[image: image376.png]

coordinated Highways Action Response Team

state highway administration

[image: image377.wmf]
R1B3 Servers Detailed Design

Contract DBM-9713-NMS
TSR # 9803444

Document # M362-DS-011R0

March 16, 2001

By

Computer Sciences Corporation

PB Farradyne Inc.
Client Network Services Inc.

Integrated Technology Solutions Inc.
[image: image378.wmf][image: image379.wmf]CNSI

[image: image380.png]

[image: image381.emf]

Revision
Description
Pages Affected
Date

0
Initial Release
All

Table of Contents

1-11
Introduction

1.1
Purpose
1-1
1.2
Objectives
1-1
1.3
Scope
1-1
1.4
Design Process
1-1
1.5
Design Tools
1-2
1.6
Work Products
1-2
2
Key Design Concepts
2-1
2.1
HAR Messages and Audio Clips
2-1
2.2
Arbitration Queue
2-2
2.3
Field Communications
2-6
2.4
Error Processing
2-7
2.5
Packaging
2-8
3
Package Designs
3-1
3.1
AudioClipModule
3-1
3.2
Chart2Service
3-14
3.3
CommLogModule
3-18
3.4
CORBAUtilities
3-28
3.5
DeviceUtility
3-30
3.6
DictionaryModule
3-49
3.7
DMSControlModule
3-62
3.8
DMSProtocols
3-132
3.9
DMSUtility
3-147
3.10
FieldCommunicationsModule
3-150
3.11
HARControlModule
3-189
3.12
HARManagement
3-282
3.13
HARProtocols
3-301
3.14
Java Classes
3-310
3.15
MessageLibraryModule
3-314
3.16
PlanModule
3-337
3.17
ResourcesModule
3-352
3.18
SHAZAMControlModule
3-370
3.19
SHAZAMManagement
3-403
3.20
SHAZAMProtocols
3-404
3.21
SystemInterfaces
3-406
3.22
TrafficEventModule
3-474
3.23
TSSManagement
3-506
3.24
TTSControlModule
3-534
3.25
UserManagementModule
3-551
3.26
Utility
3-571
4
Deployment
4-1
Acronyms
Bibliography
Appendix A – Functional Rights
Appendix B – Glossary

Table of Figures

3-2Figure 1. AudioClipModule (Class Diagram)

Figure 2. AudioClipModule:clipMgrCleanupLostClips (Sequence Diagram)
3-7
Figure 3. AudioClipModule:DeregisterInterest (Sequence Diagram)
3-8
Figure 4. AudioClipModule:Initialize (Sequence Diagram)
3-9
Figure 5. AudioClipModule:RegisterInterest (Sequence Diagram)
3-10
Figure 6. AudioClipModule:Shutdown (Sequence Diagram)
3-11
Figure 7. AudioClipModule:StoreClip (Sequence Diagram)
3-12
Figure 8. AudioClipModule:StreamAudioClip (Sequence Diagram)
3-13
Figure 9. CHART2ServiceClasses (Class Diagram)
3-14
Figure 10. CHART2Service:Shutdown (Sequence Diagram)
3-16
Figure 11. CHART2Service:Startup (Sequence Diagram)
3-17
Figure 12. CommLogModuleClassDiagram (Class Diagram)
3-18
Figure 13. CommLogModule:addEntries (Sequence Diagram)
3-22
Figure 14. CommLogModule:destroy (Sequence Diagram)
3-23
Figure 15. CommLogModule:getEntries (Sequence Diagram)
3-24
Figure 16. CommLogModule:initialize (Sequence Diagram)
3-25
Figure 17. CommLogModule:runIteratorCleanup (Sequence Diagram)
3-26
Figure 18. CommLogModule:shutdown (Sequence Diagram)
3-27
Figure 19. CORBAClasses (Class Diagram)
3-28
Figure 20. DeviceUtility (Class Diagram)
3-30
Figure 21. PortLocatorClasses (Class Diagram)
3-33
Figure 22. MessageQueue:addEntry (Sequence Diagram)
3-36
Figure 23. MessageQueue:changePriority (Sequence Diagram)
3-37
Figure 24. MessageQueue:getEntries (Sequence Diagram)
3-38
Figure 25. MessageQueue:purgeUnresolvedEntries (Sequence Diagram)
3-39
Figure 26. MessageQueue:removeEntry (Sequence Diagram)
3-40
Figure 27. MessageQueue:validateEntries (Sequence Diagram)
3-41
Figure 28. ModemPortLocator:connectPort (Sequence Diagram)
3-43
Figure 29. PortLocator:getConnectedPort (Sequence Diagram)
3-45
Figure 30. PortLocator:ReleasePort (Sequence Diagram)
3-46
Figure 31. VoicePortLocator:connectPort (Sequence Diagram)
3-48
Figure 32. DictionaryModClassDiagram (Class Diagram)
3-49
Figure 33. DictionaryImpl:addApprovedWordList (Sequence Diagram)
3-52
Figure 34. DictionaryImpl:addBannedWordList (Sequence Diagram)
3-53
Figure 35. DictionaryImpl:checkForBannedWords (Sequence Diagram)
3-54
Figure 36. DictionaryImpl:getApprovedWords (Sequence Diagram)
3-55
Figure 37. DictionaryImpl:getBannedWords (Sequence Diagram)
3-56
Figure 38. DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)
3-57
Figure 39. DictionaryImpl:removeApprovedWordList (Sequence Diagram)
3-58
Figure 40. DictionaryImpl:removeBannedWordList (Sequence Diagram)
3-59
Figure 41. DictionaryModule:initialize (Sequence Diagram)
3-60
Figure 42. DictionaryModule:shutdown (Sequence Diagram)
3-61
Figure 43. DMSControlClassDiagram (Class Diagram)
3-62
Figure 44. QueueableCommandClassDiagram (Class Diagram)
3-72
Figure 45. DMSControlModule:ActivateHARNotice (Sequence Diagram)
3-76
Figure 46. DMSControlModule:AddEntry (Sequence Diagram)
3-77
Figure 47. DMSControlModule:BlankSign (Sequence Diagram)
3-78
Figure 48. DMSControlModule:BlankSignFromQueueImpl (Sequence Diagram)
3-79
Figure 49. DMSControlModule:BlankSignImpl (Sequence Diagram)
3-80
Figure 50. DMSControlModule:BlankSignNow (Sequence Diagram)
3-82
Figure 51. DMSControlModule:ChangePriority (Sequence Diagram)
3-83
Figure 52. DMSControlModule:CheckResourceConflict (Sequence Diagram)
3-84
Figure 53. DMSControlModule:CreateDMS (Sequence Diagram)
3-85
Figure 54. DMSControlModule:DeactivateHARNotice (Sequence Diagram)
3-87
Figure 55. DMSControlModule:EvaluateQueue (Sequence Diagram)
3-90
Figure 56. DMSControlModule:FmsGetConnectedPort (Sequence Diagram)
3-91
Figure 57. DMSControlModule:FmsReleasePort (Sequence Diagram)
3-92
Figure 58. DMSControlModule:GetConfiguration (Sequence Diagram)
3-93
Figure 59. DMSControlModule:GetControlledResources (Sequence Diagram)
3-94
Figure 60. DMSControlModule:GetEntriesStatus (Sequence Diagram)
3-95
Figure 61. DMSControlModule:GetStatus (Sequence Diagram)
3-96
Figure 62. DMSControlModule:HandleOpStatus (Sequence Diagram)
3-98
Figure 63. DMSControlModule:HasControlledResources (Sequence Diagram)
3-99
Figure 64. DMSControlModule:Initialize (Sequence Diagram)
3-100
Figure 65. DMSControlModule:ModifyHARNotice (Sequence Diagram)
3-102
Figure 66. DMSControlModule:PollNow (Sequence Diagram)
3-103
Figure 67. DMSControlModule:PollNowImpl (Sequence Diagram)
3-104
Figure 68. DMSControlModule:PutDMSInMaintMode (Sequence Diagram)
3-105
Figure 69. DMSControlModule:PutDMSOnline (Sequence Diagram)
3-107
Figure 70. DMSControlModule:RemoveDMS (Sequence Diagram)
3-108
Figure 71. DMSControlModule:RemoveEntry (Sequence Diagram)
3-109
Figure 72. DMSControlModule:Report (Sequence Diagram)
3-110
Figure 73. DMSControlModule:RequestFailed (Sequence Diagram)
3-111
Figure 74. DMSControlModule:RequestSuccessful (Sequence Diagram)
3-112
Figure 75. DMSControlModule:ResetController (Sequence Diagram)
3-114
Figure 76. DMSControlModule:RestoreDMS (Sequence Diagram)
3-116
Figure 77. DMSControlModule:RunCheckCommLossTask (Sequence Diagram)
3-117
Figure 78. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)
3-118
Figure 79. DMSControlModule:RunPollDMSTask (Sequence Diagram)
3-119
Figure 80. DMSControlModule:RunRecoveryTimerTask (Sequence Diagram)
3-121
Figure 81. DMSControlModule:SetAssociatedHAR (Sequence Diagram)
3-122
Figure 82. DMSControlModule:SetConfiguration (Sequence Diagram)
3-124
Figure 83. DMSControlModule:SetMessage (Sequence Diagram)
3-125
Figure 84. DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)
3-127
Figure 85. DMSControlModule:SetMessageImpl (Sequence Diagram)
3-128
Figure 86. DMSControlModule:Shutdown (Sequence Diagram)
3-129
Figure 87. DMSControlModule:TakeDMSOffline (Sequence Diagram)
3-131
Figure 88. DMSProtocolsPkg (Class Diagram)
3-133
Figure 89. ProtocolSupportClasses (Class Diagram)
3-136
Figure 90. DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram)
3-142
Figure 91. FP9500ProtocolHdlr:GetStatus (Sequence Diagram)
3-144
Figure 92. FP9500ProtocolHdlr:PixelTest (Sequence Diagram)
3-145
Figure 93. TS3001ProtocolHdlr:GetStatus (Sequence Diagram)
3-146
Figure 94. DeviceUtility (Class Diagram)
3-147
Figure 95. FieldCommunicationsModulePkg (Class Diagram)
3-150
Figure 96. OnlyModuleClasses (Class Diagram)
3-156
Figure 97. OnlyPortImpls (Class Diagram)
3-158
Figure 98. DirectPortImpl:close (Sequence Diagram)
3-161
Figure 99. DirectPortImpl:Connect (Sequence Diagram)
3-162
Figure 100. DirectPortImpl:disconnect (Sequence Diagram)
3-163
Figure 101. DirectPortImpl:init (Sequence Diagram)
3-164
Figure 102. DirectPortImpl:open (Sequence Diagram)
3-165
Figure 103. DirectPortImpl:receive (Sequence Diagram)
3-167
Figure 104. DirectPortImpl:Send (Sequence Diagram)
3-168
Figure 105. DirectPortImpl:shutdown (Sequence Diagram)
3-169
Figure 106. FieldCommunicationsModulePkg:initialize (Sequence Diagram)
3-171
Figure 107. FieldCommunicationsModulePkg:Shutdown (Sequence Diagram)
3-172
Figure 108. ModemPortImpl:Connect (Sequence Diagram)
3-174
Figure 109. ModemPortImpl:disconnect (Sequence Diagram)
3-176
Figure 110. ModemPortImpl:init (Sequence Diagram)
3-177
Figure 111. ModemPortImpl:shutdown (Sequence Diagram)
3-178
Figure 112. PortManagerImpl:getPort (Sequence Diagram)
3-179
Figure 113. PortManagerImpl:GetPortsStatus (Sequence Diagram)
3-180
Figure 114. PortManagerImpl:ReclaimPorts (Sequence Diagram)
3-181
Figure 115. PortManagerImpl:ReleasePort (Sequence Diagram)
3-182
Figure 116. PortManagerImpl:RelinquishPort (Sequence Diagram)
3-183
Figure 117. PortManagerImpl:retrieveAvailablePort (Sequence Diagram)
3-184
Figure 118. VoicePortImpl:Connect (Sequence Diagram)
3-185
Figure 119. VoicePortImpl:Disconnect (Sequence Diagram)
3-186
Figure 120. VoicePortImpl:init (Sequence Diagram)
3-187
Figure 121. VoicePortImpl:shutdown (Sequence Diagram)
3-188
Figure 122. HARControlModule (Class Diagram)
3-189
Figure 123. HARQueueableCommandClassDiagram (Class Diagram)
3-199
Figure 124. HARControlModule:activateNotifiersMaint (Sequence Diagram)
3-202
Figure 125. HARControlModule:activateNotifiersOnline (Sequence Diagram)
3-203
Figure 126. HARControlModule:AddEntry (Sequence Diagram)
3-204
Figure 127. HARControlModule:Blank (Sequence Diagram)
3-205
Figure 128. HARControlModule:blankImpl (Sequence Diagram)
3-207
Figure 129. HARControlModule:ChangePriority (Sequence Diagram)
3-208
Figure 130. HARControlModule:ConfirmClipInterest (Sequence Diagram)
3-209
Figure 131. HARControlModule:CreateHAR (Sequence Diagram)
3-210
Figure 132. HARControlModule:deactivateNotifiersMaint (Sequence Diagram)
3-211
Figure 133. HARControlModule:deactivateNotifiersOnline (Sequence Diagram)
3-212
Figure 134. HARControlModule:DeleteSlotMessage (Sequence Diagram)
3-213
Figure 135. HARControlModule:evaluateQueue (Sequence Diagram)
3-215
Figure 136. HARControlModule:fmsGetConnectedPort (Sequence Diagram)
3-216
Figure 137. HARControlModule:fmsReleasePort (Sequence Diagram)
3-217
Figure 138. HARControlModule:GetConfiguration (Sequence Diagram)
3-218
Figure 139. HARControlModule:GetEntriesStatus (Sequence Diagram)
3-219
Figure 140. HARControlModule:GetStatus (Sequence Diagram)
3-220
Figure 141. HARControlModule:handleMaintNotifierActivation (Sequence Diagram)
3-221
Figure 142. HARControlModule:handleMaintNotifierDeactivation (Sequence Diagram)
3-222
Figure 143. HARControlModule:handleOnlineNotifierActivation (Sequence Diagram)
3-223
Figure 144. HARControlModule:handleOnlineNotifierDeactivation (Sequence Diagram)
3-225
Figure 145. HARControlModule:handleOpStatus (Sequence Diagram)
3-227
Figure 146. HARControlModule:Initialize (Sequence Diagram)
3-229
Figure 147. HARControlModule:modifyNotifiers (Sequence Diagram)
3-230
Figure 148. HARControlModule:MonitorBroadcast (Sequence Diagram)
3-232
Figure 149. HARControlModule:MonitorSlot (Sequence Diagram)
3-234
Figure 150. HARControlModule:MsgNotfierDeactivated (Sequence Diagram)
3-235
Figure 151. HARControlModule:MsgNotifierRemoved (Sequence Diagram)
3-236
Figure 152. HARControlModule:PutInMaintenanceMode (Sequence Diagram)
3-237
Figure 153. HARControlModule:putInMaintModeImpl (Sequence Diagram)
3-238
Figure 154. HARControlModule:PutInMaintModeWithSHAZAMs (Sequence Diagram)
3-239
Figure 155. HARControlModule:PutOnline (Sequence Diagram)
3-240
Figure 156. HARControlModule:putOnlineImpl (Sequence Diagram)
3-241
Figure 157. HARControlModule:PutOnlineWithSHAZAMs (Sequence Diagram)
3-242
Figure 158. HARControlModule:Remove (Sequence Diagram)
3-243
Figure 159. HARControlModule:RemoveEntry (Sequence Diagram)
3-244
Figure 160. HARControlModule:requestFailed (Sequence Diagram)
3-245
Figure 161. HARControlModule:requestSucceeded (Sequence Diagram)
3-246
Figure 162. HARControlModule:Reset (Sequence Diagram)
3-247
Figure 163. HARControlModule:restoreHAR (Sequence Diagram)
3-249
Figure 164. HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)
3-250
Figure 165. HARControlModule:runRecoveryTimerTask (Sequence Diagram)
3-252
Figure 166. HARControlModule:runUpdateDateTimeFieldsTask (Sequence Diagram)
3-254
Figure 167. HARControlModule:SetConfiguration (Sequence Diagram)
3-255
Figure 168. HARControlModule:setConfigurationImpl (Sequence Diagram)
3-257
Figure 169. HARControlModule:SetMessage (Sequence Diagram)
3-258
Figure 170. HARControlModule:setMessageImpl (Sequence Diagram)
3-260
Figure 171. HARControlModule:SetTransmitterOff (Sequence Diagram)
3-261
Figure 172. HARControlModule:SetTransmitterOn (Sequence Diagram)
3-262
Figure 173. HARControlModule:Setup (Sequence Diagram)
3-264
Figure 174. HARControlModule:setupHAR (Sequence Diagram)
3-265
Figure 175. HARControlModule:Shutdown (Sequence Diagram)
3-266
Figure 176. HARControlModule:slotMgrCollectWavFiles (Sequence Diagram)
3-268
Figure 177. HARControlModule:slotMgrPrepareAllWavFiles (Sequence Diagram)
3-269
Figure 178. HARControlModule:slotMgrPrepareImmedWavFiles (Sequence Diagram)
3-270
Figure 179. HARControlModule:slotMgrPrepareWavFiles (Sequence Diagram)
3-271
Figure 180. HARControlModule:slotMgrRemove (Sequence Diagram)
3-272
Figure 181. HARControlModule:slotMgrRestoreAll (Sequence Diagram)
3-273
Figure 182. HARControlModule:slotMgrStore (Sequence Diagram)
3-274
Figure 183. HARControlModule:slotMgrStoreImmedMsg (Sequence Diagram)
3-275
Figure 184. HARControlModule:StoreSlotMessage (Sequence Diagram)
3-277
Figure 185. HARControlModule:TakeOffline (Sequence Diagram)
3-278
Figure 186. HARControlModule:takeOfflineImpl (Sequence Diagram)
3-280
Figure 187. HARControlModule:verifyNoResourceConflict (Sequence Diagram)
3-281
Figure 188. HARManagementPkg (Class Diagram)
3-282
Figure 189. HARManagementPkg:audioClipMgrWrapperGetAudioClip (Sequence Diagram)
3-286
Figure 190. HARManagementPkg:audioClipMgrWrapperStoreClip (Sequence Diagram)
3-287
Figure 191. HARManagementPkg:audioDeregisterInterest (Sequence Diagram)
3-288
Figure 192. HARManagementPkg:audioRegisterInterest (Sequence Diagram)
3-289
Figure 193. HARManagementPkg:audioStream (Sequence Diagram)
3-290
Figure 194. HARManagementPkg:harRPIDataImplExecute (Sequence Diagram)
3-291
Figure 195. HARManagementPkg:msgMatches (Sequence Diagram)
3-292
Figure 196. HARManagementPkg:msgValidateMsgContent (Sequence Diagram)
3-293
Figure 197. HARManagementPkg:prestoredGetVoiceSeconds (Sequence Diagram)
3-294
Figure 198. HARManagementPkg:prestoredStream (Sequence Diagram)
3-295
Figure 199. HARManagementPkg:PushAudio (Sequence Diagram)
3-297
Figure 200. HARManagementPkg:StoreAudioClip (Sequence Diagram)
3-298
Figure 201. HARManagementPkg:textGetVoiceSeconds (Sequence Diagram)
3-299
Figure 202. HARManagementPkg:textStream (Sequence Diagram)
3-300
Figure 203. HARProtocolsPkg (Class Diagram)
3-301
Figure 204. ISSAP55HAR:BroadcastSlots (Sequence Diagram)
3-303
Figure 205. ISSAP55HAR:DeleteSlotMessage (Sequence Diagram)
3-304
Figure 206. ISSAP55HAR:MonitorSlot (Sequence Diagram)
3-305
Figure 207. ISSAP55HAR:RecordMessage (Sequence Diagram)
3-306
Figure 208. ISSAP55HAR:Reset (Sequence Diagram)
3-307
Figure 209. ISSAP55HAR:SetInterMessageSpacing (Sequence Diagram)
3-308
Figure 210. ISSAP55HAR:SetTransmitterState (Sequence Diagram)
3-309
Figure 211. JavaClasses (Class Diagram)
3-310
Figure 212. MessageLibraryModuleClasses (Class Diagram)
3-314
Figure 213. MessageLibraryModulePkg:CleanupMessage (Sequence Diagram)
3-318
Figure 214. MessageLibraryModulePkg:CreateDMSStoreMessage (Sequence Diagram)
3-320
Figure 215. MessageLibraryModulePkg:CreateHARStoreMessage (Sequence Diagram)
3-322
Figure 216. MessageLibraryModulePkg:CreateMessageLibrary (Sequence Diagram)
3-323
Figure 217. MessageLibraryModulePkg:DeleteMessageLibrary (Sequence Diagram)
3-324
Figure 218. MessageLibraryModulePkg:DeleteStoredMessage (Sequence Diagram)
3-325
Figure 219. MessageLibraryModulePkg:Initialize (Sequence Diagram)
3-326
Figure 220. MessageLibraryModulePkg:InitializeMessage (Sequence Diagram)
3-328
Figure 221. MessageLibraryModulePkg:IsMessageLibraryUsedByAnyPlan (Sequence Diagram)
3-329
Figure 222. MessageLibraryModulePkg:IsStoredMessageUsedByAnyPlan (Sequence Diagram)
3-330
Figure 223. MessageLibraryModulePkg:ModifyDMSStoredMessage (Sequence Diagram)
3-331
Figure 224. MessageLibraryModulePkg:ModifyHARStoredMessage (Sequence Diagram)
3-332
Figure 225. MessageLibraryModulePkg:SetLibraryName (Sequence Diagram)
3-333
Figure 226. MessageLibraryModulePkg:Shutdown (Sequence Diagram)
3-334
Figure 227. MessageLibraryModulePkg:ViewDMSStoredMessage (Sequence Diagram)
3-335
Figure 228. MessageLibraryModulePkg:ViewHARStoredMessage (Sequence Diagram)
3-336
Figure 229. PlanModuleClasses (Class Diagram)
3-337
Figure 230. PlanModule:AddItem (Sequence Diagram)
3-340
Figure 231. PlanModule:AddPlan (Sequence Diagram)
3-341
Figure 232. PlanModule:Initialize (Sequence Diagram)
3-342
Figure 233. PlanModule:PlanIsUsingObject (Sequence Diagram)
3-343
Figure 234. PlanModule:PlanItemIsUsingObject (Sequence Diagram)
3-344
Figure 235. PlanModule:RemoveItem (Sequence Diagram)
3-345
Figure 236. PlanModule:RemovePlan (Sequence Diagram)
3-346
Figure 237. PlanModule:RemovePlanFromFactory (Sequence Diagram)
3-347
Figure 238. PlanModule:SetPlanItemData (Sequence Diagram)
3-348
Figure 239. PlanModule:SetPlanItemName (Sequence Diagram)
3-349
Figure 240. PlanModule:SetPlanName (Sequence Diagram)
3-350
Figure 241. PlanModule:Shutdown (Sequence Diagram)
3-351
Figure 242. ResourceClasses (Class Diagram)
3-352
Figure 243. ResourcesModule:ChangeUser (Sequence Diagram)
3-355
Figure 244. ResourcesModule:createOperationsCenter (Sequence Diagram)
3-356
Figure 245. ResourcesModule:ForceLogout (Sequence Diagram)
3-357
Figure 246. ResourcesModule:GetControlledResources (Sequence Diagram)
3-358
Figure 247. ResourcesModule:GetLoginSessions (Sequence Diagram)
3-359
Figure 248. ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)
3-360
Figure 249. ResourcesModule:Initialize (Sequence Diagram)
3-361
Figure 250. ResourcesModule:IsUserLoggedIn (Sequence Diagram)
3-362
Figure 251. ResourcesModule:LoginUser (Sequence Diagram)
3-363
Figure 252. ResourcesModule:LogoutUser (Sequence Diagram)
3-364
Figure 253. ResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)
3-365
Figure 254. ResourcesModule:removeOperationsCenter (Sequence Diagram)
3-366
Figure 255. ResourcesModule:renameOperationsCenter (Sequence Diagram)
3-367
Figure 256. ResourcesModule:Shutdown (Sequence Diagram)
3-368
Figure 257. ResourcesModule:TransferSharedResources (Sequence Diagram)
3-369
Figure 258. SHAZAMControl (Class Diagram)
3-370
Figure 259. SHAZAMControlModule:activateSHAZAM (Sequence Diagram)
3-379
Figure 260. SHAZAMControlModule:CheckResourceConflict (Sequence Diagram)
3-380
Figure 261. SHAZAMControlModule:createSHAZAM (Sequence Diagram)
3-381
Figure 262. SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)
3-383
Figure 263. SHAZAMControlModule:getControlledResources (Sequence Diagram)
3-384
Figure 264. SHAZAMControlModule:handleOpStatus (Sequence Diagram)
3-386
Figure 265. SHAZAMControlModule:hasControlledResources (Sequence Diagram)
3-387
Figure 266. SHAZAMControlModule:initialize (Sequence Diagram)
3-389
Figure 267. SHAZAMControlModule:modifyHARNotice (Sequence Diagram)
3-390
Figure 268. SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)
3-391
Figure 269. SHAZAMControlModule:putOnline (Sequence Diagram)
3-392
Figure 270. SHAZAMControlModule:refresh (Sequence Diagram)
3-394
Figure 271. SHAZAMControlModule:remove (Sequence Diagram)
3-395
Figure 272. SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)
3-396
Figure 273. SHAZAMControlModule:runRefreshSHAZAMTask (Sequence Diagram)
3-397
Figure 274. SHAZAMControlModule:setAssociatedHAR (Sequence Diagram)
3-398
Figure 275. SHAZAMControlModule:setBeaconsState (Sequence Diagram)
3-399
Figure 276. SHAZAMControlModule:setConfiguration (Sequence Diagram)
3-400
Figure 277. SHAZAMControlModule:shutdown (Sequence Diagram)
3-401
Figure 278. SHAZAMControlModule:takeOffline (Sequence Diagram)
3-402
Figure 279. SHAZAMUtility (Class Diagram)
3-403
Figure 280. SHAZAMProtocolsPkg (Class Diagram)
3-404
Figure 281. VikingRC2AProtocolHdlr:TypicalCommand (Sequence Diagram)
3-405
Figure 282. AudioCommon (Class Diagram)
3-406
Figure 283. CommLogManagement (Class Diagram)
3-409
Figure 284. Common (Class Diagram)
3-411
Figure 285. DeviceManagement (Class Diagram)
3-415
Figure 286. DictionaryManagement (Class Diagram)
3-418
Figure 287. DMSControl (Class Diagram)
3-420
Figure 288. FieldCommunications (Class Diagram)
3-428
Figure 289. HARControl (Class Diagram)
3-433
Figure 290. HARNotification (Class Diagram)
3-439
Figure 291. LibraryManagement (Class Diagram)
3-442
Figure 292. LogCommon (Class Diagram)
3-445
Figure 293. PlanManagement (Class Diagram)
3-447
Figure 294. ResourceManagement (Class Diagram)
3-450
Figure 295. TrafficEventManagement (Class Diagram)
3-454
Figure 296. TrafficEventManagement2 (Class Diagram)
3-458
Figure 297. TrafficEventManagement3 (Class Diagram)
3-462
Figure 298. TSSManagement (Class Diagram)
3-464
Figure 299. UserManagement (Class Diagram)
3-471
Figure 300. TrafficEventHierarchy (Class Diagram)
3-474
Figure 301. TrafficEventModuleClasses (Class Diagram)
3-477
Figure 302. TrafficEventModule:AddCommLogEntry (Sequence Diagram)
3-483
Figure 303. TrafficEventModule:AddLogEntry (Sequence Diagram)
3-484
Figure 304. TrafficEventModule:AddResponseItem (Sequence Diagram)
3-485
Figure 305. TrafficEventModule:AddResponseParticipation (Sequence Diagram)
3-486
Figure 306. TrafficEventModule:AssociateEvent (Sequence Diagram)
3-487
Figure 307. TrafficEventModule:CleanupResponsePlanItemData (Sequence Diagram)
3-488
Figure 308. TrafficEventModule:CloseEvent (Sequence Diagram)
3-489
Figure 309. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)
3-490
Figure 310. TrafficEventModule:ExecuteResponse (Sequence Diagram)
3-491
Figure 311. TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)
3-492
Figure 312. TrafficEventModule:GetEventHistoryText (Sequence Diagram)
3-493
Figure 313. TrafficEventModule:GetExecutedResponsePlanItem (Sequence Diagram)
3-494
Figure 314. TrafficEventModule:Initialize (Sequence Diagram)
3-495
Figure 315. TrafficEventModule:InitializeResponsePlanItemData (Sequence Diagram)
3-497
Figure 316. TrafficEventModule:InitializeResponsePlanItems (Sequence Diagram)
3-498
Figure 317. TrafficEventModule:MonitorControlledResources (Sequence Diagram)
3-499
Figure 318. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)
3-500
Figure 319. TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)
3-501
Figure 320. TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)
3-502
Figure 321. TrafficEventModule:SetLaneConfiguration (Sequence Diagram)
3-503
Figure 322. TrafficEventModule:SetMessageForUseInResponsePlan (Sequence Diagram)
3-504
Figure 323. TrafficEventModule:Shutdown (Sequence Diagram)
3-505
Figure 324. RTMSFactoryClassDiagram (Class Diagram)
3-506
Figure 325. RTMSObject (Class Diagram)
3-509
Figure 326. TSSModuleClassDiagram (Class Diagram)
3-515
Figure 327. PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)
3-518
Figure 328. PolledTSSImpl:putOnline (Sequence Diagram)
3-519
Figure 329. PolledTSSImpl:setConfiguration (Sequence Diagram)
3-520
Figure 330. PolledTSSImpl:takeOffline (Sequence Diagram)
3-521
Figure 331. RTMSFactoryImpl:constructor (Sequence Diagram)
3-522
Figure 332. RTMSFactoryImpl:createRTMS (Sequence Diagram)
3-523
Figure 333. RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)
3-524
Figure 334. RTMSFactoryImpl:remove (Sequence Diagram)
3-525
Figure 335. RTMSImpl:constructor (Sequence Diagram)
3-526
Figure 336. RTMSImpl:poll (Sequence Diagram)
3-528
Figure 337. RTMSImpl:remove (Sequence Diagram)
3-529
Figure 338. TSSManagementModulePkg:initialize (Sequence Diagram)
3-530
Figure 339. TSSManagementModulePkg:shutdown (Sequence Diagram)
3-531
Figure 340. TSSPollingTask:run (Sequence Diagram)
3-533
Figure 341. TTSControlModuleClasses (Class Diagram)
3-534
Figure 342. TTSControlModule:AddMessageToQueue (Sequence Diagram)
3-539
Figure 343. TTSControlModule:CleanupFileCache (Sequence Diagram)
3-540
Figure 344. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)
3-541
Figure 345. TTSControlModule:CreateFileCacheInfo (Sequence Diagram)
3-542
Figure 346. TTSControlModule:GetSupportedFormats (Sequence Diagram)
3-543
Figure 347. TTSControlModule:GetVoiceLength (Sequence Diagram)
3-544
Figure 348. TTSControlModule:Initialize (Sequence Diagram)
3-546
Figure 349. TTSControlModule:ProcessQueuedMessages (Sequence Diagram)
3-548
Figure 350. TTSControlModule:PushAudioClipInformation (Sequence Diagram)
3-549
Figure 351. TTSControlModule:Shutdown (Sequence Diagram)
3-550
Figure 352. UserManagementModuleClasses (Class Diagram)
3-551
Figure 353. UserManagementModule:AddUser (Sequence Diagram)
3-554
Figure 354. UserManagementModule:ChangeUserPassword (Sequence Diagram)
3-555
Figure 355. UserManagementModule:CreateRole (Sequence Diagram)
3-556
Figure 356. UserManagementModule:DeleteProfileProperty (Sequence Diagram)
3-557
Figure 357. UserManagementModule:DeleteRole (Sequence Diagram)
3-558
Figure 358. UserManagementModule:DeleteUser (Sequence Diagram)
3-559
Figure 359. UserManagementModule:GetSystemProfile (Sequence Diagram)
3-560
Figure 360. UserManagementModule:GetUserProfile (Sequence Diagram)
3-561
Figure 361. UserManagementModule:GrantRole (Sequence Diagram)
3-562
Figure 362. UserManagementModule:Initialize (Sequence Diagram)
3-563
Figure 363. UserManagementModule:ModifyRole (Sequence Diagram)
3-564
Figure 364. UserManagementModule:RevokeRole (Sequence Diagram)
3-565
Figure 365. UserManagementModule:SetProfileProperties (Sequence Diagram)
3-566
Figure 366. UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)
3-567
Figure 367. UserManagementModule:SetUserPassword (Sequence Diagram)
3-568
Figure 368. UserManagementModule:SetUserRoles (Sequence Diagram)
3-569
Figure 369. UserManagementModule:Shutdown (Sequence Diagram)
3-570
Figure 370. UtilityClasses (Class Diagram)
3-571
Figure 371. UtilityClasses2 (Class Diagram)
3-578
Figure 372. OperationsLog:LogMessage (Sequence Diagram)
3-580
Figure 373. Multiple Site Deployment Diagram (Deployment Diagram)
4-3

1 Introduction

1.1 Purpose

This document describes the detailed design of the CHART II system software for release 1, build 3. This design refines the high level design presented in document M362-DS-009R0, “R1B3 High Level Design,” to show details regarding the implementation of the high level design. This software release adds functionality to the CHART II system to allow for the configuration and control of HAR devices. Additionally, the full capabilities of the device arbitration queues are included as well as the ability to create and remove operations centers dynamically.

1.2 Objectives

The main objective of this design is to provide software developers with details regarding the implementation of the system components described in the high level design to fit within the existing CHART II R1B3 system.

1.3 Scope

This design is limited to components needed to fulfill the requirements of release 1, build 3 of the CHART II system.

1.4 Design Process

As in the high level design, object-oriented analysis and design techniques were used in creating this design. As such, much of the design is documented using diagrams that conform to the Unified Modeling Language (UML), a de facto standard for diagramming object-oriented designs.

In the high level design, system interfaces were identified and specified. These interfaces were partitioned into logical groupings of packages. This design serves to fill in the details necessary to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its own class diagram and sequence diagrams for major operations included in the package’s interfaces. Additionally, packages needed for implementation but not present in the high level design are included in this design, with each of these also having its own class diagram and sequence diagrams. Packages are also included for third party software that is needed by the CHART II software, such as the ORB and Java classes. Only classes and methods shown on the sequence diagrams are included in diagrams for third party products.

The design process for each package involved starting with a class diagram including interfaces from the high level design, and filling in details to the class diagram to move toward implementation. Sequence diagrams were then used to show how the functionality is to be carried out. An iterative process was used to enhance the class diagram as sequence diagrams identified missing classes or methods.

1.5 Design Tools

The work products contained within this design are extracted from the Telelogic TAU (formerly Cool JEX) design tool. Within this tool, the design is contained in the CHART II project, R1B3 configuration, System Design phase. A system version is included for each software package.

1.6 Work Products

This design contains the following work products:

· A UML Class diagram for each package showing the low level software objects which will allow the system to implement the interfaces identified in the high level design.

· UML Sequence diagrams for non-trivial operations of each interface identified in the high level design. Additionally, sequence diagrams are included for non-trivial methods in classes created to implement the interfaces. Operations that are considered trivial are operations that do nothing more than return a value or a list of values and where interaction between several classes is not involved.

2 Key Design Concepts

This design builds upon the design documents for all prior releases of the CHART II software. These documents should be referenced for details on the CHART II Server and GUI frameworks and supporting packages. This section relates key design concepts for the R1B3 version of the CHART II software.

2.1 HAR Messages and Audio Clips

This design accounts for the ability for operators to enter text or record voice at their workstation for broadcast on a HAR device. Each message consists of one or more “clips”. A message can specify its own header clip or it can use the default header for the HAR(s) it is destined for. A message can also specify its own trailer clip, or can use the default trailer, or it can use no trailer. A user must specify exactly one “body” clip for a HAR message. (A message created within the HAR service can consist of multiple body clips when HAR messages are combined.) Each clip specified by a user can be recorded voice or text.

Because voice data can be very large, the passing of voice data with HAR messages is minimized through the use of wrapper objects and streamers.

Recorded voice is supported in the CHART II system for

· immediate broadcast on a HAR

· storage in a slot on a HAR for future broadcast, and

· storage in a message library.

When voice is recorded the voice data is packaged in a HARMessageAudioDataClip object, which in turn is included in a HARMessage object. Upon receiving a HARMessageAudioDataClip, the object receiving it (a HAR, a TrafficEvent’s ResponsePlanItem, or MessageLibraryDB) use a utility class called an AudioClipManager to persist the “heavyweight” HARMessageAudioDataClip audio data and obtain a HARMessageAudioClip in its place. The HARMessageAudioClip contains a unique ID and a reference to an object known as a streamer that can provide access to the actual voice data given the ID. The AudioClipManager is a streamer and places a reference to itself in every HARMessageAudioClip it creates.

Because HARMessageAudioClip objects are small, they can be passed throughout the system as the part of the device status for a HAR without having a significant impact on network bandwidth usage. The only times the recorded voice data will be passed across the network after its initial storage will be when the user wishes to listen to the voice data or the voice needs to be recorded onto the HAR device. When this occurs, the HARMessageAudioClip is told to stream the data and the HARMessageAudioClip delegates the request to the streamer reference it contains, which is always the AudioClipManager where the data was originally stored.

As other servers gain access to HARAudioClips and find a need to have the data persisted, they register their interest in the clip with the AudioClipManager stored within the clip. The AudioClipManager will never delete the voice data associated with a clip as long as at least one clip “owner” is registered for it. A clip stored in a message library, specified in a ResponsePlanItem, and being broadcast on a HAR would have three servers (one owner object in each server) maintaining interest in the clip with the AudioClipManager.

2.1.1 Audio Clip Manager

Recorded voice data is cleaned up within the AudioClipManager as owners deregister interest in clips when they are no longer needed. As HARs, ResponsePlanItems, and MessagLibraryDB objects lose interest in a clip, they deregister interest in the clip, which passes the request on to their AudioClipManager. The AudioClipManager removes the association between the clip owners and the clip as deregister requests come in, and it deletes the voice data itself when there are no registered owners left for a clip. Because this system is not foolproof, and because audio data is large and expensive to store, the AudioClipManager will periodically request servers to revalidate their interest in the clips they are registered for. This is expected to be a low-bandwidth operation during a period of low bandwidth usage (in the middle of the night), and is more efficient that encoding servers to be fail-safe in deregistering interest. In other words, if the AudioClipManager happens to be down or unreachable, an audio clip owner need not take extraordinary effort to retain information about the failed deregistration attempt and undertake a complicated retry scheme.

2.2 Arbitration Queue

An arbitration queue arbitrates the usage of a device by maintaining a prioritized message queue for the associated device. As messages are requested to be displayed or broadcast on a specific device, they are assigned priorities based on a predefined message priority scheme (discussed later) and are added to the queue. The Arbitration Queue has the responsibility of determining which message should be shown/broadcast by a messaging device. It allows any number of traffic events to add entries to a device’s arbitration queue. The queue can hold multiple entries and decides which entry is to be placed on the device based on priority.

Each message in the queue is related to a traffic event and a traffic event can have only one message in the queue at a time. Messages are removed from the queue when the related traffic event is closed or when the traffic event deactivates them. Messages can be added to and removed from a device’s arbitration queue regardless of the current communication mode of the device. In this way, a device that has been offline will be automatically brought into the current state of the system when brought online. The queue will automatically be evaluated any time a device is placed online, in order to ensure that the correct message is placed on the device.

Any time a message is added to or removed from the arbitration queue, the queue evaluates all entries and decides which message should be shown/broadcast by the queue’s associated device as follows:

· If a message is added to the queue and the queue is empty, the message is put on the device.

· If a message is added to the queue and the queue is not empty, the queue evaluates the messages on the queue (including the new message), determines which message has the highest priority, and places the highest priority message on the device.

· If a message is removed from the queue and this leaves the queue empty, the device is blanked or a default message is broadcast depending upon the type of the device.

· If a message is removed from the queue and other messages remain on the queue, the queue evaluates the messages on the queue (excluding the removed message), determines which message has the highest priority, and places the highest priority message on the device.

In addition to the processing described above, Arbitration Queues can allow multiple messages to share a device. In the case of a DMS two single page messages can be concatenated into a single two-page message. In the case of a HAR, multiple messages can be concatenated if the total amount of playtime of the messages is less than the configurable limit set by the administrator. The following “matrix” or “pairing” approach will be used to combine messages on DMS’s.

U
I
R
C
S

Urgent (U)
X
X

X

Incident (I)
X
X

X

Planned Roadwork (R)

X
X
X

Congestion (C)

X
X
X

SHAZAM (S)
X
X
X
X

A maximum of two messages will be allowed for grouping for a DMS. Only the top five types of events (Urgent, Incident, Planned Roadwork, Congestion, and SHAZAM) will be allowed for grouping, and only in the pairs indicated by Xs in the above matrix. For instance, an “Urgent” message can only be combined with another “Urgent “ message, an “Incident” message, or a “SHAZAM” message. For HAR’s, messages can be combined up to a 2-minute limit (system-wide configurable parameter). All types of messages are eligible for combining on a HAR (the above matrix for DMS message combining does not apply for HAR’s). Messages will be searched in priority order until the 2-minute limit is filled up. The search is terminated, once a message is found which will not fit rather than continuing the search to see if any lower priority messages that happen to be shorter would fit

2.2.1 Priority Scheme

Each entry in the queue will be assigned a priority. A number will be used to indicate the priority of each message on the queue, with a higher number indicating a higher priority (and thus more likely to be placed on the device). When a message is added to a queue, it is given a default priority number that is based on the type of event from which the message originated. The agreed upon priority order of traffic events are, from highest to lowest, Urgent, Incident, Planned Roadwork, Congestion, SHAZAM, Weather, Special, Action, Safety. The concept of an "Urgent" category is to place messages in this category that will surpass all events added in the system. Only the privileged user will be able to move an event to this level. Within a level, the FIFO (first in – first out) queue concept will be used. Messages can be moved into other event type levels, this action will change the priority of the response plan and not the type of the event. For example, a congestion response plan moved to the incident level will not change the type of the event to incident. It just changes the priority of the activation of the plan on the device.

[image: image1.wmf]URGENT

INCIDENT

PLANNED

ROADWAY

CLOSURE

CONGESTION

SHAZAM

WEATHER

ACTION

SPECIAL

95

80

75

72.5

35

10

30

20

40

60

90

70

100

50

71.25

5

1

4

2

3

6

1. Add Incident

2. Add Incident

3. Add Weather event

4. Add Incident

5. Move Incident to Urgent

6. Add Incident

7. Add Congestion

8. Move Congestion to Incident

55

After move, priority = 71.875

7

8

SAFETY

0

The above diagram shows an example of a sequence of system actions that will occur when response plans are added, removed or placed on different priority levels on a device’s arbitration queue. Initially, the queue for the device is empty. When an incident response plan1 is activated it gets placed on the device’s queue. The priority number assigned is based on the pre-defined range level for the event type. In this example, the range level for incidents is between 70 and 90. The priority assigned to the event is the mean of the two limits, i.e. 80. An automatic evaluation of the queue will place the message on the device, since it is the only message on the Arbitration queue. When another incident2 gets added to the queue, the system automatically assigns it a lower priority than the previous one. Automatic evaluation of the queue at this time does not place the newly added message on the device. The message currently on the device has a higher priority and the associated response plan is still active in the system. A Safety message3 and an Incident4 response plan added will be placed in their level with an assigned priority. If at this instance, the user gives the incident5 the highest priority (a new priority will be assigned), the currently active incident response plan1 will be suspended and the higher priority message2 will be activated. Moving a congestion response plan7 between the two incident messages4, 6 will reassign the congestion event a new priority8 but will not change its event type.

In R1B3, the Chart2HARImpl and Chart2DMSImpl will implement the interface defined by the Arbitration Queue. The responsibility to manage entries, i.e. add, remove, change priority, will be delegated to the Message Queue, a utility class. The entries in the list will be ordered according to their assigned priority. The Chart2HARImpl and Chart2DMSImpl will be responsible for evaluating the queue, concatenating messages, determining the message that should be sent to the device and sending queue updates to the CHART II GUI.

2.2.2 Detailed Device Status and Arbitration Queue Manipulation

R1B3 also adds capabilities to the CHART II GUI to allow a user to view the entries in a device’s arbitration queue. A user with the proper functional rights can manually change the priority of items on a device's queue to override the queue's automated prioritization scheme. When the priorities of messages on an arbitration queue are manually changed, the arbitration queue evaluates the priorities of the messages on the queue to determine if the message on the queue’s associated device should be changed. New messages added after a reordering will be placed in the proper relative position. When a user re-orders the queue, they do so by manually moving one message at a time to a new position in the queue. When a message is moved, the priority number of the message that was moved is changed to be slightly higher than the priority of the message immediately following it. In the case where a message is moved to be the last in the queue, it is given a priority number slightly less than the message prior to it. This will be accomplished by using floats to indicate priority. If a user moves an incident message behind a roadwork message, new roadwork messages will be placed behind this message while new incident messages will be placed in the incident level below the lowest incident on that level. Each manual message repositioning will be accomplished by issuing one request to the queue, to avoid the delays that locking the entire arbitration queue would entail.

The GUI will also allow the user to view the queue and device status, i.e. current message prioritization, active message, communication actions with the device. The CORBA notification service will be used to notify GUI’s regarding any changes to the device’s queue. The CORBA notification service gives the GUI application the ability to register for updates for only those devices that the user is currently looking at.

The following diagram shows a representation of how the view will be organized. The top section will show all the messages on the Arbitration Queue. The privileged user will be able to drag and drop entries within the view to change priorities of the messages. The middle section shows the Queue status regarding changes to the queue as they are being executed. The bottom section shows the device status while sending the message to it.

[image: image2.wmf]Message " Congestion Ahead" removed from the Queue

Dialing Device

Message

Op Center

Type

State

Accident Ahead on I-495 near Exit 22

TOC3

Incident

Active

Drive Safely

SOC

Safety

Queued

Accident on 1-270 near Exit 3

(Montrose Road)

TOC3

Incident

Device Status

Queue Status

Queued

2.3 Field Communications

R1B3 uses the base components designed and developed under FMS R1B2 to communicate with HAR and SHAZAM devices. Refer to FMS R1B2 Detailed Design for more information on the FMS subsystem. R1B3 extends the FMS subsystem to provide another type of communication port in addition to the existing ISDN and POTS modem ports. This new port type, known as a voice port, provides access to a port on a telephony board.

The sections below discuss how the existing FMS components are used and extended in R1B3.

2.3.1 Communications Servers (FMS Remote Servers)

Communications servers are used in R1B3 to connect to HAR and SHAZAM devices deployed throughout the state of Maryland. A communication server is outfitted with one or more pieces of communications hardware, such as Integrated Services Digital Network (ISDN) and Plain Old Telephone System (POTS) modems or telephony cards. Each communications server in the system contains a PortManager software object through which access to the communications resources is granted.

2.3.2 Port Manager

A Port Manager is a software object that manages access to the communications hardware on a Communications Server. The HAR or SHAZAM software object acquires a voice port from one or more Port Manager objects. HAR and SHAZAM objects use voice port objects to command HAR and SHAZAM devices via DTMF. HAR software objects use voice port objects to play recorded voice or voice converted from text to the HAR device so that it may be used by the HAR device for broadcast over the HAR’s radio frequency. The HAR software object also uses voice port objects to connect to a HAR device’s monitor telephone line and record a portion of the message that is playing to allow a CHART II operator to verify that the correct message is playing.

2.3.3 Voice Port

A voice port provides access to a port on a telephony board. The voice port is capable of providing software access to analog telephone lines for the following purposes:

· Playing a voice file over a telephone

· Recording voice from the telephone

· Sending DTMF signals

· Receiving DTMF signals

VoicePortImpl class implements the VoicePort class, which extends the Port interface. It implements the VoicePort connect method to open a port on a telephony board and make a telephone call. It also implements the VoicePort play, record methods to play and record 8 bit sound files on the connected call. Additionally, it also provides the capability of generating DTMF tones to command devices.

2.3.4 Voice Port Locator

Voice Port Locator is a utility class that extends the implementation of a PortLocator class to retrieve a VoicePort from a PortManager. The PortLocator class implements fail over for clients of PortManagers. Refer to FMS R1B2 Detailed Design for more information on the implementation of PortLocator class.

2.3.5 Port Status

R1B3 also provides the capability to view the status of communication ports. Events are pushed using the CORBA event service to inform the interested parties of any changes to the port status.

2.3.6 ISS AP55 HAR Protocol Handler

The ISS AP55 HAR Protocol Handler is a utility class that encapsulates the protocol used to command and control a HAR device of ISS AP55 type. After a voice port is retrieved from a Port Manager and connected to the device, the HAR Protocol handler is used by the HAR object to send the correct sequence of DTMF and voice to the device to program messages and provide the other functionality as specified in this document.

2.3.7 Viking RC2A SHAZAM Protocol Handler

The Viking RC2A SHAZAM Protocol Handler is a utility class that encapsulates the protocol used to command and control a SHAZAM device of Viking RC2A type. After a voice port is retrieved from a Port Manager and connected to the device, the SHAZAM Protocol handler is used by the SHAZAM object to send the correct sequence of DTMF to the device to enable or disable its flashers.

2.4 Error Processing

Because CHART II is a distributed object system, it is expected that any call to a remote object could cause a CORBA exception to be thrown. All software calls to remote objects handle CORBA exceptions and the processing is not shown on sequence diagrams within this design except where it serves to illustrate a design point.

Furthermore, as with any system, most method calls, system calls, etc. can fail unexpectedly. All such errors are handled by the software and are not shown explicitly in the package design portion of this document. The default action when such an error is encountered is to reach a consistent state within the object where the error occurred and then to throw a CHART2Exception (even for non-CORBA calls). The CHART2Exception contains debugging information as well as text suitable for display to a user or administrator. These exceptions are shown on sequence diagrams to call out error conditions that are not obvious.

The Log utility class is used by modules to log error conditions to a flat file that is created by the service application hosting the module. The log file entries contain the name of the class that logged the entry, the date and time of the entry, and descriptive text of the error that occurred. The Log utility also provides the capability for a stack trace to be printed to the file to accompany the error. This feature is reserved for use when an error condition is caught and the exact cause of the error condition is not known. Log files created by the Log utility class are self-cleaning and are automatically removed from the system when they reach a certain age, as specified in a configuration file.

2.5 Packaging

This software design is broken into packages of related classes. The table below shows each of the packages to be added to CHART II for R1B3 along with a description of each.

Table 1 Package Descriptions

Package Name
Package Description

AudioClipModule
This package contains classes used during the creation and storage of HAR audio clips.

AudioCommon
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document. It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II AudioClipModule and other applications such as the CHART II GUI.

CORBAUtilities
This package contains classes included in the third party ORB product used for implementation. Only classes that are directly referenced from diagrams for CHART II software are included in this package’s diagrams. Changes for CHART II R1B3 include the addition of classes related to the Notification Service.

DeviceManagement
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document. It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II ArbitrationQueue and other applications such as the CHART II GUI.

DeviceUtility
This package exists in CHART II R1B2, however portions of it relating to the ArbitrationQueue are shown in this document to provide the full details of the design of the arbitration queue and related classes.

DMSControlModule
This package contains a service application module that serves the Chart2DMSFactory and Chart2DMS objects as specified in the system interfaces.

FieldCommunications
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document. It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART FieldCommuncationsModule service application module and other applications such as HARControl and DMSControl.

FieldCommunicationsModule
This package contains a service application module that serves the PortManager and various Port interfaces.

HARControl
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document. It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II HARControlModule service application module and other applications such as the CHART II GUI.

HARControlModule
This package contains a service application module that serves the Chart2HAR and Chart2HARFactory interfaces.

HARNotification
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document. It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II SHAZAMControlModule and other applications such as the CHART II GUI.

HARProtocols
This package contains classes needed for communication to a specific model HAR.

HARUtility
This package contains HAR related utility classes shared by the server and GUI.

LibraryManagement
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document. It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II MessageLibraryModule and other applications such as the CHART II GUI.

MessageLibaryModule
This package exists in CHART II R1B2, however portions of it relating to the creation of a HARStoredMessage are shown in this document to provide a more complete view of message creation.

ResourceManagement
This package contains code that is generated from the IDL, which is derived from the SystemInterfaces package in this document. It contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART II ResourcesModule and other applications such as the CHART II GUI.

ResourcesModule
This package contains a service application module that serves the OperationsCenter and Organization interfaces specified in the system interfaces. This package exists in CHARTII R1B2, however portions of it relating to OperationsCenter are shown in this document to provide more information regarding the creation and maintenance of an OperationsCenter.

SHAZAMControlModule
This package contains a service application module that serves SHAZAM and SHAZAMFactory interfaces as specified in the system interfaces.

SHAZAMProtocols
This package contains classes needed for communication to a specific model SHAZAM.

SHAZAMUtility
This package contains SHAZAM related utility classes shared by the server and GUI.

SystemInterfaces
This package contains the CORBA interfaces and related definitions for the CHART II system. These interfaces and classes define the IDL for the CHART II system.

TrafficEventModule
This package exists in CHART II R1B2, however portions of it relating to the ResponsePlanItem are shown in this document to provide a more complete view of message queuing via the arbitration queue.

The remainder of this document contains detailed designs of each of the above packages

3 Package Designs

3.1 AudioClipModule

3.1.1 Classes

3.1.1.1 AudioClipModule (Class Diagram)

This class diagram shows classes that comprise the Audio Clip Service in the Chart II system. The Audio Clip Service is a utility service, which runs to support HAR audio data processing. When a user records a voice clip as part of a HAR message or to store as a prestored clip in a HAR, the clip (a HARMessageAudioDataClip) is created as a heavyweight object carrying all the audio data with it. The design calls for such clips to be converted to lightweight HARMessageAudioClips at point of entry into a server where the clip will be stored and served. The Audio Clip Service provides this conversion capability, storing the audio data in the database and providing streaming capability for retrieval of the audio data by any process that needs it. Objects must implement the AudioClipOwner interface to store audio data clips or register interest in audio clips. Owners deregister interest in clips when no longer needed, and when a clip has no remaining owners, the audio data itself is deleted. This service has a cleanup routine which will run nightly to ensure that owners have properly deregistered clips, and so that obsolete audio data does not remain in the database.

Details in this diagram are shown generally only for classes that exist specifically for the Audio Clip Service. Auxiliary classes used from other various utility or system interface packages are generally shown by name only.

[image: image3.emf]ServiceApplicationModule

«interface»

AudioClipManagerImpl

AudioClipManager

«interface»

AudioClipModuleProperties

CleanupLostClipsTimerTask

java.util.TimerTask

AudioClipManagerDB

AudioClipModule

ServiceApplication

«interface»

AudioClipStreamer

«interface»

DBConnectionManager

AudioPushThreadManager

AudioPushThread

java.util.LinkedList

AudioPushConsumer

«interface»

java.lang.ThreadGroup

java.lang.Runnable

«interface»

ClipOwnerData

«typedef»

java.util.Timer

1

1

1 1

1 1

1

1

1

1

1

*

1 1

1 1

1 *

1 1

1

1

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

cleanupLostClips():void

storeClip(HARMessageAudioDataClip, AudioClipOwner owner):

 HARMessageAudioClip

registerInterest(Identifier audioClipID,

 AudioClipOwner owner): HARMessageAudioClip

deregisterInterest(Identifier audioClipID, AudioClipOwner owner): void

getNumPushThreads():long

getClipCleanupTimeOfDay():string

getClipCleanupDelaySecs(): long

getDataClip(Identifier audioClipID): HARMessageAudioDataClipImpl

storeDataClip(Identifier audioClipID,

 HARMessageAudioDataClip,

 String owerIOR): void

addOwner(Identifier audioClipID, String ownerIOR): void

removeOwner(Identifier audioClipID, String ownerIOR): void

getOwnerList(): ClipOwnerData[]

streamAudioClip(Identifier id,

 long maxChunkSize,

 AudioPushConsumer consumer):void

AudioPushThreadManager(int numPushThreads)

pushAudio(AudioPushConsumer consumer,

 InputStream stream,

 AudioDataFormat format,

 long chunkSize)

releaseAudioPushThread()

-getAudioPushThread()

m_freeThreads

m_inUseThreads

setClipInfo(AudioPushConsumer,

 InputStream,

 AudioDataFormat,

 long chunkSize): void

shutdown() : void

-clearClipInfo

AudioPushConsumer m_consumer

AudioDataFormat m_format

InputStream m_stream

boolean m_inUse

long m_chunkSize

boolean m_shutdown

getFirst():Object

add(Object)

pushAudio(AudioData data):boolean

pushAudioProperties(AudioDataFormat format,

 long seconds,

 long size):void

pushFailure(string errMsg):void

pushCompleted()

run()

Identifier m_audioClipID

AudioClipOwner owner

Figure 1. AudioClipModule (Class Diagram)

3.1.1.1.1 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

3.1.1.1.2 AudioClipManagerDB (Class)

This class contains all the database interactions for the Audio Clip Service. This class provides the ability to store and retrieve audio data into the database. The AudioClipManagerDB also provides storage of owner registration information. Objects must implement the AudioClipOwner interface to store audio data clips or register interest in audio clips, and the identification of the owners storing or registering interest in clips is also stored in the database. As owners deregister interest in clips, this registration information is removed, and when a clip has no remaining owners, the audio data itself is purged from the database.

3.1.1.1.3 AudioClipManagerImpl (Class)

This class implements the AudioClipManagerImpl interface as defined by the IDL specified in the System Interfaces section. This class, as the AudioClipManager, is the one entry point into the AudioClipService for storing and retrieving, and streaming clips, and registering and deregistering interest in them. Since it is possible that AudioClipOwners could fail to deregister interest in clips (for instance, if the Audio Clip Service is down), this implementation also provides a cleanup routine to make sure that obsolete clip data gets purged from the database nightly.

3.1.1.1.4 AudioClipModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for publishing the AudioClipManager object within the service application. This AudioClipModule is the controlling class for the Audio Clip Service, providing for the initialization and overall operation of the module. In addition to publishing the AudioClipManager, this class creates and starts a CleanupLostClipsTimerTask which ensures that unneeded audio clips are properly purged from the database.

3.1.1.1.5 AudioClipModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by objects within the Audio Clip Service for the current instance of the application. These settings are read during the module initialization. The module must be restarted to apply any changes made to the properties file. Properties include the number of threads to use for pushing audio data, the time of day (in the middle of the night) to run the cleanup task, and how often to check to see if that time of day has arrived.

3.1.1.1.6 AudioClipStreamer (Class)

This interface is implemented by objects that can push an audio clip given its ID. The audio data, previously stored within the streamer's implementation, is pushed to the AudioPushConsumer supplied by the user of this interface. See AudioPushConsumer for details.

3.1.1.1.7 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.1.1.8 AudioPushThread (Class)

This class is a thread which is used to push audio clip information to an AudioPushConsumer.

3.1.1.1.9 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to push audio clip information back to the client. It provides the functionality to manage access to the AudioPushThreads.

3.1.1.1.10 CleanupLostClipsTimerTask (Class)

This timer task, expected to run every night, in the middle of the night, verifies that all clips stored in the Audio Clip Service database are still legitimately needed by the objects which are registered as having interest in them. Objects which store audio data clips or register interest in audio clips must implement the AudioClipOwner interface, and, as AudioClipOwners, must respond to queries about their continued interest in clips for which they have registered interest. It is possible that due to errors in the system (for instance, the Audio Clip Service being down or unreachable), that owners may fail to deregister interest in clips when they are done with them. Because this mechanism is in place, owners do not have to perform excessive record keeping or implement fail-safe retry techniques when they fail to deregister a clip. Any such failures will be detected by this timer task. This task runs the cleanupListClips() method of the AudioClipManagerImpl, which handles the details of the cleanup activity (basically querying owners about clips they have registered for in order to ascertain continuing interest in their clips).

3.1.1.1.11 ClipOwnerData (Class)

This class is used to store data pertaining to the owner of a HARMessageAudioClip.

3.1.1.1.12 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.1.1.13 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.1.1.14 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

3.1.1.1.15 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

3.1.1.1.16 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.1.1.17 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.1.1.18 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.1.1.19 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagrams

3.1.1.2 AudioClipModule:clipMgrCleanupLostClips (Sequence Diagram)

This method, executed periodically during low-volume time periods (middle of the night), verifies that all clips stored in the Audio Clip Service database are still legitimately needed by the objects which are registered as having interest in them. Objects which store audio data clips or register interest in audio clips must implement the AudioClipOwner interface, and, as AudioClipOwners, must respond to queries about their continued interest in clips for which they have registered interest. It is possible that due to errors in the system (for instance, the Audio Clip Service being down or unreachable), that owners may fail to deregister interest in clips when they are done with them. Because this mechanism is in place, owners do not have to perform excessive record keeping or implement fail-safe retry techniques when they fail to deregister a clip.

This method puts together a list of AudioClipOwners and the clips they are registered for, and sends one query to each owner identifying the clips (by ID) that the Audio Clip Service believes it is still interested in. Each AudioClipOwner sends one response: a subset (normally empty) of those clips which in fact it is no longer interested in. The AudioClipManagerImpl then removes the owner as an registrant for the clips thus returned. As each owner is deregistered in the database, the database process removes the clip if the last remaining owner is being deregistered.

[image: image4.emf]AudioClipManagerImpl CleanupLostClipsTask

java.util.Timer

AudioClipOwner

AudioClipManagerDB

AudioClipIDList

Hashtable

Ask each owner in turn about the

complete list of clips it is registered for.

Owner will return a list of any clips

which it is NOT interested in anymore.

Build Hashtable

containing an

array of clipIDs for

each owner found

in DB. Below, we

will ask each owner

about all its clips on

one call.

[*for each

clipID in

returned

unneededClipList

removeOwner(clipID, owner)

[*for each

clipID in

requested

clipIDList]

[*for each entry

in Hashtable]

[owner not found]

null

add(clipID)

confirmClipInterest(clipIDList)

[*for each

ClipOwnerData

(a clipID,owner pair)]

create with clipID

[owner found]

AudioClipIDList

put(owner, clipList)

get(owner)

[no clips in DB]

[no clips in DB]

create

[all clips still needed]

zero length unneededClipList

removeOwner(clipID, owner)

[one or more clips no longer needed]

non-emptyl unneededClipList

CORBA.SystemException (other than OBJECT_NOT_EXIST)

OBJECT_NOT_EXIST

cleanupLostClips

run

getOwnerList

ClipOwnerData()

Figure 2. AudioClipModule:clipMgrCleanupLostClips (Sequence Diagram)

3.1.1.3 AudioClipModule:DeregisterInterest (Sequence Diagram)

This method implements the deregisterInterest method of the AudioClipManager interface. This method allows a registered owner of a clip to deregister interest in an audio clip when that owner no longer has a need for it. The database method called to remove the registration from the database will also delete the clip itself, if the owner making the call is the last registered owner of the clip.

[image: image5.emf]ORB

For details, see sequence diagram

AudioClipModule:DBremoveOwner.

DB class must convert owner to

IOR text (object_to_string()).

DB class allows a registrant to

deregister for a clip it is not

registered for (with no effect)

without complaint. So DBException

would be for clip not found.

AudioClipManagerDB

AudioClipManagerImpl

ORB

SpecifiedObjectNotFound

object_to_string(owner)

[success]

[failure]

DBException

removeOwner(audioClipID, owner)

deregisterInterest(audioClipID, owner)

Figure 3. AudioClipModule:DeregisterInterest (Sequence Diagram)

3.1.1.4 AudioClipModule:Initialize (Sequence Diagram)

This sequence diagram shows the processing that takes place when the Audio Clip Service is initialized. The module creates the AudioClipManager and the AudioPushThreads to be used for streaming. The database interface object is created. The cleanup timer tasks is started. When all is ready the AudioClipManager is published in the trader and ready for business.

[image: image6.emf]getClipCleanupTimeOfDay

getClipCleanupDelaySecs

create

add to Vector

[*for each

pushThread

required]

AudioPushThread

getNumPushThreads

m_freeThreads:

Vector

create

create

getProperties

getDefaultProperties

create

create

schedule

AudioClipManagerDB

CleanupClipTask

AudioClipManagerImpl

POA

java.util.Timer

Service

Application

AudioClipModule

ServiceApplication

AudioClipModuleProperties

create

initialize

getPOA(PERSISTENT_POA)

activate_object_with_id(AudioClipManagerImpl)

addAudioClipMgrTypesToTrader

create

registerObject(AudioClipManagerImpl)

getDBConnectionManager

Figure 4. AudioClipModule:Initialize (Sequence Diagram)

3.1.1.5 AudioClipModule:RegisterInterest (Sequence Diagram)

This method implements the registerInterest method of the AudioClipManager interface. This method allows an AudioClipOwner to register interest in a clip which already exists within the Audio Clip Service. If the clip is not found, a SpecifiedObjectNotFound exception is thrown. If the owner is already registered for the clip, the neither the database process nor this method will complain; in other words, duplicate registrations (for the same clip, same owner) are silently ignored.

[image: image7.emf]ORB

AudioClipManagerDB

AudioClipManagerImpl

ORB

For details, see sequence diagram

AudioClipModule:DBaddOwner.

DB class must convert owner to

IOR text (object_to_string()).

DB class allows a registrant to register

again (with no effect) without complaint.

So DBException would be for clip not

found.

object_to_string(owner)

[success]

SpecifiedObjectNotFound

[failure]

DBException

addOwner(audioClipID, ownerIOR)

registerInterest(audioClipID, owner)

Figure 5. AudioClipModule:RegisterInterest (Sequence Diagram)

3.1.1.6 AudioClipModule:Shutdown (Sequence Diagram)

When the AudioClipService is shut down by the ServiceApplication, it stops its timer based processing, disconnects the audio clip manager from the ORB, and releases any resources it is using. A shutdown flag is set which forces all threads currently streaming to abort as soon as the current pushAudio() call returns, with a pushFailure() call. The shutdown is complete when all active threads have been aborted.

[image: image8.emf]wait for all active

threads to abort with

the pushFailure()

and release themselves

ServiceApplication

m_shutdown equals true

shutdown

shutdown

shutdown

cancel

deactivate_object

shutdown

Causes active threads

to pushFailure() to

AudioConsumer with a

"shutdown" error msg.

AudioPushThread

POA

AudioPushThreadManager

AudioClipManagerImpl

java.util.Timer

AudioClipModule

Figure 6. AudioClipModule:Shutdown (Sequence Diagram)

3.1.1.7 AudioClipModule:StoreClip (Sequence Diagram)

This method implements the storeClip method of the AudioClipManager interface. This method converts a HARMessageAudioDataClip into a lightweight HARMessageAudioClip, and registers the requester as an owner of the new clip in the process. The new HARMessageAudioClip is returned to the requester.

[image: image9.emf]object_to_string(owner)

HARMessageAudioClip

create(newID, this)

[success]

CHART2Exception

[failure]

DBException

Identifier

createIdentifier

storeDataClip(newID, audioDataClip, ownerIOR)

storeClip(audioDataClip, owner)

ORB

HARMessageAudioClip

IdentifierGenerator

AudioClipManagerDB

AudioClipManagerImpl

ORB

Figure 7. AudioClipModule:StoreClip (Sequence Diagram)

3.1.1.8 AudioClipModule:StreamAudioClip (Sequence Diagram)

This method implements the AudioStreamer method streamAudioClip(). This method acquires the clip from the database, throwing a SpecifiedObjectNotFound exception as necessary. A ByteArrayInputStream is used to buffer the audio wav data to the push process. The AudioPushThreadManager is informed of the push request, and passes the request off to one of the push threads immediately, or, if all are in use, as soon as one becomes available. The push thread pushes the audio properties to the consumer first, then pushes chunks of data, of up to the size requested, by calling pushAudio() on the consumer. This is repeated until the all audio has been pushed, unless an error occurs, the Audio Clip Service is shut down, or the consumer returns a value of false indicating that it no longer wishes to continue receiving the data. In all cases except the last, the thread completes the process by calling pushCompleted() or pushFailure() on the consumer. Finally the thread releases itself back into the free thread pool.

[image: image10.emf]pushAudio(consumer, stream, dataClip.format, maxChunkSize)

setClipInfo

[while not

shutdown]

pushAudioProperties

[error pushing data or

m_shutdown true]

pushFailure('reason text")

streamAudioClip(audioClipID,

maxChunkSize, consumer)

HARMessageAudioDataClipImpl

SpecifiedObjectNotFound

[failure]

DBException

getDataClip(audioClipID)

pushAudio

ByteArrayInputStream

AudioClipManager

ORB

AudioClipManagerDB

Notifies another thread that an AudioPushThread has

become available (terminates wait() on free thread up above).

m_inUseThreads

AudioPushThread

pushes the clip information

asynchronously.

Audio data returned

begins and ends on

frame boundaries

depending upon the

 audio format. So the

size of audio data

pushed may be less

than the max chunk

size requested.

AudioPushThreadManager

AudioPushThread

m_freeThreads

AudioPushConsumer

[no error, no shutdown

& final pushAudio rtnd true]

pushCompleted

create(dataClip.getAudioData)

compute chunkSize

read(buffer, 0, chunkSize)

add(AudioPushThread)

wait

notify

clearClipInfo

[free thread

 not available]

wait

AudioPushThread

add(AudioPushThread)

remove(AudioPushThread)

remove(AudioPushThread)

releaseAudioPushThread

[m_shutdown still false]

notify

[while more audio data &

no error pushing data &

not m_shutdown &

pushAudio rtns true]

size

getFirst

Figure 8. AudioClipModule:StreamAudioClip (Sequence Diagram)

Chart2Service

3.1.2 Classes

3.1.2.1 CHART2ServiceClasses (Class Diagram)

The diagram shows classes of an application which helps in installation and termination of the modules related to CHART II system.

[image: image11.emf]Service

«interface»

ServiceApplication

«interface»

DefaultServiceApplication

ServiceApplicationModule

«interface»

CHART2Service

1 1 1 *

ping():void

getName():string;

getVersion():ApplicationVersion

getNetConnectionSite():string;

oneway shutdown(AccessToken token):void

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

DefaultServiceApplication(String propertiesFilename)

-writeOffersToFile(String moduleName, int[] offerIDs):boolean

-removeOffersFromFile(String moduleName):boolean

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

main(string[] args):void

Figure 9. CHART2ServiceClasses (Class Diagram)

3.1.2.1.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in CHART II system.

3.1.2.1.2 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed a properties file during construction. This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available, provide database connectivity, etc. The properties file also contains the class names of service modules that should be served by the service application. During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service. Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization. The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is expected to remove its offers from the trader during a shutdown. If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start. This keeps multiple offers for the same object from being placed in the trader.

3.1.2.1.3 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown externally. All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

3.1.2.1.4 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.2.1.5 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagrams

3.1.2.2 CHART2Service:Shutdown (Sequence Diagram)

This sequence diagram shows shutdown of CHART2Service. This service calls shutdown on DefaultServiceApplication object which shuts down the modules that are served by the CHART II system. Refer to DefaultServiceApplication's Shutdown sequence diagram in Utility package for details. The CHART2Service deactivates itself using the POA and the CHART2Service calls the deactivate method on the POAManager to exit the event loop and shudown.

