() call on them to work.  The notifiers keep track of the TrafficEvents for which they are active.  Each notifier will make entries in each TrafficEvent's history log as the notice is deactivated.
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Figure 133. HARControlModule:deactivateNotifiersOnline (Sequence Diagram)



3.1.11.13 HARControlModule:DeleteSlotMessage (Sequence Diagram)

This diagram shows the processing involved when a user requests removal of a prestored message a HAR.  A prestored message is one that was previously stored by a user in a user slot on the HAR in maintenance mode.  This message deletion operation is valid in maintenance mode only.  The command is processed asynchronously via the CommandQueue.  In addition to deleting the message from the slot on the HAR controller, if the slot was audio voice data, the HARSlotManager deregisters interest in that clip (see HARControlModule:slotMgrRemove). 
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Figure 134. HARControlModule:DeleteSlotMessage (Sequence Diagram)



3.1.11.14 HARControlModule:evaluateQueue (Sequence Diagram)

This method requests all the entries from the MessageQueue and evaluates the list of entries to determine the single or combined message (or lack of message, i.e. default message) which should be on the device.  If no messages are queued, the method determines that the device should be blank.  If it is not already blank, a HARBlankCmd is queued on the CommandQueue.  If one or more messages are queued, this method has two criteria for selecting and possibly combining messages for the HAR: 1) the total runtime of the complete (possibly combined) message must be within the maximum run time of a message; and 2) the clips not already stored on the HAR must physically fit within the HAR's RAM, which is a function of the total storage space on the HAR and the amount of data already stored there.  This method first selects one message which will fit, then attempts to add more, as limited by the above constraints.  Once a message is examined which does not meet the criteria, the search ends, and the resultant message is compared against the current message (or, if a HARSetMsgCmd is already queued, against the most recent HARSetMsgCmd's message).  It is entirely possible that evaluate queue will run many times when the resultant message is the message which already is or will be on the device (like if a low priority message is added or removed from the MessageQueue).  If the resultant message is indeed a change, it is queued in a HARSetMsgCmd on the CommandQueue.

If a HARBlankCmd or HARSetMsgCmd winds up being queued on the CommandQueue, when the command reaches the top of the CommandQueue it will be executed, causing blankImpl() or setMessageImpl() (as appropriate) to be called.   See those methods for details.
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Figure 135. HARControlModule:evaluateQueue (Sequence Diagram)



3.1.11.15 HARControlModule:fmsGetConnectedPort (Sequence Diagram)

This sequence diagram shows how a HARImpl object gets a connected telephony port.  This method is called from many methods in the HAR service, whenever communications to the device is needed.  A voice port is obtained from one of the HARImpl's two VoicePortLocator objects, depending on the "control" flag passed in: if control is true, the standard control (i.e., programming) port locator is used; if false, the monitor port locator is used.  (The monitor port is used only for the MonitorBroadcast function.)  If a control port is requested, on failure a call is made to the helper method handleOpStatus to deal with the case where the operational status has changed.  The CommandStatus is either updated or completed during the call to the VoicePortLocator object based on a flag passed into this method.  If the control flag is true, the ISSAP55HARProtocolHdlr method initiateProgramming() is called, which enters the access code ("PIN") DTMF tones, etc., in order to into the HAR and be reaady to execute programming commands on the HAR.
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Figure 136. HARControlModule:fmsGetConnectedPort (Sequence Diagram)



3.1.11.16 HARControlModule:fmsReleasePort (Sequence Diagram)

This helper method releases an FMS port which is no longer needed.  First, if the "control" flag is true, the ISSAP55HARProtocolHdlr method terminateProgramming() is called to punch in the final DTMF tones to inform the HAR that we are done with the call and ready to hang up.  It disconnects the port, and finally calls the correct PortLocator (control or monitor) to release the port back into the pool.  Errors are logged, but not reported on the CommandStatus, as the port will be released or reclaimed in any case, and errors relating to releasing a port would mask an otherwise successful status or more a useful error status.
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Figure 137. HARControlModule:fmsReleasePort (Sequence Diagram)



3.1.11.17 HARControlModule:GetConfiguration (Sequence Diagram)

A user with appropriate privileges can get the current configuration of the HAR.  When a request is made for the current configuration of the HAR, the HAR's HARConfiguration object is returned.



[image: image140.emf][get configuration] log

[no rights] log

OperationsLog

m_config:

HARConfiguration

TokenManipulator

ORB

HARImpl

copy

end synchronize

getConfiguration

[no rights]

AccessDenied

HARConfiguration

checkAccess

synchronize


Figure 138. HARControlModule:GetConfiguration (Sequence Diagram)



3.1.11.18 HARControlModule:GetEntriesStatus (Sequence Diagram)

This method, part of the ArbitrationQueueInterface, allows a client to retrieve the all entries on the queue of a device, with their current status.  This method is implemented by retrieving the list from the MessageQueue, then building a list of ArbQueueEntryStatus from that, appending status information not known by the MessageQueue.
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Figure 139. HARControlModule:GetEntriesStatus (Sequence Diagram)



3.1.11.19 HARControlModule:GetStatus (Sequence Diagram)

A user with appropriate privileges can get the current status of the HAR.  .When a request is made for the current status of the HAR, the HAR's HARStatus object is returned.
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Figure 140. HARControlModule:GetStatus (Sequence Diagram)



3.1.11.20 HARControlModule:handleMaintNotifierActivation (Sequence Diagram)

This method activates notifiers for a HAR message in maintenance mode.  It is called after the new message is already on the HAR.  This method calls activateNotifiersMaint() with a list of notifiers which need to be activated (and which is not already active).  Since this method is for maintenance mode only, TrafficEvents are not relevant.
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Figure 141. HARControlModule:handleMaintNotifierActivation (Sequence Diagram)



3.1.11.21 HARControlModule:handleMaintNotifierDeactivation (Sequence Diagram)

This method deactivates notifiers for a HAR message in maintenance mode.  It is called before the old message is removed from the HAR.  This method calls deactivateNotifiersMaint() with a list of notifiers which need to be deactivated.  This method does not deactivate notifiers which will need to remain active after the new message replaces the old message.  For the period of time that the HAR service is in communication with the HAR, any active notifiers which need be active for the new message will stay active (even though the HAR does not broadcast during this time).  Since this method is for maintenance mode only, TrafficEvents are not relevant.
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Figure 142. HARControlModule:handleMaintNotifierDeactivation (Sequence Diagram)



3.1.11.22 HARControlModule:handleOnlineNotifierActivation (Sequence Diagram)

This method handles activation of notifiers when a HAR message is being created online.  This method handles activation of all notifiers if there is a message going up replacing the default message, or if the message going up is replacing an existing online message, it provides for activating only those notifiers which were not already active for the message being currently replaced.  This method is called AFTER the new message is already on the HAR.  

This method builds a list of notifiers which will be activated (newNotifTfcEvtListVect), and for each element, a list of TrafficEvents which requested that particular notifier.  Then the method activateNotifiersOnline() is called to actually activate the notifiers in the list just prepared. 
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Figure 143. HARControlModule:handleOnlineNotifierActivation (Sequence Diagram)



3.1.11.23 HARControlModule:handleOnlineNotifierDeactivation (Sequence Diagram)

This method handles deactivation of notifiers when a HAR message is changing online.  There are actually two classes of notifier changes being handled in this routine: (1) deactivation of the notifiers which should not be active anymore when the current HAR message is updated or removed; and (2) "modification" (not deactivation or activation) of notifiers which have been active, and will be active, but for which the list of TrafficEvents requesting the notifiers will change when the current HAR message is updated.  Both of these classes of notifier changes result in entries in the respective Traffic Event history logs BEFORE the HAR message itself is actually changed.  This way, notifiers which should be deactivated are deactivated BEFORE the message goes away.  Notifiers which were already active and which will stay active will stay on during (and beyond) the brief period of time that the new message is set up on the HAR.

This method builds a list of notifiers which will be deactivated (oldNotifTfcEvtListVect) -- for part (1) above, a list of notifiers which will be modified (modNotifTfcEvtListVect) -- for part (2) above, and a list of notifers which will be active when the whole transaction is completed (which is not used directly but helps in building the second list).  After the lists have been built, the helper method deactivateNotifiersOnline() is called to handle (1), and helper method modifyNotifiers() is called to handle (2). 
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Figure 144. HARControlModule:handleOnlineNotifierDeactivation (Sequence Diagram)



3.1.11.24 HARControlModule:handleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a HARImpl handles the task of detecting and responding to changes in its operational status ("OK", "COMM_FAILURE" or "HARDWARE_FAILURE").  A HAR is normally OK, but falls into COMM_FAILURE when FMS reports that it cannot communicate with the device.  Under R1B3, the ISS AP55 HAR cannot report status, so the HAR will never go into HARDWARE_FAILURE mode, but processing for HARDWARE_FAILURE, already coded for DMS, is left here for completeness and future extensibility.  This method is called, with the status reported back from FMS, after every attempt to communicate with the device, and processing falls into one of three cases, depending on the status reported (although the two failure cases are nearly identical).  

If the device now being reported OK and it was already OK, there is no change in status, and all that is necessary is to update the m_lastContactTime of the device.  If the status has just become OK, this fact is logged, and the new HARStatus is persisted and pushed out into the event channel.  If the device is online, and m_needsReevaluation is true, this means an earlier attempt to set the device to the correct condition (new message, default message) has failed since the device went COMM_FAILED, so evaluateQueue is called to ensure that the correct message is put on the HAR.  If the device is online and m_lastDateStampUpdateTime is not today, that means a new day has come since the device COMM_FAILED, so call checkDateStamps is called to see if any datestamps need updating.

If the device is now being reported with a failure and the device was already in that failure condition, there is no change in status, and nothing is done.  If the status is just now changing, this is logged, and the HARStatus is persisted and pushed out into the event channel. 
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Figure 145. HARControlModule:handleOpStatus (Sequence Diagram)



3.1.11.25 HARControlModule:Initialize (Sequence Diagram)

This sequence diagram shows the processing that takes place when the HARControlModule is initialized.  The module creates the support objects that will be needed by the HAR factory and the HAR objects.  The HAR Factory is created which in turn creates the HARs that have been previously added to the factory.  Timer tasks are started so that the factory and its HARs can conduct their timer based processing when appropriate.  The factory performs shared resource management checks periodically and the HARs may need to periodically update their message based on the time of day, depending on the message content.  The factory and HARs may also participate in recovery timer based tasks for the first few minutes after startup, as necessary.
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Figure 146. HARControlModule:Initialize (Sequence Diagram)



3.1.11.26 HARControlModule:modifyNotifiers (Sequence Diagram)

This method modifies a list of notifiers, in online mode, before an old message is removed from a HAR and replaced with a new one.  In this particular case, one or more notifiers (those passed into this method) will be on both before and after the new message is put on the HAR, but for these notifiers the list of TrafficEvents has changed.  This method informs each such notifier of the new list of TrafficEvents for which it is now active.  The list of TrafficEvents passed to each notifier is a complete replacement for the current list that notifier is maintaining.  The new list may include TrafficEvent(s) which have been added and/or some which stay the same, and may indicate by exclusion TrafficEvents which have been deleted.  The HARNotifier will keep its HARNotice unchanged (active), but will update its internal state of the TrafficEvents for which it is active, and will put entries in the TrafficEvent history logs for the TrafficEvents added or deleted.
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Figure 147. HARControlModule:modifyNotifiers (Sequence Diagram)



3.1.11.27 HARControlModule:MonitorBroadcast (Sequence Diagram)

This method allows a suitably privileged user to monitor the broadcast of a HAR.  This operation can be performed online or in maintenance mode.  Because this command uses the monitor phone line of the HAR, it is the only type of command queued up on a special monitor CommandQueue.  (Even MonitorSlot uses the regular programming phone line.)  This allows monitoring the broadcast to be conducted independently of (without interfering with) other HAR programming activities.  Because of the nature of the telephony ports, once the command is executed from the monitor CommandQueue, the wav file must be recorded first and then streamed back to the requester.  This means a request to monitor two minutes of a broadcast will be delayed at least two minutes while the audio is being recorded before any audio will be heard by the user.  Since this command does not use the control phone line, it does not affect the OperationalStatus (OK, COMM_FAILED) of the HAR.  In other words, a failure to complete the monitor action will not COMM_FAIL the device, and successful operation will not bring the HAR out of COMM_FAILED status if it was in COMM_FAILED.
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Figure 148. HARControlModule:MonitorBroadcast (Sequence Diagram)



3.1.11.28 HARControlModule:MonitorSlot (Sequence Diagram)

This command allows a suitably privileged user to monitor one slot on a HAR in maintenance mode.  This command, unlike Monitor Broadcast, uses the regular control phone line of the HAR.  So monitoring a slot delays other maintenance activities on the HAR as long as the monitor operation continues, and this command can affect the Operational Status of the HAR.  This command is queued on the CommandQueue and is executed asynchronously.  When the CommandQueue later executes the command, the data is recorded from the HAR and then streamed back to the user via the PushAudioConsumer (served by the GUI) passed in on the original request.
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Figure 149. HARControlModule:MonitorSlot (Sequence Diagram)



3.1.11.29 HARControlModule:MsgNotfierDeactivated (Sequence Diagram)

This method is called by a HARNotifier (SHAZAM or DMS) which displaying a HAR notice.  The HARNotifier makes this call on its associated HAR as the notifier is being deactivated autonomously (not under control of the HAR, for instance, if a user takes the notifier into another mode).  This allows the HAR to update its list of active notifiers.
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Figure 150. HARControlModule:MsgNotfierDeactivated (Sequence Diagram)



3.1.11.30 HARControlModule:MsgNotifierRemoved (Sequence Diagram)

This method is called by a HARNotifier (SHAZAM or DMS) on its associated HAR as the notifier is being entirely removed from the system.  This allows the HAR to update its list of associated notifiers (and, if necessary, its list of currently active notifiers).
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Figure 151. HARControlModule:MsgNotifierRemoved (Sequence Diagram)



3.1.11.31 HARControlModule:PutInMaintenanceMode (Sequence Diagram)

A user with appropriate privileges can put a HAR in maintenance mode.  When the HAR is going into maintenance mode from online, all SHAZAMs are automatically brought into maintenance mode along with the HAR, and this method can be called.  (Going into maintenance mode from offline, putInMaintModeWithSHAZAMs must be called.)  The HAR is blanked and its transmitter is turned off, and all SHAZAMs are requested by the HAR to go into maintenance mode as well.  If there is a failure commanding the HAR, the status of the HAR is still marked as blank anyway, per requirement, and the device is still moved to the maintenance mode state.
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Figure 152. HARControlModule:PutInMaintenanceMode (Sequence Diagram)



3.1.11.32 HARControlModule:putInMaintModeImpl (Sequence Diagram)

This method executes the putInMaintenanceMode or putInMaintModeWithSHAZAMs interface methods when the command enqueued by one of those methods is executed by the CommandQueue.  This method first sets the status of the HAR to indicate that it is blank, with transmitter off, and in maintenance mode, because the HAR is required to transition in that fashion regardless of the success of the rest of the operation.  Next this method attempts to put the SHAZAMs specified (if any) into maintenance mode, and this method waits (up to a maximum time specified by the HAR property SHAZAMMaintTimeoutSecs) for the SHAZAMs to complete their transition.  This method then attempts to contact the HAR and blank it and turn the transmitter off.  Whether that action is successful or not, the HAR's status is already set to show it as being blank, with the transmitter off, and in maintenance mode.
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Figure 153. HARControlModule:putInMaintModeImpl (Sequence Diagram)



3.1.11.33 HARControlModule:PutInMaintModeWithSHAZAMs (Sequence Diagram)

A user with appropriate privileges can put a HAR in maintenance mode.  When the HAR is going into maintenance mode from online, all SHAZAMs are automatically brought into maintenance mode along with the HAR, and the putInMaintenanceMode() method without a SHAZAM list can be called.  When the HAR is going into maintenance mode from offline, the GUI displays a list of associated SHAZAMs which can be brought into maintenance mode along with the HAR, and this method is called instead.  The HAR is blanked and its transmitter is turned off, and the specified SHAZAM are requested by the HAR to go into maintenance mode as well.  If there is a failure commanding the HAR, the status of the HAR is still marked as blank anyway, per requirement, and the device is still moved to the maintenance mode state.
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Figure 154. HARControlModule:PutInMaintModeWithSHAZAMs (Sequence Diagram)



3.1.11.34 HARControlModule:PutOnline (Sequence Diagram)

This is the implementation of the standard CommEnabled interface method PutOnline(), but it does not function for HARs.  In order to put a HAR device online, a client must call putOnlineWithSHAZAMs(), which allows for specification of the SHAZAM devices to be moved into online mode along with the HAR.  (The client can pass an empty list of SHAZAMs to that method, however.)
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Figure 155. HARControlModule:PutOnline (Sequence Diagram)



3.1.11.35 HARControlModule:putOnlineImpl (Sequence Diagram)

This method executes the actions necessary to put a HAR online, when the HARPutOnlineCmd gets to the top of the CommandQueue and is executed.  PutOnlineImpl() collects all the audio data for all the HAR slots then dials the device and reloads all the slot data.  If that is successful, the SHAZAMs passed into the method are put online, and this method waits (up to a maximum time specified by HAR property SHAZAMOnlineTimeoutSecs) for the SHAZAMs to go online.  Finally this method sets the status of the HAR to online.  If the reloading of all the slot data fails, neither the HAR nor the requested SHAZAMs are put online.
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Figure 156. HARControlModule:putOnlineImpl (Sequence Diagram)

3.1.11.36 HARControlModule:PutOnlineWithSHAZAMs (Sequence Diagram)

This method serves as the replacement for the standard CommEnabled interface method putOnline(), which is non-functional for HARs (always immediately returns a CHART2Exception).  When putting a HAR device online, a user must always specify a list of SHAZAMs (even if it is an empty list) to put online along with the HAR.  This method is the method to be called with that list of SHAZAMs.  This method queues up a HARPutOnlineCmd, which is executed later by the CommandQueue.
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Figure 157. HARControlModule:PutOnlineWithSHAZAMs (Sequence Diagram)



3.1.11.37 HARControlModule:Remove (Sequence Diagram)

A user with proper functional rights can remove a HAR from the system if the HAR is offline.  The HAR delegates part of its removal to the HAR factory that created it.  The HAR is withdrawn from the trader and disconnected from the ORB.  The HARControlDB object is called to remove the HAR from the database, and the HAR is removed from the HAR factory's list of HARs.  The HAR then deletes and recreates the CommandQueue to make sure there are no other commands queued up after it, then adds one more command, to clean up any clips still stored in the HAR.  The HARRemovalCleanupCmd executes immediately afterward, and deregisters interest in any clips left on the HAR, and also disassociates the HAR from all of its HARMessageNotifiers (if any).  After the HARRemovalCleanupCmd has returned, it is removed from the CommandQueue, which allows the HAR and its associated data (including the new CommandQueue) to be garbage collected.
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Figure 158. HARControlModule:Remove (Sequence Diagram)



3.1.11.38 HARControlModule:RemoveEntry (Sequence Diagram)

The removeEntry method defined in the ArbitrationQueue interface is used to dequeue a message for a HAR when it is no longer needed by the originating traffic event.  This method delegates the storage of the queue to a MessageQueue object, so the request is passed down to the MessageQueue.  Then, if the HAR is online, the evaluateQueue() method is called to determine whether the removal of this entry should result in a new message being placed on the HAR.  The details of the HARArbitrationQueueImpl's evaluateQueue processing are shown in the HARControlModule:evaluateQueue sequence diagram.  RemoveEntry can be called while the HAR is in any mode.  (If the HAR is not online, the message will already be off (or may have never been on) the device.)
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Figure 159. HARControlModule:RemoveEntry (Sequence Diagram)



3.1.11.39 HARControlModule:requestFailed (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode fails.  There are two possible scenarios on a failure: either the message being replaced is still there, unchanged, or if the action partially succeeded then failed, there may now be NO message on the device.  This method provides proper notifications to all interested traffic events depending on the two possible scenarios.  All traffic events get some kind of notification in any case.
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Figure 160. HARControlModule:requestFailed (Sequence Diagram)



3.1.11.40 HARControlModule:requestSucceeded (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode completes successfully.  This method provides proper notifications to all interested traffic events: Those which were active but aren't anymore, those which were active and are still active (whether the message changed or not), and those which weren't active before but are now.  The list of ArbQueueEntry objects which have just become active are stored with the HAR.  These are a copy of the objects on the MessageQueue which caused the new message to go active.  This separate list of active ArbQueueEntry objects is necessary because the entries on the MessageQueue could be changed or deleted at any time, and the HAR needs to maintain the list of entries actually active on the device until their message is actually removed.
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Figure 161. HARControlModule:requestSucceeded (Sequence Diagram)



3.1.11.41 HARControlModule:Reset (Sequence Diagram)

A user with the proper functional rights can reset the HAR controller when the HAR is in maintenance mode.  A reset command is issued to the HAR controller which erases all stored data in the HAR.  The setupHAR method is then called automatically to restore the data (clips, etc) that are currently configured to reside on the HAR.  Refer to the setup sequence diagram for details on the setupHAR call.
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Figure 162. HARControlModule:Reset (Sequence Diagram)



3.1.11.42 HARControlModule:restoreHAR (Sequence Diagram)

This Sequence Diagram shows how a HARImpl is initialized (whether being depersisted or created from scratch).  If the HAR is being depersisted, after the MessageQueue is depersisted, the MessageQueue method validateEntries() is called to attempt to contact the TrafficEvent IDs on the list to validate their existence.  If not in recovery mode, this is the only chance the TrafficEvents get.  If still within the recovery mode, another attempt to contact the traffic events will be made when the recovery period is over.  This diagram also shows a summary of what happens when an entry is added to or reprioritized in the message queue during recovery mode, and what happens when the recovery mode period expires. 
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Figure 163. HARControlModule:restoreHAR (Sequence Diagram)



3.1.11.43 HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedHARTask object executes its task when directed to run by the Java Timer object.  The run() method of CheckForAbandonedHARTask gets the controlling op center of each HAR and builds a list of OperationsCenter objects with control one or more signs.  Each OperationsCenter is then queried for the number of users logged in.  If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledControlledResources event is pushed into the event channel. 
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Figure 164. HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)



3.1.11.44 HARControlModule:runRecoveryTimerTask (Sequence Diagram)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process.  During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called.  This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the HAR Service last went down, an essential piece of information for recovery during HAR Service startup.  When the HAR Service has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkHARRecovery) which requests all HAR objects to check and see if their recovery period has expired.  (The recovery period is defined via system-wide constant (on the order of 10-15 minutes.)  Each HAR can terminate its recovery period independently of the others.  If a HAR manages to contact all of its TrafficEvents prior to normal expiration of its recovery period, its recovery period can end prematurely.  A HAR's recovery period also ends prematurely if there is any change to its MessageQueue (a call to add or remove or reprioritize an entry).  When all HARs have terminated their recovery period, checkHARRecovery is no longer called.

When each HAR checks its own recovery time, if it finds that it has just now exceeded the recovery period, based on time, it calls its message queue to take one last try at resolving traffic events on its queue and, if the device is online, calls evaluateQueue to make a determination as to what message, if any, belongs on the device, and to queue a command for the HAR to set or blank its message as necessary.
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Figure 165. HARControlModule:runRecoveryTimerTask (Sequence Diagram)



3.1.11.45 HARControlModule:runUpdateDateTimeFieldsTask (Sequence Diagram)

HAR Text messages can contain a tag ("<DATESTAMP>") that is to be substituted with a textual reference to the day (e.g., "Tuesday, July 14") when the Text To Speech translation is performed.  Any text containing this tag must be updated on the HAR shortly after midnight each night.  This sequence diagram shows the processing involved in the automated substitution and message setting.  This automated process involves telling each HAR object to update any datestamped clips currently stored on the HAR.  If necessary, the HAR puts a command on its command queue and the command is executed asynchronously.  When the command is executed, the appropriate clip (or clips) are re-downloaded to the HAR and in the process, the Text To Speech will insert the appropriate spoken words will replace the date/time field as the audio is collected for the download process.
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Figure 166. HARControlModule:runUpdateDateTimeFieldsTask (Sequence Diagram)



3.1.11.46 HARControlModule:SetConfiguration (Sequence Diagram)

A user with the appropriate privileges can set the configuration of the HAR.  The HAR must be in maintenance mode when setting the configuration.  The command is processed asynchronously by the CommandQueue.  When the command reaches the top of the queue, the HARImpl's setConfigurationImpl() method is called to do the actual work.
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Figure 167. HARControlModule:SetConfiguration (Sequence Diagram)



3.1.11.47 HARControlModule:setConfigurationImpl (Sequence Diagram)

This method is called by the HARSetConfigCmd when it reaches the top of the CommandQueue and is executed.  This method does the work of updating the configuration of the HAR.  Some configuration elements require communication to the device: the default header, trailer, and message.  if any of these change, the audio data is collected by calling prepareWavFiles() on each of the default clips changed, then a connected port is acquired and used to download the new clip data into the HAR.  This is accomplished by calling the HARSlotManager store() method.  Any clips which are unable to be stored are set back to their original values.  Because the configuration consists of many separate values that are set individually on the device, the possibility of partial success exists.  When this occurs warning messages are given back to the user through the command status object and the configuration is set to reflect the partial success.  If any data has ultimately changed, the new configuration is stored and persisted, and a HARConfigurationChanged event is pushed.
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Figure 168. HARControlModule:setConfigurationImpl (Sequence Diagram)



3.1.11.48 HARControlModule:SetMessage (Sequence Diagram)

A user with proper functional rights can set a message on a HAR when it is in maintenance mode.  A HARSetMsgCmd object, which knows how to request that a message be set on a HAR, is created.  The HARSetMsgCmd is used in maintenance mode and online mode, so a flag in it is set to indicate that in this case it is a maintenance mode command.  This command is passed to the CommandQueue to be processed asynchronously.  When the HARSetMsgCmd comes to the top of the CommandQueue and is executed, it calls the setMessagImpl() method, which specifies the details of how the message is set.  The message to be set may contain heavyweight HARMessageAudioClip objects (which contain actual audio data).  These are left alone until they are about to be put on the HAR, at which time they are converted.  These clips are inaccessible to other processes again until they go to the device, so, to minimize the work to be done they will not be converted until (and if) necessary.  Converting a clip implies that the requester becomes an "owner" of the clip, but HAR does not really want to be responsible for owning the clip until it is (about to be) on the device itself.
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Figure 169. HARControlModule:SetMessage (Sequence Diagram)



3.1.11.49 HARControlModule:setMessageImpl (Sequence Diagram)

This sequence diagram shows the processing that occurs when a HARSetMsgCmd is executed from the command queue.  This command can be placed on the queue as a maintenance command or as part of online processing, therefore some of the processing differs based on origination of the message.  Refer to the notes on the diagram for details.

Prior to setting the message on the HAR, the audio data for the clips must be prepared for delivery to the HAR.  The interface to the ISSAP55HARProtocolHdlr is via files, so all clips must now get their audio data into a file.  This is done within a call to prepareImmedWavFiles(), which provides more details.  Basically, any recorded voice clips that exist in the message are passed to the Audio Clip Service for storage and they are converted from the heavy weight HARMessageAudioDataClip objects (which contain the actual voice data) to lightweight HARMessageAudioClip objects, which contain a reference to a streamer that can provide the data when needed.  These lightweight objects are used to pass voice clips throughout the system to avoid the bandwidth needed to pass the actual voice data.  The actual voice data is only passed (via the streamer) when the actual voice data is needed for listening (by the end user) or for playing to the device.  Messages that are set when the device is online through the addEntry method will already be converted to the lightweight audio clips before this method is invoked, so the processing done on the AudioClipManager shown on the diagram will only ever apply to messages set in maintenance mode.

Following any processing of voice data clips, the message is passed to the HARSlotManager to download the clip(s) to the appropriate slot(s) on the HAR device using the ISSAP55HAR object.  The HARSlotManager keeps track of all slots in use on the HAR controller, including the clip in each slot and how the slot is being used (Immediate message, default message, etc.)  The ISSAP55HAR object is used to carry out the communications to store each clip in its slot on the HAR device. 

After the HARSlotManager has the clips stored into the HAR controller, a call is made to the ISSAPP55HAR object to have it command the HAR device to play the slot (or slots) that contain the immediate message, including default header/trailer as necessary, and prestored slots or previously store immediate slots, all in the right order as stored in the slotClipFileData list.
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Figure 170. HARControlModule:setMessageImpl (Sequence Diagram)



3.1.11.50 HARControlModule:SetTransmitterOff (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter off when the HAR is in maintenance mode.  A HARSetTransmitterStateCmd is queued onto the CommandQueue and setTransmitterOff returns.  Later, when the command reaches the top of the CommandQueue and is executed, the setTransmitterState() method is called, which connects to the device and sets the transmitter state as specified.
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Figure 171. HARControlModule:SetTransmitterOff (Sequence Diagram)



3.1.11.51 HARControlModule:SetTransmitterOn (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter on when the HAR is in maintenance mode.  A HARSetTransmitterStateCmd is queued onto the CommandQueue and setTransmitterOn returns.  Later, when the command reaches the top of the CommandQueue and is executed, the setTransmitterState() method is called, which connects to the device and sets the transmitter state as specified.
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Figure 172. HARControlModule:SetTransmitterOn (Sequence Diagram)



3.1.11.52 HARControlModule:Setup (Sequence Diagram)

The setup command causes a HARSetupCmd to be enqueued on the CommandQueue, which is later executed when the command comes to the top of the CommandQueue.  At that time, the setupImpl() method is called.  This method involves re-sending the current setup (as known in Chart II) to the HAR device.  This includes setting the configurable parameters on the HAR, downloading all messages that are to be stored in slots on the HAR, setting the HAR to its default message, and turning the transmitter on.  Because this involves many steps, it is possible that only partial success is achieved.  In this case, flags are used to keep track of which parts failed and an appropriate status message is relayed to the end-user via the command status object.  Most of the work is performed by the setupHAR() method, a helper method also called by a variety of other HAR methods.
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Figure 173. HARControlModule:Setup (Sequence Diagram)



3.1.11.53 HARControlModule:setupHAR (Sequence Diagram)

This helper method is used to set up the HAR.  This is done in several situations, including on a user-initiated setup or reset maintenance mode command, or sometimes when changing modes.  This method accepts a connected port and pre-prepared slotClipFileData, and sets the inter message spacing, downloads all slots, sets the default message as the current message, and sets the transmitter state according to the desired transmitter state passed in.  Any failure terminates the process with a CHART2Exception.
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Figure 174. HARControlModule:setupHAR (Sequence Diagram)



3.1.11.54 HARControlModule:Shutdown (Sequence Diagram)

When the HARControlModule is shut down by the ServiceApplication, it stops its timer based processing, disconnects its objects from the ORB, and releases any resources it is using.
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Figure 175. HARControlModule:Shutdown (Sequence Diagram)



3.1.11.55 HARControlModule:slotMgrCollectWavFiles (Sequence Diagram)

This helper method collects audio ("wav") files for a list of clips which is about to be stored onto a HAR.  The interface to the ISSAP55HARProtocolHdlr is via files.  This method  writes the wav file for each clip.