[image: image12.emf]The default service application

 will call shutdown on each

installed ServiceApplicationModule.

Administrator

CHART2Service DefaultServiceApplication POA POAManager

shutdown

shutdown

[shutdown failed]

exit

getPOA

deactivate

deactivate_object

Figure 10. CHART2Service:Shutdown (Sequence Diagram)

3.1.2.3 CHART2Service:Startup (Sequence Diagram)

This sequence diagram shows startup of CHART2Service. This service creates and starts a DefaultServiceApplication object and the modules that are served by the CHART II system. Refer to DefaultServiceApplication's Start sequence diagram in Utility package for details. The CHART2Service is activated using the POA and the CHART2Service activates the POAManager to enter the event loop and start serving the CORBA requests.

[image: image13.emf]DefaultServiceApplication

POA

The default service

application will find all

installed ServiceApplicationModules

and will call initialize on each of them.

Administrator

CHART2Service

create

[start failed]

exit

getPOA

main

start

the_POAManager

activate

activate_object

POAManager

This call blocks

until the POAManager

deactivate method is called.

Figure 11. CHART2Service:Startup (Sequence Diagram)

CommLogModule

3.1.3 Classes

3.1.3.1 CommLogModuleClassDiagram (Class Diagram)

This Class Diagram displays classes used for managing the Communications Log. Operators can add entries directly to the Communications Log, and entries are also added indirectly with certain Traffic Events manipulations. Operators can view or search entries in the Communications Log, but cannot edit them.

[image: image14.emf]ServiceApplication

«interface»

ServiceApplicationModule

«interface»

CosTrading.Register

«interface»

PushEventSupplier

CommLogModule

ORB

«interface»

TokenManipulator

java.util.TimerTask

CommLog

«interface»

DatabaseLogger

IteratorCleanupTask

java.util.Timer

LogEntry

«interface»

CommLogClient

CommLogImpl

CommLogModuleProperties

java.util.Properties

1

*

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

*

1 1

pushes

LogEntries

using

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

export

withdraw

int m_factoryOfferID

init()

resolve_initial_references()

string_to_object()

object_to_string()

run()

run

getEntries(AccessToken token, LogFilter filter,

 long maxCount) : LogQueryResults

addEntries(AccessToken token, LogEntryDataList logEntries) : void

overrideEntryTime(AccessToken token, Identifier logEntryID,

 TimeStamp logEntryTime):void

run()

DatabaseLogger m_dbLogger

schedule

cancel

addCommLog(CommLog)

getEntries(AccessToken token, LogFilter filter,

 long maxCount, LogEntryList entries) : LogIterator

addEntries(AccessToken token, LogEntryDataList logEntries) : void

DBConnectionManager m_db

getLogIteratorDisuseTimeout() : int

getLogIteratorDisuseCheckInterval() : int

getProperty()

setProperty()

Figure 12. CommLogModuleClassDiagram (Class Diagram)

3.1.3.1.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or specific log entries for a specific Traffic Event. This class is the primary interface for the CommLog service. It is used to persist log entries in the CHART II system and retrieve them for review. Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events.

3.1.3.1.2 CommLogClient (Class)

This class is a wrapper to be used by clients of the Communications Log. It provides services such as discovering instances of the CommLog in the trader and caching entries to the comm log that are added when the comm log is not available.

3.1.3.1.3 CommLogImpl (Class)

This class implements the CommsLog interface; that is, it implements the methods defined by CommsLog, allowing user interface processes access to the Communications Log for adding entries and selecting entries for viewing.

3.1.3.1.4 CommLogModule (Class)

This class implements the ServiceApplicationModule for controlling the CommLog. This class starts up the CommsLog service, and shuts it down when requested.

3.1.3.1.5 CommLogModuleProperties (Class)

This class represents an object that provides access to properties that are specific to the CommLog module.

3.1.3.1.6 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover.

3.1.3.1.7 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.1.3.1.8 IteratorCleanupTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process to cleanup LogIterators that are no longer being used.

3.1.3.1.9 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

3.1.3.1.10 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.3.1.11 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.3.1.12 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

3.1.3.1.13 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.3.1.14 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.3.1.15 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.3.1.16 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.3.1.17 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information. Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

Sequence Diagrams

3.1.3.2 CommLogModule:addEntries (Sequence Diagram)

This sequence is initiated by a process (GUI) which is adding one or more entries into the Communications Log. (A process normally adds entries one at a time as events are created. More than one entry may be queued up if the CommsLog service has been unavailable.) The CommsLog service adds each entry on the list to the database.

[image: image15.emf]TokenManipulator CommLog

ORB

DatabaseLogger

LogEntry

PushEventSupplier

addEntry

create

push(LogEntry)

for each

LogEntryData

passed in

[if bad]

Chart2Exception

hasRight

[if no rights]

AccessDenied

validateToken

addEntries

delete

"Add entry

to database"

Figure 13. CommLogModule:addEntries (Sequence Diagram)

3.1.3.3 CommLogModule:destroy (Sequence Diagram)

This sequence is executed by a user process (GUI) when it is done with a LogIterator (due to no more entries left or operator cancel). Each LogEntry conceptually on the LogIterator's list which was never returned to the caller (if any) is removed from the cache and destroyed if necessary, then the LogIterator itself is deleted.

[image: image16.emf]LogEntry

LogIteratorImpl

HashTable

LogEntryCache

ORB

CachedLogEntry

[if refCount is 0]

delete reference

[if refCount is 0]

getEntry()

getRefCount()

decrRefCount()

removeEntry()

destroy

for each

remaining

entry in

list

[if refCount == 0]

delete

[if refCount == 0]

remove(CachedLogEntry)

Figure 14. CommLogModule:destroy (Sequence Diagram)

3.1.3.4 CommLogModule:getEntries (Sequence Diagram)

This sequence shows how the CommsLog service responds to a request from another process (GUI) for entries from the Communications Log. The request may be constrained by a filter (based on time, originating Op Center, author, etc.). If the amount of data is larger than the requestor-specified size, the first clump is returned immediately, together with a LogIterator which can be used to later retrieve additional data, which is cached as the initial request is processed.

[image: image17.emf]DatabaseLogger

TokenManipulator CommLog

ORB

If LogIterator is non-NULL,

caller can call LogIterator for

more entries as desired.

LogIterator

See

DatabaseLogger::getEntries()

for details

LogIterator may be NULL if

all entries fit in one "clump".

LogEntryList & LogIterator

LogEntryList

&LogIterator

LogEntryList

getMoreEntries()

getEntries()

hasRight()

validateToken()

[if no rights]

AccessDenied

[if bad]

Chart2Exception

getEntries()

Figure 15. CommLogModule:getEntries (Sequence Diagram)

3.1.3.5 CommLogModule:initialize (Sequence Diagram)

This sequence is executed by the Service Application to start a CommsLog service if required. The CommLogModule creates a CommLog service object and makes it ready to begin servicing requests. The CommLog service allows for creation and retrieval of Communications Log Entries. New entries are pushed through the CORBA event service.

[image: image18.emf]POA

CommLog

PushEventSupplier

CommLogModuleProperties

CosTrading.Register

ServiceApplication CommLogModule

ServiceApplication

LogEntryCache

DatabaseLogger

java.util.Timer

IteratorCleanupTask

create

schedule

create

getDBConnectionManager()

export(EventChannel)

getEventChannelFactory()

create

initialize

create

create

getProperties()

getDefaultProperties()

getTradingRegister()

activate_object (CommLog)

GetPOA()

create

create

getLogIteratorDisuseCheckIntervalMins()

getEventChannel()

getLogIteratorDisuseTimeoutMins()

Figure 16. CommLogModule:initialize (Sequence Diagram)

3.1.3.6 CommLogModule:runIteratorCleanup (Sequence Diagram)

This sequence diagram shows the processing done to clean up any stray iterators that may have been left around by clients.

[image: image19.emf]java.util.Timer

CommLogIterator

DatabaseLogger

IteratorCleanupTask

run

[*for each

iterator

[iterator hasn't been used during timeout period]

delete

checkExpiredIterators

Figure 17. CommLogModule:runIteratorCleanup (Sequence Diagram)

3.1.3.7 CommLogModule:shutdown (Sequence Diagram)

This sequence is used to shutdown the CommsLog service as part of an orderly shutdown. The CommsLog deletes all memory associated with cached retrieval requests and exits. No attempt is made to persist cached data or iterators. GUIs must re-request at a later time.

[image: image20.emf]CommLog

POA

CosTrading.Register

CommLogModule

Service

Application

LogIteratorImpl

DatabaseLogger

CommLogModuleProperties

PushEventSupplier

java.util.Timer

Hashtable

LogEntryCache

See

CommLogModule::destroy()

for details

cancel()

withdraw(EventChannel)

shutdown

delete

deactivate_object(CommLog)

delete

delete

withdraw(CommLog)

deactivate_object(EventChannel)

for each

LogIteratorImpl

delete

destroy()

shutdown

delete

Figure 18. CommLogModule:shutdown (Sequence Diagram)

CORBAUtilities

3.1.4 Classes

3.1.4.1 CORBAClasses (Class Diagram)

The CORBAUtilities package exists to provide reference to classes that are supplied by the ORB Vendor and are referenced by other packages' class or sequence diagrams.

[image: image21.emf]POAManager

«interface»

POA

«interface»

com.ooc.CosEventChannelAdmin.impl.EventChannel

ORB

«interface»

CosEventChannelAdmin.

EventChannel

«interface»

CosEvent.

PushConsumer

«interface»

CosTrading.Register

«interface»

CosTrading.Lookup

«interface»

activate()

deactivate()

activate_object(Servant obj)

deactivate_object(object_id)

deactivate()

the_POAManager() : POAManager

create_POA() : POA

init()

resolve_initial_references()

string_to_object()

object_to_string()

run()

for_consumers()

for_suppliers()

destroy()

push

export

withdraw

query

Figure 19. CORBAClasses (Class Diagram)

3.1.4.1.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor's implementation of a CORBA event channel. The event service provided by the vendor simply serves one of these objects. The Extended Event Service serves a factory that allows multiple instances of the vendor supplied event channel to be created.

3.1.4.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.1.4.1.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and consumers of information.

3.1.4.1.4 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Lookup is the interface that applications use to discover objects, which have previously been published.

3.1.4.1.5 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover.

3.1.4.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.4.1.7 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

3.1.4.1.8 POAManager (Class)

This interface represents the portable object adapter manager used to activate and deactivate the POA.

DeviceUtility

3.1.5 Classes

3.1.5.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device control.

[image: image22.emf]VoicePortLocator

PortLocator

CommFailureCode CommFailureData

CommFailureDB

ModemPortLocator

ConnectedPortInfo

«typedef»

PortLocationData

«typedef»

PortManagerListEntry

«typedef»

ArbQueueEntry

MessageQueue

1 *

1

*

* 1

1

1

1

1

1 1

returns connected port in

1 *

connectPort(Port, PortManagerCommsData):int

PortLocator(PortLocationData, ORB, Lookup, CommFailureDB):PortLocator

getConnectedPort(String opDescription, CommandStatus):ConnectedPortInfo

releaseConnectedPort(ConnectedPortInfo):void

abstract connectPort(Port, PortManagerCommsData):int

-getPort(String portManagerName):Port

static int CONN_RSLT_OK;

static int CONN_RSLT_FAIL_RETRY;

static int CONN_RSLT_FAIL_NO_RETRY;

Vector m_portManagerRefList;

org.omg.CORBA.ORB m_orb;

org.omg.CosTrading.Lookup m_lookup;

&CommFailureDB m_commFailureDB;

SOFTWARE_ERROR

ACQUIRE_PORT_MGR_NOT_AVAILABLE

ACQUIRE_PORT_TYPE_NOT_SERVED

ACQUIRE_NO_PORTS_AVAILABLE

CONNECT_GENERAL_FAILURE

CONNECT_MODEM_NOT_RESPONDING

CONNECT_PORT_OPEN_FAILURE

CONNECT_MODEM_CONNECT_FAILURE

String portManagerName

PortType portType

String portName

int failureCode

int modemResponseCode

String logText

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

connectPort(Port, PortManagerCommsData):int

Port m_port

String m_portName

PortManager m_portMgr

String m_portMgrName

PortManagerCommsList m_prtManagerList

PortType m_portType;

int m_portWaitTimeSecs;

String m_portMgrName;

PortManager m_portMgrRef;

getTrafficEvent():TrafficEvent

getTrafficEventType():int

getTrafficEventID():byte[]

setActive(AccessToken token, string deviceName):void

setInactive(AcessToken token,

 string deviceName,

 string reason):void

setFailed(AccessToken token,

 string deviceName,

 string errorMsg):void

setUpdated(AccessToken token, string deviceName):void

getMessage():Message

getPriority():double

setPriority(AccessToken token, double newpriority):void

getOpCenterName():string

matches(ArbQueueEntry entry):boolean

ArbQueueEntryIndicator m_indicator

int m_trafficEventType

Message m_message

double m_priority

string m_opCenter

MessageQueue(byte[] deviceID, boolean depersisting)

addEntry(ArbQueueEntry entry):void

removeEntry(byte[] TrafficEventID):void

changePriority(ArbQueueEntry entry, double priority):void

destroy(): void

getEntries():ArbQueueEntryList

purgeUnresolvedEntries(): void

validateEntries(): boolean

-depersist(): void

-persist(): void

Vector m_messageQueue

Identifier m_deviceID

Figure 20. DeviceUtility (Class Diagram)

3.1.5.1.1 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.5.1.2 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

3.1.5.1.3 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

3.1.5.1.4 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about any comm failure that occurs in the system.

3.1.5.1.5 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

3.1.5.1.6 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.

3.1.5.1.7 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.5.1.8 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.5.1.9 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the deployment of many PortManagers. The PortLocator is initialized by specifying a preferred PortManager and optionally one or more alternate PortManagers using a PortLocationData object.

When asked to get a connected port, the PortLocator first attempts to acquire a port from the preferred PortManager and then calls its abstract connectPort() method (implemented by derived classes) to attempt to connect to the port. If a failure occurs, the PortLocator retries the sequence using the next PortManager in the list. The list may contain the same port manager multiple times to have retries occur on the same port manager prior to moving to another. In the event that the PortLocator will perform a retry on the same port manager, it holds the previously acquired port while performing the retry to avoid having the port manager return the same port during the retry. When a different port is acquired during a retry on the same port manager, the port is released (prior to connecting the 2nd port).

3.1.5.1.10 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

3.1.5.1.11 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

3.1.5.2 PortLocatorClasses (Class Diagram)

This class diagram shows utility classes that can be used to get a free port.

[image: image23.emf]1

*

* 1

1

1

CommFailureData CommFailureCode

PortLocator

VoicePortLocator ModemPortLocator

PortLocationData

«typedef»

ConnectedPortInfo

«typedef»

PortManagerListEntry

«typedef»

CommFailureDB

1 1

returns connected port in

1 *

1

1

String portManagerName

PortType portType

String portName

int failureCode

int modemResponseCode

String logText

SOFTWARE_ERROR

ACQUIRE_PORT_MGR_NOT_AVAILABLE

ACQUIRE_PORT_TYPE_NOT_SERVED

ACQUIRE_NO_PORTS_AVAILABLE

CONNECT_GENERAL_FAILURE

CONNECT_MODEM_NOT_RESPONDING

CONNECT_PORT_OPEN_FAILURE

CONNECT_MODEM_CONNECT_FAILURE

PortLocator(PortLocationData, ORB, Lookup, CommFailureDB):PortLocator

getConnectedPort(String opDescription, CommandStatus):ConnectedPortInfo

releaseConnectedPort(ConnectedPortInfo):void

abstract connectPort(Port, PortManagerCommsData):int

-getPort(String portManagerName):Port

static int CONN_RSLT_OK;

static int CONN_RSLT_FAIL_RETRY;

static int CONN_RSLT_FAIL_NO_RETRY;

Vector m_portManagerRefList;

org.omg.CORBA.ORB m_orb;

org.omg.CosTrading.Lookup m_lookup;

&CommFailureDB m_commFailureDB;

connectPort(Port, PortManagerCommsData):int connectPort(Port, PortManagerCommsData):int

PortManagerCommsList m_prtManagerList

PortType m_portType;

int m_portWaitTimeSecs;

Port m_port

String m_portName

PortManager m_portMgr

String m_portMgrName

String m_portMgrName;

PortManager m_portMgrRef;

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

Figure 21. PortLocatorClasses (Class Diagram)

3.1.5.2.1 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

3.1.5.2.2 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

3.1.5.2.3 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about any comm failure that occurs in the system.

3.1.5.2.4 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

3.1.5.2.5 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.5.2.6 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.5.2.7 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the deployment of many PortManagers. The PortLocator is initialized by specifying a preferred PortManager and optionally one or more alternate PortManagers using a PortLocationData object.

When asked to get a connected port, the PortLocator first attempts to acquire a port from the preferred PortManager and then calls its abstract connectPort() method (implemented by derived classes) to attempt to connect to the port. If a failure occurs, the PortLocator retries the sequence using the next PortManager in the list. The list may contain the same port manager multiple times to have retries occur on the same port manager prior to moving to another. In the event that the PortLocator will perform a retry on the same port manager, it holds the previously acquired port while performing the retry to avoid having the port manager return the same port during the retry. When a different port is acquired during a retry on the same port manager, the port is released (prior to connecting the 2nd port).

3.1.5.2.8 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

3.1.5.2.9 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

Sequence Diagrams

3.1.5.3 MessageQueue:addEntry (Sequence Diagram)

This diagram shows the processing involved when a request to change the priority for the passed event is sent to the arbitration queue. A check is first made to ensure the existence of the event on the arbitration queue. Priorities assigned, will be based on the traffic event type. Each traffic event type, will have a range in which priorities will be assigned. If the priority number passed is within the range of the event type, then based on the current events in the range, a new number will be assigned. For e.g., if an event of the same priority already exists then the number assigned = mean of (event of same priority & next event (or upper boundary limit)). If the new priority falls in the range of a different event type, then again a guess will be taken depending on the assigned priority & the events in that range.

[image: image24.emf]Collections.sort(m_messageQueue)

lock

addEntry(ArbQueueEntry)

determine Priority

add(entry)

persist the state

unlock

setPriority

m_messageQueue

MessageQueue

ArbQueueEntry

Priorities assigned, will be based on the traffic event type.

Each traffic event type, will have a range in which priorities

will be assigned.

The next priority number assigned = mean of (last entry priority

number in the range & lower boundary limit)

Position of the element who's priority is less than the new element

will be saved. This index will be used to insert the new element

in the vector. The message queue will be sorted according to

ascending priority numbers.

HARImpl

or

DMSImpl

Figure 22. MessageQueue:addEntry (Sequence Diagram)

3.1.5.4 MessageQueue:changePriority (Sequence Diagram)

This diagram shows the processing involved when an entry is added to an arbitration queue. Before adding the entry to the arbitration queue, it is assigned a priority number based on the event type. Each traffic event type, will have a range in which priorities will be assigned. The next priority number assigned = mean of (last priority number in the range & upper boundary limit)

[image: image25.emf]ArbQueueEntry MessageQueue

Priorities assigned, will be based on the traffic event type.

 Each traffic event type, will have a range in which priorities

will be assigned. If the priority number passed is within the range

of the event type, then based on the current events in the range,

 a new number will be assigned. For e.g., if an event of the same

priority already exists then the number assigned = mean of (event

 of same priority & next event (or upper boundary limit). If the new

priority falls in the range of a different event type, then again a guess

will be taken depending on the assigned priority & the events in that

range.

If there is no collision in priority with the existing elements, the passed

priority will be used.

HARImpl

or

DMSImpl

m_messageQueue

ArbQueueEntry

get(indx)

[*for all

items in the

m_messageQueue

Collections.sort(m_messageQueue)

unlock

[if this entry's traffic Event Id matches]

setPriority

[SpecifiedObjectNotFound]

changePriority(trafficEventID, priority)

determine new Priority

lock

persist the state

Figure 23. MessageQueue:changePriority (Sequence Diagram)

3.1.5.5 MessageQueue:getEntries (Sequence Diagram)

This diagram shows the processing involved when a request is made to the arbitrarion queue to return the list of entries it currently holds. The list is internally stored in an ascending order based on the assigned priority number for the event.

[image: image26.emf]HARImpl

or

DMSImpl

m_messageQueue MessageQueue

ArbQueueEntry[]

getEntries

toArray

ArbQueueEntry[]

Figure 24. MessageQueue:getEntries (Sequence Diagram)

3.1.5.6 MessageQueue:purgeUnresolvedEntries (Sequence Diagram)

After startup, the arbitration queue entries with unresolved traffic event references are purged when the arbitration queue is evaluated as a result of an arbitration queue entry addition or removal from the queue.

[image: image27.emf]m_messageQueue:

Vector

newMessageQueue:

Vector

MessageQueue

HARImpl

or

DMSImpl

[entry.m_trafficEvent is non-null (i.e., resolved)]

add

purgeUnresolvedEntries

delete original m_messageQueue

"set newMessageQueue

to be m_messageQueue"

[*for each

ArbQueueEntry on

m_messageQueue

Figure 25. MessageQueue:purgeUnresolvedEntries (Sequence Diagram)

3.1.5.7 MessageQueue:removeEntry (Sequence Diagram)

This diagram shows the processing involved when an entry is removed from the arbitration queue. The ID of the traffic event to be removed is used to find the corresponding queue entry and the entry is marked for deletion.

[image: image28.emf]HARImpl

or

DMSImpl

m_messageQueue MessageQueue

[*for all elts

in the

m_messageQueue]

removeEntry(trafficEventID)

lock

unlock

persist the state

[if traffic event ID's match]

remove(indx)

(*if entry not found*)

[SpecifiedObjectNotFound]

Figure 26. MessageQueue:removeEntry (Sequence Diagram)

3.1.5.8 MessageQueue:validateEntries (Sequence Diagram)

At startup, arbitration queue entries are validated by finding the responsible traffic event in the CORBA Trader. If the traffic event was not found i.e. an OBJECT_NOT_EXIST exception is encountered while narrowing the object, the entry is deleted. If a TRANSIENT exception is encountered while narrowing the object, the entry is marked for resolving the traffic event at a later time.

[image: image29.emf]Returns false if any traffic event could not be resolved.

Returns true if all traffic events were resolved (positively or negatively).

ArbQueueEntry

m_messageQueue:

Vector

CorbaUtilities

MessageQueue

HARImpl

or

DMSImpl

true

[failure ==- false]

false

[*for each

ArbQueueEntry

on

m_messageQueue

set failure = true

[other CORBA error (i.e., TRANSIENT)

trafficEvent

set m_trafficEvent in entry

delete entry

OBJECT_NOT_EXIST

[entry.m_trafficEvent == null]

findObjects(trafficEvent with entry.m_trafficEventID)

validateEntries

[one or more entries were deleted or updated]

persist

Figure 27. MessageQueue:validateEntries (Sequence Diagram)

3.1.5.9 ModemPortLocator:connectPort (Sequence Diagram)

This sequence shows the ModemPortLocator processing involved when its base class invokes the virtual connectPort method. The ModemPortLocator casts the port retrieved by the base class into a ModemPort and calls its connect method. The ModemPortLocator then interprets the results of the connect call and returns a code to the base class to indicate success, failure - retries should not be attempted, or failure - retries may be attempted. The failure - retries should not be attempted result code is used in situations where a retry on a different port would likely yield the same result or when a software failure is encountered. If a failure occurs, detailed comm failure data is logged to the database comm failure table. Note this feature is controlled by the constructor of the class, allowing test programs to use this class without requiring a database connection.

[image: image30.emf]CommFailureData

Base class protected

member.

m_commFailureDB

The remainder of this sequence shows the error handling. When an error occurs in the ModemPort connect call,

an exception is thrown. The ModemPortLocator logs the error and decides if the type of error should halt retries (if any)

See the specific Exceptions on the returns from ModemPortLocator to PortLocator.

ModemPort PortManagerCommsData

Virtual Function

call on derived class

ModemPortLocator

PortLocator

[failure]

Exception Specific to Failure Type

[success]

CONN_RSLT_OK

[success]

connect

get phone number

connectPort

[ConnectFailure]

CONN_RSLT_FAIL_NO_RETRY

[PortOpenFailure]

CONN_RSLT_FAIL_RETRY

[OBJECT_NOT_EXIST]

CONN_RSLT_FAIL_RETRY

[TRANSIENT]

CONN_RSLT_FAIL_RETRY

[CORBA_COMM_FAILURE]

CONN_RSLT_FAIL_RETRY

[failure and m_commFailureDB != null]

addCommFailureLogEntry

[failure and m_commFailureDB != null]

create

[ModemNotResponding]

CONN_RSLT_FAIL_RETRY

[CHART2Exception]

CONN_RSLT_FAIL_NO_RETRY

[ModemConnectFailure

And ModemResponseCode NOT

NO_CARRIER, NO_DIALTONE,

ERROR, or UNKNOWN]

CONN_RSLT_FAIL_NO_RETRY

[ModemConnectFailure

And ModemResponseCode ==

NO_CARRIER, NO_DIALTONE,

ERROR, or UNKNOWN]

CONN_RSLT_FAIL_RETRY

[ModemInitFailure]

CONN_RSLT_FAIL_RETRY

Figure 28. ModemPortLocator:connectPort (Sequence Diagram)

3.1.5.10 PortLocator:getConnectedPort (Sequence Diagram)

The getConnectedPort method of the PortLocator utility uses the list of PortManager names and associated connection information (such as phone number to use) to attempt to acquire a port and connect it to the remote destination. Retry logic exists to try each PortManager in succession until a port is successfully connected or an attempt to connect fails and the type of failure is not likely to benefit from a retry on a different port. The list of port manager names can contain duplicate entries to cause the port locator to use a different port on the same port manager. When this is the case, the port locator must hold the previously acquired port while it attempts to get an additional port from the port manager to ensure the port manager doesn't return the same port twice.

The connection logic is carried out in the derived class connectPort() method, for this logic varies depending on the type of port requested. A private getPort() method handles logic to retrieve a port from a single port manager and process errors. Sequences for these methods exist in the ModemPortLocator:connectPort() sequence and the PortLocator:getPort() sequence.

[image: image31.emf]PortLocator

Device

Object

ConnectedPortInfo

See the ModemPortLocator:connectPort

sequence diagram for details.

PortLocationData

These classes are one in the same.

The ModemPortLocator is derived from

PortLocator. They are shown separately

to highlight base class processing vs.

derived class processing

ModemPortLocator

See PortLocator:getPort

sequence for details

getPort

get next PortManagerCommsData entry

[*while more portmanagers

in PortLocationData

and Port not

connected

and retry eligible]

getConnectedPort

[unable to

successfully acquire

and connect port]

CHART2Exception

[CONN_RSLT_FAIL_NO_RETRY]

CHART2Exception

[failure]

CONN_RSLT_FAIL_RETRY or

CONN_RSLT_FAIL_NO_RETRY

[CONN_RSLT_OK]

ConnectedPortInfo

[CONN_RSLT_OK]

create

[success]

CONN_RSLT_OK

[port retrieved]

connectPort

[previous port (if any) not released]

releasePort

[More entries in port manager list

and next entry is different than this

entry]

releasePort

Figure 29. PortLocator:getConnectedPort (Sequence Diagram)

3.1.5.11 PortLocator:ReleasePort (Sequence Diagram)

When the PortLocator releasePort method is called, the PortLocator uses the port manager reference that it stored in the getPort method to release the port from the correct PortManager.

[image: image32.emf]PortManagerListEntry

m_currentPortOwner PortManager PortLocator

Chart2

Device Object

releasePort

releasePort

[no port to release]

"get port manager object ref"

Figure 30. PortLocator:ReleasePort (Sequence Diagram)

3.1.5.12 VoicePortLocator:connectPort (Sequence Diagram)

This sequence shows the VoicePortLocator processing involved when its base class invokes the virtual connectPort method. The VoicePortLocator casts the port retrieved by the base class into a VoicePort and calls its connect method. The VoicePortLocator then interprets the results of the connect call and returns a code to the base class to indicate success, failure - retries should not be attempted, or failure - retries may be attempted. The failure - retries should not be attempted result code is used in situations where a retry on a different port would likely yield the same result or when a software failure is encountered. If a failure occurs, detailed comm failure data is logged to the database comm failure table. Note this feature is controlled by the constructor of the class, allowing test programs to use this class without requiring a database connection.

[image: image33.emf]PortLocator

VoicePortLocator PortManagerCommsData m_commFailureDB VoicePort

Virtual Function

call on derived class

The remainder of this sequence shows the error handling. When an error occurs in the VoicePort connect call,

an exception is thrown. The VoicePortLocator logs the error and decides if the type of error should halt retries (if any).

See the specific Exceptions on the returns from VoicePortLocator to PortLocator.

CommFailureData

[failure]

Exception Specific to Failure Type

[failure and m_commFailureDB != null]

create

[failure and m_commFailureDB != null]

addCommFailureLogEntry

connectPort

get phone number

connect

[CORBA_COMM_FAILURE]

CONN_RSLT_FAIL_RETRY

[OBJECT_NOT_EXIST]

CONN_RSLT_FAIL_RETRY

[TRANSIENT]

CONN_RSLT_FAIL_RETRY

[VoicePortConnectFailure]

CONN_RSLT_FAIL_RETRY

[success]

[success]

CONN_RSLT_OK

Figure 31. VoicePortLocator:connectPort (Sequence Diagram)

DictionaryModule

3.1.6 Classes

3.1.6.1 DictionaryModClassDiagram (Class Diagram)

The DictionaryModule is a Service Application module that creates and serves the Dictionary implementation to the rest of the Chart2 system.

[image: image34.emf]DictionarySuggestion

«interface»

DictionaryWord

«interface»

DictionaryImpl

PushEventSupplier

ServiceApplicationModule

«interface»

DictionaryModule

ServiceApplication

«interface»

DictionaryDB

OperationsLog

Dictionary

«interface»

1

1

1

*

1

*

*

1

1

1

1 1

1

1

1

1

getUnapprovedWord():string

getReplacements():StringList

factory create(string unapprovedWord,

 StringList replacements):DictionarySuggestion

DictionaryWord m_unapprovedWord

StringList m_replacements

getWord():string;

setApplicabilityToType(DictionaryWordType wordType,

 boolean isApplicable):void

isWordApplicableToType(DictionaryWordType wordType):boolean

factory create(string word,WordTypeList wordType):DictionaryWord

string m_word

long m_wordTypeBitmask

DictionaryImpl(DictionaryDB, ServiceApplication,

 PushEventSupplier)

m_ID

m_bannedWordList

m_approvedWordList

m_dictionaryImplList

m_evtChannelNameList

DictionaryDB(DBConnectionManager db)

insertBannedWords

deleteBannedWords

getBannedWords

checkBannedWords

insertApprovedWords

deleteApprovedWords

getApprovedWords

checkApprovedWords

DBConnectionManager m_db

Figure 32. DictionaryModClassDiagram (Class Diagram)

3.1.6.1.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,..

3.1.6.1.2 DictionaryDB (Class)

This class provides API calls to add, remove and retrieve banned words and approved words from the database. The connection to the database is acquired from the Database object which manages all the database connections.

3.1.6.1.3 DictionaryImpl (Class)

This class implements the Dictionary as specified by the IDL. It provides functionality to add, delete and check for words that are banned or approved from being used in a DMS message.

3.1.6.1.4 DictionaryModule (Class)

This class implements the Service Application module interface. It publishes the dictionary implementation.

3.1.6.1.5 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a substitute for the word that could not be found in the approved words dictionary database.

3.1.6.1.6 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that qualifies the type of devices that the word applies to.

3.1.6.1.7 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.

3.1.6.1.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.6.1.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.6.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagram

3.1.6.2 DictionaryImpl:addApprovedWordList (Sequence Diagram)

The given list of words is added to the approved words dictionary database. The newly added words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image35.emf]PushEventSupplier DictionaryDB TokenManipulator DictionaryImpl OperationsLog

Operator

db Error

[no access]

log

success

[db error]

CHART2Exception

log

push(ApprovedWordsAdded)

insertApprovedWords

addApprovedWordList

[no access]

AccessDenied

checkAccess

Figure 33. DictionaryImpl:addApprovedWordList (Sequence Diagram)

3.1.6.3 DictionaryImpl:addBannedWordList (Sequence Diagram)

The given list of words is added to the banned words dictionary database and the copy of the dictionary in memory is also updated. The newly added banned words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image36.emf]PushEventSupplier DictionaryDB TokenManipulator DictionaryImpl OperationsLog

Operator

db Error

[no access]

log

success

[db error]

CHART2Exception

log

push(BannedWordsAdded)

insertBannedWords

addBannedWordList

[no access]

AccessDenied

checkAccess

Figure 34. DictionaryImpl:addBannedWordList (Sequence Diagram)

3.1.6.4 DictionaryImpl:checkForBannedWords (Sequence Diagram)

The string provided by the operator is scanned for any banned words by looking up the database. Any character from the given set of delimiters is taken to be a valid delimiter of words in the string. The list of banned words present in the string is returned.

[image: image37.emf]The DictionaryDB object

performs a select query

using "where in" clause to

check for the banned words

The given string is parsed into

a list of words. The word delimiters

are specified by the caller.

DictionaryDB DictionaryImpl

Operator

checkBannedWords

List of banned words

"parseString"

checkForBannedWords

[error]

CHART2Exception

Figure 35. DictionaryImpl:checkForBannedWords (Sequence Diagram)

3.1.6.5 DictionaryImpl:getApprovedWords (Sequence Diagram)

The list of approved words in the dictionary is read from the database and returned to the operator. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image38.emf]DictionaryDB TokenManipulator DictionaryImpl

Operator

OperationsLog

[no access]

AccessDenied

Approved Words List

checkAccess

getApprovedWords

[no access]

log

[db error]

chart2Exception

getApprovedWords

Figure 36. DictionaryImpl:getApprovedWords (Sequence Diagram)

3.1.6.6 DictionaryImpl:getBannedWords (Sequence Diagram)

The list of banned words in the dictionary is read from the database and returned to the operator. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image39.emf]DictionaryDB TokenManipulator DictionaryImpl

Operator

OperationsLog

checkAccess

Banned Words List

[no access]

AccessDenied

getBannedWords

[no access]

log

[db error]

chart2Exception

getBannedWords

Figure 37. DictionaryImpl:getBannedWords (Sequence Diagram)

3.1.6.7 DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)

The string provided by the operator is scanned for any words that are not present in the approved words dictionary database. Any character from the given set of delimiters is taken to be a valid delimiter of words in the string. For each word not present in the approved word list, a list of suggested words is formulated. The suggested words are those in the approved words dictionary, that have close lexical match with the disapproved word.

[image: image40.emf]DictionaryImpl

Operator

The given string is parsed into

a list of words. The word delimiters

are specified by the caller.

The DictionaryDB object

performs a select query

using "where in" clause to

check for the approved words.

DictionarySuggestionImpl

DictionaryDB

[db error]

CHART2Exception

[db error]

CHART2Exception

[*for each disapprovedword that has suggestions]

create

[no disapproved words found]

success

[*for each disapproved word]

getSuggestionsForWord

getApprovedWords

checkApprovedWords

"parseString"

DictionarySuggestion List

performApprovedWordsCheck

Figure 38. DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)

3.1.6.8 DictionaryImpl:removeApprovedWordList (Sequence Diagram)

The given list of words is removed from the approved words dictionary database. The removed words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image41.emf]PushEventSupplier DictionaryDB TokenModifier DictionaryImpl

Operator

OperationsLog

checkAccess

removeApprovedWordList

push(ApprovedWordsRemoved)

[db error]

chart2Exception

[no access]

AccessDenied

deleteApprovedWords

log

[no access]

log

Figure 39. DictionaryImpl:removeApprovedWordList (Sequence Diagram)

3.1.6.9 DictionaryImpl:removeBannedWordList (Sequence Diagram)

The given list of words is removed from the banned words dictionary database. The removed words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image42.emf]PushEventSupplier DictionaryDB TokenModifier DictionaryImpl

Operator

OperationsLog

checkAccess

removeBannedWordList

push(BannedWordsRemoved)

[db error]

chart2Exception

[no access]

AccessDenied

deleteBannedWords

log

[no access]

log

Figure 40. DictionaryImpl:removeBannedWordList (Sequence Diagram)

3.1.6.10 DictionaryModule:initialize (Sequence Diagram)

When the DMS service calls the initialize method of Dictionary module, the dictionary objects are created, connected to the ORB, exported to the CORBA trading service. The dictionary objects are now available to serve the consumers.

[image: image43.emf]DictionaryDB DictionaryModule

Application Service

CosTrading.Register

PushEventSupplier

ORB ServiceApplication

DictionaryImpl

getDBConnectionManager

initialize

success

export

connect

create

create

getEventChannelFactory

getDictionaries

getTradingRepos

getORB

Figure 41. DictionaryModule:initialize (Sequence Diagram)

3.1.6.11 DictionaryModule:shutdown (Sequence Diagram)

When the host service application calls shutdown in the Dictionary module, the dictionary object is withdrawn from the CORBA trading service and disconnected from the ORB. The objects are then deleted.

[image: image44.emf]DictionaryImpl DictionaryModule

Application Service

ORB CosTrading.Register

disconnect

withdraw(event channel)

shutdown

delete

withdraw

Figure 42. DictionaryModule:shutdown (Sequence Diagram)

DMSControlModule

3.1.7 Classes

3.1.7.1 DMSControlClassDiagram (Class Diagram)

This Class Diagram shows the classes of the DMS Control Module. The DMS Control Module is an installable module that serves the DMS objects and DMSFactory to the rest of the Chart2 system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image45.emf]1 1

RecoveryTimerTask

* 1

1

1

*

1

1

1

1

1

1

*

1

1

1 1

1

1

1

*

1

1

1

1

UniquelyIdentifiable

«interface»

DMS

«interface»

java.util.Timer

SharedResourceManager

«interface»

Chart2DMSFactory

«interface»

DMSFactory

«interface»

ArbitrationQueue

«interface»

ArbQueueEntry

MessageQueue

DMSControlModule

PushEventSupplier

ServiceApplicationModule

«interface»

Chart2DMSFactoryImpl

Chart2DMSStatus

CommEnabled

«interface»

ServiceApplication

«interface»

DictionaryWrapper

java.util.Properties

DBConnectionManager

1

1

1

*

1 1

1 1

1 1

1

*

Chart2DMS

«interface»

HARMessageNotifier

«interface»

FP9500DMS

«interface»

CommandQueue

Chart2DMSImpl

FP9500DMSImpl

FP9500DMSStatus

SetDMSMessageFromQueueCmd

Chart2DMSConfiguration

FP9500DMSConfiguration

GeoLocatable

«interface»

1 1

1

1

1

1

*

1

* 1

1 1

DMSControlDB

DMSControlModuleProperties

QueueableCommand

CheckForAbandonedDMSTask

java.util.TimerTask

PollDMSTask

CheckCommLossTask

SharedResource

«interface»

ModemPortLocator

1

1

1 1

Chart2DMSData

getTimeDown()

run()

Chart2DMSFactoryImpl m_factory

int m_lastAttemptedPollTime

int m_lastContactTime

String m_lastStatusLogDate

boolean m_shouldBeReevaluated

DMSControlDatabase(DBConnectionManager db)

getDMSList() : Chart2DMSImpl[]

insertDMS(Identifer dms, Chart2DMSConfiguration config) :

 Chart2DMSImpl

deleteDMS(Identifier id) : void

getConfiguration(Identifier id) : Chart2DMSConfiguration

getStatus(Identifer dmsID) : Chart2DMSStatus

setConfiguration(Identifer dmsID,

 Chart2DMSConfiguration config) : void

setStatus(Identifer dms, Chart2DMSStatus status,

 Chart2DMSData) :void

addTrafficEventID(Identifier dmsID, Identifer tfcEvtID) : void

removeTrafficEventID(Identifer dmsID, Identifer tfcEvtID) : void

DBConnectionManager m_db;

DMSControlModuleProperties(Properties props,

 Properties defaults)

getCommLossTimerDelaySecs() : int

getFactoryID() : byte[]

getPollPortWaitTimeSecs() : int

getPollTimerDelaySecs() : int

getRecoveryTimerIntSecs() : int

getSharedResourceMonInt() : int

run()

Chart2DMSFactoryImpl m_factory

run()

Chart2DMSFactoryImpl m_factory

run()

Chart2DMSFactoryImpl m_factory

addCommand(QueueableCommand cmd)

removeCommand(QueueableCommand cmd)

shutdown()

-getNextCommand():QueueableCommand

m_commands

m_shutdown

DMSImpl(Configuration, DMSFactory,

 PushEventSupplier, Dictionary,

 ServiceApplication, DMSControlDB)

setMessageImpl(AccessToken, string, boolean, commandStatus)

setMessageFromQueue(AccessToken, DMSMessage,

 CommandStatus, int)

setMessageFromQueueImpl(AccessToken, DMSMessage,

 CommandStatus, int)

blankSignImpl(AccessToken, CommandStatus):void

blankSignFromQueueImpl(AccessToken, CommandStatus):void

blankSignNow(AccessToken, CommandStatus):void

resetControllerImpl(AccessToken, CommandStatus):void

takeOfflineImpl(AccessToken, CommandStatus):void

putInMaintModeImpl(AccessToken, CommandStatus):void

putOnlineImpl(AccessToken, CommandStatus):void

pollNowImpl(AccessToken, CommandStatus):void

pollIfNecessary(AccessToken, CommandStatus):void

shutdown():void

equals(Object obj):boolean

checkRecoveryTime(int timeDown): boolean

checkCommLoss():void

-checkResourceConflict(AccessToken, CommandStatus):void

handleOpStatus(OperationalStatus, CommandStatus):void

report(string, boolean, boolean, CommandStatus, ArbQueuEntry[])

evaluateQueue(boolean):void

fmsGetConnectedPort(CommandStatus, boolean):void

fmsReleasePort(Port)

requestFailed(ArbQueueEntry[]):void

requestSuccessful(ArbQueueEntry[], boolean):void

Identifer] m_idObj;

Chart2DMSConfiguration m_config;

Chart2DMSStatus m_status;

int m_lastSuccessfulPollTime;

boolean m_pollInProgress;

boolean m_pollNeeded;

byte m_dmsMessageBeacon;

CosTrading.Register m_tradingRegister;

ArbQueueEntry[] m_activeArbQueueEntries;

SetDMSMessageFromQueueCmd m_lastQueuedSetMsgCmd;

int m_factoryOfferID;

DMSFactoryImpl m_factory;

DMSFactoryImpl(ServiceApplication,

 DMSControlDB,PushEventSupplier,

 SharedResourceMonitoringInterval)

checkDMSRecovery(): void

getDMSOfferIDs():int[]

shutdown():boolean

removeDMS(DMSImpl dms)

checkCommLoss():void

checkForAbandonedDMS():void

checkDMSRecovery(int):void

pollDMSObjects():void

Thread m_asyncFMSStatusThread;

Collection m_dmsList;

Figure 43. DMSControlClassDiagram (Class Diagram)

3.1.7.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.1.7.1.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.7.1.3 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the Chart II-specific DMS objects within Chart II. It provides an interface for traffic events to provide input as to what each traffic event desires to be on the sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface a HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic message. Chart II business rules include concepts such as shared resources, arbitration queues, and linking devices usage to traffic events, concepts which go beyond what would be industry-standard DMS control.

3.1.7.1.4 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to Chart II processing. Such information includes how to contact the sign under Chart II software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization. Such data extends beyond what would be industry-standard configuration information for a DMS.

3.1.7.1.5 Chart2DMSData (Class)

This class is used to store data associated with a DMS such as last contact time etc.

3.1.7.1.6 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS objects). It implements the SharedResourceManager capability to control DMS objects as shared resources.

3.1.7.1.7 Chart2DMSFactoryImpl (Class)

The Chart2DMSFactoryImpl class provides an implementation of the Chart2DMSFactory interface (and its DMSFactory and SharedResourceManager interfaces) as specified in the IDL. The Chart2DMSFactoryImpl maintains a list of Chart2DMSImpl objects and is responsible for publishing DMS objects in the Trader on startup and as new DMS objects are created. Whenever a DMS is created or removed, that information is persisted to the database. This class is also responsible for performing the checks requested by the timer tasks: to poll the DMS devices, to look for DMS devices with timeout exceeded, to look for DMS devices with no one logged in at the controlling operations center, and to initiate recovery processing as needed.

3.1.7.1.8 Chart2DMSImpl (Class)

The Chart2DMSImpl class provides an implementation of the Chart2DMS interface, and by extension the DMS, SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable, ArbitrationQueue and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long running operations (field communications to the device) in a thread separate from the CORBA request threads, thus allowing quick initial responses. The Chart2DMSImpl also contains a MessageQueue, which is used by the ArbitrationQueue interface methods to handle requests from TrafficEvents to display or remove messages from the signs in online mode. When the Chart2DMSImpl evaluates its messages in the MessageQueue, it combines the highest priority messages into a single message which is placed into an appropriate QueueableCommand object (subclass of QueueableCommand) and added to the CommandQueue.

Also contained in this class are Chart2DMSConfiguration and Chart2DMSStatus objects (used to store the configuration and status of the sign), and a Chart2DMSData object (used to store internal status information which is persisted but not pushed out to clients), a list of ArbQueueEntry objects from the MessageQueue that are currently active on the sign, and a copy of the last QueueableCommand to put a message on the sign.

The Chart2DMSImpl contains *Impl methods that map to methods specified in the IDL, including requests to put a message on the sign or remove a message (in maintenance mode only), put the sign online, put the sign offline, put the sign in maintenance mode, or to change (set) the configuration of the sign. All of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate Chart2DMSImpl method as the command is executed by the CommandQueue in its thread of execution.

The Chart2DMSImpl also contains methods called by the Chart2DMSFactory to support the timer tasks of the DMS Service: to poll the DMS devices, to look for DMS devices with communications timeout exceeded, to look for maintenance mode DMS devices with no one logged in at the controlling operations center, and to initiate recovery processing if needed.

3.1.7.1.9 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to Chart II processing, such as information on the controlling operations center for the sign. This data extends beyond what would be industry-standard status information for a DMS.

3.1.7.1.10 CheckCommLossTask (Class)

The CheckCommLossTask class is responsible for determining when communications to a DMS device have been down long enough to decide that the sign is or should be blank or considered to be blank. The anticipated time interval for making such a determination is on the order of ten minutes (however, this task is called much more frequently than that, so that the timeout can be detected soon after it has expired). This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects each time this task is called.

3.1.7.1.11 CheckForAbandonedDMSTask (Class)

The CheckForAbandonedDMSTask class is responsible for detecting any DMS device in maintenance mode with a message on it which has no one logged it at the controlling operations center. This would only occur as a result of an anomaly, such as a reboot of a user's machine, because during a normal Chart II logout attempt, the logout is prohibited by Chart II system if the user is the last user on his/her operations center and that operations center is controlling a sign. However, because anomalies happen, this task runs periodically to look for abandoned DMS devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects and controlling operations centers of each DMS every time this task is called.

3.1.7.1.12 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.7.1.13 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.1.7.1.14 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.7.1.15 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.1.7.1.16 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign (DMS) objects within Chart II. It specifies methods for setting messages and clearing messages from a sign (in maintenance mode), polling a sign, changing the configuration of a sign, and resetting a sign. (Setting messages on a sign in online mode are not accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic events, which use an ArbitrationQueue interface or by manipulating HARs, which use a HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS, which defines interactions with signs under Chart II business rules.)

3.1.7.1.17 DMSControlDB (Class)

The DMSControlDB class provides an interface between the DMS service and the database used to persist the DMS objects and their configuration and status in the database. It contains a collection of methods that perform database operations on tables pertinent to DMS Control. The class is constructed with a DBConnectionManager object, which manages database connections. Methods exist to insert and delete DMS objects from the database, and to get and set their configuration and status information. All information about a sign is persisted, including its current displayed message, communications status, and time of last contact, so that a momentary glitch or restart of the software will not interrupt messages on signs.

3.1.7.1.18 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS factory. It implements the ServiceApplicationModule interface. It creates and serves a single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects. It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and PushEventSupplier and NotificationChannel objects.

3.1.7.1.19 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the DMS Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the DMS Control Module.

3.1.7.1.20 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a method to get a list of DMS devices currently in the system.

3.1.7.1.21 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest method, which knows how to invoke and interpret a pixel test as supported by the FP9500 model DMS.

3.1.7.1.22 FP9500DMSConfiguration (Class)

This class is used to provide configuration information specific to Chart II processing that is unique to a FP9500 model of sign.

3.1.7.1.23 FP9500DMSImpl (Class)

The FP9500DMSImpl class provides a specific implementation to implement the FP9500DMS interface, providing any specific functionality unique to this brand and model of sign. This class is exemplary of a whole suite of implementation classes which may be created, on a case-by-case basis, to support specific capabilities of speciifc brands and models of signs.

3.1.7.1.24 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus subclasses specific to a specific brand and model of sign.

3.1.7.1.25 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.7.1.26 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message.

3.1.7.1.27 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

3.1.7.1.28 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.7.1.29 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.7.1.30 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.

3.1.7.1.31 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.7.1.32 PollDMSTask (Class)

The PollDMSTask class is responsible for polling all the DMS devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to request each DMS to poll itself (its poll interval has expired) each time this task is called.

3.1.7.1.33 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.7.1.34 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.1.7.1.35 RecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process. During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called. This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the DMSService last went down, an essential piece of information for recovery during DMSService startup. When the DMSService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkDMSRecovery) which requests all DMS objects to check and see if their recovery period has expired. (The recovery period is defined to be their poll interval times a system-wide multiplier (expected to be 2), or, if the DMS has no poll interval, a system-wide constant (on the order of 10-15 minutes.) Each DMS, therefore terminates its recovery period independently of the others. (When all DMSes have terminated their recovery period, checkDMSRecovery is no longer called.)

When each DMS checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its MessageQueue to take one last try at resolving traffic events on its queue, then the DMS makes final a determination as to what message (or blank) belongs on the sign, and it requests the DMS to set the sign appropriately.

3.1.7.1.36 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.7.1.37 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.7.1.38 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign during normal operations (online mode). It is created by the Chart2DMSImpl during successful processing of its setMessageFromQueue and evaluateQueue methods. When the CommandQueue invokes the execute method of this class, it merely calls the setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.1.39 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.7.1.40 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.7.1.41 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.7.2 QueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for DMS Control. A class exists for each type of command that can be executed asynchronously on a DMS object.

[image: image46.emf]PutDMSInMaintModeCmd

SetDMSConfigCmd

SetDMSMessageFromQueueCmd

PutDMSOnlineCmd

ResetDMSCmd SetDMSMessageCmd PollDMSNowCmd

BlankDMSCmd

QueueableCommand

TakeDMSOfflineCmd

BlankDMSFromQueueCmd

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

boolean m_maintMode

execute()

interrupted()

getCmdStatus():CommandStatus

getToken():byte[]

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

execute()

interrupt()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

long reqID

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

Chart2DMSConfiguration m_config

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

DMSMessage m_DMSMsg

boolean m_beacon

long reqID

ArbQueueEntry[] m_ArbQueueEntries

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

DMSMessage m_DMSMsg

boolean m_beacon

execute()

interrupted()

CommandStatus m_status

Chart2DMS m_dms

AccessToken m_token

Figure 44. QueueableCommandClassDiagram (Class Diagram)

3.1.7.2.1 BlankDMSCmd (Class)

The BlankDMSCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to blank the sign in maintenance mode. It is created by the Chart2DMSImpl during successful processing of its blankSign and deactivateHARNotice methods. When the CommandQueue invokes the execute method of this class, it merely calls the blankSignImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.2 BlankDMSFromQueueCmd (Class)

The BlankDMSFromQueueCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to blank the sign during normal operations (online mode). It is created by the Chart2DMSImpl during successful processing of its evaluateQueue method. When the CommandQueue invokes the execute method of this class, it merely calls the blankSignFromQueueImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.3 PollDMSNowCmd (Class)

The PollDMSNowCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to poll its device. It is created by the Chart2DMSImpl during successful processing of its pollNow method in maintenance mode (triggered by a user request) or during processing of the pollIfNecessary method (triggered by the automatic polling of the PollDMSTask object). When the CommandQueue invokes the execute method of this class, it merely calls the pollNowImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.4 PutDMSInMaintModeCmd (Class)

The PutDMSInMaintModeCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put the sign in maintenance mode (from either offline or online mode). It is created by the Chart2DMSImpl during successful processing of its putInMaintMode method. When the CommandQueue invokes the execute method of this class, it merely calls the putInMaintModeImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.5 PutDMSOnlineCmd (Class)

The PutDMSOnlineCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put the sign online (from either offline or maintenance mode). It is created by the Chart2DMSImpl during successful processing of its putDMSOnline method. When the CommandQueue invokes the execute method of this class, it merely calls the putDMSOnlineImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.1.7.2.7 ResetDMSCmd (Class)

The ResetDMSCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put reset the sign (in maintenance mode only). It is created by the Chart2DMSImpl during successful processing of its resetController method. When the CommandQueue invokes the execute method of this class, it merely calls the resetControllerImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.8 SetDMSConfigCmd (Class)

The SetDMSConfigCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to update its configuration (in maintenance mode only). It is created by the Chart2DMSImpl during successful processing of its setConfiguration method. When the CommandQueue invokes the execute method of this class, it merely calls the setConfigurationImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.9 SetDMSMessageCmd (Class)

The SetDMSMessageCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign in maintenance mode. It is created by the Chart2DMSImpl during successful processing of its setMessage and activateHARNotice methods. When the CommandQueue invokes the execute method of this class, it merely calls the setMessageImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.10 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign during normal operations (online mode). It is created by the Chart2DMSImpl during successful processing of its setMessageFromQueue and evaluateQueue methods. When the CommandQueue invokes the execute method of this class, it merely calls the setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

3.1.7.2.11 TakeDMSOfflineCmd (Class)

The TakeDMSOfflineCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put the sign offline (from either online or maintenance mode). It is created by the Chart2DMSImpl during successful processing of its takeOffline method. When the CommandQueue invokes the execute method of this class, it merely calls the takeOfflineImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

Sequence Diagram

3.1.7.3 DMSControlModule:ActivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request to be used as a SHAZAM by a HAR. The operator (making the original HAR request) must have proper functional rights for the sign. If the DMS is in maintenance mode, this method verifies that no TrafficEvents are supplied (as might happen if the HAR expected the DMS to be in online mode). A check for resource conflict is done and then a SetDMSMessageCmd is created (using the SHAZAM message) and added to the CommandQueue. When this command is executed, setMessageImpl is executed to put the SHAZAM message on the sign.

If the DMS is not in maintenance mode, this method verifies that a list of TrafficEvents has been supplied. Calls to this method during recovery mode force recovery mode to end. Before setting recovery mode to false one final attempt is made to get the TrafficEvents to validate themselves.

After verifying there is no HARNotifierArbQueueEntry in its own MessageQueue, this method creates a HARNotifierArbQueueEntry and adds it to the MessageQueue via the MessageQueue's addEntry command. EvaluateQueue is called to (re)evaluate the MessageQueue to determine what goes on the sign. If there are no other messages in the queue, the SHAZAM message will be displayed on the sign immediately.

Typically, SHAZAM messages will have a low priority and will not replace a "real" DMS message. However, the SHAZAM message may be combined with other message types and be displayed on the sign. It may also be queued up to wait for an opportunity to display later when there is room on the sign.

[image: image47.emf][tfcEvntList is null]

InvalidStateException

set recovery mode false

execute

[tfcEvntList is null]

push(currentStatus)

[m_recoveryMode true & validateEntries rtnd false]

purgeUnresolvedEntries

[not online]

notify(ArbQueueEntryList)

getEntries

[HARNotice already active]

Chart2Exception

See DMSControlModule:setMessageImpl

sequence diagram for details.

SetDMSMessageCmd

CommandQueue

CommandQueue executes

commands asynchronously.

create(token, m_Chart2DMSConfig.m_shazamMessage,

beacon, cmdStatus)

addCommand(SetDMSMessageCmd)

update("command queued")

command queued

setMessageImpl

Updates commandStatus

if resource conflict.

complete("HARMessage added to queue")

[there exists a HARNotifierArbQueueEntry]

notify(ArbQueueEntryList)

OperationsLog

TokenManipulator

Chart2DMSImpl

DMS in maintenance mode

PushEventSupplier NotificationChannel

See DMSControlModule:evaluateQueue

for details

See sequence diagram

DeviceUtility\MessageQueue:addEntry

for details.

HARNotifierArbQueueEntry

activateHARNotice(token,

arbEntryIndicator, tfcEventList,

cmdStatus)

addEntry(HARNotifierArbQueueEntry)

[no rights]

AccessDenied

[no rights]

completed("no rights")

checkAccess

[tfcEvntList is not null]

InvalidStateException

HARImpl

MessageQueue

DMS in online or offline mode

[tfcEvntList is not null]

push(currentStatus)

[resource conflict]

ResourceControlConflict

checkResourceConflict(token,cmdStatus)

evaluateQueue(false)

[no rights]

log

create(arbEntryIndicator, tfcEventList,

m_Chart2DMSConfig.m_shazamMessage,cmdStatus)

cmdStatus:

CommandStatus

[m_recoveryMode true]

validateEntries

complete("HARMessage already in queue")

getEntries

[there exists a

HARNotifierArbQueueEntry]

Chart2Exception

Figure 45. DMSControlModule:ActivateHARNotice (Sequence Diagram)

3.1.7.4 DMSControlModule:AddEntry (Sequence Diagram)

The addEntry method defined in the ArbitrationQueue interface is used to queue a message for a DMS to display when the DMS is online. This method delegates the storage of the entry to the MessageQueue, then, if the DMS is online, the evaluateQueue() method is called to determine whether this new entry should result in a new message being displayed on the DMS. The details of the evaluateQueue processing are shown in the DMSControlModule:evaluateQueue sequence diagram. AddEntry can be called while the DMS is in any mode. If the DMS is not online, the queue will be evaluated the next time the queue is placed online.

[image: image48.emf]set m_recoveryMode to false

[invalid message]

report("disapproved content", true, true, null, arbQueueEntry)

[m_recoveryMode true & validateEntries rtnd false]

purgeUnresolvedEntries

[m_recoveryMode true]

validateEntries

[no rights]

AccessDenied

NotificationChannel OperationsLog Message

update rather than complete (complete flag is flase)

as the command status remains until the ArbQueueEntry is removed

from the messageQueue.

Calls complete on command status

in arbQueueEntry (complete flag is true).

See sequence diagram

DeviceUtility\MessageQueue:addEntry

for details.

See DMSControlModule:evaluateQueue

for details.

MessageQueue

Chart2DMSImpl

ResponsePlanItem

TokenManipulator

[no rights]

report("no rights", true, true, null, arbQueueEntry)

evaluateQueue(false)

addEntry(arbQueueEntry)

addEntry(token, arbQueueEntry)

report("ArbQueueEntry added", false, true, null, arbQueueEntry)

checkAccess

[not online]

notify(ArbQueueEntryList)

getEntries

[no rights]

log

[invalid message]

DisapprovedContent

validateMessageContent

Figure 46. DMSControlModule:AddEntry (Sequence Diagram)

3.1.7.5 DMSControlModule:BlankSign (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object processes a request to blank its message in maintenance mode. (In online mode blanking is initiated from evaluateQueue.) The DMS must be in maintenance mode, the requesting operator must have proper functional rights, and if there is a message on the sign from another operations center, the user must have override authority. This method creates a BlankDMSCmd (a QueueableCommand) and adds it to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. Requests to communicate with the sign are processed on a first-come, first-served basis. When the CommandQueue is ready, it executes the BlankDMSCmd, which calls the blankSignImpl method. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image49.emf]command queued

[resource conflict]

ResourceControlConflict

completed

blankSignImpl

execute

addCommand(BlankDMSCmd)

delete

[no rights]

log(token, "unauth. attempt to blank DMS <name>")

update("command queued")

checkResourceConflict

(token, cmdStat)

create

[no rights]

completed

[not in maint mode]

completed

blankSign(token, cmdStat)

create

[no rights]

AccessDenied

[not in maint mode]

CHART2Exception

[not in maint mode]

push(currentStatus)

This can occur when

the DMS is displaying

a message in maint mode

that was set by a user

from different op center.

CommandQueue Chart2DMSImpl

Operator

See DMSControlModule:blankSignImpl

for details.

BlankDMSCmd

CommandStatus

CommandQueue

executes commands

asynchronously

This method used in maint

mode only. Online, see

blankSignFromQueue.

OperationsLog

Updates cmdStat

(completed() call)

if conflict found.

PushEventSupplier

Figure 47. DMSControlModule:BlankSign (Sequence Diagram)

3.1.7.6 DMSControlModule:BlankSignFromQueueImpl (Sequence Diagram)

The sequence diagram shows how a Chart2DMSImpl object executes a command to blank the sign in online mode. This happens when the last message in the MessageQueue is removed from the queue while the device is online.

When a message is requested to be removed from the sign, it is actually removed from the MessageQueue and the MessageQueue is re-evaluated in order to put the next message on the sign. If there are no more messages to display, a BlankFromQueueCmd is created and added to the CommandQueue to remove the last message that was displayed on the sign. This is all done in the evaluateQueue method. When the BlankFromQueueCmd is executed, the BlankSignFromQueueImpl method is called.

BlankSignFromQueueImpl calls blankSignNow to blank the sign. If successful, requestSuccessful is called to take care of notifying the corresponding TrafficEvents that the message was removed from the sign. If there is a failure, requestFailed is called to take care of notifying the corresponding TrafficEvents that the message was not removed from the sign.

[image: image50.emf]Notifies corresponding trafficEvents (via m_activeArbQueueEntries)

that the message was removed from the sign. Completes (complete flag is true) the

ResponsePlanItem (if there is one) of any in m_activeArbQueueEntries that has also

been removed from the MessageQueue.

PushEventSupplier

Notifies corresponding trafficEvents (via m_activeArbQueueEntries)

that a failure occurred removing the message from the sign.

NotificationChannel

Chart2DMSImpl

Chart2DMSImpl

This method used

online only. In maint

mode, blankSign

is used.

[failure]

requestSuccessful(null, true)

[not online]

push(currentStatus)

[failure]

requestFailed(null)

notify("blanking sign")

blankSignNow

[not online]

InvalidStateException

[not online]

notify("wrong mode")

blankFromQueueImpl(token, cmdStatus)

Figure 48. DMSControlModule:BlankSignFromQueueImpl (Sequence Diagram)

3.1.7.7 DMSControlModule:BlankSignImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to blank its message in maintenance mode. (The analogous method in online mode is blankFromQueueImpl.) An operator request to blank the sign has already been received and pre-processed by the blankSign or deactivateHARNotice methods. When the blankSignImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it) and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center). Assuming no problems, the method blankSignNow is called to command the sign, update the database, handle any status change, and push a CurrentDMSStatus event into the event channel so that any user (with rights) can immediately see that the sign is now blank. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image51.emf]Updates cmdStatus

(completed() call)

if conflict found

This method used in maint mode only.

For online mode, see blankSignFromQueueImpl.

blankSignNow

(token, cmdStatus)

[failure]

completed("could not blank sign")

[not in maint mode]

completed("wrong mode")

[resource conflict]

[not in maint mode]

blankSignImpl(token, cmdStatus)

checkResourceConflict

(token, cmdStatus)

[success]

completed("sign blanked")

[resource conflict]

completed("resource conflict")

CommandStatus OperationsLog Chart2DMSImpl

BlankDMSCmd

TokenManipulator

Updates cmdStatus

(update() call)

OperationsLog,

updates & pushes new

DMSStatus if necessary.

Figure 49. DMSControlModule:BlankSignImpl (Sequence Diagram)

3.1.7.8 DMSControlModule:BlankSignNow (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object actually blanks the sign. This is a utility method called at many points during DMS operations. The sign must be blanked when requested by the user in maintenance mode, when implicitly requested when online by removing a message, when changing modes (online, offline, maintenance mode), and when resetting the sign. This method blanks the sign by creating an empty message, getting a port via the fmsGetConnectedPort helper method, and requesting, via DMSProtocolHdlr, that the sign display the blank message. The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comm failure, or hardware failure) reported by the DMSProtocolHdlr during this operation. Throughout, report() is called to report progress and status information to a CommandStatus object and to the TrafficEvents/ResponsePlanItems in the active ArbQueEntry objects (which are being removed from the sign), so that progress can be monitored by the users. RequestSuccessful and requestFailed are called to notify the ArbQueueEntry objects that they have been removed from the sign or that an error has occurred. A CurrentDMSStatus event is pushed into the event channel, so that any user (with rights) can immediately see that the sign is now blank.

[image: image52.emf]complete flag false here (this method doesn't know if the operation is completed or

not -- e.g. if taking DMS offline that operation will continue)

DMSMessage

m_status:

Chart2DMSStatus

OperationsLog PushEventSupplier

This method is called by several methods to actually blank the

sign, after all checks have been performed. This method just

goes to FMS and does it. This method is called by blankSignImpl,

blankFromQueueImpl, PutDMSInMaintMode, PutDMSOnline,

TakeDMSOffline, and resetController.

DMSProtocolhndlr

Chart2DMSImpl

Chart2DMSImpl

[falure and online]

requestFailed(null)

[failure]

false

report("blanking sign", false, true, cmdStatus,

m_activeArbQEntries)

On failure, calls handleOpStatus which updates, persists,

and pushes status if necessary. See DMSControlModule:fmsGetConnectedPort

and DMSControlModule:handleOpStatus sequence diagrams for details.

complete is false (this method doesn't know if the operation is completed or

not -- e.g. if taking DMS offline that operation will continue) and notify is true.

complete is false and notify is true

See DMSControlModule:fmsDisconnectPort

sequence diagram for details.

complete is false and notify is true

log(token, "DMS blanked")

setCurrentMessage

create DMSMessage with blank multiMsg, beacon false

handleOpStatus(result, cmdStatus)

[failure]

false

setStatus(m_status)

[online]

requestSuccesssful(null, false)

[failure and online]

requestFailed(null)

fmsGetConnectedPort

[failure]

report("blank failed", false, true, cmdStatus,

m_activeArbQEntries)

report("sign blanked", false, true, cmdStatus,

m_activeArbQEntries)

[failure]

report("blank failed", false, true, cmdStatus,

m_activeArbQEntries)

fmsDisconnectPort

true

push(CurrentDMSStatus)

create "Any" DMSEvent of type CurrentDMSStatus

dmsSetMessage(port, multiMsg, beacon)

create a multiMsg

containing the empty string

DMSEvent

DMSControlDB

complete is false and notify is true

Updates cmdStatus, updates

& pushes new DMSStatus

if necessary

blankSignNow(token, cmdStatus)

Figure 50. DMSControlModule:BlankSignNow (Sequence Diagram)

3.1.7.9 DMSControlModule:ChangePriority (Sequence Diagram)

This method, defined by the ArbitrationQueue interface, allows a user to modify the priority of a message existing in the message queue. Since queued ArbQueueEntry objects are maintained by the MessageQueue, this request is delegated to the MessageQueue for processing. If the DMS is currently online, the queue is reevaluated to determine whether the new priority should result in a new message being placed on the DMS. See DMSControlModule:evaluateQueue for details.

[image: image53.emf][no rights]

log

[not found]

update("ArbQueueEntry not found")

evaluateQueue(false)

notify(ArbQueEntryList)

getEntries

[success]

[not found]

SpecifiedObjectNotFound

[not found]

SpecifiedObjectNotFound

[no rights]

AccessDenied

checkAccess

ResponsePlanItem

See DMSControlModule:evaluateQueue

for details.

MessageQueue Chart2DMSImpl

ResonsePlanItem

See sequence diagram

DeviceUtility\MessageQueue:changePriority

for details.

NotificationChannel TokenManipulator

changePriority

changePriority(token,

arbQueueEntry, priority)

update("priority change successful")

log

[no rights]

update("no rights")

[not online]

OperationsLog

From arbQueueEntry

Figure 51. DMSControlModule:ChangePriority (Sequence Diagram)

3.1.7.10 DMSControlModule:CheckResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object checks a sign for a resource conflict prior to performing some other sort of operation on it. This check is only done if the DMS is in maintenance mode. This utility method is called from several other methods within the DMS service. If the DMS is currently is maintenance mode, and therefore has a controlling operations center, and it is not equal to the caller's operations center, and the user does not have override authority, there is a resource control conflict. Otherwise, there is not. If there is a resource control conflict, a message to this effect is written to the CommandStatus object, which may be monitored by the requesting user.

[image: image54.emf][not maint mode]

no conflict

Chart2DMSImpl TokenManipulator

Chart2DMSImpl

cmdStat:

CommandStatus

[no override access]

completed("resource conflict")

[token op center ID ==

controlling op center id]

no conflict

getOpCenterID(token)

checkResourceConflict(token, cmdStat)

getControllingOpCenter

[no override access]

conflict

checkAccess(token)

[no controlling op center]

no conflict

[has override access]

no conflict

Figure 52. DMSControlModule:CheckResourceConflict (Sequence Diagram)

3.1.7.11 DMSControlModule:CreateDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactoryImpl creates a new DMS on behalf of an operator. The operator must possess the proper functional rights to create a DMS. The request to create a new DMS contains all data necessary to create it in a DMSConfiguration object, most likely one of some specific subclass, such as FP9500DMSConfiguration (unless it is to be a truly generic Chart2DMS, one which has no extended capabilities, or one of a new type whose extended capabilities are not yet encoded in Chart II software). When a request to create DMS is received by the DMSFactory, the DMSControlDB is asked to create and persist it to the database. A (subclassed) Chart2DMSImpl object and its corresponding MessageQueue, ProtocolHdlr, PortLocator and CommandQueueImpl are created, and the CommandQueue thread is started (see DMSControlModule:restoreDMS sequence diagram for details). The object is connected to the ORB and is ready for operations. A DMSAddedEvent is then pushed into the event channel. A DMS is initially in offline mode when it is created.

[image: image55.emf]activate_object (DMS)

create

createDMS(token, config)

DMS

This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).

The DMSControlDB knows what subclass to create based on the subclass

of Chart2DMSConfiguration passed in (such as FP9500DMSConfuguration).

(The DMSControlDB also has to use this sort of logic on startup when creating

DMS Impl objects from persisted DMS information stored in the database.

OperationsLog

POA ServiceApplication

DMSFactoryImpl

TokenManipulator

PushEventSupplier

insertDMS returns the specific Impl object

as a generic Chart2DMSImpl.

See DMSControlModule:RestoreDMS for constructor details

[no rights]

log(token, "no rights")

[DB error]

CHART2Exception

[success]

log(token, "DMS created")

push(DMSAddedEvent)

registerObject (DMS)

Chart2DMSImpl

ORB

DMSControlDB

insertDMS(new id, config)

checkAccess

[no rights]

Access Denied

[DB error]

Figure 53. DMSControlModule:CreateDMS (Sequence Diagram)

3.1.7.12 DMSControlModule:DeactivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request to discontinue operation as a SHAZAM by a HAR. The operator (ending the HAR request) must have proper functional rights for the sign. If the DMS is in maintenance mode, this method verifies that the online flag passed to the method is false. A check for resource conflict is done and then a BlankDMSCmd is created and added to the CommandQueue. When this command is executed, blankSignImpl is executed to blank the sign.