First, any recorded voice clips that exist in the message are passed to the Audio Clip Service for storage and they are converted from the heavy weight HARMessageAudioDataClip objects (which contain the actual voice data) to lightweight HARMessageAudioClip objects, which contain a reference to a streamer that can provide the data when needed.  These lightweight objects are used to pass voice clips throughout the system to avoid the bandwidth needed to pass the actual voice data.  While converting audio data clips to audio clips, the opportunity is taken to write the audio data to a file, while the data is right within the HAR process.  This eliminates the need to stream it in the next loop.

Next, each remaining clip is now requested to stream its data to a WavFileWriter object, which is a simple AudioPushConsumer object created now for each clip.  Each clip's streamer, be it a TTSConverter or an Audio Clip Manager, streams its data to the WavFileWriter, which accepts the data and writes it to a file.  A ReadWriteLock object watches all this activity and provides as indication as to when all clips have been successfully streamed.  A "read request" is registered with the ReadWriteLock for each clip whose audio data needs to be read (streamed), then a "write request" is made to request confirmation that the data is ready to be written to the HAR.  The write request will not return until all clips have been successfully streamed (or have failed).

On any failure, all files are useless and are deleted.  A success or failure indication is returned to the caller.
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Figure 176. HARControlModule:slotMgrCollectWavFiles (Sequence Diagram)



3.1.11.56 HARControlModule:slotMgrPrepareAllWavFiles (Sequence Diagram)

This helper method prepares all clips stored in the HARSlotManager for re-downloading back into a HAR (during a setup or reset command, or sometimes when changing modes).  In order to communicate the audio data to a HAR through the ISSAP55HARProtocolHdlr, each clip must have its audio data stored in a file.  This method handles that for all clips previously stored on the HAR.  This method creates and partially populates a slotClipFileData structure for each clip, storing data about the slot, clip, and usage for each, then it calls collectWavFiles(), another helper method, to actually collect the audio data and store it in a set of files.  The names of the files created by collectWavFiles() are in array of slotClipFileData returned by collectWavFiles().  This array is returned to the caller.  The collection of slot/clip/file data is now ready to be downloaded into the HAR.
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Figure 177. HARControlModule:slotMgrPrepareAllWavFiles (Sequence Diagram)



3.1.11.57 HARControlModule:slotMgrPrepareImmedWavFiles (Sequence Diagram)

This helper method prepares all clips in a HARMessage for transmission to the HAR.  In order to communicate the audio data to a HAR through the ISSAP55HARProtocolHdlr, each clip must have its audio data stored in a file.  This method handles that for all clips in a message which are not already stored on the HAR.  In many cases the header/trailer will be the default header/trailer already stored on the HAR, and in many cases dealing with combined messages on a HAR, some of the clips will be stored in an immediate slot and playing on the HAR already (in cases where that particular part of the combined message is not changing).  This method creates and partially populates a slotClipFileData structure for each clip, storing data about the slot, clip, and usage for each part of the HARMessage, then it calls collectWavFiles(), another helper method, to actually collect the audio data and store it in a set of files.  The names of the files created by collectWavFiles() are in the array of slotClipFileData returned by collectWavFiles().  This array is returned to the caller.  The collection of slot/clip/file data is now ready to be stored (as necessary) and played on the HAR.
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Figure 178. HARControlModule:slotMgrPrepareImmedWavFiles (Sequence Diagram)



3.1.11.58 HARControlModule:slotMgrPrepareWavFiles (Sequence Diagram)

This helper method prepares a clip for transmission to the HAR.  In order to communicate the audio data to a HAR through the ISSAP55HARProtocolHdlr, a clip must have its audio data stored in a file.  This method handles that for a single clip (for storing a slot message in maintenance mode).  This method creates and partially populates a slotClipFileData array of length one for a single clip, storing data about the slot, clip, and usage.  Then it calls collectWavFiles(), another helper method, to actually collect the audio data and store it in a file.  The name of the file created by collectWavFiles() is in the one element of the array of slotClipFileData returned by collectWavFiles().  The one element of thi array is returned to the caller.  The slot/clip/file data is now ready to be stored on the HAR.
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Figure 179. HARControlModule:slotMgrPrepareWavFiles (Sequence Diagram)



3.1.11.59 HARControlModule:slotMgrRemove (Sequence Diagram)

This HARSlotManager method is used to delete a clip from a slot on the HAR.  It calls deleteMessage on the ISSAP55HARProtocolHdlr to actually delete the message in the slot on the HAR, then it deregisters interest in the clip if it is an audio clip.
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Figure 180. HARControlModule:slotMgrRemove (Sequence Diagram)



3.1.11.60 HARControlModule:slotMgrRestoreAll (Sequence Diagram)

This SlotManager method is used to store all clips in all slots back into the HAR device.  This occurs on an operator-initiated setup or reset command, and sometimes when the HAR changes modes.  When this method is called, the audio data has already been collected into files named in the slotClipFileData array passed in, and the port passed in is already connected to the HAR.  This method calls recordMessage on the ISSAP55HARProtocolHdlr for each slot/clip/file provided in the slotClipFileData array.  Any failure aborts the process.
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Figure 181. HARControlModule:slotMgrRestoreAll (Sequence Diagram)



3.1.11.61 HARControlModule:slotMgrStore (Sequence Diagram)

This helper method is used by the HARSlotManager to store one clip in one slot.  This may be for an immediate message to be immediately played on the HAR, or it may be for the default header, message, or trailer, or it may be for a prestored slot being stored now on the HAR for possible broadcast at a later time.  This method first determines whether the clip will fit, based on the run time returned by the clip itself (which could be an estimate for a text clip which has never been previewed).  If the clip is deemed not to fit, a NoSpaceAvailableException is returned, otherwise, the ISSAP55HARProtocolHdlr is used to record the message, stored in the file specified, to the HAR.  If the slot previously had a clip in it, the HAR's interest in that clip is deregistered, if it is an audio clip.  The slot data for the HAR is updated and the method returns.
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Figure 182. HARControlModule:slotMgrStore (Sequence Diagram)



3.1.11.62 HARControlModule:slotMgrStoreImmedMsg (Sequence Diagram)

This helper method is used by the HARSlotManager to store an immediate message on the HAR.  The data contained in the message has already been prepared by prepareImmedWavFiles(), so it is all ready to go.  This method first deletes any clips currently stored on the HAR as immediate message clips -- provided they are not going to be used in the new message.  Immediate clips will be reused when necessary to prevent deleting and re-downloading the exact same audio data to the HAR.  This will happen when processing combined messages.  In most such cases, one or more of the clips in the new immediate message will already exist in an immediate slot on the HAR.  When the obsolete clips have been deleted, this method calls store(), another HARSlotManager helper method, repetitively, to store each new clip on the HAR.  (This is all done on one phone call, on one port.)
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Figure 183. HARControlModule:slotMgrStoreImmedMsg (Sequence Diagram)



3.1.11.63 HARControlModule:StoreSlotMessage (Sequence Diagram)

A user with proper functional rights can store a message in a slot in the HAR controller for later activation.  This command is processed asynchronously via the CommandQueue.  When this command is later executed, the HARSlotManager object is used to download the message to the HAR and track the slot usage.  If the clip is a HARMessageAudioDataClip it is stored using an AudioClipService, and if it is an AudioClip, the HAR registers its interest with the clip, which passes this information on to the AudioClipService which serves it.  If it is a text clip, the clip is streamed using a TTS service.
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Figure 184. HARControlModule:StoreSlotMessage (Sequence Diagram)



3.1.11.64 HARControlModule:TakeOffline (Sequence Diagram)

A user with appropriate privileges can take a HAR offline.  When the HAR is going offline, all SHAZAMs are automatically taken offline along with the HAR.  The HAR is blanked and its transmitter is turned off, and all SHAZAMs are requested by the HAR to go offline as well.  If there is a failure commanding the HAR, the status of the HAR is still marked as blank anyway, per requirement, and the device is still moved to the offline state.  Any traffic events which were using the device will be notified.  This command is executed asynchronously, via a HARTakeOfflineCmd, which is enqueued on the CommandQueue and which executes takeOfflineImpl when executed.



[image: image187.emf][take offline] log

For details, see sequence diagram

HARControl:takeOfflineImpl.

HARTakeOfflineCmd

OperationsLog

Completes CommandStatus if conflict found.

Even though HAR status

has not changed, in this

case it seems at least one

client is not in synch with

our actual status, so push

current status to all clients

just to be helpful.

PushEventSupplier

(HARControl)

CommandQueue executes 

command asynchronously.

ORB

CommandQueue

CommandStatus

HARImpl

[already offline]

Push(HARStatusChanged)

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

[no rights]

log

[already offline] 

completed("already offline")

[already offline]

create

execute

addCommand

update("queued for processing")

takeOfflineImpl

takeOffline(token, cmdStatus)

[no rights]

AccessDenied

[no rights] 

completed


Figure 185. HARControlModule:TakeOffline (Sequence Diagram)



3.1.11.65 HARControlModule:takeOfflineImpl (Sequence Diagram)

This method executes the takeOffline interface method when the command enqueued by that method is executed by the CommandQueue.  This method immediately sets the status of the HAR to offline, blank, and transmitter off, since that action is required whether the remaining actions are successful or not.  Next, this method attempts to take all the SHAZAMs associated with the HAR offline, and this method waits (up to a maximum time specified by the HAR property SHAZAMOfflineTimeoutSecs) for the SHAZAMs to complete their transition.  This method then attempts to contact the HAR and blank it and turn the transmitter off.  Whether that action is successful or not, the HAR's status has already been to show it as being blank, with the transmitter off, and offline.  Any traffic events which were on the device are notified to indicate that they are not on the device anymore.
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Figure 186. HARControlModule:takeOfflineImpl (Sequence Diagram)



3.1.11.66 HARControlModule:verifyNoResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a HARImpl object checks a sign for a resource conflict prior to performing some other sort of operation on it.  This utility method is called from several other methods within the HAR service. If the HAR is currently is maintenance mode, and therefore has a controlling operations center, and it is not equal to the caller's operations center, and the user does not have override authority, there is a resource control conflict.  Otherwise, there is not.  If there is a resource control conflict, a message to this effect is written to the CommandStatus object, which may be monitored by the requesting user.
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Figure 187. HARControlModule:verifyNoResourceConflict (Sequence Diagram)



HARManagement

3.1.12 Classes

3.1.12.1 HARManagementPkg (Class Diagram)

This class diagram shows classes related to the HAR that are used by both the GUI and the server.  Many of these classes are implementations of value type classes defined in the system interfaces (IDL). 
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Figure 188. HARManagementPkg (Class Diagram)



3.1.12.1.1 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process.  The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data.  The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip.  When a clip no longer has any interested owners, it can be (and is) deleted from the database. 

interface

3.1.12.1.2 AudioClipManagerWrapper (Class)

The AudioClipManagerWrapper wraps access to an AudioClipManager, hiding the details communicating with the Trader/ORB in acquiring and maintaining references to AudioClipManager(s) and actually communicating with an AudioClipManager from the classes which use this class. 

3.1.12.1.3 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error.  This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done.  In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary.  If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference.  When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system.  During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.1.12.1.4 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR.  It stores the HAR message as a HAR message header, body and footer.  The HARMessage can be configured to use the default header or can provide a custom header clip.  The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided.  The body can consist of one or more body clips.  Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.1.12.1.5 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR.  This class is passed around the system, wherever possible instead of passing the actual voice data contained in the initial HARMessageAudioDataClip.  When the actual voice data is needed to play to the user or to program the HAR device, this object's streamer is used to stream the actual voice data back to an AudioPushConsumer specified by the requester.

3.1.12.1.6 HARMessageAudioClipImpl (Class)

This class defines HARMessageAudioClip as defined in the IDL.  Refer to HARMessageAudioClip for details.

3.1.12.1.7 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.  Because audio data can be very large, this type of clip is reserved for use when recorded voice is first entered into the system.  Recorded voice that already exists in the system is passed throughout the system using HARMessageAudioClip to avoid sending the large audio data when possible.  A HARMessageAudioClip can stream the associated data back to an audio consumer when needed, by contacting its AudioClipManager.

3.1.12.1.8 HARMessageAudioDataClipImpl (Class)

This class implements the HARMessageAudioDataClip as defined in the IDL.  Refer to HARMessageAudioDataClip for details.

3.1.12.1.9 HARMessageClip (Class)

This class represents a section of a HAR message.  A HARMessage typically contains one to three clips: a body plus an optional header and optional trailer.  A combined HARMessage which is stored on (broadcast from) a HAR can one or more clips, an optional header, optional trailer, and one or more body clips.  See HARMessage for details.  A HARMessageClip can be either plain text which would need to be converted to audio prior to broadcast, or audio (WAV) format, or it can refer to a clip which is prestored in a specific target HAR already.  Audio clips are normally passed around as lightweight HARMessageAudioClips, which are created from HARMessageAudioDataClips typically at the point where the HARMessageAudioClip first enters a server.

3.1.12.1.10 HARMessageImpl (Class)

This class is a concrete implementation of the HARMessage abstract class generated from IDL.

3.1.12.1.11 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a specific HAR device.

3.1.12.1.12 HARMessagePrestoredClipImpl (Class)

This class implements HARMessagePrestoredClip as defined in IDL.  Refer to HARMessagePrestoredClip for details.

3.1.12.1.13 HARMessageTextClip (Class)

This class represents a HAR message content object which is in plain text format.  This message can be checked for banned words and will be converted into a voice message using a speech engine, for downloading to a HAR device or to preview the voice audio to a user.

3.1.12.1.14 HARMessageTextClipImpl (Class)

This class implements HARMessageTextClip as defined in the IDL.  Refer to HARMessageTextClip for details.

3.1.12.1.15 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.1.12.1.16 HARPlanItemDataImpl (Class)

The HARPlanItemDataImpl class provides an implementation for the abstract HARPlanItemData class.  It implements get and set methods to access and modify values relative to a stored Plan Item for a HAR, which associates a stored message to a specific HAR it should be placed on. 

3.1.12.1.17 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed.  When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue.  When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry.  The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and while the message is being broadcast on the HAR.

3.1.12.1.18 HARRPIDataImpl (Class)

The HARRPIDataImpl class provides an implementation for the abstract HARRPIData class.  It implements the execute and revokeExecution methods to request that the plan item be executed or un-executed on a specific HAR.  It implements get and set methods to access and modify values relative to a Response Plan Item for a HAR. 

3.1.12.1.19 java.util.Vector (Class)

A Vector is a growable array of objects.

Sequence Diagram

3.1.12.2 HARManagementPkg:audioClipMgrWrapperGetAudioClip (Sequence Diagram)

This method of the AudioClipManagerWrapper gets a HARMessageAudioClip by ID from whichever AudioClipManager is storing its audio data.  This method cycles through each AudioClipManager on its list asking for the clip specified, by ID.  If the clip is found, it is returned.  If it is not found, the Trader is queried to get an updated list of AudioClipManagers, and the search is repeated with the new list.  (Only this second search will be executed the first time an AudioClipManager is used during an execution, as its list of managers will initially be empty.)  The list of managers stored within the wrapper is replaced with the list returned from the Trader, in order, so that AudioClipManagers closer to the source will be stored earlier on the list.  If the clip is found the second time, it is returned, otherwise a CHART2Exception is thrown.
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Figure 189. HARManagementPkg:audioClipMgrWrapperGetAudioClip (Sequence Diagram)



3.1.12.3 HARManagementPkg:audioClipMgrWrapperStoreClip (Sequence Diagram)

This AudioClipManagerWrapper handles conversion of a heavyweight HARMessageAudioDataClip containing raw audio data to a lightweight HARMessageAudioClip containing a reference to an AudioClipManager which can stream the audio data back to a requester on demand.  The AudioClipManagerWrapper hides the details of transactions with the Trader/ORB from the user of the class.  The AudioClipManagerWrapper normally keeps a reference to a local AudioClipManager, and refers the request to that AudioClipManager.  If the wrapper does not currently contain a reference to a local manager, it attempts to acquire one, always hoping to use a local manager wherever possible.  If a local AudioClipManager is accessible, that manager is asked to store the clip.  If there is no local manager available, the system is queried for all AudioClipManagers, in order from "closest" to "furthers" (by hop count).  The first available manager in this list is asked to store the clip, and the list of managers is saved for the next time.  If no manager can successfully convert the clip, a CHART2Exception is thrown, otherwise the converted HARMessageAudioClip is returned.
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Figure 190. HARManagementPkg:audioClipMgrWrapperStoreClip (Sequence Diagram)



3.1.12.4 HARManagementPkg:audioDeregisterInterest (Sequence Diagram)

This method deregisters interest in a HARMessageAudioClip.  This method forwards the deregister request to the clip's AudioClipManager (stored within the clip), and returns the result (void or exception) returned by the AudioClipManager.
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Figure 191. HARManagementPkg:audioDeregisterInterest (Sequence Diagram)



3.1.12.5 HARManagementPkg:audioRegisterInterest (Sequence Diagram)

This method deregisters interest in a HARMessageAudioClip.  This method forwards the register request to the clip's AudioClipManager (stored within the clip), and returns the result (void or exception) returned by the AudioClipManager.  The register request indicates that the requester is using the clip and requires that the AudioClipManager maintain the audio data for at least as long as the clip is registered.
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Figure 192. HARManagementPkg:audioRegisterInterest (Sequence Diagram)



3.1.12.6 HARManagementPkg:audioStream (Sequence Diagram)

This method streams a HARMessageAudioClip.  This method forwards the stream request to the clip's AudioClipManager (stored within the clip), and returns the result (void or exception) returned by the AudioClipManager.  If the request is successful, the AudioClipManager will then stream the data back, asynchronously, to the AudioPushConsumer passed in on the initial request.
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Figure 193. HARManagementPkg:audioStream (Sequence Diagram)



3.1.12.7 HARManagementPkg:harRPIDataImplExecute (Sequence Diagram)

This method implements the HARRPIData interface method execute().  This method creates an ArbQueueEntry (a HARArbQueueEntry, specifically) and adds it to the MessageQueue for the HAR stored within the HARRPIDataImpl.
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Figure 194. HARManagementPkg:harRPIDataImplExecute (Sequence Diagram)



3.1.12.8 HARManagementPkg:msgMatches (Sequence Diagram)

This method compares a HARMessage to another HARMessage and returns a true/false indication as to whether the two messages contain the same text/audio content.  It does this by doing a clip-by-clip comparison of the clips contained in the two messages.
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Figure 195. HARManagementPkg:msgMatches (Sequence Diagram)



3.1.12.9 HARManagementPkg:msgValidateMsgContent (Sequence Diagram)

This method validates that a HARMessage contains no banned words.  It does this by using a DictionaryWrapper to validate each text clip within the message (including header/trailer if they are non-default clips contained within the message).  (Obviously, only text clips can be validated for banned words.  Audio clips must be assumed to be valid.)
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Figure 196. HARManagementPkg:msgValidateMsgContent (Sequence Diagram)



3.1.12.10 HARManagementPkg:prestoredGetVoiceSeconds (Sequence Diagram)

This method returns a runtime (perhaps estimated) for a HARMessagePrestoredClip.  If the clip has already acquired and saved off its runtime, that value is returned.  Otherwise, this method locates the HAR on which the clip is stored, and requests the HAR to return the clip stored in the referenced slot.  This method then forwards the request to the referenced clip, and returns the result returned by that clip.
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Figure 197. HARManagementPkg:prestoredGetVoiceSeconds (Sequence Diagram)



3.1.12.11 HARManagementPkg:prestoredStream (Sequence Diagram)

This method streams a HARMessagePrestoredClip.  This locates the HAR on which the clip is stored, and requests the HAR to return the clip stored in the referenced slot.  This method then forwards the stream request to the referenced clip, and returns the result (void or exception) returned by that clip.  If the request is successful, this means the referenced clip has forwarded the request to the appropriate streamer, which will then stream the data back, asynchronously, to the AudioPushConsumer passed in on the initial request.
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Figure 198. HARManagementPkg:prestoredStream (Sequence Diagram)



3.1.12.12 HARManagementPkg:PushAudio (Sequence Diagram)

This diagram shows how audio data is pushed back to the client.  The AudioPushThreadManager manages a pool of threads which can be used to push audio data back to the clients.  When a request is made to push audio, the AudioPushThreadManager looks in the thread list for a free thread.  If all the threads are being used, the request waits until a thread becomes available.  Once a thread becomes available, the thread is notified of the clip by setting the clip data and the thread starts pushing the audio data by first pushing the audio properties.  Then, the thread starts to push the audio data in chunks of the size requested by the client.  If the pushing operation fails, an error is passed to the consumer.  At the completion of pushing, the thread clears the clip data and informs the AudioPushThreadManager to free the thread.  The AudioPushThreadManager in turn frees the thread and notifies any waiting request.
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Figure 199. HARManagementPkg:PushAudio (Sequence Diagram)



3.1.12.13 HARManagementPkg:StoreAudioClip (Sequence Diagram)

When a HARImpl, ResponsePlanItemImpl, or MessageLibraryDB object is passed a HAR message that contains a HARMessageAudioDataClip, an AudioClipManager is called to store the voice data and create a thin wrapper object that represents the voice data.  This thin wrapper is passed around the system instead of the voice data itself.  The thin wrapper contains a reference to the AudioClipManager which will push the voice data to any holders of the thin wrapper that request the actual voice data.
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Figure 200. HARManagementPkg:StoreAudioClip (Sequence Diagram)



3.1.12.14 HARManagementPkg:textGetVoiceSeconds (Sequence Diagram)

This method returns a runtime (estimated) for a text clip, synchronously.  This is accomplished by finding a TTS converter in the trader and asking it for the run length of the clip's text.
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Figure 201. HARManagementPkg:textGetVoiceSeconds (Sequence Diagram)



3.1.12.15 HARManagementPkg:textStream (Sequence Diagram)

This method streams a HARMessageTextClip.  This method forwards the stream request to a TTSConverter found in the trader.  It will try multiple TTSConverters as necessary, until the request is sucessfully received.  If no TTSConverters are found, or none of them can successfully process the request, this method throws a CHART2Exception.  Otherwise this method returns void and the TTSConverter will then stream the data back, asynchronously, to the AudioPushConsumer passed in on the initial request.
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Figure 202. HARManagementPkg:textStream (Sequence Diagram)

HARProtocols

3.1.13 Classes

3.1.13.1 HARProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to HAR control.
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Figure 203. HARProtocolsPkg (Class Diagram)



1.1.1.1.1 HARProtocolException (Class)

This class represents an exception that is thrown by HAR protocol classes when an unexpected error is encountered.

1.1.1.1.2 ISSAP55HARProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an ISS AP55 HAR device.

1.1.1.1.3 VoicePort (Class)

A voice port provides access to a port on a telephony board.  It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

Sequence Diagrams

3.1.13.2 ISSAP55HAR:BroadcastSlots (Sequence Diagram)

This sequence diagram shows the processing of broadcastSlots command of ISS AP55 HAR protocol. This involves dialing the DTMF tones for broadcast slots command (*5#) and then dialing the message number for each message to be broadcast (1#, #2, #3... for broadcasting messages 1,2,3...).  A HARProtocolException is raised if an unexpected error is encountered.
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Figure 204. ISSAP55HAR:BroadcastSlots (Sequence Diagram)



3.1.13.3 ISSAP55HAR:DeleteSlotMessage (Sequence Diagram)

This sequence diagram shows the processing of deleteSlotMessage command of ISS AP55 HAR protocol. This involves dialing the DTMF tones for delete slot message command (*3#) and then dialing the message number for each message to be removed (1# for deleting message from slot 1).  A HARProtocolException is raised if an unexpected error is encountered.
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Figure 205. ISSAP55HAR:DeleteSlotMessage (Sequence Diagram)



3.1.13.4 ISSAP55HAR:MonitorSlot (Sequence Diagram)

This sequence diagram shows the processing of monitorSlot command of ISS AP55 HAR protocol to listen to a message stored in a particular slot. This involves dialing the DTMF tones for monitor slots command (*2#) and then dialing the message number for each message to be monitored (1#, #2, #3... for slots 1,2,3...).  A HARProtocolException is raised if an unexpected error is encountered.
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Figure 206. ISSAP55HAR:MonitorSlot (Sequence Diagram)



3.1.13.5 ISSAP55HAR:RecordMessage (Sequence Diagram)

This sequence diagram shows the processing of recordSlot command of ISS AP55 HAR protocol to store a message in a slot. This involves dialing the DTMF tones for record slot command (*1#) and then dialing the number of the slot into which the message needs to be stored (1# for slot 1).  Recording is terminated by playing the DTMF tone for '#'.  An attempt is made to terminate the recording even if an error is encountered.  Note that the HAR does not terminate recording until the '#' is pressed and so, if we get an error such as disconnect while recording the HAR device needs to be reset to restore it to the previous state. A HARProtocolException is raised if an unexpected error is encountered.



[image: image209.emf]playWAV(filename)

playDTMFTones(slot number)

ISSAP55HARImpl

ISSAP55ProtocolHdlr VoicePort

Try to end recording even if we

get an error because HAR does not

stop to record until a "#" is pressed.

playDTMFTones(end recording code)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

recordMessage

playDTMFTones(record code)


Figure 207. ISSAP55HAR:RecordMessage (Sequence Diagram)



3.1.13.6 ISSAP55HAR:Reset (Sequence Diagram)

This sequence diagram shows the processing of reset command of ISS AP55 HAR protocol to reset the HAR device. This involves dialing the DTMF tones for reset command (*127#).  A HARProtocolException is raised if an unexpected error is encountered.
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Figure 208. ISSAP55HAR:Reset (Sequence Diagram)



3.1.13.7 ISSAP55HAR:SetInterMessageSpacing (Sequence Diagram)

This sequence diagram shows the processing of set inter message spacing command of ISS AP55 HAR protocol to specify the delay between each slot while broadcasting. This involves dialing the DTMF tones for set inter message spacing command (*4#) and then dialing the command for delay in number of seconds (n# for for a delay of n seconds in between slots).  A HARProtocolException is raised if an unexpected error is encountered.
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Figure 209. ISSAP55HAR:SetInterMessageSpacing (Sequence Diagram)



3.1.13.8 ISSAP55HAR:SetTransmitterState (Sequence Diagram)

This sequence diagram shows the processing of turn transmitter on/off commands of ISS AP55 HAR protocol. This involves setting the relay on dialing the DTMF tones for set relay command (*62#).  Then, dialing the proper DTMF tones for turning the transmitter on or off command (*2008# for setting the transmitter on and *2009 for setting the transmitter off).  A HARProtocolException is raised if an unexpected error is encountered.
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Figure 210. ISSAP55HAR:SetTransmitterState (Sequence Diagram)



Java Classes

3.1.14 Classes

3.1.14.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming language that are used in class and sequence diagrams for other packages within this design.
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Figure 211. JavaClasses (Class Diagram)



3.1.14.1.1 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and panels.

3.1.14.1.2 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked.  For menu items, it is attached to menu items when the menu is built.

3.1.14.1.3 java.awt.event.ItemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list item or combo box item.

3.1.14.1.4 java.awt.event.KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the user presses a key.

3.1.14.1.5 java.awt.event.WindowListener (Class)

Listener interface that a class must implement for receiving window events.

3.1.14.1.6 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.1.14.1.7 java.io.InputStream (Class)

Java class that represents a input stream of bytes.

3.1.14.1.8 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

3.1.14.1.9 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.14.1.10 java.lang.Thread (Class)

This class represents a java thread of execution.

3.1.14.1.11 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

3.1.14.1.12 java.sql.Connection (Class)

This class represents a connection (session) with a specific database.

3.1.14.1.13 java.sql.Statement (Class)

Java class used for executing a static SQL statement and obtaining the results produced by it. 

3.1.14.1.14 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class. 

3.1.14.1.15 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

3.1.14.1.16 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string.  A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list. 

3.1.14.1.17 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.14.1.18 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.14.1.19 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the map will be in ascending key order, sorted according to the natural order for the key's class, or by the comparator provided at creation time, depending on which constructor is used.

3.1.14.1.20 java.util.Vector (Class)

A Vector is a growable array of objects.

3.1.14.1.21 javax.comm.SerialPort (Class)

This class provides access to a computer's serial port.  It allows the port to be opened and closed and allows data to be sent and received.

3.1.14.1.22 javax.sound.sampled.AudioSystem (Class)

The AudioSystem class acts as the entry point to the sampled-audio system resources. This class lets you query and access the mixers that are installed on the system. 

3.1.14.1.23 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.1.14.1.24 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

3.1.14.1.25 javax.swing.JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a certain page.

3.1.14.1.26 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface.  This data structure will be used to supply a JTable with data.

3.1.14.1.27 javax.swing.table. TableModel (Class)

This class provides the data structure that drives the population and updating of the data used by the JTable (a Java GUI component).

3.1.14.1.28 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure which is used as a foundation for the JTree class.

3.1.14.1.29 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove children from nodes.  It may be used in a TreeModel.

MessageLibraryModule

3.1.15 Classes

3.1.15.1 MessageLibraryModuleClasses (Class Diagram)

The MessageLibraryModule is a Service Application module that serves the MessageLibraryFactory, MessageLibrary and StoredMessage objects to the rest of the Chart2 system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.
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Figure 212. MessageLibraryModuleClasses (Class Diagram)



3.1.15.1.1 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip.  If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.15.1.2 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.15.1.3 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,.. 

3.1.15.1.4 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS.  It consists of two elements: a MULTI-formatted message and beacon state information (whether the message requires that the beacons be on).  The DMSMessage is contained within a DMSStatus object, used to communicate the current message on a sign, and is stored within a DMSRPIData object, used to specify the message which should be on a sign when the response plan item is executed. 

3.1.15.1.5 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR.  It stores the HAR message as a HAR message header, body and footer.  The HARMessage can be configured to use the default header or can provide a custom header clip.  The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided.  The body can consist of one or more body clips.  Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.1.15.1.6 Message (Class)

This class represents a message that will be used while activating devices.  This class provides a means to check if the message contains any banned words given a Dictionary object.  Derived classes extend this class to provide device specific message data. 

3.1.15.1.7 MessageLibrary (Class)

This class represents a logical collection of messages which are stored in the database.

3.1.15.1.8 MessageLibraryDB (Class)

The MessageLibraryDB class is a collection of methods that perform database operations on tables pertinent to Message Library Management.  The class is constructed with a Connection Manager object, which manages database connections.  Every operation in this class obtains a connection to the database from the connection manager prior to performing the requested DB operation.

3.1.15.1.9 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.1.15.1.10 MessageLibraryFactoryImpl (Class)

The MessageLibraryFactoryImpl class provides an implementation of the MessageLibraryFactory interface as defined in the IDL.  The MessageLibraryFactory maintains a list of MessageLibraryImpl objects and is responsible for publishing MessageLibrary objects in the Trader.

3.1.15.1.11 MessageLibraryImpl (Class)

The MessageLibraryImpl class provides an implementation of the MessageLibrary interface as specified in the IDL.  The MessageLibrary maintains a list of StoredMessage objects and is responsible for publishing StoredMessage objects in the Trader.

3.1.15.1.12 MessageLibraryModulePkg (Class)

This class implements the ServiceApplicationModule interface.  It creates and serves a single MessageLibraryFactoryImpl object, which in turn serves MessageLibraryImpl objects.  This module also serves StoredMessage objects that were created in the message libraries being served by this module.

3.1.15.1.13 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.15.1.14 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.15.1.15 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.15.1.16 StoredMessage (Class)

This class holds a message object that is stored in a message in a library.  It contains attributes such as category and message description which are used to allow the user to organize messages.

3.1.15.1.17 StoredMessageImpl (Class)

The StoredMessageImpl class provides an implementation of the StoredMessage interface as specified in the IDL.

Sequence Diagrams

3.1.15.2 MessageLibraryModulePkg:CleanupMessage (Sequence Diagram)

This sequence diagrams shows the processing deletion of HARMessageAudioClip objects when a stored message that is using them has been deleted. Each clip in stored message is checked if it is a HARMessageAudioClip and deregisterInterest method is invoked on the clip to delete the interest in the clip.  See AudioClipModule.DeregisterInterest for more details about how the interest is deleted.
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Figure 213. MessageLibraryModulePkg:CleanupMessage (Sequence Diagram)



3.1.15.3 MessageLibraryModulePkg:CreateDMSStoreMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for display on a DMS device.  The GUI will create a Message object based on the type of stored message the user would like to create. In this case, a DMSMessage object is created.  The message library is called to create a stored message. The message library will check if the user has the appropriate rights.  If they do, the message will be checked for banned words.  If the message contains banned words, an error is returned.  If not, a stored message is created, the newly created stored message data is inserted into the database and the stored message object will be published in the CORBA trading service and other system components will be notified of its existence via the CORBA event service.  Note that even though a dictionary check is done at the time of storage, the dictionary is always checked on the server side prior to allowing a message to be set on a DMS.  The user and operation details are logged in the operations log.
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Figure 214. MessageLibraryModulePkg:CreateDMSStoreMessage (Sequence Diagram)



3.1.15.4 MessageLibraryModulePkg:CreateHARStoreMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for use on a HAR device.  The GUI will create a Message object based on the type of stored message the user would like to create. In this case, a HARMessage object is created.  A HARMessage consists of three HAR message clips which can either be in binary or text format. The message library is called to create a stored message.  The message library will check if the user has the appropriate rights.  If they do, the message is validated by calling the Dictionary to check for disapproved words. Note that only the clips that are in text format will be checked for banned words.  If the message contains banned words, an error is returned. If not, a stored message is created, the newly created stored message data is inserted into the database and the stored message object will be published in the CORBA trading service and other system components will be notified of its existence via the CORBA event service.  Note that even though a dictionary check is done at the time of storage, the dictionary is always checked on the server side prior to downloading the message to the HAR. The user and operation details are logged in the operations log. 
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Figure 215. MessageLibraryModulePkg:CreateHARStoreMessage (Sequence Diagram)



3.1.15.5 MessageLibraryModulePkg:CreateMessageLibrary (Sequence Diagram)

A user possessing the proper functional rights can add a Message Library to the system.  The library object is created and published via the CORBA Trading Service.  An event is pushed via the CORBA Event Service to notify interested parties of the new library. The user and operation details are logged in the operations log. 
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Figure 216. MessageLibraryModulePkg:CreateMessageLibrary (Sequence Diagram)



3.1.15.6 MessageLibraryModulePkg:DeleteMessageLibrary (Sequence Diagram)

A user with the proper functional rights can remove a Message Library from the system.  This will include the removal of all stored messages contained within the library.  Since stored messages may be used in Plans, a check is made for any plans that may contain the stored messages being deleted and the user is warned.  If the user acknowledges the deletions, each message within the library is removed, events are pushed to notify others of the action, and the library is removed from the Trading Service. The user and operation details are logged in the operations log. 
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Figure 217. MessageLibraryModulePkg:DeleteMessageLibrary (Sequence Diagram)



3.1.15.7 MessageLibraryModulePkg:DeleteStoredMessage (Sequence Diagram)

A user with the proper functional rights may remove a stored message from the system.  Since a stored message may be used in a plan, a check is made to see if the message is used in a plan so that the user can be warned accordingly.  The act of deleting the stored message involves deleting the message, updating the database and pushing an event to notify others that the message has been removed from its library. The user and operation details are logged in the operations log.
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Figure 218. MessageLibraryModulePkg:DeleteStoredMessage (Sequence Diagram)



3.1.15.8 MessageLibraryModulePkg:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Message Library Module.  This module is created by a service that will host this module's objects.  A ServiceApplication is passed to this module's initialize method and provides access to basic objects needed by this module.  This module creates a Message Library Factory which in turn creates Message Library objects.  Message Library objects contain Stored Message objects which are created by the Message Library DB at startup. The MessageLibraryFactory, MessageLibrary and StoredMessage objects are published via the CORBA Trading service to make them available for modifications (given the proper access rights) and usage.
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Figure 219. MessageLibraryModulePkg:Initialize (Sequence Diagram)



3.1.15.9 MessageLibraryModulePkg:InitializeMessage (Sequence Diagram)

This diagram shows how the message data is initialized when the stored messages created at startup or on the fly with a HAR message. At startup, if the HAR message in the stored message contain any HARMessageAudioClips, the database creates the clips with just clip ID read from the database.  These clips are replaced with the actual HARMessageAudioClip objects by querying the AudioClipManagers found in the CORBA Trader with the clip ID.  See HARUtility.GetHARMessageAudioClip sequence diagram for details about how a HARMessageAudioClip is obtained given an ID.   This diagram also shows how the HAR message audio data clips associated with HAR message are saved if the message contains HARMessageAudioClipData objects and/or HARMessageAudioClip objects when they are created on the fly.  If the message contains HARMessageAudioClip objects, registerInterest() method is called on the object to establish an association between the stored message and the HARMessageAudioClip.  If the message contains HARMessageAudioDataClip objects, they are saved by calling the storeClip() method on the nearest AudioClipManager which saves the audio clip data in the database and returns a streamable audio clip object. See HARUtility.StoreHARMessageAudioDataClip for details about how the nearest AudioClipManager is found.     
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Figure 220. MessageLibraryModulePkg:InitializeMessage (Sequence Diagram)



3.1.15.10 MessageLibraryModulePkg:IsMessageLibraryUsedByAnyPlan (Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using the stored  messages of a particular message library.
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Figure 221. MessageLibraryModulePkg:IsMessageLibraryUsedByAnyPlan (Sequence Diagram)



3.1.15.11 MessageLibraryModulePkg:IsStoredMessageUsedByAnyPlan (Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using a particular stored message.
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Figure 222. MessageLibraryModulePkg:IsStoredMessageUsedByAnyPlan (Sequence Diagram)



3.1.15.12 MessageLibraryModulePkg:ModifyDMSStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored message.  The proposed contents for the stored message are checked against the dictionary prior to allowing the new content to be set.  The state of the beacons associated with the message are also checked to make sure the beacons are not turned on for a message with no text.  An event is pushed via the CORBA Event Service to notify others of the change to the stored message's contents. The user and operation details are logged in the operations log.
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Figure 223. MessageLibraryModulePkg:ModifyDMSStoredMessage (Sequence Diagram)



3.1.15.13 MessageLibraryModulePkg:ModifyHARStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored HAR message.  The proposed contents for the stored message are checked against the dictionary if it is in text format.  An event is pushed via the CORBA Event Service to notify others of the change to the stored message's contents. The user and operation details are logged in the operations log. 
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Figure 224. MessageLibraryModulePkg:ModifyHARStoredMessage (Sequence Diagram)



3.1.15.14 MessageLibraryModulePkg:SetLibraryName (Sequence Diagram)

A user with the proper functional rights may set the name assigned to a message library.  An event is pushed via the CORBA Event Service to notify others of the name change. The user and operation details are logged in the operations log.
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Figure 225. MessageLibraryModulePkg:SetLibraryName (Sequence Diagram)



3.1.15.15 MessageLibraryModulePkg:Shutdown (Sequence Diagram)

The MessageLibraryModule is shutdown by its host application.  When told to shutdown, the MessageLibraryModule deactivates the MessageLibraryFactory from the POA, and shuts down the object.  When the MessageLibraryFactory is shut down, deactivates each library from the POA and shuts down the object.  The MessageLibrary deactivates any StoredMessage objects that it is serving.
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Figure 226. MessageLibraryModulePkg:Shutdown (Sequence Diagram)



3.1.15.16 MessageLibraryModulePkg:ViewDMSStoredMessage (Sequence Diagram)

The GUI discovers the contents of a DMS stored message during startup.  The GUI is notified of changes to the contents of the DMS stored message via a CORBA event channel.  When notified of such changes, the GUI updates itself so the user is always shown the latest information pertaining to the DMS stored message. The user and operation details are logged in the operations log.
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Figure 227. MessageLibraryModulePkg:ViewDMSStoredMessage (Sequence Diagram)



3.1.15.17 MessageLibraryModulePkg:ViewHARStoredMessage (Sequence Diagram)

The GUI discovers the contents of a HAR stored message during startup.  The GUI is notified of changes to the contents of the HAR stored message via a CORBA event channel.  When notified of such changes, the GUI updates itself so the user is always shown the latest information pertaining to the HAR stored message. The user and operation details are logged in the operations log.
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Figure 228. MessageLibraryModulePkg:ViewHARStoredMessage (Sequence Diagram)



PlanModule

3.1.16 Classes

3.1.16.1 PlanModuleClasses (Class Diagram)

This is an installable module that serves the PlanFactory and Plan objects to the rest of the CHART2 system.
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Figure 229. PlanModuleClasses (Class Diagram)



3.1.16.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.16.1.2 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items. 

3.1.16.1.3 PlanDB (Class)

This class contains the methods  that perform database operations for the Plan module.  It is constructed with a Database object that provides the connections to the database server.  All the methods in this class get a new connection to the database before performing any operation on the database.  The connection is released at completion of the operation. 

3.1.16.1.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the system.

3.1.16.1.5 PlanFactoryImpl (Class)

This class implements the PlanFactory interface and enables the management of the Plan objects by other processes.  It creates, publishes and deletes the objects that implement the Plan interface.

3.1.16.1.6 PlanImpl (Class)

This class implements the Plan interface and provides the implementation for the methods defined in the interface.  It also manages the database operations for the PlanItems contained in this Plan. 

3.1.16.1.7 PlanItem (Class)

This class represents an action within the system that can be planned in advance.  This CORBA interface is subclassed for specific actions that can be planned in the system.

3.1.16.1.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item.  Derived classes contain specific data that map a device to an operation and the data needed for the operation.  For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.1.16.1.9 PlanItemImpl (Class)

This class implements the PlanItem interface.

3.1.16.1.10 PlanModule (Class)

This module creates, publishes and deletes the object that implement the PlanFactory interface. 

3.1.16.1.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.16.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.16.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagrams

3.1.16.2 PlanModule:AddItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can add an item to an existing plan in the system.  An AccessDenied exception is returned if the user does not have the right to add an item to the plan.  Otherwise, a PlanItem object is created and added to the database. A PlanItemAdded event is pushed through the event channel to notify other processes that a plan item has been added to this plan.  User actions are logged to the operations log.
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Figure 230. PlanModule:AddItem (Sequence Diagram)



3.1.16.3 PlanModule:AddPlan (Sequence Diagram)

This diagram shows how a user with proper functional rights can add a plan to the system.  An AccessDenied exception is returned if the user does not have the functional right to add a plan.  Otherwise, the plan object is created and added to the database.  The plan object is published in CORBA Trader service and a PlanAdded event is pushed through the event channel to notify the other processes that a new plan has been added.  
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Figure 231. PlanModule:AddPlan (Sequence Diagram)



3.1.16.4 PlanModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Plan Module.  An ApplicationService will initialize this module.  The references to basic services such as POA, Trader, Event channel and database are obtained from the ServiceApplication.  This module creates a Plan Module specific database object.  It also creates the PlanFactory object, which creates the Plan objects from the plan list obtained from the database.  The Plan objects are published in the trader.  An event channel is created to push the events to clients and it is published in the trader register.  The Offer IDs of all the objects that were published in the trader are saved to a file so that they may be withdrawn.
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Figure 232. PlanModule:Initialize (Sequence Diagram)



3.1.16.5 PlanModule:PlanIsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan is using a particular set of objects.  The IDs of the object are passed to the Plan object to check if its PlanItems are using these objects.  If a PlanItem is using any object, the Plan returns true.
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Figure 233. PlanModule:PlanIsUsingObject (Sequence Diagram)



3.1.16.6 PlanModule:PlanItemIsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan item is using an object from a set of objects.  The IDs of the objects are passed to the PlanItem object.  If the PlanItem is using any object, it returns true.
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Figure 234. PlanModule:PlanItemIsUsingObject (Sequence Diagram)



3.1.16.7 PlanModule:RemoveItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can remove a plan item from a plan in the system.  An AccessDenied exception is returned if the user does not have the right to remove an item from the plan.  Otherwise, the plan item is deleted from the database and the object is destroyed.  An event is pushed through the event channel to notify other processes that the plan item has been removed from the plan.  User actions are logged to the operations log.
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Figure 235. PlanModule:RemoveItem (Sequence Diagram)



3.1.16.8 PlanModule:RemovePlan (Sequence Diagram)

This sequence diagram shows how a user with proper rights can delete a Plan from the system.  An AccessDenied exception is returned if the user does not have the functional right to delete a Plan.  Otherwise, the Plan is deleted from the database and the object is destroyed.  The Plan is withdrawn from the trader and a PlanRemoved event is pushed through the event channel to notify the clients that the plan has been deleted.  Note that the deletion of a plan results in the deletion of all the plan items that are used in the plan from the system and the database.  The user actions are logged to the operations log. 
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Figure 236. PlanModule:RemovePlan (Sequence Diagram)



3.1.16.9 PlanModule:RemovePlanFromFactory (Sequence Diagram)

This sequence diagram shows how a Plan object is removed from the Plan Factory when a Plan is deleted from the system.
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Figure 237. PlanModule:RemovePlanFromFactory (Sequence Diagram)



3.1.16.10 PlanModule:SetPlanItemData (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the PlanItemData object of a plan item.  An AccessDenied exception is returned if the user does not have the right to modify the plan item.  Otherwise, the PlanItemData is updated and stored in the database.  An event is pushed through the event channel to notify other processes that the plan item has been changed.  User actions are logged to the operations log.
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Figure 238. PlanModule:SetPlanItemData (Sequence Diagram)



3.1.16.11 PlanModule:SetPlanItemName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the name of a plan item.  An AccessDenied exception is returned if the user does not have the right to change the plan item name.  Otherwise, the plan item name is changed and stored in the database.  An event is pushed through the event channel to notify other processes that the plan item has been changed.  User actions are logged to the operations log.
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Figure 239. PlanModule:SetPlanItemName (Sequence Diagram)



3.1.16.12 PlanModule:SetPlanName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can set the name of a Plan.  An access denied exception is returned if the user does not have the right to change the name.  Otherwise, the name is changed and the database is updated.  An event id pushed via the CORBA event service to notify others of the new Plan name.  The user actions are logged to the operations log.



[image: image242.emf]ORB

OperationsLog

PlanDB

PushEventSupplier

PlanImpl

TokenManipulator

push(Plan Name Changed)

[no rights]

AccessDenied

[Database error]

CHART2Exception

log(Plan Name Changed)

setName

checkAccess

[no rights]

log

setPlanName


Figure 240. PlanModule:SetPlanName (Sequence Diagram)



3.1.16.13 PlanModule:Shutdown (Sequence Diagram)

This diagram shows the shutdown sequence of the Plan module.  All the Plan objects that were published in the trader by the PlanFactory and the PlanFactory itself are withdrawn and destroyed.  The event channel is also withdrawn from the trader and destroyed. 



[image: image243.emf]POA

The Object is

 garbage collected

DBConnectionManager

PlanItemImpl

PlanImpl

PushEventSupplier

Application Service

PlanModule

PlanFactoryImpl

deactivate_object(PlanItemImpl)

[* for each Plan]

shutdown

deactivate_object(PlanImpl)

deactivate_object(PlanFactoryImpl)

shutdown

shutdown

shutdown

success

[* for each PlanItem]


Figure 241. PlanModule:Shutdown (Sequence Diagram)



ResourcesModule

3.1.17 Classes

3.1.17.1 ResourceClasses (Class Diagram)

This diagram shows the classes in the ResourcesModule, an installable service module that serves objects that implement the Organization and OperationsCenter interfaces.
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Figure 242. ResourceClasses (Class Diagram)



3.1.17.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively.  The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published. 

3.1.17.1.2 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located.  This class is used to log users into the system.  If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user.  This token is then used to call privileged methods within the system.   Shared resources in the system are either available or under the control of an OperationsCenter.  The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control.  This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

3.1.17.1.3 OperationsCenterFactory (Class)

This class is used to create new operations centers and maintain them in a collection.

3.1.17.1.4 OperationsCenterFactoryImpl (Class)

This class provides implementation of OperationsCenterFactory interface to manage OperationCenter objects in the system.

3.1.17.1.5 OperationsCenterImpl (Class)

This class provides the implementation of the OperationsCenter interface for this module.  It, therefore, provides a concrete implementation of each of the methods in the interface.  It also contains a collection of UserLoginSession objects, one for each user who is currently logged in.

3.1.17.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication.  The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.17.1.7 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an organization, that is an administrative body which can control or own resources. 

3.1.17.1.8 OrganizationImpl (Class)

This class provides the implementation of the Organization interface for this module.  Thus, it provides a concrete implementation of each of the methods in the interface.

3.1.17.1.9 ResourcesDB (Class)

This class provides a set of API calls to access the Operations Center data from the database. The API's provide functionality to add, remove and retrieve Operation Center data from the database. The connection to the database is acquired from the Database object which manages all the database connections.

3.1.17.1.10 ResourcesModule (Class)

This module creates, publishes and destroys all objects related to resource management that are used by the User Management service application.

3.1.17.1.11 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.17.1.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.17.1.13 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system.  This object is served from the GUI and provides a means for the servers to call back into the GUI process.  

3.1.17.1.14 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Managment data in the database.  This class uses a Database object to retrieve a connection to the database for its exclusive use during a method call.

Sequence Diagrams

3.1.17.2 ResourcesModule:ChangeUser (Sequence Diagram)

A client with the correct functional rights may select to relinquish his/her workstation to another operator.  This typically will happen at shift change.  This sequence logs the new operator in before logging the old operator out.  Thereby guaranteeing that the shared resources controlled by the operations center have a responsible operator during the transition.  If this method throws any type of exception, the old user is still logged in and the new user is not.  If this method returns a token, the old user is logged out and the new user is logged in.
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Figure 243. ResourcesModule:ChangeUser (Sequence Diagram)



3.1.17.3 ResourcesModule:createOperationsCenter (Sequence Diagram)

This Sequence Diagram shows how the OperationsCenterFactoryImpl creates a new Operations Center on behalf of an operator.  The operator must posess the proper functional rights to create an Operations Center.  When a request to create Operations Center is received by the OperationsCenterFactory, the ResourcesDB is asked to create and persist it to the database. The object is connected to the ORB and is ready for operations.  An OperationsCenterAddedEvent is then pushed into the event channel.  



[image: image246.emf]ORB

OperationCenterFactoryImpl

OperationsCenterImpl

TokenManipulator OperationsLog ResourcesDB POA ServiceApplication PushEventSupplier

[DB error]

[DB error]

CHART2Exception

createOperationCenter

create

[no rights]

AccessDenied

checkAccess

OperationsCenter

storeOpCenter

[no rights]

log

insertOperationsCenter

activate_object(OperationsCenterImpl)

registerObject(OperationsCenter)

push(OperationsCenterAdded)

[success]

log(token, "OperationsCenterAdded")

[no rights]


Figure 244. ResourcesModule:createOperationsCenter (Sequence Diagram)



3.1.17.4 ResourcesModule:ForceLogout (Sequence Diagram)

A client with the correct functional rights may force a particular user to logout of the CHART2 system.  This is actually accomplished in two steps.  The client would first need to acquire a UserLoginSession object before calling this method, please refer to the sequence diagram for the getUserLoginSessions method for details.  Once the user has acquired a UserLoginSession he/she may contact the Operations Center where that UserLoginSession is being tracked and inform it that the user should be forced to logout.  The OperationsCenter will call the forceLogout method on the specified UserLoginSession after removing the login session from its internal collection of login sessions.  Note that it is possible for the user to call the forceLogout method directly on the UserLoginSession without informing the OperationsCenter.  This method of forcing a user to logout is also accepted.  If this path is taken, the operations center will contain a reference to a UserLoginSession which is no longer valid.  This possibility is accounted for by pinging the UserLoginSession objects each time the getNumLoggedInUsers() method is called.  Please refer to that sequence diagram for details.
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Figure 245. ResourcesModule:ForceLogout (Sequence Diagram)



3.1.17.5 ResourcesModule:GetControlledResources (Sequence Diagram)

A client may request a list of all shared resources which are currently controlled by this operations center.  This would typically happen if the user were looking to transfer responsibility for some of all of the controlled shared resources from one operations center to another.  The operations center will contact each shared resource manager in the system and get a list of resources which it is currently controlling.  The lists returned by each shared resource manager will be combined and the entire list of controlled resources will be returned to the user.
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Figure 246. ResourcesModule:GetControlledResources (Sequence Diagram)



3.1.17.6 ResourcesModule:GetLoginSessions (Sequence Diagram)

A client with the correct functional rights may get a list of UserLoginSessions which represents the list of users who are currently logged in from this operations center.
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Figure 247. ResourcesModule:GetLoginSessions (Sequence Diagram)



3.1.17.7 ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)

This method allows a client to get the number of users who are currently logged in at this operations center.  This method will be used by the shared resource manager watchdogs to verify that they do not have shared resources which are under the control of operations centers with no users logged in.  This method will ping each UserLoginSession before counting it as a valid login session.  The ping protects the system from counting login sessions from GUI's which have been turned off or disconnected without performing a proper logout.
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Figure 248. ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)



3.1.17.8 ResourcesModule:Initialize (Sequence Diagram)

When the service is started, the service application will call initialize on this module.  The module will create the operations center factory and organization imlementation objects which are found in the database, connect them to the ORB and export them in the trading service so that other applications may locate them.
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Figure 249. ResourcesModule:Initialize (Sequence Diagram)



3.1.17.9 ResourcesModule:IsUserLoggedIn (Sequence Diagram)

This sequence diagram shows the steps taken to determine if a user is currently logged in to the system.
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Figure 250. ResourcesModule:IsUserLoggedIn (Sequence Diagram)



3.1.17.10 ResourcesModule:LoginUser (Sequence Diagram)

An client may login to the system.  The system will verify that the user has specified the correct password by looking in the user database.  If the user has specified the correct password, the system will create a token which contains the user's functional rights and will return it to the invoking client.  The login session will be stored internally in the operations center in order to allow the center to respond to calls regarding shared resource control.
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Figure 251. ResourcesModule:LoginUser (Sequence Diagram)



3.1.17.11 ResourcesModule:LogoutUser (Sequence Diagram)

A client may log out of the system.  When an operator does this, the system will ping each user login session it is tracking to verify the actual number of users who are currently logged in.  If the current number of valid login sessions for this operations center is one, then this user cannot be allowed to logout if this operations center is currently controlling shared resources.  In order to determine if the operations center has controlled resources, the system will contact all of the shared resource managers.  If the operations center has controlled resources an exception will be thrown, otherwise the user will be logged out.  
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Figure 252. ResourcesModule:LogoutUser (Sequence Diagram)



3.1.17.12 ResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)

This sequence shows the details of constructing an operations center implementation object.  An operations center is responsible for tracking the list of currently logged in users.  When the service is shutdown it will store the list in the database.  When the service is restarted it will get this list of login sessions from the database.  Because the service may have been down for an extended period, the login sessions may no longer be valid due to users logging out or shutting down their client machines.  Thus, each login session object will be pinged to see if it is still active.  If it is, the operations center will add it to the list of current sessions otherwise it will not.
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Figure 253. ResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)



3.1.17.13 ResourcesModule:removeOperationsCenter (Sequence Diagram)

This Sequence Diagram shows how the OperationsCenterFactoryImpl removes an Operations Center from the system on behalf of an operator.  An operations center should have no users logged in inorder to be removed, and the requesting operator must posess the proper functional rights. The OperationsCenterFactory removes the reference to the OperationsCenterImpl from its internal list of Operations Centers, removes the OperationsCenterImpl and its associated information from the database, and withdraws the Operations Center's offer from the trading service.  An OperationsCenterDeletedEvent is then pushed into the event channel. 
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Figure 254. ResourcesModule:removeOperationsCenter (Sequence Diagram)



3.1.17.14 ResourcesModule:renameOperationsCenter (Sequence Diagram)

This Sequence Diagram shows how an existing Operations Center will be renamed. The operator must posess the proper functional rights to rename an Operations Center.  When a request to rename Operations Center is received by the OperationsCenterImpl,the ResourcesDB is asked to update the database. An OperationsCenterRenamedEvent is then pushed into the event channel.  
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Figure 255. ResourcesModule:renameOperationsCenter (Sequence Diagram)



3.1.17.15 ResourcesModule:Shutdown (Sequence Diagram)

When the service application calls the shutdown method on this module, the module will withdraw all exported offers from the trader, disconnect any objects that it is currently serving from the ORB and destroy them.  The operations center will also store the current list of UserLoginSession references in the database.  This will allow the login sessions to be reconstructed at startup.
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Figure 256. ResourcesModule:Shutdown (Sequence Diagram)



3.1.17.16 ResourcesModule:TransferSharedResources (Sequence Diagram)

A client with the correct functional rights may transfer the control of shared resources from this operations center to another.  The system will verify that there are users logged in at the target operations center and will then transfer control of the shared resources if there are.
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Figure 257. ResourcesModule:TransferSharedResources (Sequence Diagram)



SHAZAMControlModule

3.1.18 Classes

3.1.18.1 SHAZAMControl (Class Diagram)

The SHAZAMControlModule serves a SHAZAMFactory object and SHAZAM objects.  The class diagram below shows the classes used to implement these system interfaces.
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Figure 258. SHAZAMControl (Class Diagram)



3.1.18.1.1 CheckForAbandonedSHAZAMTask (Class)

The CheckForAbandonedSHAZAMTask class is responsible for detecting any SHAZAM device in maintenance mode with a message on it which has no one logged on at the controlling operations center.  This would only occur as a result of an anomaly, such as a reboot of a user's machine, because during a normal Chart II logout attempt, the logout is prohibited by Chart II system if the the user is the last user on his/her operations center and that operations center is controlling a maintenance mode sign.  However, because anomalies happen, this task runs periodically to look for abandoned SHAZAM devices.  This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is called upon to actually check the SHAZAM objects and controlling operations centers of each SHAZAM every time this task is called.

3.1.18.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects.  The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order.  As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.18.1.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted.  When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.1.18.1.4 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.18.1.5 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device.  A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler.  This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

3.1.18.1.6 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR.  A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.  This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message. 

3.1.18.1.7 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.18.1.8 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.18.1.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.18.1.10 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution.  Derived classes implement the execute method to specify the actions taken by the command when it is executed.  This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down. 

3.1.18.1.11 RefreshSHAZAMTimerTask (Class)

The RefreshSHAZAMTimerTask class is responsible for refreshing all of the SHAZAM devices.  This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is called upon to request each SHAZAM to refresh itself (command the device to its last known status) if its refresh interval has expired, each time this task is called.  

3.1.18.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.18.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.18.1.14 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.  