If the DMS is not in maintenance mode, this method verifies that the online flag is true. The one (and only one) HARNotifierArbQueueEntry in its MessageQueue is obtained. removeEntry is called on the MessageQueue passing the HARNotifierArbQueueEntry as the entry to delete. If the HARNotifierArbQueueEntry was not active at this time, its TrafficEvents must be notified (here, rather than in RequestSuccessful as would normally occur when they are removed from the DMS) that they've been removed from the queue.

If the DMS is online, evaluateQueue is called to (re)evaluate the MessageQueue and display the next message(s) in the MessageQueue or blank the sign, as appropriate.

[image: image56.emf]Calls addLogEntry for each

TrafficEvent in HARArbQueueEntry.

[HAR message was not active]

report("Done: removed from queue and not on sign", false, true, null, HARArbQueueEntry)

Updates commandStatus if

resource conflict.

[online is true]

nvalidStateException

removeEntry (HARArbQueueEntry)

command queued

checkResourceConflict(token, cmdStatus)

Chart2DMSImpl

HARImpl

For details, see the sequence diagram

DeviceUtility/MessageQueue:removeEntry.

OperationsLog

This method may be called in any mode.

NotificationChannel

[not online]

completed("successfuly removed from message queue")

[not found]

completed("not found")

PushEventSupplier

MessageQueue

DMS in maintenance mode

See DMSControlModule:BlankSignImpl

sequence diagram for details.

CommandQueue

BlankDMSCmd

CommandQueue executes

commands asynchronously

DMS in online or offline mode

cmdStat:

CommandStatus

TokenManipulator

[no rights]

log

getEntries

notify(ArbQueueEntryList)

[not found]

SpecifiedObjectNotFound

[not found]

SpecifiedObjectNotFound

[no rights]

AccessDenied

[no rights]

completed

checkAccess

deactivateHARNotice(token, online, cmdStat)

blankSignImpl

execute

update("command queued")

addCommand(BlankDMSCmd)

create

[resource conflict]

ResourceControlConflict

[online is true]

push(currentStatus)

[online is false]

InvalidStateException

evaluateQueue

HARNotifierArbQueueEntry

Message was not active on the sign.

RequestSuccessful takes care of

when message was active on the sign.

Returns list of ArbQueueEntries including the

HARNotifierArbQueueEntry to be removed.

[no HARArbQueueEntry]

notify(ArbQueEntryList)

getEntries

[no HARArbQueueEntry]

SpecifiedObjectNotFound

Figure 54. DMSControlModule:DeactivateHARNotice (Sequence Diagram)

3.1.7.13 DMSControlModule:EvaluateQueue (Sequence Diagram)

This diagram shows the processing done by the Chart2DMSImpl's implementation of the ArbitrationQueue interface's evaluateQueue abstract method. The evaluate queue evaluates the ArbQueueEntry messages on the message queue and determines the message (or messages) to put on the device or determines if the device should be blanked. The maximum number of pages worth of messages which can be combined on a sign is a DMS property expected to be set at two. Assume for discussion that two messages can be combined together. If the highest priority message is more than two pages but within the maximum number of pages displayable on the sign (say, 3 for an FP9500), then that message will be displayed and can not be combined with any other message, as that would exceed the maximum number of pages (2) that can be displayed by a combined message.

When told to evaluate the queue, the Chart2DMSImpl looks at the ordered (by priority) list of ArbQueueEntries returned from the MessageQueue to decide the processing that must occur. If there are no entries and there is still a message on the sign, the last message that is on the sign is in the process of being removed. A BlankDMSFromQueueCmd is created to blank the sign and added to the CommandQueue. Later, when the sign is blanked, the appropriate TrafficEvents will be notified that their message has been removed from the sign.

If there are any entries, the first entry is always to be displayed on the sign (if it is not there already). Subsequent entries may be combined with the first according to the "matrix" approach defined for combining messages on a sign:

U
I
R
C
S

Urgent (U)
X
X

X

Incident (I)
X
X

X

Planned Roadwork (R)

X
X
X

Congestion (C)

X
X
X

SHAZAM (S)
X
X
X
X

That is, only five types of events may be combined: Urgent, Incident, Planned Roadwork, Congestion, SHAZAM (in order of priority) and only in pairs indicated by the x's in the matrix above. For example, an Urgent message can be combined with another Urgent message, an Incident message, or a SHAZAM message, but not with a Roadwork or a Congestion message.

Once the (combined) message is complete, a DMSMessageImpl object is created with the new message. Steps are taken to ensure that duplicate messages are not sent to the sign. The new message and the trafficEvents from the corresponding ArbQueEntries are compared to the last SetDMSMessageFromQueueCmd. If they are the same, the new message is identical to what is already queued and it is not queued again. If there is no m_lastSetDMSMessageFromQueueCmd, the currently displayed message and its corresponding active ArbQueueEntries are compared to the new message and its ArbQueEntries. If they are the same, the new message is already being displayed. This last check is skipped if the skipMessageCheck flag is true (during some recovery operations when the persisted state is not being trusted).

If the new message and its corresponding TrafficEvents is unique, a SetDMSMessageFromQueueCmd is created and the message and the corresponding ArbQueEntries are passed to it. Any previous SetDMSMessageFromQueueCmd's in the CommandQueue are removed, and the new conmand is added to the CommandQueue.

Finally, a copy of the SetDMSMessageFromQueueCmd is stored in the Chart2DMSImpl object. At some point later, the CommandQueue will execute the SetMessageFromQueueImpl or BlankSignFromQueueImpl methods to actually blank the sign or display the requested message.

[image: image57.emf]List returned consists of 0..* ArbQueueEntry

objects, each with a DMSMessage object. This

list is ordered by Priority

Remove any SetDMSMessageFromQueueCmds

already queued if they have not started execution yet.

We don't want to set one message when we already

know we have another message queued up to replace it

immediately. (There would only ever be one to remove,

so keep reference to it in m_queuedSetMsgFromQueueCmd

and pass to new CommandQueue.remove() method.

SetDMSMessageFromQueueCmd

Search list in order

(already in priority order)

for next one that will fit

according to its length and

event type.

If a BlankDMSCmd or SetDMSMessageCmd was created

above, the command queue executes it (whichever

one was created) here, asynchronously.

Refer to setMessageFromQueueImpl and

blankSignFromQueueImpl sequence diagrams

for details on processing that occurs when the

SetDMSMessageFromQueueCmd and

BlankDMSFromQueueCmd are executed.

Don't care if it succeeds or

fails. If it fails, it's too late,

but at least we tried.

Message is combinable if it is the first message OR it may be paired

with the first message according to the "matrix" approach without

exceeding the maximum # pages for combiining msgs

Builds new list of ArbQueueEntries

to add to SetDMSMessageFromQueueCmd

ArbQueueEntry

BlankDMSFromQueueCmd

DMSMessageImpl

CommandQueue

DMSMessage

MessageQueue DMSImpl

DMSImpl

store command in

m_lastQueuedSetMsgCmd

addCommand

create(new message, new ArbQueueEntries)

Currently set to 2, different than

the max number of pages on a sign.

Message is converted to Multi and then

combined with <NP> separating the messages

ArbQueueEntry

Compares traffic events

Verify that the new

message is not a duplicate.

execute

[new ArbQueueEntry list

"equals" current

ArbQueueEntry list]

[m_lastQueuedSetMsgCmd not null]

removeCommand(m_lastQueuedSetMsgCmd)

[If message is combinable]

append message to final message

[last SetMsgCmd message equals new one]

for each ArbQEntry in m_lastQueuedSetMsgCmd

getTrafficEventType

matches(ArbQEntry in Cmd)

create

create

[while messages left

AND <= max # combinable pages]

evaluateQueue(skipMessageCheck)

[current message equals new one]

for each in

m_activeArbQueueEntries

matches(current ArbQEntry)

[m_lastQueuedSetMsgCmd is null and skipMessageCheck is false]

equals(current message)

[new ArbQueueEntry list

"equals" pending

ArbQueueEntry list]

getEntries

until message

is combinable

get max # combinable pages

[m_lastQueuedSetMsgCmd is not null]

equals(DMS msg in m_lastQueuedSetMsgCmd)

getMessageLength

[list empty and

DMS not blank]

[list empty and DMS not blank]

addCommand

[list empty and DMS not blank]

create

[list empty and DMS blank]

Figure 55. DMSControlModule:EvaluateQueue (Sequence Diagram)

3.1.7.14 DMSControlModule:FmsGetConnectedPort (Sequence Diagram)

This sequence diagram shows how a DMSImpl object gets a connected port. This method is called from several other methods in the DMS service. A modem port is obtained from the ModemPortLocator object. On failure, a call is made to the helper method handleOpStatus to deal with the case where the operational status has changed. The command status is either updated or completed during the call to the ModemPortLocator object based on a flag passed into this method.

[image: image58.emf][failure]

handleOpStatus(result,null)

[failure]

[failure]

fmsGetConnectedPort(cmdStat,

complete)

Updates and pushes new

DMSStatus if necessary

ModemPortLocator completes or updates

CommandStatus on failure as requested.

See DeviceUtility/PortLocator:getConnectedPort

sequence diagram for details.

DMSImpl

DMSImpl ModemPortLocator CommandStatus

getConnectedPort(cmdStat, complete)

Figure 56. DMSControlModule:FmsGetConnectedPort (Sequence Diagram)

3.1.7.15 DMSControlModule:FmsReleasePort (Sequence Diagram)

This helper method releases an FMS port which is no longer needed. It disconnects the port first, then calls the PortLocator to release it. Errors are logged, but not reported, as the port will be released or reclaimed in any case, and errors relating to releasing a port would mask an otherwise successful status or more a useful error status.

[image: image59.emf]ModemPortLocator

Port

Chart2DMSImpl

Chart2DMSImpl

If any errors occur,

log it, but continue

processing.

releasePort(port)

disconnect

fmsReleasePort(port)

Figure 57. DMSControlModule:FmsReleasePort (Sequence Diagram)

3.1.7.16 DMSControlModule:GetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request for its configuration. Its configuration is always maintained in current form in a Chart2DMSConfiguration object, so this object is just returned immediately.

[image: image60.emf]OperationsLog TokenManipulator Chart2DMSImpl

This object is always kept up to date

throughout the life of the Chart2DMSImpl.

All that needs to be done is to return the

existing, current Chart2DMSConfiguration

object.

Chart2DMSConfiguration

[no rights]

AccessDenied

[no rights]

log(token, "unauth. access attempt")

checkAccess(token)

getConfiguration(token)

ORB

Figure 58. DMSControlModule:GetConfiguration (Sequence Diagram)

3.1.7.17 DMSControlModule:GetControlledResources (Sequence Diagram)

This Sequence Diagram shows how the Chart2DMSFactoryImpl handles a request to get a list of controlled resources for an operations center. The Chart2DMSFactoryImpl simply asks each Chart2DMSImpl for its controlling operations center, and if it matches the OperationsCenter in question, the DMS is added to a list. This list is returned to the caller.

[image: image61.emf]Chart2DMSFactoryImpl

ORB

DMSList of controlled resources

[controlling op ctr ==

op ctr]

(add to list)

getControllingOpCenter

getControlledResources (op ctr)

Chart2DMSImpl

[*for

each

DMS]

Figure 59. DMSControlModule:GetControlledResources (Sequence Diagram)

3.1.7.18 DMSControlModule:GetEntriesStatus (Sequence Diagram)

This method, part of the ArbitrationQueueInterface, allows a client to retrieve the all entries on the queue of a device, with their current status. This method is implemented by retrieving the list from the MessageQueue, then building a list of ArbQueueEntryStatus from that, appending status information not known by the MessageQueue.

[image: image62.emf]getEntriesStatus

ArbQueueEntryStatus

DMSImpl

ORB

ArbQueueEntryStatusList

[*for each

msgQueueEntry]

[current msgQueueEntry in m_activeEntries list]

set isActive true

set tfcEvtID, msg, priority from current msgQueueEntry

create

getEntries

MessageQueue

Figure 60. DMSControlModule:GetEntriesStatus (Sequence Diagram)

3.1.7.19 DMSControlModule:GetStatus (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request for its status. Its status is always maintained in current form in a Chart2DMSStatus object, so this object is just returned immediately.

[image: image63.emf]getStatus

This object is always kept up to date

throughout the life of the Chart2DMSImpl.

All that needs to be done is to return the

existing, current Chart2DMSStatus object.

Chart2DMSImpl

ORB

Chart2DMSStatus

Figure 61. DMSControlModule:GetStatus (Sequence Diagram)

3.1.7.20 DMSControlModule:HandleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl handles the task of detecting and responding to changes in its operational status (whether it is in "OK", "COMM_FAILURE" or "HARDWARE_FAILURE" status). A DMS is normally "OK", but falls into "COMM_FAILURE" when FMS reports that it cannot communicate with the device, and into "HARDWARE_FAILURE" when the FMS can communicate with the device but the device or FMS is detecting some sort of hardware problem with the device itself. At this point, HARDWARE_FAILURE and COMM_FAILURE are treated virtually identically. This method is called, with the status reported back from FMS, after every attempt to communicate with the device, and processing falls into one of three cases, depending on the status reported (although the two failure cases are nearly identical).

If the device now being reported OK and it was already OK, there is no change in status, and all that is necessary is to update the m_lastContactTime of the device. (This variable is used to determine when to poll [see runPollDMSTask] and when to declare that a "Communications Timeout" has occurred [see runCheckCommLossTask].) If the status has just become OK, this fact is logged, and the new DMSStatus is persisted and pushed out into the event channel. The DMS is polled to determine its current status. If the device is online, and m_needsReevaluation is true, this means an earlier attempt to set the device to the correct condition (new message, default message) has failed since the device went COMM_FAILED, so evaluateQueue is called to ensure that the correct message is put on the DMS.

If the device is now being reported with a failure and the device was already in that failure condition, there is no change in status, and nothing is done. If the status is just now changing, this is logged, and the DMSStatus is persisted and pushed out into the event channel. Note that if the device has gone into COMM_FAILURE, and it remains in this condition for the timeout period, the CheckCommLossTask's run method will detect and handle it (see runCheckCommLossTask). Until the timeout period expires, it is assumed that the message is still on the sign, so no further action is taken now. If the device has gone into HARDWARE_FAILURE, FMS is still in contact with it, and changes in status (e.g., loss of a message) can be detected by other means, for instance, by polling (see runPollDMSTask)

[image: image64.emf]CommandQueue

m_status:

DMSStatus

If opStatus == OK

OperationsLog

Normal case,

opStatus OK and unchanged

PushEventSupplier

NOTE: if we remain in HW_FAILURE for

the commLossTimeout period, the

CheckCommLossTask will detect it and

handle that situation.

Bad status has been handled previously.

No need to do anything more.

If opStatus == HW_FAILURE

NOTE: if we remain in COMM_FAILURE for

the commLossTimeout period, the

CheckCommLossTask will detect it and

handle that situation.

setOpStatus(HW_FAILURE)

[m_status.m_opStatus == HW_FAILURE]

setStatusChangeTime(now)

push(CurrentDMSStatus)

setOpStatus(COMM_FAILURE)

[m_status.m_opStatus == COMM_FAILURE]

addCommandOnTop(PollDMSNowCmd)

push(CurrentDMSStatus)

updateStatus(m_id, m_status)

updateStatus(m_id, m_status)

update("DMS just reported HW failure")

[m_status.m_opStatus == OK]

m_lastContactTime = now

log("DMS has just gone into HW failure")

log("DMS has just lost comms")

log("DMS now operational")

push(CurrentDMSStatus)

handleOpStatus(opStatus, cmdStatus)

update("DMS just CommFailed")

update("DMS now OK")

setStatusChangeTime(now)

setOpStatus(OK)

Chart2DMSImpl

Chart2DMSImpl

DMSControlDB

cmdStatus:

CommandStatus

Bad status has been handled previously.

No need to do anything more.

If opStatus == COMM_FAILURE

Poll device ASAP to make sure we have its complete status and config.

If the message doesn't match, poll will catch it and inform Arb Queue.

(For instance, if we have blanked due to commLossTimeout, but the sign

still displays a message, that will be caught and corrected by the poll.)

updateStatus(m_id, m_status)

setStatusChangeTime(now)

[m_needsEvaluation and online]

evaluateQueue(false)

Figure 62. DMSControlModule:HandleOpStatus (Sequence Diagram)

3.1.7.21 DMSControlModule:HasControlledResources (Sequence Diagram)

This Sequence Diagram shows how the Chart2DMSFactoryImpl handles a request to see if an operations center has any controlled resources. The Chart2DMSFactoryImpl simply asks each Chart2DMSImpl for its controlling operations center, and if it matches the OperationsCenter in question, a value of true is immediately returned to the caller. If the Chart2DMSFactoryImpl makes it through its whole list of DMS objects without finding an OperationsCenter match, a value of false is returned.

[image: image65.emf][* for each DMS]

getControllingOpCenter

hasControlledResources (op ctr)

ORB

Break out of loop once a

controlled resource is found.

One is enough to return "true".

Chart2DMSImpl Chart2DMSFactoryImpl

[*for each

DMS

false

[controlling op ctr == op ctr]

true

Figure 63. DMSControlModule:HasControlledResources (Sequence Diagram)

3.1.7.22 DMSControlModule:Initialize (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is started. This module is created by a service application that will host this module's objects. A ServiceApplication is passed to this module's initialize method and provides access to basic objects needed by this module. This module creates a DMSFactory, which creates the known DMS objects which have been persisted into the database. Two PushEventSupplier objects, one for status, configuration, and existence changes and one for abandoned DMSs (active DMSs with no one logged in at the controlling operations center), are created. In addition, NotificationChannel and DMSControlDB objects are created.

The DMSFactory and DMS objects are published via the CORBA Trading Service to make them available for general status updates and as candidates for control (given the proper access rights). In addition, this service also performs regularly recurring maintenance functions controlled by timer tasks started by this initialize method.

[image: image66.emf]ServiceApplication DMSControlModule

ServiceApplication

Chart2DMSImpl

DictionaryWrapper

Two -- one for DMSs for status/config/existence changes,

one for the Module for abandoned DMSs (active DMSs with

no one logged in at the controlling Op Ctr) (resourceMgtEventChannel).

PollDMSTask

TIMER TASK: To periodically have each DMS

check to see if it is time to poll (poll interval

expired) andpoll if necessary.

See DMSControlModule:RestoreDMS

for details.

create

create

create

schedule

schedule

CheckCommLossTask

java.util.timer

This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).

The DMSControlDB knows what subclass to create based on data

stored in the database when the DMS was initially created and

persisted. (At the DMS creation time, the DMSControlDB knows what

specific type of Impl to create based on the dmsModelID and subclass of

Chart2DMSConfiguration passed in (such as FP9500DMSConfiguration).)

CheckForAbandonedDMSTask

POA

DMSFactoryImpl

PushEventSupplier

TIMER TASK: To periodically

check for comm loss timeout

and blank the sign.

DMSControlModuleProperties

TIMER TASK: To periodically check

for active DMSs with no one logged

in at the controlling Op Ctr.

DMSControlDB

getDefaultProperties

registerObject(DMS)

getPOA

getEventChannel

[*for

each

DMS

object]

create

create

[2]

schedule

create

[*for

each

DMS

in DB]

registerEventChannel

(EventChannel)

timeDown passed to factory

during construction.

TIMER TASK: Writes current time to a file so that upon

startup task can determine the time DMSService went down.

Additionally, for a period of time upon startup, queries DMS

objects to have them check if their own recovery period has

expired. (After all DMS recovery periods have expired,

this responsibility of the task ends.)

This object is needed now, to get timeDown, but will not be

scheduled until after all DMSes are created. See below.

RecoveryTimerTask

Schedule RecoveryTimerTask,

which was instantiated at top of constructor.

Time DMSSerivce last went down. (Technically, it is

the last time the Service was known to be running.)

NotificationChannel

getTimeDown

create

create

getProperties

registerObject(DMSFactory)

getOperationsLog

getDBConnectionManager

activate_object

(DMS)

activate_object (DMSFactory)

getEventChannelFactory

create

schedule

getDMSList

initialize

create

create

Figure 64. DMSControlModule:Initialize (Sequence Diagram)

3.1.7.23 DMSControlModule:ModifyHARNotice (Sequence Diagram)

This sequence diagram shows how a Chart2DMSImpl object responds to a request by a HAR to update the list of TrafficEvents in the ArbQueueEntry associated with the HAR in the Chart2DMSImpl's MessageQueue. This ArbQueueEntry (actually a HARNotifierArbQueueEntry) was previously created when the HAR called activateHARNotice to put a SHAZAM message on the DMS. The HARNotifierArbQueueEntry is obtained from the MessageQueue and its currently assigned TrafficEvents are retrieved. Then the HARNotifierArbQueueEntry is removed from the MessageQueue. The HARNotifierArbQueueEntry is then updated with a new ArbQueueEntryIndicator which contains the new list of TrafficEvents. The updated HARNotifierArbQueueEntry is then added to the MessageQueue. The TrafficEvents that are no longer associated with the HARNotifierArbQueueEntry are notified, as are the TrafficEvents that are new to the HARNotifierArbQueueEntry.

[image: image67.emf][not found]

SpecifiedObjectNotFound

ArbQueueEntryIndicator

TrafficEvent used to create ArbQueueEntryIndicator

can be any from tfcEventList. Convention will be to

use the first on the list. The ResponsePlanItem

passed to the ArbQueueEntryIndicator will be null

as it is not used for a HAR.

setArbQueueEntryIndicator

create(trafficEvent, null)

HARNotifierArbQueueEntry

TrafficEvent

[for each in tfcEventList

that is not in original

HARNotifierArbQueueEntry]

Chart2DMSImpl

HARImpl

For details, see the sequence diagram

DeviceUtility/MessageQueue:addEntry.

OperationsLog

This method may be called in

online or offline mode.

NotificationChannel

PushEventSupplier

MessageQueue

[online and HARArbQueueEntry is active]

addLogEntry("added to queue and active on sign")

TokenManipulator

[maint mode]

InvalidStateException

[no rights]

AccessDenied

checkAccess

modifyHARNotice(token, tfcEventList)

notify(ArbQueueEntryList)

setTrafficEvents(tfcEventList)

addEntry(HARArbQueueEntry)

[no rights]

log

getEntries

DMSControlDM

push(SHAZAMStatusChanged)

getTrafficEvents

addLogEntry("removed from queue")

[for each trafficEvent

in original HARNotifierArbQueueEntry

that is not in tfcEventList]

[no HARArbQueueEntry]

SpecifiedObjectNotFound

[no HARArbQueueEntry]

notify(ArbQueEntryList)

getEntries

setStatus

[maint mode]

push(currentState)

Returns a ArbQueEntryList containing

one (and only one) HarNotifierArbqueueEntry.

HARArbQueueEntry is active if it

is in m_activeArbQueueEntries.

[offline or HARArbQueueEntry not active]

addLogEntry("added to queue, not active on sign")

[HARArbQueueEntry is active and online]

set m_ActiveArbQueueEntries=HARArbQueueEntry

For details, see

MessageQueue:removeEntry.

removeEntry(HARArbQueueEntry)

[not found]

SpecifiedObjectNotFound

Figure 65. DMSControlModule:ModifyHARNotice (Sequence Diagram)

3.1.7.24 DMSControlModule:PollNow (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by an operator to immediately poll the device. The DMS must be in maintenance mode and operator must possess proper functional rights. This method creates a PollDMSNowCmd (a QueueableCommand) and adds it to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. Requests to communicate with the sign are processed on a first-come, first-served basis. When the CommandQueue is ready, it executes the PollDMSNowCmd, which calls the pollNowImpl method. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image68.emf][no rights]

log(token, "no rights")

TokenManipulator Chart2DMSImpl

ORB

Command is executed

asynchronously.

For details, see the sequence diagram

DMSControlModule:PollNowImpl.

execute

addCommand(PollDMSNowCmd)

create

pollNowImpl

delete

[no rights]

completed("no rights")

[not in maint mode]

completed("wrong mode")

[no access]

AccessDenied

[not in maint mode]

CHART2Exception("wrong mode")

checkAccess(token)

pollNow(token, cmdStatus)

delete

create

CommandQueue

PollDMSNowCmd

CommandStatus

OperationsLog

Figure 66. DMSControlModule:PollNow (Sequence Diagram)

3.1.7.25 DMSControlModule:PollNowImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object implements the polling of the DMS device. The poll request could come from the operator (via the pollNow method) or from the automated polling thread within the DMS service itself (PollDMSTask's run method). The pollNowImpl method gets a port via the fmsGetConnectedPort helper method and polls the sign via the getStatus method call to DMSProtocolHdlr. HandleOpStatus handles any changes to the operational status of the sign (OK, comms failure, or hardware failure).

If the sign does not have the expected message, the expected message is displayed on the sign via a call to SetMessage on the DMSProtocolHdlr. This synchronizes what the Chart2DMSImpl thinks is on the sign (i.e., its active ArbQueueEntry objects) with what is actually on the sign. If an error occurs displaying the message, the report() helper method is used to update the CommandStatus of each of the currently active ArbQueueEntry objects and then setInactive is called on each of the currently active ArbQueueEntry objects. If successful, the status returned is persisted to the database and pushed out as a CurrentDMSStatus event on the event channel. Updates are also written to a CommandStatus object, so that if a user issued this request, he or she can see monitor its progress.

[image: image69.wmf]

m_status:

Chart2DMSStatus

OperationsLog

Can't fix message mismatch, calls update on

commandStatus

in each of the currently active

entries.

ArbQueueEntry

PushEventSupplier

CommandStatus

handleOpStatus(result,

cmdStatus)

[message mismatch]

setMessage(currentMessage

)

[failure]

log

log

[failure and

online]

report("redisplay failed", false,

false, null,

m_activeArbQueueEntries)

[failure]

completed("fix message mismatch

failed")

handleOpStatus(return,

cmdStatus)

up

dateStatus(m_status)

[regular pole and not

online]

push (CurrentDMSStatus)

completed("poll complete, change

detected")

getStatus(port)

[regular pole and not

online]

completed("not

online")

pollNowImpl(token,

cmdStatus)

[no change in status]

comp

leted("success, no status

change")

[failure]

[no change in status]

[failure]

completed("failed")

[failure and

online]

setInactive("DMS <name>: message unex. changed to

<text>")

for each ArbQEntry

DMSProtocolHdlr

Chart2DMSImpl

PollDMSNowCmd

DMSCo

ntrolDB

Updates cmdStatus

on status change.

[falure]

fmsReleasePort

[failure]

updateStatus(m_status)

[failure]

updateStatus(m_status)

[failure]

fmsGetConnectedPort(cmdStat,

true)

[not maint mode]

push(currentStatus)

[regular pole and not

onlin

e]

push(currentStatus)

[not maint mode]

[not maint mode]

completed("not maint

mode")

[shortErrorStatus changed]

setShortErrorStatus

[no change in status]

updateStatus(m_status)

fmsReleasePort

Figure 67. DMSControlModule:PollNowImpl (Sequence Diagram)

3.1.7.26 DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a user to go into maintenance mode. The requesting operator must have proper functional rights. If the DMS is in maintenance mode already, otherwise the request is immediately returned as successful. A PutDMSInMaintModeCmd (a QueueableCommand) is created and added to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. When the CommandQueue is ready, it executes the PutDMSInMaintModeCmd, which calls the putInMaintModeImpl method, also shown on this diagram. The putInMaintModeImpl method double checks to make sure it is not already in maintenance mode (from some other queued command). Assuming no problems, the method blankSignNow is called to request FMS to actually blank the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel, so that any user can immediately see that the sign is now blank. Regardless of whether blankSignNow works, the method continues on, since the sign may likely be non-functional when it is put in maintenance mode. The DMSStatus is updated to show that the sign is in maintenance mode, it is persisted to the database, and it is pushed into the event channel. Additionally, the controlling operations center is stored. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image70.emf]OperationsLog

CommandQueue

We continue on regardless of whether blankSignNow() works. We don't want

to stop a sign from going into maintenance mode because it doesn't work.

TokenManipulator DMSControlDB

DMSEvent

CommandStatus

Chart2DMSImpl

ORB

putInMaintModeImpl

update("putting in maint mode")

[already in maint mode]

checkAccess(token)

delete

[already in maint mode]

log(token, "DMS put in maint mode")

setStatus(m_status)

create "Any" DMSEvent of type CurrentDMSStatus

[no rights]

completed("no rights")

completed("now in maint mode")

update("command queued")

putInMaintMode(token, cmdStat)

push(CurrentDMSStatus)

[already in maint mode]

[already in maint mode]

completed("arealdy in maint mode")

[no rights]

AccessDenied

m_status.m_opStatus=

MAINT_MODE

set controlling op ctr

[already in maint mode]

push(currentStatus)

[no rights]

log

execute

addCommand(PutDMSInMaintModeCmd)

PushEventSupplier

CommandQueue executes

command asynchronously.

PutDMSInMaintModeCmd create

[already in maint mode]

completed("already in maint mode")

blankSignNow

(cmdStat)

Figure 68. DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

3.1.7.27 DMSControlModule:PutDMSOnline (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a user to go online. The requesting operator must have proper functional rights, and if there is a (maintenance mode) message on the sign from another operations center, the user must have override authority. A PutDMSOnlineCmd (a QueueableCommand) is created and added to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. When the CommandQueue is ready, it executes the PutDMSOnlineCmd, which calls the putOnlineImpl method, also shown on this diagram. The putOnlineImpl method double checks to make sure it is not already online (from some other queued command). Assuming no problems, the method blankSignNow is called to request FMS to actually blank the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel. If blankSignNow does not work, the sign cannot be brought online, and the method ends. The DMSStatus is updated to show that the sign is online, it is persisted to the database, and it is pushed into the event channel. In addition, the stored operations center is cleared. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user. The MessageQueue is re-evaluated so the Chart2DMSImpl can determine if it has a message to display on the sign.

[image: image71.emf]execute

addCommand(PutDMSOnlineCmd)

create

[already online]

[already online]

completed("already online")

[no rights]

AccessDenied

[no rights]

completed("no rights")

checkAccess(token)

putOnline(token, cmdStat)

delete

log(token, "DMS put online")

m_status.m_opStatus= ONLINE

create

checkResourceConflict

(token, cmdStat)

[no rights]

log(token, "unauth. attempt to put DMS <name> online")

setStatus(m_status)

CommandStatus

Updates

cmdStat

If we can not even blank the sign,

no point in putting it online. Return.

CommandQueue OperationsLog

Updates cmdStatus

if conflict found

(completed() call).

DMSEvent

PushEventSupplier DMSControlDB

CommandQueue executes

command asynchronously.

PutDMSOnlineCmd

TokenManipulator Chart2DMSImpl

Operator

evaluateQueue(false)

putOnlineImpl

[already online]

push(currentStatus)

clear controling op ctr

completed("success")

delete

return from putOnlineImpl()

[failure]

[failure]

[already online]

completed("already online")

update("command queued")

[already online]

push (DMSStatusChanged)

create "Any" DMSEvent of type DMSStatusChanged

[failure]

completed("could not blank sign")

blankSignNow

(cmdStat)

update("putting online")

[already online]

Figure 69. DMSControlModule:PutDMSOnline (Sequence Diagram)

3.1.7.28 DMSControlModule:RemoveDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactoryImpl removes a DMS from the system on behalf of an operator. A DMS must be offline to be removed, and the requesting operator must possess the proper functional rights. The DMSFactory removes the reference to the Chart2DMSImpl from its internal list of DMSs, removes the Chart2DMSImpl and its associated information from the database, withdraws the DMS's offer from the trading service, pushes a DMSDeletedEvent into the event channel, and shuts down the Chart2DMSImpl. Chart2DMSImpl shutdown processing includes shutting down the CommandQueue and destroying the MessageQueue.

[image: image72.emf]See DeviceUtility\MessageQueue:destroy sequence diagram for details.

MessageQueue

deleteDMS (DMS ID)

deactivate_object

[not offline]

Chart2Exception

PushEventSupplier POA CosTrading.Register Chart2DMSFactoryImpl

DMSControlDB

Chart2DMSImpl

CommandQueue

TokenManipulator

ORB

OperationsLog

shutdown

destroy

shutdown

[not online]

push(currentStatus)

withdraw

[not found]

Chart2Exception

[no rights]

AccessDenied

[no rights]

log(token, "unauth. attempt to remove DMS <name>")

checkAccess

removeDMS(this)

[not found]

Chart2Exception

remove(token)

push (DMSDeleted)

log(token, "DMS <name> removed")

Figure 70. DMSControlModule:RemoveDMS (Sequence Diagram)

3.1.7.29 DMSControlModule:RemoveEntry (Sequence Diagram)

The removeEntry method defined in the ArbitrationQueue interface is used to dequeue a message for a DMS when it is no longer needed by the originating traffic event. This method delegates the storage of the queue to a MessageQueue object, so the request is passed down to the MessageQueue. If the ArbQueueEntry was not active at this time, its TrafficEvents must be notified (here, rather than in RequestSuccessful as would normally occur when they are removed from the DMS) that they've been removed from the queue via the report() helper method.

Then, if the DMS is online, the evaluateQueue() method is called to determine whether the removal of this entry should result in a new message being placed on the DMS. The details of the Chart2DMSImpl's evaluateQueue processing are shown in the DMSControlModule:evaluateQueue sequence diagram. RemoveEntry can be called while the DMS is in any mode. (If the DMS is not online, the message will already be off (or may have never been on) the device.)

[image: image73.emf]getEntries

Calls complete on ResponsePlanItem of DMS ArbQueueEntry.

Message was not active on the sign.

RequestSuccessful takes care of

when message was active on the sign.

ARbQueueEntry

Returns a list of all of the ArbQueueEntry

objects including the one to be removed.

[ArbQueueEntry removed was not active]

report("Removed from queue and not on sign", true, true, null, ArbQueueEntry)

TokenManipulator

See sequence diagram

DeviceUtility\MessageQueue:removeEntry

for details.

See DMSControlModule:evaluateQueue

for details.

MessageQueue Chart2DMSImpl

ResponsePlanItem

[no rights]

AccessDenied

[not found]

SpecifiedObjectNotFound

[not found]

SpecifiedObjectNotFound

[not online]

notify("entry removed")

[not found]

notify("entry not found")

[no rights]

log

removeEntry

evaluateQueue(false)

removeEntry(token, tfcEventID)

NotificationChannel OperationsLog

checkAccess

"find DMSArbQueueEntry

matching tfcEventID"

Figure 71. DMSControlModule:RemoveEntry (Sequence Diagram)

3.1.7.30 DMSControlModule:Report (Sequence Diagram)

Report is a helper method that takes a string to be passed to a commandStatus, to the NotificationChannel, or to the ResponsePlanItems or TrafficEvents contained in a supplied list of ArbQueueEntry objects. If a CommandStatus is passed to this method, complete or update is called on the CommandStatus depending on the value of the complete flag. If the notify flag is true, notify is called on the NotificationChannel. If a list of ArbQueueEntry objects is passed to this method, processing depends on the type of ArbQueueEntry. Each DMSArbQueueEntry contains a ResponsePlanItem. Complete or update is called on each of these ResponsePlanItems, based on the value of the complete flag. Each HARNotifierArbQueueEntry contains one or more TrafficEvents. AddLogEntry is called on each of these TrafficEvents.

[image: image74.emf][notify true]

notify(msg)

NotificationChannel

cmdStatus Chart2DMSImpl

Chart2DMSImpl

[for each entry in

arbQueueEntries that is a

HARNotifierArbQueueEntry]

[cmdStatus not null and complete false]

update(msg)

[cmdStatus not null and complete true]

complete(msg)

report(msg, complete, nofiy,

cmdStatus, arbQueueEntries)

[for each entry in

arbQueueEntries that is a

DMSArbQueueEntry]

[complete true]

complete(msg)

[complete false]

update(msg)

getResponsePlanItem

[arbQueueEntries null]

TrafficEvent ResponsePlanItem DMSArbQueueEntry

[for each

trafficEvent]

addLogEntry(msg)

HARArbQueueEntry

getTrafficEvents

Figure 72. DMSControlModule:Report (Sequence Diagram)

3.1.7.31 DMSControlModule:RequestFailed (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode fails. This method provides proper notifications to all interested traffic events: those which were active and shouldn't be anymore, those which were active and should still active, and those which weren't active but should be now. The helper method report() is called to inform the corresponding ResponsePlanItems in each of the ArbQueueEntry objects of the failure as well as to notify the NotificationChannel of the failure.

[image: image75.emf]All calls to DMSImpl:report call update on the CommandStatus

contained in the ArbqueEntry (complete flag is false) and call

notify on the NotificationChannel (notify flag is true).

Message was to go on sign,

but did not.

ArbQueueEntry

DMSImpl

DMSImpl

A new message (or a blank

request if newEntries is empty)

failed to go to the DMS.

Message was supposed to go

off the sign, but it is still there.

[this entry not on m_activeEntries list]

setFailed("display failed")

[this entry not on newEntries list]

setFailed("could not be removed")

[this entry not on m_activeEntries list]

report("display failed", false, true, null, ArbQueueEntry)

[this entry on newEntries and message different]

report("could not update message", false, true, null, ArbQueueEntry)

[this entry not on newEntries list]

report("could not be removed", false, true, null, ArbQueueEntry)

[this entry on newEntries]

setFailed("could not be updated")

notify(ArbQueueEntryList)

[*for each entry on

newEntries]

requestFailed(newEntries)

[*for each entry

on m_activeEntries]

getEntries

Message was to be updated.

All (both) traffic events are

notified, even if for a given

traffic event the message was

not supposed to change anyway.

(The change may be for the other

part of a combined

Get all new list of

entries, with all

status updated.

MessageQueue

NotificationChannel

Figure 73. DMSControlModule:RequestFailed (Sequence Diagram)

3.1.7.32 DMSControlModule:RequestSuccessful (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode completes successfully. This method provides proper notifications to all interested traffic events: those which were active but aren't anymore, those which were active and are still active, and those which weren't active before but are now. The list of ArbQueueEntry objects which have just become active are stored with the DMS. These are a copy of the objects on the MessageQueue which caused the new message to go active. This separate list of active ArbQueueEntry objects is necessary because the entries on the MessageQueue could be changed or deleted at any time, and the DMS needs to maintain the list of entries actually active on the device until their message is actually removed.

[image: image76.emf]log

getEntries

[not on newEntries list and in currentArbQueueEntryList]

report("remove succeeded", false, true, null, thisEntry)

[thisEntry on newEntries list]

report("update succeeded", false, true, null, thisEntry)

[not on newEntries list and NOT in currentArbQueueEntryList]

report("remove succeeded", complete, true, null, thisEntry)

store newEntries on

m_activeEntries list

[*for each entry on

newEntries]

[thisEntry not on m_activeEntries list]

setActive

[*for each entry

on m_activeEntries]

[thisEntry on newEntries list]

setUpdated

[thisEntry not on newEntries list]

setInactive

notify(ArbQueueEntryList)

Message successfully updated on the DMS. The TrafficEvent in the ArbQueueEntry

currently being looked at may or may not have requested the change it may be that

there is a combined message involved and the message for this particular event

did not change). Always calls update on CommandStatus in ArbQueueEntry in any

case (complete flag is set to false) and notify the NotificationChannel.

Message successfully removed from the DMS and the MessageQueue.

Calls complete or update on CommandStatus in ArbQueueEntry based

on the complete flag and notifies NotificationChannel.

Returns list of ArbQueueEntries

(currentArbQueueEntryList)

Message successfully displayed on the DMS. Always calls update

on CommandStatus in ArbQueueEntry (complete flag is set to false)

and notifies NotificationChannel.

A message was

placed on the DMS.

newEntries list

could be empty

if called after DMS

was blanked.

Get all new list of

entries, with all

status updated.

MessageQueue NotificationChannel

DMSImpl

DMSImpl

Note: if active entry is also on newEntries but the messages

in both entries are the same, this entry is not the reason why

we've put a new message on the sign. This message is the

same before and after, and is just an innocent bystander in all

this commotion. Therefore, no reason to notify entry of anything.

ArbQueueEntry

requestSucceeded(newEntries, complete)

getEntries

[thisEntry not on m_activeEntries list]

report("display succeeded", false, true, null, thisEntry)

complete flag indicates to complete or update commandStatus for entries

removed from the sign AND the MessageQueue. update is always called

for messages that remain in the Message Queue.

OperationsLog

Message pre-empted (successfully removed from the DMS but

not removed from the MessageQueue). Always calls update on CommandStatus

in ArbQueueEntry (complete flag is set to false) and notifies NotificationChannel.

Figure 74. DMSControlModule:RequestSuccessful (Sequence Diagram)

3.1.7.33 DMSControlModule:ResetController (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to reset a DMS. The DMS must be in maintenance mode, the requesting operator must have proper functional rights, and if there is a (maintenance mode) message on the sign from another operations center, the user must have override authority. This method creates a ResetDMSCmd (a QueueableCommand) and adds it to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. Requests to communicate with the sign are processed on a first-come, first-served basis. When the CommandQueue is ready, it executes the ResetDMSCmd, which calls the resetControllerImpl method, also shown on this diagram. When the resetControllerImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it), and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center). Assuming no problems, the method blankSignNow is called to actually change the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel, so that any user (with rights) can immediately see that the sign is now blank. After obtaining a port via the helper method fmsGetConnectedPort, the DMSProtocolHndlr is requested to reset the device with the reset method. HandleOpStatus handles any changes to the operational status of the sign (OK, comms failure, or hardware failure) and the port is released via the fmsReleasePort helper method. The DMSStatus is persisted to the database. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image77.emf]ResetDMSCmd

TokenManipulator

CommandStatus

Updates cmdStatus

if conflict found.

Happens if user from

another op ctr has msg

on DMS in maint mode.

We continue with the attempt to reset the controller

regardless of whether blankSignNow() works.

(Perhaps they are resetting the DMS because they

can't write to it.)

blankSignNow updates

cmdStatus & DB as necessary.

Updates cmdStatus

if conflict found.

PushEventSupplier

OperationsLog DMSProtocolHndlr DMSControlDB

CommandQueue Chart2DMSImpl

Operator

CommandQueue executes

command asynchronously.

[rsrc conflict]

[not in maint mode]

CHART2Exception

[no rights]

AccessDenied

[resource conflict]

ResourceControlConflict

blankSignNow(cmdStatus)

checkResourceConflict

(token, cmdStatus)

[not in maint mode]

completed("wrong mode")

checkAccess

reset(port)

completed("success or failure")

update("resetting sign")

resetControllerImpl

[resource conflict]

fmsReleasePort

[failure]

log

setStatus

handleOpStatus(result, cmdStatus)

[failure]

[failure]

fmsGetConnectedPort

[!maintmode]

log

[not in maint mode]

push(currentStatus)

[failure]

addCommand

delete

checkResourceConflict

(token, cmdStatus)

[not in maint mode]

execute

delete

update("command queued")

create

[no rights]

completed("no rights")

[not in maint mode]

completed("wrong mode")

resetController(token, cmdStatus)

create

Figure 75. DMSControlModule:ResetController (Sequence Diagram)

3.1.7.34 DMSControlModule:RestoreDMS (Sequence Diagram)

This Sequence Diagram shows how a DMSImpl is initialized (whether being depersisted or created from scratch). DMSProtocolHdlr, ModemPortLocator, CommandQueue, and MessageQueue objects are created. If the DMS is being depersisted, after the MessageQueue is depersisted, the MessageQueue method validateEntries() is called to attempt to contact the TrafficEvent IDs on the list to validate their existence. If not in recovery mode, this is the only chance the TrafficEvents get. If still within the recovery mode, another attempt to contact the traffic events will be made when the recovery period is over. This diagram also shows a summary of what happens when an entry is added to or reprioritized in the message queue during recovery mode, and what happens when the recovery mode period expires.

[image: image78.emf]DMSProtocolHdlr

When the RecoveryTimerTask calls a DMS which discovers that its recovery period has just expired, the following occurs. (Summary provided here, see DMSControlModule:RunRecoveryTimerTask also.)

DMSImpl

DMSFactoryImpl

[recoveryMode true && validateEntries rtnd false]

purgeUnresolvedEntries

[recoveryMode == true]

validateEntries

create

[invalid request]

exception

[depersisting]

depersist

[depersisting &

recoveryMode false & validateEntries rtnd false]

purgeUnresolvedEntries

purgeUnresolvedEntries

create

run

create

[being depersisted]

getTimeDown

validateEntries

addEntry or changePriority

DMSImpl

DMSControlDB

recoveryMode

initialized to

false

If we are depersisting, but we are not supposed to be in recovery mode and we called validateEntries

only to be nice, we purge any entries we could not recover right now.

Returns true if all entries have now been validated (positively or negatively).

Returns false if one or more entries still have unknown status (could not be contacted).

If addEntry or changePriority request is valid, and we are in recovery

mode, at this point our hand is forced, we better give all traffic events

one last chance to validate themselves and then we purge any

traffic events we still haven't heard from.

Even if we are beyond the recovery time, to be nice

we still give the ArbQueueEntries this one chance to

be validated. Any that fail here right now are purged.

[being depersisted & timeDown within recovery period]

recoveryMode = true

create(ID, depersisting flag)

create

addEntry or changePriority

[depersisting]

validateEntries

[validateEntries rtnd true]

recoveryMode = false

MessageQueue

TrafficEvent

If a Traffic Event is added or reprioritized while the DMS is in recoveryMode, the following occurs. (Summary provided here, see DMSControlModule:AddEntry and ChangePriority for full details).

ModemPortLocator

CommandQueue

DMSControlDB creates DMSImpl objects via depersistence and also as

new DMS objects are created by operators. In the latter case (distinguishable

via parameter list) recovery timer processing is not relevant.

If validateEntries() returns true, all entries were resolved.

There is no unresolved stuff to recover, so we no longer

need to be in recoveryMode now.

set recoveryMode false

set recoveryMode false

[online]

evaluateQueue(true)

[online]

evaluateQueue(false)

Figure 76. DMSControlModule:RestoreDMS (Sequence Diagram)

3.1.7.35 DMSControlModule:RunCheckCommLossTask (Sequence Diagram)

This Sequence Diagram shows how the CheckCommLossTask object executes its task when directed to run by the Java timer object. The run method of CheckCommLossTask calls the checkCommLoss method of Chart2DMSFactoryImpl, which calls checkCommLoss on each DMS. Each Chart2DMSImpl object immediately returns if its comm loss check is disabled, there is no message on the sign, or its m_lastContactTime variable indicates that it has had some (any) communication with the device within the Comm Loss Timeout period (the PollDMSTask periodically updates m_lastContactTime). If the timeout has been exceeded and there was a message on the sign, the Chart2DMSStatus is updated to reflect a blank message and no controlling operations center, this fact is logged, and the new status is persisted and pushed into the event channel. In addition, setInactive is called on each of the active ArbQueueEntries. (If the timeout has been exceeded, but there is no message on the sign, there is nothing to do, no one to notify. The COMM_FAILURE status has already been detected, on the first failed poll if nothing else.) If a comm loss situation is determined while in recovery mode, this terminates the recovery mode (since there is no longer a message on the sign to try to save).

[image: image79.emf]PushEventSupplier

DMSEvent

DMSControlDB Chart2DMSImpl

Chart2DMSFactoryImpl

CheckCommLossTask

java.util.Timer

We have not had any contact with the sign for the dmsTimeCommLoss period, and there is a message on the sign which now

needs to be blanked. At this time we consider the sign to be blanked -- whether or not the sign supports a capability to blank

itself after a comm loss timeout period. Because we are clearing the message here, when the sign regains communications

and we re-evaluate the queue (see DMSControlModule:handleOpStatus), the message will be (re)displayed.

If we were in recovery mode, we aren't any more.

[m_recoveryMode true]

m_recoveryMode = false

[comm loss check disabled]

report("lost comms with sign",false, false, null, m_activeArbQueueEntries)

notify(ArbQueueEntryList)

getEntries

push(CurrentDMSStatus)

create "Any" DMSEvent of type CurrentDMSStatus

setDMSStatus(m_id, m_status)

checkCommLoss()

[*for each

DMS]

checkCommLoss()

run()

[no message on sign]

setInactive

setControllingOpCenter(none)

setDMSMessage(blank)

[now - m_lastContactTime <

m_config.m_dmsTimeCommLoss]

log("comm loss timeout exceeded, sign assumed blank")

NotificationChannel

MessageQueue

If there is no message on the sign, comm loss is irrelevant,

sign is already blank.

ArbQueueEntry

m_status:

Chart2DMSStatus

If we've had contact within the comm loss timeout period, return.

OperationsLog

for each

m_activeArbQueueEntries

Figure 77. DMSControlModule:RunCheckCommLossTask (Sequence Diagram)

3.1.7.36 DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedDMSTask object executes its task when directed to run by the Java Timer object. Chart2DMSFactoryImpl's checkForAbandonedDMS method is called, which gets the controlling op center of each DMS and builds a list of OperationsCenter objects with control of one or more signs. Each OperationsCenter is then queried for the number of users logged in. If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledControlledResources event is pushed into the event channel.

[image: image80.emf]getNumLoggedInUsers

[*for each DMS]

getControllingOpCenter

[*for each unique op ctr ID]

query(op center where ID = op center IDs)

checkForAbandonedDMS()

[no users]

log

[no users]

push (UnhandledControlledResourcesEvent)

run()

CheckForAbandonedDMSTask

PushEventSupplier

OperationsCenter

CosTrading.Lookup

DMSImpl

Chart2DMSFactoryImpl

java.util.Timer

OperationsLog

[*for each

op ctr

which

controls

at least

one DMS]

Figure 78. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)

3.1.7.37 DMSControlModule:RunPollDMSTask (Sequence Diagram)

This Sequence Diagram shows how the PollDMSTask object executes its task when directed to run by the Java timer object. The run method of PollDMSTask calls the pollDMSObjects method of Chart2DMSFactoryImpl, which calls pollIfNecessary on each DMS. Each Chart2DMSImpl object immediately returns if its m_lastContactTime variable indicates that it has had some (any) communication with the device within the poll interval period. If it has been longer than the poll interval since the last communication with the device, this method creates a PollDMSNowCmd (a QueueableCommand) and adds it to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. Requests to communicate with the sign are processed on a first-come, first-served basis. Most likely, the CommandQueue is empty (which is why we now feel a need to poll), but any communication with the device will have the desired effect, so if there are one or more requests to communicate with the device on the queue ahead of this PollDMSNowCmd, that is fine, too. When the CommandQueue is ready, it executes the PollDMSNowCmd, which calls the pollNowImpl method.

[image: image81.emf]"give token rights to poll"

create

pollDMSObjects

create

execute

delete

pollNowImpl

run()

Dummy CommandStatus object. No human or process

is watching it, but the pollDMSNowCmd still needs one.

CommandStatus

PollDMSNowCmd

AccessToken

CommandQueue

Chart2DMSImpl

TokenManipulator

Chart2DMSFactoryImpl PollDMSTask

java.util.Timer

For details, see sequence diagram

DMSControlModule:pollNowImpl.

Each CommandQueue executes

its commands asynchronously.

Return immediately if we have

had any communications with

the device within the poll interval.

[*for

each

DMS

addCommand(PollDMSNowCmd)

[now - m_lastContactTime < m_config.m_pollInterval]

pollIfNecessary(token, cmdStatus)

Figure 79. DMSControlModule:RunPollDMSTask (Sequence Diagram)

3.1.7.38 DMSControlModule:RunRecoveryTimerTask (Sequence Diagram)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process. During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called. This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the DMSService last went down, an essential piece of information for recovery during DMSService startup. When the DMSService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkDMSRecovery) which requests all DMS objects to check and see if their recovery period has expired. (The recovery period is defined to be their poll interval times a system-wide multiplier (expected to be 2), or, if the DMS has no poll interval, a system-wide constant (on the order of 10-15 minutes.) Each DMS, therefore, terminates its recovery period independently of the others. Besides strictly time-based termination, if a DMS manages to contact all of its TrafficEvents prior to normal expiration of its recovery period, its recovery period will end prematurely. A DMS's recovery period also ends prematurely if there is any change to its MessageQueue (a call to add or remove or reprioritize an entry). (When all DMSes have terminated their recovery period, checkDMSRecovery is no longer called.)

When each DMS checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its message queue to take one last try at resolving traffic events on its queue and, if the device is online, calls evaluateQueue to make a determination as to what message (or blank) belongs on the sign, and to queue a command for the DMS to set the sign appropriately.

[image: image82.emf]recoveryMode = false

[all DMSes returned false]

return(false)

return(true)

set recoveryMode

according to

return value

Expiration of recovery

mode already reported

(or DMS was never in

recovery mode).

In this case the recovery period has just expired,

but had not been detected as expired previously.

This gives the unresolved TrafficEvents one last

chance to make contact, and the sign is set with a

message or blanked, as appropriate.

MessageQueue

java.util.Timer

RecoveryTimerTask

recoveryMode initialized to true in RecoveryTimerTask constructor.

Chart2DMSFactoryImpl Chart2DMSImpl

purgeUnresolvedEntries

[still within recovery period]

return(true)

[recoveryMode == false]

return(false)

write current time

to DMSTimestamp

file

[recoveryMode == false]

(return)

[recoveryMode == true]

checkDMSRecovery

(timeDown)

run()

validateEntries

return(false)

[*for each

DMS]

checkRecoveryTime(timeDown)

[online]

evaluateQueue

Figure 80. DMSControlModule:RunRecoveryTimerTask (Sequence Diagram)

3.1.7.39 DMSControlModule:SetAssociatedHAR (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request to be associated as a HARMessageNotifier of a HAR. This association is HAR-centric. That is, the association is initiated when an operator modifies the HAR's configuration after placing the HAR in maintenance mode. The HAR, then, notifies the DMS that it is being associated with a HAR. The operator (making the association request) must have proper functional rights for the sign. If the DMS is already associated with a HAR, that HAR is notified that this DMS is to be removed as its HARMessageNotifier via a call to the HAR's msgNotifierRemoved method. The configuration is updated to include the new HAR, and this configuration is persisted and pushed into the event channel.

[image: image83.emf]HAR OperationsLog

DMSControlDB PushEventSupplier

m_config:

DMSConfiguration HARImpl

DMSImpl TokenManipulator

synchronized

set new HarID

msgNotifierRemoved(token, currentHarID)

end synchronize

setAssociatedHAR(token,

HAR)

[improper rights]

AccessDenied

[failure]

Chart2Exception

createToken

log

[improper rights]

log

push(DMSConfigurationChanged)

setConfiguration

Figure 81. DMSControlModule:SetAssociatedHAR (Sequence Diagram)

3.1.7.40 DMSControlModule:SetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to change the configuration of a DMS. The DMS must be in maintenance mode, the requesting operator must have proper functional rights, and if there is a (maintenance mode) message on the sign from another operations center, the user must have override authority. This method creates a SetDMSConfigCmd (a QueueableCommand) and adds it to the DMS's CommandQueue. The CommandQueue is required since some configuration changes require field communications to the sign, and field communications are relatively slow and can queue up. Requests to communicate with the sign are processed on a first-come, first-served basis. When the CommandQueue is ready, it executes the SetDMSConfigCmd, which calls the setConfigurationImpl method, also shown on this diagram. When the setConfigurationImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it), and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center). Assuming no problems, the Chart2DMSConfiguration is locked down, and all parameters which need to change are changed. If any of these parameter changes require communications to the sign (e.g., setting the Comm Loss Timeout in an FP9500), a new PortLocator is created using the new parameters. Then, FMS is requested to make the specified change(s). The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comms failure, or hardware failure) reported by FMS during this operation. The new configuration is persisted and pushed into the event channel. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image84.emf]checkResourceConflict

(token, cmdStatus)

setConfigurationImpl

handleOpStatus

(result, cmdStatus)

[no rights]

completed("no rights")

If any changes

require comms to

sign,e.g., for

FP9500, derived class

implementation will

do more, such as this.

DMSControlDB

OperationsLog

PushEventSupplier

m_dmsConfig:

Chart2DMSConfiguration

CommandStatus

Chart2DMSImpl

Operator

If any changes

actually occured...

Happens if user from

another op ctr has msg

on DMS in maint mode.

CommandQueue executes

command asynchronously.

CommandQueue

DMSEvent

Updates CommandStatus

(completed() call)

if necessary.

Writes to CommandStatus

if necessary.

SetDMSConfigCmd

PortLocator

PortLocator

completed("success or failure")

push (DMSConfigChanged)

setConfiguration

"set data as requested"

[not in maint mode]

CHART2Exception

[not in maint mode]

completed("wrong mode")

create

[resource conflict]

ResourceControlConflict

checkResourceConflict

(token, cmdStatus)

create "Any" DMSEvent of type DMSConfigChanged

[no rights]

AccessDenied

create

execute

setConfiguration

(token, config, cmdStatus)

log(token, "DMS <name>, "configuration changed")

[failure]

[failure]

fmsGetConnectedPort

[not in maint mode]

push(currentStatus)

[no rights]

log

[comm parameter changed]

create

[comm parameter changed]

delete

[not in maint mode]

[change to commLossTimeout requested]

setCommLossTimeout

[not in maint mode]

completed("wrong mode")

synchronized

[no chng]

[no change to existing config]

[no change to existing config]

completed("nothing changes")

update("setting config")

DMSProtocolHndlr

update("command queued")

addCommand(SetDMSConfigCmd)

[resource conflict]

ResourceControlConflict

end synchronize

delete

fmsReleasePort

Figure 82. DMSControlModule:SetConfiguration (Sequence Diagram)

3.1.7.41 DMSControlModule:SetMessage (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object processes a request to change its message in maintenance mode. (For setting messages online, see addEntry and evaluateQueue.) The DMS must be in maintenance mode, and the requesting operator must have proper functional rights. This method asks the message to validate itself one last time (for banned words, and to ensure that the beacons are not set on with an empty message). Then a SetDMSMessageCmd (a QueueableCommand) is created and added to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. Requests to communicate with the sign are processed on a first-come, first-served basis. When the CommandQueue is ready, it executes the SetDMSMessageCmd, which calls the setMessageImpl method. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image85.emf]CommandQueue executes

command asynchronously.

CommandQueue OperationsLog

execute

[no rights]

log(token, "unauth. attemp to set DMS <name> to message <text>t")

checkResourceConflict

(token, cmdStat)

setMessageImpl

[resource conflict]

ResourceControlConflict

[bad words or beacons]

DisapprovedMessageContent

[bad words, or beacons on with no msg]

completed("invalid message or beacons")

validateMessageContent

[not in maint mode]

CHART2Exception

[not in maint mode]

completed("wrong mode")

SetDMSMessageCmd

This method is used in

maintenance mode only.

SetMessageFromQueue is

used online.

For details, see sequence diagram

DMSControlModule:setMessageImpl.

Message CommandStatus TokenManipulator

Updates cmdStat

if conflict found

(completed() call).

Chart2DMSImpl

ORB

[no rights]

AccessDenied

[no rights]

completed("no rights")

checkAccess(token)

setMessage(token,

msg, cmdStat)

update("command queued")

addCommand(SetDMSMessageCmd)

create

Figure 83. DMSControlModule:SetMessage (Sequence Diagram)

3.1.7.42 DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to change its message while it is online. (The analogous method in online mode is setMessageImpl.) This command is created and added to the CommandQueue in the evaluateQueue method. When the setMessageFromQueueImpl method runs, it checks that the DMS is still online (a previously queued command could have changed it). It gets a port via the fmsGetConnectedPort method and sets the message on the sign via DMSProtocolHndlr's setMessage method. The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comms failure, or hardware failure) reported during this operation. RequestFailed is called in failure cases to notify all of the TrafficEvents involved of the error. The port is released via the helper method fmsReleasePort and the new status is persisted and pushed into the event channel. If everything works, requestSuccessful is called to notify all of the TrafficEvents involved. This includes TrafficEvents for any message that was removed from the sign by the successful display of the new message. The TrafficEvents for the new message are also kept up to date via calls to the report() helper method.

[image: image86.emf]Push the fact that this entry is becomming active

out to the notification channel.

NotificationChannel

Chart2DMSImpl

Chart2DMSImpl

m_status:

Chart2DMSStatus DMSControlDB

Updates & pushes

new DMSStatus if necesary.

OperationsLog

DMSProtocolHndlr

On failure, calls handleOpStatus which updates,

persists, and pushes status if necessary. See

DMSControlModule:handleOpStatus for details.

PushEventSupplier

DMSEvent

This method is used only when online. In maint

mode, setMessage/setMessageImpl is used.

handleOpStatus

(result)

report("setting message", false, true, null, arbQEntries)

[not online]

report("wrong mode", false, true, null, arbQEntries)

notify(ArbQueueEntryList)

getEntries

[not online]

requestFailed(arbQEntries)

[not online]

push(currentStatus)

requestSuccessful(arbQEntries, true)

fmsReleasePort

report("success", false, true, null, arbQEntries)

[failure]

report("failed putting message on DMS", false, true, null, arbQEntries)

[failure]

report("port failure", false, true, null, arbQEntries)

report("got port", false, true, null, arbQEntries)

[failure]

[failure]

requestFailed(arbQEntries)

fmsGetConnectedPort()

[this is m_lastQueuedSetMsgCmd]

clear m_lastQueuedSetMsgCmd

NotificationChannel

MessageQueue

Calls to report here update the

commandStatus of the arbQEntries.

The commandStatus is not completed

because nothing is removed from the

MessageQueue

Updates or completes the commandStatus of each in m_activeArbQueueEntries that have

just been removed from the sign by the successful display of this message (based on

existence of the arbQEntry in the MessageQueue). Updates the commandStatus of

each in arbQEntries that were just successfully displayed.

[failure]

requestFailed(arbQEntries)

[not online]

setStatus(m_id, m_status)

log(token, "DMS <name> message set to <text>")

setCurrentMessage(msg that was set)

setMessage(port, multiMsg, beacon)

setMessageFromQueueImpl(token, msg,

arbQEntries, reqID, this)

[failure]

push(CurrentDMSStatus)

create "Any" DMSEvent of type CurrentDMSStatus

Figure 84. DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)

3.1.7.43 DMSControlModule:SetMessageImpl (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object executes a command to change its message in maintenance mode. (The analogous method in online mode is SetMessageFromQueueImpl.) An operator request to set the message has already been received and pre-processed by the setMessage or activateHARNotice methods. When the setMessageImpl method runs, it checks that the DMS is still in maintenance mode (a previously queued command could have changed it) and that there is no resource conflict (a previously queued command could have written a message from an operator at another operations center). A port is obtained via the fmsGetConnectedPort helper method. Then the message is displayed on the sign via the DMSProtocolHdlr's setMessage method. The method handleOpStatus handles and responds to any changes to the operational status of the sign (OK, comms failure, or hardware failure) reported during this operation. The port is released via the fmsReleasePort helper method. If successful, the current status is persisted and a CurrentDMSStatus event is pushed into the event channel, so that any user (with rights) can immediately see the new content of the sign. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image87.emf]Updates cmdStatus, updates & pushes

new DMSStatus if necesary. result is

the result from the SetMessage call.

DMSMessage

DMSEvent

TokenManipulator

DMSControlDB

CommandStatus

Chart2DMSImpl

create "Any" DMSEvent of type CurrentDMSStatus

create(multiMsg, beacon)

setCurrentMessage(msg)

[failure]

handleOpStatus

(result, cmdStatus)

setControllingOpCenter(op ctr)

checkResourceConflict

(token, cmdStatus)

[success]

log(token, "DMS <name> message set to <text>")

getOpCenter(token)

Updates cmdStatus

if conflict found.

SetDMSMessageCmd

PushEventSupplier

DMSProtocolHdlr OperationsLog

m_status:

Chart2DMSStatus

This method is used in maint mode only. Online,

setMessageFromQueue/setMesageFromQueueImpl

is used.

completed

push (CurrentDMSStatus)

SetMessage(port, multiMsg, beacon)

setStatus(m_status)

[resource conflict]

[not in maint mode]

completed("wrong mode")

[DMS not in maint mode]

setMessageImpl

(token, multiMsg, beacon, cmdStatus)

fmsReleasePort

[failure]

fmsGetConnectedPort

Figure 85. DMSControlModule:SetMessageImpl (Sequence Diagram)

3.1.7.44 DMSControlModule:Shutdown (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is terminated. The DMSControlModule is shut down by the ServiceApplication that started it. When told to shut down, the DMSControlModule disconnects the DMSFactory from the ORB, withdraws its offer from the trader, and shuts down the object. When the DMSFactory is shut down, it withdraws the offers of each DMS, disconnects each DMS from the ORB, and shuts down each Chart2DMSImpl. Chart2DMSImpl shutdown processing includes destroying the MessageQueue and shutting down the CommandQueue. No information needs to be persisted to the database during shutdown, as information is written to the database as it is updated.

[image: image88.emf]Chart2DMSImpl DMSFactoryImpl DMSControlModule

ServiceApplication

POA

java.util.Timer

CommandQueue

MessageQueue

delete

cancel

[*for

each

DMS]

delete

shutdown

destroy

shutdown

deactivate_object(DMS)

delete

shutdown

shutdown

deactivate_object (DMSFactory)

Figure 86. DMSControlModule:Shutdown (Sequence Diagram)

3.1.7.45 DMSControlModule:TakeDMSOffline (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to a request by a user to go offline. The requesting operator must have proper functional rights, and (in maintenance mode only) if there is a message on the sign from another operations center, the user must have override authority. A TakeDMSOfflineCmd (a QueueableCommand) is created and added to the DMS's CommandQueue. The CommandQueue is required since field communications to the sign are relatively slow and can queue up. When the CommandQueue is ready, it executes the TakeDMSOfflineCmd, which calls the takeOfflineImpl method, also shown on this diagram. The takeOfflineImpl method double checks to make sure it is not already offline (from some other queued command) and there are no maintenance mode resource conflicts. Assuming no problems, the method blankSignNow is called to request FMS to actually blank the sign, update the database, and handle any status change, and push a CurrentDMSStatus event into the event channel, so that any user (with rights) can immediately see that the sign is now blank. Regardless of whether blankSignNow works, the method continues on, since the sign may likely be non-functional when it is taken offline. The DMSStatus is updated to show that the sign is offline and there is no controlling operations center, it is persisted to the database, and it is pushed into the event channel. The requesting user is kept abreast of progress of the request all the while, via a CommandStatus object viewable by the user.

[image: image89.emf][maint mode]

checkResourceConflict

[resource conflict]

[resource conflict]

[maint mode]

checkResourceConflict

DMSControlDB

OperationsLog PushEventSupplier

Chart2DMSImpl

blankSignNow

(cmdStat)

clear controlling op ctr

execute

[resource conflict]

ResourceControlConflict

checkAccess

m_status.m_opStatus= OFFLINE

takeOffline(token, cmdStat)

delete

completed("sign offline")

[alreadly offline]

completed("already offline")

[no rights]

log(token, "unauth. access attempt")

addCommand(TakeDMSOfflineCmd)

log(token, "DMS taken offline")

takeOfflineImpl

setStatus(m_status)

[resouce conflict]

completed("resource conflict")

update("command queued")

push(CurrentDMSStatus)

create "Any" DMSEvent of type CurrentDMSStatus

update ("taking offline")

create

[no rights]

completed("no rights")

[already offline]

completed("already offline")

[no rights]

AccessDenied

[already offline]

[already offline]

BlankSignNow calls requestSuccessful,

which will Inactivate all active ArbQueueEntries.

We continue on regardless of whether blankSignNow() works. We don't want

to stop a sign from going offline because it doesn't work.

CommandQueue executes

command asynchronously.

TokenManipulator

DMSEvent

ORB

CommandQueue

TakeDMSOfflineCmd

CommandStatus

[already offline]

Figure 87. DMSControlModule:TakeDMSOffline (Sequence Diagram)

DMSProtocols

3.1.8 Classes

3.1.8.1 DMSProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to DMS control.

[image: image90.emf]PCMSProtocolHdlr

DataPort

«interface»

DMSHardwarePage

MultiConverter

MultiParseListener

«interface» DMSProtocolHdlrConfig

DMSDeviceStatus

FP9500DMSDeviceStatus PCMSDMSDeviceStatus SylviaDMSDeviceStatus TS3001DMSDeviceStatus

DMSProtocolHandlerException

DMSProtocolHdlr

«interface»

FP9500ProtocolHdlr

FP2001ProtocolHdlr FP1001ProtocolHdlr

ADDCOProtocolHdlr

TS3001ProtocolHdlr

SylviaProtocolHdlr

* 1

1

*

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis,

 long maxReadDurationMillis):byte[]

char[][] m_pageText

int m_pageOnTime

int m_pageOffTime

multiToPlainText(multi)

plainTextToMulti(text, formatter)

parseMulti(multi, listener)

hardwareMsgToMulti(DMSHardwarePage[] msg):String

messageTxt(text)

lineJustification(justify)

newLine(pixelSkip)

newPage()

pageDisplayTime(timeOn, timeOff)

unknownTag(tag)

parseComplete()

short m_signType

SignMetrics m_signMetrics

int m_maxPages

int m_dropAddress

int m_defLineJustification

int m_defPageOnTime

int m_defPageOffTime

String m_messageMulti;

boolean m_beaconState;

ShortErrorStatus m_shortErrorStatus;

BitMap m_pixelStatusMap

byte[] m_primaryLampStatusMap

byte[] m_secondaryLampStatusMap

int m_currentMsgNum

FP9500MsgSource m_currentMsgSource

int m_frontPhotocellLight

int m_backPhotocellLight

int m_topPhotocellLight

FP9500LastError m_lastError

int m_errorValue

int m_errorLoc

int m_pixelOnFailuresCount

int m_pixelOffFailuresCount

int m_moduleFailuresCount

int m_illegalAccessCount

FP9500BBRamStatus m_bbRAMStatus

FP9500ExtBBRamStatus m_extbbRAMStatus

FP9500PWRFailureStatus m_pwrFailStatus

FP9500SerialCommStatus m_commPortStatus

FP9500CmdMsgStatus m_commandStatus

FP9500DisplayStatus m_displayStatus

FP9500HWStatus m_hwStatus

int m_ledIntensity

int m_ttlState

int m_lineVolts

int m_lampLife

boolean m_batteryBackup

PCMSDeviceMobility

PCMSPowerType

PCMSSignType

PCMSSignColorType

PCMSDispModule

PCMSSignStatus

PCMSGeneratorStatus

PCMSGeneratorMode

int m_sequenceNo

byte m_rate

int m_messageSource

int m_dispPriority

int m_signBatteryVoltage

int m_engineBatteryVoltage

int m_linePowerVoltage

int m_photocellReading

in m_brightnessLevel

int m_rpm

int m_fuelLevel

PCMSMessageType m_defMsgType

int m_defMsgNum

int m_lowTempThresh

int m_numOfBadDots

int m_ambientTemp

int m_dispTimeRemaining

boolean m_signBlank

SylviaSignStatus

SylviaControllerStatus

SylviaMessageSource

SylviaDNSensorStatus

SylviaOBSensorStatus

SylviaDNCmdStatus

SylviaOBCmdStatus

SylviaSensorFunctionStatus m_dnFunctionStatus

SylviaSensorFunctionStatus m_obFunctionStatus

SylviaShutterServiceStatus

boolean m_defaultDisplayActive

boolean m_powerSupplyBad

SylviaLocalDisplayMessage

int m_localDispMessageNumber

BitMap m_pixelStatusMap

BitMap m_lampStatusMap

TS3001Mode m_currentMode

boolean m_programFault

boolean m_commLossStatus

boolean m_commandError

boolean m_pwrFailure

boolean m_backupPwrFailure

boolean m_primaryLampFailure

boolean m_secondaryLampFailure

boolean m_signDisplayFailure

boolean m_pixelFailure

boolean m_illumSystemFailure

boolean m_PLCState

TS3001IlluminationMode m_illumControlMode

boolean m_pwrRecovery

boolean m_temperatureWarning

boolean m_signDriverFailure

byte m_signIllumLevel

string reason

setConfiguration(DMSProtocolHdlrConfig):void

setMessage(DataPort port,

 string MULTI,

 boolean beacons):void

blank(DataPort):void

getStatus(DataPort):DMSDeviceStatus

reset(DataPort):void

performPixelTest():bool

setCommLossTimeout(int):

 void

Figure 88. DMSProtocolsPkg (Class Diagram)

3.1.8.1.1 ADDCOProtocolHdlr (Class)

This protocol handler contains the protocol for communicating with an ADDCO portable DMS.