3.1.18.1.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.18.1.16 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to interface with a SHAZAM field device.  It specifies methods for activating and deactivating the SHAZAM in maintenance mode, refreshing the SHAZAM (commanding the device to its last known status), changing the configuration of the SHAZAM, and removing the SHAZAM.  This interface is implemented by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command and control.

3.1.18.1.17 SHAZAMActivateCmd (Class)

This class contains data needed to activate a SHAZAM asynchronously via the CommandQueue.  A flag is used to determine if the activation is being performed directly on the device while it is in maintenance mode or if the activation is being processed as an extension of setting a HAR message in response to a traffic event.

3.1.18.1.18 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.  It is used to communicate configuration information to/from the database, and to/from the GUI clients.  The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

3.1.18.1.19 SHAZAMControlDB (Class)

This class provides access to database functionality needed to support the SHAZAM and SHAZAMFactory classes.  This class provides a high level interface to allow for persistence and depersistance of SHAZAM and SHAZAMFactory objects.

3.1.18.1.20 SHAZAMControlModule (Class)

This class is a service module that provides control of SHAZAM devices.  Upon initialization the module initializes a SHAZAMFactory which contains SHAZAM objects that have been previously added to the system.  These objects are accessed via the CORBA ORB and manipulated directly from client applications.  The module also creates support objects that are used by the SHAZAM (and SHAZAMFactory) objects to perform their processing, such as a database connection, event channels, and a periodic timer used to allow the objects to perform timer based processing.

3.1.18.1.21 SHAZAMControlModuleProperties (Class)

This class is used to provide access to properties used by the SHAZAM Control Module.  This class wraps properties that are passed to it upon construction.  It adds its own defaults and provides methods to extract properties specific to the SHAZAM Control Module.

3.1.18.1.22 SHAZAMDeactivateCmd (Class)

This class contains data needed to deactivate a SHAZAM asynchronously via the CommandQueue.  A flag is used to determine if the deactivation is being performed directly on the device while it is in maintenance mode or if the deactivation is being processed as an extension of setting a HAR message in response to a traffic event.

3.1.18.1.23 SHAZAMFactory (Class)

The SHAZAMFactory class specifies the interface to be used to create SHAZAM objects within the Chart II system.  It also provides a method to get a list of SHAZAM devices currently in the system. 

3.1.18.1.24 SHAZAMFactoryImpl (Class)

This class provides the ability to add new SHAZAM objects to the system.  When SHAZAMs are added, they are persisted to the database so this object can depersist them upon startup.  This class also provides a removeSHAZAM method that allows a SHAZAM to remove itself from the system when directed.  This class is also responsible for performing the checks requested by the timer tasks:  to refresh the SHAZAM devices and to look for SHAZAM devices with no one logged in at the controlling operations center.

3.1.18.1.25 SHAZAMImpl (Class)

The SHAZAMImpl class provides an implementation of the SHAZAM interface, and by extension the SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable, and UniquelyIdentifiable interfaces as specified by the IDL.  

This class contains a CommandQueue object that is used to sequentially execute long running operations (field communications to the device) in a thread separate from the CORBA request threads, thus allowing quick initial responses.  

Also contained in this class are SHAZAMConfiguration and SHAZAMStatus objects (used to store the configuration and status of the sign), a lastRefreshTime value used for refreshing (commanding the device to its last known status), and a list of TrafficEvent objects that are currently active on the SHAZAM.

The SHAZAMImpl contains *Impl methods that map to methods specified in the IDL, including requests to activate and deactivate the SHAZAM, put the SHAZAM online, put the SHAZAM offline, put the SHAZAM in maintenance mode, or to change (set) the configuration of the SHAZAM.  All of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue.  The queueable command objects simply call the appropriate SHAZAMImpl method as the command is executed by the CommandQueue in its thread of execution.  

The SHAZAMImpl also contains methods called by the SHAZAMFactory to support the timer tasks of the SHAZAM Service: to refresh the SHAZAM devices and to look for maintenance mode SHAZAM devices with no one logged in at the controlling operations center.   

3.1.18.1.26 SHAZAMPutInMaintModeCmd (Class)

This command contains data needed to put a SHAZAM device in maintenance mode (from either offline or online mode) asynchronously via the CommandQueue.  When executed this class calls back into the SHAZAMImpl object to execute the putInMaintenanceModeImpl method.

3.1.18.1.27 SHAZAMPutOnlineCmd (Class)

This command contains data needed to put a SHAZAM device online (from maintenance or offline mode) asynchronously via the CommandQueue.  When executed this class calls back into the SHAZAMImpl object to execute its putOnLineImpl method.

3.1.18.1.28 SHAZAMRefreshCmd (Class)

This class is a command object used to invoke the SHAZAM refresh processing (commanding the device to its last known status) asynchronously from the command queue.  When executed, this class calls back into the SHAZAMImpl object to execute the refreshImpl method.

3.1.18.1.29 SHAZAMSetConfigurationCmd (Class)

This command contains data needed to set the SHAZAM configuration asynchronously via the CommandQueue.  When executed, this class calls back into the SHAZAMImpl object to execute its setConfigurationImpl method.  The SHAZAM device model currently in use does not contain any configuration settings, however this command is still processed asynchronously for consistency.

3.1.18.1.30 SHAZAMStateAction (Class)

The SHAZAMStateAction class enumerates the types of actions (commands) that set the state of a SHAZAM:  ACTIVATE or DEACTIVATE. 

3.1.18.1.31 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.  This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

3.1.18.1.32 SHAZAMTakeOfflineCmd (Class)

This command contains data needed to take a SHAZAM device offline (from online or maintenance mode) asynchronously via the CommandQueue.  When executed, this class calls back into the SHAZAMImpl object to execute its takeOfflineImpl method.

3.1.18.1.33 TokenManipulator (Class)

This class contains all functionality required for user rights in the system.  It is the only code in the system which knows how to create, modify and check a user's functional rights.  It encapsulates the contents of an octet sequence which will be passed to every secure method.  Secure methods should call the checkAccess method to validate the user.  Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method.  The token contains the following information.  Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

3.1.18.1.34 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.18.1.35 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.18.1.36 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A SHAZAM device. 

Sequence Diagrams

3.1.18.2 SHAZAMControlModule:activateSHAZAM (Sequence Diagram)

A SHAZAM can be activated by a HAR when its message is set, or it can be activated directly when in maintenance mode.  In either case, the processing done is nearly identical.  When being activated by a HAR as part of the HAR message activation, the activateHARNotice method from the HARMessageNotifier interface is called.  When being activated directly, the SHAZAM's setBeaconsOn method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMActivateCmd object and places it on its command queue for asynchronous processing.  A flag in the SHAZAMActivateCmd object specifies the activation was requested from maintenance mode or online mode.  When the queue executes the command, the activateImpl method checks the flags in the command object to determine any processing that is specific to the mode in which the activation request occurred.  Common processing includes calling setBeaconsState (to perform communications and command the SHAZAM) and utilizing the caller's command status object to inform the caller of the command's progress.  Specific processing that requires checking the mode of the request includes checking that the SHAZAM is in the same mode as when the command was queued, checking that the operation center matches or is overridden in maintenance mode, and updating the TrafficEvent's history if the activation occurred in online mode. 
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Figure 259. SHAZAMControlModule:activateSHAZAM (Sequence Diagram)



3.1.18.3 SHAZAMControlModule:CheckResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a SHAZAMImpl object checks a SHAZAM for a resource conflict prior to performing some other sort of operation on it.  This utility method is called from several other methods within the SHAZAM service. If the SHAZAM is currently in maintenance mode, and therefore has a controlling operations center, and it is not equal to the caller's operations center, and the user does not have override authority, there is a resource control conflict.  Otherwise, there is not.  If there is a resource control conflict, a message to this effect is written to the CommandStatus object, which may be monitored by the requesting user. 
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Figure 260. SHAZAMControlModule:CheckResourceConflict (Sequence Diagram)



3.1.18.4 SHAZAMControlModule:createSHAZAM (Sequence Diagram)

A user with the proper functional rights can add a SHAZAM to the system.  The SHAZAM configuration data is added to the database, and a SHAZAMImpl object is created.  Upon creation, SHAZAMImpl creates a VikingRC2AProtocolHdlr and a CommandQueue.  The SHAZAMImpl object is connected to the POA, making it ready for calls from clients.  The ServiceApplication is called to register the object with the trader and an event is pushed on the status event channel to allow GUIs to show this SHAZAM as an available object in the system.  The SHAZAM is added in the offline state and no field communications are necessary.
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Figure 261. SHAZAMControlModule:createSHAZAM (Sequence Diagram)



3.1.18.5 SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)

A SHAZAM can be deactivated by a HAR when its message is set, or it can be deactivated directly when in maintenance mode.  In either case, the processing done is nearly identical.  When being deactivated by a HAR as part of the HAR message activation/blank processing, the deactivateHARNotice method from the HARMessageNotifier interface is called.  When being deactivated directly, the SHAZAM's setBeaconsOff method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMDeactivateCmd object and places it on its command queue for asynchronous processing.  A flag in the SHAZAMDeactivateCmd object specifies the deactivation was requested from maintenance mode or online mode.  When the queue executes the command, the deactivateImpl method checks the flags in the command object to determine any processing that is specific to the mode in which the deactivation request occurred.  Common processing includes calling setBeaconsState (to perform communications and command the SHAZAM) and utilizing the caller's command status object to inform the caller of the command's progress.  Specific processing that requires checking the mode of the request includes checking that the SHAZAM is in the same mode as when the command was queued, checking that the operation center matches or is overridden in maintenance mode and updating the TrafficEvent's history if the deactivation occurred in online mode.  
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Figure 262. SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)



3.1.18.6 SHAZAMControlModule:getControlledResources (Sequence Diagram)

This Sequence Diagram shows how the SHAZAMFactoryImpl handles a request to get a list of controlled resources for an operations center.  The SHAZAMFactoryImpl asks each SHAZAMImpl for its controlling operations center, and if it matches the OperationsCenter in question, the SHAZAM is added to a list.  This list is returned to the caller. 
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Figure 263. SHAZAMControlModule:getControlledResources (Sequence Diagram)



3.1.18.7 SHAZAMControlModule:handleOpStatus (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl handles the task of detecting and responding to changes in its operational status.  A SHAZAM's operational status is normally "OK", but it can be "COMM_FAILURE" when the SHAZAMProtocolHndlr reports that it cannot communicate with the device.  Note that since we can not query the hardware status of a SHAZAM, the operational status can never be HW_FAILURE.  

This method is called after every attempt to communicate with the device.  Processing falls into one of two cases, depending on the operational status reported.  

If the operational status is now being reported OK, the last contact time in m_status (a SHAZAMStatus object) is updated with the current time.  (The last contact time is used to determine when to refresh [see runRefreshSHAZAMTask].)  If the operational status of the device was already OK, there is no change in operational status and there is nothing else to do except return false (false indicates no change in operational status).  If the status has just become OK, the operational status in m_status is updated to OK, the status change time in m_status is updated to the current time, and the new SHAZAMStatus is persisted and pushed out into the status event channel.  The command status is then updated or completed depending on the complete flag.  This method then returns true indicating that the operational status has changed.

If the operational status is now being reported COMM_FAILURE and the device was already in COMM_FAILURE, there is no change in operational status and there is nothing else to do except return false (false indicates no change in operational status).  If the status has just become COMM_FAILURE, the operational status in m_status is updated to COMM_FAILURE, the status change time in m_status is updated to the current time, and the new SHAZAMStatus is persisted and pushed out into the status event channel.  The command status is then updated or completed depending on the complete flag.  This method then returns true indicating that the operational status has changed.
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Figure 264. SHAZAMControlModule:handleOpStatus (Sequence Diagram)



3.1.18.8 SHAZAMControlModule:hasControlledResources (Sequence Diagram)

This sequence diagram shows how the SHAZAMFactoryImpl handles a request to see if an operations center has any controlled resources.  The SHAZAMFactoryImpl asks each SHAZAMImpl for its controlling operations center, and if it matches the OperationsCenter in question, a value of true is immediately returned to the caller.  If the SHAZAMFactoryImpl makes it through its whole list of SHAZAM objects without finding an OperationsCenter match, a value of false is returned. 
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Figure 265. SHAZAMControlModule:hasControlledResources (Sequence Diagram)



3.1.18.9 SHAZAMControlModule:initialize (Sequence Diagram)

When the SHAZAMControlModule is included in a ServiceApplication, the service application calls the SHAZAMControlModule's initialize method when the service is started.  The SHAZAMControlModule creates supporting objects such as the SHAZAMControlDB for database access, SHAZAMControlModuleProperties, and PushEventSupplier objects for resource management events and SHAZAM control events.  A SHAZAMFactoryImpl object is created which depersists all SHAZAMs that have been previously added to the system. Each SHAZAM is connected to the ORB and registered with the service application to have the object published in the trader.  A Timer is created to call the SHAZAMFactory to perform timer based processing.  
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Figure 266. SHAZAMControlModule:initialize (Sequence Diagram)



3.1.18.10 SHAZAMControlModule:modifyHARNotice (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl object responds to a request by a HAR to update the list of TrafficEvents associated with a SHAZAM that is currently active (via a previous call to the SHAZAMImpl's activateHARNotice method).  The user (the HAR) must have appropriate functional rights and the SHAZAM must be online.  The TrafficEvents that are no longer associated with the SHAZAM are notified, as are the TrafficEvents that are new to the SHAZAM.  The new list of active TrafficEvents is updated, the SHAZAMImpl's state is persisted, and an event is pushed on the status event channel.
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Figure 267. SHAZAMControlModule:modifyHARNotice (Sequence Diagram)



3.1.18.11 SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)

A user with proper functional rights can put a SHAZAM in maintenance mode if it is not already in maintenance mode.  A command object is created and placed on the command queue to execute the command asynchronously.  When executed, the putInMaintModeImpl method calls setBeaconsState to command the device to its inactive state.  Regardless of the ability to command the device, the SHAZAMImpl changes to the maintenance mode state, stores the user's controlling op center, updates each traffic event's history, persists its state in the database, and pushes an event on the status event channel to allow the GUI to update its display for the SHAZAM.
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Figure 268. SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)



3.1.18.12 SHAZAMControlModule:putOnline (Sequence Diagram)

A user with proper functional rights can put a SHAZAM online.  A command object is created and placed on the command queue to execute the command asynchronously.  When executed, the putOnlineImpl method calls setBeaconsState to command the device to the inactive state.  If able to deactivate the device, the SHAZAMImpl clears the controlling operations center, changes to the online state, pesists its state in the database, and pushes an event to allow the GUI to update its display for the SHAZAM.
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Figure 269. SHAZAMControlModule:putOnline (Sequence Diagram)



3.1.18.13 SHAZAMControlModule:refresh (Sequence Diagram)

A user with proper fuctional rights can refresh a SHAZAM that is in maintenance mode.  During a refresh, the SHAZAM is commanded to its last known state.  The refresh approach is implemented instead of polling due to the fact that SHAZAMs do not produce any response to commands.  After verifying that there is no resource conflict, a SHAZAMRefreshCmd is created and place on the CommandQueue to execute the command asynchronously.  When executed, the refreshImpl method verifies that the SHAZAM is still in maintenance mode and that there is still no resource conflict.  Then the SHAZAM is commanded to its last known state via a call to the setBeaconsState helper method.
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Figure 270. SHAZAMControlModule:refresh (Sequence Diagram)



3.1.18.14 SHAZAMControlModule:remove (Sequence Diagram)

A user with the proper functional rights can remove an offline SHAZAM from the system.  An token is generated using the TokenManipulator and the associated HAR (if there is one) is notified that the SHAZAM is to be removed.  The SHAZAM object is withdrawn from the trader and disconnected from the ORB.  The data for the SHAZAM is deleted from the database, a message is pushed to the status event channel to allow the GUIs to remove the SHAZAM, and the command queue is shut down.
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Figure 271. SHAZAMControlModule:remove (Sequence Diagram)



3.1.18.15 SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedSHAZAMTask object executes its task when directed to run by the Java Timer object.  The SHAZAMFactoryImpl gets the controlling op center of each SHAZAM (only SHAZAMs in maintenance mode will have controlling op centers) and builds a list of OperationsCenter objects that control one or more SHAZAMs.  Each OperationsCenter is then queried for the number of users logged in.  If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledControlledResources event is pushed into the resource management event channel. 
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Figure 272. SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)



3.1.18.16 SHAZAMControlModule:runRefreshSHAZAMTask (Sequence Diagram)

Because SHAZAMs do not issue any response to commands and these devices have been found to be less than reliable in the past, a process is in place to periodically command the device to its last known status.  A Timer notifies the SHAZAMRefreshTimerTask when the task's scheduled interval expires.  The task calls the SHAZAMFactoryImpl which calls each online SHAZAM to have it do a refresh if necessary.  Each SHAZAM determines if a refresh is necessary based on the refresh interval and its last contact time.  If the SHAZAM determines a refresh is warranted it adds a refresh command to its command queue to be executed asynchronously.  When the command is executed, it makes sure the refresh is still necessary and then the appropriate command (activate or deactivate) is sent to the device via a call to setBeaconsState.  A low priority (polling) is given to the command in terms of communications resource usage.
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Figure 273. SHAZAMControlModule:runRefreshSHAZAMTask (Sequence Diagram)



3.1.18.17 SHAZAMControlModule:setAssociatedHAR (Sequence Diagram)

A SHAZAM is associated with a HAR when the HAR calls the SHAZAM's setAssociatedHAR method.  If a token with the appropriate (server level) rights is passed to the method, the currently associated HAR (if there is one) is notified that the SHAZAM is to be removed via a call to its msgNotifierRemoved method.  The new HAR is stored in memory, the new configuration is persisted to the database, and an event is pushed out into the status event channel.
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Figure 274. SHAZAMControlModule:setAssociatedHAR (Sequence Diagram)



3.1.18.18 SHAZAMControlModule:setBeaconsState (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl object activates or deactivates a SHAZAM.  This method is called from several methods in the SHAZAM service.  A voice port is obtained from the VoicePortLocator object and a request to either activate or deactivate is sent to the VikingRc2aProtocolHndlr.  A call is made to the helper method handleOpStatus to deal with the case where the operational status has changed based on the return from the activate/deactivate request.  The new state is stored and the SHAZAMStatus is persisted and pushed out into the status event channel.  The command status is either updated or completed based on a flag passed into this method.
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Figure 275. SHAZAMControlModule:setBeaconsState (Sequence Diagram)



3.1.18.19 SHAZAMControlModule:setConfiguration (Sequence Diagram)

A user with appropriate functional rights can set the configuration of a SHAZAM if it is in maintenance mode.  The Rc2aSHAZAM itself does not have any configurable settings, so no field communications are necessary.  Although this command does not currently require field communications, the asynchronous command pattern is used for consistency with other device commands and also to allow the code to easily adapt to a device type that supports configurable settings.  When the command is executed, setConfigurationImpl stores configuration in memory.  If it is communication parameters that have changed, a new VoicePortLocator is created.  The new configuration is persisted to the database and an event is pushed onto the status event channel to notify others of the changes.  
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Figure 276. SHAZAMControlModule:setConfiguration (Sequence Diagram)



3.1.18.20 SHAZAMControlModule:shutdown (Sequence Diagram)

When a service application containing the SHAZAMControlModule is shutdown, it calls the shutdown method.  The SHAZAMControlModule cleans up its resources, which include its periodic timer and PushEventConsumers.  In addition, the SHAZAMFactory and SHAZAM objects are removed from the ORB.
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Figure 277. SHAZAMControlModule:shutdown (Sequence Diagram)



3.1.18.21 SHAZAMControlModule:takeOffline (Sequence Diagram)

A user with proper functional rights can take a SHAZAM offline.  A command object is created and placed on the command queue to execute the command asynchronously.  When executed, takeOfflineImpl method calls setBeaconsState to command the device to its inactive state.  Regardless of the ability to command the device, the SHAZAMImpl changes to the offline state, clears the controlling operations center, notifies the currenly active TrafficEvents (if any), perists its state in the database, and pushes an event on the status event channel to allow the GUI to update its display for the SHAZAM.
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Figure 278. SHAZAMControlModule:takeOffline (Sequence Diagram)



SHAZAMManagement

3.1.19 Classes

3.1.19.1 SHAZAMUtility (Class Diagram)

This diagram shows SHAZAM related classes that are shared between the server and the GUI.
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Figure 279. SHAZAMUtility (Class Diagram)



3.1.19.1.1 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.  It is used to communicate configuration information to/from the database, and to/from the GUI clients.  The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

3.1.19.1.2 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.  This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

SHAZAMProtocols

3.1.20 Classes

3.1.20.1 SHAZAMProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to SHAZAM control.
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Figure 280. SHAZAMProtocolsPkg (Class Diagram)



3.1.20.1.1 SHAZAMProtocolException (Class)

This class represents an exception that is thrown by SHAZAM protocol classes when an unexpected error is encountered.

3.1.20.1.2 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A SHAZAM device. 

3.1.20.1.3 VoicePort (Class)

A voice port provides access to a port on a telephony board.  It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

Sequence Diagrams

3.1.20.2 VikingRC2AProtocolHdlr:TypicalCommand (Sequence Diagram)

This sequence diagram shows the typical processing of various SHAZAM commands. To control a SHAZAM, the specific DTMF tones are generated using the given connected VoicePort object. A SHAZAMProtocolException is raised if an unexpected error is encountered.
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Figure 281. VikingRC2AProtocolHdlr:TypicalCommand (Sequence Diagram)



SystemInterfaces

3.1.21 Classes

3.1.21.1 AudioCommon (Class Diagram)

This class diagram shows the classes relating to Audio.
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Figure 282. AudioCommon (Class Diagram)



3.1.21.1.1 AudioClipIDList (Class)

This typedef (struct) is a list of Identifiers of HARMessageAudioClip objects.  A list of this type is passed to AudioClipOwners in a confirmClipInterest call identifying audio clips for which to confirm interest, and the AudioClipOwner returns an AudioClipIDList in response, indicating the subset of those clips for which there is no longer any interest.  (It is therefore anticipated that the list returned will be null or of short length.)

3.1.21.1.2 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process.  The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data.  The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip.  When a clip no longer has any interested owners, it can be (and is) deleted from the database. 

3.1.21.1.3 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip.  If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.21.1.4 AudioClipStreamer (Class)

This interface is implemented by objects that can push an audio clip given its ID.  The audio data, previously stored within the streamer's implementation, is pushed to the AudioPushConsumer supplied by the user of this interface.  See AudioPushConsumer for details.

3.1.21.1.5 AudioData (Class)

This typedef is a sequence of bytes that contain audio data.  This data is used in conjunction with AudioDataFormat to decode the data into voice.

3.1.21.1.6 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.1.21.1.7 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.1.21.1.8 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer.  One call to pushAudioProperties() will always precede any calls to pushAudio().  When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing.  PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data.  In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.21.1.9 TextEmbeddedTag (Class)

This interface defines constants for tags that may be embedded in text that is passed to the TTSConverter.  The TTSConverter replaces the tags it finds in text prior to converting the text to speech.  The DateStamp tag is replaced with a date string in the format "DayOfWeek, Month Date" (e.g. "Wednesday, July 14").  This tag is replaced with new text every day immediately after midnight.

3.1.21.1.10 TTSConverter (Class)

This interface represents the Text to Speech converter object which allows text to be passed in and speech to be returned.

3.1.21.1.11 TTSPriority (Class)

This enum defines the types of priorities that can be used when asking the TTSConverter to convert text to speech.

3.1.21.1.12 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.1.13 UnsupportedAudioFormat (Class)

This exception is thrown when a specific AudioDataFormat is requested from an object that does not support the given format.

3.1.21.2 CommLogManagement (Class Diagram)

This Class Diagram shows the classes used for passing information between processes to enable creating, pushing, viewing, and searching Communications Log entries. 
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Figure 283. CommLogManagement (Class Diagram)



3.1.21.2.1 CommLog (Class)

This class manages log entries.  These can be general Communications Log entries or specific log entries for a specific Traffic Event.  This class is the primary interface for the CommLog service.  It is used to persist log entries in the CHART II system and retrieve them for review.  Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events. 

3.1.21.2.2 CommLogEventType (Class)

This enumeration lists the possible events which the CommsLog service may push via the CORBA event service.  At present, only one event is defined, the addition of a new LogEntry to the database. 

3.1.21.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database.  This can be a general Communications Log entry or it can be a historical entry for a Traffic Event.  Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event. 

3.1.21.2.4 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate. 

3.1.21.2.5 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which contain the data needed to create one Log Entry.  Normally each LogEntryDataList will contain only one LogEntryData object, but if the CommLog service is unavailable for a time, it is possible that multiple LogEntryData objects may be queued up for insertion into the database. 

3.1.21.2.6 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting process in one clump.  (Some requests return so much data that data is returned in clumps.  The initial request returns a LogIterator from which additional LogEntryList sequences can be requested, in order to complete the entire query. 

3.1.21.2.7 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log.  The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned. 

3.1.21.2.8 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries.  If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation. 

3.1.21.3 Common (Class Diagram)

This class diagram shows classes used by multiple modules. 
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3.1.21.3.1 AccessDenied (Class)

This class represents an access denied, or "no rights" failure.

3.1.21.3.2 ApplicationVersion (Class)

This structure contains the name of the application and information about the versions of its components.

3.1.21.3.3 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very generic exceptions which require no special processing by the client.  It supports a reason string which may be shown to any user and a debug string which will contain detailed information useful in determining the cause of the problem.

3.1.21.3.4 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of an asynchronous operation.  This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation.  The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed.  The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.21.3.5 ComponentVersion (Class)

This structure contains the name and version number of the software component.

3.1.21.3.6 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in DirectionValues.

3.1.21.3.7 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

3.1.21.3.8 DuplicateData (Class)

This exception is thrown when an object is to be added to the system, but the system already contains an object with equivalent data.

3.1.21.3.9 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.3.10 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid state to perform the operation.

3.1.21.3.11 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is running.  This field is useful for administrators in debugging problems should an object become "software comm failed"..  It is included in the Chart2DMSStatus. 

3.1.21.3.12 Password (Class)

Typedef used to define the type of a Password.

3.1.21.3.13 RouteType (Class)

This enumeration is used to specify the classification of a road (interstate, MD, etc.)

3.1.21.3.14 RouteTypeInfo (Class)

This structure contains information about the classification type of a road.

3.1.21.3.15 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown externally.  All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

3.1.21.3.16 Source (Class)

This structure contains information about the source of the data being added to the system.

3.1.21.3.17 SourceTypeValues (Class)

This enumeration contains the possible sources of information that can be used for adding CommLog entries and/or traffic event data.

3.1.21.3.18 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object that cannot be found by the invoked object.

3.1.21.3.19 TimeStamp (Class)

This typedef defines the type of TimeStamp fields.

3.1.21.3.20 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles per hour in tenths.  (thus 550 == 55.0 MPH)  Valid values are 0 to 2550.  A value of 65535 is used to indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData - The count of vehicles for the sample period.  Valid values 0 to 65535.  A value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent. (thus 1000 = 100.0 percent).  Valid values are 0 to 1000.  A value of 65535 represents a missing or invalid value.

3.1.21.3.21 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.3.22 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which it is called.

3.1.21.3.23 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

3.1.21.4 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.
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3.1.21.4.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device.  The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries.  When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue.  The priority of the queue entries can be modified after they are added to the queue.  The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online. 

3.1.21.4.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event.  (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents.  In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent.)

3.1.21.4.3 ArbQueueEntryIndicator (Class)

The ArbQueueEntryIndicator contains data necessary to specify a unique ArbQueueEntry object, plus it contains a reference to the TrafficEvent which is responsible for the entry.

3.1.21.4.4 ArbQueueEntryKey (Class)

This class contains the Traffic Event ID and RPI ID and is used to identify a specific ArbQueueEntry.

3.1.21.4.5 ArbQueueEntryList (Class)

Collection of ArbQueueEntry objects.

3.1.21.4.6 ArbQueueEntryStatus (Class)

This structure is used to provide the status of the arbitration queue entries that were queued for execution on a device.

3.1.21.4.7 ArbQueueEntryStatusList (Class)

Collection of ArbQueueEntryStatus objects.

3.1.21.4.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling is halted.  When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.4.9 CommFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating with a device.

3.1.21.4.10 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE.  ONLINE is used to indicate the device is available to the operational system.  OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled.  MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.   

3.1.21.4.11 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are not approved.  This exception is also thrown if an attempt is made to put the device in an invalid display state, such as putting the Beacons ON for a blank DMS.

3.1.21.4.12 Message (Class)

This class represents a message that will be used while activating devices.  This class provides a means to check if the message contains any banned words given a Dictionary object.  Derived classes extend this class to provide device specific message data. 

3.1.21.4.13 MessageQueue (Class)

This class represents a message queue object.  It will provide the ability to manage traffic event entries in a prioritized list.  

3.1.21.4.14 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). 

3.1.21.4.15 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.21.4.16 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to access a device from the given port manager.  This class exists to allow for the phone number used to access a device to differ based on the port manager to take into account the physical location of the port manager within the telephone network.  For example, when dialing a device from one location the call may be long distance but when dialing from another location the call may be local.

3.1.21.5 DictionaryManagement (Class Diagram)

This class diagram shows the interfaces used for the dictionaries.
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3.1.21.5.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,.. 

3.1.21.5.2 DictionaryEventInfo (Class)

This interface encapsulates the data that is passed with a dictionary CORBA event. It contains information identifying the dictionary, and the list of words affected by the event.

3.1.21.5.3 DictionaryEventType (Class)

This represents the enumerations used for the different CORBA event types applicable to the dictionary module.

3.1.21.5.4 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a substitute for the word that could not be found in the approved words dictionary database. 

3.1.21.5.5 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that qualifies the type of devices that the word applies to.

3.1.21.5.6 DictionaryWordType (Class)

This enumeration is used to tag words that are placed in a dictionary.  Words may apply to a specific messaging device or many.

3.1.21.5.7 SuggestionList (Class)

This interface represents the IDL sequence typedef for the DictionarySuggestion.