3.1.8.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.8.1.3 DMSDeviceStatus (Class)

This class contains data returned by all DMS protocol handlers getStatus() method. DMSs that support more detailed status return a derivation of this class.

3.1.8.1.4 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware. A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character. This format maps well to the way DMS protocols return the current message being displayed in a status query. This class can then be passed to a MultiConverter object to convert the message into MULTI format.

3.1.8.1.5 DMSProtocolHandlerException (Class)

This exception is thrown when a DMS device fails to respond to a command or a protocol error is detected in the response packet.

3.1.8.1.6 DMSProtocolHdlr (Class)

This interface defines the methods that must be supported by DMS prototocol handlers. Note - some handlers support methods in addition to these standard methods.

3.1.8.1.7 DMSProtocolHdlrConfig (Class)

This class contains the configuration parameters for the DMS Protocol handlers.

3.1.8.1.8 FP1001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP1001 DMS.

3.1.8.1.9 FP2001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP2001 DMS.

3.1.8.1.10 FP9500DMSDeviceStatus (Class)

This class contains status data that is returned from the FP9500 protocol handler in the getStatus call.

3.1.8.1.11 FP9500ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP9500 DMS. The performPixelTest method causes a pixel test to be run on the sign. The status of pixels reported in the getStatus method contains the status since the last time a pixel test was run.

3.1.8.1.12 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text. It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

3.1.8.1.13 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs. An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

3.1.8.1.14 PCMSDMSDeviceStatus (Class)

This class contains status data that is returned from the Display Solutions PCMS protocol handler in the getStatus call.

3.1.8.1.15 PCMSProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Display Solutions (Winkomatic) Portable DMS.

3.1.8.1.16 SylviaDMSDeviceStatus (Class)

This class contains status data that is returned from the Sylvia protocol handler in the getStatus call.

3.1.8.1.17 SylviaProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Sylvia DMS.

3.1.8.1.18 TS3001DMSDeviceStatus (Class)

This class contains data returned from the TS3001 protocol handler's getStatus() method.

3.1.8.1.19 TS3001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Telespot 3001 series DMS.

3.1.8.2 ProtocolSupportClasses (Class Diagram)

This diagram contains the support classes used by the various DMS protocol handlers to provide extended status reporting.

[image: image91.emf]TS3001IlluminationMode

FP9500ExtBBRamStatus FP9500LastError

FP9500MsgSource FP9500BBRamStatus

SylviaOBCmdStatus

PCMSDeviceMobility PCMSPowerType PCMSSignType

ASCIICode

BitMap

«typedef»

PCMSSignColorType

FP9500CmdMsgStatus

PCMSDispModule

PCMSSignStatus PCMSGeneratorStatus

PCMSGeneratorMode

PCMSMessageType

SylviaControllerStatus

SylviaMessageSource SylviaDNSensorStatus SylviaOBSensorStatus

SylviaDNCmdStatus

SylviaLocalDisplayMessage

SylviaSignStatus

FP9500DisplayStatus FP9500HWStatus

FP9500PWRFailureStatus

FP9500SerialCommStatus

SylviaSensorFunctionStatus SylviaShutterServiceStatus

TS3001Mode

PHOTOCELL

MESSAGE_CONTROLLED

SERIAL_COMMAND_CONTROLLED

NO_ILLUMINATION_CONTROL_OR_FAILURE

FONT_LOGICAL_BLOCK_ERROR

BITMAP_LOGICAL_BLOCK_ERROR

MESSAGE_LOGICAL_BLOCK_ERROR

PASSWORD_LOGICAL_BLOCK_ERROR

INTENSITY_LOGICAL_BLOCK_ERROR

CONTROL_LOGICAL_BLOCK_ERROR

STATUS_LOGICAL_BLOCK_ERROR

TIME_LOGICAL_BLOCK_ERROR

SWID_LOGICAL_BLOCK_ERROR

MSGDURATION_LOGICAL_BLOCK_ERROR

UNUSED1_LOGICAL_BLOCK_ERROR

UNUSED2_LOGICAL_BLOCK_ERROR

CNTRL_LOGICAL_BLOCK_ERROR

SIGN_LOGICAL_BLOCK_ERROR

ERRORS_CLEARED

FONT_ERROR

ILLEGAL_FONT_CHAR_IN_MSG

ILLEGAL_CNTRL_CHAR_IN_MSG

TOO_MANY_ANIMATE_CHARS

TOO_MANY_FLASH_AREAS

BAD_PIXEL_ON_SIGN

AD_CONVERTERS_RANGE_ERROR

ILLEGAL_ACCESS

PROG_EPROM_ERROR

VMS_CENTRAL

LAPTOP

FRONT_PANEL

GATE_CONTROLLER

AUTOMSG_ON_ERROR

WRITE_IN_PROGRESS

WRITE_PENDING

WRITE_FAILURE

PF_CORRUPT_BBRAM

PF_OPER_IGNORED

INVALID_CHECKSUM

NORMAL_COMMAND

OVERBRIGHTNESS_COMMAND

PORTABLE

STATIONARY

DC

120VAC

DISCRETE

CONTINUOUS

byte NUL

byte SOH

byte STX

byte ETX

byte ACK

byte DC1

byte NAK

byte[][] bmap

COLOR

B/W

INVALID_MSG_TYPE

INVALID_BLOCK_ITEM

COMM_SYNC_ERROR

INVALID_TIME_SYNC

INVALID_DOWNLOAD_DATA

BROADCAST_ADDRESS

FLIP_DISK

LAMP_LED

DEFAULTED

SIGN_ACTIVE

FUEL_LOW

DISPLAYING_TEST_PATTERNS

POWER_LOW

TICS_ENABLED

GENERATOR_STOPPED_OR_START_FAILED

ALTERNATOR_FAILED

GENERATOR_RUNNING

GENERATOR_STARTING

ALT_FIELD_DISABLED_NO_RPM_READING

GENERATOR_AUTOCHARGING

COMMANDED_STOP

MANUAL

AUTOMATIC

QUIET

AUTO_WITH_LOW_TEMP_START

AUTO_WITH_LIGHTS

ROM

EEPROM

NORMAL_OPERATION

LOOPBACK_MODE

BACKUP_OPERATION

LAMPS_OUT_AND_OFF

LAMPS_OUT_AND_ON

NO_48_VOLTS

SIGN_ABORTED

BAD_SHUTTER_PWR_SUPPLY

SIMULATION_MODE_ACTIVE

CENTRAL_COMPUTER

MAINT_TERMINAL

LOCAL_CONTROL_PANEL

REMOTE_CONTROL_PANEL

NIGHT_MODE

DAY_MODE

NORMAL_MODE

OVERBRIGHTNESS_MODE

NIGHT_COMMAND

DAY_COMMAND

NO_LOCAL_DISPLAY_ON

TEST_MESSAGE_DISPLAYED

OTHER

SIGN_OFF

SIGN_LOADED

SIGN_LOADED_IN_DEFERRED_MODE

SIGN_LIT

SIGN_BUSY

FONT_NOT_AVAILABLE

BITMAP_NOT_AVAILABLE

ILLEGAL_CHAR_IN_MSG

TOO_MANY_ANIMATED_CHARS

TOO_MANY_FLASHING_AREAS

BAD_DIMMER

BAD_PCFRONT

BAD_PCTOP

BAD_PCBACK

BAD_DRIVER

BAD_DOT_DRIVER_PWR

BAD_PROG_PROM

LAMP_FAILURE

POWER_FAIL

DOWN_TIME_OVERRUN

TRANSMIT_IN_PROGRESS

CARRIER_DETECT

OVERRUN_ERROR

FRAMING_ERROR

PARITY_ERROR

CHECKSUM_ERROR

BUFFER_FULL_ERROR

AUTOMATIC_MODE

MANUAL_MODE

NO_SERVICE_IN_PROGRESS

SERVICE_IN_PROGRESS

LOCAL_MODE

REMOTE_MODE

Figure 89. ProtocolSupportClasses (Class Diagram)

3.1.8.2.1 ASCIICode (Class)

This class is a holder for ASCII codes used by protocol handlers when communicating with a DMS.

3.1.8.2.2 BitMap (Class)

This structure is used to pass status data that maps to pixels on a DMS, such as pixel status or lamp status. Each row of the bmap member corresponds to a row of pixels on the DMS. A value of 1 in a cell indicates the status for that pixel is OK while a zero indicates a failure.

3.1.8.2.3 FP9500BBRamStatus (Class)

This enumeration defines the valid values for the Battery Backed RAM Status in a FP9500 device.

3.1.8.2.4 FP9500CmdMsgStatus (Class)

This enumeration defines the valid values that indicate the status of the message selection command sent to a FP9500 device.

3.1.8.2.5 FP9500DisplayStatus (Class)

This enumeration defines the valid values that indicate the message error status of a previous message display operation on a FP9500 device.

3.1.8.2.6 FP9500ExtBBRamStatus (Class)

This enumeration defines the values that indicate a corrupt logical block that was reported as a result of Battery backed RAM error on a FP9500 device.

3.1.8.2.7 FP9500HWStatus (Class)

This enumeration defines the valid values that indicate the sign controller hardware error status of a FP9500 device.

3.1.8.2.8 FP9500LastError (Class)

This enumeration defines the reasons for the failure of the last device command sent to a FP9500 device.

3.1.8.2.9 FP9500MsgSource (Class)

This enumeration defines the valid values for a originator of the current message displayed on a FP9500 device.

3.1.8.2.10 FP9500PWRFailureStatus (Class)

This enumeration defines the valid values that indicate the power failure condition in a FP9500 device.

3.1.8.2.11 FP9500SerialCommStatus (Class)

This enumeration defines the valid values that indicate the serial communication port status of the FP9500 device.

3.1.8.2.12 PCMSDeviceMobility (Class)

This enumeration defines the valid values that indicate the mobility type of a Display solutions PCMS device.

3.1.8.2.13 PCMSDispModule (Class)

This enumeration defines the valid values that indicate the type of display module used in a Display Solutions PCMS device.

3.1.8.2.14 PCMSGeneratorMode (Class)

This enumeration defines the valid values that indicate the Generator mode of the Display Solutions PCMS device.

3.1.8.2.15 PCMSGeneratorStatus (Class)

This enumeration defines the valid values that indicate the Generator status of a Display Solutions PCMS device.

3.1.8.2.16 PCMSMessageType (Class)

This enumeration defines the valid values that indicate the various message types used in a Display Solutions PCMS device.

3.1.8.2.17 PCMSPowerType (Class)

This enumeration defines the valid values that indicate the Power type of a Display Solutions PCMS device.

3.1.8.2.18 PCMSSignColorType (Class)

This enumeration defines the valid values that indicate the color of a Display Solutions PCMS device.

3.1.8.2.19 PCMSSignStatus (Class)

This enumeration defines the valid values that indicate the Sign status of a Display Solutions PCMS device.

3.1.8.2.20 PCMSSignType (Class)

This enumeration defines the valid values that indicate the sign module type of a Display Solutions PCMS device.

3.1.8.2.21 SylviaControllerStatus (Class)

This enumeration defines the valid values that indicate the controller status of a Sylvia device.

3.1.8.2.22 SylviaDNCmdStatus (Class)

This enumeration defines the valid values for the Day/Night command status of a Sylvia device.

3.1.8.2.23 SylviaDNSensorStatus (Class)

This enumeration defines the valid values for the Day/Night Sensor status of a Sylvia device.

3.1.8.2.24 SylviaLocalDisplayMessage (Class)

This enumeration defines the valid values for the local display message of a Sylvia device.

3.1.8.2.25 SylviaMessageSource (Class)

This enumeration defines the valid values for a originator of the current message displayed on a Sylvia device.

3.1.8.2.26 SylviaOBCmdStatus (Class)

This enumeration defines the valid values for the Overbrightness command status of a Sylvia device.

3.1.8.2.27 SylviaOBSensorStatus (Class)

This enumeration defines the valid values for the Overbrightness Sensor status of a Sylvia device.

3.1.8.2.28 SylviaSensorFunctionStatus (Class)

This enumeration defines the valid values for the sensor function status of a Sylvia device.

3.1.8.2.29 SylviaShutterServiceStatus (Class)

This enumeration defines the valid values for the shutter service status of a Sylvia device.

3.1.8.2.30 SylviaSignStatus (Class)

This enumeration defines the valid values that indicate the sign module status of a Sylvia device.

3.1.8.2.31 TS3001IlluminationMode (Class)

This enumeration defines the valid values that indicate the sign illumination control setting on a TS3001 device.

3.1.8.2.32 TS3001Mode (Class)

This enumeration defines the operational modes of a TS3001 device.

Sequence Diagram

3.1.8.3 DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram)

This sequence shows typical processing of a protocol handler to set the message of a DMS. All protocol handlers have slightly different implementations due to the different protocols being implemented, however all protocol handlers have a general goal of formatting a byte array according to the device protocol, sending the byte array to the device, and receiving a response from the device to determine if the command was successful. Because DMS messages are specified in the MULTI format, part of the processing required to format a byte array to command the DMS includes converting the MULTI message into the proper sequence of bytes the DMS expects. The MultiConverter class helps to parse through the MULTI tags and pull apart the message into simple pieces that the protocol handler can use to format the byte array. Once told to parse a multi string, the MultiConverter calls back into the parse listener (which happens to be the protocol handler in our case) as it encounters multi tags and message text. After the protocol handler has formatted the byte array, it sends it to the device using the DataPort interface, which may actually be a modem or a direct connect port. After sending the command, the protocol handler reads the response from the device and determines if the command was successful. Failures are indicated though the use of exceptions which contain a specific reason for the failure.

[image: image92.emf]Protocol handler will complete

the command packet, adding

checksum, trailers, etc.

When parse is completed,

protocol handler will finalize

any line / page that was not

explicitly terminated and copy

data into the command packet

to be sent to the device.

Protocol handler will typically

make justification adjustments

to text on current line and place

line's text into the set message

command that will be sent to

the device.

Protocol handler will

typically store the text

in a buffer for the current

row and perform final

adjustments when a

new line is encountered.

Protocol handler

will typically store

the justification until

a new line is encountered,

at which time it may add

blanks to the front of the

text to achieve the desired

justification.

The DMSProtocolHandler implements

the MultiParseListener interface

which is called back from the

MultiConverter parseMulti method.

MultiConverter

DMSProtocolHandler

Derived Class DataPort

CHART II

DMS Object

response data

receive

send

parseComplete

newLine

messageText

lineJustification

newLine

messageText

lineJustification

parseMulti

setMessage

Figure 90. DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram)

3.1.8.4 FP9500ProtocolHdlr:GetStatus (Sequence Diagram)

This sequence shows the processing involved in getting the status from the FP9500 device. Since the device updates the pixel status information internally only during a pixel test operation, the caller must have issued a pixel test command prior to get status operation in order to receive the most current status from the device. During get status operation, the Status record is downloaded from the device using the "Parameter Upload" command. Next the lamp status and pixel status bitmaps are downloaded from the device using the "Display Upload" command. If any of the above device commands fail due to response timeout or response format error, a DMSProtocolHandlerException is thrown detailing the failure. On successful completion of all the above command sequences, the device responses are reformatted and stored in a FP9500DMSDeviceStatus struct and returned to the caller.

[image: image93.emf]Chart2 DMS

Object

DataPort FP9500ProtocolHdlr

Refer to Page 36 of protocol

document for response format

Display Upload command with

Item no. = 3. Refer to Page 31 of

the protocol document.

Refer to Page 33 of protocol

document for response format

Display Upload command with

Item no. = 4. Refer to Page 31 of

the protocol document.

Refer to Page 47 of protocol

document for response format

Parameter upload command

with Block ID = 7 and Item no. =0.

Refer to Page 28 of protocol

document

getStatus

[timedout or bad resp]

DMSProtocolHandlerException

[timedout or bad resp]

DMSProtocolHandlerException

FP9500DMSDeviceStatus

"Fill the FP9500DMSDeviceStatus

struct"

[timedout or bad resp]

DMSProtocolHandlerException

send (Parameter upload command for Status Record)

recv (Pixel status)

send (Display upload command for Pixel status)

recv (Lamp status)

send (Display upload command for Lamp status)

recv (Status Record from the device)

Figure 91. FP9500ProtocolHdlr:GetStatus (Sequence Diagram)

3.1.8.5 FP9500ProtocolHdlr:PixelTest (Sequence Diagram)

This sequence shows the processing involved in running a pixel test on the FP9500 device. The FP9500 message selection command with Pixel test option is sent to the device. The response from the device is trivial and indicates the successful start of the pixel test on the sign. The caller may need to allow for a brief interval of time, before any other command is sent to the device. This is to allow the device to run atleast one iteration of the pixel test without interruption and compile the results of the test.

[image: image94.emf]DataPort FP9500ProtocolHdlr

Chart2 DMS

Object

Message Selection command

with Pixel test option. Refer to

Pages 22-23 of FP9500 protocol

document

send (pixel test command)

[timedout or bad resp]

DMSProtocolHandlerException

recv

getStatus

Figure 92. FP9500ProtocolHdlr:PixelTest (Sequence Diagram)

3.1.8.6 TS3001ProtocolHdlr:GetStatus (Sequence Diagram)

This sequence shows the processing involved in getting the status from the TS3001 device. First a Sign Status Enquiry command of enquiry type 'S1' is sent to the device. The response to this command contains various sign status information including a brief pixel status and lamp status information. If the response indicates a pixel error, a Sign Status Enquiry command of enquiry type 'S3' is sent to the device. The device responds with a pixel status bitmap. If the 'S1' enquiry response also indicated a lamp error, a Sign Status Enquiry command of enquiry type 'S4' is sent to the device. The device responds with a lamp status bitmap. On successful completion of all the above command sequences, the device responses are reformatted and stored in a TS3001DMSDeviceStatus struct and returned to the caller.

[image: image95.emf]Refer to Page 70 of protocol

document for response format

Refer to Page 63 of protocol

document for response format

DataPort TS3001ProtocolHdlr

Chart2 DMS

Object

Refer to Page 76 of protocol

document for response format

Refer to Page 63 of protocol

document for response format

Refer to Page 75 of protocol

document for response format

Refer to Page 63 of protocol

document for response format

recv (Sign status Type 'S3' response)

[pixel error]

send (Sign Status Enquiry command of type 'S3')

recv (Sign status Type 'S1' response)

send (Sign Status Enquiry command of type 'S1')

getStatus

recv (Sign status Type S4' response)

[lamp error]

send (Sign Status Enquiry command of type 'S4')

[timedout or bad resp]

DMSProtocolHandlerException

[timedout or bad resp]

DMSProtocolHandlerException

TS3001DMSDeviceStatus

"Fill the TS3001DMSDeviceStatus

struct"

[timedout or bad resp]

DMSProtocolHandlerException

Figure 93. TS3001ProtocolHdlr:GetStatus (Sequence Diagram)

DMSUtility

3.1.9 Classes

3.1.9.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device control.

[image: image96.emf]VoicePortLocator

PortLocator

CommFailureCode CommFailureData

CommFailureDB

ModemPortLocator

ConnectedPortInfo

«typedef»

PortLocationData

«typedef»

PortManagerListEntry

«typedef»

ArbQueueEntry

MessageQueue

1 *

1

*

* 1

1

1

1

1

1 1

returns connected port in

1 *

connectPort(Port, PortManagerCommsData):int

PortLocator(PortLocationData, ORB, Lookup, CommFailureDB):PortLocator

getConnectedPort(String opDescription, CommandStatus):ConnectedPortInfo

releaseConnectedPort(ConnectedPortInfo):void

abstract connectPort(Port, PortManagerCommsData):int

-getPort(String portManagerName):Port

static int CONN_RSLT_OK;

static int CONN_RSLT_FAIL_RETRY;

static int CONN_RSLT_FAIL_NO_RETRY;

Vector m_portManagerRefList;

org.omg.CORBA.ORB m_orb;

org.omg.CosTrading.Lookup m_lookup;

&CommFailureDB m_commFailureDB;

SOFTWARE_ERROR

ACQUIRE_PORT_MGR_NOT_AVAILABLE

ACQUIRE_PORT_TYPE_NOT_SERVED

ACQUIRE_NO_PORTS_AVAILABLE

CONNECT_GENERAL_FAILURE

CONNECT_MODEM_NOT_RESPONDING

CONNECT_PORT_OPEN_FAILURE

CONNECT_MODEM_CONNECT_FAILURE

String portManagerName

PortType portType

String portName

int failureCode

int modemResponseCode

String logText

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

connectPort(Port, PortManagerCommsData):int

Port m_port

String m_portName

PortManager m_portMgr

String m_portMgrName

PortManagerCommsList m_prtManagerList

PortType m_portType;

int m_portWaitTimeSecs;

String m_portMgrName;

PortManager m_portMgrRef;

getTrafficEvent():TrafficEvent

getTrafficEventType():int

getTrafficEventID():byte[]

setActive(AccessToken token, string deviceName):void

setInactive(AcessToken token,

 string deviceName,

 string reason):void

setFailed(AccessToken token,

 string deviceName,

 string errorMsg):void

setUpdated(AccessToken token, string deviceName):void

getMessage():Message

getPriority():double

setPriority(AccessToken token, double newpriority):void

getOpCenterName():string

matches(ArbQueueEntry entry):boolean

ArbQueueEntryIndicator m_indicator

int m_trafficEventType

Message m_message

double m_priority

string m_opCenter

MessageQueue(byte[] deviceID, boolean depersisting)

addEntry(ArbQueueEntry entry):void

removeEntry(byte[] TrafficEventID):void

changePriority(ArbQueueEntry entry, double priority):void

destroy(): void

getEntries():ArbQueueEntryList

purgeUnresolvedEntries(): void

validateEntries(): boolean

-depersist(): void

-persist(): void

Vector m_messageQueue

Identifier m_deviceID

Figure 94. DeviceUtility (Class Diagram)

3.1.9.1.1 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.9.1.2 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

3.1.9.1.3 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

3.1.9.1.4 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about any comm failure that occurs in the system.

3.1.9.1.5 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

3.1.9.1.6 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.

3.1.9.1.7 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.9.1.8 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.9.1.9 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the deployment of many PortManagers. The PortLocator is initialized by specifying a preferred PortManager and optionally one or more alternate PortManagers using a PortLocationData object.

When asked to get a connected port, the PortLocator first attempts to acquire a port from the preferred PortManager and then calls its abstract connectPort() method (implemented by derived classes) to attempt to connect to the port. If a failure occurs, the PortLocator retries the sequence using the next PortManager in the list. The list may contain the same port manager multiple times to have retries occur on the same port manager prior to moving to another. In the event that the PortLocator will perform a retry on the same port manager, it holds the previously acquired port while performing the retry to avoid having the port manager return the same port during the retry. When a different port is acquired during a retry on the same port manager, the port is released (prior to connecting the 2nd port).

3.1.9.1.10 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

3.1.9.1.11 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

FieldCommunicationsModule

3.1.10 Classes

3.1.10.1 FieldCommunicationsModulePkg (Class Diagram)

This Class Diagram displays classes that implement the interfaces related to field communications and used for managing the ports.

[image: image97.emf]1

*1

1

1

creates

1

*

1

1

1

1

1

*

1

*

1 *

1

*

ServiceApplication

«interface»

InstallablePort

«interface»

DataPort

«interface»

ModemPort

«interface»

java.util.Vector

Keyed on port type. One

vector for each port type.

One each for free, in-use,

and marginal ports. Each hash table

keeps a vector for each port type.

java.util.Hashtable

DirectPortConfig

«typedef»

ModemPortConfig

«typedef»

PortConfig

«typedef»

VoicePortConfig

«typedef»

DirectPort

«interface»

CHART2Service

java.util.Hashtable

FieldCommunicationsModuleDB

java.util.Vector

WaitListEntry

ModemPortImpl

DirectPortImpl

java.util.TimerTask

PortReclaimer

ServiceApplicationModule

«interface»

PortManagerImpl

Port

«interface»

PushEventSupplier

VoicePort

«interface»

VoicePortImpl

javax.comm.SerialPortEventListener

«interface»

FieldCommunicationsProperties

java.util.Properties

javax.comm.SerialPort

java.util.Timer

PortManager

«interface»

FieldCommunicationsModulePkg

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

*

1

1 1

1

1

*

1

*

1

connect(CommPortConfig config):void

main(string[] args):void

PortConfig[] getPorts()

Priority m_priority;

InstallablePort m_port;

boolean m_abandoned;

getServant():org.omg.PortableServer.Servant

String m_modemInitString;

org.omg.PortableServer.Servant m_servant;

open():void

close():void

isOpen():boolean

&setConfig(byte[] id, String m_name, int inactivityTimeMillis,

 org.omg.PortableServer.Servant, String commPortName):void

String m_name;

int m_inactivityTimeMillis;

int m_lastUseTime;

javax.comm.CommPortIdentifier m_portIdentifier;

byte[] m_id;

org.omg.PortableServer.Servant m_servant;

String m_commPortName;

boolean m_marginal;

run

-retrieveAvailablePort(PortType):InstallablePort

-relinquishPort(InstallablePort, PortType):boolean

getStatus():PortStatus

disconnect():void

connect(String phoneNo):void

playDTMFTones(String dtmfCodes,

 boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

getServant():org.omg.PortableServer.Servant

isOpen():boolean

-dial(String phoneNo):int

-hangup():int

String m_name

byte[] m_id

org.omg.PortableServer.Servant m_servant

serialEvent(SerialPortEvent evt);

getDefaultInactivityTimeoutMillis():int

getPortReclaimerIntervalMillis():int

getProperty()

setProperty()

schedule

cancel

getPortsStatus():PortStatusInfo[]

getPort(PortType type, long maxWaitMillis,

 Priority requestPriority):Port

releasePort(Port thePort):void

init(PortConfig config, long inactivityTime) :void

isInactive():boolean

shutdown():boolean

getServant():org.omg.PortableServer.Servant

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis,

 long maxReadDurationMillis):byte[]

connect(CommPortConfig config,

 String phoneNo):void

String m_comPortName

String m_initString

byte[] m_identifier

String m_name

String m_className

PortType m_type

boolean m_disabled

int m_interToneDelay

string m_channelID

Figure 95. FieldCommunicationsModulePkg (Class Diagram)

3.1.10.1.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in CHART II system.

3.1.10.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.10.1.3 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The connect call needs only to open the communications port.

3.1.10.1.4 DirectPortConfig (Class)

This class holds configuration data for a direct connect port, which includes only the name of the comm port.

3.1.10.1.5 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL. Its connect method opens a javax.comm.SerialPort object and sets the port settings according to the baud, data bits, stop bits, and parity that was passed. Its disconnect method closes the javax.comm.SerialPort. This class also implements the send and receive functions as specified in the DataPort IDL interface. The send and receive methods use the read and write methods of the javax.comm.SerialPort object to send and receive bytes on the com port. While the send method contains little processing other than calling the javax.comm.SerialPort object's write method, the receive method contains logic that allows it to receive a burst of bytes before returning. This causes the receive method to return all available bytes on the port and thus helps to prevent the need for multiple calls to receive for a single command response. This class updates a timestamp each time send or receive is called. When its isInactive() method is called, it checks the current time vs. the last send/receive time and if the difference is greater than the current inactivity timeout, it returns true.

3.1.10.1.6 FieldCommunicationsModuleDB (Class)

This class provides methods used access Field Communications configuration data. The getPorts() method returns an array of PortConfig derived objects that contain configuration data specific to the type of port that has been configured. The configuration data is retrieved from a configuration file where PortConfig objects were previously persisted.

3.1.10.1.7 FieldCommunicationsModulePkg (Class)

This class is a service application module that can be installed into a CHART2Service. This module serves one PortManager object which provides access to one or more Port objects. It publishes the reference to this PortManager in the CORBA Trader. This class contains a FieldCommunicationsModuleDB object used to provide database access to the other classes within the package.

3.1.10.1.8 FieldCommunicationsProperties (Class)

This class provides access to properties in the Chart2Service properties file that are specific to the FieldCommunicationsModule.

3.1.10.1.9 InstallablePort (Class)

This interface is implemented by Port implementations that can be installed into the FieldCommunicationsModule and PortManager generically. The PortManagerImpl instantiates the specific impl using the class name that is part of a port's configuration data. The PortManager then calls each port's init method to allow each port to initialize its internal state. The PortManagerImpl's use of this interface allows it to manage all types of ports (current and future) in a generic way.

3.1.10.1.10 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

3.1.10.1.11 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

3.1.10.1.12 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.10.1.13 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.10.1.14 java.util.Vector (Class)

A Vector is a growable array of objects.

3.1.10.1.15 javax.comm.SerialPort (Class)

This class provides access to a computer's serial port. It allows the port to be opened and closed and allows data to be sent and received.

3.1.10.1.16 javax.comm.SerialPortEventListener (Class)

This interface is implemented by objects that wish to be notified of events that occur on a javax.comm.SerialPort.

3.1.10.1.17 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN and POTS modems can be implemented under this interface.

3.1.10.1.18 ModemPortConfig (Class)

This class holds configuration data that is specific to modem ports. The com port name is included as well as the type of modem port (ISDN or POTS) and a default modem initialization string.

3.1.10.1.19 ModemPortImpl (Class)

This class implements the ModemPort interface as defined in IDL. The ModemPortImpl's connect method calls its base class connect method which opens a communications port. The connect method then goes on to initialize and dial the modem and determine if the modem has connected to a remote modem. The disconnect method interrupts the modem, hangs up the modem, and calls the base class disconnect method which closes the com port. This class inherits its base class (DirectPortImpl) send and receive methods which send and receive data over the connected modem.

3.1.10.1.20 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All ports must be able to supply their status when requested.

3.1.10.1.21 PortConfig (Class)

This class holds data that is common to all types of ports. The PortManager uses this data to generically construct port objects.

3.1.10.1.22 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.10.1.23 PortManagerImpl (Class)

This class implements the PortManager interface as specified in the IDL. Hashtables are used to keep lists of ports according to their port type. Three of these hashtables are used to separate ports based on their current state - in use, available, or marginal. Ports that are in the marginal hashtable are available but are in a marginal state. The getPort method looks for an available port in the available list prior to the marginal list.

3.1.10.1.24 PortReclaimer (Class)

This class is a timer task that is scheduled to run periodically and cause the PortManager to determine if any in-use ports have had excessive idle time. When the PortManager discovers ports that are in-use but have not had activity within a configurable time period, the port manager disconnects the object, deactivates the object in the POA, and puts the port back in the free list.

3.1.10.1.25 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.10.1.26 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.10.1.27 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.10.1.28 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.10.1.29 VoicePortConfig (Class)

This class holds configuration data for a voice port, which includes the delay in milliseconds between DTMF tones to be dialed.

3.1.10.1.30 VoicePortImpl (Class)

This class implements the VoicePort interface as defined in IDL. The VoicePortImpl's connect method acquires a port from the telephony board, dials the destination number to connect the call. The disconnect method hangs up, sets the telephone line connection on hook and releases the port being used. This class also implements the recordWAV method to record a message being heard on a connected call and playWAV method to play a message on the connected call. It also implements the playDTMF method to generate DTMF tones.

3.1.10.1.31 WaitListEntry (Class)

This class contains values that are placed on a wait list to allow prioritized fulfillment of requests for ports.

3.1.10.2 OnlyModuleClasses (Class Diagram)

This Classes Diagram shows the classes used to serve field communication related objects.

[image: image98.emf]ServiceApplication

«interface»

CHART2Service

ServiceApplicationModule

«interface»

FieldCommunicationsModulePkg

1 *

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

main(string[] args):void

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

Figure 96. OnlyModuleClasses (Class Diagram)

3.1.10.2.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in CHART II system.

3.1.10.2.2 FieldCommunicationsModulePkg (Class)

This class is a service application module that can be installed into a CHART2Service. This module serves one PortManager object which provides access to one or more Port objects. It publishes the reference to this PortManager in the CORBA Trader. This class contains a FieldCommunicationsModuleDB object used to provide database access to the other classes within the package.

3.1.10.2.3 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.10.2.4 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.10.3 OnlyPortImpls (Class Diagram)

This Class Diagram shows the various Port implementation classes related to field communications.

[image: image99.emf]javax.comm.SerialPort

DirectPortImpl

ModemPortImpl

Port

«interface»

InstallablePort

«interface»

DataPort

«interface»

ModemPort

«interface»

DirectPort

«interface»

VoicePort

«interface»

PushEventSupplier

VoicePortImpl

1 1

1

1

1

1

1

1

open():void

close():void

isOpen():boolean

&setConfig(byte[] id, String m_name, int inactivityTimeMillis,

 org.omg.PortableServer.Servant, String commPortName):void

String m_name;

int m_inactivityTimeMillis;

int m_lastUseTime;

javax.comm.CommPortIdentifier m_portIdentifier;

byte[] m_id;

org.omg.PortableServer.Servant m_servant;

String m_commPortName;

boolean m_marginal;

getServant():org.omg.PortableServer.Servant

String m_modemInitString;

org.omg.PortableServer.Servant m_servant;

getStatus():PortStatus

disconnect():void

init(PortConfig config, long inactivityTime) :void

isInactive():boolean

shutdown():boolean

getServant():org.omg.PortableServer.Servant

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis,

 long maxReadDurationMillis):byte[]

connect(CommPortConfig config,

 String phoneNo):void

connect(CommPortConfig config):void

connect(String phoneNo):void

playDTMFTones(String dtmfCodes,

 boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

getServant():org.omg.PortableServer.Servant

isOpen():boolean

-dial(String phoneNo):int

-hangup():int

String m_name

byte[] m_id

org.omg.PortableServer.Servant m_servant

Figure 97. OnlyPortImpls (Class Diagram)

3.1.10.3.1 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.10.3.2 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The connect call needs only to open the communications port.

3.1.10.3.3 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL. Its connect method opens a javax.comm.SerialPort object and sets the port settings according to the baud, data bits, stop bits, and parity that was passed. Its disconnect method closes the javax.comm.SerialPort. This class also implements the send and receive functions as specified in the DataPort IDL interface. The send and receive methods use the read and write methods of the javax.comm.SerialPort object to send and receive bytes on the com port. While the send method contains little processing other than calling the javax.comm.SerialPort object's write method, the receive method contains logic that allows it to receive a burst of bytes before returning. This causes the receive method to return all available bytes on the port and thus helps to prevent the need for multiple calls to receive for a single command response. This class updates a timestamp each time send or receive is called. When its isInactive() method is called, it checks the current time vs. the last send/receive time and if the difference is greater than the current inactivity timeout, it returns true.

3.1.10.3.4 InstallablePort (Class)

This interface is implemented by Port implementations that can be installed into the FieldCommunicationsModule and PortManager generically. The PortManagerImpl instantiates the specific impl using the class name that is part of a port's configuration data. The PortManager then calls each port's init method to allow each port to initialize its internal state. The PortManagerImpl's use of this interface allows it to manage all types of ports (current and future) in a generic way.

3.1.10.3.5 javax.comm.SerialPort (Class)

This class provides access to a computer's serial port. It allows the port to be opened and closed and allows data to be sent and received.

3.1.10.3.6 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN and POTS modems can be implemented under this interface.

3.1.10.3.7 ModemPortImpl (Class)

This class implements the ModemPort interface as defined in IDL. The ModemPortImpl's connect method calls its base class connect method which opens a communications port. The connect method then goes on to initialize and dial the modem and determine if the modem has connected to a remote modem. The disconnect method interrupts the modem, hangs up the modem, and calls the base class disconnect method which closes the com port. This class inherits its base class (DirectPortImpl) send and receive methods which send and receive data over the connected modem.

3.1.10.3.8 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All ports must be able to supply their status when requested.

3.1.10.3.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.10.3.10 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.10.3.11 VoicePortImpl (Class)

This class implements the VoicePort interface as defined in IDL. The VoicePortImpl's connect method acquires a port from the telephony board, dials the destination number to connect the call. The disconnect method hangs up, sets the telephone line connection on hook and releases the port being used. This class also implements the recordWAV method to record a message being on a connected call and playWAV method to play a message on the connected call. It also implements the playDTMF method to generate DTMF tones.

Sequence Diagrams

3.1.10.4 DirectPortImpl:close (Sequence Diagram)

A DirectPortImpl processes a close request by delegating the call to the javax.comm.SerialPort object and then setting associated member variables to null.

[image: image100.emf]DirectPortImpl

DirectPortImpl

or

ModemPortImpl

javax.comm.SerialPort

"set comm port, input,

and output stream

member variables to null"

close

close

Figure 98. DirectPortImpl:close (Sequence Diagram)

3.1.10.5 DirectPortImpl:Connect (Sequence Diagram)

The DirectPortImpl processes a connect request by first calling its open method (See DirectPortImpl:open) and then setting the serial port settings according to the parameters passed by the caller.

[image: image101.emf]DirectPortImpl.m_marginal

is set to true if there is

any failure during connect.

If there is no failure it is set

to false.

javax.comm.SerialPort DirectPortImpl

ORB

[failure opening port]

OpenPortFailure

[unsupported comm params]

ConnectFailure

m_marginal = false

setFlowControlMode

setSerialPortParams

connect

open

Figure 99. DirectPortImpl:Connect (Sequence Diagram)

3.1.10.6 DirectPortImpl:disconnect (Sequence Diagram)

The DirectPortImpl processes the disconnect request by calling its own close method. If disconnect is called on a port that is already disconnected, the method simply returns fast and no exception is thrown.

[image: image102.emf]DirectPortImpl

ORB

close

[not connected]

disconnect

Figure 100. DirectPortImpl:disconnect (Sequence Diagram)

3.1.10.7 DirectPortImpl:init (Sequence Diagram)

When a DirectPortImpl is initialized by the PortManagerImpl, it retrieves information specific to this port type from the database, which in this case is only the com port name this object provides access to. A CommPortIdentifier is retrieved using the specified com port name. If the com port name given is not an existing serial port on the machine where the DirectPortImpl is running, an exception is thrown.

[image: image103.emf]PortManagerImpl

FieldCommunicationsModuleDB DirectPortImpl javax.comm.CommPortIdentifier

The port manager generically instantiates a

object of type InstallablePort and

calls the init method on the InstallablePort. This

diagram shows the processing required for

a DirectPortImpl that is an InstallblePort.

[db error]

CHART2Exception

getDirectPortConfig

getPortIdentifier

init

CommPortIdentifier

config data

[invalid port name]

CHART2Exception

Figure 101. DirectPortImpl:init (Sequence Diagram)

3.1.10.8 DirectPortImpl:open (Sequence Diagram)

When a DirectPortImpl's open method is called, it retrieves an instance of a javax.comm.SerialPort from the CommPortIdentifier that was created during initialization. After the SerialPort object is retrieved, its input and output streams are retrieved for later use during send and receive operations. The DirectPortImpl adds itself as an EventListener on the SerialPort and enables events that signify data is available on the port. This asynchronous notification of data being available is used in the receive method's processing. If the port is in use by another application, this method throws a PortOpenFailure exception.

[image: image104.emf]javax.comm.SerialPort javax.comm.CommPortIdentifier DirectPortImpl

DirectPortImpl

or

ModemPortImpl

addEventListener

getOutputStream

notifyOnDataAvailable(true)

getInputStream

[port in use by

another app]

PortOpenFailure

open

open

Figure 102. DirectPortImpl:open (Sequence Diagram)

3.1.10.9 DirectPortImpl:receive (Sequence Diagram)

The DirectPortImpl receive method is customized for use with command / response devices by returning all bytes in a response burst in a single call to receive. Two timeouts are specified by the caller, the time to wait for the first byte to arrive and the maximum time to wait to determine that a complete burst of bytes has been received. Using this mechanism, in most cases a single call to this receive method will return the complete device response. In the unlikely event that the entire device response is not received in a single call to receive(), the caller can call receive again to get the remainder of the packet. (Protocol handlers are coded to handle this condition should it arise).

[image: image105.emf]If bytes are initially

available, we skip

down to the inter-

character wait.

DirectPortImpl

ORB

The user passes two timeout values

namely the initial timeout and the inter-character

timeout. The initial timeout is the amount of time

to wait for at least one byte of data to become

available. The inter-character timeout is the

amount of time to wait for subsequent read

to fetch whatever data becomes available

javax.comm.SerialPort java.io.InputStream

[IOError]

m_marginal = false

[IO Error]

IOException

read

available

wait(inter-char timeout)

available

[more data became available]

notify

notify

[more data becomes available after initial check]

serialEvent(DATA_AVAILABLE)

[no bytes available]

new byte[0]

available

serialEvent (DATA_AVAILABLE)

[no bytes available]

wait(initial timeout)

receive

byte[]

Figure 103. DirectPortImpl:receive (Sequence Diagram)

3.1.10.10 DirectPortImpl:Send (Sequence Diagram)

The DirectPortImpl processes a send request by delegating the request to the output stream of the javax.comm.Serial port object. If a java.io.IOException is thrown by the output stream, the exception is caught and re-thrown as a CORBA exception.

[image: image106.emf]java.io.OutputStream DirectPortImpl

ORB

send

[IO Error]

IOException

write

[IO Error]

m_marginal = true

[not connected]

IOException

Figure 104. DirectPortImpl:Send (Sequence Diagram)

3.1.10.11 DirectPortImpl:shutdown (Sequence Diagram)

When a DataPortImpl object is shutdown by the PortManagerImpl, the DataPortImpl closes itself if it is currently open.

[image: image107.emf]DataPortImpl

PortManagerImpl

shutdown

[if isOpen()]

close

Figure 105. DirectPortImpl:shutdown (Sequence Diagram)

3.1.10.12 FieldCommunicationsModulePkg:initialize (Sequence Diagram)

When the FieldCommunicationsModule is initialized from the Chart2Service, it obtains objects it will need during processing from the Chart2Service via the ServiceApplication interface. The FieldCommunicationsModule constructs a single PortManagerImpl object. The PortManagerImpl creates four Hashtables: three to manage ports and one to manage port requests that are waiting for a port to free up. Each hash table contains a number of vectors, one for each type of port that is being managed by the PortManagerImpl. These Vectors are added as the first port of a given type is encountered, thus after initialization, each Hashtable contains one vector for each type of port being managed by this particular instance of the PortManagerImpl. All synchronization done by the PortManagerImpl is done using the freeList Vector for the specific type of port that is being dealt with, thus getPort() and releasePort() calls for one port type do not synchronize with getPort and releasePort() calls for other port types. The synchronization on the freeList is used to synchronize access to all the other lists, including the wait list, because the getPort() and release() port operations typically manipulate more than one list during their processing. The PortManagerImpl creates a Timer to be used to periodically wake the PortManagerImpl and have it check its inUseList for inactive ports. After the PortManagerImpl has been created the FieldCommunicationsModule activates the object on the persistent POA to keep the object reference for the PortManager consistent across multiple object / server life times. The FieldCommunicationsModule uses the ServiceApplication interface's registerObject method to publish the object in the Trader and to take care of withdrawal from the trader when necessary.

[image: image108.emf]PushEventSupplier

java.util.Hashtable

m_freeList

POA

(persistent) ServiceApplication

FieldCommunications

ModuleDB FieldCommunicationsModule

PortManagerImpl

Chart2Service

java.util.Hashtable

java.util.Vector

freeList

java.lang.Class

InstallablePort

FieldCommunicationsProperties

PortReclaimer

java.util.Timer

java.util.Vector

waitList

java.util.Vector

marginalList

java.util.Vector

inUseList

java.util.Hashtable

m_waitList

java.util.Hashtable

m_marginalList

java.util.Hashtable

m_inUseList

getDBConnectionManager

initialize

registerObject

activate_object_with_id

create

create

[init failed]

"log error, next iteration"

get

create

getPOA (PERSISTENT_POA_NAME)

schedule

create

create

add

[first time port of this type was encountered]

put

[first time port of this type was encountered]

create

[first time port of this type was encountered]

put

[first time port of this type was encountered]

create

getProperty (PortReclaimerInterval)

getProperty (DefaultInactivityTimeout)

create

[no ports found]

CHART2Exception

create

registerObject(PushEventSupplier)

activate_object(PushEventSupplier)

getPorts

[*for each

port in port config]

getORB

[first time port of this type was encountered]

put

[first time port of this type was encountered]

create

[first time port of this type was encountered]

put

create

init

[no entry for this type in free list hash table - first time port type was encountered]

create

create

create

newInstance

forName

[no ports found]

failure

Figure 106. FieldCommunicationsModulePkg:initialize (Sequence Diagram)

3.1.10.13 FieldCommunicationsModulePkg:Shutdown (Sequence Diagram)

When the FieldCommunicationsModule is shutdown by the Chart2Service it cancels the timer used to periodically run the ReclaimPorts task. Each list for each port type is then emptied, shutting down each port object that exists. The ports that are in the inUse list are deactivated from the POA prior to being shutdown. The port's shutdown method takes care of disconnecting any port that is currently connected.

[image: image109.emf]PortManagerImpl

FieldCommunications

Module

Chart2Service

POA

(root) InstallablePort

java.util.Vector

freeList

java.util.Hashtable

m_freeList java.util.Timer

java.util.Hashtable

m_waitList

POA

(persistent)

java.util.Vector

marginalList

java.util.Hashtable

m_marginalList

java.util.Vector

inUseList

java.util.Hashtable

m_inUseList

[while

inUseList

not empty]

deactivate_object

getServant

remove(0)

get

deactivate_object

shutdown

shutdown

shutdown

get

[while

marginal

List

not empty

shutdown

remove

cancel

[*for each key]

synchronized

get

keys

clear

[while

freeList

not empty]

shutdown

remove(0)

deactivate_object(PushEventSupplier)

Figure 107. FieldCommunicationsModulePkg:Shutdown (Sequence Diagram)

3.1.10.14 ModemPortImpl:Connect (Sequence Diagram)

A ModemPortImpl processes a connect request by first calling its base class (DirectPortImpl) connect method. This opens the communications port and readies it for send and receive calls. The ModemPortImpl then calls the base class send and receive methods to send modem commands to the modem, first to initialize the modem and then to dial the modem. The ModemPortImpl parses the modem responses and passes a detailed exception should any problems occur.

[image: image110.emf]When receiving a response for the

dial command, the timeout for receive

is set to take into account the connection

time between originating and answering

modems.

ModemPortImpl

ORB

This DirectPortImpl is the ModemPortImpl's

base class. This is really a single object

instance but is shown separately to illustrate

the base class processing that is being used.

ModemPortImpl calls its base

class connect method.

DirectPortImpl

receive

(receive the modem response)

receive

(Recv the modem response)

send

(Send the modem init command)

[no response from modem]

ModemNotResponding

send

(Send the dial command)

[modem responded with

other than "OK" or "0"]

ModemInitFailure

[modem did not respond

with CONNECT]

ModemConnectFailure

[no response from modem]

ModemNotResponding

[no response from modem OR invalid response]

m_marginal = true

[no response from modem or invalid response]

m_marginal = true

m_marginal = false

[success]

[failure setting port options]

ConnectFailure

connect

byte[]

[failure]

IOException

[failure]

IOException

byte[]

[failure]

IOException

[failure]

IOException

[failure opening port]

OpenPortFailure

super.connect

Figure 108. ModemPortImpl:Connect (Sequence Diagram)

3.1.10.15 ModemPortImpl:disconnect (Sequence Diagram)

When the ModemPortImpl processes a disconnect request, it uses its base class (DirectPortImpl) send and receive methods to command the modem to hang up. Before issuing the hangup command the +++ command must be issued to the modem to put the modem back into command mode. One second of inactivity must exist prior to and after the +++ command to interrupt the modem. After hanging up the modem, the ModemPortImpl calls the base class close method to close the serial port.

[image: image111.emf]If modem does not respond

to the ATH command,

ModemPortImpl.m_marginal is

set to true.

This DirectPortImpl is the ModemPortImpl's

base class. This is really a single object

instance but is shown separately to illustrate

the base class processing that is being used.

Specify an initial receive

timeout of 1.5 seconds

because the +++ command

requires 1 second of inactivity

prior to and following the command

to cause a modem interrupt.

DirectPortImpl ModemPortImpl

ORB

A best effort is made

to interrupt the modem

and issue a hang up

command. If any failures

are received (IOException,

No response from modem,

or a non-OK response from

modem, the error condition

is temporarily buffered

until after the port is closed,

at which time the error conditions

are returned to the caller as

a warning.

byte[]

Thread.sleep(1000)

close

[not connected]

isOpen

receive

(Recv the modem response)

send

(Send the modem +++ command)

"check for OK response"

[success]

"check for OK response"

disconnect

[Errors from above]

DisconnectException

byte[]

receive

(receive the modem response)

send

(Send the modem ATH command)

Figure 109. ModemPortImpl:disconnect (Sequence Diagram)

3.1.10.16 ModemPortImpl:init (Sequence Diagram)

When a ModemPortImpl is initialized by the PortManagerImpl it reads its specific configuration data from the database, which includes the com port name and the default modem init string. Because most configuration values exist in the base class and the base class provides methods that use these values, the base class setConfig method is called to store the configuration values in the base class. NOTE - the normal way of doing this would be to call the base class constructor during construction, however because the InstallablePorts are instantiated generically by the PortManagerImpl, the constructors are not afforded the opportunity to take varying arguments.

[image: image112.emf]FieldCommunicationsModuleDB ModemPortImpl

PortManagerImpl

javax.comm.CommPortIdentifier

The port manager generically instantiates a

object of type InstallablePort and

calls the init method on the InstallablePort. This

diagram shows the processing required for

a ModemPort that is an InstallblePort.

The base class setConfig

method is called to store

the configuration values

that are common between

DirectPortImpl and ModemPortImpl

init

super.setConfig

[db error]

CHART2Exception

getModemPortConfig

[port does not exist]

CHART2Exception

getPortIdentifier

"Store the default

modem init string"

Figure 110. ModemPortImpl:init (Sequence Diagram)

ModemPortImpl:shutdown (Sequence Diagram)

When a ModemPortImpl is shutdown by the PortManagerImpl, it disconnects if it is currently connected.

[image: image113.emf]DirectPortImpl ModemPortImpl

PortManagerImpl

[is connected]

disconnect

isOpen

shutdown

Figure 111. ModemPortImpl:shutdown (Sequence Diagram)

3.1.10.17 PortManagerImpl:getPort (Sequence Diagram)

When a request to get a port is received by the PortManagerImpl, it retrieves an available port (see PortManagerImpl:retrieveAvailablePort), activates it with the POA to make it available for CORBA calls, and returns the Port to the requester. In the event that a port is not available, getPort method creates a WaitList entry and inserts the entry into the wait list based on the priority of the request, using an insertion sort to keep the list ordered by order of decreasing priority and a secondary ordering of fifo based on the time added to the list. After adding an entry to the wait list, the getPort method waits on the entry's monitor for the releasePort method to notify it that a port has been handed off. If not notified within the timeout specified by the requester, the getPort method marks its wait list entry as abandoned and returns an exception to the requester.

[image: image114.emf]POA

java.util.Hashtable

m_freeList

java.util.Vector

inUseList

java.util.Hashtable

m_inUseList

ORB

PortManagerImpl

java.util.Vector

freeList InstallablePort

This loop is used to

find the insertion point

for the entry based on

priority. We insert above

the first entry found with

a lower priority.

WaitListEntry

java.util.Vector

waitList

java.util.Hashtable

m_waitList

"end synchronization"

[error activating object]

CHART2Exception

[port retrieved and error activating object]

add

[port not available]

add

[entry's port is null]

wait

synchronized

"end synchronization"

"end synchronization"

[port retrieved]

add

[no free list for given port type]

NoPortsFound

getPort

[entry's port is null]

"mark as abandoned wait"

[port retrieved]

get

synchronized

[port retrievedl]

Port

[port retrieved]

activate_object

[port not available]

[*while more entries

AND curr entry's priority >

new entry's priority]

[entry's port is null]

GetPortTimeout

 >=

[port not available]

get

retrieveAvailablePort

[port not available]

get

[port not available]

create

synchronized

get

[port retrievedl]

getServant

Figure 112. PortManagerImpl:getPort (Sequence Diagram)

3.1.10.18 PortManagerImpl:GetPortsStatus (Sequence Diagram)

When a request to get status of all Ports is received by the PortManagerImpl, it collects all the port status data and returns it to the caller. Subsequently, when port status changes a PortStatusChanged event is pushed using the CORBA Event Service to notify listeners of the new status.

[image: image115.emf]GUI

PortManagerImpl CosTrading.Lookup

CosEvent.PushConsumer

At startup, references to all

PortManager objects in the

system are obtained from

the CORBA trading service.

Initial status of all Ports

is obtained by calling the

PortManager method.

A Port notifies other objects

of Port status changes by

pushing events through

the CORBA event service

Port

GUI

[status changed]

push(PortStatusInfo)

push(PortStatusInfo)

PortManagerList

query("PortManager")

PortStatusInfo list

create

getPortsStatus

Figure 113. PortManagerImpl:GetPortsStatus (Sequence Diagram)

3.1.10.19 PortManagerImpl:ReclaimPorts (Sequence Diagram)

The PortManagerImpl contains a Timer that periodically calls the PortManagerImpl's reclaimPorts method. The PortManagerImpl checks each port in its inUseList to see if it meets its own criteria for being deemed inactive. If a port is found to be inactive, it is deactivated from the POA, preventing any further calls to the port by its current user. The inactive port is then removed from the inUseList and returned to the freeList.

[image: image116.emf]Port decides if it is inactive

based on inactivity timeout passed

during initialization, the time of last

activity, and the current time.

POA InstallablePort PortManagerImpl PortReclaimer

java.util.Timer

java.util.Vector

freeList

java.util.Hashtable

m_freeList

gets inUse vector

for port type indicated

by the key.

java.util.Vector

inUseList

java.util.Hashtable

m_inUseList

keys

[port inactive]

disconnect

[port inactive and not relinquished]

add

reclaimPorts

run

isInactive

[*while key enumeration

hasMoreElements]

[port inactive]

deactivate_object

"end synchronization"

[*while more elements

in InUse Vector]

get

get

[port inactive]

remove

synchronized

get

[port inactive]

getID

[port inactive]

relinquishPort

Figure 114. PortManagerImpl:ReclaimPorts (Sequence Diagram)

3.1.10.20 PortManagerImpl:ReleasePort (Sequence Diagram)

When a Port is released, the PortManagerImpl finds the port in its inUseList, disconnects the port and deactivates the object from the POA. The private relinquishPort method is called to hand off the port to the highest priority requester of the given port type. If there was no one waiting for the port, the port is removed from the inUseList and returned to the freeList. See the PortManagerImpl:reqlinquishPort sequence diagram for details on the hand off process.

[image: image117.emf]get vector from

hashtable using key

from enumeration. Keys

represent port types.

Search for port based

on ID.

java.util.Vector

inUseList

java.util.Hashtable

m_inUseList PortManagerImpl

ORB

java.util.Vector

freeList

java.util.Hashtable

m_freeList InstallablePort Port POA

Free list Vector for

the given port type is

used for synchronization

among operations for the

port type.

[*while more items

in Vector and

not found]

keys

[port not relinquished to a waiting thread]

add

[*while key enumeration

hasMoreElements and

port not found]

[found]

remove

"end synchronization"

[port not found]

CHART2Exception

[found]

deactivate_object

[found]

disconnect

get

get

get

getID

releasePort

synchronized

[found]

getID

[found]

relinquishPort

Figure 115. PortManagerImpl:ReleasePort (Sequence Diagram)

3.1.10.21 PortManagerImpl:RelinquishPort (Sequence Diagram)

The PortManagerImpl relinquishPort method is a private helper method used to "hand off" a releasedPort to the top priority waiter (if any). The port is passed to the waiter through the WaitListEntry object that the waiter placed on the wait list. It is possible that a waiter put an entry on the wait list and then timed out. When this occurs the waiter marks the entry as abandoned. When the relinquishPort method encounters such entries, it simply removes them from the wait list and attempts to give the port to the next waiter in the list.

[image: image118.emf]The Wait list entries

Vector is sorted on

priority in descending

order. The first element

in the vector is the most

qualified entry to be

notified of an available

port, provided it has not

been abandoned.

WaitListEntry

java.util.Hashtable

m_waitList

java.util.Vector

waitList PortManagerImpl

PortManagerImpl

remove(0)

[entry not notified]

false

[*while there are

more entries]

relinquishPort

"end synchronization"

get

[not abandoned]

notify

[not abandoned]

setPort

isAbandoned

synchronized

true

[not abandoned]

"break loop"

Figure 116. PortManagerImpl:RelinquishPort (Sequence Diagram)

3.1.10.22 PortManagerImpl:retrieveAvailablePort (Sequence Diagram)

The PortManagerImpl's retrieveAvailablePort method is a private helper method that manages removing a port from the free or marginal list, placing it in the inUseList, and returning the port. While searching for a port in the free list, any ports encountered that do not have a status of OK are moved to the end of the marginal list. Ports in the marginal list are only retrieved if a port is not available in the free list.

[image: image119.emf]java.util.Vector

inUseList

java.util.Vector

marginalList

java.util.Hashtable

m_inUseList

java.util.Hashtable

m_marginalList InstallablePort

PortManagerImpl

PortManagerImpl

java.util.Vector

freeList

java.util.Hashtable

m_freeList

[port not found in

free or marginal vector]

null

[port retrieved from

free or marginal vector]

InstallablePort

size

[port not found in free list]

get

[port marginal]

remove

[port marginal]

get

[port marginal]

add

retrieveAvailablePort

get

getStatus

get

[*While more elements

in free list and OK

port not found]

[at least one element in marginal vector]

remove(0)

Figure 117. PortManagerImpl:retrieveAvailablePort (Sequence Diagram)

3.1.10.23 VoicePortImpl:Connect (Sequence Diagram)

When a request is received to connect a call by the VoicePort object, it calls the dialogic api to dial and connect the call given a telephone number.

[image: image120.emf]VoicePortImpl

ORB

At this point VoicePort calls

the dialogic api to connect

the call.

"dial"

connect

[failure]

VoicePortConnectFailure

Figure 118. VoicePortImpl:Connect (Sequence Diagram)

3.1.10.24 VoicePortImpl:Disconnect (Sequence Diagram)

A VoicePortImpl processes the disconnect call by calling the dialogic api to hangup the call and returns.

[image: image121.emf]ORB

hangup

[false]

isOpen

disconnect

At this point VoicePort

will call Dialogic api

to hangup.

VoicePortImpl

Figure 119. VoicePortImpl:Disconnect (Sequence Diagram)

3.1.10.25 VoicePortImpl:init (Sequence Diagram)

When a VoicePortImpl is initialized by the PortManagerImpl it reads its specific configuration data from the database, which includes the voice port name.

[image: image122.emf]VoicePortImpl FieldCommunicationsModuleDB

This will set the channel

config such as IO settings,

audio data formats for

recording and playing etc.

PortManagerImpl

[port does not exist]

CHART2Exception

[db error]

CHART2Exception

init

getVoicePortConfig

"Set Config"

Figure 120. VoicePortImpl:init (Sequence Diagram)

3.1.10.26 VoicePortImpl:shutdown (Sequence Diagram)

When a VoicePortImpl is shutdown by the PortManagerImpl, it disconnects if it is currently connected.

[image: image123.emf]VoicePortImpl

PortManagerImpl

shutdown

isOpen

[is connected]

disconnect

Figure 121. VoicePortImpl:shutdown (Sequence Diagram)

HARControlModule

3.1.11 Classes

3.1.11.1 HARControlModule (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR) devices in the Chart II system. Details are only shown for classes that exist specifically for HAR control. Auxiliary classes used from other various utility or system interface packages are shown by name only.

[image: image124.emf]2 VoicePortLocators -

one for control

port, one for monitor port.

SyncCommandStatus

SlotClipFileData

ArbQueueEntry

HARRecoveryTimerTask

2 CommandQueues -

1 for MonitorBraodcast,

1 for everything else.

SharedResourceManager

«interface»

HARFactory

«interface»

HARData

«type»

SharedResource

«interface»

HAR

«interface»

AudioPushConsumer

«interface»

WavFileWriter

NoSpaceAvailableException

«exception»

java.util.TimerTask

RefreshDateStampsTask

CheckForAbandonedHARTask

ISSAP55HARProtocolHdlr

ArbitrationQueue

«interface»

HARSlotManager

CommandQueue

AudioClipManager

«interface»

HARMsgNotifierWrapper

HARMessageNotifier

«interface»

QueueableCommand

HARControlDB

PushEventSupplier

ServiceApplication

«interface»

java.util.Timer

HARControlModuleProperties

HARControlModule

ServiceApplicationModule

«interface»

HARImpl

HARFactoryImpl

UniquelyIdentifiable

«interface»

MessageQueue

CommEnabled

«interface»

GeoLocatable

«interface»

HARConfiguration

«typedef»

HARStatus

«typedef»

DBConnectionManager

ReadWriteLock

CommandStatus

«interface»

VoicePortLocator

VoicePort

«interface»

HAR holds

VoicePort

temporarily

while

communicating

with device.

NotifierTfcEvtList

«typedef»

1

1

1

1

1

*

*

1

1

*

1

1

1

1

1 1

*

1

1

*

1

1

1

1

0..1

0..1

0..1

0..1

1 *

1

*

1

0..1 waits for SHAZAM

cmds to complete

using

1

1

1

1

1

1

1

*

1

*

*

1

1 1

1

1

1

1

1

1

1

*

*

1

1

1

*

1

1

1

1

1

1

*

1

* marks SHAZAM

cmds complete with

1

1

ReadWriteLock m_rwLock

POA m_poa

HARSlotNumber m_slot

HARMessageClip m_clip

HARSlotUsageIndicator m_usage

String m_fileName

getTimeDown()

HARFactoryImpl m_factory

long m_interMessageSpacing

boolean m_shouldBeReevaluated

HARMessageNotifierIDList m_NotifiersCurrentlyActive

ArbQueueEntry[] m_activeEntries

long m_lastDateStampUpdateTime

WavFileWriter(HARMessageClip clip,

 String filename)

go(): void

HARMessageClip m_clip

FileOutputStream m_file

String reason

HARFactoryImpl m_factory

HARFactoryImpl m_factory

prepareWavFile(SlotClipFileData) : SlotClipFileData

prepareImmedWavFiles(HARMessage, CommandStatus): SlotClipFileData[]

prepareAllWavFiles(CommandStatus): SlotClipFileData[]

collectWavFiles(SlotClipFileData[], CommandStatus): SlotClipFileData[]

store(Port, SlotClipFileData, CommandStatus): void

storeImmedMsg(Port, HARMessage, CommandStatus):void

remove(Port, long slot):void

removeImmedMsg(Port):void

restoreAll(Port, SlotClipFileData[]): void

getCurrentUsage():HARSlotDataList

getSecsAvailImmediate() : int

getSecsAvailForPrestore() : int

isUsingClip(Identifier audioClipID)(): boolean

deregisterAllClips(): void

int m_totalSecsOnHAR;

int m_secsUsedPreStore;

int m_secsUsedImmediate;

int m_firstImmediateSlotNumber;

int m_lastSlotNumber;

HARMsgNotifierWrapper(byte[] ID)

getID():byte[]

putInMaintenanceMode():void

takeOffline():void

isHARNoticeActive():boolean

activateHARNotice(AccessToken,

 TrafficEvent,

 CommandStatus):void

deactivateHARNotice(AccessToken,

 TrafficEvent,

 CommandStatus):void

-getRefFromTrader():HARMessageNotifier

byte[] m_notifierID

HARMessageNotifier m_notifier

HARControlDB(db)

getObjects():HARImpl[]

getConfiguration(AccessToken):Chart2HARConfiguration

getStatus(Identifier):Chart2HARStatus

insertHAR(Chart2HARConfiguration):void

removeHAR(harID):void

setConfiguration(Identifier, Chart2HARConfiguration):void

setStatus(Identifier, Chart2HARStatus):void

DBConnectionMgr m_db

getDateStampRefreshTimeOfDay():string

getFirstImmediateSlotNumber(): int

getHARRuntimeSafetyMarginSecs():int

getMaxMsgRunTimeSecs(): int

getPollPortWaitTimeSecs(): int

getPollTimerDelaySecs(): int

getRecoveryPeriodMins(): int

getRecoveryTimerDelaySecs(): int

getSharedResMonIntSecs():int

getSHAZAMActivateTimeoutSecs():int

getSHAZAMDeactivateTimeoutSecs():int

getSHAZAMOfflineTimeoutSecs(): int

getSHAZAMOnlineTimeoutSecs(): int

getSHAZAMMaintTimeoutSecs(): int

getTotalCombinedMsgRunTime(): int

getHARFactoryID():Identifier

getDictionary():Dictionary

-registerTraderTypes():void

blankImpl(AccessToken, boolean mode, CommandStatus) : void

checkDateTimeFields() : void

checkRecoveryTime(int timeDown): boolean

monitorSlotImpl(AccessToken, long seconds, long slot,

 AudioPushConsumer, CommandStatus): void

putInMaintModeImpl(AccessToken, CommandStatus) : void

putInMaintModeWithSHAZAMsImpl(AccessToken, CommandStatus,

 HARMessageNotifierList): void

putOfflineImpl(AccessToken, CommandStatus) : void

setConfigurationImpl(AccessToken, HARConfiguration,

 CommandStatus) : void

setMessageImpl(AccessToken, HARMessage, boolean mode,

 CommandStatus, HARMessageNotifierList,

 ArbQueueEntryList, HARSetMsgCmd) : void

setOneUpNum(long oneUpNumber): void

setTransmitterState(boolean desiredState): void

takeOfflineImpl(AccessToken, CommandStatus) : void

-activateNotifiersMaint(HARMessageNotifierIDList): void

-activateNotifiersOnline(NotifierTfcEvtList[]): void

-deactivateNotifiersMaint(HARMessageNotifierIDList): void

-deactivateNotifiersOnline(NotifierTfcEvtList[]): void

-evaluateQueue(): void

-fmsGetConnectedPort(boolean pgm, CommandStatus): ConnectedPortInfo

-fmsReleasePort(ConnectedPortInfo, boolean pgm): void

-handleMaintNotifierActivation(MsgNotifier[]): void

-handleMaintNotifierDeactivation(MsgNotifier[]): void

-handleOnlineNotifierActivation(MsgNotifier[], TfcEvt[]):void

-handleOnlineNotifierDeactivation(MsgNotifier[], TfcEvt[]):void

-handleOpStatus(OperationalStatus, CommandStatus,

 boolean complete): boolean

-modifyNotifiers(NotifierTfcEvList[]): void

-removalCleanupImpl(): void

-requestFailed(ArbQueueEntry[] newEntries, boolean oldMsgStillUp): void

-requestSucceeded(ArbQueueEntry[] newEntries): void

-setupHAR(Port, CommandStatus) : boolean

-verifyNoResourceConflict(AccessToken, CommandStatus): void

ArbQueueEntry[] m_activeEntries

boolean m_recoveryMode

boolean m_updateDateTimeFailed

QueueableCommand m_lastQueuedSetMsgCmd

checkForAbandonedHAR(): void

removeHAR(Identifier id):void

shutdown():void

checkForAbandonedResources():void

checkDateTimeFieldUpdates():void

checkHARRecovery(): void

getFirstImmediateSlotNumber(): int

getHARRuntimeSafetyMarginSecs():int

getMaxMsgRunTimeSecs(): int

getPollPortWaitTimeSecs(): int

getRecoveryPeriodMins(): int

getSHAZAMActivateTimeoutSecs():int

getSHAZAMDeactivateTimeoutSecs():int

getSHAZAMOfflineTimeoutSecs(): int

getSHAZAMOnlineTimeoutSecs(): int

getSHAZAMMaintTimeoutSecs(): int

getTotalCombinedMsgRunTime(): int

java.lang.Vector m_harList;

Identifier m_notifierID

ArbQueueEntryIndicator m_primeEntry

HashSet m_tfcEvts

Figure 122. HARControlModule (Class Diagram)

3.1.11.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.1.11.1.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

3.1.11.1.3 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

3.1.11.1.4 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.11.1.5 CheckForAbandonedHARTask (Class)

This class is a timer task that is executed periodically by a timer. When the run method in this class is called, it calls the HARFactoryImpl's checkForAbandonedResources() method, which causes the factory to evaluate each HAR in the factory and issue an abandoned resource event for any HARs which have a controlling op center with no users logged in.

3.1.11.1.6 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.11.1.7 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.11.1.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.1.11.1.9 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.11.1.10 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.11.1.11 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler. This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

3.1.11.1.12 HARConfiguration (Class)

This class (struct) contains configuration data for a HAR device. It is used to transmit current configuration data from the HAR to the client, and to transmit proposed new configuration data from the client to the HAR. It is also used internally by the HARService to maintain its configuration in memory, and is used to transmit configuration data to/from the HAR to the HARControlDB database interface class.

3.1.11.1.13 HARControlDB (Class)

This class contains all the database interaction for the HARControlModule. This class provides the ability to retrieve all HAR information on initialization, update of the configuration and status information, and insert or remove a HAR device from the system.

3.1.11.1.14 HARControlModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for publishing HAR objects and the HARFactory object within a service application. This class is the controlling class for the HAR module, providing for the initialization and overall operation of the module. This class creates and starts the timer tasks necessary for refreshing datestamps on the HAR, checking for abandoned shared resources, and recovery processing.

3.1.11.1.15 HARControlModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by objects within the HARControlModule for the current instance of the application. These settings are read during the module initialization. The module must be restarted to apply any changes made to the properties file.

3.1.11.1.16 HARData (Class)

This class is used to store and persist data pertaining to a HAR which is not part of the HARStatus (i.e., not transmitted to clients in status updates or at any other time).

3.1.11.1.17 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR objects under the domain of the specific HARFactory object.

3.1.11.1.18 HARFactoryImpl (Class)

This class implements the HARFactory interface as defined by the IDL specified in the System Interfaces section. This class maintains the HAR objects served by this HAR service.

3.1.11.1.19 HARImpl (Class)

This class implements HAR as defined by IDL specified in the System Interfaces section. Since there is only one model of HAR currently envisioned for CHART II, this HARImpl class is implementing the ISS AP55 HAR specifically.

3.1.11.1.20 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message.

3.1.11.1.21 HARMsgNotifierWrapper (Class)

This wrapper class is used to wrap HAR message notifiers associated with a HAR. This class handles finding the reference of the notifier object given only the object's ID. The object discovery is done at the point of first use or if a currently held reference produces a CORBA failure when used.

3.1.11.1.22 HARRecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process. During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called. This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the HARService last went down, an essential piece of information for recovery during HARService startup. When the HARService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkHARRecovery) which requests all HAR objects to check and see if their recovery period has expired. (The recovery period is a system-wide constant, on the order of 10-15 minutes.) Each HAR terminates its recovery period as soon as all its TrafficEvents are resolved, or when the message queue is modified through an addEntry or changePriority call, or, if neither of those cases happens, at the end of the recovery period timer. (When all HARs have terminated their recovery period, checkHARRecovery is no longer called.)

When each HAR checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its MessageQueue to take one last try at resolving traffic events on its queue, then the HAR makes final a determination as to what message (or blank) belongs on the sign, and it requests the HAR to set its message appropriately (either to the message(s) at the top of the queue, or to the default message, if no messages are queued.

3.1.11.1.23 HARSlotManager (Class)

This class manages the slot usage for the HARImpl. When a clip is to be stored in the HAR controller, this class is called instead of calling the ISSAP55HARProtocolHdlr directly. This class ensures the reserved slot numbers (default header, default trailer, default message, immediate message slots) are not overlaid with other clips stored in the controller. When clips are stored in slots in the controller, this class keeps track of the run time for each and the total run time for the device and provides an error when the storage of a clip exceeds the configured available run time of the device.

This class also manages the condition when multiple slots are needed for the current (immediate) message. This will be true any time multiple messages are combined into one message on the HAR (up to the maximum play time for a combined message). A HAR has many immediate slots available for cases such as this.

3.1.11.1.24 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains other private status data elements which are not elements of this class.)

3.1.11.1.25 ISSAP55HARProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an ISS AP55 HAR device.

3.1.11.1.26 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.11.1.27 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.11.1.28 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.

3.1.11.1.29 NoSpaceAvailableException (Class)

This exception is thrown by the HARSlotManager when there is not enough room in the HAR to store the desired message as requested. This exception is local to the HAR service only. If the exception needs to propagate out to a user (GUI), it is converted to a CHART2Exception first. The distinction is required within the HAR service since a NoSpaceAvailableException is not to be considered a failure of the device or the communications.

3.1.11.1.30 NotifierTfcEvtList (Class)

This class is used to keep track of the relationships between HAR notifiers, and the traffic events which are requesting that they be activated. One traffic event is chosen to be the primary one, and is used as part of the ArbQueueEntryIndicator stored within this class. The m_primeEntry and m_tfcEvents are used as parameters to activate and/or modify the HAR notice on the notifier.

3.1.11.1.31 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.11.1.32 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.1.11.1.33 ReadWriteLock (Class)

This class is typically used to track and control read requests and write requests on a particular object, such as a file. Many threads can simultaneously read from a file, but only one thread can write to a file at a time, and no objects can be reading while the write is in progress. This process allows incoming read requests and write requests, and also requires that each object terminate its read or write request with a read completed or write completed call. This process queues requests which need to blocked pending completion of previously executing requests, allowing multiple reads or one write at a time in the order requested. This class blocks the thread on which a request is made until the earlier incompatible operation(s) are completed and the new request is allowed. Requests can be specified with a timeout, thus alleviating the possibility that a thread which fails to complete its request will not block the other requesting threads indefinitely. This class can also used (and is used) for other purposes within CHART II to track multiple operations of one type and and a single operation of a second type. For instance, The HARControlModule uses this class to track multiple prerequisite operations (the "reads") to conclusion before a final concluding HAR operation (the "write") can be performed.

3.1.11.1.34 RefreshDateStampsTask (Class)

This class is a timer task that is executed periodically by a timer. When executed, the run method of this class calls the HARFactoryImpl's checkDateTimeFieldUpdates(), which in turn calls each HAR in the factory to have it determine if it needs to update any field messages that use datestamp fields. These messages are reconverted to voice, and the datestamp tag, in the format "<DATESTAMP>" is replaced by text words for the day of week, month, and day of month (e.g. "Wednesday, July 14"). The reconverted messages are then queued to be resent to the HAR.

3.1.11.1.35 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.11.1.36 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.11.1.37 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.11.1.38 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.11.1.39 SlotClipFileData (Class)

This class is used to help keep track of and pass around slot data. This class associates a clip with a particular slot and usage, and with a file name which contains its audio (wav) data. The fileName is passed to the ISSAP55ProtocolHdlr to store the wav data in the slot.

3.1.11.1.40 SyncCommandStatus (Class)

A SyncCommandStatus implements the CommandStatus interface and performs a notification when it is completed. It is used by the HAR service to track the activity of HARMessageNotifiers, which may operate asynchronously and provide status later via a CommandStatus.

3.1.11.1.41 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.11.1.42 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.11.1.43 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

3.1.11.1.44 WavFileWriter (Class)

This object is used to stream a HARMessageClip and write the streamed audio .wav data to a .wav file. It is used as a utility by the HARSlotManager to prepare HARMessageClips for download into the HAR (which is accomplished via the ISSAP55HARProtocolHdlr by passing the file name of the .wav file into it).

3.1.11.2 HARQueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for HAR Control. A class exists for each type of command that can be executed asynchronously on a HAR object.

[image: image125.emf]HARRemovalCleanupCmd

HARStoreSlotMsgCmd

HARDeleteSlotMsgCmd

HARSetTransmitterStateCmd

HARMonitorBcastCmd

HARSetupCmd

HARResetCmd

HARSetConfigurationCmd

QueueableCommand

HARPutOnlineCmd

HARPutInMaintModeCmd

HARTakeOfflineCmd HARSetMsgCmd

HARBlankCmd

HARRefreshDateStampCmd

HARMonitorSlotCmd

HAR m_har

CommandStatus m_cmdStat

byte[] token

HAR m_har

CommandStatus m_cmdStat

byte[] token

long m_slotNumber

HARMessage m_msg

HAR m_har

CommandStatus m_cmdStat

byte[] token

long m_slotNumber

HAR m_har

CommandStatus m_cmdStat

byte[] token

boolean m_desiredState

HAR m_har

CommandStatus m_cmdStat

byte[] token

long seconds

long chunksize

AudioPushConsumer consumer

HAR m_har

CommandStatus m_cmdStat

byte[] token

HAR m_har

CommandStatus m_cmdStat

byte[] token

HAR m_har

CommandStatus m_cmdStat

byte[] token

Chart2HARConfiguration m_config

execute()

interrupted()

getCmdStatus():CommandStatus

getToken():byte[]

HAR m_har

HARMsgNotifierIDList m_SHAZAMs

CommandStatus m_cmdStat

byte[] token

HAR m_har

HARMsgNotiferIDList m_SHAZAMs

CommandStatus m_cmdStat

byte[] token

HAR m_har

CommandStatus m_cmdStat

byte[] token

getMessage(): HARMessage

HAR m_har;

CommandStatus m_cmdStat

byte[] token

boolean m_maintMode

boolean m_dateTimeRefresh

HARMessage m_msg

HARArbQueueEntry[] m_entries

HAR m_har

CommandStatus m_cmdStat

byte[] token

boolean m_maintMode

HAR m_har

CommandStatus m_cmdStat

byte[] token

HARMessage m_msgToBeUpdated

HAR m_har

CommandStatus m_cmdStat

byte[] token

long m_slotNumber

long seconds

long chunksize

AudioPushConsumer consumer

Figure 123. HARQueueableCommandClassDiagram (Class Diagram)

3.1.11.2.1 HARBlankCmd (Class)

This command object is used to blank the message on the HAR, which involves setting the message to the HAR's default message.

3.1.11.2.2 HARDeleteSlotMsgCmd (Class)

This class is used to hold data necessary to execute a maintenance mode request to delete a message from a slot on the HAR device.

3.1.11.2.3 HARMonitorBcastCmd (Class)

This class contains data needed to execute a request to monitor the current message being broadcast on the HAR.

3.1.11.2.4 HARMonitorSlotCmd (Class)

This class contains data needed to execute a maintenance mode request to monitor a particular slot on a HAR.

3.1.11.2.5 HARPutInMaintModeCmd (Class)

This class contains data needed to execute a request to put a HAR into maintenance mode.

3.1.11.2.6 HARPutOnlineCmd (Class)

This class contains data needed to execute a request to put a HAR online.

3.1.11.2.7 HARRefreshDateStampCmd (Class)

This class contains data needed to execute a request to update the datestamp fields in a clip which is stored on the HAR device. This QueueableCommand, unlike most, does not reflect a user action, but reflects an action of the HARImpl itself to update its datestamp(s). The HARImpl checks for the need to update its datestamps every night shortly after midnight and queues these requests as necessary.

3.1.11.2.8 HARRemovalCleanupCmd (Class)

This class contains data needed to execute a request to clean up a HARImpl as it is being deleted. Unlike most other QueueableCommands, this command is queued by the HAR Service itself, not by a client. When a HAR is removed from the CHART II system, it may have any number of HARMessageAudioClips stored in it, and the HAR's interest in those clips needs to be deregistered with the Audio Clip Service. Rather than do this synchronously as the client request to remove the HAR is being processed, the client request is processed quickly by queuing this command for the HAR. This command, being the only command on the CommandQueue at this point, will then immediately be executed. When the command completes, this command, the HAR, and its CommandQueue will be deleted, in order, having no other references to them, and the HAR's removal will have been completed.

3.1.11.2.9 HARResetCmd (Class)

This class contains data needed to execute a maintenance mode request to reset a HAR controller.

3.1.11.2.10 HARSetConfigurationCmd (Class)

This class contains data needed to execute a request to change the configuration values of a HAR.

3.1.11.2.11 HARSetMsgCmd (Class)

This class contains data needed to execute a request to set the message played on a HAR. A flag is used to indicate if the message was set via a maintenance mode command or via the arbitration queue.

3.1.11.2.12 HARSetTransmitterStateCmd (Class)

This class contains data needed to execute a maintenance mode request to change the state (on or off) of the transmitter on a HAR device.

3.1.11.2.13 HARSetupCmd (Class)

This class contains data needed to execute a maintenance mode request to issue the setup command for the HAR.

3.1.11.2.14 HARStoreSlotMsgCmd (Class)

This class contains data needed to execute a maintenance mode request to store a message clip into a slot within the HAR controller.

3.1.11.2.15 HARTakeOfflineCmd (Class)

This class contains data needed to execute a request to take a HAR offline.

3.1.11.2.16 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

Sequence Diagrams

3.1.11.3 HARControlModule:activateNotifiersMaint (Sequence Diagram)

This helper method is used to request a HARNotice on a list of HARMessageNotifiers when running in maintenance mode. Since the HAR is in maintenance mode, the notifiers are assumed to be, too, and they must be in order for the activateHARNotice() call on them to work. The activateHARNotice() call is made with an empty TrafficEvent list, since in maintenance mode there are no traffic events.

[image: image126.emf]POA

ServiceApplication

HARImpl

This writeRequest() call will normally be

executed before all the readComplete()

calls above are executed. This

writeRequest() method blocks until every

HARMessageNotifierWrapper finishes

and completes its CommandStatus.

See DMSControlModule:activateHARNotice

and SHAZAMControlModule:activateHARNotice

sequence diagrams for details.

Message notifier returns from

activateHARNotice right away,

then processes the command

asynchronously and reports

progress through the

CommandStatus object later.

ReadWriteLock

SyncCommandStatus

HARMessageNotifierWrapper

HARImpl

activateHARNotice(harToken, empty tfc evt list, syncCmdStat)

writeRequest

activateNotifiersMaint(notifiers)

readComplete

getPOA(ROOT_POA)

activate_object

deactivate_object

[*for each

notifier requested]

readRequest

create(rwLock, rootPOA)

create

complete

Figure 124. HARControlModule:activateNotifiersMaint (Sequence Diagram)

3.1.11.4 HARControlModule:activateNotifiersOnline (Sequence Diagram)

This helper method is used to request a HARNotice on a list of HARMessageNotifiers when the HAR is online. Since the HAR is online, the notifiers are assumed to be, too, and they must be online in order for the activateHARNotice() call on them to work. The activateHARNotice() call is made with a TrafficEvent list specifying the TrafficEvents for which the notice is requested. Each notifier will make entries in each TrafficEvent's history log as the notice is activated, and later when it is deactivated (even if deactivated not through the HAR, such as if the notifier is taken offline).

[image: image127.emf]ReadWriteLock

SyncCommandStatus

HARMessageNotifierWrapper

HARImpl

ServiceApplication

HARImpl

create(rwLock, rootPOA)

[*for each

notifierTfcEventList element]

readRequest

create

complete

activateHARNotice(harToken, tfcEvts, syncCmdStat)

writeRequest

activateNotifiersOnline(notifierTfcEvtList[])

readComplete

getPOA(ROOT_POA)

activate_object

deactivate_object

POA

This writeRequest() call will normally be

executed before all the readComplete()

calls above are executed. This

writeRequest() method blocks until every

HARMessageNotifierWrapper finishes

and completes its CommandStatus.

See DMSControlModule:activateHARNotice

and SHAZAMControlModule:activateHARNotice

sequence diagrams for details.

Message notifier returns from

activateHARNotice right away,

then processes the command

asynchronously and reports

progress through the

CommandStatus object later.

Figure 125. HARControlModule:activateNotifiersOnline (Sequence Diagram)

3.1.11.5 HARControlModule:AddEntry (Sequence Diagram)

The addEntry method defined in the ArbitrationQueue interface is used to queue a message for a HAR when the HAR is online. This method delegates the storage of the entry down to the MessageQueue, then, if the HAR is online, the evaluateQueue() method is called to determine whether this new entry should result in a new message being stored to the HAR. The details of the HARArbitrationQueueImpl's evaluateQueue processing are shown in the HARControlModule:evaluateQueue sequence diagram. AddEntry can be called while the HAR is in any mode. If the HAR is not online, the queue will be evaluated the next time the queue is placed online.

[image: image128.emf]Check for if runTime of message is too large.

Max is specified by property MaxMsgRunTime,

(suggested value two minutes).

HARMessage

OperationsLog

Push all new

entry list to

NotificationChannel

NotificationChannel

TokenManipulator

Audio Data Clips not allowed, should

be converted to audio clips by Tfc Svc.

HAR service can't convert them; it can't

own them until put on the HAR.

HARMessageClip

See HARControlModule:evaluateQueue

 for details.

MessageQueue

See sequence diagram

DeviceUtility\MessageQueue:addEntry

for details.

ResponsePlanItem

HARImpl

[no rights]

AccessDenied

[*for each clip in msg]

[clip instanceOf audio data clip]

CHART2Exception

instanceof HARMessageAudioDataClip

[m_recoveryMode true]

validateEntries

[no rights]

log

[runTime > maxRunTime]

CHART2Exception

getTotalRunTime

getEntries

[m_recoveryMode true &

validateEntries rtnd false]

purgeUnresolvedEntries

notify(ArbQueueEntryList)

[not online]

check rights

evaluateQueue

addEntry

addEntry

Figure 126. HARControlModule:AddEntry (Sequence Diagram)

3.1.11.6 HARControlModule:Blank (Sequence Diagram)

A user with proper functional rights can blank a HAR when it is in maintenance mode. This command is executed asynchronously by placing a HARBlankCmd on the CommandQueue. The HARBlankCmd is used in maintenance mode and online mode, so a flag in it is set to indicate that in this case it is a maintenance mode command. When the CommandQueue executes this command, the blankImpl method is invoked on the HAR. Refer to the HARControlModule:blankImpl sequence diagram for details.

[image: image129.emf]CommandQueue executes

command asynchronously.

HAR Status hasn't

really changed, but

we now know at

least one client is

confused about the

state of the HAR.

Push an event to

get everybody in

synch.

PushEventSupplier

(HAR Control)

Completes cmdStatus if nec.

OperationsLog

CommandStatus HARImpl

ORB

HARBlankCmd

CommandQueue

Refer to the

HARControlModule:blankImpl

sequence diagram for details.

blankImpl

execute

update("queued for processing")

addCommand

create

[not in maint mode]

completed

[not in maint mode]

CHART2Exception

[not in maint mode]

push(HARStatusChanged)

verifyNoResourceConflict

[no rights]

log

[resource conflict]

ResourceControlConflict

[blank HAR] log

blank

[no rights]

completed

[no rights]

AccessDenied

Figure 127. HARControlModule:Blank (Sequence Diagram)

3.1.11.7 HARControlModule:blankImpl (Sequence Diagram)

The sequence diagram shows the processing that occurs when a HARBlankCmd is executed. This command is placed on the command queue by the HAR blank method when in maintenance mode or by evaluateQueue() when operating online. A flag in the command object is used to distinguish the origin of the command to allow for the proper mode check to be done and to allow for specific processing that is to be done when the HAR is blanked online.

The HAR is blanked using the ISSAP55HARProtocolHdlr object and having it command the HAR to play the message in its default message slot. If the default message is successfully set to be played, if any previous immediate message existed it is removed from the HAR slot(s) it occupied and the HAR object deregisters interest it had in any recorded audio data used in the previous immediate message. See HARControlModule:slotMgrRemove for further details.

[image: image130.emf]Completes cmdStat if conflict found.

Do persist and push in all cases, because

removeImmediateMsg could achieve partial

success (changing slot info) before returning

failure. And broadcastSlots() may have

changed status.

Capture failure

in warnTxt and

append to success

case in completed.

It is a success

because the HAR

was successfully

set to default msg.

NotificationChannel

See sequence diagram

HARControlModule:slotMgrRemove

for details.

HARImpl

HARBlankCmd

Execute this command always in maint mode,

and if not already blank when online.

PushEventSupplier

(DMSControl)

HARControlDB

cmdStat:

CommandStatus

ISSAP55HARProtocolHdlr

HARSlotManager

Adds traffic event log entry, updates RPIs, and does

notify to NotificationChannel. See sequence diagram

HARControlModule:requestSucceeded for details.

Adds traffic event log entry, updates RPIs, and does

notify to NotificationChannel. See sequence diagram

HARControlModule:requestFailed for details.

TrafficEvents can be updated at this point, regardless of

success or failure in removing previous immediate message.

On failure, calls handleOpStatus, which completes cmdStat

& updates, persists and pushes status if necessary.

[online cmd]

handleOnlineNotifierDeactivation(null)

[maint mode]

verifyNoResourceConflict

fmsGetConnectedPort(true)

[failure]

[online cmd and failure]

requestFailed(null, true)

[success]

[*for each immediate slot

currently loaded]

remove(port, slot)

[failure]

CHART2Exception

[success AND immediate message existed]

removeImmediateMsg(port)

blankImpl

update("processing")

[maint cmd AND no longer in maint mode]

completed

broadcastSlots(port, [2])

completed

[maint cmd]

handleMaintNotifierDeactivation(null)

[online cmd AND

 no longer online]

requestFailed(null, true)

push(HARStatusChanged)

setStatus

[online cmd AND no longer online]

completed

[online cmd]

requestSuccessful(null)

[resource conflict]

notify("communicating with device")

notify("connecting to device")

[wrong mode]

[wrong mode]

[failure]

[failure]

fmsReleasePort(port, true)

[failure AND online cmd]

requestFailed(null, true)

OperationsLog

log

notify("HAR status changed")

Figure 128. HARControlModule:blankImpl (Sequence Diagram)

3.1.11.8 HARControlModule:ChangePriority (Sequence Diagram)

This method, defined by the ArbitrationQueue interface, allows a user to modify the priority of a message existing in the message queue. Since queued ArbQueueEntry objects are maintained by the MessageQueue, this request is delegated to the MessageQueue for processing. If the HAR is currently online, the queue is reevaluated to determine whether the new priority should result in a new message being placed on the HAR. See HARControlModule:evaluateQueue for details.

[image: image131.emf]OperationsLog NotificationChannel

See DMSControlModule:evaluateQueue

for details.

MessageQueue

HARImpl

ORB

See sequence diagram

DeviceUtility\MessageQueue:changePriority

for details.

TokenManipulator

notify(ArbQueueEntryList)

[no rights] log

[change priority] log

[not online]

getEntries

[success]

SpecifiedObjectNotFound

[not found]

SpecifiedObjectNotFound

changePriority(entry, priority)

changePriority(token, entry, priority)

[online]

evaluateQueue

[no rights]

AccessDenied

checkAccess

Figure 129. HARControlModule:ChangePriority (Sequence Diagram)

3.1.11.9 HARControlModule:ConfirmClipInterest (Sequence Diagram)

This method, which comprises the AudioClipOwner interface, allows the AudioClipManager to periodically query the owners registered as having interest in various audio clips to verify that they are still interested. This is necessary because there are certain windows where it is possible that an AudioClipOwner may fail to be able to deregister interest in its clips (if the AudioClipManager is down, for instance). The AudioClipManager passes in a list of clips that it believes the owner (the HAR, in this case) is still interested in, and the owner returns any of those clips which it is NOT interested in (as this will normally be a much smaller list than the list it IS interested in, particularly for a message library). For its part, the HARImpl builds its response based on querying the HARSlotManager about each clip in the query.

[image: image132.emf]unneededClipIDList:

AudioClipIDList

OperationsLog

HARSlotManager HARImpl

ORB

A false return is

indicative of an

error condition,

failed to deregister

interest in a clip.

Log it.

[false]

add(audioClipID)

create

[*for each

clipID in

audioClipIDList]

log("didn't deregister clip")

confirmClipInterest(audioClipIDList)

unneededClipList

false

[clip in clipList for slot]

true

[*for each slot]

isUsingClip(audioClipID)

Figure 130. HARControlModule:ConfirmClipInterest (Sequence Diagram)

3.1.11.10 HARControlModule:CreateHAR (Sequence Diagram)

A user with the proper functional rights can add a HAR to the system. The HAR object is created by the HARControlDB object, which takes care of adding the appropriate data to the database and constructing a HARImpl object. The factory connects the object to the ORB, registers it with the ServiceApplication (which causes the object to be published in the trader), and pushes an event to notify others that a HAR has been added to the system. The HAR is added in offline mode and therefore no field communications are necessary.

[image: image133.emf]OperationsLog

[improper rights] log

[create HAR] log

Factory assigns a non-persistent one-up number to each HAR

upon creation (also to depersisted during startup).

This number is used for uniquely naming temporary wav files.

See sequence diagram

HARControlModule:DBinsertHAR

for more details.

HARImpl

Specific subclass of Chart2HARImpl

is created (ISSAP55HARImpl).

See creation of Chart2HARImpl within

HARControlModule:Initialize for details.

ORB

HARFactoryImpl

POA ServiceApplication

HAR object is created

in OFFLINE mode.

HARControlDB PushEventSupplier

setOneUpNum

[config invalid]

CHART2Exception

[config invalid]

CHART2Exception

"add HAR to list"

createHAR

[improper rights]

AccessDenied

activate_object_with_id

registerObject

push(HARAdded)

insertHAR

create

HARImpl

delete clip.<oneUpSlotNum>.*.wav files

Figure 131. HARControlModule:CreateHAR (Sequence Diagram)

3.1.11.11 HARControlModule:deactivateNotifiersMaint (Sequence Diagram)

This helper method is used to deactivate a HARNotice on a list of HARMessageNotifiers when running in maintenance mode. Since the HAR is in maintenance mode, the notifiers are assumed to be, too, and they must be in order for the deactivateHARNotice() call on them to work. The deactivateHARNotice() call is made with an empty TrafficEvent list, since in maintenance mode there are no traffic events.

[image: image134.emf]writeRequest

deactivateNotifiersMaint(notifiers)

readComplete

getPOA(ROOT_POA)

activate_object

deactivate_object

create

complete

[*for each

notoifierTfcEvtList element]

readRequest

create(rwLock, rootPOA)

Message notifier returns from

deactivateHARNotice right away,

then processes the command

asynchronously and reports

progress through the

CommandStatus object later.

ReadWriteLock

SyncCommandStatus

HARMessageNotifierWrapper

HARImpl

POA

ServiceApplication

HARImpl

This writeRequest() call will normally be

executed before all the readComplete()

calls above are executed. This

writeRequest() method blocks until every

HARMessageNotifierWrapper finishes

and completes its CommandStatus.

See DMSControlModule:deactivateHARNotice

and SHAZAMControlModule:deactivateHARNotice

sequence diagrams for details.

deactivateHARNotice(harToken, null, syncCmdStat)

Figure 132. HARControlModule:deactivateNotifiersMaint (Sequence Diagram)

3.1.11.12 HARControlModule:deactivateNotifiersOnline (Sequence Diagram)

This helper method is used to deactivate a HARNotice on a list of HARMessageNotifiers when the HAR is online. Since the HAR is online, the notifiers are assumed to be, too, and they must be online in order for the deactivateHARNotice() call on them to work. The notifiers keep track of the TrafficEvents for which they are active. Each notifier will make entries in each TrafficEvent's history log as the notice is deactivated.

[image: image135.emf]POA

ServiceApplication

HARImpl

This writeRequest() call will normally be

executed before all the readComplete()

calls above are executed. This

writeRequest() method blocks until every

HARMessageNotifierWrapper finishes

and completes its CommandStatus.

See DMSControlModule:deactivateHARNotice

and SHAZAMControlModule:deactivateHARNotice

sequence diagrams for details.

Message notifier returns from

deactivateHARNotice right away,

then processes the command

asynchronously and reports

progress through the

CommandStatus object later.

ReadWriteLock

SyncCommandStatus

HARMessageNotifierWrapper

HARImpl

deactivateHARNotice(harToken, tfcEvts, syncCmdStat)

writeRequest

deactivateNotifiersOnline(notifierTfcEvtList[])

readComplete

getPOA(ROOT_POA)

activate_object

deactivate_object

[*for each

notoifierTfcEvtList element]

readRequest

create(rwLock, rootPOA)

create

complete

Figure 133. HARControlModule:deactivateNotifiersOnline (Sequence Diagram)

3.1.11.13 HARControlModule:DeleteSlotMessage (Sequence Diagram)

This diagram shows the processing involved when a user requests removal of a prestored message a HAR. A prestored message is one that was previously stored by a user in a user slot on the HAR in maintenance mode. This message deletion operation is valid in maintenance mode only. The command is processed asynchronously via the CommandQueue. In addition to deleting the message from the slot on the HAR controller, if the slot was audio voice data, the HARSlotManager deregisters interest in that clip (see HARControlModule:slotMgrRemove).

[image: image136.emf][resource conflict]

verifyNoResourceConflict

[not maint]

[no longer in maint mode]

fmsGetConnectedPort(true)

create

[not in maint mode]

completed

[not in maint mode]

CHART2Exception

[no rights]

completed

[no rights]

AccessDenied

deleteSlotMessage

update("processing")

[no longer in maint mode]

completed

completed

[success on remove]

push (HARStatusChanged)

[success on remove]

updateStatus

remove(port, slot)

deleteSlotMsgImpl

execute

fmsReleasePort(port, true)

[failure]

[failure]

handleOpStatus()

update("queued")

addCommand

OperationsLog

HAR Status hasn't

really changed, but

we now know at

least one client is

confused about the

state of the HAR.

Push an event to

get everybody in

synch.

Completes cmdStatus if nec.

Completes cmdStat, updates,

persists, pushes status as necessary

Port

HARMessageClip

CommandQueue executes

command asynchronously.

Completes cmdStatus if nec.

PushEventSupplier

(HAR Control)

HARControlDB CommandStatus HARImpl

ORB

HARDeleteSlotMsgCmd

CommandQueue HARSlotManager

[delete slot message] log

verifyNoResourceConflict

[resource conflict]

ResourceControlConflict

[no rights]

log

[not in maint mode]

push(HARStatusChanged)

[resrc confl]

[success on remove]

log

Figure 134. HARControlModule:DeleteSlotMessage (Sequence Diagram)

3.1.11.14 HARControlModule:evaluateQueue (Sequence Diagram)

This method requests all the entries from the MessageQueue and evaluates the list of entries to determine the single or combined message (or lack of message, i.e. default message) which should be on the device. If no messages are queued, the method determines that the device should be blank. If it is not already blank, a HARBlankCmd is queued on the CommandQueue. If one or more messages are queued, this method has two criteria for selecting and possibly combining messages for the HAR: 1) the total runtime of the complete (possibly combined) message must be within the maximum run time of a message; and 2) the clips not already stored on the HAR must physically fit within the HAR's RAM, which is a function of the total storage space on the HAR and the amount of data already stored there. This method first selects one message which will fit, then attempts to add more, as limited by the above constraints. Once a message is examined which does not meet the criteria, the search ends, and the resultant message is compared against the current message (or, if a HARSetMsgCmd is already queued, against the most recent HARSetMsgCmd's message). It is entirely possible that evaluate queue will run many times when the resultant message is the message which already is or will be on the device (like if a low priority message is added or removed from the MessageQueue). If the resultant message is indeed a change, it is queued in a HARSetMsgCmd on the CommandQueue.

If a HARBlankCmd or HARSetMsgCmd winds up being queued on the CommandQueue, when the command reaches the top of the CommandQueue it will be executed, causing blankImpl() or setMessageImpl() (as appropriate) to be called. See those methods for details.

[image: image137.emf]Since there is no way of acuiring status from the HAR to determine

if the download succeeded, this HARRuntimeSafetyMarginSecs is

a way of increasing the odds of success. This number provides

a buffer against the total runtime available on the HAR. It would be

extremely unwise to attempt to fill the HAR right to the exact second,

especially since the run time returned by a text clip can be only an

estimate.

HARMessage

Search list in

order (already in

priority order) for

first one that will fit.

List returned consists of 0..* ArbQueueEntry

objects, each with a HARMessage object

getNewDataRunTime returns

sum of the run time of all clips

including custom header/footer

but not default header/footer

and not preStored clips,

because those are already in

HAR,don't take any more space.

HARMessageImpl

Create a copy of the HARMessage we

found. May add other clips to it if possble.

HARSlotManager

HARImpl

Refer to setMessageImpl and blankImpl

sequence diagrams for details on

processing that occurs when the

HARSetMsgCmd and HARBlankCmd

are executed.

If a HARBlankCmd or HARSetMsgCmd was created

above, the command queue executes it (whichever

one was created) here, asynchronously.

NOTE:

for purposes of

checking to see if

additional messages

will fit, consider that

if if one will fit, the

default hdr and trlr

will be used, which

could adjust both

runtime figures.

Keep track of space left

on the HAR and space

left in a 2:00 message.

Two criteria for inclusion of additional

message: NewDataRunTime (run time

of clip(s) which would need to be D/L to

HAR) must fit in cummImmedSecsAvail,

and BodyRunTime must fit within total

msg runtime tracked in cummMsgTimeAvail.

If additional clip found,

always use default

header & trailer.

HARMessageAudioClip

Remove any HARSetMsgCmds already queued if they

have not started execution yet. Setting message on

the HAR takes time and takes HAR off the air, we

don't want to set one message when we already

know we have another message queued up to replace

it immediately. (There would only ever be one to

remove, so keep ref. to it in m_queuedSetMsgCmd and

pass to new CommandQueue.remove() method.

HARBlankCmd

Returns total time of HAR RAM minus

time used by all prestored & default slots

(the immediate slot(s) -- the only ones not

counted -- would be replaced or reused

so do not count).

HARImpl MessageQueue HARAudioClipManager

HARSetMsgCmd

CommandQueue

Don't care if it succeeds or

fails. If it fails, it's too late,

but at least we tried.

[newDataRunTime < Immed space avail & bodyRunTime < msg space avail]

addBodyClip

[while messages left

AND usable

immediate msg

space left AND

haven't found

one that won't fit]

subtract newDataRunTime

from cummImmedSecsAvail

and cummMsgTimeAvail

subtract

HARRunTimeSafetyMarginSecs

from cumImmedSecsAvail

[body clip added]

setUseDefaultTrailer(true)

[body clip added]

setUseDefaultHeader(true)

getBodyRunTime

set needsReevaluation false

[m_lastQueueSetMsgCmd != null]

matches(m_lastQueuedSetMsgCmd.getMessage())

[no messages will fit]

addCommand

getNewDataRunTime

[m_lastQueuedSetMsgCmd != null]

removeCommand(m_lastQueuedSetMsgCmd)

execute

store command in

m_lastQueuedSetMsgCmd

create

[list empty and HAR not blank]

addCommand

getEntries

[list empty and HAR not blank]

create

[msg created matches msg in

m_lastQueuedSetMsgCmd

if any, or

m_status.m_currentMessage]

[list empty and HAR not blank]

getSecsAvailImmediate

evaluateQueue

[m_lastQueuedSetMsgCmd == null]

matches(m_status.m_currentMessage)

getNewDataRunTime

[until runtime

<= avail time]

[list empty and HAR blank]

create

Figure 135. HARControlModule:evaluateQueue (Sequence Diagram)

3.1.11.15 HARControlModule:fmsGetConnectedPort (Sequence Diagram)

This sequence diagram shows how a HARImpl object gets a connected telephony port. This method is called from many methods in the HAR service, whenever communications to the device is needed. A voice port is obtained from one of the HARImpl's two VoicePortLocator objects, depending on the "control" flag passed in: if control is true, the standard control (i.e., programming) port locator is used; if false, the monitor port locator is used. (The monitor port is used only for the MonitorBroadcast function.) If a control port is requested, on failure a call is made to the helper method handleOpStatus to deal with the case where the operational status has changed. The CommandStatus is either updated or completed during the call to the VoicePortLocator object based on a flag passed into this method. If the control flag is true, the ISSAP55HARProtocolHdlr method initiateProgramming() is called, which enters the access code ("PIN") DTMF tones, etc., in order to into the HAR and be reaady to execute programming commands on the HAR.

[image: image138.emf]Set not to complete cmdStat.

[m_status.m_transmitterOn false]

notify("Programming HAR")

Completes cmdStat.

Updates, persists, & pushes

status if necesary. Note: if going

after monitor port, status is not

to be affected.

InitiateProgramming turns the

transmitter off. If transmitter is

currently on, turn it off now in

our status, and push and persist.

Completes cmdStat.

Updates, persists, & pushes

status if necesary. Note: if going

after monitor port, status is not

to be affected.

For R1B3, this will always be a VoicePort, as

 the only type of HAR we have is analog.

Port

For R1B3, this will always be a VoicePortLocator,

as the only type of HAR we have is analog.

PortLocator

HARImpl

HARImpl

ISSAP55HARProtocolHdlr

If control == true, use m_portLocator.

If control == false, use m_monitorPortLocator.

[control == false]

ConnectedPortInfo

initiateProgramming(port, m_config.m_deviceAccessCode)

[transmitter was already off]

ConnectedPortInfo

[success]

CHART2Exception

handleOpStatus()

ConnectedPortInfo

CHART2Exception

[control true]

handleOpStatus()

[failure]

CHART2Exception

getConnectedPort

fmsGetConnectedPort(control)

[failure]

HARProtocolException

ConnectedPortInfo

NotificationChannel

[m_status.m_transmitterOn true]

notify("Programming HAR, transmitter temporarily off")

Figure 136. HARControlModule:fmsGetConnectedPort (Sequence Diagram)

3.1.11.16 HARControlModule:fmsReleasePort (Sequence Diagram)

This helper method releases an FMS port which is no longer needed. First, if the "control" flag is true, the ISSAP55HARProtocolHdlr method terminateProgramming() is called to punch in the final DTMF tones to inform the HAR that we are done with the call and ready to hang up. It disconnects the port, and finally calls the correct PortLocator (control or monitor) to release the port back into the pool. Errors are logged, but not reported on the CommandStatus, as the port will be released or reclaimed in any case, and errors relating to releasing a port would mask an otherwise successful status or more a useful error status.

[image: image139.emf][m_status.m_transmitterStateOn false]

notify("HAR programming complete")

If control == true, use m_portLocator.

If control == false, use m_monitorPortLocator.

For R1B3, this will always be

a VoicePortLocator, as all

R1B3 HARs are analog.

HARImpl

If any errors occur,

log it, but continue

processing.

PortLocator

Port

ISSAP55HARProtocolHdlr

HARImpl

releasePort(port)

disconnect

[control == true]

terminateProgramming(port)

fmsReleasePort(port, control)

NotificationChannel

[m_status.m_transmitterStateOn true]

notify("HAR programming complete, transmitter resumes transmitting")

Figure 137. HARControlModule:fmsReleasePort (Sequence Diagram)

3.1.11.17 HARControlModule:GetConfiguration (Sequence Diagram)

A user with appropriate privileges can get the current configuration of the HAR. When a request is made for the current configuration of the HAR, the HAR's HARConfiguration object is returned.

[image: image140.emf][get configuration] log

[no rights] log

OperationsLog

m_config:

HARConfiguration

TokenManipulator

ORB

HARImpl

copy

end synchronize

getConfiguration

[no rights]

AccessDenied

HARConfiguration

checkAccess

synchronize

Figure 138. HARControlModule:GetConfiguration (Sequence Diagram)

3.1.11.18 HARControlModule:GetEntriesStatus (Sequence Diagram)

This method, part of the ArbitrationQueueInterface, allows a client to retrieve the all entries on the queue of a device, with their current status. This method is implemented by retrieving the list from the MessageQueue, then building a list of ArbQueueEntryStatus from that, appending status information not known by the MessageQueue.

[image: image141.emf]ArbQueueEntryStatus

MessageQueue HARImpl

ORB

ArbQueueEntryStatusList

[*for each

msgQueueEntry]

[current msgQueueEntry in m_activeEntries list]

set isActive true

set tfcEvtID, msg, priority from current msgQueueEntry

create

getEntries

getEntriesStatus

Figure 139. HARControlModule:GetEntriesStatus (Sequence Diagram)

3.1.11.19 HARControlModule:GetStatus (Sequence Diagram)

A user with appropriate privileges can get the current status of the HAR. .When a request is made for the current status of the HAR, the HAR's HARStatus object is returned.

[image: image142.emf]m_status:

HARStatus

The status object is kept

up to date during operations

that change the status of

the HAR. All that needs to be

done when status is requested

is to copy the current

HARStatus object and

return it.

ORB

HARImpl

end synchronize

getStatus

HARStatus

synchronize

copy

Figure 140. HARControlModule:GetStatus (Sequence Diagram)

3.1.11.20 HARControlModule:handleMaintNotifierActivation (Sequence Diagram)

This method activates notifiers for a HAR message in maintenance mode. It is called after the new message is already on the HAR. This method calls activateNotifiersMaint() with a list of notifiers which need to be activated (and which is not already active). Since this method is for maintenance mode only, TrafficEvents are not relevant.

[image: image143.emf]HARImpl

This is list of

notifiers that

need to be

activated now.

Vector

Pass in each notifier to be activated.

For details see sequence diagram

HARControlModule:activateNotifiersMaint.

HARImpl

[*for each notifier in

newNotifiers list NOT in

m_notifiersCurrentlyActive]

activateNotifiersMaint(notifiers)

delete

add this notifier to vector

create

handleMaintNotifierActivation(newNotifiers)

Figure 141. HARControlModule:handleMaintNotifierActivation (Sequence Diagram)

3.1.11.21 HARControlModule:handleMaintNotifierDeactivation (Sequence Diagram)

This method deactivates notifiers for a HAR message in maintenance mode. It is called before the old message is removed from the HAR. This method calls deactivateNotifiersMaint() with a list of notifiers which need to be deactivated. This method does not deactivate notifiers which will need to remain active after the new message replaces the old message. For the period of time that the HAR service is in communication with the HAR, any active notifiers which need be active for the new message will stay active (even though the HAR does not broadcast during this time). Since this method is for maintenance mode only, TrafficEvents are not relevant.

[image: image144.emf]This is list of

notifiers that

need to be

activated now.

Vector

Pass in each notifier to be deactivated.

(For details see sequence diagram

HARControlModule:deactivateNotifiersMaint.

HARImpl

HARImpl

handleMaintNotifierDeactivation(newNotifiers)

deactivateNotifiersMaint(notifiers)

delete

add this notifier to vector

[*for each notifier in

m_notifiersCurrentlyActive

NOT in newNotifiers]

create

Figure 142. HARControlModule:handleMaintNotifierDeactivation (Sequence Diagram)

3.1.11.22 HARControlModule:handleOnlineNotifierActivation (Sequence Diagram)

This method handles activation of notifiers when a HAR message is being created online. This method handles activation of all notifiers if there is a message going up replacing the default message, or if the message going up is replacing an existing online message, it provides for activating only those notifiers which were not already active for the message being currently replaced. This method is called AFTER the new message is already on the HAR.

This method builds a list of notifiers which will be activated (newNotifTfcEvtListVect), and for each element, a list of TrafficEvents which requested that particular notifier. Then the method activateNotifiersOnline() is called to actually activate the notifiers in the list just prepared.

[image: image145.emf][*for each

notifier

requested

in this entry

NotifierTfcEvtList

(Adds TrafficEvent

to m_tfcEvts set

with no duplication.)

newNotifTfcEvtListVect:

Vector

Pass in each notifier to be activated,

together with the events which requested it.

(Activates notifier and creates entry in

TfcEvt history log for each TfcEvt for each

notifier: "notifier activated.")

For details see sequence diagram

HARControlModule:activateNotifiersOnline

HARImpl

HARImpl

Will contain notifiers which will be

newly activated (after the new

HAR message is put up.

[*for each element in

newNotifTfcEvtListVect]

[tfc evt in entry specifies this notifier]

add tfc evt to m_tfcEvts for this

notifier element

[*for each

ArbQueueEntry in

newEntries]

[*for each notifier in

newNotifiers]

create

handleOnlineNotifierActivation(newNotifiers, newEntries)

activateNotifiersOnline(array from newNotifTfcEvtListVect)

create, setting notifier

[notifier not on m_notifiersCurrentlyActive list]

add notifierTfcEvtList to vector

toArray

Figure 143. HARControlModule:handleOnlineNotifierActivation (Sequence Diagram)

3.1.11.23 HARControlModule:handleOnlineNotifierDeactivation (Sequence Diagram)

This method handles deactivation of notifiers when a HAR message is changing online. There are actually two classes of notifier changes being handled in this routine: (1) deactivation of the notifiers which should not be active anymore when the current HAR message is updated or removed; and (2) "modification" (not deactivation or activation) of notifiers which have been active, and will be active, but for which the list of TrafficEvents requesting the notifiers will change when the current HAR message is updated. Both of these classes of notifier changes result in entries in the respective Traffic Event history logs BEFORE the HAR message itself is actually changed. This way, notifiers which should be deactivated are deactivated BEFORE the message goes away. Notifiers which were already active and which will stay active will stay on during (and beyond) the brief period of time that the new message is set up on the HAR.

This method builds a list of notifiers which will be deactivated (oldNotifTfcEvtListVect) -- for part (1) above, a list of notifiers which will be modified (modNotifTfcEvtListVect) -- for part (2) above, and a list of notifers which will be active when the whole transaction is completed (which is not used directly but helps in building the second list). After the lists have been built, the helper method deactivateNotifiersOnline() is called to handle (1), and helper method modifyNotifiers() is called to handle (2).

[image: image146.emf]toArray

Will contain notifiers which will stay active,

but for which the list of TfcEvts for which

they are active is changing.

First step: create list of notifiers which

will be active before and after this

transaction. Notifiers for which the list

of TfcEvts remains the same will be

weeded out later in method

(Adds TrafficEvent

to m_tfcEvts set

with no duplication.)

[notifier on newNotifiers list]

add notifierTfcEvtList to mod vector

newNotifTfcEvtListVect:

Vector

NotifierTfcEvtList

create

[*for each notifier in

newNotifiers

create, setting notifier

[*for each element in

newNotifTfcEvtListVect]

[*for each

ArbQueueEntry in

newEntries

[tfc evt in entry specifies this notifier]

add tfc evt to m_tfcEvts for this

notifier element

add notifierTfcEvtList to new vector

oldNotifTfcEvtListVect:

Vector

create

[notifier NOT on newNotifiers list]

add notifierTfcEvtList to old vector

toArray

[*for each

notifier

requested

in this entry

[*for each

notifier

requested

in this entry]

[tfc evt in entry specifies this notifier]

add tfc evt to m_tfcEvts for this

notifier element

[*for each

ArbQueueEntry in

m_activeEntries]

[*for each notifier in

m_notifiersCurrentlyActive]

create

handleOnlineNotifierDeactivation(newNotifiers, newEntries)

deactivateNotifiersOnline(array from oldNotifTfcEvtListVect)

modifyNotifiers(array from modNotifTfcEvtListVect)

create, setting notifier NotifierTfcEvtList

(Adds TrafficEvent

to m_tfcEvts set

with no duplication.)

modNotifTfcEvtListVect:

Vector

Pass in each notifier to be deactivated,

together with the events which used it.

(Creates entry in TfcEvt history log for each

TfcEvt for each notifier: "notifier deactivated.")

For details see sequence diagram

HARControlModule:deactivateNotifiersOnline

[TfcEvt list in mod vect exactly

matches list new new vect]

delete element from mod vector

Pass in each notifier currently active which will

stay active, and for which the list of traffic events

has changed.

(Creates entry in TfcEvt history log for each of

the departing TfcEvts: "notifier would have been

deactivated but is still needed for other event(s)"

and for each of the newly added TfcEvts: "notifer

is already active because of other event(s)".

For details see sequence diagram

HARControlModule:modifyNotifiers.

HARImpl

HARImpl

Will contain notifiers

which will be newly

activated (after the

new HAR message

is put up.

Second step: weed out notifiers

for which the list of Tfc Evts is

not changing. This will leave only

the notifiers for which the list of

TfcEvts IS changing.

[*for each

notifier in

modNotifTfcEvtListVect]

Will contain notifiers

to be deactivated and

the TfcEvts for which

they were active.

[*for each element in

modNotifTfcEvtListVect]

Figure 144. HARControlModule:handleOnlineNotifierDeactivation (Sequence Diagram)

3.1.11.24 HARControlModule:handleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a HARImpl handles the task of detecting and responding to changes in its operational status ("OK", "COMM_FAILURE" or "HARDWARE_FAILURE"). A HAR is normally OK, but falls into COMM_FAILURE when FMS reports that it cannot communicate with the device. Under R1B3, the ISS AP55 HAR cannot report status, so the HAR will never go into HARDWARE_FAILURE mode, but processing for HARDWARE_FAILURE, already coded for DMS, is left here for completeness and future extensibility. This method is called, with the status reported back from FMS, after every attempt to communicate with the device, and processing falls into one of three cases, depending on the status reported (although the two failure cases are nearly identical).

If the device now being reported OK and it was already OK, there is no change in status, and all that is necessary is to update the m_lastContactTime of the device. If the status has just become OK, this fact is logged, and the new HARStatus is persisted and pushed out into the event channel. If the device is online, and m_needsReevaluation is true, this means an earlier attempt to set the device to the correct condition (new message, default message) has failed since the device went COMM_FAILED, so evaluateQueue is called to ensure that the correct message is put on the HAR. If the device is online and m_lastDateStampUpdateTime is not today, that means a new day has come since the device COMM_FAILED, so call checkDateStamps is called to see if any datestamps need updating.

If the device is now being reported with a failure and the device was already in that failure condition, there is no change in status, and nothing is done. If the status is just now changing, this is logged, and the HARStatus is persisted and pushed out into the event channel.

[image: image147.emf]OperationsLog

Normal case,

opStatus OK and unchanged

PushEventSupplier

Bad status has been handled previously.

No need to do anything more.

If opStatus == HW_FAILURE

Note: For R1B3, there will be no HW_FAILURE condition, as the system cannot

detect a failure in the ISS AP55. This part of the design is for future extensibility.

CommandQueue

m_status:

HARStatus

If opStatus == OK

HARImpl

HARImpl

HARControlDB

cmdStatus:

CommandStatus

Bad status has been handled previously.

No need to do anything more.

If opStatus == COMM_FAILURE

handleOpStatus(opStatus, cmdStatus)

updateStatus(m_id, m_status)

setStatusChangeTime(now)

[m_needsReevaluation true &

online]

evaluateQueue

[m_status.m_opStatus == OK]

[m_lastDateStampUpdateTime

 in m_data != today]

checkDateStamps

push(HARStatusChanged)

setOpStatus(HW_FAILURE)

[m_status.m_opStatus == HW_FAILURE]

setStatusChangeTime(now)

push(HARStatusChanged)

setOpStatus(COMM_FAILURE)

[m_status.m_opStatus == COMM_FAILURE]

push(HARStatusChanged)

updateStatus(m_id, m_status)

updateStatus(m_id, m_status)

[complete == false]

update("HAR just CommFailed")

update("HAR now OK")

setStatusChangeTime(now)

setOpStatus(OK)

[complete == true]

update("HAR just reported HW failure")

m_lastContactTime = now

log("HAR has just gone into HW failure")

log("HAR has just lost comms")

log("HAR now operational")

[complete == true]

complete("HAR just CommFailed")

[complete == false]

update("HAR just CommFailed")

[m_lastDateStampUpdateTime

not today && online]

checkDateStamps

Figure 145. HARControlModule:handleOpStatus (Sequence Diagram)

3.1.11.25 HARControlModule:Initialize (Sequence Diagram)

This sequence diagram shows the processing that takes place when the HARControlModule is initialized. The module creates the support objects that will be needed by the HAR factory and the HAR objects. The HAR Factory is created which in turn creates the HARs that have been previously added to the factory. Timer tasks are started so that the factory and its HARs can conduct their timer based processing when appropriate. The factory performs shared resource management checks periodically and the HARs may need to periodically update their message based on the time of day, depending on the message content. The factory and HARs may also participate in recovery timer based tasks for the first few minutes after startup, as necessary.

[image: image148.emf]Factory assigns a non-persistent one-up number to each HAR

upon startup (also to new HARs created during execution).

This number is used for uniquely naming temporary wav files.

Schedule RecoveryTimerTask,

which was instantiated at top of constructor.

TIMER TASK: Writes current time to a file so that upon

startup task can determine the time HARService went down.

Additionally, for a period of time upon startup, queries HAR

objects to have them check if their own recovery period has

expired. (After all HAR recovery periods have expired,

this responsibility of the task ends.)

This object is needed now, to get timeDown, but will not be

scheduled until after all DMSes are created. See below.

Get the time that the HAR

service went down.

(Technically, the last known

time that the the HAR

service was up.)

HARRecoveryTimerTask

See sequence diagram

HARControlModule:restoreHAR

for details.

PushEventSupplier

HARControlDB

CommFailureDB

DictionaryWrapper

CheckForAbandonedHARTask

PushEventSupplier

Event channels are needed

for HARControl events and

generic resource management

events.

HARFactoryImpl

HARImpl

RefreshDateStampsTask

POA

java.util.Timer

Service

Application

NotificationChannel

HARControlModule

ServiceApplication

HARControlModuleProperties

getRecoveryTimerDelaySecs

getDateStampRefreshTimeOfDay

getSharedResMonIntSecs

getPOA

getPOA

schedule(harRecoveryTimerTask)

getTimeDown

getHARList

[*for each

 HAR

in DB]

create

[*for each HAR]

initialize

create

getProperties

getDefaultProperties

create

registerNotificationChannel

create

create

create

create

create

schedule(checkControlledResourcesTask)

scheduleAtFixedRate(refreshDateStampsTask)

getDBConnectionManager

activate_object_with_id

registerObject

activate_object_with_id(HARFactoryImpl)

addHARFactoryTypesToTrader

create

registerEventChannel

create

delete clip.*.wav files &

slot.*.wav files

registerEventChannel

create

create

create

addHARTypesToTrader

registerObject(HARFactoryImpl)

setOneUpNum

Figure 146. HARControlModule:Initialize (Sequence Diagram)

3.1.11.26 HARControlModule:modifyNotifiers (Sequence Diagram)

This method modifies a list of notifiers, in online mode, before an old message is removed from a HAR and replaced with a new one. In this particular case, one or more notifiers (those passed into this method) will be on both before and after the new message is put on the HAR, but for these notifiers the list of TrafficEvents has changed. This method informs each such notifier of the new list of TrafficEvents for which it is now active. The list of TrafficEvents passed to each notifier is a complete replacement for the current list that notifier is maintaining. The new list may include TrafficEvent(s) which have been added and/or some which stay the same, and may indicate by exclusion TrafficEvents which have been deleted. The HARNotifier will keep its HARNotice unchanged (active), but will update its internal state of the TrafficEvents for which it is active, and will put entries in the TrafficEvent history logs for the TrafficEvents added or deleted.

[image: image149.emf]HARImpl

HARMessageNotifierWrapper

HARImpl

modifyNotifiers(notifierTfcEvtList[])

modifyHARNotice(tfcEvtList from same element)

[* for each

notifierTfcEvtList element]

Figure 147. HARControlModule:modifyNotifiers (Sequence Diagram)

3.1.11.27 HARControlModule:MonitorBroadcast (Sequence Diagram)

This method allows a suitably privileged user to monitor the broadcast of a HAR. This operation can be performed online or in maintenance mode. Because this command uses the monitor phone line of the HAR, it is the only type of command queued up on a special monitor CommandQueue. (Even MonitorSlot uses the regular programming phone line.) This allows monitoring the broadcast to be conducted independently of (without interfering with) other HAR programming activities. Because of the nature of the telephony ports, once the command is executed from the monitor CommandQueue, the wav file must be recorded first and then streamed back to the requester. This means a request to monitor two minutes of a broadcast will be delayed at least two minutes while the audio is being recorded before any audio will be heard by the user. Since this command does not use the control phone line, it does not affect the OperationalStatus (OK, COMM_FAILED) of the HAR. In other words, a failure to complete the monitor action will not COMM_FAIL the device, and successful operation will not bring the HAR out of COMM_FAILED status if it was in COMM_FAILED.

[image: image150.emf]OperationsLog

If pushAudio returns

false, it means user

doesn't want rest of

audio. No reason to

pushFailure or

 pushCompleted,

consumer already

knows it's over.

Even though this is a non-destructive operation, if the HAR is in maint mode,

we don't want operator from another Op Ctr tying up the monitor line.

verifyNoResourceConflict completes CommandStatus if necessary.

NOTE: any comms

failure or success in

acquiring port, monitoring,

etc., does not change

OpStatus.

AudioPushConsumer

FmsGetConnectedPort calls handleOpStatus

on failure completes cmdStat, and updates,

persists, & pushes status if necessary.

See HARControlModule:fmsGetConnectedPort.

ORB

HARImpl CommandStatus

m_monitorCmdQueue:

CommandQueue

HARMonitorBcastCmd

CommandQueue executes

command asynchronously.

VoicePort

FileInputStream

[monitor broadcast] log

[no rights]

log

pushAudio

[failure]

delete file

[failure on recordWAV]

delete file

verifyNoResourceConflict

[resource conflict]

ResourceControlConflict

execute

monitorSlotImpl

recordWAV("bcast.<harOneUpNumber>.<harName>.wav", seconds)

[error]

completed(failure)

[offline]

completed

update

monitorBroadcast

[no rights]

AccessDenied

[no rights]

completed

[offline]

CHART2Exception

[offline]

completed

create

addCommand

update("queued")

[offline]

[offline]

delete file

[failure]

close

[failure]

delete file

close

[failure]

completed

[failure]

[failure]

fmsReleasePort(false)

[failure on recordWAV]

[failure on recordWAV]

[*while no error,

no EOF &

pushAudio rtns true]

pushAudioProperties

fmsGetConnectedPort(false)

[failure getting port]

[failure getting port]

[EOF]

pushCompleted

[error]

pushFailure

[EOF]

completed(success)

read(byte array of length maxChunkSize)

[failure]

[failure]

[failure]

completed("could not open file...")

create

[failure]

complete

Figure 148. HARControlModule:MonitorBroadcast (Sequence Diagram)

3.1.11.28 HARControlModule:MonitorSlot (Sequence Diagram)

This command allows a suitably privileged user to monitor one slot on a HAR in maintenance mode. This command, unlike Monitor Broadcast, uses the regular control phone line of the HAR. So monitoring a slot delays other maintenance activities on the HAR as long as the monitor operation continues, and this command can affect the Operational Status of the HAR. This command is queued on the CommandQueue and is executed asynchronously. When the CommandQueue later executes the command, the data is recorded from the HAR and then streamed back to the user via the PushAudioConsumer (served by the GUI) passed in on the original request.

[image: image151.emf]If pushAudio returns

false, it means user

doesn't want rest of

audio. No reason to

pushFailure or

 pushCompleted,

consumer already

knows it's over.

Completes cmdStatus if nec.

HAR Status hasn't

really changed, but

we now know at

least one client is

confused about the

state of the HAR.

Push an event to

get everybody in

synch.

PushEventSupplier

(HAR Control)

OperationsLog

slot - the word "slot"

harOneUpNum - unique non-persistent one-up

 number assigned by HARFactory

 on startup or HAR creation

harName - helps for human readability

 the word "HAR" + har name with spaces

 and dots replaced with underbars

slotNum - the word "slot" + slot passed in

wav - the word "wav" (the file extension)

FileInputStream

Completes cmdStat on failure, also updates,

persists, and pushes status if necessary.

See HARControlModule:handleOpStatus.

AudioPushConsumer

FmsGetConnectedPort calls handleOpStatus

on failure completes cmdStat, and updates,

persists, & pushes status if necessary.

See HARControlModule:fmsGetConnectedPort.

ORB

HARImpl

CommandStatus

CommandQueue

HARMonitorSlotCmd

ISSAP55HARProtocolHdlr

CommandQueue executes

command asynchronously.

VoicePort

[failure]

[failure]

pushAudio

fmsGetConnectedPort(true)

[failure]

delete file

construct fileName

slot.harOneUpNum.harName.slotNum.wav

verifyNoResourceConflict

[resource conflict]

[resource conflict]

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

push(HARStatusChanged)

[no rights]

log

[monitor slot] log

delete file

close

[EOF]

pushCompleted

[error]

pushFailure

[error]

completed("failure")

read(byte array of length maxChunkSize)

[failure]

delete file

[failure]

close

[failure]

fmsReleasePort(true)

[failure on monitorSlot]

[failure on monitorSlot]

[*while no error

and no EOF and

pushAudio rtns true]

pushAudioProperties

execute

handleOpStatus(result, cmdStatus)

[failure getting port]

[failure getting port]

monitorSlotImpl

monitorSlot(port, fileName, slotNumber, seconds)

[EOF]

completed

[not in maint mode]

completed

update

monitorSlot

[no rights]

AccessDenied

[no rights]

completed

[failure]

[failure]

completed("could not open file...")

create

[not in maint mode]

CHART2Exception

[not in maint mode]

completed

create

addCommand

update("queued")

[not in maint mode]

[not in maint mode]

[failure]

completed

Figure 149. HARControlModule:MonitorSlot (Sequence Diagram)

3.1.11.29 HARControlModule:MsgNotfierDeactivated (Sequence Diagram)

This method is called by a HARNotifier (SHAZAM or DMS) which displaying a HAR notice. The HARNotifier makes this call on its associated HAR as the notifier is being deactivated autonomously (not under control of the HAR, for instance, if a user takes the notifier into another mode). This allows the HAR to update its list of active notifiers.

[image: image152.emf]m_data:

HARData HARImpl

HARMessageNotifier

This call can be made only by a

HARMessageNotifier itself, not a

user. This call will be made when

a user entirely removes a notifier

from the system. A notifier will have

a special system right to allow it to

call msgNotifierRemoved().

OperationsLog

[notifier was active]

log("notifier deactivated by user")

[notifier currently active]

remove notifier from

m_data.m_notifiersCurrentlyActive

msgNotifierDeactivated(token, notifierID)

[no rights]

AccessDenied

[no rights]

log

Figure 150. HARControlModule:MsgNotfierDeactivated (Sequence Diagram)

3.1.11.30 HARControlModule:MsgNotifierRemoved (Sequence Diagram)

This method is called by a HARNotifier (SHAZAM or DMS) on its associated HAR as the notifier is being entirely removed from the system. This allows the HAR to update its list of associated notifiers (and, if necessary, its list of currently active notifiers).

[image: image153.emf][notifier was on m_config.m_msgNotifiers list]

log("notifier disassociated (removed)")

PushEventSupplier

(HARControl)

m_config:

HARConfiguration

m_data:

HARData HARImpl

HARMessageNotifier

This call can be made only by a

HARMessageNotifier itself, not a

user. This call will be made when

a user entirely removes a notifier

from the system. A notifier will have

a special system right to allow it to

call msgNotifierRemoved().

OperationsLog

[notifier was active]

log("notifier deactivated (removed from system)")

[notifier was on m_config.m_msgNotifiers list]

push(HARConfigurationChanged)

remove notifier from

m_config.m_msgNotifiers

[notifier currently active]

remove notifier from

m_data.m_notifiersCurrentlyActive

msgNotifierRemoved(token, notifierID)

[no rights]

AccessDenied

[no rights]

log

Figure 151. HARControlModule:MsgNotifierRemoved (Sequence Diagram)

3.1.11.31 HARControlModule:PutInMaintenanceMode (Sequence Diagram)

A user with appropriate privileges can put a HAR in maintenance mode. When the HAR is going into maintenance mode from online, all SHAZAMs are automatically brought into maintenance mode along with the HAR, and this method can be called. (Going into maintenance mode from offline, putInMaintModeWithSHAZAMs must be called.) The HAR is blanked and its transmitter is turned off, and all SHAZAMs are requested by the HAR to go into maintenance mode as well. If there is a failure commanding the HAR, the status of the HAR is still marked as blank anyway, per requirement, and the device is still moved to the maintenance mode state.

[image: image154.emf]PushEventSupplier

(HAR Control)

push(HARStatusChanged)

cmdStat:

CommandStatus OperationsLog

[no rights]

completed

[no rights]

log

[already in maint mode]

completed("already in maint mode")

[no rights]

AccessDenied]

[already in maint mode]

[offline]

completed("list of SHAZAMs must be specified")

Even though HAR status

has not changed, in this

case it seems at least one

client is not in synch with

our actual status, so push

current status to all clients

just to be helpful.

There are two ways the client can request a HAR to go into maint mode. If the HAR is online, the client can call this CommEnabled interface

method putInMaintenanceMode(), which does not allow for specification of any SHAZAMs to drag along into maintenance mode, or the client can

call the HAR interface method putInMaintModeWithSHAZAMs(), which does allow specification of such a list. If the HAR is offline, this method

is not allowed, and the client must call putInMaintModeWithSHAZAMs() (an empty HARMsgNotifierIDList is allowed). This putInMaintenanceMode()

method is implemented by calling putInMaintModeWithSHAZAMs() with a all currently associated SHAZAMs on the HARMsgNotifierIDList.

ORB

HARImpl

[offline]

CHART2Exception

putInMaintenanceMode(token, cmdStat)

putInMaintModeWithSHAZAMs(token,

m_config.m_msgNotifiers, cmdStatus)

Figure 152. HARControlModule:PutInMaintenanceMode (Sequence Diagram)

3.1.11.32 HARControlModule:putInMaintModeImpl (Sequence Diagram)

This method executes the putInMaintenanceMode or putInMaintModeWithSHAZAMs interface methods when the command enqueued by one of those methods is executed by the CommandQueue. This method first sets the status of the HAR to indicate that it is blank, with transmitter off, and in maintenance mode, because the HAR is required to transition in that fashion regardless of the success of the rest of the operation. Next this method attempts to put the SHAZAMs specified (if any) into maintenance mode, and this method waits (up to a maximum time specified by the HAR property SHAZAMMaintTimeoutSecs) for the SHAZAMs to complete their transition. This method then attempts to contact the HAR and blank it and turn the transmitter off. Whether that action is successful or not, the HAR's status is already set to show it as being blank, with the transmitter off, and in maintenance mode.

[image: image155.emf]set transmitter off

notify("HAR status changed")

NotificationChannel

create

[success]

set transmitter state off

push(HARStatusChanged)

setStatus

set message to blank (default)

set commMode to maint

[failure]

handleOpStatus()

PushEventSupplier

HARControlDB

Per rqmt, HAR status is set to blank

with transmitter off even if comms

to the device fails, so mark it that

way now, in case we bail out early.

SyncCommandStatus

SHAZAM

Port

ReadWriteLock

HARImpl

HARSlotManager

Even on failure we go into maint mode anyway,

so set it now, in case we bail out early.

ISSAP55HARProtocolHdlr

This call is expected to be made before all SHAZAMs have finished going

into maint mode. WriteRequest returns when all SHAZAM processing is

done and every readComplete call has been made (or has timed out).

Do this only if at least

one ID passed in on

SHAZAMIDList is a

valid SHAZAM on our

m_msgNotifers list.

HARPutInMaintModeCmd

CommandQueue

CommandStatus

SHAZAM's putInMaintMode returns immediately,

then continues processing asynchronously.

fmsGetConnectedPort calls handleOpStatus on failure,

which completes cmdStat, & updates, persists, & pushes

status if necessary. See sequence diagram

HARControlModule:fmsGetConnectedPort for details.

m_status:

HARStatus

Notify any traffic events that were online that they are off the device.

writeRequest

remove(port,slot)

[success]

set message to default

[failure]

[there was a msg on HAR]

removeImmedMsg

handleOpStatus()

broadcastSlots(port, [2])

[*for each

HARMessageNotifierWrapper

matching SHAZAMIDList

passed in

which isSHAZAM()]

fmsGetConnectedPort(true)

[failure]

[*for each

immed slot

now in use

readComplete

[online &

there was msg on HAR]

requestSucceeded(null, false)

create

readRequest(SHAZAMMaintTimeoutSecs)

[finished processing]

completed

setStatus

push(HARStatusChanged)

[success getting port]

setTransmitterState(port, false)

putInMaintModeImpl(token,

SHAZAMIDList, cmdStat)

[failure]

[failure]

handleOpStatus()

[already maint mode]

[already in maint mode by now]

completed("already in maint mode")

completed

[failure in SlotManager]

putInMaintenanceMode(HARSvcToken, syncCmdStatus)

OperationsLog

[put in maint mode]

log

Figure 153. HARControlModule:putInMaintModeImpl (Sequence Diagram)

3.1.11.33 HARControlModule:PutInMaintModeWithSHAZAMs (Sequence Diagram)

A user with appropriate privileges can put a HAR in maintenance mode. When the HAR is going into maintenance mode from online, all SHAZAMs are automatically brought into maintenance mode along with the HAR, and the putInMaintenanceMode() method without a SHAZAM list can be called. When the HAR is going into maintenance mode from offline, the GUI displays a list of associated SHAZAMs which can be brought into maintenance mode along with the HAR, and this method is called instead. The HAR is blanked and its transmitter is turned off, and the specified SHAZAM are requested by the HAR to go into maintenance mode as well. If there is a failure commanding the HAR, the status of the HAR is still marked as blank anyway, per requirement, and the device is still moved to the maintenance mode state.

[image: image156.emf]Even though HAR status

has not changed, in this

case it seems at least one

client is not in synch with

our actual status, so push

current status to all clients

just to be helpful.

OperationsLog

CommandQueue

CommandStatus

HARImpl

PushEventSupplier

(HAR Control)

CommandQueue executes

command asynchronously.

ORB

For details, see sequence diagram

HARControl:putInMaintModeImpl.

HARPutInMaintModeCmd

[no rights]

completed

[already in maint mode]

completed("already in maint mode")

[already in maint mode]

push(HARStatusChanged)

[already in maint mode]

create

[put in maint mode with Shazam]

log("Command queued")

execute

addCommand

update("queued for processing")

putInMaintModeImpl

putInMaintModeWithSHAZAMs(token,

SHAZAMIDList, cmdStat)

[no rights]

AccessDenied

[no rights]

log

Figure 154. HARControlModule:PutInMaintModeWithSHAZAMs (Sequence Diagram)

3.1.11.34 HARControlModule:PutOnline (Sequence Diagram)

This is the implementation of the standard CommEnabled interface method PutOnline(), but it does not function for HARs. In order to put a HAR device online, a client must call putOnlineWithSHAZAMs(), which allows for specification of the SHAZAM devices to be moved into online mode along with the HAR. (The client can pass an empty list of SHAZAMs to that method, however.)

[image: image157.emf]CHART2Exception

This CommEnabled interface method putOnline must be implemented by this

class, but the method doesn't have to function...in fact, it does not. In order

to put a HAR online, the client must call putOnlineWithSHAZAMs() (although

when calling that method passing an empty list of SHAZAMs is allowed).

ORB

HARImpl

putOnline(token, cmdStatus)

Figure 155. HARControlModule:PutOnline (Sequence Diagram)

3.1.11.35 HARControlModule:putOnlineImpl (Sequence Diagram)

This method executes the actions necessary to put a HAR online, when the HARPutOnlineCmd gets to the top of the CommandQueue and is executed. PutOnlineImpl() collects all the audio data for all the HAR slots then dials the device and reloads all the slot data. If that is successful, the SHAZAMs passed into the method are put online, and this method waits (up to a maximum time specified by HAR property SHAZAMOnlineTimeoutSecs) for the SHAZAMs to go online. Finally this method sets the status of the HAR to online. If the reloading of all the slot data fails, neither the HAR nor the requested SHAZAMs are put online.

[image: image158.emf]fmsReleasePort(true)

set to online

create

putOnlineImpl(token,

SHAZAMIDList, cmdStat)

fmsGetConnectedPort(true)

[failure]

setStatus

[successfully set online]

checkDateStamps

verifyNoResourceConflict

[*for each

HARMessageNotifierWrapper

matching SHAZAMIDList

passed in

which isSHAZAM()]

readRequest(SHAZAMOnlineTimeoutSecs)

create

We set up the HAR when it is brought online because we don't know what

state it is in. It may have been powered off and lost all memory. Refer to

setupHAR sequence diagram for details. SetupHAR reloads all slots, enables

the default message, and sets transmitter on. Completes cmdStat on failure.

HARControlDB

Have been in offline or maint mode for a while. DateStamp is not updated in these

comm modes, so check now to see if it needs to be updated. See details

within HARControlModule:updateHARMesageDateTime sequence diagram.

PushEventSupplier

(HAR Control)

ReadWriteLock

PutOnlineCmd

HARImpl

CommandStatus

VoicePort

FmsGetConnectedPort calls

handleOpStatus on failure

completes cmdStat, and updates,

persists, & pushes status if necessary.

OperationsLog

Do this only if at least

one ID passed in on

SHAZAMIDList is a

valid SHAZAM on our

m_msgNotifers list.

This call is expected to be made before all SHAZAMs have finished going

online. WriteRequest returns when all SHAZAM processing is done and

every readComplete call has been made (or has timed out).

SHAZAM's putOnline returns immediately,

then continues processing asynchronously.

m_status:

HARStatus

PrepareAllWavFiles completes cmdStat on failure.

Returns SlotClipFileData[] array on success.

See HARControlModule:slotMgrPrepareAllWavFiles.

SlotClipFileData[]

HARSlotManager

SyncCommandStatus

SHAZAM

setupHAR(port,

slotClipFileData,

cmdStat, warnTxt)

push (HARStatusChanged)

[resource conflict]

completed

update("HAR xyz: putting online")

[already online by now]

completed

writeRequest

[finished processing]

completed

[already online]

[sucessfully set online]

evaluateQueue

putOnline(HARSvcToken, syncCmdStatus)

log

readComplete

prepareAllWavFiles(cmdStat)

[failure]

Figure 156. HARControlModule:putOnlineImpl (Sequence Diagram)

3.1.11.36 HARControlModule:PutOnlineWithSHAZAMs (Sequence Diagram)

This method serves as the replacement for the standard CommEnabled interface method putOnline(), which is non-functional for HARs (always immediately returns a CHART2Exception). When putting a HAR device online, a user must always specify a list of SHAZAMs (even if it is an empty list) to put online along with the HAR. This method is the method to be called with that list of SHAZAMs. This method queues up a HARPutOnlineCmd, which is executed later by the CommandQueue.