3.1.21.5.8 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.5.9 WordList (Class)

This interface represents the IDL sequence typedef for the DictionaryWord. 

3.1.21.6 DMSControl (Class Diagram)

This Class Diagram shows the CORBA system interface classes and methods used to manipulate DMS services within the CHART II system.
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3.1.21.6.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device.  The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries.  When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue.  The priority of the queue entries can be modified after they are added to the queue.  The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online. 

3.1.21.6.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event.  (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents.  In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent.)

3.1.21.6.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS.  Its values are defined by the BeaconTypeValues class.  It is a part of a DMSConfiguration object. 

3.1.21.6.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices (number of beacons and whether and in what manner they flash). 

3.1.21.6.5 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the Chart II-specific DMS objects within Chart II.  It provides an interface for traffic events to provide input as to what each traffic event desires to be on the sign via the ArbitrationQueue interface.  Through the HARMessageNotifier interface a HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic message.   Chart II business rules include concepts such as shared resources, arbitration queues, and linking devices usage to traffic events, concepts which go beyond what would be industry-standard DMS control. 

3.1.21.6.6 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to Chart II processing.  Such information includes how to contact the sign under Chart II software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization.  Such data extends beyond what would be industry-standard configuration information for a DMS. 

3.1.21.6.7 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional Chart II specific capability.  This factory creates Chart2DMS objects (extensions of DMS objects).  It implements the SharedResourceManager capbility to control DMS objects as shared resources. 

3.1.21.6.8 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to Chart II processing, such as information on the controlling operations center for the sign.  This data extends beyond what would be industry-standard status information for a DMS. 

3.1.21.6.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling is halted.  When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.6.10 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE.  ONLINE is used to indicate the device is available to the operational system.  OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled.  MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.   

3.1.21.6.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign (DMS) objects within Chart II.  It specifies methods for setting messages and clearing messages from a sign (in maintenance mode), polling a sign, changing the configuration of a sign, and reseting a sign.  (Setting messages on a sign in online mode are not accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic events, which interfaces with the ArbitrationQueue of a sign.  This activity involves the DMS extension, Chart2DMS, which defines interactions with signs under Chart II business rules.) 

3.1.21.6.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used for most standard entries placed on the arbitration queue.  When its setActive, setInactive, and setFailed methods are called, it adds a log entry to its traffic event and calls the appropriate method on its response plan item (setActive, setInactive, or update). 

3.1.21.6.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract class which describes the configuration of a DMS device. This configuration information is normally fairly static: things like the size of the sign in characters and pixels, its name and location, and how to contact the sign (as opposed to dynamic information like the current message on the sign, which is defined in an analogous Status object). 

3.1.21.6.14 MSConfigurationEventInfo (Class)

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType DMSConfigChanged.  It contains a DMSConfiguration object which details the new configuration for a Chart II DMS object. 

3.1.21.6.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities.  The four types of events, defined by the enumeration DMSEventType, are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged. 

3.1.21.6.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the four types of events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities.  The four types of events are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged. 

3.1.21.6.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system.  It also provides a method to get a list of DMS devices currently in the system. 

3.1.21.6.18 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory and other classes for maintaining the list or other lists of DMS objects. 

3.1.21.6.19 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS.  It consists of two elements: a MULTI-formatted message and beacon state information (whether the message requires that the beacons be on).  The DMSMessage is contained within a DMSStatus object, used to communicate the current message on a sign, and is stored within a DMSRPIData object, used to specify the message which should be on a sign when the response plan item is executed. 

3.1.21.6.20 DMSModelID (Class)

The DMSModelID class enumerates the models of DMSs that are in the system.

3.1.21.6.21 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a DMS.  It is derived from PlanItemData. 

3.1.21.6.22 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a DMS.  It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself. 

3.1.21.6.23 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a DMS. This status information is relatively dynamic: things like the current message on the sign, its beacon state, its current operational mode (online, offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE).  (More static information about the sign, such as its size and location, is defined in an analogous Configuration object.) 

3.1.21.6.24 DMSStatusEventInfo (Class)

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType CurrentDMSStatus.  It contains a DMSStatus object which details the new status for a Chart II DMS object. 

3.1.21.6.25 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information regarding to the font size used on a DMS.  It is a part of a DMSConfiguration object. 

3.1.21.6.26 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class which extends the Chart2DMSConfiguration class to provide configuration information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information. 

3.1.21.6.27 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating FP9500 models of DMS signs.  It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific DMS control.  For instance, the FP9500DMS has a performPixelTest method, which knows how to invoke and interpret a pixel test as supported by the FP9500 model DMS. 

3.1.21.6.28 FP9500Status (Class)

The FP9500Status class is an abstract class which extends the Chart2DMSStatus class to provide status information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information.  In this case, additional information provided the FP9500 model would include things like the current message number and current message source, status bits, light status, pixel failure map, and so on. 

3.1.21.6.29 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.6.30 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR.  A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.  This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message. 

3.1.21.6.31 HARNotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry used for entries that are placed on the arbitration queue to put a "SHAZAM" message on a DMS.  These types of messages have a low priority and are not allowed to overwrite any standard message (from a DMSArbQueueEntry) that is currently displayed on a device.  These types of messages are also different in that they are not added to the queue directly by a response plan item and are instead included as a sub-task of activating a message on a HAR.  The HAR uses a command status object to track the progress of the HAR notifier message. 

3.1.21.6.32 Message (Class)

This class represents a message that will be used while activating devices.  This class provides a means to check if the message contains any banned words given a Dictionary object.  Derived classes extend this class to provide device specific message data. 

3.1.21.6.33 MessageQueue (Class)

This class represents a message queue object.  It will provide the ability to manage traffic event entries in a prioritized list.  

3.1.21.6.34 MULTIParseFailure (Class)

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS message cannot be correctly parsed. 

3.1.21.6.35 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message.  The DMSMessage class contains a MULTIString value to specify the content of the sign, in addition to the beacon state value. 

3.1.21.6.36 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is running.  This field is useful for administrators in debugging problems should an object become "software comm failed"..  It is included in the Chart2DMSStatus. 

3.1.21.6.37 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). 

3.1.21.6.38 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item.  Derived classes contain specific data that map a device to an operation and the data needed for the operation.  For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.1.21.6.39 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item.  Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.1.21.6.40 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.  

3.1.21.6.41 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.6.42 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS.  It is a bit field defined by the NTCIP center to field standard for DMS that specifies error conditions that may be present on the device.  This class is used to encapsulate the bit mask and provide a user friendly interface to the error conditions.  The DMSStatus class contains a value of this type. 

3.1.21.6.43 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information regarding to the size of a DMS, in pixels and characters.  It is a part of a DMSConfiguration object. 

3.1.21.6.44 SignType (Class)

The SignType class defines the sign type for a DMS.  Its values are defined by the SignTypeValues class.  It is a part of a DMSConfiguration object. 

3.1.21.6.45 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices.  Examples are bos, cms, vmsChar, etc. 

3.1.21.6.46 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.7 FieldCommunications (Class Diagram)

This diagram shows system interfaces relating to field communications.  These interfaces, typedefs, and enums specify the IDL for the FieldCommunications package.
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3.1.21.7.1 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

3.1.21.7.2 ConnectFailure (Class)

This exception is a catch-all for exceptions that do not fit in a more specific exception that can be thrown during a connection attempt.

3.1.21.7.3 DataBits (Class)

This enumeration defines the valid values for data bits that may be set in a CommPortConfig structure.

3.1.21.7.4 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received.  Ports of this type support a receive method that allows a chunk of all available data to be received.  This method prevents callers from having to issue many receive calls to parse a device response.  Instead, this receive call returns all available data received within the timeout parameters.  The caller can then parse the data within a local buffer.  Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.21.7.5 DataPortIOException (Class)

This exception is used to indicate an Input/Output error has occurred.

3.1.21.7.6 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications.  The connect call needs only to open the communications port.

3.1.21.7.7 DisconnectException (Class)

This exception is thrown when an error is encountered while disconnecting.  There is no action that can be taken by the catch handler for this exception except to warn the user.  The port will be closed and should be released as normal even if this exception is caught.

3.1.21.7.8 EVENT_CHANNEL_PORT_STATUS (Class)

This is a static string that contains the name of the event channel used to push events relating to the change in Port status.  The following PortEventTypes are pushed on EVENT_CHANNEL_PORT_STATUS channel: PortStatusChanged 

3.1.21.7.9 FlowControl (Class)

This enumeration defines the valid types of flow control that may be set in a CommPortConfig structure.

3.1.21.7.10 GetPortTimeout (Class)

This class is an exception that is thown by a PortManager when a request to acquire a port of a given type cannot be fulfilled within the timeout specified.

3.1.21.7.11 ModemConnectFailure (Class)

This exception is thrown when there is an error establishing a remote connection via a  modem during a connection attempt on a ModemPort.  This exception is generated when there is an unfavorable result to the ATDT command on the modem.

3.1.21.7.12 ModemInitFailure (Class)

This exception is thrown when there is an error initializing the modem during a connection attempt on a ModemPort.

3.1.21.7.13 ModemNotResponding (Class)

This exception is thrown when there is a failure to command a modem because the modem is not responding to commands.

3.1.21.7.14 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem.  ISDN and POTS modems can be implemented under this interface.

3.1.21.7.15 ModemResponseCode (Class)

This enum defines the result codes for a standard modem.

3.1.21.7.16 NoPortsFound (Class)

This exception is thrown when a port is requested from a PortManager that does not have any of the requested type of port (available or in-use).

3.1.21.7.17 Parity (Class)

This enumeration defines the valid values for parity that may be set in a CommPortConfig structure.

3.1.21.7.18 Port (Class)

A Port is an object that models a physical communications resource.  Derived interfaces specify various types of ports.  All ports must be able to supply their status when requested.

3.1.21.7.19 PortEventType (Class)

This enum defines the types of CORBA events that are pushed on a Field Communications event channel.

3.1.21.7.20 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources.  The getPort method is used to request the use of a port from the PortManager.  Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available.  When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.21.7.21 PortOpenFailure (Class)

This exception is thrown if there is an error opening the port while attempting a connection.  This exception would most likely only occur if there is another application accessing the physical com port, which would be true if debugging activities were being done on a port while the FieldCommunications service is still running.

3.1.21.7.22 PortStatus (Class)

This enumeration specifies the values used to represent a Port's status.  OK signifies the port is working properly.  MARGINAL signifies errors have been experienced during recent use of the port.  FAILED indicates the port is not working at all.

3.1.21.7.23 PortStatusChangedEventInfo (Class)

This class contains data that is pushed on a Field Communications event channel with a PortStatusChanged event.

3.1.21.7.24 PortStatusInfo (Class)

This class contains the data of status of a particular port.

3.1.21.7.25 PortType (Class)

This enumeration defines the types of ports that may be requested from a PortManager.

3.1.21.7.26 Priority (Class)

This enumeration specifies the priority levels used when requesting a port from a PortManager.  ON_DEMAND is given higher priority than POLLING.

3.1.21.7.27 StopBits (Class)

This enumeration defines the valid values for stop bits that may be set in a CommPortConfig structure.

3.1.21.7.28 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.7.29 VoicePort (Class)

A voice port provides access to a port on a telephony board.  It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.21.7.30 VoicePortConnectFailure (Class)

This exception is thrown when the voice port fails to connect because of one of the following reasons: no dial tone, line busy or  no answer.

3.1.21.8 HARControl (Class Diagram)

This class diagram contains the interfaces used relating to the control of Highway Advisory Radio (HAR).
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                   HARConfiguration) : HAR
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3.1.21.8.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device.  The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries.  When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue.  The priority of the queue entries can be modified after they are added to the queue.  The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online. 

3.1.21.8.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event.  (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents.  In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent.)

3.1.21.8.3 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip.  If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.21.8.4 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling is halted.  When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.8.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.8.6 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device.  A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler.  This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

3.1.21.8.7 HARArbQueueEntry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a traffic event.  This entry also specifies the HARMessageNotifiers to be activated when the message is activated.

3.1.21.8.8 HARConfiguration (Class)

This class (struct) contains configuration data for a HAR device.  It is used to transmit current configuration data from the HAR to the client, and to transmit proposed new configuration data from the client to the HAR.  It is also used internally by the HARService to maintain its configuration in memory, and is used to transmit configuration data to/from the HAR to the HARControlDB database interface class.

3.1.21.8.9 HARConfigurationEventInfo (Class)

This class defines data (HARConfiguration, and HAR ID and reference) pushed with a HARConfigurationChanged and HARAdded CORBA event.

3.1.21.8.10 HAREventType (Class)

This enumeration defines the types of CORBA events that are pushed on a HARControl event channel.

3.1.21.8.11 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system.  It also allows a requester to acquire a list of HAR objects under the domain of the specific HARFactory object.

3.1.21.8.12 HARList (Class)

The HARList class is a collection of HAR objects. 

3.1.21.8.13 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR.  It stores the HAR message as a HAR message header, body and footer.  The HARMessage can be configured to use the default header or can provide a custom header clip.  The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided.  The body can consist of one or more body clips.  Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.1.21.8.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR.  This class is passed around the system, wherever possible instead of passing the actual voice data contained in the initial HARMessageAudioDataClip.  When the actual voice data is needed to play to the user or to program the HAR device, this object's streamer is used to stream the actual voice data back to an AudioPushConsumer specified by the requester.

3.1.21.8.15 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.  Because audio data can be very large, this type of clip is reserved for use when recorded voice is first entered into the system.  Recorded voice that already exists in the system is passed throughout the system using HARMessageAudioClip to avoid sending the large audio data when possible.  A HARMessageAudioClip can stream the associated data back to an audio consumer when needed, by contacting its AudioClipManager.

3.1.21.8.16 HARMessageClip (Class)

This class represents a section of a HAR message.  A HARMessage can contain up to three clips: a header, trailer, and body.  See HARMessage for details.  A HARMessageClip can be either plain text which would need to be converted to audio prior to broadcast, or audio (WAV) format, or it can refer to a clip which is prestored in a specific target HAR already.  Audio clips are normally passed around as lightweight HARMessageAudioClips, which are created from HARMessageAudioDataClips at the point where the HARMessageAudioClip first enters a server.

3.1.21.8.17 HARMessageClipList (Class)

The HARMessageClipList is a collection of HARMessageClip objects.  It is used to specify multiple clips contained in the body of a HARMessage.  While a HARMessage specified by a user can contain only one body clip, a HARMessage generated by the HAR Service can contain multiple body clips, as a result of combining more than one message into a single message for download to and broadcast by a HAR.

3.1.21.8.18 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR.  A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.  This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message. 

3.1.21.8.19 HARMessageNotifierList (Class)

This class defines a list of HARMessageNotifierStruct objects.

3.1.21.8.20 HARMessageNotifierStruct (Class)

This class (struct) defines structure used for specifying a HARMessageNotifier, containing the notifier's ID and reference.

3.1.21.8.21 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a specific HAR device.

3.1.21.8.22 HARMessageTextClip (Class)

This class represents a HAR message content object which is in plain text format.  This message can be checked for banned words and will be converted into a voice message using a speech engine, for downloading to a HAR device or to preview the voice audio to a user.

3.1.21.8.23 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.1.21.8.24 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed.  When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue.  When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry.  The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and when the message is being broadcast on the HAR.

3.1.21.8.25 HARSlotData (Class)

This struct defines the data used to identify the contents and usage of a slot in the HAR controller.

3.1.21.8.26 HARSlotDataList (Class)

The HARSlotDataList class is simply a collection of HARSlotData objects. 

3.1.21.8.27 HARSlotNumber (Class)

The HARSlotNumber is an integer used to specify slot numbers on a HAR controller. 

3.1.21.8.28 HARSlotUsageIndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

3.1.21.8.29 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device.  The data contained in this class is that status information which can be transmitted from the HAR to the client as necessary.  This struct is also used to within the HAR Service to transmit data to/from the HARControlDB database interface class.  (The HAR implementation also contains other private status data elements which are not elements of this class.)

3.1.21.8.30 HARStatusEventInfo (Class)

This class contains data (HARStatus) that is pushed when the HARStatusChanged CORBA event is pushed on the HARControl event channel.

3.1.21.8.31 Message (Class)

This class represents a message that will be used while activating devices.  This class provides a means to check if the message contains any banned words given a Dictionary object.  Derived classes extend this class to provide device specific message data. 

3.1.21.8.32 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.  

3.1.21.8.33 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.8.34 StoredMessage (Class)

This class holds a message object that is stored in a message in a library.  It contains attributes such as category and message description which are used to allow the user to organize messages.

3.1.21.8.35 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.9 HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message notifications.  The HAR notifiers can be SHAZAMs or DMS devices that are acting as SHAZAMs.  Note that R1B2 prevents a DMS SHAZAM message from overwriting another type of DMS message. 
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3.1.21.9.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling is halted.  When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.9.2 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system.  It also provides a method to get a list of DMS devices currently in the system. 

3.1.21.9.3 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.9.4 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR.  A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.  This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message. 

3.1.21.9.5 HARMsgNotifierIDList (Class)

This typedef is a sequence of HARMessageNotifier identifiers.

3.1.21.9.6 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence.  This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.1.21.9.7 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.  

3.1.21.9.8 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.9.9 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to interface with a SHAZAM field device.  This interface is implemented by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command and control.

3.1.21.9.10 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.  This class is used to store configuration within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to/from the GUI clients.  The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

3.1.21.9.11 SHAZAMConfigurationEventInfo (Class)

This class contains data (a SHAZAMConfiguration object) that is pushed on the SHAZAMControl CORBA event channel with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

3.1.21.9.12 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control event channel.

3.1.21.9.13 SHAZAMFactory (Class)

This CORBA interface allows new SHAZAM objects to be added to the system.  It can also provide a list of all SHAZAM objects to a requester.

3.1.21.9.14 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.  This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

3.1.21.9.15 SHAZAMStatusChangeEventInfo (Class)

This class contains data (a SHAZAMStatus object) that is pushed on a SHAZAMControl event channel with a SHAZAMStatusChanged event.

3.1.21.9.16 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.10 LibraryManagement (Class Diagram)

This class diagram  shows all classes and relationships relating to message libaries.
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3.1.21.10.1 LibraryAddedEventInfo (Class)

This struct defines data passed with a DMSLibraryAdded event.

3.1.21.10.2 LibraryEventType (Class)

This enum defines the types of events that can be pushed on a  LibraryManagement event channel.

3.1.21.10.3 LibraryNameChangedEventInfo (Class)

This struct defines data passed with a LibraryNameChanged event.

3.1.21.10.4 Message (Class)

This class represents a message that will be used while activating devices.  This class provides a means to check if the message contains any banned words given a Dictionary object.  Derived classes extend this class to provide device specific message data. 

3.1.21.10.5 MessageLibrary (Class)

This class represents a logical collection of messages which are stored in the database.

3.1.21.10.6 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.1.21.10.7 MessageLibraryList (Class)

A collection of MessageLibrary objects.

3.1.21.10.8 StoredMessage (Class)

This class holds a message object that is stored in a message in a library.  It contains attributes such as category and message description which are used to allow the user to organize messages.

3.1.21.10.9 StoredMessageAddedEventInfo (Class)

This struct defines the data passed with a StoredMessageAdded event.

3.1.21.10.10 StoredMessageData (Class)

This structure defines the data stored in a StoredMessage.

3.1.21.10.11 StoredMessageList (Class)

A collection of StoredMessage objects.

3.1.21.10.12 StoredMessageRemovedEventInfo (Class)

This struct defines data passed with a StoredMessageRemoved event.

3.1.21.10.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.11 LogCommon (Class Diagram)

This class diagram contains all interfaces that are necessary to multiple log types within the CHART II system.
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3.1.21.11.1 LogEntry (Class)

This class represents a typical log entry that is stored in the database.  This can be a general Communications Log entry or it can be a historical entry for a Traffic Event.  Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event. 

3.1.21.11.2 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate. 

3.1.21.11.3 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which contain the data needed to create one Log Entry.  Normally each LogEntryDataList will contain only one LogEntryData object, but if the CommLog service is unavailable for a time, it is possible that multiple LogEntryData objects may be queued up for insertion into the database. 

3.1.21.11.4 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting process in one clump.  (Some requests return so much data that data is returned in clumps.  The initial request returns a LogIterator from which additional LogEntryList sequences can be requested, in order to complete the entire query. 

3.1.21.11.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log.  The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned. 

3.1.21.11.6 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries.  If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation. 

3.1.21.11.7 LogQueryResults (Class)

This structure contains the data that is the results of a log entry query, including the first batch of entries (if any).

3.1.21.12 PlanManagement (Class Diagram)

This class diagram contains the interfaces used in the creation and management of plans.  A plan is a group of actions that are set-up in advance to be used in response to a traffic event.  Given the unpredictable nature of traffic events, pre-defined plans are usually only useful for congestion, safety messages, and weather related messages.
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3.1.21.12.1 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items. 

3.1.21.12.2 PlanAddedEventInfo (Class)

The PlanAddedEventInfo class defines the data passed in the PlanAdded event. 

3.1.21.12.3 PlanEventType (Class)

The PlanEventType class is an enumeration which describes the types of events that can be pushed for plans.  When a plan item is added or modified it is up to the derived item type to push the appropriate type of event. 

3.1.21.12.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the system.

3.1.21.12.5 PlanItem (Class)

This class represents an action within the system that can be planned in advance.  This CORBA interface is subclassed for specific actions that can be planned in the system.

3.1.21.12.6 PlanItemAddedEventInfo (Class)

The PlanItemAddededEventInfo class defines the data passed in the PlanItemAdded event. 

3.1.21.12.7 PlanItemChangedEventInfo (Class)

The PlanItemChangedEventInfo class defines the data passed in the PlanItemChanged event. 

3.1.21.12.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item.  Derived classes contain specific data that map a device to an operation and the data needed for the operation.  For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.1.21.12.9 PlanItemList (Class)

The PlanItemList class is simply a collection of PlanItem objects. 

3.1.21.12.10 PlanItemRemovedEventInfo (Class)

The PlanItemRemovedEventInfo defines the data passed in the PlanItemRemoved event. 

3.1.21.12.11 PlanList (Class)

The PlanList class is simply a collection of Plan objects. 

3.1.21.12.12 PlanNameChangeEventInfo (Class)

The PlanNameChangeEventInfo class defines the data passed in the PlanNameChanged event. 

3.1.21.12.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.13 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers, user login sessions, and organizations.
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3.1.21.13.1 ControllingOpCtrChangeEventInfo (Class)

The ControllingOpCtrChangeEventInfo class defines data to be passed on a ControllingOpCtrChange event. 

3.1.21.13.2 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do something which requires that no resources be controlled, yet the Operations Center which the user is logged in to is still controlling one or more shared resources.

3.1.21.13.3 InvalidOperationsCenter (Class)

Exception which describes a failure caused when the operations center specified is not valid for the attempted operation. 

3.1.21.13.4 LoginFailure (Class)

This class represents an exception which describes a login failure.

3.1.21.13.5 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects. 

3.1.21.13.6 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

3.1.21.13.7 OpCenterInfo (Class)

This structure contains the information about an OperationsCenter.

3.1.21.13.8 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located.  This class is used to log users into the system.  If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user.  This token is then used to call privileged methods within the system.   Shared resources in the system are either available or under the control of an OperationsCenter.  The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control.  This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

3.1.21.13.9 OperationsCenterFactory (Class)

This class is used to create new operations centers and maintain them in a collection.

3.1.21.13.10 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an organization, that is an administrative body which can control or own resources. 

3.1.21.13.11 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the resource is under the control of a different operations center and the requesting user does not have the functional right to override the restriction.

3.1.21.13.12 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types. 

3.1.21.13.13 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response. 

3.1.21.13.14 ResponseParticipantEventInfo (Class)

3.1.21.13.15 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a response to an event.  This could be an external organization, a mobile unit, a mobile device or special purpose vehicle, or a special needs vehicle equipped to handle unusual or hazardous situations. 

3.1.21.13.16 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.  

3.1.21.13.17 SharedResourceList (Class)

A SharedResourceList is simply a collection of SharedResource objects. 

3.1.21.13.18 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.13.19 TransferrableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is implemented by SharedResource objects whose control can be transferred from one operations center to another. 

3.1.21.13.20 UnhandledControlledResourcesInfo (Class)

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that an OperationsCenter is controlling one or more controlled resources but has no users logged in. 

3.1.21.13.21 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.13.22 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system.  This object is served from the GUI and provides a means for the servers to call back into the GUI process.  

3.1.21.14 TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events
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3.1.21.14.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not fit well into the other event categories.  An example of this type of event would be debris in the roadway.

3.1.21.14.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of an asynchronous operation.  This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation.  The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed.  The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.21.14.3 CongestionEvent (Class)

This class models roadway congestion which may be tagged as recurring or non-recurring through the use of an attribute.

3.1.21.14.4 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

3.1.21.14.5 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a DMS.  It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself. 

3.1.21.14.6 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed.  When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue.  When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry.  The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and when the message is being broadcast on the HAR.

3.1.21.14.7 Incident (Class)

This class models objects representing roadway incidents.  An incident typically involves one or more vehicles and roadway lane closures.

3.1.21.14.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.1.21.14.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.1.21.14.10 LaneConfigurationList (Class)

A collection of  LaneConfiguration objects.

3.1.21.14.11 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

3.1.21.14.12 LaneType (Class)

This enumeration lists the types of lanes.

3.1.21.14.13 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

3.1.21.14.14 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction.  This interface will be expanded in future releases to include interfacing with the EORS system.

3.1.21.14.15 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

3.1.21.14.16 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in response to a particular traffic event.

3.1.21.14.17 ResponseParticipationList (Class)

A collection of ResponseParticipation objects.

3.1.21.14.18 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan.  A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.1.21.14.19 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item.  Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.1.21.14.20 ResponsePlanItemList (Class)

A collection of ResponsePlanItem objects.

3.1.21.14.21 ResponsePlanItemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

3.1.21.14.22 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway.  This point in the heirarchy provides a break off point for traffic event types that pertain to other modals.

3.1.21.14.23 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety message to a device.

3.1.21.14.24 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or professional sporting event.

3.1.21.14.25 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.21.14.26 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

3.1.21.14.27 TrafficEventList (Class)

A collection of TrafficEvent objects.

3.1.21.14.28 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the system's weather monitoring devices.  Operators will need to manually enter the information in these events for this release.  In future releases, these events will be automatically generated by the system.

3.1.21.14.29 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by an operator in response to receiving an alert from the national weather service.

3.1.21.15 TrafficEventManagement2 (Class Diagram)

This class diagram contains all classes relating to Traffic Events
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3.1.21.15.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event. 

3.1.21.15.2 BasicEventData (Class)

This class represents the data common to all traffic events.  All derived data types will inherit all data shown in this class. 

3.1.21.15.3 CountyState (Class)

This enumeration defines the various counties in Maryland  and the states surrounding Maryland that will be used for defining the traffic event.

3.1.21.15.4 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event. 

3.1.21.15.5 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

3.1.21.15.6 IncidentType (Class)

This typedef defines the type of the incident.

3.1.21.15.7 IncidentTypeValues (Class)

This interface lists all possible incident types.

3.1.21.15.8 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents.  Its purpose is to simplify the exchange of data between GUI and server. 

3.1.21.15.9 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic event is changed.

3.1.21.15.10 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event history log of a traffic event.

3.1.21.15.11 OrganizationParticipationData (Class)

This class represents the data required to describe an organization's participation in the response to a traffic event. 

3.1.21.15.12 PlannedRoadwayClosureEventData (Class)

This class contains data specific to the PlannedRoadwayEvent type of traffic event.

3.1.21.15.13 ResourceDeploymentData (Class)

This class represents the data required to describe a resource's participation in the response to a traffic event.

3.1.21.15.14 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response. 

3.1.21.15.15 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the response to a particular traffic event.

3.1.21.15.16 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response participation object changes state.

3.1.21.15.17 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

3.1.21.15.18 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

3.1.21.15.19 ResponsePlanItemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added or an existing response plan item is modified.

3.1.21.15.20 ResponsePlanItemsRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

3.1.21.15.21 RevokeExecutionFailure (Class)

This class defines a exception thrown when failed to revoke a response plan item's execution.

3.1.21.15.22 RoadCondition (Class)

This enumeration lists the possible roadway conditions at the scene of a traffic event.

3.1.21.15.23 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the system.

3.1.21.15.24 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

3.1.21.15.25 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic events is removed.

3.1.21.15.26 TrafficEventEventType (Class)

his enumeration defines the types of CORBA events that can be broadcast on a Traffic Event related CORBA Event channel.

3.1.21.15.27 TrafficEventType (Class)

This typedef defines the type of traffic event.

3.1.21.15.28 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The traffic event object that represented the traffic event previously is removed from the system and is replaced by the newTrafficEvent reference contained in this structure. If the consumer of this CORBA event has stored any references to the traffic event previously,  those references should be replaced with this new reference.

3.1.21.15.29 TrafficEventTypeValues (Class)

This interface defines the types of traffic events that are supported by the system. 

3.1.21.15.30 UnknownEventType (Class)

This class defines a exception thrown when the type of a traffic event type is not known and is not defined in TrafficEventTypeValues.

3.1.21.15.31 WeatherConditions (Class)

This structure contains all possible weather conditions.  Each member should be set to true if that condition applies, false otherwise.  The m_otherDescription member will only be considered valid if the m_other member is set to true.

3.1.21.15.32 WeatherServiceEventData (Class)

This class contains data specific to the WeatherServiceEvent type of traffic event.