[image: image159.emf]PushEventSupplier

(HAR Control)

ORB

HARImpl TokenManipulator

CommandStatus

HARPutOnlineCmd

CommandQueue

CommandQueue processes

command asynchronously.

Even though HAR status

has not changed, in this

case it seems at least one

client is not in synch with

our actual status, so push

current status to all clients

just to be helpful.

OperationsLog

For details, see sequence diagram

HARControlModule:putOnlineImpl

[put on line with shazam]

log("Command queued")

[no rights]

log

[already online]

push(HARStatusChanged)

[no rights]

AccessDenied

putOnlineWithSHAZAMs(token,

SHAZAMIDList, cmdStatus)

[no rights]

completed

[already online]

 completed

checkAccess

[already online]

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

execute

putOnlineImpl

create

addCommand

Figure 157. HARControlModule:PutOnlineWithSHAZAMs (Sequence Diagram)

3.1.11.37 HARControlModule:Remove (Sequence Diagram)

A user with proper functional rights can remove a HAR from the system if the HAR is offline. The HAR delegates part of its removal to the HAR factory that created it. The HAR is withdrawn from the trader and disconnected from the ORB. The HARControlDB object is called to remove the HAR from the database, and the HAR is removed from the HAR factory's list of HARs. The HAR then deletes and recreates the CommandQueue to make sure there are no other commands queued up after it, then adds one more command, to clean up any clips still stored in the HAR. The HARRemovalCleanupCmd executes immediately afterward, and deregisters interest in any clips left on the HAR, and also disassociates the HAR from all of its HARMessageNotifiers (if any). After the HARRemovalCleanupCmd has returned, it is removed from the CommandQueue, which allows the HAR and its associated data (including the new CommandQueue) to be garbage collected.

[image: image160.emf]HARMessageNotifier

[for each notifier in m_config.m_msgNotifiers]

setAssociatedHAR(token, null, nullID)

shutdown

add

create

create

push(HARRemoved)

log("HAR deleted...")

[not offline]

push(HARStatusChanged)

shutdown

[*for

each

slot]

notify("HAR removed")

[improper rights] log

[not offline]

CHART2Exception

[improper rights]

AccessDenied

"remove from list"

deleteHAR

deactivate_object

withdraw_using_constraint

removeHAR

remove

HAR Status hasn't

really changed, but

we now know at

least one client is

confused about the

state of the HAR.

Push an event to

get everybody in

synch.

PushEventSupplier

(HAR Control)

Shut down the new CommandQueue.

Once removalCleanupImpl() returns,

the HARRemovalCleanupCmd, the

CommandQueue, and HAR are no

longer referenced and are ready

for garbage collection.

HARMessageClip

HARSlotManager

Return to user,

then continue

processing (via

CommandQueue)

to complete our

cleanup activity.

Shut down existing CommandQueue and start up a new one.

This effectively purges the CommandQueue. We don't want

any other commands queued up to execute, because this

HAR is (virtually) gone now.

CommandQueue

CommandQueue

HARRemovalCleanupCmd

Note: It is possible (but unlikely) that

the HAR Service could be terminated

immediately after remove() returns, so

that the removalCleanupImpl() method

might not run to completion. There is

no attempt made to persist this state.

If such occurs, the AudioClipService's

cleanup timer task will detect the

straggling audio clip registrations.

OperationsLog

NotificationChannel

See sequence diagram

HARControlModule:DBdeleteHAR

for details.

CosTrading.Register

POA

HARControlDB HARFactoryImpl

HARImpl

ORB

[*for each

clip in

slot]

[clip is audio clip]

deregisterInterest(this)

deregisterAllClips

removalCleanupImpl

execute

Figure 158. HARControlModule:Remove (Sequence Diagram)

3.1.11.38 HARControlModule:RemoveEntry (Sequence Diagram)

The removeEntry method defined in the ArbitrationQueue interface is used to dequeue a message for a HAR when it is no longer needed by the originating traffic event. This method delegates the storage of the queue to a MessageQueue object, so the request is passed down to the MessageQueue. Then, if the HAR is online, the evaluateQueue() method is called to determine whether the removal of this entry should result in a new message being placed on the HAR. The details of the HARArbitrationQueueImpl's evaluateQueue processing are shown in the HARControlModule:evaluateQueue sequence diagram. RemoveEntry can be called while the HAR is in any mode. (If the HAR is not online, the message will already be off (or may have never been on) the device.)

[image: image161.emf]OperationsLog

MessageQueue

See sequence diagram

DeviceUtility/MessageQueue:removeEntry

for details.

NotificationChannel

ResponsePlanItem

HAR

Refer to the HARControlModule:evaluateQueue

sequence diagram for details.

[not online]

removeEntry(token, entry)

[no rights]

AccessDenied

[no rights]

log

[remove entry] log

removeEntry

evaluateQueue

notify(ArbQueueEntryList)

getEntries

[success]

SpecifiedObjectNotFound

[not found]

SpecifiedObjectNotFound

Figure 159. HARControlModule:RemoveEntry (Sequence Diagram)

3.1.11.39 HARControlModule:requestFailed (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode fails. There are two possible scenarios on a failure: either the message being replaced is still there, unchanged, or if the action partially succeeded then failed, there may now be NO message on the device. This method provides proper notifications to all interested traffic events depending on the two possible scenarios. All traffic events get some kind of notification in any case.

[image: image162.emf]Note: This provides an indication to each traffic event which was on the device that the message has

been deleted due to a comms error. This notification is sent regardless of whether any particular

traffic event was attempting to change its message. (It may be that a new combined message was

supposed to be sent to the device for an unrelated traffic event, but regardless of the intiating event,

all traffic events are now off the device anyway.

Note: This provides an indication to each traffic event which was on the device that the current

message remains on the device due to a comms error. This notification is sent regardless of

whether any particular traffic event was attempting to change its message. (It may be that a new

combined message was supposed to be sent to the device for an unrelated traffic event, but

regardless of the intiating event, all traffic events get this notification just in case they wanted the

change.

New message, not currently on device, was

supposed to go to device but failed, not there.

newEntries list

could be empty

if called after

attempt to blank.

Get all new list of

entries, with all

status updated.

MessageQueue

NotificationChannel

Notifies only those entries not

already handled above.

ArbQueueEntry

HARImpl

HARImpl

Message was supposed to go off the device

anyway, so no failure from it's point of view.

A new message failed to

go to the device. If

oldMsgStillUp is false, old

message was removed

in the process - a double

tragedy (of sorts).

Old Msg still

on the HAR

Old Msg is off

the HAR

Message was supposed to go off the device,

but it is still there.

requestFailed(newEntries, oldMsgStillUp)

[oldMsgStilUp true]

[*for each entry

on m_activeEntries]

[this entry not on newEntries list]

setInactive("removed")

[this entry on newEntries list]

setInactive("failure setting new msg, msg gone")

[this entry not on m_activeEntries list]

setFailed("could not put msg on device")

[oldMsgStillUp false]

[*for each entry

on m_activeEntries]

[this entry not on newEntries list]

setFailed("could not be removed")

[this entry on newEntries list]

setFailed("Message update failed, current msg still there")

set m_needsReevaluation true

getEntries

notify(ArbQueueEntryList)

notify("request failed")

[oldMsgGone]

clear m_activeEntries list

[*for each entry on

newEntries]

Figure 160. HARControlModule:requestFailed (Sequence Diagram)

3.1.11.40 HARControlModule:requestSucceeded (Sequence Diagram)

This helper method is called whenever a request regarding setting or blanking a message in online mode completes successfully. This method provides proper notifications to all interested traffic events: Those which were active but aren't anymore, those which were active and are still active (whether the message changed or not), and those which weren't active before but are now. The list of ArbQueueEntry objects which have just become active are stored with the HAR. These are a copy of the objects on the MessageQueue which caused the new message to go active. This separate list of active ArbQueueEntry objects is necessary because the entries on the MessageQueue could be changed or deleted at any time, and the HAR needs to maintain the list of entries actually active on the device until their message is actually removed.

[image: image163.emf]newEntries list

could be empty

if called after HAR

was blanked.

Get all new list of

entries, with all

status updated.

MessageQueue NotificationChannel

HARImpl

HARImpl

Note: This provides an indication to each traffic event which was on the device

and is still on the device that the message on the device is changed. It may be

that a new combined message was sent to the device for an unrelated traffic

event, but this notification is provided to all traffic events regardless of whether

the message for that traffic event actually changed or not

ArbQueueEntry

getEntries

notify(ArbQueueEntryList)

notify("request succeeded")

store newEntries on

m_activeEntries list

[*for each entry on

newEntries]

[this entry not on m_activeEntries list]

setActive

[*for each entry

on m_activeEntries] [this entry also on newEntries list]

setUpdated

[this entry not on newEntries list]

setInactive

requestSucceeded(newEntries)

Figure 161. HARControlModule:requestSucceeded (Sequence Diagram)

3.1.11.41 HARControlModule:Reset (Sequence Diagram)

A user with the proper functional rights can reset the HAR controller when the HAR is in maintenance mode. A reset command is issued to the HAR controller which erases all stored data in the HAR. The setupHAR method is then called automatically to restore the data (clips, etc) that are currently configured to reside on the HAR. Refer to the setup sequence diagram for details on the setupHAR call.

[image: image164.emf]NotificationChannel

notify("HAR reset")

Completes cmdStat

on failure

Port

HARSlotManager

Refer to sequence diagram

HARControlModule:setupHAR

for details. This call performs

the setup of the HAR controller,

pushes an event, persists the

state of the HAR, and marks

the command status as completed.

VerifyNoResourceConflict completes

CommandStatus if conflict found.

CommandStatus HARImpl

ORB

CommandQueue executes

command asynchronously.

VerifyNoResourceConflict completes

CommandStatus if conflict found.

ISSAP55HARProtocolHdlr

HARResetCmd

OperationsLog

CommandQueue

verifyNoResourceConflict

[resrc conflict]

verifyNoResourceConflict

[resource conflict]

ResourceControlConflict

[no rights]

log

log("HAR reset by...")

[resource conflict]

[no rights]

completed

[no rights]

AccessDenied

[failure]

[failure]

fmsGetConnectedPort(true)

[failure]

[reset failure]

handleOpStatus()

[not maint mode]

[not maint mode]

fmsReleasePort(port, true)

[failure]

prepareAllWavFiles(cmdStat)

create

[not in maint mode]

completed

[not in maint mode]

CHART2Exception

setupHAR(port, allWavFileList

cmdStat,warnTxt)

[reset failure]

execute

reset

[no longer in maint mode]

completed

reset(port)

resetImpl

update

addCommand

Figure 162. HARControlModule:Reset (Sequence Diagram)

3.1.11.42 HARControlModule:restoreHAR (Sequence Diagram)

This Sequence Diagram shows how a HARImpl is initialized (whether being depersisted or created from scratch). If the HAR is being depersisted, after the MessageQueue is depersisted, the MessageQueue method validateEntries() is called to attempt to contact the TrafficEvent IDs on the list to validate their existence. If not in recovery mode, this is the only chance the TrafficEvents get. If still within the recovery mode, another attempt to contact the traffic events will be made when the recovery period is over. This diagram also shows a summary of what happens when an entry is added to or reprioritized in the message queue during recovery mode, and what happens when the recovery mode period expires.

[image: image165.emf]If a Traffic Event is added or reprioritized while the DMS is in recoveryMode, the following occurs. (Summary provided here, see HARControlModule:AddEntry and ChangePriority for full details).

If addEntry or changePriority request is valid, and we are in recovery

mode, at this point our hand is forced, we better give all traffic events

one last chance to validate themselves and then we purge any

traffic events we still haven't heard from.

HARSlotManager

ISSAP55HARProtocolHdlr

VoicePortLocator

When the RecoveryTimerTask calls a HAR which discovers that its recovery period has just expired, the following occurs. (Summary provided here, see HARControlModule:runRecoveryTimerTask also.)

HARImpl

HARFactoryImpl

HARControlDB

MessageQueue

HARControlDB

TrafficEvent

Create 2 VoicePortLocators,

one for programming, one

for monitorBroadcast().

recoveryMode

initialized to

false

VoicePortLocator

CommandQueue

HARControlDB creates HARImpl objects via depersistence and also as

new HAR objects are created by operators. In the latter case (distinguishable

via parameter list) recovery timer processing is not relevant.

If validateEntries() returns true, all entries were resolved.

There is no unresolved stuff to recover, so we no longer

need to be in recoveryMode now.

If we are depersisting, but we are not supposed to be in recovery mode and we called validateEntries

only to be nice, we purge any entries we could not recover right now.

Returns true if all entries have now been validated (positively or negatively).

Returns false if one or more entries still have unknown status (could not be contacted).

Even if we are beyond the recovery time, to be nice

we still give the ArbQueueEntries this one chance to

be validated. Any that fail here right now are purged.

AudioClipManagerWrapper

Two CommandQueues, one for

control activities, one for

monitorBroadcast.

CommandQueue

validateEntries

addEntry or changePriority

create

HARImpl

[being depersisted]

getTimeDown

[being depersisted & timeDown within recovery period]

recoveryMode = true

create(ID, depersisting flag)

create

addEntry or changePriority

[depersisting]

validateEntries

[validateEntries rtnd true]

recoveryMode = false

[recoveryMode true && validateEntries rtnd false]

purgeUnresolvedEntries

[recoveryMode == true]

validateEntries

create(depersisting flag)

create

create

[invalid request]

exception

[depersisting]

depersist

[depersisting &

recoveryMode false & validateEntries rtnd false]

purgeUnresolvedEntries

purgeUnresolvedEntries

create

run

getSlotData

create

run

create

set recoveryMode false

set recoveryMode

Figure 163. HARControlModule:restoreHAR (Sequence Diagram)

3.1.11.43 HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedHARTask object executes its task when directed to run by the Java Timer object. The run() method of CheckForAbandonedHARTask gets the controlling op center of each HAR and builds a list of OperationsCenter objects with control one or more signs. Each OperationsCenter is then queried for the number of users logged in. If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledControlledResources event is pushed into the event channel.

[image: image166.emf]OperationsCenter

CosTrading.Lookup

HARImpl

HARFactoryImpl

java.util.Timer

OperationsLog

CheckForAbandonedHARTask

PushEventSupplier

checkForAbandonedHAR()

[no users]

push (UnhandledControlledResourcesEvent)

run()

[*for each

op ctr

which

controls

at least

one HAR]

getNumLoggedInUsers

[*for each HAR]

getControllingOpCenter

[*for each unique op ctr ID]

query(op center where ID = op center IDs)

[no users]

log

Figure 164. HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)

3.1.11.44 HARControlModule:runRecoveryTimerTask (Sequence Diagram)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process. During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called. This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the HAR Service last went down, an essential piece of information for recovery during HAR Service startup. When the HAR Service has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkHARRecovery) which requests all HAR objects to check and see if their recovery period has expired. (The recovery period is defined via system-wide constant (on the order of 10-15 minutes.) Each HAR can terminate its recovery period independently of the others. If a HAR manages to contact all of its TrafficEvents prior to normal expiration of its recovery period, its recovery period can end prematurely. A HAR's recovery period also ends prematurely if there is any change to its MessageQueue (a call to add or remove or reprioritize an entry). When all HARs have terminated their recovery period, checkHARRecovery is no longer called.

When each HAR checks its own recovery time, if it finds that it has just now exceeded the recovery period, based on time, it calls its message queue to take one last try at resolving traffic events on its queue and, if the device is online, calls evaluateQueue to make a determination as to what message, if any, belongs on the device, and to queue a command for the HAR to set or blank its message as necessary.

[image: image167.emf]Expiration of recovery

mode already reported

(or HAR was never in

recovery mode).

In this case the recovery period has just expired,

but had not been detected as expired previously.

This gives the unresolved TrafficEvents one last

chance to make contact, and the device is set with

a message or blanked, as appropriate.

MessageQueue

java.util.Timer

RecoveryTimerTask

recoveryMode initialized to true in RecoveryTimerTask constructor.

HARFactoryImpl

[online]

evaluateQueue

validateEntries

return(false)

[*for each

HAR]

checkRecoveryTime(timeDown)

write current time

to HARTimestamp

file

[recoveryMode == false]

(return)

[recoveryMode == true]

checkHARRecovery

(timeDown)

run()

recoveryMode = false

[all HARs returned false]

return(false)

return(true)

set recoveryMode

according to

return value

HARImpl

purgeUnresolvedEntries

[still within recovery period]

return(true)

[recoveryMode == false]

return(false)

Figure 165. HARControlModule:runRecoveryTimerTask (Sequence Diagram)

3.1.11.45 HARControlModule:runUpdateDateTimeFieldsTask (Sequence Diagram)

HAR Text messages can contain a tag ("<DATESTAMP>") that is to be substituted with a textual reference to the day (e.g., "Tuesday, July 14") when the Text To Speech translation is performed. Any text containing this tag must be updated on the HAR shortly after midnight each night. This sequence diagram shows the processing involved in the automated substitution and message setting. This automated process involves telling each HAR object to update any datestamped clips currently stored on the HAR. If necessary, the HAR puts a command on its command queue and the command is executed asynchronously. When the command is executed, the appropriate clip (or clips) are re-downloaded to the HAR and in the process, the Text To Speech will insert the appropriate spoken words will replace the date/time field as the audio is collected for the download process.

[image: image168.emf]UpdateDateTimeFieldsTask

[*for each

slotClipFileData

element

while no failure]

m_data:

HARData

VoicePort

fmsGetConnectedPort calls handleOpStatus on failure,

which completes cmdStat, & updates, persists, & pushes

status if necessary. See sequence diagram

HARControlModule:fmsGetConnectedPort for details.

slotClipFileData:

SlotClipFileData

slotClipFileDataVect:

Vector

HARMessageClip

CommandQueue executes

command asynchronously.

This task is designed to be

run every day at shortly

after midnight.

Note:

scheduleAtFixedRate() to

avoid drifting over time, with

the first firing to occur at

DateStampRefreshTimeOfDay

of the next day.

CommandQueue

HARRefreshDateStampCmd

HARFactoryImpl HARSlotManager HARImpl

fmsGetConnectedPort(true)

[failure]

[failure]

handleOpStatus

[failure]

[failure]

prepareWavFiles(

slotClipFileDataAry, null)

[failure]

[no datestamps found]

set m_lastDateStampUpdateTime to now

[no datestamps found]

[no datestamps found]

add to Vector

[text contains "<DATESTAMP>"

create with slot, clip

create

[clip instanceOf HARMessageTextClip]

text contains "<DATESTAMP>"

[*for each slot

in HARSlotData

with data in it]

toArray

fmsReleasePort(true)

[all store() calls successful]

set m_lastDateStampUpdateTime to now

addCommand

[device not online]

[*for each slotClipFileData]

store(port, slotClipFileData[i])

execute

create

[no clips have

datestamp field]

refreshDateStamp

[* for each

HARImpl]

checkDateStamps

checkDateStampUpdates

Figure 166. HARControlModule:runUpdateDateTimeFieldsTask (Sequence Diagram)

3.1.11.46 HARControlModule:SetConfiguration (Sequence Diagram)

A user with the appropriate privileges can set the configuration of the HAR. The HAR must be in maintenance mode when setting the configuration. The command is processed asynchronously by the CommandQueue. When the command reaches the top of the queue, the HARImpl's setConfigurationImpl() method is called to do the actual work.

[image: image169.emf][banned words exist]

DisapprovedMessageContent

[clip instanceof HARMessageTextClip]

checkForBannedWords

[*for each new clip among

new config's

default header, trailer, &

default message]

create

[not in maintenance mode]

completed

[no rights]

completed

[not in maintenance mode]

CHART2Exception

[no rights]

AccessDenied

setConfiguration

addCommand

HARImpl

ORB

DictionaryWrapper

See sequence diagram HARControlModule:setConfigrationImpl for details.

Validate configuration values, to include checking there there is

enough space on the HAR to store any new default header,

message, or trailer clips.

Command queue executes

command asynchronously

HARSetConfigurationCmd

CommandStatus

CommandQueue

OperationsLog

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

setConfigurationImpl

[no rights]

log

[set configuration] log

"validate config"

update("queued for processing")

[invalid config]

CHART2Exception

execute

Figure 167. HARControlModule:SetConfiguration (Sequence Diagram)

3.1.11.47 HARControlModule:setConfigurationImpl (Sequence Diagram)

This method is called by the HARSetConfigCmd when it reaches the top of the CommandQueue and is executed. This method does the work of updating the configuration of the HAR. Some configuration elements require communication to the device: the default header, trailer, and message. if any of these change, the audio data is collected by calling prepareWavFiles() on each of the default clips changed, then a connected port is acquired and used to download the new clip data into the HAR. This is accomplished by calling the HARSlotManager store() method. Any clips which are unable to be stored are set back to their original values. Because the configuration consists of many separate values that are set individually on the device, the possibility of partial success exists. When this occurs warning messages are given back to the user through the command status object and the configuration is set to reflect the partial success. If any data has ultimately changed, the new configuration is stored and persisted, and a HARConfigurationChanged event is pushed.

[image: image170.emf][nothing changed]

update m_config with newCfg data

[no CHART2Exception &

trailer different and port acquired]

store(port, trlrSlotClipFileData)

[hdr different and port acquired]

store(port, hdrSlotClipFileData)

update("updating config")

[no longer in maint mode]

completed

[no failure &

defaultMsg different and port acquired]

store(port, msgSlotClipFileData)

setConfigurationImpl

completed(success + warnTxt warnings)

[some or all of the configuration changes succeeded]

push(HARConfigurationChanged)

[some or all of the configuration changes succeeded]

setConfiguration

[failure]

CHART2Exception

[any control comm params (e.g. phone number) changed]

delete

[no longer in maint mode]

[any control comm params (e.g. phone number) changed]

create

SlotClipFileData

AudioClipManagerWrapper

HARSlotManager

Append warning to warnTxt in this case.

Different means: audio vs text, or if are both text, compare text string, or if both are audio, compare clip IDs.

newCfg:

HARConfiguration

PushEventSupplier

HARControlModuleDB

CommandStatus

VoicePort

m_portLocator:

VoicePortLocator

m_PortLocator:

VoicePortLocator

HARSetConfigurationCmd

m_config:

HARConfiguration

m_monitorPortLocator:

VoicePortLocator

Do if any of default header,

trailer, or default message

in new config are different.

m_monitorPortLocator:

VoicePortLocator

OperationsLog

On failure, calls handleOpStatus,

& updates, persists and pushes

status if necessary.

CommandStatus not completed.

Append warning to warnTxt

in any of these cases.

HARImpl

prepareWavFiles(slotClipFileData, cmdStat)

"set newCfg value to match existing m_config value"

fmsGetConnectedPort(true)

[failure getting port]

"set hdr, msg, trlr back to m_config's value"

[got CHART2Exception or NoSpaceAvailableException]

"set msg back to m_config's value"

[got CHART2Exception]

"set trlr, msg back to m_config's value"

[got CHART2Exception]

"set hdr, msg, trlr back to m_config's value"

[port acquired]

fmsReleasePort

[some or all of the config changes succeeded]

log("config changed by ..., list of changed params & new values)

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

create

[success]

slotClipFileData

[*for each default

hdr, trlr, msg different

from current config]

[any monitor comm params (e.g. phone number) changed]

create

[got NoSpaceAvailableException]

"set trlr back to m_config's value"

[got NoSpaceAvailableException]

"set hdr back to m_config's value"

[any monitor comm params (e.g. phone number) changed]

delete

[no new params different]

completed("nothing changed")

Figure 168. HARControlModule:setConfigurationImpl (Sequence Diagram)

3.1.11.48 HARControlModule:SetMessage (Sequence Diagram)

A user with proper functional rights can set a message on a HAR when it is in maintenance mode. A HARSetMsgCmd object, which knows how to request that a message be set on a HAR, is created. The HARSetMsgCmd is used in maintenance mode and online mode, so a flag in it is set to indicate that in this case it is a maintenance mode command. This command is passed to the CommandQueue to be processed asynchronously. When the HARSetMsgCmd comes to the top of the CommandQueue and is executed, it calls the setMessagImpl() method, which specifies the details of how the message is set. The message to be set may contain heavyweight HARMessageAudioClip objects (which contain actual audio data). These are left alone until they are about to be put on the HAR, at which time they are converted. These clips are inaccessible to other processes again until they go to the device, so, to minimize the work to be done they will not be converted until (and if) necessary. Converting a clip implies that the requester becomes an "owner" of the clip, but HAR does not really want to be responsible for owning the clip until it is (about to be) on the device itself.

[image: image171.emf]ORB

HARImpl CommandStatus

CommandQueue executes

command asynchronously.

Refer to sequence diagram

HARControlModule:setMessageImpl

for details.

CommandQueue DictionaryWrapper

HARSetMsgCmd

OperationsLog

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

[no rights]

log

[set message] log

[no rights]

AccessDenied

[no rights]

completed

[not in maint mode]

CHART2Exception

setMessageImpl

create

[banned words exist]

completed

addCommand

update("queued for processing")

execute

setMessage

[not in maint mode]

completed

[*for each Body clip

and non-default Header and Trailer

clip in message]

[HARMessageClip instanceof HARMessageTextClip]

checkForBannedWords

[banned words exist]

DisapprovedMessageContent

Figure 169. HARControlModule:SetMessage (Sequence Diagram)

3.1.11.49 HARControlModule:setMessageImpl (Sequence Diagram)

This sequence diagram shows the processing that occurs when a HARSetMsgCmd is executed from the command queue. This command can be placed on the queue as a maintenance command or as part of online processing, therefore some of the processing differs based on origination of the message. Refer to the notes on the diagram for details.

Prior to setting the message on the HAR, the audio data for the clips must be prepared for delivery to the HAR. The interface to the ISSAP55HARProtocolHdlr is via files, so all clips must now get their audio data into a file. This is done within a call to prepareImmedWavFiles(), which provides more details. Basically, any recorded voice clips that exist in the message are passed to the Audio Clip Service for storage and they are converted from the heavy weight HARMessageAudioDataClip objects (which contain the actual voice data) to lightweight HARMessageAudioClip objects, which contain a reference to a streamer that can provide the data when needed. These lightweight objects are used to pass voice clips throughout the system to avoid the bandwidth needed to pass the actual voice data. The actual voice data is only passed (via the streamer) when the actual voice data is needed for listening (by the end user) or for playing to the device. Messages that are set when the device is online through the addEntry method will already be converted to the lightweight audio clips before this method is invoked, so the processing done on the AudioClipManager shown on the diagram will only ever apply to messages set in maintenance mode.

Following any processing of voice data clips, the message is passed to the HARSlotManager to download the clip(s) to the appropriate slot(s) on the HAR device using the ISSAP55HAR object. The HARSlotManager keeps track of all slots in use on the HAR controller, including the clip in each slot and how the slot is being used (Immediate message, default message, etc.) The ISSAP55HAR object is used to carry out the communications to store each clip in its slot on the HAR device.

After the HARSlotManager has the clips stored into the HAR controller, a call is made to the ISSAPP55HAR object to have it command the HAR device to play the slot (or slots) that contain the immediate message, including default header/trailer as necessary, and prestored slots or previously store immediate slots, all in the right order as stored in the slotClipFileData list.

[image: image172.emf]notify

OperationsLog

log

Stop the current message

prior to download of new

message because we will

overlay into the same slot(s)

currently playing. Should be

redundant, but stop it just to

be sure.

HandleOpStatus to make sure final opStatus is set correctly, on success or failure.

Don't complete CommandStatus, it is completed below.

StoreImmedMsg may have had partial success (some slot data may have changed)

even if it fails, so persist and push current status on success or failure.

On failure, calls handleOpStatus, which completes cmdStat & updates, persists &

pushes status if necessary. See HARControlModule:handleOpStatus for details.

StoreImmedMsg may have had partial success (some slot data may have changed)

despite the failure return, so persist and push current status on failure before returning.

Port

ISSAP55HARProtocolHdlr

slotClipFileData

Completes cmdStatus on Failure

NotificationChannel

Deactivate message notifiers only for notifiers currently on which are not requested to be on in the new message.

(Any notifiers already on which need to stay on, just leave them on.)

See sequence diagram HARControlModule:handleMaintNotifierActivation for details.

Deletes all wav files on success or failure.

See sequence diagram

HARControlModule:slotMgrStoreImmedMsg

for details.

Adds traffic event log entry, updates RPIs, and does

notify to NotificationChannel. See sequence diagram

HARControlModule:requestSucceeded for details.

Adds traffic event log entry, updates RPIs, and does

notify to NotificationChannel. See sequence diagram

HARControlModule:requestFailed for details.

CommandStatus

Activate message notifiers only for notifiers currently off which are requested to be on in the new message.

(Any notifiers which were already on are still on, no need to change them.)

See sequence diagram HARControlModule:handleMaintNotifierActivation for details.

Activate message notifiers only for notifiers currently off which are requested to be on in the new message.

(Any notifiers already on which were already on are still on, no need to change them.) Update Notifers not

changed to add any new traffic events to their active traffic event information.

See sequence diagram HARControlModule:handleOnlineNotifierActivation for details.

Deactivate message notifiers only for notifiers currently on which are not requested to be on in the new message.

(Any notifiers already on which need to stay on, just leave them on.) Update Notifers not changed to update their

active traffic event information.

See sequence diagram HARControlModule:handleOnlineNotifierActivation for details.

HARSetMsgCmd

HARImpl

HARControlModuleDB

PushEventSupplier

(HARControl)

HARSlotManager

It's an opStatus change if we got a CHART2Exception.

 If we got a NoSpaceAvailableException that's not a change to our OpStatus.

Completes cmdStat on failure and updates, pushes, persists status if necessary.

See HARControlModule:handleOpStatus for details.

m_status:

HARStatus

[HARMessage contains any non Prestored clips]

prepareImmedWavFiles(HARMessage, cmdStat)

setStatus

push (HARStatusChanged)

notify("communicating with device")

[failure]

notify("failure...")

storeImmedMsg(port, HARMessage, slotClipFileData)

fmsGetConnectedPort(true)

[failure]

delete wav files

[failure]

delete wav files

completed

broadcastSlots(port, slots in order as in slotClipFileData)

[resource conflict]

ResourceControlConflict

[maint mode set msg]

verifyNoResourceConflict

[failure]

[online set msg]

handleOnlineNotifierDeactivation(

notifiers, newArbQueueEntries)

[If not blank and new HARMessage contains any non PreStored clips]

broadcastSlots(port, 0)

[SetMsgCmd that called me

== m_lastQueuedSetMsgCmd]

clear m_lastQueuedSetMsgCmd

fmsReleasePort(port, true)

notify("connecting to device")

[online set msg

AND failure]

requestFailed(entries, false)

[success]

set current message state

[online set message AND no longer online]

completed

[maint mode set msg]

handleMaintNotifierActivation(notifiers)

[failure]

fmsReleasePort(port, true)

[failure]

fmsReleasePort(port, true)

[success]

update current message state

[maint mode set message AND no longer in maint mode]

completed

setMessageImpl

[failure]

[failure]

[wrong mode]

[failure]

push(HARStatusChanged)

[wrong mode]

[failure]

setStatus

[failure]

[online set msg

AND no longer online]

requestFailed(entries, true)

[online set msg

AND failure]

requestFailed(entries, false)

[online set msg

AND failure]

requestFailed(entries, false)

handleOpStatus

[failure]

handleOpStatus()

[maint mode set msg]

handleMaintNotifierDeactivation(notifiers)

[online set msg

AND failure]

requestFailed(entries,true)

[failure is CHART2Exception]

handleOpStatus()

[online set msg

AND success]

requestSuccessful(entries)

[online set msg]

handleOnlineNotifierActivation(

notifiers, newArbQueueEntries)

Figure 170. HARControlModule:setMessageImpl (Sequence Diagram)

3.1.11.50 HARControlModule:SetTransmitterOff (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter off when the HAR is in maintenance mode. A HARSetTransmitterStateCmd is queued onto the CommandQueue and setTransmitterOff returns. Later, when the command reaches the top of the CommandQueue and is executed, the setTransmitterState() method is called, which connects to the device and sets the transmitter state as specified.

[image: image173.emf]ORB

HARImpl CommandStatus

See setTransmitterState() details within

HARControlModule:SetTransmitterOn

sequence diagram.

CommandQueue executes

command asynchronously.

CommandQueue

HARSetTransmitterStateCmd

OperationsLog

[set transmitter off] log

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

[no rights]

log

[not in maint mode]

CHART2Exception

[not in maint mode]

completed

create

addCommand

update

setTransmitterState(false)

execute

setTransmitterOff

[no rights]

AccessDenied

[no rights]

completed

Figure 171. HARControlModule:SetTransmitterOff (Sequence Diagram)

3.1.11.51 HARControlModule:SetTransmitterOn (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter on when the HAR is in maintenance mode. A HARSetTransmitterStateCmd is queued onto the CommandQueue and setTransmitterOn returns. Later, when the command reaches the top of the CommandQueue and is executed, the setTransmitterState() method is called, which connects to the device and sets the transmitter state as specified.

[image: image174.emf]HARControlModuleDB

ORB

HARImpl CommandStatus

OperationsLog

Completes CommandStatus if conflict found.

Completes CommandStatus if conflict found.

We don't check to

make sure the desired

state is opposite to what

we think the current state

is. Since we can't read

the device, we never

know for certain, so let

users try to set it again.

CommandQueue

HARSetTransmitterStateCmd

ISSAP55HARProtocolHdlr

PushEventSupplier

(HAR Control)

CommandQueue executes

command asynchronously.

VoicePort

FmsGetConnectedPort calls handleOpStatus

on failure completes cmdStat, and updates,

persists, & pushes status if necessary.

[success setting state & new state different]

log("transmitter turned on-off by ...")

[resource conflict]

ResourceControlConflict

fmsGetConnectedPort(true)

handleOpStatus(result, cmdStatus)

[failure getting port]

[failure getting port]

execute

[success setting state & new state different]

setHARStatus

[success setting state & new state different]

push (HARStatusChanged)

setTransmitterState(true)

setTransmitterState(port, desiredState)

completed

[no longer in maint mode]

completed

update

setTransmitterOn

[no rights]

AccessDenied

[no rights]

completed

[not in maint mode]

CHART2Exception

[not in maint mode]

completed

create

addCommand

update

[no longer in maint mode]

[no longer in maint mode]

verifyNoResourceConflict

[no rights]

log

fmsReleasePort(true)

[resource conflict]

[resource conflict]

verifyNoResourceConflict

NotificationChannel

[success setting state & new state different]

notify

Figure 172. HARControlModule:SetTransmitterOn (Sequence Diagram)

3.1.11.52 HARControlModule:Setup (Sequence Diagram)

The setup command causes a HARSetupCmd to be enqueued on the CommandQueue, which is later executed when the command comes to the top of the CommandQueue. At that time, the setupImpl() method is called. This method involves re-sending the current setup (as known in Chart II) to the HAR device. This includes setting the configurable parameters on the HAR, downloading all messages that are to be stored in slots on the HAR, setting the HAR to its default message, and turning the transmitter on. Because this involves many steps, it is possible that only partial success is achieved. In this case, flags are used to keep track of which parts failed and an appropriate status message is relayed to the end-user via the command status object. Most of the work is performed by the setupHAR() method, a helper method also called by a variety of other HAR methods.

[image: image175.emf]fmsGetConnectedPort(true)

setupHAR(port,

slotClipFileData

cmdStat, warnTxt)

[failure]

[failure]

SlotClipFileData

Refer to sequence diagram

HARControlModule:setupHAR

for details. This call performs

the setup of the HAR controller,

pushes an event, persists the

state of the HAR, and marks

the command status as completed.

VoicePort

FmsGetConnectedPort calls handleOpStatus

on failure completes cmdStat, and updates,

persists, & pushes status if necessary.

OperationsLog

Completes CommandStatus if conflict found.

Completes CommandStatus if conflict found.

PrepareAllWavFiles completes cmdStat

on failure. Returns SlotClipFileData[] array

on success. See sequence diagram

HARControlModule:slotMgrPrepareAllWavFiles.

ORB

HARImpl

CommandStatus

CommandQueue executes

command asynchronously.

HARSlotManager

CommandQueue

HARSetupCmd

[setup] log

[resource conflict]

[resource conflict]

verifyNoResourceConflict

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

[no rights]

log

prepareAllWavFiles(cmdStat)

setupImpl

execute

[no longer in maint mode]

[no longer in maint mode]

[no longer in maint mode]

completed

setup

[no rights]

AccessDenied

[no rights]

completed

[not in maint mode]

CHART2Exception

[not in maint mode]

completed

create

addCommand

update("queued")

fmsReleasePort(port, true)

[failure]

[failure]

Figure 173. HARControlModule:Setup (Sequence Diagram)

3.1.11.53 HARControlModule:setupHAR (Sequence Diagram)

This helper method is used to set up the HAR. This is done in several situations, including on a user-initiated setup or reset maintenance mode command, or sometimes when changing modes. This method accepts a connected port and pre-prepared slotClipFileData, and sets the inter message spacing, downloads all slots, sets the default message as the current message, and sets the transmitter state according to the desired transmitter state passed in. Any failure terminates the process with a CHART2Exception.

[image: image176.emf]m_status:

HARStatus

[xmtrState != m_status.m_transmitterStateOn]

set transmitterStateOn to xmtrState

NotificationChannel

notify("HAR status changed")

Completes cmdStatus, updates, persists, and pushes status as necessary.

OperationsLog

This private method is called by setupImpl() on a user setup command, by

resetImpl() on a user reset command, and by putInMaintModeImpl and

putOnlineImpl when establishing comms to a HAR for the first time. All

checks for rights, proper mode, valid config, etc., have already been done.

PushEventSupplier

(DMSControl)

See sequence diagram

HARControlModule:slotMgrRestoreAll

for details.

ISSAP55HARProtocolHdlr

HARImpl

HARImpl CommandStatus HARControlDB HARSlotManager CommandQueue

CHART2Exception

handleOpStatus()

[failure]

HARProtocolException

[success]

handleOpStatus()

CHART2Exception

[failure]

CHART2Exception

handleOpStatus()

handleOpStatus()

CHART2Exception

[failure]

HARProtocolException

restoreAll(port, slotClipFileData, cmdStat)

log("HAR set up by ...")

[success]

setInterMessageSpacing(port, m_interMessageSpacing)

handleOpStatus()

[success]

CHART2Exception

[failure]

HARProtocolException

broadcastSlots(port, [2])

[success]

[status changed]

setStatus

[status changed]

push (HARStatusChanged)

setupHAR(port, slotClipFileData[],

xmtrState, cmdStatus, warnTxt)

update

setTransmitterState(port, xmtrState)

Figure 174. HARControlModule:setupHAR (Sequence Diagram)

3.1.11.54 HARControlModule:Shutdown (Sequence Diagram)

When the HARControlModule is shut down by the ServiceApplication, it stops its timer based processing, disconnects its objects from the ORB, and releases any resources it is using.

[image: image177.emf]NotificationChannel

PushEventSupplier

(Resource Management)

PushEventSupplier

(HARControl)

POA

java.lang.Vector HARFactoryImpl

java.util.Timer

HARControlModule

ServiceApplication

remove

deactivate_object

shutdown

cancel

disconnectPushConsumer

disconnectPushConsumer

deactivate_object

[*for each HAR]

shutdown

disconnectNotificationConsumer

Figure 175. HARControlModule:Shutdown (Sequence Diagram)

3.1.11.55 HARControlModule:slotMgrCollectWavFiles (Sequence Diagram)

This helper method collects audio ("wav") files for a list of clips which is about to be stored onto a HAR. The interface to the ISSAP55HARProtocolHdlr is via files. This method writes the wav file for each clip.

First, any recorded voice clips that exist in the message are passed to the Audio Clip Service for storage and they are converted from the heavy weight HARMessageAudioDataClip objects (which contain the actual voice data) to lightweight HARMessageAudioClip objects, which contain a reference to a streamer that can provide the data when needed. These lightweight objects are used to pass voice clips throughout the system to avoid the bandwidth needed to pass the actual voice data. While converting audio data clips to audio clips, the opportunity is taken to write the audio data to a file, while the data is right within the HAR process. This eliminates the need to stream it in the next loop.

Next, each remaining clip is now requested to stream its data to a WavFileWriter object, which is a simple AudioPushConsumer object created now for each clip. Each clip's streamer, be it a TTSConverter or an Audio Clip Manager, streams its data to the WavFileWriter, which accepts the data and writes it to a file. A ReadWriteLock object watches all this activity and provides as indication as to when all clips have been successfully streamed. A "read request" is registered with the ReadWriteLock for each clip whose audio data needs to be read (streamed), then a "write request" is made to request confirmation that the data is ready to be written to the HAR. The write request will not return until all clips have been successfully streamed (or have failed).

On any failure, all files are useless and are deleted. A success or failure indication is returned to the caller.

[image: image178.emf]store new audio clip in

slotClipFileData[i], in place

of old audio data clip

FileOutputStream

Do these steps if

clip instanceof

HARMessagAudioDataClip.

(Already have the audio

data, don't need to stream

it later, just write it right

now.)

Only the FileOutputStream object is deleted;

the file remains on the disk.

create

write(clip audio data bytes)

generate file name:

clip.harOneUpNum.harName.slotNum.wav

Store in slotClipFileData[i]

close

Only the FileOutputStream

object is deleted; the file

remains on the disk.

Called by prepareWavFiles,

prepareImmedWavFiles,

and prepareAllWavFiles.

Each clip calls

readComplete

when finished.

Programmer Note:

This call should be

in "finally" clause!

ReadWriteLock

AudioClipStreamer

HARMessageClip

FileOutputStream

WavFileWriter

HARSlotManager

HARImpl

This call is expected to be made before all clips

have finished. WriteRequest returns when all

clips have been read from the network and

stored in .wav files and every readComplete

call has been made.

clip - the word "clip"

harOneUpNum - unique non-persistent one-up

 number assigned by HARFactory

 on startup or HAR creation

harName - helps for human readability

 the word "HAR" + har name with spaces

 and dots replaced with underbars

slotNum - the word "slot" + slot passed in

wav - the word "wav" (the file extension)

cmdStat:

CommandStatus

Streamer returns

immediately,

then processes

asynchronously.

AudioClipManagerWrapper

HARMessageClip

readRequest

readComplete

writeRequest

slotClipFileData[] with fileNames filled in

[*until

done]

[any failure]

[failure]

CHART2Exception

[*for each clip in

slotClipFileData

while no failure]

[clip instance of HARMessageAudioDataClip]

storeAudioClip

[*for each clip in list]

[clip instance of HARMessageAudioClip]

registerInterest

[any failure]

[*for each clip just stored or registered]

deregisterInterest(clip, harID)

write(bytes)

pushAudio

pushAudioProperties

[*for each element of

slotClipFileData not already

written to file above]

update("waiting for audio data to be collected")

[any failure]

delete all

clip.harOneUpNum.*.slot.*.wav files

[any failure]

CHART2Exception

update(collecting audio data for slot" + slot)

create(fileName)

create(clip, fileName)

stream(writer)

stream(this)

go

[clip instanceof HARMessagePrestoredClip]

CHART2Exception

create

generate file name:

clip.harOneUpNum.harName.slotNum.wav

Store in slotClipFileData[i]

collectWavFiles(slotClipFileData[], cmdStat)

[failure]

delete file

close

[success]

pushCompleted

[failure]

pushFailure

[any failure]

completed

[any failure]

completed

[clip instanceof HARMessagePrestoredClip

completed

Figure 176. HARControlModule:slotMgrCollectWavFiles (Sequence Diagram)

3.1.11.56 HARControlModule:slotMgrPrepareAllWavFiles (Sequence Diagram)

This helper method prepares all clips stored in the HARSlotManager for re-downloading back into a HAR (during a setup or reset command, or sometimes when changing modes). In order to communicate the audio data to a HAR through the ISSAP55HARProtocolHdlr, each clip must have its audio data stored in a file. This method handles that for all clips previously stored on the HAR. This method creates and partially populates a slotClipFileData structure for each clip, storing data about the slot, clip, and usage for each, then it calls collectWavFiles(), another helper method, to actually collect the audio data and store it in a set of files. The names of the files created by collectWavFiles() are in array of slotClipFileData returned by collectWavFiles(). This array is returned to the caller. The collection of slot/clip/file data is now ready to be downloaded into the HAR.

[image: image179.emf]slotClipFileDataAry:

SlotClipFileData[]

SlotClipFileData

slotClipFileData:

Vector

m_status.m_slotData:

HARSlotData

Returns same slotClipFileData[] with

fileNames filled in.

HARSlotManager

HARImpl

slotClipFileDataAry

[failure]

CHART2Exception

[*for each slot with

clip currently

stored in it]

prepareWavFiles(slotClipFileData[])

create with slot, clip

create

get clip for this slot

add to Vector

toArray

prepareAllWavFiles(cmdStat)

Figure 177. HARControlModule:slotMgrPrepareAllWavFiles (Sequence Diagram)

3.1.11.57 HARControlModule:slotMgrPrepareImmedWavFiles (Sequence Diagram)

This helper method prepares all clips in a HARMessage for transmission to the HAR. In order to communicate the audio data to a HAR through the ISSAP55HARProtocolHdlr, each clip must have its audio data stored in a file. This method handles that for all clips in a message which are not already stored on the HAR. In many cases the header/trailer will be the default header/trailer already stored on the HAR, and in many cases dealing with combined messages on a HAR, some of the clips will be stored in an immediate slot and playing on the HAR already (in cases where that particular part of the combined message is not changing). This method creates and partially populates a slotClipFileData structure for each clip, storing data about the slot, clip, and usage for each part of the HARMessage, then it calls collectWavFiles(), another helper method, to actually collect the audio data and store it in a set of files. The names of the files created by collectWavFiles() are in the array of slotClipFileData returned by collectWavFiles(). This array is returned to the caller. The collection of slot/clip/file data is now ready to be stored (as necessary) and played on the HAR.

[image: image180.emf]This will cause the old heavyweight

audio data clips to be garbage collected.

store any audio clips

replaced in slotClipFileData

into HARMessage

CollectWavFiles returns slotClipFileData array

with file names filled in. Any audio data clips

will have been replaced by audio clips. For

details, see sequence diagram

HARControlModule:slotMgrCollectWavFiles

for details.

HARSlotManager

HARImpl

slotClipFileDataAry:

SlotClipFileData[]

slotClipFileData:

Vector

[not

already in HAR]

add next slotClipFileData with

m_slot set to next avail immed slot,

m_usage IMMED

[msg wants default hdr]

add slotClipFileData[0] with

m_slot 1, m_usage DEF HDR

create

collectWavFiles(slotClipFileData[], cmdStat)

toArray

[msg wants default trlr]

add slotClipFileData[n] with

m_slot 3, m_usage DEF TRLR

[clip already in a prestored or immed slot]

add next slotClipFileData with

m_slot &, m_usage set to match

slotClipFileDataAry

[failure]

CHART2Exception

[*for each clip in

non-default header,

body clips, &

non-default trailer]

add clip(s) to a clipList

prepareImmedWavFiles(HARMessage, cmdStat)

Figure 178. HARControlModule:slotMgrPrepareImmedWavFiles (Sequence Diagram)

3.1.11.58 HARControlModule:slotMgrPrepareWavFiles (Sequence Diagram)

This helper method prepares a clip for transmission to the HAR. In order to communicate the audio data to a HAR through the ISSAP55HARProtocolHdlr, a clip must have its audio data stored in a file. This method handles that for a single clip (for storing a slot message in maintenance mode). This method creates and partially populates a slotClipFileData array of length one for a single clip, storing data about the slot, clip, and usage. Then it calls collectWavFiles(), another helper method, to actually collect the audio data and store it in a file. The name of the file created by collectWavFiles() is in the one element of the array of slotClipFileData returned by collectWavFiles(). The one element of thi array is returned to the caller. The slot/clip/file data is now ready to be stored on the HAR.

[image: image181.emf]Return the first and only slotClipFileData

element of the array returned by collectWavFiles.

Passing one slotClipFileData as an array

of length one. CollectWavFiles() writes

a file for the clip and returns the same

array with the fileName field filled in.

HARSlotManager

HARImpl

collectWavFiles(slotClipFileData[], cmdStat)

slotClipFileData with fileName filled in

[failure]

CHART2Exception

prepareWavFiles(slotClipFileData, cmdStat)

Figure 179. HARControlModule:slotMgrPrepareWavFiles (Sequence Diagram)

3.1.11.59 HARControlModule:slotMgrRemove (Sequence Diagram)

This HARSlotManager method is used to delete a clip from a slot on the HAR. It calls deleteMessage on the ISSAP55HARProtocolHdlr to actually delete the message in the slot on the HAR, then it deregisters interest in the clip if it is an audio clip.

[image: image182.emf]HARMessageClip

m_status

m_status.m_slotData

ISSAP55HARProtocolHdlr

HARSlotManager

HARImpl

[clip instanceof HARMesageAudioClip]

deregisterInterest(harID)

"get slot data for this slot"

"store clip and usage in slot data for this slot"

end sychronize

[failure]

CHART2Exception

[failure]

HARProtocolException

deleteMessage(port, slot)

remove(port, slot)

synchronize

[success]

Figure 180. HARControlModule:slotMgrRemove (Sequence Diagram)

3.1.11.60 HARControlModule:slotMgrRestoreAll (Sequence Diagram)

This SlotManager method is used to store all clips in all slots back into the HAR device. This occurs on an operator-initiated setup or reset command, and sometimes when the HAR changes modes. When this method is called, the audio data has already been collected into files named in the slotClipFileData array passed in, and the port passed in is already connected to the HAR. This method calls recordMessage on the ISSAP55HARProtocolHdlr for each slot/clip/file provided in the slotClipFileData array. Any failure aborts the process.

[image: image183.emf]HARImpl

cmdStat:

CommandStatus

HARImpl

SlotManager

Called by HARControlModule:setupHAR.

ISSAP55HARProtocolHdlr

[failure]

completed("failed storing slot" + slot)

[failure]

handleOpStatus

[failure]

CHART2Exception

update("storing slot" + slot)

[*for each

slotClipFileData

element]

recordMessage(port, slotClipFileData[i].m_fileName, slotClipFil

eData[i].m_slot)

restoreAll(port, slotClipFileData[],

cmdStat)

Figure 181. HARControlModule:slotMgrRestoreAll (Sequence Diagram)

3.1.11.61 HARControlModule:slotMgrStore (Sequence Diagram)

This helper method is used by the HARSlotManager to store one clip in one slot. This may be for an immediate message to be immediately played on the HAR, or it may be for the default header, message, or trailer, or it may be for a prestored slot being stored now on the HAR for possible broadcast at a later time. This method first determines whether the clip will fit, based on the run time returned by the clip itself (which could be an estimate for a text clip which has never been previewed). If the clip is deemed not to fit, a NoSpaceAvailableException is returned, otherwise, the ISSAP55HARProtocolHdlr is used to record the message, stored in the file specified, to the HAR. If the slot previously had a clip in it, the HAR's interest in that clip is deregistered, if it is an audio clip. The slot data for the HAR is updated and the method returns.

[image: image184.emf]Since there is no way of acuiring status from the HAR to determine

if the download succeeded, this HARRuntimeSafetyMarginSecs is

a way of increasing the odds of success. This number provides

a buffer against the total runtime available on the HAR. It would be

extremely unwise to attempt to fill the HAR right to the exact second,

especially since the run time returned by a text clip can be only an

estimate.

HARMessageAudioClip

m_status

m_status.m_slotData

ISSAP55HARProtocolHdlr

HARSlotManager

HARImpl

On success

or failure.

HARControlDB

setSlotData

[clip will not fit]

NoSpaceAvailableException

"verify new clip will fit"

"subtract out run time of clip

currently in this slot, if any

[slotClipFileData.m_usage = IMMEDIATE]

getSecsAvailImmediate

[slotClipFileData.m_usage != IMMEDIATE]

getSecsAvailForPrestore

delete wav file

slotClipFileData.m_fileName

end sychronize

"store new clip and usage into slot data for this slot"

[old clip formerly in slot instanceof HARMesageAudioClip]

deregisterInterest(harID)

"get old slot data for this slot"

synchronize

[success]

[failure]

CHART2Exception

[failure]

HARProtocolException

recordMessage(port,

slotClipFileData.m_fileName,

slotClipFileData.m_slot)

store(port, slotClipFileData)

adjust by

HARRuntimeSafetyMarginSecs

Figure 182. HARControlModule:slotMgrStore (Sequence Diagram)

3.1.11.62 HARControlModule:slotMgrStoreImmedMsg (Sequence Diagram)

This helper method is used by the HARSlotManager to store an immediate message on the HAR. The data contained in the message has already been prepared by prepareImmedWavFiles(), so it is all ready to go. This method first deletes any clips currently stored on the HAR as immediate message clips -- provided they are not going to be used in the new message. Immediate clips will be reused when necessary to prevent deleting and re-downloading the exact same audio data to the HAR. This will happen when processing combined messages. In most such cases, one or more of the clips in the new immediate message will already exist in an immediate slot on the HAR. When the obsolete clips have been deleted, this method calls store(), another HARSlotManager helper method, repetitively, to store each new clip on the HAR. (This is all done on one phone call, on one port.)

[image: image185.emf]HARMessageAudioClip

m_status.m_slotData

ISSAP55HARProtocolHdlr

HARSlotManager

HARImpl

Have to delete all the old

immediate slot data that won't

be reused in the new message

from the HAR first to make sure

there is room in the HAR's

RAM for all the new audio data.

[no space]

NoSpaceAvailableException

[failure]

CHART2Exception

store(port, slotClipFileData[i])

storeImmedMsg(port, HARMessage,

slotClipFileData[])

[failure]

CHART2Exception

[*for each slot

currently in use as an

immediate slot NOT

included in

slotClipFileData[]]

remove(port, slot)

"get old slot data for this slot"

[*for each element

of slotClipFileData[]

not already in a

slot]

Figure 183. HARControlModule:slotMgrStoreImmedMsg (Sequence Diagram)

3.1.11.63 HARControlModule:StoreSlotMessage (Sequence Diagram)

A user with proper functional rights can store a message in a slot in the HAR controller for later activation. This command is processed asynchronously via the CommandQueue. When this command is later executed, the HARSlotManager object is used to download the message to the HAR and track the slot usage. If the clip is a HARMessageAudioDataClip it is stored using an AudioClipService, and if it is an AudioClip, the HAR registers its interest with the clip, which passes this information on to the AudioClipService which serves it. If it is a text clip, the clip is streamed using a TTS service.

[image: image186.emf]SlotClipFileData

Completes cmdStat on failure.

create with clip, slot specified, and USER usage

[non user slot specified]

CHART2Exception

[store slot message] log

HARStoreSlotMsgCmd

ORB

HARImpl

CommandStatus

HARControlDB

PushEventSupplier

(DMSControl)

On success or failure.

See sequence diagram

HARControlModule:slotMgrStore

for details. (As necessary,

SlotMgr deregisters interest in

old clip(s) on sucess, or in new

clip(s) on failure.)

CommandQueue executes

command asynchronously.

HARSlotManager

CommandQueued

DictionaryWrapper

OperationsLog

Completes cmdStatus if nec.

Completes cmdStatus if nec.

Don't call handleOpStatus here, no space available does not change our opStatus...)

HARMessageClip

[no rights]

AccessDenied

[no rights]

completed

[not in maint mode]

CHART2Exception

[not in maint mode]

completed

[HARMessageClip instanceof HARMessageTextClip]

checkForBannedWords

[banned words exist]

DisapprovedMessageContent

[banned words exist]

completed

addCommand

update("queued for processing")

execute

storeMessageImpl

prepareWavFiles(slotClipFileData)

[success]

setStatus

[success]

push (HARStatusChanged)

[failure]

[failure]

[success]

[failure]

CHART2Exception

completed

[no longer in maint mode]

completed("not in maint mode")

update("processing")

[not maint mode]

storeSlotMessage

verifyNoResourceConflict

[any failure]

completed(failure)

verifyNoResourceConflict

[no rights]

log

[resource conflict]

ResourceControlConflict

[resrc

conflict]

getSecsAvailForPrestore

getRunTime

[no space]

NoSpaceAvailableException

handleOpStatus

[not enough space in HAR

for this message]

CHART2Exception

[resource conflict]

store(port, slotClipFileData)

fmsReleasePort(true)

[failure]

[failure]

fmsGetConnectedPort(true)

[failure]

[failure]

fileName

create

[failure]

[not maint

mode]

NotificationChannel

[success]

notify

Figure 184. HARControlModule:StoreSlotMessage (Sequence Diagram)

3.1.11.64 HARControlModule:TakeOffline (Sequence Diagram)

A user with appropriate privileges can take a HAR offline. When the HAR is going offline, all SHAZAMs are automatically taken offline along with the HAR. The HAR is blanked and its transmitter is turned off, and all SHAZAMs are requested by the HAR to go offline as well. If there is a failure commanding the HAR, the status of the HAR is still marked as blank anyway, per requirement, and the device is still moved to the offline state. Any traffic events which were using the device will be notified. This command is executed asynchronously, via a HARTakeOfflineCmd, which is enqueued on the CommandQueue and which executes takeOfflineImpl when executed.

[image: image187.emf][take offline] log

For details, see sequence diagram

HARControl:takeOfflineImpl.

HARTakeOfflineCmd

OperationsLog

Completes CommandStatus if conflict found.

Even though HAR status

has not changed, in this

case it seems at least one

client is not in synch with

our actual status, so push

current status to all clients

just to be helpful.

PushEventSupplier

(HARControl)

CommandQueue executes

command asynchronously.

ORB

CommandQueue

CommandStatus

HARImpl

[already offline]

Push(HARStatusChanged)

[resource conflict]

ResourceControlConflict

verifyNoResourceConflict

[no rights]

log

[already offline]

completed("already offline")

[already offline]

create

execute

addCommand

update("queued for processing")

takeOfflineImpl

takeOffline(token, cmdStatus)

[no rights]

AccessDenied

[no rights]

completed

Figure 185. HARControlModule:TakeOffline (Sequence Diagram)

3.1.11.65 HARControlModule:takeOfflineImpl (Sequence Diagram)

This method executes the takeOffline interface method when the command enqueued by that method is executed by the CommandQueue. This method immediately sets the status of the HAR to offline, blank, and transmitter off, since that action is required whether the remaining actions are successful or not. Next, this method attempts to take all the SHAZAMs associated with the HAR offline, and this method waits (up to a maximum time specified by the HAR property SHAZAMOfflineTimeoutSecs) for the SHAZAMs to complete their transition. This method then attempts to contact the HAR and blank it and turn the transmitter off. Whether that action is successful or not, the HAR's status has already been to show it as being blank, with the transmitter off, and offline. Any traffic events which were on the device are notified to indicate that they are not on the device anymore.

[image: image188.emf]Notify any traffic events that were online that they are off the device,

even if the attempt to remove them failed.

log("HAR Offline")

ISSAP55HARProtocolHdlr

PushEventSupplier

HARControlDB

Per rqmt, HAR status is set to blank

and transmitter off even if comms to

the device fails, so set status now,

in case we bail out early.

HARTakeOfflineCmd

CommandQueue

Notify any traffic events that were online that they are off the device.

CommandStatus

Completes CommandStatus if conflict found.

This call is expected to be made before all SHAZAMs have finished going

offline. WriteRequest returns when all SHAZAM processing is done and

every readComplete call has been made (or has timed out).

Even on failure we go offline anyway,

so set it now, in case we bail out early.

SHAZAM TakeOffline returns immediately,

then continues processing asynchronously.

fmsGetConnectedPort calls handleOpStatus on failure,

which completes cmdStat, & updates, persists, & pushes

status if necessary. See sequence diagram

HARControlModule:fmsGetConnectedPort for details.

m_status:

HARStatus

SyncCommandStatus

SHAZAM

Port

ReadWriteLock

HARImpl

HARSlotManager

verifyNoResourceConflict

[resource conflict]

writeRequest

[success &

was online &

msg on HAR]

requestSucceeded(null)

set message to blank (default)

set commMode to offline

[failure]

handleOpStatus()

[success]

set transmitter state off

readComplete

fmsGetConnectedPort(true)

[*for each

immed slot

now in use

[failure]

push(HARStatusChanged)

setStatus

remove(port,slot)

[success]

set message to default

[immediate message on HAR]

removeImmedMsg

handleOpStatus()

[success setting transmitter off]

broadcastSlots(port, [2])

[*for each

HARMessageNotifierWrapper

that isSHAZAM()]

create

setStatus

push(HARStatusChanged)

[success getting port]

controlTransmitter(port, false)

takeOfflineImpl

[failure]

handleOpStatus()

[already offline]

[already offline by now]

completed("already offline")

completed

create

takeOffline

readRequest(SHAZAMOfflineTimeoutSecs)

[finished processing]

completed

OperationsLog

set transmitter state to off

[failure &

was online &

msg on HAR]

requestFailed(null, false)

Figure 186. HARControlModule:takeOfflineImpl (Sequence Diagram)

3.1.11.66 HARControlModule:verifyNoResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a HARImpl object checks a sign for a resource conflict prior to performing some other sort of operation on it. This utility method is called from several other methods within the HAR service. If the HAR is currently is maintenance mode, and therefore has a controlling operations center, and it is not equal to the caller's operations center, and the user does not have override authority, there is a resource control conflict. Otherwise, there is not. If there is a resource control conflict, a message to this effect is written to the CommandStatus object, which may be monitored by the requesting user.

[image: image189.emf]HARImpl TokenManipulator

HARImpl

cmdStat:

CommandStatus

[no override access]

completed("resource conflict")

[token op center ID ==

controlling op center id]

no conflict

getOpCenterID(token)

verifyNoResourceConflict(token, cmdStat)

getControllingOpCenter

[no override access]

ResourceControlConflict

[has override access]

no conflict

checkAccess(token)

[no controlling op center]

no conflict

Figure 187. HARControlModule:verifyNoResourceConflict (Sequence Diagram)

HARManagement

3.1.12 Classes

3.1.12.1 HARManagementPkg (Class Diagram)

This class diagram shows classes related to the HAR that are used by both the GUI and the server. Many of these classes are implementations of value type classes defined in the system interfaces (IDL).

[image: image190.emf]HARRPIData

java.util.Vector

1

*

1 1

1

1

1

1 validates

message

content

using

1

*

AudioClipManagerWrapper

AudioClipManager

«interface»

HARPlanItemData

HARPlanItemDataImpl

HARMessageAudioDataClip

HARMessageAudioDataClipImpl

HARMessageClip

HARMessageImpl

HARMessage

DictionaryWrapper

HARMessageAudioClip HARMessageTextClip

HARMessagePrestoredClip

HARMessageAudioClipImpl HARMessageTextClipImpl

HARMessagePrestoredClipImpl

HARRPIDataImpl

storeClip(HARMessageAudioDataClip, AudioClipOwner owner):

 HARMessageAudioClip

getAudioClip(Identifier audioClipID): HARMessageAudioClip

AudioClipManager m_localAudioClipManager

storeClip(HARMessageAudioDataClip, AudioClipOwner owner):

 HARMessageAudioClip

registerInterest(Identifier audioClipID,

 AudioClipOwner owner): HARMessageAudioClip

deregisterInterest(Identifier audioClipID, AudioClipOwner owner): void

HARPlanItemDataImpl()

HARPlanItemDataImpl(byte[] harIDData, byte[] msgIDData)

getAudioData(): byte[]

HARRPIDataImpl()

HARRPIDataImpl(String description, byte[] harIDData,

 HARMessage, ORB, Lookup)

-verifyHARReachable(String desc, CommandStatus): void

-verifyHARResolved(String desc, CommandStatus): void

String m_harName

Lookup m_lookup

ORB m_orb

Figure 188. HARManagementPkg (Class Diagram)

3.1.12.1.1 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

interface

3.1.12.1.2 AudioClipManagerWrapper (Class)

The AudioClipManagerWrapper wraps access to an AudioClipManager, hiding the details communicating with the Trader/ORB in acquiring and maintaining references to AudioClipManager(s) and actually communicating with an AudioClipManager from the classes which use this class.

3.1.12.1.3 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.1.12.1.4 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR. It stores the HAR message as a HAR message header, body and footer. The HARMessage can be configured to use the default header or can provide a custom header clip. The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided. The body can consist of one or more body clips. Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.1.12.1.5 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is passed around the system, wherever possible instead of passing the actual voice data contained in the initial HARMessageAudioDataClip. When the actual voice data is needed to play to the user or to program the HAR device, this object's streamer is used to stream the actual voice data back to an AudioPushConsumer specified by the requester.

3.1.12.1.6 HARMessageAudioClipImpl (Class)

This class defines HARMessageAudioClip as defined in the IDL. Refer to HARMessageAudioClip for details.

3.1.12.1.7 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data. Because audio data can be very large, this type of clip is reserved for use when recorded voice is first entered into the system. Recorded voice that already exists in the system is passed throughout the system using HARMessageAudioClip to avoid sending the large audio data when possible. A HARMessageAudioClip can stream the associated data back to an audio consumer when needed, by contacting its AudioClipManager.

3.1.12.1.8 HARMessageAudioDataClipImpl (Class)

This class implements the HARMessageAudioDataClip as defined in the IDL. Refer to HARMessageAudioDataClip for details.

3.1.12.1.9 HARMessageClip (Class)

This class represents a section of a HAR message. A HARMessage typically contains one to three clips: a body plus an optional header and optional trailer. A combined HARMessage which is stored on (broadcast from) a HAR can one or more clips, an optional header, optional trailer, and one or more body clips. See HARMessage for details. A HARMessageClip can be either plain text which would need to be converted to audio prior to broadcast, or audio (WAV) format, or it can refer to a clip which is prestored in a specific target HAR already. Audio clips are normally passed around as lightweight HARMessageAudioClips, which are created from HARMessageAudioDataClips typically at the point where the HARMessageAudioClip first enters a server.

3.1.12.1.10 HARMessageImpl (Class)

This class is a concrete implementation of the HARMessage abstract class generated from IDL.

3.1.12.1.11 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a specific HAR device.

3.1.12.1.12 HARMessagePrestoredClipImpl (Class)

This class implements HARMessagePrestoredClip as defined in IDL. Refer to HARMessagePrestoredClip for details.

3.1.12.1.13 HARMessageTextClip (Class)

This class represents a HAR message content object which is in plain text format. This message can be checked for banned words and will be converted into a voice message using a speech engine, for downloading to a HAR device or to preview the voice audio to a user.

3.1.12.1.14 HARMessageTextClipImpl (Class)

This class implements HARMessageTextClip as defined in the IDL. Refer to HARMessageTextClip for details.

3.1.12.1.15 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.1.12.1.16 HARPlanItemDataImpl (Class)

The HARPlanItemDataImpl class provides an implementation for the abstract HARPlanItemData class. It implements get and set methods to access and modify values relative to a stored Plan Item for a HAR, which associates a stored message to a specific HAR it should be placed on.

3.1.12.1.17 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and while the message is being broadcast on the HAR.

3.1.12.1.18 HARRPIDataImpl (Class)

The HARRPIDataImpl class provides an implementation for the abstract HARRPIData class. It implements the execute and revokeExecution methods to request that the plan item be executed or un-executed on a specific HAR. It implements get and set methods to access and modify values relative to a Response Plan Item for a HAR.

3.1.12.1.19 java.util.Vector (Class)

A Vector is a growable array of objects.

Sequence Diagram

3.1.12.2 HARManagementPkg:audioClipMgrWrapperGetAudioClip (Sequence Diagram)

This method of the AudioClipManagerWrapper gets a HARMessageAudioClip by ID from whichever AudioClipManager is storing its audio data. This method cycles through each AudioClipManager on its list asking for the clip specified, by ID. If the clip is found, it is returned. If it is not found, the Trader is queried to get an updated list of AudioClipManagers, and the search is repeated with the new list. (Only this second search will be executed the first time an AudioClipManager is used during an execution, as its list of managers will initially be empty.) The list of managers stored within the wrapper is replaced with the list returned from the Trader, in order, so that AudioClipManagers closer to the source will be stored earlier on the list. If the clip is found the second time, it is returned, otherwise a CHART2Exception is thrown.

[image: image191.emf]Clear to store the references

in the order they were found

Query the trader for all

AudioClipManagers with

query preference "first" and

policy "link_follow_rule"

to make the trader return

reference in the order they

were found

java.util.Vector AudioClipManager CosTrading.Lookup AudioClipManagerWrapper

HARImpl

or

StoredMessageImpl

or

ResponsePlanItemImpl

Check to see is the

AudioClipManager

was already queried.

[* for each

AudioClipManager

until clip found]

AudioClipManager[]

toArray

clear

[if clip was not found]

CHART2Exception

add

[* for each

AudioClipManager

found in the trader]

query(all AudioClipManagers)

AudioClipManager[]

HARMessageAudioClip

HARMessageAudioClip

[if clip found]

HARMessageAudioClip

true or false

[if clip not found]

CHART2Exception

getAudioClip(id)

[* for each

AudioClipManager

in the collection

until clip found]

[if clip was found]

HARMessageAudioClip

getAudioClip(id)

contains(AudioClipManager)

[if clip not found]

CHART2Exception

[if false]

getAudioClip(id)

Figure 189. HARManagementPkg:audioClipMgrWrapperGetAudioClip (Sequence Diagram)

3.1.12.3 HARManagementPkg:audioClipMgrWrapperStoreClip (Sequence Diagram)

This AudioClipManagerWrapper handles conversion of a heavyweight HARMessageAudioDataClip containing raw audio data to a lightweight HARMessageAudioClip containing a reference to an AudioClipManager which can stream the audio data back to a requester on demand. The AudioClipManagerWrapper hides the details of transactions with the Trader/ORB from the user of the class. The AudioClipManagerWrapper normally keeps a reference to a local AudioClipManager, and refers the request to that AudioClipManager. If the wrapper does not currently contain a reference to a local manager, it attempts to acquire one, always hoping to use a local manager wherever possible. If a local AudioClipManager is accessible, that manager is asked to store the clip. If there is no local manager available, the system is queried for all AudioClipManagers, in order from "closest" to "furthers" (by hop count). The first available manager in this list is asked to store the clip, and the list of managers is saved for the next time. If no manager can successfully convert the clip, a CHART2Exception is thrown, otherwise the converted HARMessageAudioClip is returned.

[image: image192.emf]For details, see sequence diagram

HARManagementPkg:StoreAudioClip.

Query the trader for all

AudioClipManagers with

query preference "first" and

policy "link_follow_rule"

to make the trader return

reference in the order they

were found

java.util.Vector AudioClipManager

Query the trader for

AudioClipManager

in the local trader

(set hop_count = 0)

CosTrading.Lookup AudioClipManagerWrapper

HARImpl

or

StoredMessageImpl

or

ResponsePlanItemImpl

Clear to store the references

in the order they were found

[* for each

AudioClipManager

in the collection

until successful]

[if clip was not stored]

CHART2Exception

clear

[* for each

AudioClipManager

in the collection]

query(all AudioClipManagers)

AudioClipManager[]

HARMessageAudioClip

HARMessageAudioClip

[if a local AudioClipManager

was found]

HARMessageAudioClip

storeClip

HARMessageAudioClip

[if a AudioClipManager

was prev not found

in the local trader]

query(AudioClipManager)

[if a local AudioClipManager was found]

storeClip

AudioClipManager or null

storeClip

add

Figure 190. HARManagementPkg:audioClipMgrWrapperStoreClip (Sequence Diagram)

3.1.12.4 HARManagementPkg:audioDeregisterInterest (Sequence Diagram)

This method deregisters interest in a HARMessageAudioClip. This method forwards the deregister request to the clip's AudioClipManager (stored within the clip), and returns the result (void or exception) returned by the AudioClipManager.