3.1.21.16 TrafficEventManagement3 (Class Diagram)

This class diagram contains supporting classes relating to Traffic Events

[image: image299.emf]TrafficEventDataChangedList

«typedef»

TrafficEventDataChanged

«enumeration»

CountyState

«enumeration»

ResponsePlanStatusChangedInfo

«typedef»

TrafficEventStateChangedInfo

«typedef»

ResponsePlanItemStatusUpdateList

ResponsePlanItemStatusUpdate

«typedef»

1 1

1

1

1 *

1 *

TRAFFIC_EVENT_NAME

TRAFFIC_EVENT_LOCATION_DESC

TRAFFIC_EVENT_DIRECTION

TRAFFIC_EVENT_SOURCE

TRAFFIC_EVENT_COUNTY_STATE

TRAFFIC_EVENT_DESCRIPTION

TRAFFIC_EVENT_IS_SCENE_CLEARED

TRAFFIC_EVENT_SCENE_CLEARED_TIME

TRAFFIC_EVENT_IS_DELAY_CLEARED

TRAFFIC_EVENT_DELAY_CLEARED_TIME

TRAFFIC_EVENT_IS_CONFIRMED

TRAFFIC_EVENT_CONFIRMED_TIME

TRAFFIC_EVENT_IS_FALSE_ALARM

TRAFFIC_EVENT_IS_CLOSED

TRAFFIC_EVENT_CLOSED_TIME

TRAFFIC_EVENT_MAX_QUEUE_LENGTH

TRAFFIC_EVENT_CONTROLLING_OP_CENTER      

TRAFFIC_EVENT_PRIMARY

INCIDENT_TYPE

INCIDENT_ROAD_CONDITION

INCIDENT_HAZMAT

INCIDENT_VEHICLE_DATA

DISABLED_VEHICLE_TAG_STATE_OF_ISSUE

DISABLED_VEHICLE_TAG_NUMBER

DISABLED_VEHICLE_TIRE_CHANGE

DISABLED_VEHICLE_HOT_SHOT

DISABLED_VEHICLE_WATER

DISABLED_VEHICLE_GAS

DISABLED_VEHICLE_DIRECTIONS

DISABLED_VEHICLE_OWN_DISPOSITION

DISABLED_VEHICLE_CALL_FOR_SERVICE

DISABLED_VEHICLE_GONE_ON_ARRIVAL

DISABLED_VEHICLE_ABANDONED_VEHICLE      

DISABLED_VEHICLE_RELAY_OPERATOR

DISABLED_VEHICLE_OTHER

DISABLED_VEHICLE_OTHER_DESCRIPTION

ACTION_EVENT_SIGNAL

ACTION_EVENT_DEBRIS

ACTION_EVENT_UTILITY

ACTION_EVENT_OTHER

ACTION_EVENT_OTHER_DESCRIPTION

WEATHER_SERVICE_ROAD_CONDITION

WEATHER_SERVICE_WEATHER_CONDITIONS

WEATHER_SERVICE_EVACUATION_REQUIRED

WEATHER_SERVICE_STORM_CLEANUP_REQUIRED

CONGESTION_EVENT_IS_RECURRING

PLANNED_ROADWAY_CLOSURE_EORS_TRACKING_NUMBER

COUNTY_STATE_UNSPECIFIED

ALLEGANY_COUNTY

ANNEARUNDEL_COUNTY

BALTIMORE_CITY

BALTIMORE_COUNTY

CALVERT_COUNTY

CAROLINE_COUNTY

CARROL_COUNTY

CECIL_COUNTY

CHARLES_COUNTY

DORCHESTER_COUNTY

FREDERICK_COUNTY

GARRETT_COUNTY

HARFORD_COUNTY

HOWARD_COUNTY

KENT_COUNTY

MONTGOMERY_COUNTY

PRINCEGEORGES_COUNTY

QUEENANNES_COUNTY

SAINTMARYS_COUNTY

SOMERSET_COUNTY

TALBOT_COUNTY

WASHINGTON_COUNTY

WICOMICO_COUNTY

WORCESTER_COUNTY

WASHINGTON_DC

WEST_VIRGINIA

VIRGINIA

DELAWARE

PENNSYLVANIA

Identifier trafficEventID

ResponsePlanItemStatusUpdateList itemStatusList

BasicEventData data

TrafficEventDataChangedList dataChangedList

Identifier planItemID

ResponsePlanItemStatus planItemStatus


Figure 297. TrafficEventManagement3 (Class Diagram)



3.1.21.16.1 CountyState (Class)

This enumeration defines the various counties in Maryland  and the states surrounding Maryland that will be used for defining the traffic event.

3.1.21.16.2 ResponsePlanItemStatusUpdate (Class)

This structure contains data that describes a status chnage to a particular response plan item.

3.1.21.16.3 ResponsePlanItemStatusUpdateList (Class)

This is a collection of ResponsePlanItemStatus objects.

3.1.21.16.4 ResponsePlanStatusChangedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items in the response plan of a traffic event change state.

3.1.21.16.5 TrafficEventDataChanged (Class)

This enumeration lists all the possible traffic event data fields. These will be used to indicate which data has changed in basic event data and the derived events data when the event state changes are broadcast via CORBA event service.

3.1.21.16.6 TrafficEventDataChangedList (Class)

A collection of TrafficEventDataChanged items.

3.1.21.16.7 TrafficEventStateChangedInfo (Class)

This structure contains the data that is broadcast when the traffic event state changes.

3.1.21.17 TSSManagement (Class Diagram)

This class diagram contains the interfaces, structs, and typedefs that are to be defined in IDL and provide the external interface to the TSSManagement package of the CHART II system.
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3.1.21.17.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode.  These states typically apply only to field devices.  When a device is taken offline, it is no longer available for use through the system and automated polling is halted.  When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.17.2 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE.  ONLINE is used to indicate the device is available to the operational system.  OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled.  MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.   

3.1.21.17.3 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received.  Ports of this type support a receive method that allows a chunk of all available data to be received.  This method prevents callers from having to issue many receive calls to parse a device response.  Instead, this receive call returns all available data received within the timeout parameters.  The caller can then parse the data within a local buffer.  Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.21.17.4 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in DirectionValues.

3.1.21.17.5 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

3.1.21.17.6 EVENT_CHANNEL_TSS_DATA (Class)

This is a static string that contains the name of the event channel used to push events that contain Transportation Sensor System traffic parameter data.  The following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_DATA channels:

CurrentStatus

3.1.21.17.7 EVENT_CHANNEL_TSS_STATUS (Class)

This is a static string that contains the name of the event channel used to push events relating to the change in a Transportation Sensor System status and/or configuration.  The following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_STATUS channels:

ObjectAdded

ObjectRemoved

ConfigChanged

ModeChanged

OpStatusChanged

3.1.21.17.8 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.17.9 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence.  This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.1.21.17.10 ModeChangedEventInfo (Class)

This struct contains information pushed with a ModeChanged event.

m_id - The ID of the TSS whose communication mode has changed.

m_mode - The new communication mode for the TSS.

3.1.21.17.11 ObjectAddedEventInfo (Class)

This structure contains information passed in the ObjectAdded event pushed on a TSS status event channel.  It contains the object reference that has been added along with its configuration values and current status values.

3.1.21.17.12 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). 

3.1.21.17.13 OpStatusChangedEventInfo (Class)

This struct contains data passed with an OpStatusChanged event.

m_id - The ID of the TSS whose operational status has changed.

m_opStatus - The new operational status for the device.

3.1.21.17.14 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.21.17.15 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources.  The getPort method is used to request the use of a port from the PortManager.  Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available.  When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.21.17.16 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to access a device from the given port manager.  This class exists to allow for the phone number used to access a device to differ based on the port manager to take into account the physical location of the port manager within the telephone network.  For example, when dialing a device from one location the call may be long distance but when dialing from another location the call may be local.

3.1.21.17.17 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc. capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a roadway at a single location.  This interface serves to identify TransportationSensorSystem objects as being of the type RTMS.  It also provides a place holder for future operations that may not apply to TSS objects in general and are instead RTMS specific.

3.1.21.17.18 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

3.1.21.17.19 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles per hour in tenths.  (thus 550 == 55.0 MPH)  Valid values are 0 to 2550.  A value of 65535 is used to indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData - The count of vehicles for the sample period.  Valid values 0 to 65535.  A value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent. (thus 1000 = 100.0 percent).  Valid values are 0 to 1000.  A value of 65535 represents a missing or invalid value.

3.1.21.17.20 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of technology used for detection within the transportation industry.  Examples of TSS devices range from the advanced devices, such as RTMS, to basic devices, such as single loop detectors.

This software interface is implemented by objects that provide access to the traffic parameters sensed by a Transportation Sensor System.  Transportation Sensor Systems are capable of providing detection for one or more detection zones.  A single loop detector would have one detection zone, while an RTMS would have 8 detection zones. 

3.1.21.17.21 TransportationSensorSystemFactory (Class)

This interface is implemented by objects that are used to create and serve TransportationSensorSystem (TSS) Objects.  All factories of TSS objects can return the list of TSS objects which they have created and serve.  Derived interfaces are used to provide factories to create specific make, models, and types of TransportationSensorSystem objects.

3.1.21.17.22 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:  

m_id - The unique identifier for this TSS.  This field is ignored when the object is passed to the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this TSS.  When enabled, command and response packets exchanged with the device are logged to a debugging log file.

3.1.21.17.23 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is  ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo  object. 

3.1.21.17.24 TSSEventType (Class)

This enumeration defines the types of events that may be pushed on an event channel by a Transportation Sensor Status object.  The values in this enumeration are used as the discriminator in the TSSEvent union.

ObjectAdded - a TransportationSensorSystem has been added to the system.

ObjectRemoved - a TransportationSensorSystem has been removed from the system.

CurrentStatus - The event contains the current status of one or more Transportation Sensor System objects.

ConfigChanged - One or more configuration values for the Transportation Sensor System have been changed.

ModeChanged - The communications mode of the TransportationSensorSystem has changed.

OpStatusChanged - The operational status of the TransportationSensorSystem has changed.

3.1.21.17.25 TSSListEntry (Class)

This struct is used to pass a TransporationSensorSystem object together with its ID.  This struct is provided for convenience because when discovering an object, it is usually required to make a call to the object's getID() method.

3.1.21.17.26 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation Sensor System as specified in the Sensor system's TSSConfiguration object.  

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data was collected from the device.

3.1.21.17.27 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.17.28 ZoneGroup (Class)

This class is used to group one or more detection zones of a Transportation Sensor System into a logical grouping.  Traffic parameters for all detection zones included in the group are averaged to provide a single set of traffic parameters for the group. 

3.1.21.17.29 ZoneGroupTrafficParms (Class)

This struct contains traffic parameters for a ZoneGroup.

m_zoneGroupNumber - The number of the zone group for which the traffic parameters apply.

m_trafficParms - The traffic parameter values for the zone group.

3.1.21.17.30 ZoneGroupTrafficParmsList (Class)

A collection of ZoneGroupTrafficParms

3.1.21.18 UserManagement (Class Diagram)

This class diagram contains the interfaces necessary to manage and utilize user profiles.
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3.1.21.18.1 DuplicateRole (Class)

This class represents an exception thrown when an attempt is made to define a role which already exists.

3.1.21.18.2 FunctionalRight (Class)

A functional right epresents a particular user capability.   A functional right grants a particular capability to perform system functions.  Each functional right may be limited by  attaching the identifier of a particular organization to which this right is constrained.  This capability allows an administrator to grant a particular Role the ability to modify only shared resources owned by the identified organization.  The orgFilter identifier CHART2 will allow access to any organizations shared resources.

3.1.21.18.3 FunctionalRightList (Class)

A list of functional rights.

3.1.21.18.4 IncorrectPassword (Class)

This class represents an exception thrown when the password specified for a user does not match that user's password in the database.

3.1.21.18.5 InvalidFunctionalRight (Class)

This class represents an exception thrown when an attempt is made to add an invalid functional right to a role.

3.1.21.18.6 InvalidPassword (Class)

This class represents an exception thrown when the password specified is invalid.

3.1.21.18.7 InvalidRole (Class)

This class represents the exception thrown when the specified role name does not exist in the database.

3.1.21.18.8 InvalidUserName (Class)

This class represents an exception thrown when the username specified is not valid.

3.1.21.18.9 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the system database.

3.1.21.18.10 ProfilePropertyList (Class)

A list of profile properties.

3.1.21.18.11 Role (Class)

A Role is a collection of functional rights.  A Role can be granted to a user, thus granting the user all functional rights contained within the role.  

3.1.21.18.12 RoleInUse (Class)

This class represents an exception thrown when an attempt is made to delete a role which has users assigned to it.

3.1.21.18.13 RoleList (Class)

This structure contains a list of roles. 

3.1.21.18.14 RoleName (Class)

Name assigned to a role. The role name must be unique and must be no longer than 32 bytes.

3.1.21.18.15 UnknownUser (Class)

This class represents an exception thrown when a user name is passed that is not in the user database.

3.1.21.18.16 UserList (Class)

A list of user names. 

3.1.21.18.17 UserLoggedIn (Class)

This class represents an exception thrown when an attempt is made to delete a user who is currently logged in.

3.1.21.18.18 UserManager (Class)

The UserManager provides access to data dealing with user management.  This includes users, roles, and functional rights.  The UserManager is largely an interface to the User Management database tables.

3.1.21.18.19 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

TrafficEventModule

3.1.22 Classes

3.1.22.1 TrafficEventHierarchy (Class Diagram)

This diagram depicts the relationships between Traffic event related interfaces and their implementing classes.  It does not show all possible traffic event types.  Instead it shows a few of the many possible types for illustrative purposes.  The main point of the diagram is to show that each TrafficEvent implementation object implements the corresponding CORBA interface and derives from the implementation object that implements its corresponding interface's parent interface.
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3.1.22.1.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event. 

3.1.22.1.2 ActionEventImpl (Class)

This class provides an implementation of the ActionEvent interface.  Each ActionEventImpl contains a reference to a ActionEventData describing the event.

3.1.22.1.3 CongestionEventImpl (Class)

This class provides an implementation of the CongestionEvent interface.  This contains the state variable to indicate if the event is a recurring event.

3.1.22.1.4 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event. 

3.1.22.1.5 DisabledVehicleImpl (Class)

This class provides an implementation of the DisabledVehicleEvent interface.  Each DisableVehicleEventImpl contains a reference to DisabledVehicleData that describes the disabled vehicle details at the scene.

3.1.22.1.6 IncidentImpl (Class)

This class provides an implementation of the Incident interface.  It contains state variables and processing that are unique to incident type traffic events.

3.1.22.1.7 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents.  Its purpose is to simplify the exchange of data between GUI and server. 

3.1.22.1.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.1.22.1.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.1.22.1.10 PlannedRoadwayClosureEventImpl (Class)

This class provides an implementation of the PlannedRoadwayClosureEvent interface.

3.1.22.1.11 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a traffic event. 

3.1.22.1.12 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface.  Each RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at the scene of the event.

3.1.22.1.13 SafetyMessageEventImpl (Class)

This class provides an implementation of the SafetyMessageEvent interface.

3.1.22.1.14 SpecialEventImpl (Class)

This class provides an implementation of the SpecialEvent interface.

3.1.22.1.15 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working.  A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident.  The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

3.1.22.1.16 TrafficEventImpl (Class)

This class provides an implementation of the TrafficEvent interface.  It contains state variables and processing that common to all traffic events. 

3.1.22.1.17 WeatherSensorEventImpl (Class)

This class provides an implementation of the WeatherSensorEvent interface.

3.1.22.1.18 WeatherServiceEventImpl (Class)

This class provides an implementation of the WeatherServiceEvent interface.

3.1.22.2 TrafficEventModuleClasses (Class Diagram)

This diagram shows traffic event related classes and interfaces.
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3.1.22.2.1 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip.  If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.22.2.2 CommLog (Class)

This class manages log entries.  These can be general Communications Log entries or specific log entries for a specific Traffic Event.  This class is the primary interface for the CommLog service.  It is used to persist log entries in the CHART II system and retrieve them for review.  Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events. 

3.1.22.2.3 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database.  This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.1.22.2.4 Incident (Class)

This class models objects representing roadway incidents.  An incident typically involves one or more vehicles and roadway lane closures.

3.1.22.2.5 IncidentImpl (Class)

This class provides an implementation of the Incident interface.  It contains state variables and processing that are unique to incident type traffic events.

3.1.22.2.6 java.lang.Thread (Class)

This class represents a java thread of execution.

3.1.22.2.7 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.1.22.2.8 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate. 

3.1.22.2.9 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

3.1.22.2.10 OrganizationParticipationImpl (Class)

This class provides an implementation of the OrganizationParticipation interface.  Each instance represents a particular organizations participation activities in response to a particular traffic event.

3.1.22.2.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.22.2.12 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

3.1.22.2.13 ResourceDeploymentImpl (Class)

This class provides an implementation of the ResourceDeployment interface.  Each instance represents a resource that has been deployed to the scene of a traffic event.  This class contains the state data that describes the resource's involvement in the traffic event.

3.1.22.2.14 ResourceMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it to monitor its shared resources.

3.1.22.2.15 ResponseMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it to notify each traffic event to monitor its response plan items for status changes.

3.1.22.2.16 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in response to a particular traffic event.

3.1.22.2.17 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan.  A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.1.22.2.18 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item.  Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.1.22.2.19 ResponsePlanItemImpl (Class)

This class provides an implementation of the ResponsePlanItem interface.  Each instance represents one particular part of a response plan that can be in an executed, active or inactive state.  This class also provides an implementation of the CommandStatus interface.  This implies that devices that are activated on behalf of this traffic event can hold a copy of this object and call its update() method to provide a running status of the plan item as it changes.

3.1.22.2.20 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway.  This point in the heirarchy provides a break off point for traffic event types that pertain to other modals.

3.1.22.2.21 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface.  Each RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at the scene of the event.

3.1.22.2.22 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.22.2.23 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.22.2.24 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.  Implementing classes must be able to provide a list of all shared resources under their management.  Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.  The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system.  When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.22.2.25 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.22.2.26 TrafficEventDB (Class)

This class provides an interface for the traffic event module to utilize the database.  The interface provides methods needed to store and retrieve TrafficEvent related information.

3.1.22.2.27 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

3.1.22.2.28 TrafficEventFactoryImpl (Class)

This class is capable of creating a new TrafficEvent object in the system.  Additionally, it acts as a manager of existing traffic event objects by performing calls on all traffic event objects such as shared resource or response plan monitoring.

3.1.22.2.29 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working.  A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident.  The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

3.1.22.2.30 TrafficEventModule (Class)

This class provides the resources and support functionality necessary to serve traffic event related objects in a service application.  It implements the ServiceApplicationModule interface which allows it to be served from any ServiceApplication.

3.1.22.2.31 TrafficEventModuleProperties (Class)

This class provides operations for getting values in the service's java properties file.

Sequence Diagrams

3.1.22.3 TrafficEventModule:AddCommLogEntry (Sequence Diagram)

When a traffic event is opened, closed, or changes types it needs to add an entry to the communications log.  This diagram depicts the fault tolerance built into this operation.  When the TrafficEventModule is called to add an entry to the communications log, it will check if it has any cached entries which need to be added.  These cached entries would be the result of prior calls which were not successful.  If there are cached entries, the module will attempt to add them to the last communications log that was successfully used.  If this is the first attempted use of a communications log or the attempt to use the last communications log fails, the module will search the trading service for all known communications logs.  Each of these logs will be stored for future use.  The module will then begin attempting to log all cached log data to each of the discovered communications logs until there are no more communications logs to try, or there are no more entries to log.  If all communications logs are tried and the entry still could not be logged, the entry will be added to the cache and this process will repeat again the next time a comm log entry is attempted.
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3.1.22.4 TrafficEventModule:AddLogEntry (Sequence Diagram)

This diagram shows how an entry is added to a traffic event's history log.   The TrafficEventImpl is called to add the log entry, and after checking the user's rights, it calls the TrafficEventGroup to add the entry.  The TrafficEventGroup creates a new LogEntry and calls the DatabaseLogger to add the entry to the database.  A CORBA event is then pushed through the event service, to update all of the GUIs with the new entry.
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3.1.22.5 TrafficEventModule:AddResponseItem (Sequence Diagram)

This diagram shows how a response item is added to a traffic event's response plan.  The items can either be executable or non-executable (i.e., a placeholder containing only a target).  The TrafficEvenImpl is called to add the ResponsePlanItem.  After checking the user's rights, it calls the TrafficEventGroup to add the item.  The TrafficEventGroup checks for existing ResponsePlanItems with the same target as the item being added.  If an existing item is found and the new item is not executable, the new item is ignored.  If an existing item is found and the new item is executable, the group sets the data in the existing ResponsePlanItem, which will overwrite the old data and cause the item's state to be "not executed" if it is already executed (see the sequence diagram SetMessageForUseInResponsePlan for details).  Otherwise, if there was not already an existing item, a new ResponsePlanItemImpl is created, added to the database, and activated.  A CORBA event is pushed to the event service to inform the GUIs of the new item, and entries are added to the traffic event's history log and the operations log.
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3.1.22.6 TrafficEventModule:AddResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is added to a traffic event.  The TrafficEventImpl is called to add the response participation, and after checking the user's rights, calls the TrafficEventGroup to add the response participation.  The TrafficEventGroup creates a new OrganizationParticipationImpl or a ResourceDeploymentImpl, then adds it to the database, activates the object to receive CORBA calls, and pushes a CORBA event through the event service so that all of the GUIs will be updated.  An entry is also added to the traffic event's history log.
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3.1.22.7 TrafficEventModule:AssociateEvent (Sequence Diagram)

This diagram shows how a traffic event is associated to another traffic event.  The TrafficEventImpl is called to associate the other event, and it calls the TrafficEventGroup after checking the rights.  The TrafficEventGroup updates the database, adds entries to its history, and calls the other (secondary) event.  The other event calls its event group, which marks itself as secondary, and updates the database.  CORBA events are pushed by both TrafficEventGroups to notify the GUIs of the new association, and the new association is also stored in the database.  Entries are added to the traffic events' histories and the operations log to record the change.
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Figure 306. TrafficEventModule:AssociateEvent (Sequence Diagram)



3.1.22.8 TrafficEventModule:CleanupResponsePlanItemData (Sequence Diagram)

This sequence diagrams shows the processing deletion of HARMessageAudioClip objects when a response plan item that is using them has been deleted. Each clip in response plan item data is checked if it is a HARMessageAudioClip and deregisterInterest method is invoked on the clip to delete the interest in the clip.  See AudioClipModule.DeregisterInterest for more details about how the interest is deleted.
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Figure 307. TrafficEventModule:CleanupResponsePlanItemData (Sequence Diagram)



3.1.22.9 TrafficEventModule:CloseEvent (Sequence Diagram)

This diagram shows what happens when a traffic event is closed.  The TrafficEventImpl is called to close the event.  After checking the user's rights, it calls the TrafficEventGroup to close the event.  The group updates the event state in the database, and removes all of the ResponsePlanItems from the event.  Entries are added to the traffic event's history, the communications log, and the operations log.
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Figure 308. TrafficEventModule:CloseEvent (Sequence Diagram)



3.1.22.10 TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

This diagram shows how a new traffic event is created.  The TrafficEventFactoryImpl is called to create the new traffic event.  After checking the user's rights, it creates a new TrafficEventGroup and calls it to create the appropriate type of TrafficEventImpl, based on the type of BasicTrafficEventData that is passed in.  Then the factory calls the TrafficEventGroup to initialize.  This adds any initial entries to the traffic event's history log, activates the TrafficEvent object, and publishes it in the trading service.  It also adds entries to the communications log and the operations log, and pushes a CORBA event through the event service to inform the GUIs of the creation of the new event.
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Figure 309. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)



3.1.22.11 TrafficEventModule:ExecuteResponse (Sequence Diagram)

This diagram shows how a traffic event's response plan is executed.  The TrafficEventImpl is called to execute the response.  It checks the user's rights and then calls the TrafficEventGroup to execute the response.  The TrafficEventGroup calls each ResponsePlanItem's execute method.  See the ExecuteResponsePlanItem sequence diagram for details on how each response plan item is executed.  The ResponseMonitorThread will be running in the background, and will periodically cause the factory to check all of the TrafficEventGroups for changes in the response plan item status.  When prompted by this thread, each TrafficEventGroup will push a CORBA event to notify the GUIs if any of its response plan items have changed state. 
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Figure 310. TrafficEventModule:ExecuteResponse (Sequence Diagram)



3.1.22.12 TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)

This diagram shows what happens when a response plan item is executed, either individually or when a traffic event's response plan is executed.  The user's rights are checked, and then the ResponsePlanItemImpl calls the ResponsePlanItemData to execute the item.  The specific type of ResponsePlanItemData will call the appropriate target and the request to activate the message will be queued.   Then the ResponsePlanItemImpl is marked as "executed", and the TrafficEventGroup is notified of the change in the item.  The database is updated and an entry is added to the traffic event group's history log.  The TrafficEventGroup will periodically be called on a background thread to push a CORBA event for any of its ResponsePlanItems that have changed state.
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Figure 311. TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)



3.1.22.13 TrafficEventModule:GetEventHistoryText (Sequence Diagram)

This diagram shows how entries are retrieved from the traffic event's history log.  The TrafficEventImpl is called to get the event history.  It checks the user's rights, then calls the TrafficEventGroup, which calls the DatabaseLogger to get the entries.   See the sequence diagram DatabaseLogger:getEntries for more details.
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Figure 312. TrafficEventModule:GetEventHistoryText (Sequence Diagram)



3.1.22.14 TrafficEventModule:GetExecutedResponsePlanItem (Sequence Diagram)

This sequence diagram shows how a arbitration queue can obtain a response plan item that was queued for execution when it starts up.  Note that the arbitration queue persists the id of the traffic event of the response plan items queued.  Arbitration queue requests the traffic event for a response plan item using the device that the arbitration queue represents. If a response plan item using this device is not found in the traffic event, a SpecifiedObjectNotFound execption is raised.  If the response plan item is found, the response plan item is returned. 



[image: image315.emf]ResponsePlanItemImpl

TrafficEventImpl

Arbitration

Queue

ResponsePlanItemData

isUsingObject

ResponsePlanItem

true or false

[ isUsingObject is true]

getStatus

[if a response plan item 

using the device is not found]

SpecifiedObjectNotFound

getExecutedRPI(deviceID)

getItemData

[while more ResponsePlanItems

&& isUsingObject is false ]


Figure 313. TrafficEventModule:GetExecutedResponsePlanItem (Sequence Diagram)



3.1.22.15 TrafficEventModule:Initialize (Sequence Diagram)

This diagram shows what happens when the TrafficEventModule is initialized.  The ServiceApplication calls the TrafficEventModule to initialize, which reads in the properties from a file, overriding the default properties.  It creates an event channel for traffic events and publishes the channel in the trading service so that other applications can see it.  It creates a TrafficEventDB object to handle all of the database calls, and a TrafficEventFactoryImpl object to manage the traffic events.  The TrafficEventFactoryImpl creates a DatabaseLogger for logging the traffic event's history log, then calls the TrafficEventDB to load the TrafficEventGroup objects from the database.  Then for each group it will activate the current TrafficEvent, the ResponseParticipation objects, and the ResponsePlanItem objects.  The TrafficEvent is exported to the trading service.  The response plan items are then initialized for resolving the device being used and to get the status of any response plan items that were queued for execution (See IntializeResponsePlanItems sequence diagram for details). The resource monitor thread and the response monitor thread are created, and the TrafficEventFactory is exported to the trading service.
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Figure 314. TrafficEventModule:Initialize (Sequence Diagram)



3.1.22.16 TrafficEventModule:InitializeResponsePlanItemData (Sequence Diagram)

This diagram shows how the response plan item data is initialized when the HAR response plan items are created at startup or on the fly. At startup, if the HAR message in the response plan items contain any HARMessageAudioClips, the database creates the clips with just clip ID read from the database.  These clips are replaced with the actual HARMessageAudioClip objects by querying the AudioClipManagers found in the CORBA Trader with the clip ID.  See HARUtility.GetHARMessageAudioClip sequence diagram for details about how a HARMessageAudioClip is obtained given an ID.   This diagram also shows how the HAR message audio data clips associated with a response plan item are saved if the message being used contains HARMessageAudioClipData objects and/or HARMessageAudioClip objects when they are created on the fly.  If the message contains HARMessageAudioClip objects, registerInterest() method is called on the object to establish an association between the response plan item data and the HARMessageAudioClip.  If the message contains HARMessageAudioDataClip objects, they are saved by calling the storeClip() method on the nearest AudioClipManager which saves the audio clip data in the database and returns a streamable audio clip object. See HARUtility.StoreHARMessageAudioDataClip for details about how the nearest AudioClipManager is found.     
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Figure 315. TrafficEventModule:InitializeResponsePlanItemData (Sequence Diagram)



3.1.22.17 TrafficEventModule:InitializeResponsePlanItems (Sequence Diagram)

This sequence diagram shows how the device used by response plan items is resolved and the status of the response plan items is initialized by querying the arbitration queue of the device that the response plan item is using at startup. All the available DMSs in the system are found by looking up the CORBA Trading repository.  A reference to the device being used by response plan items is set by matching the id of the target device with the ids of the DMSs found in the trader. After the device is found, the arbitration queue of the device is obtained.  The arbitration queues being used by the response plan items are queried for response plan item status.  The arbitration queue returns a list of status updates of the response plan items that are queued in the arbitration queue for execution.  Each response plan item status is updated with the status information recieved from the arbitration queue.
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Figure 316. TrafficEventModule:InitializeResponsePlanItems (Sequence Diagram)



3.1.22.18 TrafficEventModule:MonitorControlledResources (Sequence Diagram)

This diagram shows the periodic maintenance of the traffic events - the monitoring of the controlling operations center, and the removal of the traffic events from the system.   When the ResourceMonitorThread calls the factory to monitor the resources, the factory first gets all of the controlling operations centers for all traffic events.  If it does not have references for all of the operations centers' IDs, it will query the OperationsCenter object from the trading service.  then it asks each OperationsCenter how many users are logged in.  If no users are logged in, it pushes a CORBA event indicating that shared resources need to be transferred to another operations center.  The ResourceMonitorThread will also call the factory to check if events need to be removed from the system.  The factory asks each closed traffic event for its closure time and determines whether it has been closed long enough to remove it from the system.   If a traffic event is removed, the database is updated, the offer is withdrawn from the tradiing service, the CORBA object is deactivated, and a CORBA event is pushed on the event channel indicating that the traffic event was just deleted.
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Figure 317. TrafficEventModule:MonitorControlledResources (Sequence Diagram)



3.1.22.19 TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

This diagram shows what happens when a traffic event association is removed.  One of the TrafficEventImpl objects is called to remove the association.  It checks the user's rights and removes the association from its TrafficEventGroup and from the database and pushes an event.  It also calls the associated event to remove the association from it.  The associated event does the same thing, but when it calls back to the first TrafficEvent, the association has already been removed so it returns an exception to the second TrafficEvent and the association removal is complete.
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Figure 318. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)



3.1.22.20 TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is removed from a traffic event.  The ResponseParticipationImpl is called to remove itself.  After checking the user's rights, it calls the TrafficEventGroup that is attached to and asks it to remove the participation.  The TrafficEventGroup removes it from the database, deactivates the object, pushes a CORBA event to the event service, and adds entries to the event history log and operations log.
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Figure 319. TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)



3.1.22.21 TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)

This diagram shows how a response plan item is removed from a traffic event.  The ResponsePlanItemImpl is called to remove itself.  After checking the user's rights, if it  has been executed or is currently active it calls the arbitration queue of the target device to remore its entry from the queue.  It then calls the TrafficEventGroup that is attached to and asks it to remove the plan item.  The TrafficEventGroup removes it from the database, deactivates the object, pushes a CORBA event to the event service, and adds entries to the event history log and operations log.
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Figure 320. TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)



3.1.22.22 TrafficEventModule:SetLaneConfiguration (Sequence Diagram)

This diagram shows how the lane configuration is set for a roadway event.   The RoadwayEventImpl is called to set the lane configuration.  After checking the user's rights, it gets the old lane configuration and compares it to the new configuration.  If there is a change in a lane's state, it records the state change in the database and a log entry is added to the traffic event's history log.  Then a CORBA event is pushed indicating that the lane configuration has been set and entries are added to the traffic event's history log and operations log.
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Figure 321. TrafficEventModule:SetLaneConfiguration (Sequence Diagram)



3.1.22.23 TrafficEventModule:SetMessageForUseInResponsePlan (Sequence Diagram)

This diagram shows how a message is modified within an existing response plan item.  The ResponsePlanItemImpl is called to set the item data.  After checking the user's rights, it marks the response plan item as being "not executed".   It updates the plan item in the database and pushes a CORBA event via the event service indicating that the response plan item has changed.  Entries are added to the traffic event's history log and the operations log.
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Figure 322. TrafficEventModule:SetMessageForUseInResponsePlan (Sequence Diagram)



3.1.22.24 TrafficEventModule:Shutdown (Sequence Diagram)

This diagram shows what happens at shutdown.  The TrafficEventModule is called to shut down, and it calls the TrafficEventFactoryImpl, which calls all of the TrafficEventGroups.  Each TrafficEventGroup deactivates the current TrafficEvent and all of its ResponseParticipation objects and ResponsePlanItem objects.  Then the factory shuts down the resource monitor thread.  The module deactivates the TrafficEventFactory object and shuts down.
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Figure 323. TrafficEventModule:Shutdown (Sequence Diagram)

TSSManagement

3.1.23 Classes

3.1.23.1 RTMSFactoryClassDiagram (Class Diagram)

This diagram shows the classes of the TSSManagementModule relating to the RTMSFactoryImpl.  The RTMSFactoryImpl holds RTMSImpl objects and allows RTMSs to be added and removed from the system.
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Figure 324. RTMSFactoryClassDiagram (Class Diagram)



3.1.23.1.1 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.23.1.2 java.util.Vector (Class)

A Vector is a growable array of objects.