[image: image193.emf]m_clipMgr:

AudioClipManager

HARMessageAudioClip

HARImpl

or

ORB

Exception

m_clipMgr.deregisterInterest

deregisterInterest

Figure 191. HARManagementPkg:audioDeregisterInterest (Sequence Diagram)

3.1.12.5 HARManagementPkg:audioRegisterInterest (Sequence Diagram)

This method deregisters interest in a HARMessageAudioClip. This method forwards the register request to the clip's AudioClipManager (stored within the clip), and returns the result (void or exception) returned by the AudioClipManager. The register request indicates that the requester is using the clip and requires that the AudioClipManager maintain the audio data for at least as long as the clip is registered.

[image: image194.emf]m_clipMgr:

AudioClipManager

HARMessageAudioClip

HARImpl

or

ORB

Exception

m_clipMgr.registerInterest

registerInterest

Figure 192. HARManagementPkg:audioRegisterInterest (Sequence Diagram)

3.1.12.6 HARManagementPkg:audioStream (Sequence Diagram)

This method streams a HARMessageAudioClip. This method forwards the stream request to the clip's AudioClipManager (stored within the clip), and returns the result (void or exception) returned by the AudioClipManager. If the request is successful, the AudioClipManager will then stream the data back, asynchronously, to the AudioPushConsumer passed in on the initial request.

[image: image195.emf]HARImpl

or

ORB

Exception

m_clipMgr.stream(params)

stream(params)

m_clipMgr:

AudioClipManager

HARMessageAudioClip

Figure 193. HARManagementPkg:audioStream (Sequence Diagram)

3.1.12.7 HARManagementPkg:harRPIDataImplExecute (Sequence Diagram)

This method implements the HARRPIData interface method execute(). This method creates an ArbQueueEntry (a HARArbQueueEntry, specifically) and adds it to the MessageQueue for the HAR stored within the HARRPIDataImpl.

[image: image196.emf]addEntry

AccessDenied

AccessDenied

addLogEntry("access denied")

ResourceControlConflict

addLogEntry("resource control conflict")

ResourceControlConflict

ORB

HARRPIDataImpl

Item might not be executable, if

values have not been populated.

CommandStatus

HARArbQueueEntry

HAR TrafficEvent

execute

[not executable]

CHART2Exception

update("being executed")

create

Figure 194. HARManagementPkg:harRPIDataImplExecute (Sequence Diagram)

3.1.12.8 HARManagementPkg:msgMatches (Sequence Diagram)

This method compares a HARMessage to another HARMessage and returns a true/false indication as to whether the two messages contain the same text/audio content. It does this by doing a clip-by-clip comparison of the clips contained in the two messages.

[image: image197.emf]HARMessage

HARImpl

HARMessageClip

AudioDataClip: m_audioDataFormat must match;

 length and all bytes of m_audioData

 must match.

AudioClip: m_audioClipID must match.

TextClip: m_messageText must match.

PrestoredClip: m_slotNumber & m_harID must match.

[m_useDefaultTrailer != harMsg.useDefaultTrailer()]

false

[m_useDefaultHeader != harMsg.useDefaultHeader()]

false

[m_useTrailer true && m_useDefaultTrailer false]

matches(harMsg.getTrailer())

[m_useDefaultHeader false]

matches(harMsg.getHeader())

[doesn't match]

false

matches(harMsg clip)

[*for each

clip in

msg]

[doesn't match]

false

[number of clips != harMsg's number of clips]

false

[doesn't match]

false

[m_useTrailer != harMsg.useTrailer()]

false

matches(harMsg)

true

Figure 195. HARManagementPkg:msgMatches (Sequence Diagram)

3.1.12.9 HARManagementPkg:msgValidateMsgContent (Sequence Diagram)

This method validates that a HARMessage contains no banned words. It does this by using a DictionaryWrapper to validate each text clip within the message (including header/trailer if they are non-default clips contained within the message). (Obviously, only text clips can be validated for banned words. Audio clips must be assumed to be valid.)

[image: image198.emf]m_Trailer true

 &

DictionaryWrapper

HARMessage

HarImpl

[DisapprovedMessageContent]

DisapprovedMessageContent

[*for each

body clip] [body clip instanceOf text clip]

checkForBannedWords(clip text)

[DisapprovedMessageContent]

DisapprovedMessageContent

[!m_useDefaultTrailer &

m_trailer instanceOf text clip]

checkForBannedWords(trlr text)

[DisapprovedMessageContent]

DisapprovedMessageContent

[!m_useDefaultHeader &

m_header instanceOf text clip]

checkForBannedWords(hdr text)

DictionaryWrapper.get()

validateMessageContent

Figure 196. HARManagementPkg:msgValidateMsgContent (Sequence Diagram)

3.1.12.10 HARManagementPkg:prestoredGetVoiceSeconds (Sequence Diagram)

This method returns a runtime (perhaps estimated) for a HARMessagePrestoredClip. If the clip has already acquired and saved off its runtime, that value is returned. Otherwise, this method locates the HAR on which the clip is stored, and requests the HAR to return the clip stored in the referenced slot. This method then forwards the request to the referenced clip, and returns the result returned by that clip.

[image: image199.emf]seconds

seconds

HARMessagePrestoredClip

HARImpl

getVoiceSeconds

HAR

[not exist]

SpecifiedObjectNotExist

[not exist]

SpecifiedObjectNotExist

[failure]

CHART2Exception

[failure]

HARMessageClip

getClipInSlot(m_slotNumber)

findObjectsOfType(HAR, ID=m_harID)

getVoiceSeconds

set m_voiceSeconds

[m_voiceSeconds > 0]

m_voiceSeconds

HAR

HARMessageClip

CorbaUtilities

Figure 197. HARManagementPkg:prestoredGetVoiceSeconds (Sequence Diagram)

3.1.12.11 HARManagementPkg:prestoredStream (Sequence Diagram)

This method streams a HARMessagePrestoredClip. This locates the HAR on which the clip is stored, and requests the HAR to return the clip stored in the referenced slot. This method then forwards the stream request to the referenced clip, and returns the result (void or exception) returned by that clip. If the request is successful, this means the referenced clip has forwarded the request to the appropriate streamer, which will then stream the data back, asynchronously, to the AudioPushConsumer passed in on the initial request.

[image: image200.emf]getClipInSlot(m_slotNumber)

findObjectsOfType(HAR, ID=m_harID)

getVoiceSeconds

[clip instanceOf HARMessageTextClip]

stream(format, chunksize, priority, consumer)

Clip streams data to consumer

asynchronously after returning.

HARMessageClip

HAR

CorbaUtilities

HARMessagePrestoredClip

HARImpl

[clip instanceOf HARMessageAudioClip]

stream(chunksize, consumer)

HAR

[not exist]

SpecifiedObjectNotExist

[not exist]

SpecifiedObjectNotExist

[failure]

CHART2Exception

[failure]

HARMessageClip

Figure 198. HARManagementPkg:prestoredStream (Sequence Diagram)

3.1.12.12 HARManagementPkg:PushAudio (Sequence Diagram)

This diagram shows how audio data is pushed back to the client. The AudioPushThreadManager manages a pool of threads which can be used to push audio data back to the clients. When a request is made to push audio, the AudioPushThreadManager looks in the thread list for a free thread. If all the threads are being used, the request waits until a thread becomes available. Once a thread becomes available, the thread is notified of the clip by setting the clip data and the thread starts pushing the audio data by first pushing the audio properties. Then, the thread starts to push the audio data in chunks of the size requested by the client. If the pushing operation fails, an error is passed to the consumer. At the completion of pushing, the thread clears the clip data and informs the AudioPushThreadManager to free the thread. The AudioPushThreadManager in turn frees the thread and notifies any waiting request.

[image: image201.emf]releaseAudioPushThread

pushAudioClipInfo

[while not

shutdown]

pushAudioProperties

[error pushing data]

pushFailure

Notifies another thread that an AudioPushThread has

become available (terminates wait() on free thread up above).

m_inUseThreads

AudioPushThread

pushes the clip information

asynchronously.

Audio data returned begins and

ends on frame boundaries depending

upon the audio format. So the size of

audio data pushed may be less than the

chunk size requested.

Client

AudioPushThreadManager AudioPushThread m_freeThreads

AudioPushConsumer

pushAudio

[while more audio data

&

no error pushing data]

notify

size

getFirst

[free thread

 not available]

wait

AudioPushThread

setClipInfo

add(AudioPushThread)

remove(AudioPushThread)

remove(AudioPushThread)

add(AudioPushThread)

wait

notify

Clear Clip Info

Figure 199. HARManagementPkg:PushAudio (Sequence Diagram)

3.1.12.13 HARManagementPkg:StoreAudioClip (Sequence Diagram)

When a HARImpl, ResponsePlanItemImpl, or MessageLibraryDB object is passed a HAR message that contains a HARMessageAudioDataClip, an AudioClipManager is called to store the voice data and create a thin wrapper object that represents the voice data. This thin wrapper is passed around the system instead of the voice data itself. The thin wrapper contains a reference to the AudioClipManager which will push the voice data to any holders of the thin wrapper that request the actual voice data.

[image: image202.emf]storeAudioClip

[failure]

CHART2Exception

HARMessageAudioClip

AudioClipManager

stores itself as the streamer

for the audio data in the

audio clip.

ORB

AudioClipManager IdentifierGenerator

HARAudioClipDB

HARMessageAudioClip

create

storeAudioDataClip

createIdentifier

Identifier

Figure 200. HARManagementPkg:StoreAudioClip (Sequence Diagram)

3.1.12.14 HARManagementPkg:textGetVoiceSeconds (Sequence Diagram)

This method returns a runtime (estimated) for a text clip, synchronously. This is accomplished by finding a TTS converter in the trader and asking it for the run length of the clip's text.

[image: image203.emf]seconds

If user has never previewed text to speech for a clip,

the m_voiceSeconds will be zero, in which case

we must use a TTSConverter to determine the

voice length right now (synchronously).

CorbaUtilities

will find

TTSConverter

on localhost

(if any) first.

CorbaUtilities

HARMessageTextClip

HARImpl

This is a synchronous call

which blocks until a suitable

value can be obtained. It is

anticipated that an algorithm

for estimating run length from

character count will be used

for the "get" VoiceLength call

(as opposed to the "push" call

which will provide an exact

number asynchronously via a

PushConsumer.

TTSConverter

seconds

getVoiceLength(m_messageText,

DEFAULT_FORMAT)

set m_voiceSeconds

[m_voiceSeconds > 0]

m_voiceSeconds

findAllObjectsOfType(TTSConverter)

getVoiceSeconds()

Figure 201. HARManagementPkg:textGetVoiceSeconds (Sequence Diagram)

3.1.12.15 HARManagementPkg:textStream (Sequence Diagram)

This method streams a HARMessageTextClip. This method forwards the stream request to a TTSConverter found in the trader. It will try multiple TTSConverters as necessary, until the request is sucessfully received. If no TTSConverters are found, or none of them can successfully process the request, this method throws a CHART2Exception. Otherwise this method returns void and the TTSConverter will then stream the data back, asynchronously, to the AudioPushConsumer passed in on the initial request.

[image: image204.emf][no TTSConverter found]

CHART2Exception

[no success]

CHART2Exception

[*for each TTSConverter

found until success]

CorbaUtilities

will find

TTSConverter

on localhost

(if any) first.

CorbaUtilities

HARMessageTextClip

HARImpl

TTSConverter streams data

to consumer asynchronously

after returning.

TTSConverter

findAllObjectsOfType(TTSConverter)

stream(format, chunksize,

 priority, consumer)

convertTextToSpeech(m_messageText,

format, chunksize, priority, consumer)

Figure 202. HARManagementPkg:textStream (Sequence Diagram)

HARProtocols

3.1.13 Classes

3.1.13.1 HARProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to HAR control.

[image: image205.emf]VoicePort

«interface»

ISSAP55HARProtocolHdlr

HARProtocolException

«exception»

* 1

connect(String phoneNo):void

playDTMFTones(String dtmfCodes,

 boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

initiateProgramming(VoicePort port, String accessCode):void

terminateProgramming(VoicePort port):void

recordMessage(VoicePort port, String msgFileName, int slotNumber):void

deleteMessage(VoicePort port, int slotNumber):void

reset(VoicePort port):void

broadcastSlots(VoicePort port, int[] slotNumbers):void

monitorSlot(VoicePort port, String fileName, int slotNumber, int numSecs): void

setTransmitterState(VoicePort port, boolean transmitterState):void

setInterMessageSpacingInSecs(VoicePort port, int spacing):void

enableAlternateSource(VoicePort port):void

Strinng reason

Figure 203. HARProtocolsPkg (Class Diagram)

1.1.1.1.1 HARProtocolException (Class)

This class represents an exception that is thrown by HAR protocol classes when an unexpected error is encountered.

1.1.1.1.2 ISSAP55HARProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an ISS AP55 HAR device.

1.1.1.1.3 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

Sequence Diagrams

3.1.13.2 ISSAP55HAR:BroadcastSlots (Sequence Diagram)

This sequence diagram shows the processing of broadcastSlots command of ISS AP55 HAR protocol. This involves dialing the DTMF tones for broadcast slots command (*5#) and then dialing the message number for each message to be broadcast (1#, #2, #3... for broadcasting messages 1,2,3...). A HARProtocolException is raised if an unexpected error is encountered.

[image: image206.emf]ISSAP55HARImpl

ISSAP55ProtocolHdlr VoicePort

playDTMFTones(slot number)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

[* for each slot

to be broadcast]

broadcastSlots(slot numbers)

playDTMFTones(broadcast slots code)

Figure 204. ISSAP55HAR:BroadcastSlots (Sequence Diagram)

3.1.13.3 ISSAP55HAR:DeleteSlotMessage (Sequence Diagram)

This sequence diagram shows the processing of deleteSlotMessage command of ISS AP55 HAR protocol. This involves dialing the DTMF tones for delete slot message command (*3#) and then dialing the message number for each message to be removed (1# for deleting message from slot 1). A HARProtocolException is raised if an unexpected error is encountered.

[image: image207.emf]ISSAP55HARImpl

ISSAP55ProtocolHdlr VoicePort

playDTMFTones(delete slot message code)

playDTMFTones(slot number)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

deleteMessage(slot number)

Figure 205. ISSAP55HAR:DeleteSlotMessage (Sequence Diagram)

3.1.13.4 ISSAP55HAR:MonitorSlot (Sequence Diagram)

This sequence diagram shows the processing of monitorSlot command of ISS AP55 HAR protocol to listen to a message stored in a particular slot. This involves dialing the DTMF tones for monitor slots command (*2#) and then dialing the message number for each message to be monitored (1#, #2, #3... for slots 1,2,3...). A HARProtocolException is raised if an unexpected error is encountered.

[image: image208.emf]ISSAP55HARImpl

ISSAP55ProtocolHdlr VoicePort

playDTMFTones(slot number)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

monitorSlot(port, slot number,

filename, number seconds to record)

playDTMFTones(monitor code)

recordWAV(filename,

number of seconds to record)

Figure 206. ISSAP55HAR:MonitorSlot (Sequence Diagram)

3.1.13.5 ISSAP55HAR:RecordMessage (Sequence Diagram)

This sequence diagram shows the processing of recordSlot command of ISS AP55 HAR protocol to store a message in a slot. This involves dialing the DTMF tones for record slot command (*1#) and then dialing the number of the slot into which the message needs to be stored (1# for slot 1). Recording is terminated by playing the DTMF tone for '#'. An attempt is made to terminate the recording even if an error is encountered. Note that the HAR does not terminate recording until the '#' is pressed and so, if we get an error such as disconnect while recording the HAR device needs to be reset to restore it to the previous state. A HARProtocolException is raised if an unexpected error is encountered.

[image: image209.emf]playWAV(filename)

playDTMFTones(slot number)

ISSAP55HARImpl

ISSAP55ProtocolHdlr VoicePort

Try to end recording even if we

get an error because HAR does not

stop to record until a "#" is pressed.

playDTMFTones(end recording code)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

recordMessage

playDTMFTones(record code)

Figure 207. ISSAP55HAR:RecordMessage (Sequence Diagram)

3.1.13.6 ISSAP55HAR:Reset (Sequence Diagram)

This sequence diagram shows the processing of reset command of ISS AP55 HAR protocol to reset the HAR device. This involves dialing the DTMF tones for reset command (*127#). A HARProtocolException is raised if an unexpected error is encountered.

[image: image210.emf]VoicePort

ISSAP55HARImpl

ISSAP55ProtocolHdlr

playDTMFTones(reset code)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

reset(port)

Figure 208. ISSAP55HAR:Reset (Sequence Diagram)

3.1.13.7 ISSAP55HAR:SetInterMessageSpacing (Sequence Diagram)

This sequence diagram shows the processing of set inter message spacing command of ISS AP55 HAR protocol to specify the delay between each slot while broadcasting. This involves dialing the DTMF tones for set inter message spacing command (*4#) and then dialing the command for delay in number of seconds (n# for for a delay of n seconds in between slots). A HARProtocolException is raised if an unexpected error is encountered.

[image: image211.emf]ISSAP55HARImpl

ISSAP55ProtocolHdlr VoicePort

playDTMFTones(set message spacing code)

playDTMFTones(spacingSecs)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

setInterMessageSpacing(port, spacingSecs)

Figure 209. ISSAP55HAR:SetInterMessageSpacing (Sequence Diagram)

3.1.13.8 ISSAP55HAR:SetTransmitterState (Sequence Diagram)

This sequence diagram shows the processing of turn transmitter on/off commands of ISS AP55 HAR protocol. This involves setting the relay on dialing the DTMF tones for set relay command (*62#). Then, dialing the proper DTMF tones for turning the transmitter on or off command (*2008# for setting the transmitter on and *2009 for setting the transmitter off). A HARProtocolException is raised if an unexpected error is encountered.

[image: image212.emf]ISSAP55HARImpl

setTransmitterState(port, transmitter state)

playDTMFTones(Set Relay Code)

ISSAP55ProtocolHdlr VoicePort

[if transmitter needs to be turned ON]

playDTMFTones(transmitter ON code)

[if transmitter needs to be turned OFF]

playDTMFTones(transmitter OFF code)

[unexpected error]

CHART2Exception

[unexpected error]

HARProtocolException

Figure 210. ISSAP55HAR:SetTransmitterState (Sequence Diagram)

Java Classes

3.1.14 Classes

3.1.14.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming language that are used in class and sequence diagrams for other packages within this design.

[image: image213.emf]java.awt.event.WindowListener

«interface»

java.awt.event.ActionListener

«interface»

javax.swing.table.

AbstractTableModel

javax.swing.tree.

MutableTreeNode

«interface»

java.util.LinkedList

java.util.Vector javax.comm.SerialPort

java.util.Timer

java.util.TimerTask

javax.sound.sampled.AudioSystem java.io.File java.io.InputStream

java.lang.ThreadGroup

java.sql.Statement java.sql.Connection

java.util.TreeMap

java.awt.Component

javax.swing.JTabbedPane

javax.swing.table.

TableModel

java.lang.Thread

java.util.Hashtable java.util.Properties

java.lang.Runnable

«interface»

javax.swing.JOptionPane

javax.swing.JFrame

javax.swing.tree.

DefaultTreeModel

java.awt.event.ItemListener

java.awt.event.KeyListener

«interface»

java.lang.Object

windowClosing()

windowOpened()

actionPerformed()

getFirst():Object

add(Object)

schedule

cancel

run

executeQuery(string query):ResultSet

executeUpdate(string):int

createStatement():Statement

put(Object key, Object value)

get(Object key):value

start()

interrupt()

setDaemon(boolean)

run():void

getProperty()

setProperty()

run()

showMessageDialog

showOptionDialog

show

keyPressed

keyReleased

keyTyped

hashCode()

equals()

Figure 211. JavaClasses (Class Diagram)

3.1.14.1.1 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and panels.

3.1.14.1.2 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items, it is attached to menu items when the menu is built.

3.1.14.1.3 java.awt.event.ItemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list item or combo box item.

3.1.14.1.4 java.awt.event.KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the user presses a key.

3.1.14.1.5 java.awt.event.WindowListener (Class)

Listener interface that a class must implement for receiving window events.

3.1.14.1.6 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.1.14.1.7 java.io.InputStream (Class)

Java class that represents a input stream of bytes.

3.1.14.1.8 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

3.1.14.1.9 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.14.1.10 java.lang.Thread (Class)

This class represents a java thread of execution.

3.1.14.1.11 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

3.1.14.1.12 java.sql.Connection (Class)

This class represents a connection (session) with a specific database.

3.1.14.1.13 java.sql.Statement (Class)

Java class used for executing a static SQL statement and obtaining the results produced by it.

3.1.14.1.14 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

3.1.14.1.15 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

3.1.14.1.16 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

3.1.14.1.17 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.14.1.18 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.14.1.19 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the map will be in ascending key order, sorted according to the natural order for the key's class, or by the comparator provided at creation time, depending on which constructor is used.

3.1.14.1.20 java.util.Vector (Class)

A Vector is a growable array of objects.

3.1.14.1.21 javax.comm.SerialPort (Class)

This class provides access to a computer's serial port. It allows the port to be opened and closed and allows data to be sent and received.

3.1.14.1.22 javax.sound.sampled.AudioSystem (Class)

The AudioSystem class acts as the entry point to the sampled-audio system resources. This class lets you query and access the mixers that are installed on the system.

3.1.14.1.23 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.1.14.1.24 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

3.1.14.1.25 javax.swing.JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a certain page.

3.1.14.1.26 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure will be used to supply a JTable with data.

3.1.14.1.27 javax.swing.table. TableModel (Class)

This class provides the data structure that drives the population and updating of the data used by the JTable (a Java GUI component).

3.1.14.1.28 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure which is used as a foundation for the JTree class.

3.1.14.1.29 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove children from nodes. It may be used in a TreeModel.

MessageLibraryModule

3.1.15 Classes

3.1.15.1 MessageLibraryModuleClasses (Class Diagram)

The MessageLibraryModule is a Service Application module that serves the MessageLibraryFactory, MessageLibrary and StoredMessage objects to the rest of the Chart2 system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image214.emf]AudioClipOwner

«interface»

PushEventSupplier

MessageLibraryDB

DBConnectionManager

Dictionary

«interface»

ServiceApplicationModule

«interface»

DMSMessage

ServiceApplication

«interface»

Message

«interface»

HARMessage

MessageLibraryFactory

«interface»

MessageLibraryFactoryImpl

MessageLibrary

«interface»

MessageLibraryImpl

StoredMessage

«interface»

StoredMessageImpl

MessageLibraryModulePkg

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 *

*

1

*

1

1 1

1 1

MessageLibraryDB(DBConnectionManager)

getMessageLibraryList():String[]

getStoredMessages():StoredMessage[]

insertStoredMessage()

deleteStoredMessage()

updateStoredMessage()

insertMessageLibrary()

deleteMessageLibrary()

updateMessageLibraryName()

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

validateMessageContent():void;

matches(Message): boolean

createLibrary(AccessToken token,string name):MessageLibrary

getLibraryList():MessageLibraryList

MessageLibraryFactoryImpl(MessageLibraryModule)

setName(AccessToken token, string name):void

createStoredMessage(AccessToken token,

 Message msg,

 string description,

 string category):StoredMessage

getStoredMessages():StoredMessageList

isUsedByAnyPlan():boolean

isMessageUsedByAnyPlan(Identifier msgID):boolean

removeMessage(AccessToken, Identifier ,msgID):void

remove(AccessToken):void

MessageLibraryImpl(MessageLibraryModule) StoredMessageImpl(MessageLibraryModule)

getDB():MessageLibraryDB

getPushEventSupplier():PushEventSupplier

getPOA():POA

getTradingRegister():Register

getTradingLookup():Lookup

getServiceApplication():ServiceApplication

getDictionary():Dictionary

Figure 212. MessageLibraryModuleClasses (Class Diagram)

3.1.15.1.1 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.15.1.2 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.15.1.3 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,..

3.1.15.1.4 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It consists of two elements: a MULTI-formatted message and beacon state information (whether the message requires that the beacons be on). The DMSMessage is contained within a DMSStatus object, used to communicate the current message on a sign, and is stored within a DMSRPIData object, used to specify the message which should be on a sign when the response plan item is executed.

3.1.15.1.5 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR. It stores the HAR message as a HAR message header, body and footer. The HARMessage can be configured to use the default header or can provide a custom header clip. The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided. The body can consist of one or more body clips. Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.1.15.1.6 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.15.1.7 MessageLibrary (Class)

This class represents a logical collection of messages which are stored in the database.

3.1.15.1.8 MessageLibraryDB (Class)

The MessageLibraryDB class is a collection of methods that perform database operations on tables pertinent to Message Library Management. The class is constructed with a Connection Manager object, which manages database connections. Every operation in this class obtains a connection to the database from the connection manager prior to performing the requested DB operation.

3.1.15.1.9 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.1.15.1.10 MessageLibraryFactoryImpl (Class)

The MessageLibraryFactoryImpl class provides an implementation of the MessageLibraryFactory interface as defined in the IDL. The MessageLibraryFactory maintains a list of MessageLibraryImpl objects and is responsible for publishing MessageLibrary objects in the Trader.

3.1.15.1.11 MessageLibraryImpl (Class)

The MessageLibraryImpl class provides an implementation of the MessageLibrary interface as specified in the IDL. The MessageLibrary maintains a list of StoredMessage objects and is responsible for publishing StoredMessage objects in the Trader.

3.1.15.1.12 MessageLibraryModulePkg (Class)

This class implements the ServiceApplicationModule interface. It creates and serves a single MessageLibraryFactoryImpl object, which in turn serves MessageLibraryImpl objects. This module also serves StoredMessage objects that were created in the message libraries being served by this module.

3.1.15.1.13 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.15.1.14 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.15.1.15 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.15.1.16 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.1.15.1.17 StoredMessageImpl (Class)

The StoredMessageImpl class provides an implementation of the StoredMessage interface as specified in the IDL.

Sequence Diagrams

3.1.15.2 MessageLibraryModulePkg:CleanupMessage (Sequence Diagram)

This sequence diagrams shows the processing deletion of HARMessageAudioClip objects when a stored message that is using them has been deleted. Each clip in stored message is checked if it is a HARMessageAudioClip and deregisterInterest method is invoked on the clip to delete the interest in the clip. See AudioClipModule.DeregisterInterest for more details about how the interest is deleted.

[image: image215.emf]StoredMessageImpl

Message HARMessageAudioClip StoredMessageImpl

delete

[if Header instanceof

HARMessageAudioClip]

deregisterInterest

cleanup

[if clip instanceof

HARMessageAudioClip]

deregisterInterest

[if Message not an

instance of HARMessage]

getHeader

HARMessageClip

HARMessageClip[]

HARMessageClip

[if Footer instanceof

HARMessageAudioClip]

deregisterInterest

[* for each

HARMessageClip

in Body]

getBody

getFooter

Figure 213. MessageLibraryModulePkg:CleanupMessage (Sequence Diagram)

3.1.15.3 MessageLibraryModulePkg:CreateDMSStoreMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for display on a DMS device. The GUI will create a Message object based on the type of stored message the user would like to create. In this case, a DMSMessage object is created. The message library is called to create a stored message. The message library will check if the user has the appropriate rights. If they do, the message will be checked for banned words. If the message contains banned words, an error is returned. If not, a stored message is created, the newly created stored message data is inserted into the database and the stored message object will be published in the CORBA trading service and other system components will be notified of its existence via the CORBA event service. Note that even though a dictionary check is done at the time of storage, the dictionary is always checked on the server side prior to allowing a message to be set on a DMS. The user and operation details are logged in the operations log.

[image: image216.emf]OperationsLog TokenManipulator

See InitializeMessage

sequence diagram for

details.

See CleanupMessage

sequence diagram for

details.

POA

Operator

Dictionary

CosEvent:

PushConsumer ServiceApplication

DMSMessage

To initiate this use case

the user selected "Add DMS

Stored Message" from the

 menu and enters the message

StoredMessageImpl

The user will choose ignore,

change, or AddWord for each

unknown word. See

AddApprovedWords sequence

diagram for details regarding

what happens then the user

chooses to add the word.

MessageLibraryImpl MessageLibraryDB

[Invalid beacon state]

DisapprovedMessageContent

[Invalid beacon state]

DisapprovedMessageContent

[invalid beacon state]

delete

[Database Error]

delete

[Database Error]

CHART2Exception

createStoredMessage

StoredMessage

[message contains

banned words]

DisapprovedMessageContent

[no rights]

AccessDenied

create

[message contains

banned words]

delete

registerObject

insertStoredMessage

checkAccess

[no rights]

log

log("Stored Message Added")

validateBeaconState

validateMessageContent

checkForBannedWords

[message contains

banned words]

DisapprovedMessageContent

[Database Error]

cleanup

initialize

DictionarySuggestions for any unknown words

create

push(StoredMessageAdded)

performApprovedWordsCheck

activate_object

[Database Error]

log("Database Error")

Figure 214. MessageLibraryModulePkg:CreateDMSStoreMessage (Sequence Diagram)

3.1.15.4 MessageLibraryModulePkg:CreateHARStoreMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for use on a HAR device. The GUI will create a Message object based on the type of stored message the user would like to create. In this case, a HARMessage object is created. A HARMessage consists of three HAR message clips which can either be in binary or text format. The message library is called to create a stored message. The message library will check if the user has the appropriate rights. If they do, the message is validated by calling the Dictionary to check for disapproved words. Note that only the clips that are in text format will be checked for banned words. If the message contains banned words, an error is returned. If not, a stored message is created, the newly created stored message data is inserted into the database and the stored message object will be published in the CORBA trading service and other system components will be notified of its existence via the CORBA event service. Note that even though a dictionary check is done at the time of storage, the dictionary is always checked on the server side prior to downloading the message to the HAR. The user and operation details are logged in the operations log.

[image: image217.emf][if text clip]

checkForBannedWords

[message contains

banned words]

DisapprovedMessageContent

resgisterObject

push(StoredMessageAdded)

[* for each Clip]

setBody

[message contains

banned words]

delete

[message contains

banned words]

DisapprovedMessageContent

[Database Error]

delete

[Database Error]

log("Database Error")

activate_object

checkAccess

[no rights]

log

insertStoredMessage

CosEvent:

PushConsumer

HARMessage

To initiate this use case

the user selected "Add

HAR Text Stored Message"

from the menu and enters

the message.

See InitializeMessage

sequence diagram for

details.

See CleanupMessage

sequence diagram for

details.

POA OperationsLog TokenManipulator MessageLibraryDB ServiceApplication

StoredMessageImpl

The user will choose ignore,

change, or AddWord for each

unknown word. See

AddApprovedWords sequence

diagram for details regarding

what happens then the user

chooses to add the word.

MessageLibraryImpl

The user can choose to use

the default header and footer

instead of entering a header and

a footer.

Operator

Dictionary

initializeMessage

[Database Error]

cleanup

setHeader

setTrailer

log("Stored Message added")

StoredMessage

[Database Error]

CHART2Exception

performApprovedWordsCheck

DictionarySuggestions for any unknown words

create

createStoredMessage

[no rights]

AccessDenied

create

validateMessageContent

Figure 215. MessageLibraryModulePkg:CreateHARStoreMessage (Sequence Diagram)

3.1.15.5 MessageLibraryModulePkg:CreateMessageLibrary (Sequence Diagram)

A user possessing the proper functional rights can add a Message Library to the system. The library object is created and published via the CORBA Trading Service. An event is pushed via the CORBA Event Service to notify interested parties of the new library. The user and operation details are logged in the operations log.

[image: image218.emf]POA MessageLibraryFactoryImpl

ORBr

MessageLibraryImpl

CosEvent:PushConsumer ServiceApplication TokenManipulator OperationsLog MessageLibraryDB

activate_object

log("Message Library added")

createLibrary

push(LibraryAdded)

registerObject

create

MessageLibrary

[no rights]

AccessDenied

checkAccess

insertMessageLibrary

[Database Error]

CHART2Exception

[no rights]

log

Figure 216. MessageLibraryModulePkg:CreateMessageLibrary (Sequence Diagram)

3.1.15.6 MessageLibraryModulePkg:DeleteMessageLibrary (Sequence Diagram)

A user with the proper functional rights can remove a Message Library from the system. This will include the removal of all stored messages contained within the library. Since stored messages may be used in Plans, a check is made for any plans that may contain the stored messages being deleted and the user is warned. If the user acknowledges the deletions, each message within the library is removed, events are pushed to notify others of the action, and the library is removed from the Trading Service. The user and operation details are logged in the operations log.

[image: image219.emf]POA

CosTrading:

Register StoredMessageImpl

GUI

MessageLibraryImpl

Operator

CosEvent:

PushConsumer Message TokenManipulator MessageLibraryDB OperationsLog

See IsMessageLibraryUsedByAnyPlan

sequence digram for details.

MessageLibraryFactoryImpl

[Database error]

CHART2Exception

deactivate_object

deactivate_object

delete

isUsedByAnyPlan

[no rights]

AccessDenied

[* for each

Stored Message]

removeMessageLibrary

push(LibraryRemoved)

withdraw

removeLibrary

push(StoredMessageRemoved)

delete

withdraw

[no rights]

AccessDenied

[no rights]

AccessDenied

remove

[Plan using library]

Warn user

Plan Using Library

log("Message Library deleted")

checkAccess

[no rights]

log

checkAccess

deleteLibrary

[Database error]

CHART2Exception

[Database error]

CHART2Exception

Figure 217. MessageLibraryModulePkg:DeleteMessageLibrary (Sequence Diagram)

3.1.15.7 MessageLibraryModulePkg:DeleteStoredMessage (Sequence Diagram)

A user with the proper functional rights may remove a stored message from the system. Since a stored message may be used in a plan, a check is made to see if the message is used in a plan so that the user can be warned accordingly. The act of deleting the stored message involves deleting the message, updating the database and pushing an event to notify others that the message has been removed from its library. The user and operation details are logged in the operations log.

[image: image220.emf]POA MessageLibraryDB OperationsLog

See IsStoredMessageUsedByAnyPlan

sequence duagram for details.

CosEvent:

PushConsumer

CosTrading:

Register StoredMessageImpl

GUI

MessageLibraryImpl

Operator

TokenManipulator

See CleanupMessage sequence

diagram.

cleanup

push(StoredMessageRemoved)

withdraw

remove

[PlanItem using

StoredMessage]

Warn User

[PlanItem is using StoredMessage]

removeMessage

[no rights]

AccessDenied

checkAccess

isMessageUsedByAnyPlan

[no rights]

CHART2Exception

deleteStoredMessage

[no rights]

AccessDenied

removeMessage

deactivate_object

checkAccess

[no rights]

log

log("Stored Message deleted")

Figure 218. MessageLibraryModulePkg:DeleteStoredMessage (Sequence Diagram)

3.1.15.8 MessageLibraryModulePkg:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Message Library Module. This module is created by a service that will host this module's objects. A ServiceApplication is passed to this module's initialize method and provides access to basic objects needed by this module. This module creates a Message Library Factory which in turn creates Message Library objects. Message Library objects contain Stored Message objects which are created by the Message Library DB at startup. The MessageLibraryFactory, MessageLibrary and StoredMessage objects are published via the CORBA Trading service to make them available for modifications (given the proper access rights) and usage.

[image: image221.emf]DiciionaryWrapper

Note: DB creates the Stored

Messages of the appropriate

 message type and returns the objects.

Application Service

MessageLibraryModule

ServiceApplication

MessageLibraryFactoryImpl

MessageLibraryImpl

MessageLibraryDB

PushEventSupplier

POA

AudioClip

ManagerWrapper

StoredMessageImpl

If the message data contains any

HARMessageAudioClips, the

database creates a clip with audio

clip ID. This replaces the clip with

the actual message clip.

See InitializeMessage sequence

diagram for details.

get

getPOA

initialize

AudioClipManagerWrapper

activate_object(PushEventSupplier)

[* for each

Stored Message]

activate_object

StoredMessageList

getORB

getTradingRepos

getOperationsLog

[* for each Stored Message]

registerObject

create

create

initialize

getDBConnectionManager

getEventChannelFactory

get

DictionaryWrapper

getPOA

getServiceAppilcation

getPOA

getServiceApplication

[* for each Message Library]

create

activate_object(MessageLibraryFactoryImpl)

[* for each MessageLibraryImpl]

activate_object

create

getMessageLibraryList

getStoredMessages

[* for each MessageLibraryImpl]

registerObject

registerObject

(MessageLibraryFactoryImpl)

registerObject

(PushEventSupplier)

[* for each

stored message]

initializeMessage

initialize

Figure 219. MessageLibraryModulePkg:Initialize (Sequence Diagram)

3.1.15.9 MessageLibraryModulePkg:InitializeMessage (Sequence Diagram)

This diagram shows how the message data is initialized when the stored messages created at startup or on the fly with a HAR message. At startup, if the HAR message in the stored message contain any HARMessageAudioClips, the database creates the clips with just clip ID read from the database. These clips are replaced with the actual HARMessageAudioClip objects by querying the AudioClipManagers found in the CORBA Trader with the clip ID. See HARUtility.GetHARMessageAudioClip sequence diagram for details about how a HARMessageAudioClip is obtained given an ID. This diagram also shows how the HAR message audio data clips associated with HAR message are saved if the message contains HARMessageAudioClipData objects and/or HARMessageAudioClip objects when they are created on the fly. If the message contains HARMessageAudioClip objects, registerInterest() method is called on the object to establish an association between the stored message and the HARMessageAudioClip. If the message contains HARMessageAudioDataClip objects, they are saved by calling the storeClip() method on the nearest AudioClipManager which saves the audio clip data in the database and returns a streamable audio clip object. See HARUtility.StoreHARMessageAudioDataClip for details about how the nearest AudioClipManager is found.

[image: image222.emf]HARMessageAudioClip HARMessage

AudioClip

ManagerWrapper

StoredMessageImpl

StoredMessageImpl

Replaces HARMessageAudioDataClips or

uninitialized HARMessageAudioClips

Replaces HARMessageAudioDataClip or

uninitialized HARMessageAudioClip

Replaces HARMessageAudioDataClip or

uninitialized HARMessageAudioClip

[if HARMessage is an instance of HARMessageAudioDataClip]

storeClip

[if HARMessage is an

instance of HARMessageAudioClip]

registerInterest

HARMessageClip[]

getBody

HARMessageAudioClip

[if HARMessage is an instance of HARMessageAudioDataClip]

storeClip

[if HARMessage is an

instance of HARMessageAudioClip]

registerInterest

HARMessageClip

getHeader

[if Message is

not an instance of HARMessage]

initializeMessage

[if body needs to be updated]

setBody

[if header needs to be updated]

setHeader(HARMessageAudioClip)

[if HARMessage is an

instance of HARMessageAudioClip]

registerInterest

HARMessageClip

getTrailer

[* for each

HARMessageClip

in body]

HARMessageAudioClip

HARMessageAudioClip

[if HARMessage is an instance of HARMessageAudioDataClip]

storeClip

[unexpected error]

CHART2Exception

[unexpected error]

CHART2Exception

[unexpected error]

CHART2Exception

[unexpected error]

CHART2Exception

[unexpected error]

CHART2Exception

[unexpected error]

CHART2Exception

[if trailer needs to be updated]

setTrailer(HARMessageAudioClip)

[if HARMessage is an

instance of HARMessageAudioClip and

m_clipMgr == null]

getAudioClip

HARMessageAudioClip

[if HARMessage is an

instance of HARMessageAudioClip and

m_clipMgr == null]

getAudioClip

HARMessageAudioClip

[if HARMessage is an

instance of HARMessageAudioClip and

m_clipMgr == null]

getAudioClip

HARMessageAudioClip

Figure 220. MessageLibraryModulePkg:InitializeMessage (Sequence Diagram)

3.1.15.10 MessageLibraryModulePkg:IsMessageLibraryUsedByAnyPlan (Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using the stored messages of a particular message library.

[image: image223.emf]Plan

GUI

MessageLibraryImpl CosTrading:Lookup PlanItem

isUsedByAnyPlan

query

[all plans]

[* for each PlanItem]

isUsingObject

[is using a Stored Message]

true

[plan using library]

true

[isUsing a Sttored Message]

true

[* for each Plan]

isUsingObject

Figure 221. MessageLibraryModulePkg:IsMessageLibraryUsedByAnyPlan (Sequence Diagram)

3.1.15.11 MessageLibraryModulePkg:IsStoredMessageUsedByAnyPlan (Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using a particular stored message.

[image: image224.emf]Plan

GUI

MessageLibraryImpl CosTrading:Lookup PlanItem

[is using StoredMessage]

true

isMessageUsedByAnyPlan

query

[all plans]

[* for each PlanItem]

isUsingObject

[is using Stored Message]

true

[plan using Message]

true

[* for each Plan]

isUsingObject

Figure 222. MessageLibraryModulePkg:IsStoredMessageUsedByAnyPlan (Sequence Diagram)

3.1.15.12 MessageLibraryModulePkg:ModifyDMSStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored message. The proposed contents for the stored message are checked against the dictionary prior to allowing the new content to be set. The state of the beacons associated with the message are also checked to make sure the beacons are not turned on for a message with no text. An event is pushed via the CORBA Event Service to notify others of the change to the stored message's contents. The user and operation details are logged in the operations log.

[image: image225.emf]Operator

The user will alter

their message text

by either ignoring

the suggestion, using

the suggestion, or

adding the word to

the dictionary.

User is shown the current

contents of the message in

a Message editor dialog box

to edit the message.

TokenManipulator OperationsLog MessageLibraryDB DMSMessage Dictionary CosEvent:PushConsumer StoredMessageImpl

validateMessageContent

push(StoredMessageChanged)

[message contains banned words]

DisapprovedMessageContent

checkForBannedWords

[no rights]

AccessDenied

setMessageData

[Database error]

CHART2Exception

getMultiString

getBeaconState

setBeaconState

[invalid beacon state]

DisapprovedMessageContent

[message contains banned words]

DisapprovedMessageContent

checkAccess

[no rights]

log

updateStoredMessage

validateBeaconState

[invalid beacon state]

DisapprovedMessageContent

setMultiString

getMessageData

performApprovedWordsCheck

DictionarySuggestion for each unknown word

log("Stored Message modified")

Figure 223. MessageLibraryModulePkg:ModifyDMSStoredMessage (Sequence Diagram)

3.1.15.13 MessageLibraryModulePkg:ModifyHARStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored HAR message. The proposed contents for the stored message are checked against the dictionary if it is in text format. An event is pushed via the CORBA Event Service to notify others of the change to the stored message's contents. The user and operation details are logged in the operations log.

[image: image226.emf]If the message data contains any

HARMessageAudioDataClips or

HARMessageAudioClips, this

stores them or registers interest.

See InitializeMessage sequence

diagram for details.

User is shown the current

contents of the message in

a Message editor dialog box

to edit the message.

OperationsLog MessageLibraryDB TokenManipulator HARMessageImpl

The user will alter

their message text

by either ignoring

the suggestion, using

the suggestion, or

adding the word to

the dictionary.

Dictionary CosEvent:PushConsumer StoredMessageImpl

Operator

[if HAR text message and

message contains banned words]

DisapprovedMessageContent

[if text clip]

checkForBannedWords

[no rights]

AccessDenied

setMessageData

push(StoredMessageChanged)

[Database error]

CHART2Exception

initializeMessage

performApprovedWordsCheck

DictionarySuggestion for each unknown word

setBody

"Format HAR Message"

checkAccess

log("no rights")

updateStoredMessage

log("Stored Message modified")

getBody

[if HAR text message and

message contains banned words]

DisapprovedMessageContent

getMessageData

validateMessageContent

[* for each Clip]

Figure 224. MessageLibraryModulePkg:ModifyHARStoredMessage (Sequence Diagram)

3.1.15.14 MessageLibraryModulePkg:SetLibraryName (Sequence Diagram)

A user with the proper functional rights may set the name assigned to a message library. An event is pushed via the CORBA Event Service to notify others of the name change. The user and operation details are logged in the operations log.

[image: image227.emf]ORB

TokenManipulator

MessageLibraryDB

OperationsLog

MessageLibraryImpl PushEventSupplier

[database error]

CHART2Exception

push(LibraryNameChanged)

checkAccess

[no rights]

AccessDenied

[no rights]

log

log("Library Name Changed")

setName

setMessageLibraryName

Figure 225. MessageLibraryModulePkg:SetLibraryName (Sequence Diagram)

3.1.15.15 MessageLibraryModulePkg:Shutdown (Sequence Diagram)

The MessageLibraryModule is shutdown by its host application. When told to shutdown, the MessageLibraryModule deactivates the MessageLibraryFactory from the POA, and shuts down the object. When the MessageLibraryFactory is shut down, deactivates each library from the POA and shuts down the object. The MessageLibrary deactivates any StoredMessage objects that it is serving.

[image: image228.emf]Application Service

MessageLibraryModule MessageLibraryFactoryImpl CosTrading.Register POA StoredMessage

DBConnectionManager

MessageLibraryImpl

deactivateObject(MessageLibraryFactoryImpl)

shutdown

* for each

MessageLibrary

* for each

Stored Message

deactivate_object

deactivate_object

deactivate_object(PushEventSupplier)

shutdown

shutdown

shutdown

success

shudown

Figure 226. MessageLibraryModulePkg:Shutdown (Sequence Diagram)

3.1.15.16 MessageLibraryModulePkg:ViewDMSStoredMessage (Sequence Diagram)

The GUI discovers the contents of a DMS stored message during startup. The GUI is notified of changes to the contents of the DMS stored message via a CORBA event channel. When notified of such changes, the GUI updates itself so the user is always shown the latest information pertaining to the DMS stored message. The user and operation details are logged in the operations log.

[image: image229.emf]setMessage

push(StoredMessageChanged)

setMultiString

setBeaconState

getBeaconState

CosEvent:PushConsumer

All StoredMessage objects

are published in the trader.

At startup a list of all the

StoredMessage objects

is obtained by querying the trader.

All the status updates for

StoredMessage objects are

notified to the operator by pushing

events through the CORBA event service .

Operator

StoredMessage DMSMessage

Operator

CosTrading:Register

create

getMessage

query

[for all StoredMessage objects]

getMultiString

push(StoredMessageChanged)

Figure 227. MessageLibraryModulePkg:ViewDMSStoredMessage (Sequence Diagram)

3.1.15.17 MessageLibraryModulePkg:ViewHARStoredMessage (Sequence Diagram)

The GUI discovers the contents of a HAR stored message during startup. The GUI is notified of changes to the contents of the HAR stored message via a CORBA event channel. When notified of such changes, the GUI updates itself so the user is always shown the latest information pertaining to the HAR stored message. The user and operation details are logged in the operations log.

[image: image230.emf]query

[for all HARStoredMessage objects]

getMessage

create

push(StoredMessageChanged)

getBody

AudioDataIterator + First Audio Data Chunk

create

convertTextToSpeech

"Start Playing

 Audio Data"

[while "getNext

returns more

AudioData"]

"Say"

destroy

"Play Audio Data"

HARMessage

Operator

CosTrading:Register

All StoredMessage objects

are published in the trader.

At startup a list of all the

StoredMessage objects

is obtained by querying the trader.

CosEvent:PushConsumer

All the status updates for

StoredMessage objects are

notified to the operator by pushing

events through the CORBA

event service .

Operator

StoredMessage

AudioDataIterator

TTSConverter

To initiate this the user

selected "Play Message"

from the menu.

TTSConverter will call

the TTS Engine API to

convert text to speech

getNext

push(StoredMessageChanged)

getHeader

setMessage

setTrailer

setBody

setHeader

getFooter

Figure 228. MessageLibraryModulePkg:ViewHARStoredMessage (Sequence Diagram)

PlanModule

3.1.16 Classes

3.1.16.1 PlanModuleClasses (Class Diagram)

This is an installable module that serves the PlanFactory and Plan objects to the rest of the CHART2 system.

[image: image231.emf]PushEventSupplier

ServiceApplicationModule

«interface»

PlanFactoryImpl

PlanImpl

ServiceApplication

«interface»

PlanItemData

PlanModule

PlanDB

PlanItemImpl

PlanFactory

«interface»

Plan

«interface»

PlanItem

«interface»

DBConnectionManager

1

1

1

1

1

1

*

1

1 *

1

*

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

*

1

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

PlanFactoryImpl(ServiceApplication, PushEventSupplier, PlanDB)

getPlanOfferIDs()

removePlan(Object)

shutdown

m_devicePlanCollection

m_offertIDs

PlanImpl(ServiceApplication , PushEventSupplier, PlanDB, PlanFactoryImpl)

removeItem()

m_id

m_name

getPlanList

insertPlan

deletePlan

insertPlanItem

deletePlanItem

getPlanItems

setPlanName

PlanItemImpl(PlanImpl, PushEventSupplier,

 PlanDB, PlanItemData)

m_id

m_name

m_planItemData

createPlan(AccessToken token,

 string name):Plan

getPlans():PlanList

setName(AccessToken,string):void

addItem(AccessToken,PlanItemData):PlanItem

removeItem(AccessToken,PlanItem):void

getItems():PlanItemList

remove(AccessToken):void

isUsingObject(IdentifierList objectIDs)

setName(AccessToken, string):void

setData(AccessToken, PlanItemData):void

getData():PlanItemData

remove(AccessToken):void

getPlanID():Identifier

isUsingObject(IdentifierList):boolean

Figure 229. PlanModuleClasses (Class Diagram)

3.1.16.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.16.1.2 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items.

3.1.16.1.3 PlanDB (Class)

This class contains the methods that perform database operations for the Plan module. It is constructed with a Database object that provides the connections to the database server. All the methods in this class get a new connection to the database before performing any operation on the database. The connection is released at completion of the operation.

3.1.16.1.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the system.

3.1.16.1.5 PlanFactoryImpl (Class)

This class implements the PlanFactory interface and enables the management of the Plan objects by other processes. It creates, publishes and deletes the objects that implement the Plan interface.

3.1.16.1.6 PlanImpl (Class)

This class implements the Plan interface and provides the implementation for the methods defined in the interface. It also manages the database operations for the PlanItems contained in this Plan.

3.1.16.1.7 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This CORBA interface is subclassed for specific actions that can be planned in the system.

3.1.16.1.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.1.16.1.9 PlanItemImpl (Class)

This class implements the PlanItem interface.

3.1.16.1.10 PlanModule (Class)

This module creates, publishes and deletes the object that implement the PlanFactory interface.

3.1.16.1.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.16.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.16.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

Sequence Diagrams

3.1.16.2 PlanModule:AddItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can add an item to an existing plan in the system. An AccessDenied exception is returned if the user does not have the right to add an item to the plan. Otherwise, a PlanItem object is created and added to the database. A PlanItemAdded event is pushed through the event channel to notify other processes that a plan item has been added to this plan. User actions are logged to the operations log.

[image: image232.emf]TokenManipulator PlanImpl PushEventSupplier OperationsLog

ORB

POA

PlanItemImpl

PlanDB ServiceApplicationr

checkAccess

registerObject(PlanItemImpl)

create

activate_object(PlanItemImpl)

push(PlanItemAdded)

insertPlanItem

addItem

[Database error]

CHART2Exception

log(PlanItemAdded)

[no rights]

AccessDenied

[no rights]

log

Figure 230. PlanModule:AddItem (Sequence Diagram)

3.1.16.3 PlanModule:AddPlan (Sequence Diagram)

This diagram shows how a user with proper functional rights can add a plan to the system. An AccessDenied exception is returned if the user does not have the functional right to add a plan. Otherwise, the plan object is created and added to the database. The plan object is published in CORBA Trader service and a PlanAdded event is pushed through the event channel to notify the other processes that a new plan has been added.

[image: image233.emf]ServiceApplication PushEventSupplier OperationsLog POA PlanDB

TokenManipulator

ORB

PlanFactoryImpl

PlanImpl

createPlan

Plan

log(PlanAdded)

insertPlan

activate_object(PlanImpl)

checkAccess

[Database error]

CHART2Exception

push(PlanAdded)

registerObject(Plan)

create

[no rights]

AccessDenied

[no rights]

log

Figure 231. PlanModule:AddPlan (Sequence Diagram)

3.1.16.4 PlanModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Plan Module. An ApplicationService will initialize this module. The references to basic services such as POA, Trader, Event channel and database are obtained from the ServiceApplication. This module creates a Plan Module specific database object. It also creates the PlanFactory object, which creates the Plan objects from the plan list obtained from the database. The Plan objects are published in the trader. An event channel is created to push the events to clients and it is published in the trader register. The Offer IDs of all the objects that were published in the trader are saved to a file so that they may be withdrawn.

[image: image234.emf]PlanItemImpl

Application Service

PlanModule

ServiceApplication

PlanFactoryImpl

PlanImpl

PlanDB

PushEventSupplier

POA

registerObject(PlanImpl)

[* for each PlanItem]

activate_object(PlanImpl)

create

getChannel

registerEventChannel

[* for each plan]

create

getORB

getOperationsLog

getIDGenerator

registerObject(PlanItemImpl)

activate_object(PlanFactoryImpl)

activate_object(PlanItemImpl)

registerObject

(PlanFactoryImpl)

getPlanList

create

getTradingLookup

initialize

getDBConnectionManager

getEventChannelFactory

create

getPlanItems

create

Figure 232. PlanModule:Initialize (Sequence Diagram)

3.1.16.5 PlanModule:PlanIsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan is using a particular set of objects. The IDs of the object are passed to the Plan object to check if its PlanItems are using these objects. If a PlanItem is using any object, the Plan returns true.

[image: image235.emf]PlanImpl

PlanItem

PlanFactoryImpl

ORB

[* for each PlanItem]

[Plan Item Using Object]

true

true

[Plan Item Using Object]

true

[* for each Plan]

[if none of the PlanItems are

using this object]

false

isUsingObject

isUsingObject

isUsingObject

false

Figure 233. PlanModule:PlanIsUsingObject (Sequence Diagram)

3.1.16.6 PlanModule:PlanItemIsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan item is using an object from a set of objects. The IDs of the objects are passed to the PlanItem object. If the PlanItem is using any object, it returns true.

[image: image236.emf]PlanItemData PlanItem

ORB

true or false

isUsingObject

[if not using]

false

[if using]

true

isUsingObject

Figure 234. PlanModule:PlanItemIsUsingObject (Sequence Diagram)

3.1.16.7 PlanModule:RemoveItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can remove a plan item from a plan in the system. An AccessDenied exception is returned if the user does not have the right to remove an item from the plan. Otherwise, the plan item is deleted from the database and the object is destroyed. An event is pushed through the event channel to notify other processes that the plan item has been removed from the plan. User actions are logged to the operations log.

[image: image237.emf]removeItem

[Database error]

CHART2Exception

remove

POA

ORB

PlanImpl

TokenManipulator

OperationsLog PlanItemImpl PlanDB PushEventSupplier CosTrading.Register

checkAccess

[AccessDenied]

log(AccessDenied)

[no right]

AccessDenied

[error]

CorbaUtilException

[no right]

AccessDenied

[error]

Chart2lException

[error]

Char2Exception

[error]

GeneralException

log(GeneralException)

withdraw(PlanItem)

deactivate_object(PlanItem)

checkAccess

[AccessDenied]

log(AccessDenied)

[Database error]

CHART2Exception

[no right]

AccessDenied

deletePlanItem

log(PlanItemRemoved)

push(PlanItemRemoved)

Figure 235. PlanModule:RemoveItem (Sequence Diagram)

3.1.16.8 PlanModule:RemovePlan (Sequence Diagram)

This sequence diagram shows how a user with proper rights can delete a Plan from the system. An AccessDenied exception is returned if the user does not have the functional right to delete a Plan. Otherwise, the Plan is deleted from the database and the object is destroyed. The Plan is withdrawn from the trader and a PlanRemoved event is pushed through the event channel to notify the clients that the plan has been deleted. Note that the deletion of a plan results in the deletion of all the plan items that are used in the plan from the system and the database. The user actions are logged to the operations log.

[image: image238.emf][Database error]

CHART2Exception

push(PlanRemoved)

[* for each PlanItem]

push(PlanItemRemoved)

POA PlanDB PlanFactoryImpl PlanImpl OperationsLog TokenManipulator CosTrading.Register

ORB

PushEventSupplier

log(PlanItem removed)

deactivate_object(PlanItem)

withdraw(PlanItem)

[no rights]

log

deletePlan

withdraw(plan)

[error]

CorbaUtilException

log(CorbaUtilException)

deactivate_object(Plan)

[error]

Chart2Exception, CorbaUtilException

[error]

Chart2Exception, CorbaUtilException

removePlan(this)

remove

log(PlanRemoved)

[no rights]

AccessDenied

checkAccess

Figure 236. PlanModule:RemovePlan (Sequence Diagram)

3.1.16.9 PlanModule:RemovePlanFromFactory (Sequence Diagram)

This sequence diagram shows how a Plan object is removed from the Plan Factory when a Plan is deleted from the system.

[image: image239.emf]PlanDB

POA CosTrading.Register

PlanFactoryImpl

Caller

deletePlan

removePlan(Obj)

"Find Object in the List"

withdraw(PlanImpl)

deactivate_object(PlanImpl)

"Remove Object from List"

Figure 237. PlanModule:RemovePlanFromFactory (Sequence Diagram)

3.1.16.10 PlanModule:SetPlanItemData (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the PlanItemData object of a plan item. An AccessDenied exception is returned if the user does not have the right to modify the plan item. Otherwise, the PlanItemData is updated and stored in the database. An event is pushed through the event channel to notify other processes that the plan item has been changed. User actions are logged to the operations log.

[image: image240.emf]PlanImpl

ORB

OperationsLog

PlanDB

PushEventSupplier

PlanItemImpl

TokenManipulator

push (planItem)

log(Plan Item Data Changed)

setData

checkAccess

[no rights]

log

[no rights]

AccessDenied

[Database error]

CHART2Exception

setPlanItemData

pushPlanItemChangedEvent

Figure 238. PlanModule:SetPlanItemData (Sequence Diagram)

3.1.16.11 PlanModule:SetPlanItemName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the name of a plan item. An AccessDenied exception is returned if the user does not have the right to change the plan item name. Otherwise, the plan item name is changed and stored in the database. An event is pushed through the event channel to notify other processes that the plan item has been changed. User actions are logged to the operations log.

[image: image241.emf]PlanImpl

ORB

OperationsLog

PlanDB

PushEventSupplier

PlanItemImpl

TokenManipulator

push(planItem)

[no rights]

log

[no rights]

AccessDenied

[Database error]

CHART2Exception

setPlanItemName

pushPlanItemChangedEvent

log(PlanItem Name Changed)

setName

checkAccess

Figure 239. PlanModule:SetPlanItemName (Sequence Diagram)

3.1.16.12 PlanModule:SetPlanName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can set the name of a Plan. An access denied exception is returned if the user does not have the right to change the name. Otherwise, the name is changed and the database is updated. An event id pushed via the CORBA event service to notify others of the new Plan name. The user actions are logged to the operations log.

[image: image242.emf]ORB

OperationsLog

PlanDB

PushEventSupplier

PlanImpl

TokenManipulator

push(Plan Name Changed)

[no rights]

AccessDenied

[Database error]

CHART2Exception

log(Plan Name Changed)

setName

checkAccess

[no rights]

log

setPlanName

Figure 240. PlanModule:SetPlanName (Sequence Diagram)

3.1.16.13 PlanModule:Shutdown (Sequence Diagram)

This diagram shows the shutdown sequence of the Plan module. All the Plan objects that were published in the trader by the PlanFactory and the PlanFactory itself are withdrawn and destroyed. The event channel is also withdrawn from the trader and destroyed.

[image: image243.emf]POA

The Object is

 garbage collected

DBConnectionManager

PlanItemImpl

PlanImpl

PushEventSupplier

Application Service

PlanModule

PlanFactoryImpl

deactivate_object(PlanItemImpl)

[* for each Plan]

shutdown

deactivate_object(PlanImpl)

deactivate_object(PlanFactoryImpl)

shutdown

shutdown

shutdown

success

[* for each PlanItem]

Figure 241. PlanModule:Shutdown (Sequence Diagram)

ResourcesModule

3.1.17 Classes

3.1.17.1 ResourceClasses (Class Diagram)

This diagram shows the classes in the ResourcesModule, an installable service module that serves objects that implement the Organization and OperationsCenter interfaces.

[image: image244.emf]1

1

1

1 *

*

1

1 *

1

1

1

*

*

1

1

1

ResourcesDB

UserLoginSession

«interface»

OperationsCenterImpl

UserManagementDB

ORB

«interface»

CosTrading.Lookup

«interface»

ServiceApplicationModule

«interface»

ServiceApplication

«interface»

OperationsCenter

«interface»

Organization

«interface»

ResourcesModule

OrganizationImpl

OperationsCenterFactory

OperationsCenterFactoryImpl

1

OperationsCenterDB(DBConnectionManager db)

getOperationsCenters

getOrganizations

storeLoginSessions

getLoginSessions

getUserFunctionalRights

insertOperationsCenter

deleteOperationsCenter

setOperationsCenterName

DBConnectionManager m_db

getOpCenter():OperationsCenter

getUsername():UserName

ping():boolean

void forceLogout(AccessToken token)

OperationsCenterImpl(ORB orb, Database db, CosTrading.Lookup traderLookup)

- lookupLoginSession

- removeLoginSession

- addLoginSession

- checkForUserLogins(): boolean

shutdown

-rename(string opCenterName):boolean

getUsers

getRoles

getUser

getUserRoles

getUserPassword

setUserPassword

createRole

deleteRole

setRoleFunctionalRights

getRoleFunctionalRights

createUser

deleteUser

grantRole

revokeRole

setUserPassword

setUserRoles

getUserProfile

deleteUserProfile

getUserProfileProperties

setUserProfileProperties

deleteProfileProperty

getSystemProfile

getSystemProfileProperties

setSystemProfileProperties

DBConnectionManager m_db;

init()

resolve_initial_references()

string_to_object()

object_to_string()

run()

query

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

ResourcesModule()

m_application

-storeOpCenter(OperationsCenterImpl)

shutdown():boolean

removeOperationsCenter(

OperationsCenterImpl opCenter);

Figure 242. ResourceClasses (Class Diagram)

3.1.17.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published.

3.1.17.1.2 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used to log users into the system. If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user. This token is then used to call privileged methods within the system. Shared resources in the system are either available or under the control of an OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control. This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

3.1.17.1.3 OperationsCenterFactory (Class)

This class is used to create new operations centers and maintain them in a collection.

3.1.17.1.4 OperationsCenterFactoryImpl (Class)

This class provides implementation of OperationsCenterFactory interface to manage OperationCenter objects in the system.

3.1.17.1.5 OperationsCenterImpl (Class)

This class provides the implementation of the OperationsCenter interface for this module. It, therefore, provides a concrete implementation of each of the methods in the interface. It also contains a collection of UserLoginSession objects, one for each user who is currently logged in.

3.1.17.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.17.1.7 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an organization, that is an administrative body which can control or own resources.

3.1.17.1.8 OrganizationImpl (Class)

This class provides the implementation of the Organization interface for this module. Thus, it provides a concrete implementation of each of the methods in the interface.

3.1.17.1.9 ResourcesDB (Class)

This class provides a set of API calls to access the Operations Center data from the database. The API's provide functionality to add, remove and retrieve Operation Center data from the database. The connection to the database is acquired from the Database object which manages all the database connections.

3.1.17.1.10 ResourcesModule (Class)

This module creates, publishes and destroys all objects related to resource management that are used by the User Management service application.

3.1.17.1.11 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.17.1.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.17.1.13 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system. This object is served from the GUI and provides a means for the servers to call back into the GUI process.

3.1.17.1.14 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Managment data in the database. This class uses a Database object to retrieve a connection to the database for its exclusive use during a method call.

Sequence Diagrams

3.1.17.2 ResourcesModule:ChangeUser (Sequence Diagram)

A client with the correct functional rights may select to relinquish his/her workstation to another operator. This typically will happen at shift change. This sequence logs the new operator in before logging the old operator out. Thereby guaranteeing that the shared resources controlled by the operations center have a responsible operator during the transition. If this method throws any type of exception, the old user is still logged in and the new user is not. If this method returns a token, the old user is logged out and the new user is logged in.

[image: image245.emf]OperationsCenterDB

Remove the new login

session because the old

one could not be logged

off.

Remove the old

LoginSession and

store the new one.

If the login session

specified is not a valid

login session for a logged

in user.

TokenManipulator

ORB

OperationsCenter UserManagementDB OperationsLog

LogoutFailure

[logout failure]

removeLoginSession

LoginFailure

[LoginFailure]

log

Token

create

changeUser

getUserPassword

removeLoginSession

log

getUserFunctionalRights

delete

[* for each functional right]

add

addLoginSession

Figure 243. ResourcesModule:ChangeUser (Sequence Diagram)

3.1.17.3 ResourcesModule:createOperationsCenter (Sequence Diagram)

This Sequence Diagram shows how the OperationsCenterFactoryImpl creates a new Operations Center on behalf of an operator. The operator must posess the proper functional rights to create an Operations Center. When a request to create Operations Center is received by the OperationsCenterFactory, the ResourcesDB is asked to create and persist it to the database. The object is connected to the ORB and is ready for operations. An OperationsCenterAddedEvent is then pushed into the event channel.

[image: image246.emf]ORB

OperationCenterFactoryImpl

OperationsCenterImpl

TokenManipulator OperationsLog ResourcesDB POA ServiceApplication PushEventSupplier

[DB error]

[DB error]

CHART2Exception

createOperationCenter

create

[no rights]

AccessDenied

checkAccess

OperationsCenter

storeOpCenter

[no rights]

log

insertOperationsCenter

activate_object(OperationsCenterImpl)

registerObject(OperationsCenter)

push(OperationsCenterAdded)

[success]

log(token, "OperationsCenterAdded")

[no rights]

Figure 244. ResourcesModule:createOperationsCenter (Sequence Diagram)

3.1.17.4 ResourcesModule:ForceLogout (Sequence Diagram)

A client with the correct functional rights may force a particular user to logout of the CHART2 system. This is actually accomplished in two steps. The client would first need to acquire a UserLoginSession object before calling this method, please refer to the sequence diagram for the getUserLoginSessions method for details. Once the user has acquired a UserLoginSession he/she may contact the Operations Center where that UserLoginSession is being tracked and inform it that the user should be forced to logout. The OperationsCenter will call the forceLogout method on the specified UserLoginSession after removing the login session from its internal collection of login sessions. Note that it is possible for the user to call the forceLogout method directly on the UserLoginSession without informing the OperationsCenter. This method of forcing a user to logout is also accepted. If this path is taken, the operations center will contain a reference to a UserLoginSession which is no longer valid. This possibility is accounted for by pinging the UserLoginSession objects each time the getNumLoggedInUsers() method is called. Please refer to that sequence diagram for details.

[image: image247.emf]OperationsCenterImpl OperationsLog UserLoginSession

Thrown if an error

occurs forcing the

user login session to

logout

TokenManipulator

ORB

TokenManipulator

forceLogout

[AccessDenied]

log

create

[LogoutFailure]

LogoutFailure

log

lookupLoginSession

AccessDenied

checkAccess

removeLoginSession

forceLogout

AccessDenied

checkAccess

delete

[access denied]

AccessDenied

[AccessDenied]

log

Figure 245. ResourcesModule:ForceLogout (Sequence Diagram)

3.1.17.5 ResourcesModule:GetControlledResources (Sequence Diagram)

A client may request a list of all shared resources which are currently controlled by this operations center. This would typically happen if the user were looking to transfer responsibility for some of all of the controlled shared resources from one operations center to another. The operations center will contact each shared resource manager in the system and get a list of resources which it is currently controlling. The lists returned by each shared resource manager will be combined and the entire list of controlled resources will be returned to the user.

[image: image248.emf]Get the shared

resource managers

from the trader.

ORB

CosTrading.Lookup SharedResourceManager OperationsCenterImpl

getControlledResources

query

[* for each SharedResourceManager]

getControlledResources

Figure 246. ResourcesModule:GetControlledResources (Sequence Diagram)

3.1.17.6 ResourcesModule:GetLoginSessions (Sequence Diagram)

A client with the correct functional rights may get a list of UserLoginSessions which represents the list of users who are currently logged in from this operations center.

[image: image249.emf]OperationsCenterImpl OperationsLog TokenManipulator

ORB

list of sessions

getLoginSessions

log

[AccessDenied]

log

checkAccess

[access denied]

AccessDenied

Figure 247. ResourcesModule:GetLoginSessions (Sequence Diagram)

3.1.17.7 ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)

This method allows a client to get the number of users who are currently logged in at this operations center. This method will be used by the shared resource manager watchdogs to verify that they do not have shared resources which are under the control of operations centers with no users logged in. This method will ping each UserLoginSession before counting it as a valid login session. The ping protects the system from counting login sessions from GUI's which have been turned off or disconnected without performing a proper logout.

[image: image250.emf]ORB

OperationsCenterImpl UserLoginSession

Return number of successfully

pinged user login sessions

[ping fails]

removeLoginSession

[*for each login session]

ping

getNumLoggedInUsers

Figure 248. ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)

3.1.17.8 ResourcesModule:Initialize (Sequence Diagram)

When the service is started, the service application will call initialize on this module. The module will create the operations center factory and organization imlementation objects which are found in the database, connect them to the ORB and export them in the trading service so that other applications may locate them.

[image: image251.emf]PushEventSupplier

OperationsCenterFactoryImpl

ServiceApplication POA

OperationsCenterImpl

UserManagementResourcesModule

Service Application

ResourcesDB

OperationsCenterFactoryImpl and

each OperationsCenterImpl and

OrganizationImpl created will be

connected to the ORB.

OrganizationImpl

registerObject(Organization)

create

getEventChannel

registerEventChannel

(EventChannel)

create

create

getOperationsCenters

create

[success]

[*for each

operations center

in the list]

activate_object(OperationsCenter)

registerObject(OperationsCenter)

getDefaultProperties

getProperties

getEventChannelFactory

getPOA

getTradingRegister

connect

activate_object(OperationsCenterFactory)

registerObject(Operations

CenterFactory)

create

[*for each

organization in

the list]

activate_object(Organization)

initialize

success

getOrganizations

getTradingLookup

getDBConnectionManager

Figure 249. ResourcesModule:Initialize (Sequence Diagram)

3.1.17.9 ResourcesModule:IsUserLoggedIn (Sequence Diagram)

This sequence diagram shows the steps taken to determine if a user is currently logged in to the system.

[image: image252.emf]OperationsCenterImpl

ORB

UserLoginSession

isUserLoggedIn

[* for each login session]

getUserName

[userName found]

return true

return false

Figure 250. ResourcesModule:IsUserLoggedIn (Sequence Diagram)

3.1.17.10 ResourcesModule:LoginUser (Sequence Diagram)

An client may login to the system. The system will verify that the user has specified the correct password by looking in the user database. If the user has specified the correct password, the system will create a token which contains the user's functional rights and will return it to the invoking client. The login session will be stored internally in the operations center in order to allow the center to respond to calls regarding shared resource control.