3.1.23.1.3 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval.  The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.23.1.4 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.23.1.5 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

3.1.23.1.6 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL.  It holds all RTMSImpl objects that have been created within an instance of the RTMSManagementModule and allows for the addition and removal of RTMS objects.  It also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to collect the current status of each RTMSImpl and push the collective status in a single CORBA event.

3.1.23.1.7 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the current traffic parameters from an RTMS device.  It makes use of an RTMSProtocolHandler to perform the device specific protocol to obtain the traffic parameters.  It moves the data from the device specific format to the generic TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone group configuration, perform raw data logging, and other services that are common to Transportation Sensor System objects.

3.1.23.1.8 TSSCurrentStatusPushTask (Class)

This class is a timer task that is executed on a regular interval.  When this task is run, it calls into the RTMSFactoryImpl object to have it collect the status for all RTMSImpl objects and to push a CurrentStatus event with the collected data.

3.1.23.1.9 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation Sensor System object that existed in the system during a prior run of the software.

3.1.23.1.10 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is  ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo  object. 

3.1.23.1.11 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database data pertaining to Transportation Sensor Systems.  Because this class is designed to be generic and work for RTMS as well as other TSS derived objects, the add method requires a model id to be passed.  This allows data for a specific model to be retrieved by model specific factories during system initialization.

3.1.23.1.12 TSSManagementProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to the properties specific to the TSSManagementModule.  These properties include the name of the file where raw traffic parameter data is to be logged, the directory where debug log files are to be kept, and the interval at which the status of all TSS objects is to be collected and pushed in a CORBA event.

3.1.23.2 RTMSObject (Class Diagram)

This diagram shows classes in the TSSManagementModule relating to the RTMSImpl class.  The RTMSImpl obtains most of its functionality from its base class, PolledTSSImpl.  The RTMSImpl object provides logic that allows the base class to obtain traffic parameters from an RTMS device.
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Figure 325. RTMSObject (Class Diagram)



3.1.23.2.1 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.  This table is used to log details about any comm failure that occurs in the system.

3.1.23.2.2 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.23.2.3 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.23.2.4 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval.  The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.23.2.5 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class.  This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.23.2.6 PolledTSSImpl (Class)

This object implements the Transportation Sensor System interface as defined in IDL.  This implementation provides the base functionality required for Transporation Sensor Systems that are polled periodically to retrieve traffic parameters.  The only requirement for derived classes is to provide an implmentation of the abstract poll method, which communicates over a previously connected Port to obtain the traffic parameters from a TSS.

This implementation periodically polls the field device using the derived class implementation of the poll method.  This implementation provides services such as raw data logging, averaging/summation of data into configured zone groups, asynchronous notification of configuration changes, and persistence/depersistence. 

3.1.23.2.7 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.23.2.8 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc. capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a roadway at a single location.  This interface serves to identify TransportationSensorSystem objects as being of the type RTMS.  It also provides a place holder for future operations that may not apply to TSS objects in general and are instead RTMS specific.

3.1.23.2.9 RTMSDeviceStatus (Class)

This class is used to pass raw data retrieved from the RTMS to the caller of the RTMSProtocolHdlr getStatus() method.

m_trafficParameters - the traffic parameters sensed by the device, such as volume, speed, and occupancy.

m_healthStatus - The health status byte reported from the RTMS.  A value other than 10, 20, 30, 40, 50, 60, or 70 indicates a hardware problem.

m_msgNum - The message number reported by the RTMS.  This number is incremented sequentially when the RTMS dumps averaged data to a retrieval area at the end of a message period.  It can be used to determine if the device is being polled too frequently or infrequently.

3.1.23.2.10 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL.  It holds all RTMSImpl objects that have been created within an instance of the RTMSManagementModule and allows for the addition and removal of RTMS objects.  It also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to collect the current status of each RTMSImpl and push the collective status in a single CORBA event.

3.1.23.2.11 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the current traffic parameters from an RTMS device.  It makes use of an RTMSProtocolHandler to perform the device specific protocol to obtain the traffic parameters.  It moves the data from the device specific format to the generic TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone group configuration, perform raw data logging, and other services that are common to Transportation Sensor System objects.

3.1.23.2.12 RTMSProtocolHdlr (Class)

This class is a utility that encapsulates the communication protocol of the RTMS device.  It provides a high level method to get the status as an object.  It formats a command and sends it to the device and receives and interprets the response from the device, passing the data back to the caller in the form of an RTMSDeviceStatus object.

3.1.23.2.13 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of technology used for detection within the transportation industry.  Examples of TSS devices range from the advanced devices, such as RTMS, to basic devices, such as single loop detectors.

This software interface is implemented by objects that provide access to the traffic parameters sensed by a Transportation Sensor System.  Transportation Sensor Systems are capable of providing detection for one or more detection zones.  A single loop detector would have one detection zone, while an RTMS would have 8 detection zones. 

3.1.23.2.14 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:  

m_id - The unique identifier for this TSS.  This field is ignored when the object is passed to the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this TSS.  When enabled, command and response packets exchanged with the device are logged to a debugging log file.

3.1.23.2.15 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation Sensor System object that existed in the system during a prior run of the software.

3.1.23.2.16 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is  ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo  object. 

3.1.23.2.17 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database data pertaining to Transportation Sensor Systems.  Because this class is designed to be generic and work for RTMS as well as other TSS derived objects, the add method requires a model id to be passed.  This allows data for a specific model to be retrieved by model specific factories during system initialization.

3.1.23.2.18 TSSPollingTask (Class)

This class is a TimerTask that is used by an RTMS to schedule its asynchronous polling with a Timer object.

3.1.23.2.19 TSSPollResults (Class)

This class is a data holder used to pass the results of device polling from the PolledTSSImpl derived class back to the base class for processing.  The traffic parameter data passed is lane (detection zone) level.  The operational status is the status as determined by the derived class.

m_trafficParms - An array of traffic parameters for the current poll cycle, with one array entry for each detection zone of the device.

m_opStatus - The operational status as determined by the derived class.

3.1.23.2.20 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation Sensor System as specified in the Sensor system's TSSConfiguration object.  

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data was collected from the device.

3.1.23.3  TSSModuleClassDiagram (Class Diagram)

This class diagram shows classes in the TSSManagementModule used to allow the module to run within the CHART II service framework and also to provide common services to other classes within the module.
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3.1.23.3.1 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.  This table is used to log details about any comm failure that occurs in the system.

3.1.23.3.2 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval.  The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.23.3.3 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.23.3.4 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL.  It holds all RTMSImpl objects that have been created within an instance of the RTMSManagementModule and allows for the addition and removal of RTMS objects.  It also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to collect the current status of each RTMSImpl and push the collective status in a single CORBA event.

3.1.23.3.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.23.3.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.23.3.7 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation Sensor System object that existed in the system during a prior run of the software.

3.1.23.3.8 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database data pertaining to Transportation Sensor Systems.  Because this class is designed to be generic and work for RTMS as well as other TSS derived objects, the add method requires a model id to be passed.  This allows data for a specific model to be retrieved by model specific factories during system initialization.

3.1.23.3.9 TSSManagementModulePkg (Class)

This class is a ServiceApplicationModule used to serve an RTMSFactory object.  The RTMSFactory serves zero or more RTMS objects.  By providing an implementation of the ServiceApplicationModule interface, this class can be included in the CHART2 service application framework, which provides common services needed to serve CORBA objects within the CHART 2 system.

3.1.23.3.10 TSSManagementProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to the properties specific to the TSSManagementModule.  These properties include the name of the file where raw traffic parameter data is to be logged, the directory where debug log files are to be kept, and the interval at which the status of all TSS objects is to be collected and pushed in a CORBA event.

Sequence Diagrams

3.1.23.4 PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)

A user with the proper functional rights can put a Transportation Sensor System in maintenance mode if it is not already in maintenance mode.  The communication mode stored in the TSSStatus object is updated to indicate maintenance mode.  If a polling timer does not already exist, it is created and the TSSPollingTask is scheduled for the configured polling interval.  A CORBA event is pushed on the Status event channel to notify others of the change.  An entry is made in the operations log to record that this action has been performed by the user.
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Figure 327. PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)



3.1.23.5 PolledTSSImpl:putOnline (Sequence Diagram)

A user with the proper functional rights can put a Transportation Sensor System online if it is not already online.  The communication mode stored in the TSSStatus object is updated to indicate the sensor is online.  If a polling timer does not already exist, it is created and the TSSPollingTask is scheduled for the configured polling interval.  A CORBA event is pushed on the Status event channel to notify others of the change.  An entry is made in the operations log to record that this action has been performed by the user.
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Figure 328. PolledTSSImpl:putOnline (Sequence Diagram)



3.1.23.6 PolledTSSImpl:setConfiguration (Sequence Diagram)

A user with the proper functional rights can change the configuration of a Transportation Sensor System.  The previous configuration values are used to detect values that have been changed.  If the Port location data has been changed, a new PortLocator object is created with the new values.  If the polling interval has been changed and the device is not offline, the existing polling timer is cancelled and destroyed, a new timer is created, and a new polling task is scheduled.  If any values were changed, an entry is made in the operations log to record the values that the user has changed.  A CORBA event is pushed on the Status event channel to provide notification of the configuration change to other applications.
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Figure 329. PolledTSSImpl:setConfiguration (Sequence Diagram)



3.1.23.7 PolledTSSImpl:takeOffline (Sequence Diagram)

A user with the proper functional rights can take a Transportation Sensor System offline from the system if it is not already offline.  The communication mode stored in the TSSStatus object is updated to indicate the sensor is offline.  The timer used to periodically invoke the polling process is cancelled and a CORBA event is pushed on the Status event channel to notify others of the change.  An entry is made in the operations log to record that this action has been performed by the user.
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Figure 330. PolledTSSImpl:takeOffline (Sequence Diagram)



3.1.23.8 RTMSFactoryImpl:constructor (Sequence Diagram)

When the RTMSFactoryImpl is constructed, it obtains persisted data for each previously existing RTMS from the database and constructs RTMSImpl objects using this data.  Each object is connected to the ORB and registered in the CORBA trading service.  The factory creates a timer that is used to cause it to periodically collect the status of all RTMS objects and push the data as a CORBA event.
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Figure 331. RTMSFactoryImpl:constructor (Sequence Diagram)



3.1.23.9 RTMSFactoryImpl:createRTMS (Sequence Diagram)

A user with the proper functional rights can add an RTMS to the system.  The RTMSFactoryImpl is called with configuration data for the RTMS to be added.  The RTMSFactoryImpl adds the configuration data to the database, using status information indicating the device is offline and OK.  An RTMSImpl object is created using this same data and the object is added to the list of RTMSImpl objects managed by the factory.  The new RTMSImpl object is connected to the ORB and published in the CORBA Trading Service.  A CORBA event is pushed to allow other applications to be notified of the existence of the RTMS object.



[image: image334.emf]ORB ServiceApplication

RTMSImpl

TSSManagementDB java.util.Vector RTMSFactoryImpl

Administrator

PushEventSupplier

(status)

registerObject

add

activate_object

create

[not authorized]

AccessDenied

addTSS

createRTMS

push (ObjectAdded)


Figure 332. RTMSFactoryImpl:createRTMS (Sequence Diagram)



3.1.23.10 RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)

The RTMSFactoryImpl contains a timer used to periodically push the current status of all sensors managed by the factory.  The factory retrieves the status of each RTMS and bundles all status into a single CORBA event.  This event is pushed on the Data event channel.
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Figure 333. RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)



3.1.23.11 RTMSFactoryImpl:remove (Sequence Diagram)

A user with the proper functional rights can remove an RTMS from the system.  The RTMSFactory withdraws the object from the CORBA trading service, disconnects the object from the ORB, removes the object's persisted data from the database, and finally removes the object from the factory's list of RTMS objects.  A CORBA event is pushed to notify other applications of the object's removal.

Note that this diagram shows an object being removed through a direct call to the RTMSFactoryImpl.  RTMS objects can also be removed using the remove method of the RTMS object.  When this occurs, the RTMS object simply delegates the call to its factory and the processing occurs as if the factory was called directly.
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Figure 334. RTMSFactoryImpl:remove (Sequence Diagram)



3.1.23.12 RTMSImpl:constructor (Sequence Diagram)

This diagram shows the construction of the RTMSImpl object.  The RTMSImpl invokes the base class constructor, allowing it to construct a PortLocator, LogFile (for debugging), and a polling timer (if the status passed to the constructor does not indicate the device is offline).  After the base class is constructed, the RTMSImpl constructs an RTMSProtocolHandler to be used to perform the RTMS specific protocol to obtain traffic parameters from the RTMS device.
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Figure 335. RTMSImpl:constructor (Sequence Diagram)



3.1.23.13 RTMSImpl:poll (Sequence Diagram)

The poll method of the RTMSImpl is called from its base class when it is time to poll the RTMS device.  At the point when this method is called, the base class has already established a connection with the device.  The RTMSImpl uses the RTMSProtocolHandler to send a data request to the device and parse the device response.  Any communication failure, such as a non-responsive device, causes the base class to be notified that a communication failure occurred.  If a communication failure did not occur, the RTMS health status is checked for an indication of a hardware failure.  If no hardware failure exists, the lane level data is passed back to the base class to process the data.
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Figure 336. RTMSImpl:poll (Sequence Diagram)



3.1.23.14 RTMSImpl:remove (Sequence Diagram)

A user with the proper functional rights can remove an RTMS from the system.  When this is done through a call to the RTMS object, the RTMS delegates the call to the RTMS Factory.  See the RTMSFactoryImpl:remove sequence for details.
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Figure 337. RTMSImpl:remove (Sequence Diagram)



3.1.23.15 TSSManagementModulePkg:initialize (Sequence Diagram)

The TSSManagementModule is initialized by the ServiceApplication framework when the Chart2Service configured to contain the TSSManagementModule is started.  The TSSManagementModule first ensures that the proper offer types have been registered in the Trader for the types of objects this module will serve.  It creates a wrapper to the service's properties object that provides easy access to properties that are specific to this module.  A TSSManagementDB object is created to provide access to Transportation Sensor System data that is stored in the database.  Two PushEventSupplier objects are created to provide access to two separate CORBA event channels.  One event channel is used to push events relating to configuration and operational status of RTMS objects.  The other channel is used to periodically push traffic parameter data to interested parties.  A LogFile object is created to provide access to a raw data log file, used to log lane level data to a flat file.  Finally, the RTMSFactoryImpl object is created, connected to the ORB, and registered in the CORBA Trading Service.
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Figure 338. TSSManagementModulePkg:initialize (Sequence Diagram)



3.1.23.16 TSSManagementModulePkg:shutdown (Sequence Diagram)

The TSSManagementModule is shutdown when the Chart2Service which contains the module is shut down.  The TSSManagementModule disconnects the RTMSFactory from the ORB and then tells it to shut down.  The RTMSFactoryImpl tells each RTMSImpl object to shut down and it disconnects the object from the ORB.  When an RTMSImpl object is shut down, it cancels its polling timer (if any).
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Figure 339. TSSManagementModulePkg:shutdown (Sequence Diagram)



3.1.23.17 TSSPollingTask:run (Sequence Diagram)

A PolledTSSImpl object is polled on a regular interval specified in its TSSConfiguration object.  When polled, the PolledTSSImpl returns immediately if it is offline.  Otherwise, it establishes a connection with the field device using communications parameters specified in the TSSConfiguration.  The PolledTSSImpl then calls its abstract poll method which is implemented by the derived class (RTMSImpl).  Any changes to the operational status detected  during polling of the device are pushed on the CORBA event channel used for status.  Raw data obtained from the device is logged in the Raw Data log file.  The lane level data provided by the derived class is combined according to the zone groups that have been configured in the TSSConfiguration.  The speed for each lane (detection zone) included in a zone group is averaged to provide a single value for the zone group.  If a lane does not have any volume (and thus no speed), the speed obtained the last time the lane had a volume is used.  The volume across all detection zones in the zone group is summed, and the occupancy for all detection zones in the zone group is averaged (including detection zones reporting zero occupancy).  The current speed for each detection zone with a non-zero volume is stored off for use when a zero occupancy occurs.
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Figure 340. TSSPollingTask:run (Sequence Diagram)



TTSControlModule

3.1.24 Classes

3.1.24.1 TTSControlModuleClasses (Class Diagram)

The TTSControlModule serves an instance of the TTSConverter interface, which provides functionality to convert text messages into speech for the CHART2 system.  This diagram shows how the implementation of a TTSConverter CORBA interface relies on other supporting classes to perform its functions.
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Figure 341. TTSControlModuleClasses (Class Diagram)



3.1.24.1.1 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.1.24.1.2 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.1.24.1.3 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer.  One call to pushAudioProperties() will always precede any calls to pushAudio().  When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing.  PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data.  In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.24.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to push audio clip information back to the client.  It provides the functionality to manage access to the AudioPushThreads.

3.1.24.1.5 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.24.1.6 FileCacheCleaner (Class)

This class represents an instance of a thread which is created to delete the audio clips that have not been used recently when the cache size used by the audio clips exceeds the maximum limit assigned.

3.1.24.1.7 FileCacheInfo (Class)

This structure specifies the information about an audio clip file, which has been converted from a text message to voice and cached for future use.

3.1.24.1.8 FileCacheManager (Class)

This class maintains a mapping between text messages and the corresponding audio clip file information.  This is accomplished by maintaining a list of TreeMaps (one for each audio format supported) with text as key and audio clip information as the value.  This class also helps manage the amount of hard drive space consumed by the audio clips by deleting the old clip files when the maximum cache size limit is reached.  The maximum cache size limit can be set by the administrator using the system properties. 

3.1.24.1.9 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.1.24.1.10 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.24.1.11 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the map will be in ascending key order, sorted according to the natural order for the key's class, or by the comparator provided at creation time, depending on which constructor is used.

3.1.24.1.12 LHTTSEngine (Class)

This interface represents the L&H RealSpeak Server TTS engine used to convert text messages to speech.

3.1.24.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.24.1.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.24.1.15 TTSControlModule (Class)

This class implements the Service Application module interface.  It publishes the TTSConverterImpl object, which provides the functionality to convert text messages to speech for the CHART2 system.  It also creates the TTSServer object, which provides the functionality to access the LHTTSEngine and the TTSControlModuleDB object, which provides access to the database.  

3.1.24.1.16 TTSControlModuleDB (Class)

This class is a database accessor class used to store and retrieve audio clip information.

3.1.24.1.17 TTSControlModuleProperties (Class)

This class represents the system properties specific to the TTS Control Module.

3.1.24.1.18 TTSConverter (Class)

This interface represents the Text to Speech converter object which allows text to be passed in and speech to be returned.

3.1.24.1.19 TTSConverterImpl (Class)

This is the implementation of the TTSConverter interface, which provides the functionality to convert text to speech for the CHART2 system.

3.1.24.1.20 TTSMessageQueue (Class)

This class provides the functionality to retrieve messages from the queue and process them by either retrieving the audio clip data using the FileCacheManager object if available or by converting the text messages to speech using the TTSServer object.  For text messages not already converted and available in the cache, this class maintains two queues of messages to be converted into speech, one for message requests from the system and another for the users.  The messages in system message queue get a higher priority over messages in user message queue.  All the messages of a particular queue are processed in a First In First Out fashion.  The audio data produced from conversion or retrieved from the cache is passed back to the client via the AudioPushConsumer object using the AudioPushThreadManager object.

3.1.24.1.21 TTSServer (Class)

This class provides the functionality to access and control the TTS Engine from the CHART2 system.  It provides the functionality to start, stop and change the configuration of the TTS Engine.  It also provides a method to convert a text message to speech.

3.1.24.1.22 TTSTextMessageInfo (Class)

This struct specifies the text message information required to process text to speech converter request, the call back object to pass the results back and the type of command requested.

3.1.24.1.23 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

Sequence Diagrams

3.1.24.2 TTSControlModule:AddMessageToQueue (Sequence Diagram)

This diagram shows how a TTSConverter request is added to the message queue.  First, the TTSMessageQueue queries the FileCacheManager to check if an already converted audio clip exists for the text message of the desired audio format.  The FileCacheManager looks in the TreeMap of the desired audio format for the audio clip using the text message as the key.  The TreeMap returns the audio clip file information, if the audio clip already exists.  Otherwise, it returns a null.  If the audio clip was not found, the message is queued in the proper queue depending upon the priority and the request returns (see ProcessQueuedMessages sequence digram for details about how the queued messages are processed).  If the audio clip is found, the last used timestamp in the file cache information is updated and the audio data is pushed back to caller using the AudioPushConsumer object passed with the request (see PushAudioClipInformation for details about how audio clip data are passed back to the client).
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Figure 342. TTSControlModule:AddMessageToQueue (Sequence Diagram)



3.1.24.3 TTSControlModule:CleanupFileCache (Sequence Diagram)

This diagram shows how the FileCacheManager thread deletes the old audio clip files when the cache limit is exceeded.
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Figure 343. TTSControlModule:CleanupFileCache (Sequence Diagram)



3.1.24.4 TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

This sequence diagram shows how a convert text to speech request is processed.  The message is added to the TTSMessageQueue and audio clip information will be pushed back using the AudioPushComsumer object passed through this call.  See ProcessQueuedMessages and HARUtility.PushAudio sequence diagrams for details about how the messages are processed and the data is pushed back.
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Figure 344. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)



3.1.24.5 TTSControlModule:CreateFileCacheInfo (Sequence Diagram)

This diagram shows how the FileCacheManager creates a FileCacheInfo object, which stores the text message and audio clip file information for future use.  A file object is created from the given file name and is passed to AudioSystem class to get the AudioInputStream object, which contains the audio format information and the actual data.  The length of the audio message and the size of the audio file are calculated using the audio format properties.  The AudioDataFormat object is created and a FileCacheInfo object is created using the various data available.  Finally, the FileCacheInfo object is added to the TreeMap containing others clip information of similar audio format and the FileCacheInfo object is returned.
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Figure 345. TTSControlModule:CreateFileCacheInfo (Sequence Diagram)



3.1.24.6 TTSControlModule:GetSupportedFormats (Sequence Diagram)

This diagram shows how to retrieve a list of currently supported audio formats from the TTS Engine.
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Figure 346. TTSControlModule:GetSupportedFormats (Sequence Diagram)



3.1.24.7 TTSControlModule:GetVoiceLength (Sequence Diagram)

This sequence diagram shows how a request to get audio message length is processed.  The message is added to the TTSMessageQueue and audio clip information will be pushed back using the AudioPushComsumer object passed through this call.  See ProcessQueuedMessages sequence diagrams for details about how the messages are processed and the data is pushed back.
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Figure 347. TTSControlModule:GetVoiceLength (Sequence Diagram)



3.1.24.8 TTSControlModule:Initialize (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the TTSControlModule is initialized. Upon creation, the TTSControlModule creates a TTSControlServiceProperties object, which provides the user defined system properties to the rest of the objects in the TTSControlModule.  A TTSControlDB object is created to provide access to the database for TTSControlModule.  A TTSServer object is created to control and provide access to the TTS engine.  A TTSConverterImpl object is created, activated with the POA and published in the Trader to provide the capability to convert text to speech for the rest of the CHART2 system.  The TTSConverterImpl object creates a TTSMessageQueue thread, which provides the functionality to queue and prioritize the TTSConverter requests.  The TTSConverterImpl object also creates a FileCacheManager object, which manages the audio clip file info.  The TTSMessageQueue creates a AudioPushThreadManager object, which contains a pool of AudioPushThreads that can be used to push audio clip information back to the clients of the TTSConverter.  The number of AudioPushThreads to be created can be configured through the system properties file.
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Figure 348. TTSControlModule:Initialize (Sequence Diagram)



3.1.24.9 TTSControlModule:ProcessQueuedMessages (Sequence Diagram)

This diagram shows how TTSMessageQueue thread processes the queued messages.  The thread continuously looks for messages added to System Message Queue and User Message Queue.  At any time, messages queued in the System Message Queue have a higher priority over the messages queued in the User Message Queue.  Once a message is retrieved from the queue, a check is made to see if the same text message with the desired audio format has been converted before.  If the audio clip file is found, the audio data is pushed back to client using the AudioPushConsumer object passed with the request.  If a pre-converted clip is not available, the thread requests the TTSServer to convert the text message to speech.  If the TTS engine fails to convert the message, the consumer is notified.  If the message is converted successfully, the audio clip information is stored in the FileCacheManager for future use and the audio properties are pushed to the client.  See PushAudioClipInfo sequence diagram for details about how the audio clip information is pushed.
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Figure 349. TTSControlModule:ProcessQueuedMessages (Sequence Diagram)



3.1.24.10 TTSControlModule:PushAudioClipInformation (Sequence Diagram)

This diagram shows how the audio clip information is pushed back to the caller of a TTSConverter request.  If the request is a get voice length command, the audio clip properties are pushed to client using the AudioPushConsumer passed with the request.  If the request is for converted audio data, a File object is created to access the audio to retrieve the audio data.  An AudioInputStream object is retrieved using the AudioSytem class .  The input stream along with the AudioPushConsumer is passed to the AudioPushThreadManager for pushing the audio data.  See HARUtility.PushAudio for details about how the audio data is pushed.
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Figure 350. TTSControlModule:PushAudioClipInformation (Sequence Diagram)



3.1.24.11 TTSControlModule:Shutdown (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the TTSControlModule is shutdown.  The TTSConverterImpl object is deactivated and shutdown.  The TTSConverterImpl object in turn shuts down the TTSMessageQueue thread, which causes to shutdown the AudioPushThreadManager thread and AudioPushThreads. The TTSServer object is also shutdown and the TTSControlDB object is destroyed.
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Figure 351. TTSControlModule:Shutdown (Sequence Diagram)



UserManagementModule

3.1.25 Classes

3.1.25.1 UserManagementModuleClasses (Class Diagram)

This class diagram shows classes that support user management in the Chart II system.  The purpose of this module is to serve the object implementing the UserManager interface and to serve the objects implementing the Profile interface.
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Figure 352. UserManagementModuleClasses (Class Diagram)



3.1.25.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively.  The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published. 

3.1.25.1.2 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively.  The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover. 

3.1.25.1.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to configure how the CHART II system behaves or presents information to a user.

3.1.25.1.4 ProfileImpl (Class)

This class is the specific implementation of a Profile interface which will be served by the User Management Service.  As such, it contains the profile properties and provides methods to get, add and delete the properties..

3.1.25.1.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.25.1.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.25.1.7 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Managment data in the database.  This class uses a Database object to retrieve a connection to the database for its exclusive use during a method call.

3.1.25.1.8 UserManagementModule (Class)

This module creates, publishes and deletes the object that implements the UserManager interface for user configuration and manipulation.

3.1.25.1.9 UserManager (Class)

The UserManager provides access to data dealing with user management.  This includes users, roles, and functional rights.  The UserManager is largely an interface to the User Management database tables.

3.1.25.1.10 UserManagerImpl (Class)

This class is the specific implementation of a UserManager interface which will be served by the User Management Service.  As such, it provides implementations of each of the methods in the UserManger interface.

Sequence Diagrams

3.1.25.2 UserManagementModule:AddUser (Sequence Diagram)

A user with the proper functional rights may add a new user to the system.  The user will be added to the user database provided the password and username specified for the new user are valid.
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Figure 353. UserManagementModule:AddUser (Sequence Diagram)



3.1.25.3 UserManagementModule:ChangeUserPassword (Sequence Diagram)

A user may change his/her own password.  The system will verify that the invoking user is actually the user whose password is being changed and will require the user to pass his/her current password which must match the password in the user database.
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Figure 354. UserManagementModule:ChangeUserPassword (Sequence Diagram)



3.1.25.4 UserManagementModule:CreateRole (Sequence Diagram)

A user with the proper functional rights may create a new role in the user database.  The system will verify that the role is not already defined before creating it.
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Figure 355. UserManagementModule:CreateRole (Sequence Diagram)



3.1.25.5 UserManagementModule:DeleteProfileProperty (Sequence Diagram)

A user with proper functional rights can delete a profile property from the profile.
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Figure 356. UserManagementModule:DeleteProfileProperty (Sequence Diagram)



3.1.25.6 UserManagementModule:DeleteRole (Sequence Diagram)

A user with the proper functional rights may delete a role from the user database.  The system will verify that the role is not currently assigned to any users before deleting it.
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Figure 357. UserManagementModule:DeleteRole (Sequence Diagram)



3.1.25.7 UserManagementModule:DeleteUser (Sequence Diagram)

A user with the proper functional rights may delete a user from the user database.  The system will check if the user who is being deleted is currently logged in.  If the user is logged in, the administrator will be notified of this fact and will not be able to delete the user.  Note that the administrator may use the system to force the user to logout and then delete the user.  The check to see if the user is currently logged in is a warning to the administrator and, due to its use of the trader, cannot be guaranteed to successfully check all logins.  If the user is deleted from the database while logged in, however, it will not affect his/her current session.  He/she will simply not be able to use the system subsequent to logging out.
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Figure 358. UserManagementModule:DeleteUser (Sequence Diagram)



3.1.25.8 UserManagementModule:GetSystemProfile (Sequence Diagram)

A user can get the system profile which is common to all the users in the CHART2 system.
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Figure 359. UserManagementModule:GetSystemProfile (Sequence Diagram)



3.1.25.9 UserManagementModule:GetUserProfile (Sequence Diagram)

A user with proper functional rights can get his or her own Profile.
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Figure 360. UserManagementModule:GetUserProfile (Sequence Diagram)



3.1.25.10 UserManagementModule:GrantRole (Sequence Diagram)

A user with the proper functional rights may grant a role to a user.  The user will not get his/her new functional rights until he/she logs off and logs back on.
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Figure 361. UserManagementModule:GrantRole (Sequence Diagram)



3.1.25.11 UserManagementModule:Initialize (Sequence Diagram)

Upon initialization the user manager module will create the objects which it is responsible for serving, activates them using the POA, and exports them to the CORBA trading service.  After initialization this module is available for use by clients.
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Figure 362. UserManagementModule:Initialize (Sequence Diagram)



3.1.25.12 UserManagementModule:ModifyRole (Sequence Diagram)

A user with the proper functional rights may change the functional rights that belong to a role.  This will have the effect of changing the actions that users who have been granted that role may perform.  However, these changes will not be recognized until the user logs out and logs back in.
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Figure 363. UserManagementModule:ModifyRole (Sequence Diagram)



3.1.25.13 UserManagementModule:RevokeRole (Sequence Diagram)

A user with the proper functional rights may revoke a role that has previously been granted to a user.  This action will result in the user having a reduced set of functional rights, and thus reduce the number of system activities the user may perform.  The user will get his/her new list of functional rights the next time he/she logs in.
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Figure 364. UserManagementModule:RevokeRole (Sequence Diagram)



3.1.25.14 UserManagementModule:SetProfileProperties (Sequence Diagram)

A user with the proper functional rights can store a set of properties in a profile.
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Figure 365. UserManagementModule:SetProfileProperties (Sequence Diagram)



3.1.25.15 UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)

A user with proper functional rights may set the list of Functional Rights belonging to a role. Note that at the completion of this sequence the role will only have the rights that were set by this call.
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Figure 366. UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)



3.1.25.16 UserManagementModule:SetUserPassword (Sequence Diagram)

A user with the proper functional rights may set the password that a user must specify in order to log into the system.  This action does not require that the administrator be able to supply the users current password and, therefore, is restricted to administrative users.  This function is included to deal with situations where users forget their system password.
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Figure 367. UserManagementModule:SetUserPassword (Sequence Diagram)



3.1.25.17 UserManagementModule:SetUserRoles (Sequence Diagram)

A user with the proper functional rights may assign set of roles to a user.  The user will not get his/her new functional rights until he/she logs off and logs back on.  Note that at the end of this operation the user will have only the roles assigned by this operation.
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Figure 368. UserManagementModule:SetUserRoles (Sequence Diagram)



3.1.25.18 UserManagementModule:Shutdown (Sequence Diagram)

The user management module will withdraw the user management object from the trader, deactivates it from the POA and delete it.
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Figure 369. UserManagementModule:Shutdown (Sequence Diagram)

Utility

3.1.26 Classes

3.1.26.1 UtilityClasses (Class Diagram)

This Class Diagram shows various utility classes that are used by various applications.
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addCommand(QueueableCommand cmd)

removeCommand(QueueableCommand cmd)

shutdown()

-getNextCommand():QueueableCommand

m_commands

m_shutdown

TokenManipulator()

createToken(userName, opCenterID, opCenterName)

optimize(operation, orgFilter)

add(userToken, operation, orgFilter)

add(userToken, operation)

remove(userToken, operation, orgFilter)

remove(userToken, operation)

getOpCenterName(userToken)

getOpCenterID(userToken)

getHostName(userToken)

getUserName(userToken)

checkAccess(userToken, operation, orgFilter)

checkAccess(userToken, operation)

hasRight(userToken, operation, orgFilter)

validateToken(userToken)

calcCheckSum(userToken)

printToken(userToken)

printNybble(nybble)

multiToPlainText(multi)

plainTextToMulti(text, formatter)

parseMulti(multi, listener)

hardwareMsgToMulti(DMSHardwarePage[] msg):String

description()

enumerate()

fromInt()

name()

value()

ConfigureDMS

ConfigureSelf

ConfigureUsers

ForceDMSPoll

ManageDeviceComms

ManageDictionary

ManageUserLogins

ModifyMessageLibrary

ModifyPlans

ResetDMSGroup

SetDMSMessage

TransferAnySharedResource

UsePlans

ViewDictionary

ViewUserConfig

ViewUserLogins

run()

getProperty()

setProperty()

add(consumer)

setInterval()

remove(consumer)

-hasConsumer(consumer)

-verifyConnections()

for_consumers()

for_suppliers()

destroy()

ServiceApplicationProperties(

String propertiesFilename)

getProperties()

getDefaultProperties()

getThreadModel():int

getThreadPoolSize():int

getDatabaseConnectString():String

getDatabaseUserName():String

getDatabasePassword():String

getModuleNames():String[]

getNetConnectionSite():String

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

DefaultServiceApplication(String propertiesFilename)

-writeOffersToFile(String moduleName, int[] offerIDs):boolean

-removeOffersFromFile(String moduleName):boolean
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3.1.26.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects.  All of the objects added to this collection must be of the same concrete type.  Each element in the collection has an associated counter which tracks how many times this element has been added.  It is then possible to get only the elements which have been added to the collection n times where n is a positive integer value.  This class is very useful for creating GUI menu's for multiple objects as it allows all objects to insert their menu items and then allows the user to  get only those items which all objects inserted.

3.1.26.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects.  The CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out order.  As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.26.1.3 CommandStatusWatcher (Class)

Helper class used to monitor a collection of CommandStatus objects to summarize the status of commands.

3.1.26.1.4 CorbaUtilities (Class)

This class  is a collection of static CORBA utility methods that can be used by both server and GUI for CORBA Trader service transactions.

3.1.26.1.5 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and consumers of information.

3.1.26.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.26.1.7 DBUtility (Class)

This class contains methods that allow interaction with the database.

3.1.26.1.8 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface.  This class is passed a properties file during construction.  This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available,  provide database connectivity, etc.  The properties file also contains the class names of service modules that should be served by the service application.  During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service.  Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization.  The DefaultServiceApplication stores all offer IDs in a file during its startup.  Each module is expected to remove its offers from the trader during a shutdown.  If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start.  This keeps  multiple offers for the same object from being placed in the trader. 

3.1.26.1.9 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,.. 

3.1.26.1.10 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error.  This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done.  In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary.  If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference.  When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system.  During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.1.26.1.11 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware.  A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character.  This format maps well to the way DMS protocols return the current message being displayed in a status query.  This class can then be passed to a MultiConverter object to convert the message into MULTI format.

3.1.26.1.12 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be managed in an EventConsumerGroup must implement.

3.1.26.1.13 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service.  The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

3.1.26.1.14 FMS (Class)

This class represents the CHART II system's interface to the FMS SNMP manager.  Most methods included in this class have an associated method in the FMS SNMP Manager DLL provided by the FMS Subsystem.  The other methods in this class exist to provide easier interface to the DLL.  As an example, this class contains a blankSign method that actually calls setMessage on the FMS Subsystem with the message set to blank and beacons off.

3.1.26.1.15 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the CHART2 system.  It contains a static member for each possible functional right.

3.1.26.1.16 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

3.1.26.1.17 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence.  This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.1.26.1.18 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers which are to be used in Identifiable objects.

3.1.26.1.19 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.26.1.20 java.lang.Thread (Class)

This class represents a java thread of execution.

3.1.26.1.21 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string.  A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list. 

3.1.26.1.22 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for system trace messages.

3.1.26.1.23 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval.  The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.26.1.24 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text.  It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

3.1.26.1.25 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to MULTI formatted messages.

3.1.26.1.26 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs.  An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

3.1.26.1.27 ObjectRemovalListener (Class)

This interface is implemented by objects that wish to be notified of objects being removed from the system.  This is typically used by objects that store a collection of other objects, such as a factory, to allow them to remove objects from their collection when the object is to be removed from the system.

3.1.26.1.28 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.   

3.1.26.1.29 OpLogMessage (Class)

This class holds data for a message to be stored in the system's Operations Log.

3.1.26.1.30 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system's Operations Log.  Messages added to the queue can be removed in FIFO order.

3.1.26.1.31 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

3.1.26.1.32 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection.  When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

3.1.26.1.33 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.  The user of this class can pass a reference to the event channel factory to this object.  The constructor will create a channel in the factory.  The push method is used to push data on the event channel.   The push method is able to detect if the event channel or its associated objects have crashed.  When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called.  To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.  This interval specifies the quickest reconnect interval that can be used.  The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.26.1.34 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution.  Derived classes implement the execute method to specify the actions taken by the command when it is executed.  This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down. 

3.1.26.1.35 RecurringTimer (Class)

A recurring timer is a thread that notifies each TimerUpdatable object that has been registered on a specified period.

3.1.26.1.36 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application.  These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.26.1.37 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects.  Implementing classes are  notified when their host service is initialized and when it is shutdown.  The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.26.1.38 ServiceApplicationProperties (Class)

This class provides methods which allow the DefaultServiceApplication to access the necessary properties from the java properties configuration file.  It also provides a default properties file which can be retrieved by anyone holding a ServiceApplication interface reference.  This gives each installed service module the opportunity to load default values before retrieving property values from the properties file.

3.1.26.1.39 TokenManipulator (Class)

This class contains all functionality required for user rights in the system.  It is the only code in the system which knows how to create, modify and check a user's functional rights.  It encapsulates the contents of an octet sequence which will be passed to every secure method.  Secure methods should call the checkAccess method to validate the user.  Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method.  The token contains the following information.  Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

3.1.26.1.40 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system.  The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.26.2 UtilityClasses2 (Class Diagram)

This Class Diagram shows various utility classes related to log entries that are used by GUI and servers.
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3.1.26.2.1 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient LogEntryCache.  The object of this class encapsulates the stored log entry and adds a reference count.

3.1.26.2.2 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database.  This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.1.26.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database.  This can be a general Communications Log entry or it can be a historical entry for a Traffic Event.  Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event. 

3.1.26.2.4 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess of the requestor-specified maximum number of entries to return at one time.  The LogIterator stores references to the LogEntry objects thus cached, and requests additional objects as needed.  The LogEntryCache uses reference counting to prevent storing duplicate copies of LogEntry objects, and it deletes LogEntry objects when they are no longer needed. 

3.1.26.2.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log.  The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned. 

3.1.26.2.6 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries.  If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation. 

3.1.26.2.7 LogIteratorImpl (Class)

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work which clients can request via the LogIterator interface.  The LogIteratorImpl stores data relating to cached LogEvents for a single retrieval request, and implements the client request to get additional clumps of data pertaining to that request.

Sequence Diagrams

3.1.26.3 OperationsLog:LogMessage (Sequence Diagram)

When a log operation is invoked on the OperationsLog object, it creates a OpMessageLog and adds this object to the OpLogQueue. The OpLogQueue driver thread wakes up at a pre-configured interval and writes all the queued messages to the database. 
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Figure 372. OperationsLog:LogMessage (Sequence Diagram)

4 Deployment

The planned architecture of the Chart 2 system is to distribute complete system functionality to a number of districts throughout the State of MD.  For R1B3 the planned deployment is to distribute servers at SOC and AOC operations centers as shown in Figure 374. Each of these complete systems can provide full functionality for the devices connected to the system and objects created within that system (such as traffic events), and provides functionality for other district's systems that are available.  Thus the absence of one district's server does not affect the ability of another district to operate their own system or other systems that are available.  Although the server deployment is spread across multiple sites, the GUI presents a view to the user of one large system, using CORBA to pull together objects served from the many deployment sites. 

The GUI is able to locate the software objects at all deployment sites through the use of the CORBA Trading Service.  As the diagram shows, a CORBA Trading Service shall exist at each deployment site.  Each service that publishes CORBA objects shall offer the objects through its local CORBA Trading Service.  Using the link feature of the CORBA Trading Service, each Trading Service is linked to all other Trading Services in the system.  Each GUI is configured to utilize its local (or an assigned) Trading Service for object discovery.  Through the use of linked (federated) Trading Services, the GUI discovers objects that are deployed on the same site as the Trading Service as well as objects published in all other trading services in the system.  This allows the GUI to provide a unified view of the system, even though the system is actually distributed over multiple deployment sites. 

In addition to showing the software objects throughout the system on a single GUI, it is also necessary to reflect the current state of the software objects as they are changed during real time operations.  The CORBA Event Service is used to allow objects to push changes in their state to the GUI (or other interested CORBA clients).  Each deployment site shall have an instance of a CORBA Event Channel Factory, which is an extension of the CORBA Event Service that allows multiple event channels.  Each Chart II service whose objects are subject to real time changes will create one or more Event Channels in its local Event Channel Factory.  Each event channel is earmarked for a specific class of events (such as DMS events).  Each service that creates channels in the CORBA Event Channel Factory publishes the event channel in the CORBA Trading Service and then uses the channel to push events relating to object state, alarms, etc.   

Since the CORBA Event Service does not provide for a linking mechanism (such as that of the Trading Service), a GUI that wishes to listen for events at a system wide level discovers all of the event channels via the CORBA Trading Service and registers itself as a consumer on each of the event channels.  Using this scheme, a GUI uses the Trading Service to discover all software objects regardless of their deployment site and also uses the Trading Service to discover Event Channels, regardless of their deployment site.  The GUI may then provide the user with a unified view of the system, both in the objects presented and the ability to show near real time updates of these objects.  Since the nature of the system is dynamic, processes that discover objects will do so on a periodic basis so that they can discover new services and objects that are added to the system. 

Most Chart II software objects used in this system are typical distributed software objects.  Each of these objects is served from one and only one deployment site.  The data inside an object pertains only to the instance of the object and operations pertain only to the instance of the object on which they are performed. Other parts of the system (such as the GUI) must go to the instance of an object to view the object's data or perform operations on the object.  For example, there is one and only one software object in the system that represents a specific DMS in the field.  If an operation such as setting the message needs to be done to the Field DMS, the GUI must perform the operations on the one and only software object that represents the DMS.  This software object may be served from a deployment site other than the site where the GUI exists. 

The system includes three classes whose instances do not act as the typical objects described above.  Instead, each instance of the class provides access to exactly the same data.  Multiple instances of the class serve as replicated software objects.  The system uses this type of object for the Dictionary, UserManager, and Communications Log.  These objects are different than the rest of the objects in the system because it is required that the dictionary, user data, and communications log be shared throughout all deployment sites in the system.  Using the same dictionary data throughout the system provides consistency in messages displayed on DMSs.  Using the same user data throughout the system allows a user to log in at any site, even in the event of a catastrophe at the user's normal operating site.   

While the design could accomplish this use of shared data through using single instances of the objects, this type of design would include single points of failure.  Thus if the one and only one Dictionary object were not available, no messages would be able to be placed on a DMS anywhere in the system since the message contents could not be checked for banned words.  To overcome these single points of failure, the replication feature of the DBMS will be used to replicate data to each deployment site's database.  Each deployment site will have its own instances of the Dictionary, UserManager, and Communications Log objects that front end the replicated database. 

This diagram illustrates the deployment of CHART II servers at SOC and AOC operations centers.
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Figure 373. Multiple Site Deployment Diagram (Deployment Diagram)

Acronyms

The following acronyms appear throughout this document:

API
Application Program Interface




BAA
Business Area Architecture




CORBA
Common Object Request Broker Architecture




DBMS
Database Management System




DMS
Dynamic Message Sign




DTMF
Dual Tone Multiple Frequency




EORS
Emergency Operations Reporting System




FMS
Field Management Station




GUI
Graphical User Interface




HAR
Highway Advisory Radio




IDL
Interface Definition Language




ITS
Intelligent Transportation Systems




LATA
Local Access and Transport Areas




NTCIP
National Transportation Communications for ITS Protocol




OMG
Object Management Group




ORB
Object Request Broker




POA
Portable Object Adapter




R1B2
Release 1, Build 2 of the CHART II System




TTS
Text To Speech




UML
Unified Modeling Language
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Appendix A – Functional Rights

This table lists the functional rights that exist in the CHART II system and the operations to which they grant access.

Functional Right Required
Operation
Organization Filterable

BasicOperations


Add Comm Log entries
No


Get Comm  Log entries
No

ConfigureDMS


Add DMS
Yes


Remove DMS
Yes


Set DMS Configuration
Yes

ConfigureDMS or ViewDMSConfig
Get DMS Configuration
Yes

ConfigureHAR


Add HAR
Yes


Add SHAZAM
Yes


Remove HAR
Yes


Remove SHAZAM
Yes


Set HAR Associated with a Notifier(DMS or SHAZAM)
Yes


Set HAR Configuration
Yes


Set HAR Message Notifier(DMS or SHAZAM) Direction
Yes


Set SHAZAM Configuration
Yes

ConfigureHAR or ViewHARConfig


Get HAR Configuration
Yes


Get SHAZAM Configuration
Yes

ConfigureSelf


Get User Profile
No


Set User Password
No

ConfigureSelf, ConfigureSystemProfile


Delete Profile Properties
No


Set Profile Properties
No

ConfigureTrafficEvent
Add Traffic Event Log Entry
No


Associate Event
No


Change Event type
No


Check if Congestion Event is a Recurring event
No


Close Traffic Event
No


Override Incident Lane Open Close Time
No


Override Traffic Event Closure Time
No


Set Congestion Event as a Recurring event
No


Set Incident Road Conditions
No


Set Incident Type
No


Set Incident Vehicle Data
No


Set Roadway Event lane configuration
No


Set Traffic Event as Primary event
No


Set Traffic Event as Secondary event
No

ConfigureUsers


Change User Password
No


Create Role
No


Create User
No


Delete Role
No


Delete User
No


Grant Role
No


Revoke Role
No


Set Role Functional Rights
No


Set User Roles
No

Maintain DMS


Blank DMS
Yes


Perform DMS Pixel Test
Yes


Perform DMS Test
Yes


Poll DMS
Yes


Reset DMS Controller
Yes


Set DMS Message 
Yes

MaintainHAR


Blank HAR
Yes


Delete HAR Slot Message
Yes


Refresh SHAZAM
Yes


Reset HAR
Yes


Set HAR Message
Yes


Set HAR Transmitter Off
Yes


Set HAR Transmitter On
Yes


Set SHAZAM Beacons Off
Yes


Set SHAZAM Beacons On
Yes


Setup HAR
Yes


Store HAR Slot Message
Yes

Manage Services
Shutdown Service
No

ManageDeviceComms


Put a device in Maintenance Mode
Yes


Put a device Online
Yes


Take a device Offline
Yes

ManageDictionary


Add a list of Approved Words to Dictionary
No


Add a list of Banned Words from Dictionary
No


Remove a list of Approved Words from Dictionary
No


Remove a list of Banned Words from Dictionary
No

ManageDictionary or ViewDictionary


Get Approved Words from Dictionary
No


Get Banned Words from Dictionary
No

ManageUserLogins


Force Logout
No


Force Logout
No

ModifyMessageLibrary


Create Message Library
No


Create Stored Message
No


Remove Library
No


Remove Stored Message
No


Remove Stored Message
No


Set Message associated with Stored Message
No


Set Message Library Name
No


Set Stored Message Data
No

ModifyPlans


Add Plan Item
No


Create Plan
No


Remove Plan
No


Remove Plan Item
No


Remove Plan Item
No


Set Plan Item Data
No


Set Plan Item Name
No


Set Plan Name
No

Must pass the token of the user logging out


Change User
No


Logout User
No

RespondToTrafficEvent


Add a message to Arbitration Queue
No


Add Resource Response Participation
No


Add Response Plan Item
No


Execute Response Plan Item
No


Execute Traffic Event Response
No


Override Organization responded time
No


Override Resource arrival time
No


Override Resource departure time
No


Remove a message from Arbitration Queue
No


Remove Response Device
No


Remove Response Participation
No


Remove Response Plan Item
No


Set Organization notification.
No


Set Organization participation response to Event
No


Set Resource arrived on scene
No


Set Resource departed from scene
No


Set Response Plan Item data
No


Set Response Plan Item description
No

RespondToTrafficEvent, ViewTrafficEventData
Get Response Plan Item data
No

SetHARMessage


Activate HAR Message Notice
Yes


Deactivate HAR Message Notice
Yes


Set HAR message and Notifiers
Yes

TransferAnySharedResource


Clear Controlling Operations Center
Yes


Set Controlling Operations Center
Yes


Transfer Shared Resources
Yes

ViewUserConfig or ConfigureUsers


Get Role Functional Rights
No


Get Roles
No


Get User Roles
No


Get Users
No

ViewUserLogins
Get Login Sessions
No

Appendix B – Glossary

Action Event
A Traffic Event related to the disposition of actions in response to device failures and non-blockage events (e.g. signals, debris, utility, and signs).






Approved Word
A word that is known to the system and has been approved for use when communicating with the motoring public via a messaging device. The dictionary will suggest words to the operator when it encounters a word that has not been previously approved.




Arbitration Queue
A prioritized queue containing messages for display or broadcast on a traveler information device.




Banned Word
A word that may not be used when communicating with the motoring public via a messaging device such as a HAR or DMS.




Comm Log
A collection of information received from any source that requires no action.




Congestion Event
A Traffic Event related to roadway congestion situations. Congestion Events may be recurring or non-recurring.






CORBA Event
A CORBA mechanism using which different Chart2 components exchange information without explicitly knowing about each other.




CORBA Trader
A CORBA service that facilitates object location and discovery. A server advertises an object in the Trading Service based on the kind of service provided by the object. A client locates objects of interest by asking the Trading Service to find all objects that provide a particular service.




Data Model
An object repository that keeps track of changes to the various objects in the repository and informs about these changes as they occur, to observers who are interested in the objects in the repository. A Data Model identifies the subject in a Subject/Observer design pattern.




Dictionary  


A collection of banned and approved words.






Deployable Resource
Any resource that can be deployed to the scene in order to provide assistance during a traffic event.




DMS 
A Dynamic Message Sign that can be controlled by one Operations Center at a time.






DMS Stored Message Item 
A plan item that is used to set a specific message on a specific DMS when added to a Traffic Event response plan and activated.






Emergency Operations Reporting System
A system external to CHART II that (among other things) keeps track of planned roadway closures and permits.




Factory
A CORBA object that is capable of creating other CORBA objects of a particular type. The newly created object will be served from the same process as the factory object that creates it.




FMS 
Field Management Station through which the CHART II system communicates with the devices in the field.






Functional Right 
A privilege that gives a user the right to perform a particular system action or related group of actions. A functional right may be limited to pertain only to those shared resources owned by a particular organization or can pertain to the shared resources of all organizations.






Graphical User Interface
Part of a software application that provides a graphical interface to its user.




GUI Wrapper Object
A GUI wrapper object is one that wraps a server object to provide it with GUI functionality such as menu handling. It also helps in performance enhancement by caching data locally thereby avoiding network calls when not necessary. 




HAR
A Highway Advisory Radio which can be controlled by one Operations Center at a time.




HAR Message
A message which is capable of being stored on a HAR. It is composed of a message header, body and footer.




HAR Message Clip
A message clip is part of a HAR message that could be a header or body or footer. It can be stored either as a text or in one of the binary forms (WAV, MP3 etc). 




HAR Message Slot
A message slot is one of the numbered message stores inside the HAR device that can be used to store pre-fabricated messages useful for quick retrieval and playing. 




Incident Event
A Traffic Event that is entered by an Operator in response to one of the following types of incidents: Disabled in roadway, Personal injury, Property damage, Fatality, Debris in roadway, Vehicle fire, Maintenance, Signal call, Police activities, Off-road activity, Declaration of emergency, Weather, or Other.





Installable Module
A plugable GUI module that provides a specific function, which when registered with the GUI is called on to initialize itself at the time of GUI startup and shut down at the time of GUI shut down. 




Lane Closure
The closure of one or more roadway lanes resulting from a Traffic Event.






Message Library 
A collection of stored messages that can be displayed on the DMS or broadcast on a HAR.






Navigator
A Navigator is a GUI window that contains a tree on the left-hand side and a list on the right hand side. Tree elements represent groups of objects and the list on the right hand side represents the objects in the selected group.




Object Discovery
A GUI mechanism in which the client periodically asks the CORBA Trading Service to find objects of those types that are of interest to the GUI, such as DMS, HAR, Plan etc. 




Operations Center
A center where one or more users may log in to operate the Chart II system. Operations centers are assigned responsibility for shared resources that are controlled by users who are logged in at that operations center.






Operator
A Chart II user that works at an Operations Center.




Organization 


An organization is an agency that participates in the CHART II system and owns one or more Shared Resources. 




Plan 
A collection of plan items that can be added to the response plan of a traffic event as a group.






Plan Item 
An action in the system that can be set up in advance to be activated one or more times in the future. Plan items must be contained in a plan. Specific types of plan items exist for specific functionality. A plan item may be copied to a traffic event response plan and subsequently activated.



Port
A CORBA object used to generically represent a single communications resource available on a computer. Derived interfaces define functionality specific to the type of communications resource.




PortManager
A CORBA object used by clients to gain access to Port objects.  The PortManager manages access to pre-configured Port objects and allows ports to be shared amongst many clients.




ProtocolHandler
A software object that contains code that is knowledgeable of the protocol used to command a specific make and model of a device.




Response Plan
A collection of response plan items created in response to a traffic event that can be activated as a group..




Response Plan Item
An action in the system that can be set up in response to a traffic event. Response plan items must be contained in a response plan. Specific types of response plan items exist for specific functionality. A response plan item carries out its specific task when activated




Role 
A Role is a collection of functional rights that a user may perform. The roles that pertain to a particular user for a particular login session are determined when he/she logs into the system.






Safety Message Event
A Traffic Event that is entered by an Operator to display and/or broadcast safety messages.






Service Application
A software application that can be configured to run one or more service application modules and provides them basic services needed to serve CORBA objects.




Service Application Module
A software module that serves a related group of CORBA objects and can be run within the context of a service application.




Shared Resource 
A resource that is owned by an organization. A user may be granted access to a shared resource owned by an organization through the functional rights scheme.






SHAZAM
A device used to notify the traveling public of the broadcast of a HAR message.




Sign
see DMS




Stored Message
A message that may be broadcast on a HAR or displayed on a DMS.




System Profile
Information used to define the configuration of the system. Properties stored in the system profile apply to all users when they are logged in.




Token
A token or access token is a security blob that encloses information about a user and the functional rights associated with the user. All secured Chart2 operations require a token to be passed to it and based on the functional rights found in a token a user is allowed or denied access. 




Traffic Event
A traffic event represents a roadway event that is affecting traffic conditions and requires action from system operators.






Transferable Shared Resource
A shared resource that can be transferred from one operations center to another by a user with the appropriate functional rights.




User 
A user is somebody who uses the CHART II system. A user can perform different operations in the system depending upon the roles they have been granted.






User Profile
A set of information used to correctly configure an individual user’s GUI on startup.




VoicePort


A type of port that provides access to a telephone



Weather Service Alert Event
A Traffic Event that is entered by an Operator in response to National Weather Service advisories.
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