[image: image253.emf]TokenManipulator

ORB

OperationsCenterImpl UserManagementDB OperationsLog

addLoginSession

getUserFunctionalRights

[* for each functional right]

add

loginUser

getUserPassword

[wrong password]

LoginFailure

[wrong password]

log

Token

log

createToken

Figure 251. ResourcesModule:LoginUser (Sequence Diagram)

3.1.17.11 ResourcesModule:LogoutUser (Sequence Diagram)

A client may log out of the system. When an operator does this, the system will ping each user login session it is tracking to verify the actual number of users who are currently logged in. If the current number of valid login sessions for this operations center is one, then this user cannot be allowed to logout if this operations center is currently controlling shared resources. In order to determine if the operations center has controlled resources, the system will contact all of the shared resource managers. If the operations center has controlled resources an exception will be thrown, otherwise the user will be logged out.

[image: image254.emf]SharedResourceManager

ORB

OperationsCenterImpl OperationsLog

removeLoginSession

[* for each login session]

ping

[Invalid login session

or Couldn't be pinged]

LogoutFailure

[if login session count == 1]

query

[* for each SharedResourceManager]

hasControlledResources

[last user &&

has Controlled Resources]

HasControlledResources

logoutUser

log

UserLoginSession

count the number

of login sessions

which are successfully

pinged

Find all shared

resource managers

CosTrading.Lookup

Figure 252. ResourcesModule:LogoutUser (Sequence Diagram)

3.1.17.12 ResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)

This sequence shows the details of constructing an operations center implementation object. An operations center is responsible for tracking the list of currently logged in users. When the service is shutdown it will store the list in the database. When the service is restarted it will get this list of login sessions from the database. Because the service may have been down for an extended period, the login sessions may no longer be valid due to users logging out or shutting down their client machines. Thus, each login session object will be pinged to see if it is still active. If it is, the operations center will add it to the list of current sessions otherwise it will not.

[image: image255.emf]UserLoginSession

At shutdown each login

session was stored in the

database. Now we will reconstruct

the login session reference and

ping it to make sure it is still running.

If it is, it will be added to the list of

current logins otherwise it will be

discarded.

ServiceApplicationModule

OperationsCenterImpl ORB OperationsCenterDB

Creates a

UserLoginSession

reference.

[if ping successful]

addLoginSession

getLoginSessions

create

string_to_object

ping

Figure 253. ResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)

3.1.17.13 ResourcesModule:removeOperationsCenter (Sequence Diagram)

This Sequence Diagram shows how the OperationsCenterFactoryImpl removes an Operations Center from the system on behalf of an operator. An operations center should have no users logged in inorder to be removed, and the requesting operator must posess the proper functional rights. The OperationsCenterFactory removes the reference to the OperationsCenterImpl from its internal list of Operations Centers, removes the OperationsCenterImpl and its associated information from the database, and withdraws the Operations Center's offer from the trading service. An OperationsCenterDeletedEvent is then pushed into the event channel.

[image: image256.emf][no rights]

log

[no rights]

AccessDenied

removeOperationCenter(this)

[not found]

CHART2Exception

[not found]

CHART2Exception

withdraw(Operations

Center)

[users logged in]

UsersLoggedInFailure

deactivateObject(OperationsCenter)

deleteOperationsCenter

push(OperationsCenterDeleted)

log(token, "OperationsCenterDeleted")

[success]

[success]

checkForUserLogins

remove

CosTrading.Register POA ResourcesDB PushEventSupplier

ORB

OperationsCenterImpl TokenManipulator

OperationsLog

OperationsCenterFactoryImpl

checkAccess

[no rights]

Figure 254. ResourcesModule:removeOperationsCenter (Sequence Diagram)

3.1.17.14 ResourcesModule:renameOperationsCenter (Sequence Diagram)

This Sequence Diagram shows how an existing Operations Center will be renamed. The operator must posess the proper functional rights to rename an Operations Center. When a request to rename Operations Center is received by the OperationsCenterImpl,the ResourcesDB is asked to update the database. An OperationsCenterRenamedEvent is then pushed into the event channel.

[image: image257.emf][DB error]

CHART2Exception

[DB error]

updateOperationsCenter

[no rights]

AccessDenied

ResourcesDB PushEventSupplier

ORB

OperationsCenterImpl TokenManipulator OperationsLog

withdraw & re-offer

the operations center

in the trader.

CosTrading.Register

[no rights]

log

[no rights]

checkAccess

setConfiguration(token, config)

withdraw(OperationsCenter)

export(OperationsCenter)

[success]

log(token, "OperationsCenterRenamed")

push(OperationsCenterRenamed)

Figure 255. ResourcesModule:renameOperationsCenter (Sequence Diagram)

3.1.17.15 ResourcesModule:Shutdown (Sequence Diagram)

When the service application calls the shutdown method on this module, the module will withdraw all exported offers from the trader, disconnect any objects that it is currently serving from the ORB and destroy them. The operations center will also store the current list of UserLoginSession references in the database. This will allow the login sessions to be reconstructed at startup.

[image: image258.emf]OperationsCenterFactoryImpl ResourcesDB ServiceApplication POA OrganizationImpl

Service Application

ResourcesModule CosTrading.Register PushEventSupplier OperationsCenterImpl

[*for each

organization]

deactivate_object(Organization)

[*for each

operations

center]

deactivate_object(OperationsCenter)

delete

delete

delete

deactivate_object(PushEventSupplier)

getTradingRegister

getPOA

shutdown

shutdown

success

shutdown

deactivate_object(OperationsCenterFactory)

delete

shutdown

delete

Figure 256. ResourcesModule:Shutdown (Sequence Diagram)

3.1.17.16 ResourcesModule:TransferSharedResources (Sequence Diagram)

A client with the correct functional rights may transfer the control of shared resources from this operations center to another. The system will verify that there are users logged in at the target operations center and will then transfer control of the shared resources if there are.

[image: image259.emf][numLoggedInUsers < 1]

InvalidOperationsCenter

log

OperationsLog

Do this for each shared

resource passed.

Invoked on the

target operations

center.

OperationsCenter SharedResource

Pass the ID & Name

 of the target

Operations Center

Thrown if no login

sessions are active

at the target operations

center

ORB

OperationsCenterImpl TokenManipulator

checkAccess

[access denied]

AccessDenied

[AccessDenied]

log

getNumLoggedInUsers

getControllingOpCenter

[if controlling op center is this op center]

setControllingOpCenter

getName

getID

transferSharedResources

Figure 257. ResourcesModule:TransferSharedResources (Sequence Diagram)

SHAZAMControlModule

3.1.18 Classes

3.1.18.1 SHAZAMControl (Class Diagram)

The SHAZAMControlModule serves a SHAZAMFactory object and SHAZAM objects. The class diagram below shows the classes used to implement these system interfaces.

[image: image260.emf]1 1

CommandQueue

SHAZAMConfiguration

«typedef»

SHAZAMStatus

«typedef»

1

*

1

1

1

*

* *

is in

use by

is

using

1

1

1

1

1

*

1

1

1

UniquelyIdentifiable

«interface»

HARMessageNotifier

«interface»

SHAZAM

«interface»

TokenManipulator

CommEnabled

«interface»

GeoLocatable

«interface»

SharedResource

«interface»

SHAZAMStateAction

«enumeration»

SHAZAMActivateCmd SHAZAMDeactivateCmd SHAZAMPutOnlineCmd SHAZAMPutInMaintModeCmd SHAZAMTakeOfflineCmd SHAZAMSetConfigurationCmd

java.util.TimerTask

java.util.Timer

CheckForAbandonedSHAZAMTask

ServiceApplicationModule

«interface»

SharedResourceManager

«interface»

SHAZAMFactory

«interface»

SHAZAMControlModuleProperties

SHAZAMControlModule

TrafficEvent

«interface»

SHAZAMRefreshCmd

QueueableCommand

RefreshSHAZAMTimerTask

VikingRC2AProtocolHdlr

ServiceApplication

«interface»

SHAZAMControlDB

PushEventSupplier

SHAZAMImpl

SHAZAMFactoryImpl

1

1

1

1

1

*

1

*

1

1 1

*

1

1

1

1

1

HAR

«interface»

1

1

1

1

1

1

getID()

getName()

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

setBeaconsOn(AccessToken, CommandStatus):void

setBeaconsOff(AccessToken, CommandStatus):void

refresh(AccessToken, CommandStatus):void

setConfiguration(AccessToken, SHAZAMConfiguration, CommandStatus)

getConfiguration(AccessToken) : OnOffDeviceConfiguration

getStatus() : SHAZAMStatus

remove(AccessToken):void

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

ACTIVATE

DEACTIVATE

boolean m_maintMode

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

TrafficEvent m_trafficEvent

boolean m_maintMode

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMConfiguration m_config

run()

SHAZAMFactoryImpl m_factory

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

getResources() : SharedResourceList

getControlledResources(Identifier opCtrID) : SharedResourceList

hasControlledResources(Identifier opCtrID) : boolean

createSHAZAM(AccessToken,

 SHAZAMConfiguration) : SHAZAM

getSHAZAMList():SHAZAMList

getSHAZAMRefreshTimerMins():long

getSharedResMonIntSecs():long

getSHAZAMFactoryID():byte[]

byte[] token

SHAZAMImpl m_shazam

CommandStatus m_status

run()

SHAZAMFactoryImpl m_factory

SHAZAMControlDB(DBConnectionManager)

deleteSHAZAM(Identifier):void

getSHAZAMList():SHAZAMImpl[]

insertSHAZAM(Identifer,

 SHAZAMConfiguration):

 SHAZAMImpl[]

setStatus(Identifer, SHAZAMStatus,

 SHAZAMData):void

setConfiguration(Identifer,

 SHAZAMConfiguration):void

DBConnectionManager m_db

SHAZAMImpl(SHAZAMFactoryImpl, SHAZAMControlDB, PushEventSupplier)

refreshSHAZAMState():void

setBeaconsState(SHAZAMStateAction, CommandStatus, boolean):boolean

handleOpStatus(OperationalStatus, CommandStatus, boolean):boolean

activateImpl(AccessToken, CommandStatus):void

deactivateImpl(AccessToken, CommandStatus):void

checkResourceConflict(AccessToken, CommandStatus):void

putInMaintenanceModeImpl(AccessToken, CommandStatus):void

putOnlineImpl(AccessToken, CommandStatus):void

refreshImpl(AccessToken, CommandStatus):void

setConfigurationImpl(AccessToken, Chart2DMSConfiguration,

 CommandStatus):void

shutdown():boolean

takeOfflineImpl(AccessToken, CommandStatus):void

long m_lastRefreshTime

TrafficEvent[] m_activeTrafficEvents

SHAZAMFactoryImpl(byte[] id,

 ServiceApplication serviceApp,

 SHAZAMControlDB db,

 PushEventSupplier evtRes,

 PushEventSupplier evtSHAZAM,

 RecurringTimer timer,

 long resMonIntSecs)

removeSHAZAM():void

checkForAbandonedShazams():void

refreshShazams():void

shutdown():boolean

java.lang.Vector m_SHAZAMList

Figure 258. SHAZAMControl (Class Diagram)

3.1.18.1.1 CheckForAbandonedSHAZAMTask (Class)

The CheckForAbandonedSHAZAMTask class is responsible for detecting any SHAZAM device in maintenance mode with a message on it which has no one logged on at the controlling operations center. This would only occur as a result of an anomaly, such as a reboot of a user's machine, because during a normal Chart II logout attempt, the logout is prohibited by Chart II system if the the user is the last user on his/her operations center and that operations center is controlling a maintenance mode sign. However, because anomalies happen, this task runs periodically to look for abandoned SHAZAM devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is called upon to actually check the SHAZAM objects and controlling operations centers of each SHAZAM every time this task is called.

3.1.18.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.18.1.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

3.1.18.1.4 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.18.1.5 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler. This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

3.1.18.1.6 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message.

3.1.18.1.7 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.18.1.8 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.18.1.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.18.1.10 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.1.18.1.11 RefreshSHAZAMTimerTask (Class)

The RefreshSHAZAMTimerTask class is responsible for refreshing all of the SHAZAM devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is called upon to request each SHAZAM to refresh itself (command the device to its last known status) if its refresh interval has expired, each time this task is called.

3.1.18.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.18.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.18.1.14 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.18.1.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.18.1.16 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to interface with a SHAZAM field device. It specifies methods for activating and deactivating the SHAZAM in maintenance mode, refreshing the SHAZAM (commanding the device to its last known status), changing the configuration of the SHAZAM, and removing the SHAZAM. This interface is implemented by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command and control.

3.1.18.1.17 SHAZAMActivateCmd (Class)

This class contains data needed to activate a SHAZAM asynchronously via the CommandQueue. A flag is used to determine if the activation is being performed directly on the device while it is in maintenance mode or if the activation is being processed as an extension of setting a HAR message in response to a traffic event.

3.1.18.1.18 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to communicate configuration information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

3.1.18.1.19 SHAZAMControlDB (Class)

This class provides access to database functionality needed to support the SHAZAM and SHAZAMFactory classes. This class provides a high level interface to allow for persistence and depersistance of SHAZAM and SHAZAMFactory objects.

3.1.18.1.20 SHAZAMControlModule (Class)

This class is a service module that provides control of SHAZAM devices. Upon initialization the module initializes a SHAZAMFactory which contains SHAZAM objects that have been previously added to the system. These objects are accessed via the CORBA ORB and manipulated directly from client applications. The module also creates support objects that are used by the SHAZAM (and SHAZAMFactory) objects to perform their processing, such as a database connection, event channels, and a periodic timer used to allow the objects to perform timer based processing.

3.1.18.1.21 SHAZAMControlModuleProperties (Class)

This class is used to provide access to properties used by the SHAZAM Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the SHAZAM Control Module.

3.1.18.1.22 SHAZAMDeactivateCmd (Class)

This class contains data needed to deactivate a SHAZAM asynchronously via the CommandQueue. A flag is used to determine if the deactivation is being performed directly on the device while it is in maintenance mode or if the deactivation is being processed as an extension of setting a HAR message in response to a traffic event.

3.1.18.1.23 SHAZAMFactory (Class)

The SHAZAMFactory class specifies the interface to be used to create SHAZAM objects within the Chart II system. It also provides a method to get a list of SHAZAM devices currently in the system.

3.1.18.1.24 SHAZAMFactoryImpl (Class)

This class provides the ability to add new SHAZAM objects to the system. When SHAZAMs are added, they are persisted to the database so this object can depersist them upon startup. This class also provides a removeSHAZAM method that allows a SHAZAM to remove itself from the system when directed. This class is also responsible for performing the checks requested by the timer tasks: to refresh the SHAZAM devices and to look for SHAZAM devices with no one logged in at the controlling operations center.

3.1.18.1.25 SHAZAMImpl (Class)

The SHAZAMImpl class provides an implementation of the SHAZAM interface, and by extension the SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable, and UniquelyIdentifiable interfaces as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long running operations (field communications to the device) in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are SHAZAMConfiguration and SHAZAMStatus objects (used to store the configuration and status of the sign), a lastRefreshTime value used for refreshing (commanding the device to its last known status), and a list of TrafficEvent objects that are currently active on the SHAZAM.

The SHAZAMImpl contains *Impl methods that map to methods specified in the IDL, including requests to activate and deactivate the SHAZAM, put the SHAZAM online, put the SHAZAM offline, put the SHAZAM in maintenance mode, or to change (set) the configuration of the SHAZAM. All of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate SHAZAMImpl method as the command is executed by the CommandQueue in its thread of execution.

The SHAZAMImpl also contains methods called by the SHAZAMFactory to support the timer tasks of the SHAZAM Service: to refresh the SHAZAM devices and to look for maintenance mode SHAZAM devices with no one logged in at the controlling operations center.

3.1.18.1.26 SHAZAMPutInMaintModeCmd (Class)

This command contains data needed to put a SHAZAM device in maintenance mode (from either offline or online mode) asynchronously via the CommandQueue. When executed this class calls back into the SHAZAMImpl object to execute the putInMaintenanceModeImpl method.

3.1.18.1.27 SHAZAMPutOnlineCmd (Class)

This command contains data needed to put a SHAZAM device online (from maintenance or offline mode) asynchronously via the CommandQueue. When executed this class calls back into the SHAZAMImpl object to execute its putOnLineImpl method.

3.1.18.1.28 SHAZAMRefreshCmd (Class)

This class is a command object used to invoke the SHAZAM refresh processing (commanding the device to its last known status) asynchronously from the command queue. When executed, this class calls back into the SHAZAMImpl object to execute the refreshImpl method.

3.1.18.1.29 SHAZAMSetConfigurationCmd (Class)

This command contains data needed to set the SHAZAM configuration asynchronously via the CommandQueue. When executed, this class calls back into the SHAZAMImpl object to execute its setConfigurationImpl method. The SHAZAM device model currently in use does not contain any configuration settings, however this command is still processed asynchronously for consistency.

3.1.18.1.30 SHAZAMStateAction (Class)

The SHAZAMStateAction class enumerates the types of actions (commands) that set the state of a SHAZAM: ACTIVATE or DEACTIVATE.

3.1.18.1.31 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

3.1.18.1.32 SHAZAMTakeOfflineCmd (Class)

This command contains data needed to take a SHAZAM device offline (from online or maintenance mode) asynchronously via the CommandQueue. When executed, this class calls back into the SHAZAMImpl object to execute its takeOfflineImpl method.

3.1.18.1.33 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information. Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

3.1.18.1.34 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.18.1.35 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.18.1.36 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A SHAZAM device.

Sequence Diagrams

3.1.18.2 SHAZAMControlModule:activateSHAZAM (Sequence Diagram)

A SHAZAM can be activated by a HAR when its message is set, or it can be activated directly when in maintenance mode. In either case, the processing done is nearly identical. When being activated by a HAR as part of the HAR message activation, the activateHARNotice method from the HARMessageNotifier interface is called. When being activated directly, the SHAZAM's setBeaconsOn method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMActivateCmd object and places it on its command queue for asynchronous processing. A flag in the SHAZAMActivateCmd object specifies the activation was requested from maintenance mode or online mode. When the queue executes the command, the activateImpl method checks the flags in the command object to determine any processing that is specific to the mode in which the activation request occurred. Common processing includes calling setBeaconsState (to perform communications and command the SHAZAM) and utilizing the caller's command status object to inform the caller of the command's progress. Specific processing that requires checking the mode of the request includes checking that the SHAZAM is in the same mode as when the command was queued, checking that the operation center matches or is overridden in maintenance mode, and updating the TrafficEvent's history if the activation occurred in online mode.

[image: image261.emf]SHAZAMImpl

CommandQueue

SHAZAMActivateCmd

CommandStatus TrafficEvent

CommandQueue

executes commands

asynchronously.

ActivateImpl() is used

for activation invoked

via a HAR online or when

activating a SHAZAM in

maintenance mode. A maint

mode flag indicates the type

of command.

Updates cmdStatus, updates

and pushes new SHAZAMStatus

if necessary. See setBeaconsState

sequence diagram.

OperationsLog

PushEventSupplier m_activeTrafficEvents

ORB

[for each

trafficEvent]

execute

activateImpl

[not maint mode command and not online]

completed

[maint mode command and not in maint mode]

completed

create

update

[improper rights]

completed

[improper rights]

log

[activateHARNotice and not online

OR

setBeaconsOn and not maint mode]

push(currentStatus)

[maint mode command]

[maint mode command]

activateHARNotice

OR

setBeaconsOn

setBeaconsState(ACTIVATE,cmdStatus)

[improper rights]

AccessDenied

[activateHARNotice and not online

OR

setBeaconsOn and not maint]

InvalidStateException

[maint mode cmd and

op ctr not equal

caller's and no override]

[maint mode command

and not in maint mode] [maint mode command

and not in maint mode]

[not maint mode

command and not online]

[not maint mode

command and not online]

update("activating SHAZAM")

[activateHARNotice and not online

OR

setBeaconsOn and not in maint mode]

completed

addCommand

addLogEntry

[setBeaconsOn and op ctr not equal caller's and no override]

completed

[setBeaconsOn and

op ctr not equal caller's

 and no override]

ResourceControlConflict

store traffic events

[maint mode cmd and op ctr not equal caller's and no override]

completed

[maint mode cmd and

op ctr not equal

caller's and no override]

Figure 259. SHAZAMControlModule:activateSHAZAM (Sequence Diagram)

3.1.18.3 SHAZAMControlModule:CheckResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a SHAZAMImpl object checks a SHAZAM for a resource conflict prior to performing some other sort of operation on it. This utility method is called from several other methods within the SHAZAM service. If the SHAZAM is currently in maintenance mode, and therefore has a controlling operations center, and it is not equal to the caller's operations center, and the user does not have override authority, there is a resource control conflict. Otherwise, there is not. If there is a resource control conflict, a message to this effect is written to the CommandStatus object, which may be monitored by the requesting user.

[image: image262.emf]cmdStat:

CommandStatus

SHAZAMImpl

TokenManipulator SHAZAMImpl

[no controlling op center]

no conflict

checkAccess(token)

[has override access]

no conflict

[no override access]

conflict

getControllingOpCenter

checkResourceConflict(token, cmdStat)

getOpCenterID(token)

[token op center ID ==

controlling op center id]

no conflict

[no override access]

completed("resource conflict")

Figure 260. SHAZAMControlModule:CheckResourceConflict (Sequence Diagram)

3.1.18.4 SHAZAMControlModule:createSHAZAM (Sequence Diagram)

A user with the proper functional rights can add a SHAZAM to the system. The SHAZAM configuration data is added to the database, and a SHAZAMImpl object is created. Upon creation, SHAZAMImpl creates a VikingRC2AProtocolHdlr and a CommandQueue. The SHAZAMImpl object is connected to the POA, making it ready for calls from clients. The ServiceApplication is called to register the object with the trader and an event is pushed on the status event channel to allow GUIs to show this SHAZAM as an available object in the system. The SHAZAM is added in the offline state and no field communications are necessary.

[image: image263.emf]SHAZAMFactoryImpl

ORB

SHAZAMImpl

SHAZAMControlDB

POA

ServiceApplication

PushEventSupplier

SHAZAM is created

in OFFLINE mode.

CommandQueue

VikingRC2AProtocolHdlr

OperationsLog

create

create

log

[improper rights]

log

createSHAZAM

[improper rights]

AccessDenied

insertSHAZAM

[failure]

CHART2Exception

activate_object

registerObject

push(SHAZAMAdded)

create

Figure 261. SHAZAMControlModule:createSHAZAM (Sequence Diagram)

3.1.18.5 SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)

A SHAZAM can be deactivated by a HAR when its message is set, or it can be deactivated directly when in maintenance mode. In either case, the processing done is nearly identical. When being deactivated by a HAR as part of the HAR message activation/blank processing, the deactivateHARNotice method from the HARMessageNotifier interface is called. When being deactivated directly, the SHAZAM's setBeaconsOff method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMDeactivateCmd object and places it on its command queue for asynchronous processing. A flag in the SHAZAMDeactivateCmd object specifies the deactivation was requested from maintenance mode or online mode. When the queue executes the command, the deactivateImpl method checks the flags in the command object to determine any processing that is specific to the mode in which the deactivation request occurred. Common processing includes calling setBeaconsState (to perform communications and command the SHAZAM) and utilizing the caller's command status object to inform the caller of the command's progress. Specific processing that requires checking the mode of the request includes checking that the SHAZAM is in the same mode as when the command was queued, checking that the operation center matches or is overridden in maintenance mode and updating the TrafficEvent's history if the deactivation occurred in online mode.

[image: image264.emf]ORB

SHAZAMImpl

OperationsLog

CommandQueue

SHAZAMDectivateCmd

CommandStatus

TrafficEvent

deactivateImpl is used

for processing invoked

via a HAR or when

deactivating a HAR in

maintenance mode.

CommandQueue

executes commands

asynchronously.

Updates cmdStatus, updates

and pushes new SHAZAMStatus

if necessary. See setBeaconsState

sequence diagram.

[improper rights]

log

[not maint mode cmd and TrafficEvent exists from prior activation]

addLogEntry

execute

[,maint mode cmd and

op ctr not equal

caller's and no override]

[maint mode cmd and

op ctr not equal

caller's and no override]

setBeaconsState(DEACTIVATE,cmdStatus)

[maint mode cmd and op ctr not equal caller's and no override]

complete

[maint mode cmd

and not in maint mode]

[for each traffic event]

update("deactivating SHAZAM")

[setBeaconsOff AND op ctr not equal caller's

 and no override]

completed

[setBeaconsOff AND

op ctr not equal caller's

 and no override]

ResourceControlConflict

[maint mode cmd

and not in maint mode]

deactivateHARNotice

OR

setBeaconsOff

[improper rights]

AccessDenied

[deactivateHARNotice AND not online

OR

setBeaconsOff AND not maint]

InvalidStateExceptn

create

update

[improper rights]

completed

[deactivateHARNotice AND not online

OR

setBeaconsOff AND not maint mode]

completed

addCommand

deactivateImpl

[maint mode command and not in maint mode]

completed

[not maint mode command and not online]

completed

[not maint mode

cmd and not online]

[not maint mode

cmd and not online]

Figure 262. SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)

3.1.18.6 SHAZAMControlModule:getControlledResources (Sequence Diagram)

This Sequence Diagram shows how the SHAZAMFactoryImpl handles a request to get a list of controlled resources for an operations center. The SHAZAMFactoryImpl asks each SHAZAMImpl for its controlling operations center, and if it matches the OperationsCenter in question, the SHAZAM is added to a list. This list is returned to the caller.

[image: image265.emf]ORB

SHAZAMFactoryImpl SHAZAMImpl

getControlledResources (op ctr)

getControllingOpCenter

[controlling op ctr ==

op ctr]

(add to list)

SHAZAM

List of controlled resources

[*for

each

SHAZAM]

Figure 263. SHAZAMControlModule:getControlledResources (Sequence Diagram)

3.1.18.7 SHAZAMControlModule:handleOpStatus (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl handles the task of detecting and responding to changes in its operational status. A SHAZAM's operational status is normally "OK", but it can be "COMM_FAILURE" when the SHAZAMProtocolHndlr reports that it cannot communicate with the device. Note that since we can not query the hardware status of a SHAZAM, the operational status can never be HW_FAILURE.

This method is called after every attempt to communicate with the device. Processing falls into one of two cases, depending on the operational status reported.

If the operational status is now being reported OK, the last contact time in m_status (a SHAZAMStatus object) is updated with the current time. (The last contact time is used to determine when to refresh [see runRefreshSHAZAMTask].) If the operational status of the device was already OK, there is no change in operational status and there is nothing else to do except return false (false indicates no change in operational status). If the status has just become OK, the operational status in m_status is updated to OK, the status change time in m_status is updated to the current time, and the new SHAZAMStatus is persisted and pushed out into the status event channel. The command status is then updated or completed depending on the complete flag. This method then returns true indicating that the operational status has changed.

If the operational status is now being reported COMM_FAILURE and the device was already in COMM_FAILURE, there is no change in operational status and there is nothing else to do except return false (false indicates no change in operational status). If the status has just become COMM_FAILURE, the operational status in m_status is updated to COMM_FAILURE, the status change time in m_status is updated to the current time, and the new SHAZAMStatus is persisted and pushed out into the status event channel. The command status is then updated or completed depending on the complete flag. This method then returns true indicating that the operational status has changed.

[image: image266.emf]cmdStatus:

CommandStatus

SHAZAMControlDB PushEventSupplier

Normal case,

opStatus OK and unchanged

If opStatus == COMM_FAILURE

SHAZAMImpl

SHAZAMImpl

If opStatus == OK

m_status:

SHAZAMStatus

Bad status has been handled previously.

No need to do anything more.

setStatus

true

true

[m_status.m_opStatus == COMM_FAILURE]

false

setOpStatus(COMM_FAILURE)

push(CurrentSHAZAMStatus)

[complete is true]

update("SHAZAM just CommFailed")

[complete is true]

complete("SHAZAM now OK")

setLastContactTime(now)

[m_status.m_opStatus == OK]

false

handleOpStatus(opStatus, cmdStatus,

complete)

push(CurrentSHAZAMStatus)

setOpStatus(OK)

setStatusChangeTime(now)

[complete is false]

update("SHAZAM now OK")

[complete is false]

update("SHAZAM just CommFailed")

setStatus

setStatusChangeTime(now)

Figure 264. SHAZAMControlModule:handleOpStatus (Sequence Diagram)

3.1.18.8 SHAZAMControlModule:hasControlledResources (Sequence Diagram)

This sequence diagram shows how the SHAZAMFactoryImpl handles a request to see if an operations center has any controlled resources. The SHAZAMFactoryImpl asks each SHAZAMImpl for its controlling operations center, and if it matches the OperationsCenter in question, a value of true is immediately returned to the caller. If the SHAZAMFactoryImpl makes it through its whole list of SHAZAM objects without finding an OperationsCenter match, a value of false is returned.

[image: image267.emf]SHAZAMFactoryImpl SHAZAMImpl

Break out of loop once a

controlled resource is found.

One is enough to return "true".

ORB

[*for each

SHAZAM [controlling op ctr == op ctr]

true

hasControlledResources (op ctr)

[* for each SHAZAM]

getControllingOpCenter

false

Figure 265. SHAZAMControlModule:hasControlledResources (Sequence Diagram)

3.1.18.9 SHAZAMControlModule:initialize (Sequence Diagram)

When the SHAZAMControlModule is included in a ServiceApplication, the service application calls the SHAZAMControlModule's initialize method when the service is started. The SHAZAMControlModule creates supporting objects such as the SHAZAMControlDB for database access, SHAZAMControlModuleProperties, and PushEventSupplier objects for resource management events and SHAZAM control events. A SHAZAMFactoryImpl object is created which depersists all SHAZAMs that have been previously added to the system. Each SHAZAM is connected to the ORB and registered with the service application to have the object published in the trader. A Timer is created to call the SHAZAMFactory to perform timer based processing.

[image: image268.emf]POA

RefreshSHAZAMTimerTask

See createSHAZAM

sequence diagram for details

TIMER TASK: To periodically check

for active SHAZAMs with no one logged

in at the controlling Op Ctr.

TIMER TASK: reset SHAZAM

to last known state.

java.util.Timer

CheckForAbandonedSHAZAMTask

The DBConnectionManager

is needed to create the

SHAZAMControlDB object.

PushEventSupplier

Event channels are needed

for SHAZAMControl events and

generic resource management

events.

SHAZAMFactoryImpl

SHAZAMImpl

Service

Application

SHAZAMControlModule ServiceApplication

SHAZAMControlModuleProperties

PushEventSupplier

SHAZAMControlDB

getProperties

getDefaultProperties

create

create

registerEventChannel

create

getPOA

getSHAZAMRefreshTimerMins

getSharedResMonIntSecs

getPOA

registerObject(Factory)

getSHAZAMObjects

getDBConnectionManager

[*for each SHAZAM in DB]

create

[*for each SHAZAM]

initialize

activate_object_with_id(SHAZAM)

registerObject(SHAZAM)

activate_object_with_id(SHAZAMFactory)

schedule

schedule

create

create

create

registerTraderTypes

create

registerEventChannel

create

Figure 266. SHAZAMControlModule:initialize (Sequence Diagram)

3.1.18.10 SHAZAMControlModule:modifyHARNotice (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl object responds to a request by a HAR to update the list of TrafficEvents associated with a SHAZAM that is currently active (via a previous call to the SHAZAMImpl's activateHARNotice method). The user (the HAR) must have appropriate functional rights and the SHAZAM must be online. The TrafficEvents that are no longer associated with the SHAZAM are notified, as are the TrafficEvents that are new to the SHAZAM. The new list of active TrafficEvents is updated, the SHAZAMImpl's state is persisted, and an event is pushed on the status event channel.

[image: image269.emf]log

SHAZAMControlDM

setStatus

[for each in

tfcEventList

that is not in m_activeTrafficEvents]

addLogEntry("SHAZAM active for this trafficEvent")

push(SHAZAMStatusChanged)

[SHAZAM not active]

Chart2Exception

[for each in

m_activeTrafficEvents

that is not in tfcEventList]

ORB

SHAZAMImpl

TrafficEvent

PushEventSupplier

OperationsLog

ModifyHARNotice(token, tfcEventList)

[improper rights]

log

[improper rights]

AccessDenied

[maint mode or offline or SHAZAM not active]

push(currentStatus)

[maint mode or offline]

InvalidStateException

set m_activeTrafficEvents=tfcEventList

TrafficEvent

addLogEntry("SHAZAM no longer active for this trafficEvent")

Figure 267. SHAZAMControlModule:modifyHARNotice (Sequence Diagram)

3.1.18.11 SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)

A user with proper functional rights can put a SHAZAM in maintenance mode if it is not already in maintenance mode. A command object is created and placed on the command queue to execute the command asynchronously. When executed, the putInMaintModeImpl method calls setBeaconsState to command the device to its inactive state. Regardless of the ability to command the device, the SHAZAMImpl changes to the maintenance mode state, stores the user's controlling op center, updates each traffic event's history, persists its state in the database, and pushes an event on the status event channel to allow the GUI to update its display for the SHAZAM.

[image: image270.emf]TrafficEvent CommandStatus SHAZAMControlDB OperationsLog

ORB

SHAZAMPutInMaintModeCmd

PushEventSupplier SHAZAMImpl CommandQueue

CommandQueue

executes commands

asynchronously.

Updates cmdStatus, updates operationsLog,

updates and pushes new SHAZAMStatus

if necessary. See setBeaconsState

sequence diagram.

create

update

[improper rights]

completed

execute

putInMaintenanceMode

[improper rights]

log

[already in maintenance mode]

push(currentStatus)

[improper rights]

AccessDenied

[already in maintenance mode]

[already in maintenance mode]

completed

push(SHAZAMStatusChanged)

completed

update("putting in maintenance mode")

setBeaconsState(DEACTIVATE, cmdStatus, false)

m_status.m_opStatus = MAINT_MODE

[for each traffic event]

addCommand

setStatus

[TrafficEvent exists from previous activation]

addLogEntry

putInMaintModeImpl

[already in maintenance mode]

completed

[already in

maintenance mode]

[already in

maintenance mode]

Set m_controllingOpCenter to user's op cntr

log

Figure 268. SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)

3.1.18.12 SHAZAMControlModule:putOnline (Sequence Diagram)

A user with proper functional rights can put a SHAZAM online. A command object is created and placed on the command queue to execute the command asynchronously. When executed, the putOnlineImpl method calls setBeaconsState to command the device to the inactive state. If able to deactivate the device, the SHAZAMImpl clears the controlling operations center, changes to the online state, pesists its state in the database, and pushes an event to allow the GUI to update its display for the SHAZAM.

[image: image271.emf]SHAZAMControlDB

PushEventSupplier

Updates cmdStatus, updates OperationsLog,

updates and pushes new SHAZAMStatus

if necessary. See setBeaconsState

sequence diagram.

SHAZAMPutOnlineCmd

CommandStatus

ORB

SHAZAMImpl CommandQueue

CommandQueue

executes commands

asynchronously.

OperationsLog

execute

putOnlineImpl

[already online]

completed

create

update

[improper rights]

completed

[improper rights]

log

[already online]

push(currentStatus)

[successful]

m_status.commMode = ONLINE

[success]

setStatus(m_status)

[success]

push(SHAZAMStatusChanged)

update("putting online")

setBeaconsState(DEACTIVATE,cmdStatus, false)

[error setting

beacons state]

[maint mode and op ctr not equal caller's and no override]

completed

[maint mode and

op ctr not equal caller's

and no override]

[maint mode and

op ctr not equal caller's

and no override]

[already online]

[already online]

[error setting

beacons state]

[maint mode and op ctr not equal caller's and no override]

completed

[maint mode and

op ctr not equal caller's

 and no override]

ResourceControlConflict

complete

putOnline

[improper rights]

AccessDenied

[already online]

[already online]

completed

addCommand

Clear m_controllingOpCenter

log

Figure 269. SHAZAMControlModule:putOnline (Sequence Diagram)

3.1.18.13 SHAZAMControlModule:refresh (Sequence Diagram)

A user with proper fuctional rights can refresh a SHAZAM that is in maintenance mode. During a refresh, the SHAZAM is commanded to its last known state. The refresh approach is implemented instead of polling due to the fact that SHAZAMs do not produce any response to commands. After verifying that there is no resource conflict, a SHAZAMRefreshCmd is created and place on the CommandQueue to execute the command asynchronously. When executed, the refreshImpl method verifies that the SHAZAM is still in maintenance mode and that there is still no resource conflict. Then the SHAZAM is commanded to its last known state via a call to the setBeaconsState helper method.

[image: image272.emf]addCommand

refreshImpl

refresh(token, cmdStatus)

[not maint mode]

[resource conflict]

create

commandStatus

[improper rights]

complete

OperationsLog

Completes command status if

there is a resource conflict.

[resource conflict]

[not maint mode]

[improper rights]

log

[improper rights]

AccessDenied

execute

checkResourceConflict(token, cmdStatus)

[resource conflict]

complete

[resource conflict]

ResourceControlConflict

checkResourceConflict(token, cmdstat)

complete

PushEventSupplier

[not maint mode]

push(currentStatus)

[not maint mode]

InvalidStateException

command queued

update

CommandQueue

SHAZAMRefreshCmd

Since there is no way to

check for hardware failure,

just set the beacons state.

ORB

SHAZAMImpl

CommandQueue

executes commands

asynchronously.

[m_status.m_activated is false]

setBeaconsState(DEACTIVATE, null, false)

[m_status.m_activated is true]

setBeaconsState(ACTIVATE, null, false)

log

Figure 270. SHAZAMControlModule:refresh (Sequence Diagram)

3.1.18.14 SHAZAMControlModule:remove (Sequence Diagram)

A user with the proper functional rights can remove an offline SHAZAM from the system. An token is generated using the TokenManipulator and the associated HAR (if there is one) is notified that the SHAZAM is to be removed. The SHAZAM object is withdrawn from the trader and disconnected from the ORB. The data for the SHAZAM is deleted from the database, a message is pushed to the status event channel to allow the GUIs to remove the SHAZAM, and the command queue is shut down.

[image: image273.emf]CommandQueue

SHAZAMFactoryImpl SHAZAMControlDB PushEventSupplier CosTrading.Register POA SHAZAMImpl

ORB

TokenManipulator HAR OperationsLog

log

[improper rights]

log

msgNotifierRemoved(token, deviceId)

shutdown

[not offline]

push(currentStatus)

createToken

[not found]

Chart2Exception

[not found]

Chart2Exception

shutdown

[not offline]

InvalidStateException

remove

[improper rights]

AccessDenied

removeSHAZAM

withdraw

deactivate_object

deleteSHAZAM

push(SHAZAMRemoved)

Figure 271. SHAZAMControlModule:remove (Sequence Diagram)

3.1.18.15 SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedSHAZAMTask object executes its task when directed to run by the Java Timer object. The SHAZAMFactoryImpl gets the controlling op center of each SHAZAM (only SHAZAMs in maintenance mode will have controlling op centers) and builds a list of OperationsCenter objects that control one or more SHAZAMs. Each OperationsCenter is then queried for the number of users logged in. If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledControlledResources event is pushed into the resource management event channel.

[image: image274.emf]CheckForAbandonedSHAZAMTask

OperationsCenter

PushEventSupplier

java.util.Timer

SHAZAMFactoryImpl

SHAZAMImpl

CosTrading.Lookup

[*for each

op ctr

which

controls

at least

one SHAZAM]

run()

[no users]

push (UnhandledControlledResourcesEvent)

checkForAbandonedSHAZAM()

[*for each unique op ctr ID]

query(op center where ID= op center IDs)

[*for each SHAZAM]

getControllingOpCenter

getNumLoggedInUsers

Figure 272. SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)

3.1.18.16 SHAZAMControlModule:runRefreshSHAZAMTask (Sequence Diagram)

Because SHAZAMs do not issue any response to commands and these devices have been found to be less than reliable in the past, a process is in place to periodically command the device to its last known status. A Timer notifies the SHAZAMRefreshTimerTask when the task's scheduled interval expires. The task calls the SHAZAMFactoryImpl which calls each online SHAZAM to have it do a refresh if necessary. Each SHAZAM determines if a refresh is necessary based on the refresh interval and its last contact time. If the SHAZAM determines a refresh is warranted it adds a refresh command to its command queue to be executed asynchronously. When the command is executed, it makes sure the refresh is still necessary and then the appropriate command (activate or deactivate) is sent to the device via a call to setBeaconsState. A low priority (polling) is given to the command in terms of communications resource usage.

[image: image275.emf]m_status:

SHAZAMStatus

CommandQueue

SHAZAMRefreshCmd

Since there is no way to

check for hardware failure,

just set the beacons state.

java.util.Timer

SHAZAMImpl RefreshSHAZAMTimerTask SHAZAMFactoryImpl

CommandQueue

executes commands

asynchronously.

[m_status.m_activated is false]

setBeaconsState(DEACTIVATE, null, false)

getLastContactTime

[m_status.m_activated is true]

setBeaconsState(ACTIVATE, null, false)

addCommand

execute

refreshImpl

run

refreshSHAZAMS

refreshSHAZAMState

[*for each SHAZAM]

[device commanded within

the threshold]

[not online]

[device commanded

within the threshold]

[not online]

create

Figure 273. SHAZAMControlModule:runRefreshSHAZAMTask (Sequence Diagram)

3.1.18.17 SHAZAMControlModule:setAssociatedHAR (Sequence Diagram)

A SHAZAM is associated with a HAR when the HAR calls the SHAZAM's setAssociatedHAR method. If a token with the appropriate (server level) rights is passed to the method, the currently associated HAR (if there is one) is notified that the SHAZAM is to be removed via a call to its msgNotifierRemoved method. The new HAR is stored in memory, the new configuration is persisted to the database, and an event is pushed out into the status event channel.

[image: image276.emf]end synchronize

setAssociatedHAR(token,

HAR, HarID)

[improper rights]

AccessDenied

[failure]

Chart2Exception

createToken

log

[improper rights]

log

push(SHAZAMConfigurationChanged)

setConfiguration

synchronized

set new HarID

msgNotifierRemoved(token, currentHarID)

HAR OperationsLog

SHAZAMControlDB PushEventSupplier

m_config:

SHAZAMConfiguration HARImpl

SHAZAMImpl TokenManipulator

Figure 274. SHAZAMControlModule:setAssociatedHAR (Sequence Diagram)

3.1.18.18 SHAZAMControlModule:setBeaconsState (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl object activates or deactivates a SHAZAM. This method is called from several methods in the SHAZAM service. A voice port is obtained from the VoicePortLocator object and a request to either activate or deactivate is sent to the VikingRc2aProtocolHndlr. A call is made to the helper method handleOpStatus to deal with the case where the operational status has changed based on the return from the activate/deactivate request. The new state is stored and the SHAZAMStatus is persisted and pushed out into the status event channel. The command status is either updated or completed based on a flag passed into this method.

[image: image277.emf]OperationsLog

Pass result from activate/deactivate call

(not from terminateProgramming call) to

handleOpStatus.

We continue even if

terminateProgramming fails

VoicePortLocator completes or updates

CommandStatus on failure as requested

Updates cmdStatus, updates

and pushes new SHAZAMStatus

if necessary

SHAZAMControlDB PushEventSupplier

SHAZAMImpl

SHAZAMImpl VoicePortLocator

VikingRc2a

ProtocolHndlr CommandStatus

Refer to VikingRc2aSHAZAM

ProtocolHndlr:TypicalCommand

sequence diagram for details.

Updates and pushes new

SHAZAMStatus if necessary

[failure and complete true]

complete("failed setting beacons state")

[failure and complete false]

update("failed setting beacons state")

initiateProgramming(voicePort)

log

terminateProgramming(voicePort)

handleOpStatus(result, cmdStatus, false)

[failure]

false

[deactivate]

deactivate

[failure setting state and

complete false]

update("failed setting beacons state")

getConnectedPort

[failure]

[failure]

false

[success]

push(SHAZAMStatusChanged)

[complete flag true]

completed

[success]

setStatus(m_status)

true

[activate]

activate

[failure]

false

[failure]

handleOpStatus(result,null, false)

[failure]

handleOpStatus(result, cmdStatus, false)

setBeaconsState(action,

 cmdStat,complete)

set m_status.m_activated

[complete flag false]

update

[failure setting state and

complete true]

complete("failed setting beacons state")

Figure 275. SHAZAMControlModule:setBeaconsState (Sequence Diagram)

3.1.18.19 SHAZAMControlModule:setConfiguration (Sequence Diagram)

A user with appropriate functional rights can set the configuration of a SHAZAM if it is in maintenance mode. The Rc2aSHAZAM itself does not have any configurable settings, so no field communications are necessary. Although this command does not currently require field communications, the asynchronous command pattern is used for consistency with other device commands and also to allow the code to easily adapt to a device type that supports configurable settings. When the command is executed, setConfigurationImpl stores configuration in memory. If it is communication parameters that have changed, a new VoicePortLocator is created. The new configuration is persisted to the database and an event is pushed onto the status event channel to notify others of the changes.

[image: image278.emf]OperationsLog

SHAZAMControlDB PushEventSupplier

SHAZAMSetConfigurationCmd

CommandStatus

CommandQueue executes

command asynchronously.

m_config:

SHAZAMConfiguration VoicePortLocator

VoicePortLocator

ORB

SHAZAMImpl

CommandQueue

execute

log

[improper rights]

log

[not in maint mode]

push(currentStatus)

[op ctr not equal caller's

 and no override]

[op ctr not equal caller's

 and no override]

setConfigurationImpl

update("setting configuration")

push(SHAZAMConfigurationChanged)

completed

setConfiguration

[op ctr not equal caller's and no override]

completed

[op ctr not equal

caller's and no override]

ResourceControlConflict

[not in maint mode]

completed

[not in maint mode]

[not in maint mode]

[no change to existing configuration]

completed

[no change to

existing configuration]

[no change to

existing configuration]

synchronized

set data as requested

end synchronize

[comm param(s) change]

delete

[comm params(s) change]

create

setConfiguration

[improper rights]

AccessDenied

[not in maint mode]

InvalidStateException

[improper rights]

completed

[not in maint mode]

completed

create

update

addCommand

Figure 276. SHAZAMControlModule:setConfiguration (Sequence Diagram)

3.1.18.20 SHAZAMControlModule:shutdown (Sequence Diagram)

When a service application containing the SHAZAMControlModule is shutdown, it calls the shutdown method. The SHAZAMControlModule cleans up its resources, which include its periodic timer and PushEventConsumers. In addition, the SHAZAMFactory and SHAZAM objects are removed from the ORB.

[image: image279.emf]java.util.Timer SHAZAMFactoryImpl SHAZAMImpl POA ServiceApplication

PushEventSupplier

(SHAZAMControl)

PushEventSupplier

(Resource Management)

CommandQueue

ServiceApplication

SHAZAMControlModule

disconnectPushConsumer

disconnectPushConsumer

shutdown

cancel

shutdown

deactivate_object (SHAZAM)

shutdown

shutdown

delete

delete

[*for each SHAZAM]

deactivate_object (factory)

Figure 277. SHAZAMControlModule:shutdown (Sequence Diagram)

3.1.18.21 SHAZAMControlModule:takeOffline (Sequence Diagram)

A user with proper functional rights can take a SHAZAM offline. A command object is created and placed on the command queue to execute the command asynchronously. When executed, takeOfflineImpl method calls setBeaconsState to command the device to its inactive state. Regardless of the ability to command the device, the SHAZAMImpl changes to the offline state, clears the controlling operations center, notifies the currenly active TrafficEvents (if any), perists its state in the database, and pushes an event on the status event channel to allow the GUI to update its display for the SHAZAM.

[image: image280.emf]Updates cmdStatus, updates

and pushes new SHAZAMStatus

if necessary. See setBeaconsState

sequence diagram.

ORB

SHAZAMImpl CommandQueue

CommandQueue

executes commands

asynchronously.

TrafficEvent

SHAZAMTakeOfflineCmd

CommandStatus SHAZAMControlDB PushEventSupplier

OperationsLog

[already offline]

push(currentStatus)

[improper rights]

log

log

clear m_controllingOpCenter

[improper rights]

completed

execute

addCommand

setStatus

[already offline]

completed

push(SHAZAMStatusChanged)

[already offline]

[already offline]

[maint mode and

op ctr not equal

caller's and no override]

[maint mode and

op ctr not equal

caller's and no override]

update("taking offline")

setBeaconsState(DEACTIVATE, cmdStatus)

m_status.commMode = OFFLINE

[for each

traffic event]

completed

[maint mode and op ctr not equal caller's and no override]

completed

[maint mode and

op ctr not equal caller's

and no override]

ResourceControlConflict

[maint mode and op ctr not equal caller's and no override]

completed

[TrafficEvent exists from previous activation]

addLogEntry

takeOffline

[improper rights]

AccessDenied

[already offline]

takeOfflineImpl

[already offline]

completed

create

update

Figure 278. SHAZAMControlModule:takeOffline (Sequence Diagram)

SHAZAMManagement

3.1.19 Classes

3.1.19.1 SHAZAMUtility (Class Diagram)

This diagram shows SHAZAM related classes that are shared between the server and the GUI.

[image: image281.emf]SHAZAMConfiguration

«typedef»

SHAZAMStatus

«typedef»

string m_name

string m_location

Direction m_direction

string m_devicePhoneNumber

PortLocationData m_portLocationData

long m_refreshIntervalMins

NetworkConnectionSite m_networkConnectionSite

Identifier m_associatedHARID

HAR m_associatedHAR

boolean m_activated

CommunicationMode m_commMode

OperationalStatus m_opStatus

OpcenterInfo m_controllingOpCenter

long m_lastContactTime

long m_lastStatusChangeTime

Figure 279. SHAZAMUtility (Class Diagram)

3.1.19.1.1 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to communicate configuration information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

3.1.19.1.2 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

SHAZAMProtocols

3.1.20 Classes

3.1.20.1 SHAZAMProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to SHAZAM control.

[image: image282.emf]SHAZAMProtocolException

«exception»

VoicePort

«interface»

VikingRC2AProtocolHdlr

1 1

string reason

connect(String phoneNo):void

playDTMFTones(String dtmfCodes,

 boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

initiateProgramming(VoicePort port):void

activate(VoicePort port):void

deactivate(VoicePort port):void

terminateProgramming(VoicePort port):void

Figure 280. SHAZAMProtocolsPkg (Class Diagram)

3.1.20.1.1 SHAZAMProtocolException (Class)

This class represents an exception that is thrown by SHAZAM protocol classes when an unexpected error is encountered.

3.1.20.1.2 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A SHAZAM device.

3.1.20.1.3 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

Sequence Diagrams

3.1.20.2 VikingRC2AProtocolHdlr:TypicalCommand (Sequence Diagram)

This sequence diagram shows the typical processing of various SHAZAM commands. To control a SHAZAM, the specific DTMF tones are generated using the given connected VoicePort object. A SHAZAMProtocolException is raised if an unexpected error is encountered.

[image: image283.emf]VoicePort VikingRC2AProtocol

SHAZAMImpl

Play the DTMF tones specific

to a command with a spacing

of 100 millisec between each

DTMF tone generated.

The DTMF tones for various

commands are:

initiateProgramming - "*00#"

activate - "10"

deactivate - "19"

terminateProgramming - "18"

playDTMF(dtmfTones, useSpacing)

[unexpected error]

SHAZAMProtocolException

[unexpected exception]

CHART2Exception

initiateProgramming

or

activate

or

deactivate

or

terminateProgramming

Figure 281. VikingRC2AProtocolHdlr:TypicalCommand (Sequence Diagram)

SystemInterfaces

3.1.21 Classes

3.1.21.1 AudioCommon (Class Diagram)

This class diagram shows the classes relating to Audio.

[image: image284.emf]*

1

*

* *

1

*

1

*

1

1

AudioClipIDList

AudioDataFormat

«typedef»

TTSPriority

«enumeration»

AudioPushConsumer

«interface»

TextEmbeddedTag

«type»

AudioClipStreamer

«interface»

AudioData

«type»

UniquelyIdentifiable

«interface»

TTSConverter

«interface»

UnsupportedAudioFormat

«exception»

AudioEncoding

«enumeration»

UniquelyIdentifiable

«interface»

AudioClipOwner

«interface»

AudioClipManager

«interface»

1 *

1

1 replaces

1 *

1

*

1

Identifer[] m_clipIDList

AudioEncoding m_encoding;

float m_sampleRate;

long m_sampleSizeInBits;

long m_channels;

long m_frameSize;

float m_frameRate;

boolean m_bigEndian;

USER

SYSTEM

pushAudio(AudioData data):boolean

pushAudioProperties(AudioDataFormat format,

 long seconds,

 long size):void

pushFailure(string errMsg):void

pushCompleted()

string dateStamp = "<DATESTAMP>"

streamAudioClip(Identifier id,

 long maxChunkSize,

 AudioPushConsumer consumer):void

getID()

getName()

getSupportedFormats(void):AudioDataFormatList;

convertTextToSpeech(string text,

 AudioDataFormat format,

 long maxChunkSize,

 TTSPriority priority,

 AudioPushConsumer consumer)

pushVoiceLength(string text,

 AudioDataFormat format,

 AudioPushConsumer consumer)

getVoiceLength(string text, AudioDataFormat format):

 long

AudioDataFormatList supportedFormats;

PCM_SIGNED

PCM_UNSIGNED

A_LAW

U_LAW

confirmClipInterest(AudiClipIDList):

 AudioClipIDList

storeClip(HARMessageAudioDataClip, AudioClipOwner owner):

 HARMessageAudioClip

registerInterest(Identifier audioClipID,

 AudioClipOwner owner): HARMessageAudioClip

deregisterInterest(Identifier audioClipID, AudioClipOwner owner): void

Figure 282. AudioCommon (Class Diagram)

3.1.21.1.1 AudioClipIDList (Class)

This typedef (struct) is a list of Identifiers of HARMessageAudioClip objects. A list of this type is passed to AudioClipOwners in a confirmClipInterest call identifying audio clips for which to confirm interest, and the AudioClipOwner returns an AudioClipIDList in response, indicating the subset of those clips for which there is no longer any interest. (It is therefore anticipated that the list returned will be null or of short length.)

3.1.21.1.2 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

3.1.21.1.3 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.21.1.4 AudioClipStreamer (Class)

This interface is implemented by objects that can push an audio clip given its ID. The audio data, previously stored within the streamer's implementation, is pushed to the AudioPushConsumer supplied by the user of this interface. See AudioPushConsumer for details.

3.1.21.1.5 AudioData (Class)

This typedef is a sequence of bytes that contain audio data. This data is used in conjunction with AudioDataFormat to decode the data into voice.

3.1.21.1.6 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.1.21.1.7 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.1.21.1.8 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.21.1.9 TextEmbeddedTag (Class)

This interface defines constants for tags that may be embedded in text that is passed to the TTSConverter. The TTSConverter replaces the tags it finds in text prior to converting the text to speech. The DateStamp tag is replaced with a date string in the format "DayOfWeek, Month Date" (e.g. "Wednesday, July 14"). This tag is replaced with new text every day immediately after midnight.

3.1.21.1.10 TTSConverter (Class)

This interface represents the Text to Speech converter object which allows text to be passed in and speech to be returned.

3.1.21.1.11 TTSPriority (Class)

This enum defines the types of priorities that can be used when asking the TTSConverter to convert text to speech.

3.1.21.1.12 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.1.13 UnsupportedAudioFormat (Class)

This exception is thrown when a specific AudioDataFormat is requested from an object that does not support the given format.

3.1.21.2 CommLogManagement (Class Diagram)

This Class Diagram shows the classes used for passing information between processes to enable creating, pushing, viewing, and searching Communications Log entries.

[image: image285.emf]LogEntryList

«type»

CommLogEventType

«enumeration»

LogEntryDataList

«type»

LogEntryData

«typedef»

LogIterator

«interface»

LogEntry

«interface»

LogFilter

«interface»

CommLog

«interface»

1 *

1

*

1

*

1 *

1 1

sequence LogEntry

LogEntryAdded

LogEntryUpdated

sequence LogEntryData

String entryText

Identifier trafficEventID

Source entrySource getMoreEntries(long maxCount) : LogEntryList

destroy():void

long m_timeOfLastUse

getID():Identifier

matchesFilter(LogFilter filter) : boolean

factory createLogEntry() : LogEntry

Identifier m_id

TimeStamp m_timestamp

Identifier m_eventID

string m_text

string m_author

string m_opCenterName

string m_hostname

Source m_source

factory createLogFilter() : LogFilter

Source m_source

boolean m_sourceIsUsed

string m_author

TimeStamp m_startDate

TimeStamp m_endDate

Identifier m_eventID

Identifier m_logEntryID

string m_opCenterName

string m_containsText

boolean isCaseSensitive

getEntries(AccessToken token, LogFilter filter,

 long maxCount) : LogQueryResults

addEntries(AccessToken token, LogEntryDataList logEntries) : void

overrideEntryTime(AccessToken token, Identifier logEntryID,

 TimeStamp logEntryTime):void

Figure 283. CommLogManagement (Class Diagram)

3.1.21.2.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or specific log entries for a specific Traffic Event. This class is the primary interface for the CommLog service. It is used to persist log entries in the CHART II system and retrieve them for review. Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events.

3.1.21.2.2 CommLogEventType (Class)

This enumeration lists the possible events which the CommsLog service may push via the CORBA event service. At present, only one event is defined, the addition of a new LogEntry to the database.

3.1.21.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

3.1.21.2.4 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate.

3.1.21.2.5 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which contain the data needed to create one Log Entry. Normally each LogEntryDataList will contain only one LogEntryData object, but if the CommLog service is unavailable for a time, it is possible that multiple LogEntryData objects may be queued up for insertion into the database.

3.1.21.2.6 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting process in one clump. (Some requests return so much data that data is returned in clumps. The initial request returns a LogIterator from which additional LogEntryList sequences can be requested, in order to complete the entire query.

3.1.21.2.7 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

3.1.21.2.8 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

3.1.21.3 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

[image: image286.emf]UnsupportedOperation

«exception»

InvalidState

«exception»

SpecifiedObjectNotFound

«exception»

TimeStamp

«type»

UserName

«type»

Password

«type»

AccessDenied

«exception»

CHART2Exception

«exception»

GeoLocatable

«interface»

UniquelyIdentifiable

«interface»

RouteType

«enumeration»

SourceTypeValues

«interface»

CommandStatus

«interface»

Service

«interface»

NetworkConnectionSite

«type»

DirectionValues

«interface»

Direction

«typedef»

TrafficParameters

«typedef»

DuplicateData

«exception»

Source

«typedef»

RouteTypeInfo

«typedef»

ApplicationVersion

«typedef»

ComponentVersion

«typedef»

1 1

string reason string reason string reason string reason

string requiredRights

string reason

string debug

String getLocationDesc() getID()

getName()

I

MD

US

const short SOURCE_OTHER_NO_ADDL_INFO

const short SOURCE_OTHER_WITH_INFO

const short CCTV

const short SYSTEM_ALARM

const short STATE_POLICE

const short LOCAL_POLICE

const short CHART_UNIT

const short CITIZEN

const short MCTMC

const short MEDIA

update(String status):void

completed(boolean commandSuccessful,

 String finalStatus):void

completedSameStatus(boolean commandSuccessful):void

ping():void

getName():string;

getVersion():ApplicationVersion

getNetConnectionSite():string;

oneway shutdown(AccessToken token):void

const short OTHER_NO_ADDITIONAL_INFO

const short OTHER_ADDITIONAL_INFO

const short NORTH

const short NORTH_EAST

const short EAST

const short SOUTH_EAST

const short SOUTH

const short SOUTH_WEST

const short WEST

const short NORTH_WEST

const short INNER_LOOP

const short OUTER_LOOP

short int m_speedData;

int m_volumeData;

int m_percentOccupancy;

string reason

SourceType theSourceType

string otherDescription

RouteType typeOfRoute

string nameOfRouteType

string applicationName

ComponentVersionList componentVersions

string name

string version

Figure 284. Common (Class Diagram)

3.1.21.3.1 AccessDenied (Class)

This class represents an access denied, or "no rights" failure.

3.1.21.3.2 ApplicationVersion (Class)

This structure contains the name of the application and information about the versions of its components.

3.1.21.3.3 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very generic exceptions which require no special processing by the client. It supports a reason string which may be shown to any user and a debug string which will contain detailed information useful in determining the cause of the problem.

3.1.21.3.4 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.21.3.5 ComponentVersion (Class)

This structure contains the name and version number of the software component.

3.1.21.3.6 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in DirectionValues.

3.1.21.3.7 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

3.1.21.3.8 DuplicateData (Class)

This exception is thrown when an object is to be added to the system, but the system already contains an object with equivalent data.

3.1.21.3.9 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.3.10 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid state to perform the operation.

3.1.21.3.11 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is running. This field is useful for administrators in debugging problems should an object become "software comm failed".. It is included in the Chart2DMSStatus.

3.1.21.3.12 Password (Class)

Typedef used to define the type of a Password.

3.1.21.3.13 RouteType (Class)

This enumeration is used to specify the classification of a road (interstate, MD, etc.)

3.1.21.3.14 RouteTypeInfo (Class)

This structure contains information about the classification type of a road.

3.1.21.3.15 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown externally. All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

3.1.21.3.16 Source (Class)

This structure contains information about the source of the data being added to the system.

3.1.21.3.17 SourceTypeValues (Class)

This enumeration contains the possible sources of information that can be used for adding CommLog entries and/or traffic event data.

3.1.21.3.18 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object that cannot be found by the invoked object.

3.1.21.3.19 TimeStamp (Class)

This typedef defines the type of TimeStamp fields.

3.1.21.3.20 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535 is used to indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent. (thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a missing or invalid value.

3.1.21.3.21 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.3.22 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which it is called.

3.1.21.3.23 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

3.1.21.4 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.

[image: image287.emf]ArbQueueEntryIndicator

1

1

1 1

ArbQueueEntryStatusList

«typedef»

ArbQueueEntryStatus

«typedef»

CommunicationMode

«enumeration»

OperationalStatus

«enumeration»

DisapprovedMessageContent

«exception»

CommFailure

«exception»

ArbitrationQueue

«interface»

Message

«interface»

CommEnabled

«interface»

MessageQueue

ArbQueueEntryKey

«typedef»

ArbQueueEntryList

«typedef»

ArbQueueEntry

PortManagerCommsData

«typedef»

PortLocationData

«typedef»

1

*

1

1

1 *

1 *

1 *

ArbQueueEntryKey m_key

TrafficEvent m_trafficEvent

Identifier trafficEventID

boolean isActive

string currMessage

double priority

ONLINE

OFFLINE

MAINT_MODE

OK

COMM_FAILURE

HARDWARE_FAILURE

WordList disapprovedWords

string reason

string reason;

string debug;

long errorCode;

addEntry(AccessToken, ArbQueueEntry):void

removeEntry(AccessToken, byte[] trafficEventID):void

changePriority(AccessToken token,

 ArbQueueEntry entry, double priority):void

getEntries():ArbQueueEntry[]

getEntriesStatus():ArbQueueEntryStatusList

validateMessageContent():void;

matches(Message): boolean

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

byte[] m_trafficEventID

byte[] m_rpiID

getTrafficEvent():TrafficEvent

getTrafficEventType():int

getTrafficEventID():byte[]

setActive(AccessToken token, string deviceName):void

setInactive(AcessToken token,

 string deviceName,

 string reason):void

setFailed(AccessToken token,

 string deviceName,

 string errorMsg):void

setUpdated(AccessToken token, string deviceName):void

getMessage():Message

getPriority():double

setPriority(AccessToken token, double newpriority):void

getOpCenterName():string

matches(ArbQueueEntry entry):boolean

ArbQueueEntryIndicator m_indicator

int m_trafficEventType

Message m_message

double m_priority

string m_opCenter

string m_portManagerName;

string m_devicePhoneNumber;

PortManagerCommsList m_prtManagerList

PortType m_portType;

int m_portWaitTimeSecs;

Figure 285. DeviceManagement (Class Diagram)

3.1.21.4.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.1.21.4.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent.)

3.1.21.4.3 ArbQueueEntryIndicator (Class)

The ArbQueueEntryIndicator contains data necessary to specify a unique ArbQueueEntry object, plus it contains a reference to the TrafficEvent which is responsible for the entry.

3.1.21.4.4 ArbQueueEntryKey (Class)

This class contains the Traffic Event ID and RPI ID and is used to identify a specific ArbQueueEntry.

3.1.21.4.5 ArbQueueEntryList (Class)

Collection of ArbQueueEntry objects.

3.1.21.4.6 ArbQueueEntryStatus (Class)

This structure is used to provide the status of the arbitration queue entries that were queued for execution on a device.

3.1.21.4.7 ArbQueueEntryStatusList (Class)

Collection of ArbQueueEntryStatus objects.

3.1.21.4.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling is halted. When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.4.9 CommFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating with a device.

3.1.21.4.10 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.

3.1.21.4.11 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are not approved. This exception is also thrown if an attempt is made to put the device in an invalid display state, such as putting the Beacons ON for a blank DMS.

3.1.21.4.12 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.21.4.13 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to manage traffic event entries in a prioritized list.

3.1.21.4.14 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

3.1.21.4.15 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.21.4.16 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to access a device from the given port manager. This class exists to allow for the phone number used to access a device to differ based on the port manager to take into account the physical location of the port manager within the telephone network. For example, when dialing a device from one location the call may be long distance but when dialing from another location the call may be local.

3.1.21.5 DictionaryManagement (Class Diagram)

This class diagram shows the interfaces used for the dictionaries.

[image: image288.emf]1

*

1

*

DictionaryEventInfo

«typedef»

DictionaryEventType

«enumeration»

DictionarySuggestion

«interface»

DictionaryWord

«interface»

WordList

«typedef»

SuggestionList

«typedef»

Dictionary

«interface»

DictionaryWordType

«enumeration»

UniquelyIdentifiable

«interface»

1

*

1

1

1 *

Identifier dictionaryID

WordList listOfWords

BannedWordsAdded

BannedWordsRemoved

ApprovedWordsAdded

ApprovedWordsRemoved

getUnapprovedWord():string

getReplacements():StringList

factory create(string unapprovedWord,

 StringList replacements):DictionarySuggestion

DictionaryWord m_unapprovedWord

StringList m_replacements

getWord():string;

setApplicabilityToType(DictionaryWordType wordType,

 boolean isApplicable):void

isWordApplicableToType(DictionaryWordType wordType):boolean

factory create(string word,WordTypeList wordType):DictionaryWord

string m_word

long m_wordTypeBitmask

getBannedWords(AccessToken):WordList

removeBannedWordList(AccessToken,WordList):void

addBannedWordList(AccessToken,WordList):void

checkForBannedWords(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):WordList

getApprovedWords(AccessToken):WordList

addApprovedWordList(AccessToken, WordList):void

removeApprovedWordList(AccessToken, WordList):void

performApprovedWordsCheck(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):SuggestionList

DMS_WORD

HAR_WORD

getID()

getName()

Figure 286. DictionaryManagement (Class Diagram)

3.1.21.5.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,..

3.1.21.5.2 DictionaryEventInfo (Class)

This interface encapsulates the data that is passed with a dictionary CORBA event. It contains information identifying the dictionary, and the list of words affected by the event.

3.1.21.5.3 DictionaryEventType (Class)

This represents the enumerations used for the different CORBA event types applicable to the dictionary module.

3.1.21.5.4 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a substitute for the word that could not be found in the approved words dictionary database.

3.1.21.5.5 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that qualifies the type of devices that the word applies to.

3.1.21.5.6 DictionaryWordType (Class)

This enumeration is used to tag words that are placed in a dictionary. Words may apply to a specific messaging device or many.

3.1.21.5.7 SuggestionList (Class)

This interface represents the IDL sequence typedef for the DictionarySuggestion.

3.1.21.5.8 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.5.9 WordList (Class)

This interface represents the IDL sequence typedef for the DictionaryWord.

3.1.21.6 DMSControl (Class Diagram)

This Class Diagram shows the CORBA system interface classes and methods used to manipulate DMS services within the CHART II system.

[image: image289.emf]DMSEventType is

DMSAdded or

DMSConfigChanged

DMSEventType is

CurrentDMSStatus

ArbQueueEntry

DMSArbQueueEntry

CommunicationMode

«enumeration»

ShortErrorStatus

«type»

MULTIString

«type»

DMSConfiguration

Chart2DMSConfiguration

DMSStatus

Chart2DMSStatus

DMS

«interface»

Chart2DMS

«interface»

Chart2DMSFactory

«interface»

SharedResourceManager

«interface»

HARMessageNotifier

«interface»

SharedResource

«interface»

DMSFactory

«interface»

DMSList

«type»

DMSMessage

DMSStatusEventInfo

«typedef»

SignMetrics

«typedef»

FontMetrics

«typedef»

DMSConfigurationEventInfo

«typedef»

BeaconTypeValues

«interface»

SignTypeValues

«interface»

ResponsePlanItemData

DMSRPIData

HARNotifierArbQueueEntry

Message

«interface»

UniquelyIdentifiable

«interface»

GeoLocatable

«interface»

FP9500DMS

«interface»

FP9500Status

MessageQueue

NetworkConnectionSite

«type»

MULTIParseFailure

«exception»

DMSEvent

«typedef»

DMSEventType

«enumeration»

ArbitrationQueue

«interface»

CommEnabled

«interface»

DMSModelID

«enumeration»

OperationalStatus

«enumeration»

FP9500Configuration

SignType

«type»

BeaconType

«type»

PlanItemData

DMSPlanItemData

1

1

1

1

1 1

1

1

1

1

1

1

DMSEventType is

DMSAdded or

DMSConfigChanged

*

1

1

1

1 1

1

1

1

1

DMSEventType is

CurrentDMSStatus

1

*

1 *

1

1

1

1

*

*

*

*

*

1

1

1

*

1

1

1

1 *

1 1

1

*

1

1

1 1

1 1

1

1

getTrafficEvent():TrafficEvent

getTrafficEventType():int

getTrafficEventID():byte[]

setActive(AccessToken token, string deviceName):void

setInactive(AcessToken token,

 string deviceName,

 string reason):void

setFailed(AccessToken token,

 string deviceName,

 string errorMsg):void

setUpdated(AccessToken token, string deviceName):void

getMessage():Message

getPriority():double

setPriority(AccessToken token, double newpriority):void

getOpCenterName():string

matches(ArbQueueEntry entry):boolean

ArbQueueEntryIndicator m_indicator

int m_trafficEventType

Message m_message

double m_priority

string m_opCenter

getResponsePlanItem():ResponsePlanItem

factory createDMSArbQueueEntry(TrafficEvent trafficEvt,

 ResponsePlanItem rpi,

 DMSMessage message):DMSArbQueueEntry

ResponsePlanItem m_responsePlanItem

ONLINE

OFFLINE

MAINT_MODE

factory createDMSConfiguration() :

 DMSConfiguration

string m_name

string m_deviceLocation

SignType m_dmsSignType

SignMetrics m_signMetrics

FontMetrics m_fontMetrics

long m_pages

long m_dmsTimeCommLoss

BeaconType m_dmsBeaconType

long m_defaultJustificationLine

long m_defaultPageOnTime

long m_defaultPageOffTime

getNetworkConnectionSite():NetworkConnectionSite

factory createChart2DMSConfiguration() :

 Chart2DMSConfiguration

DMSModelID m_dmsModelID

Identifier m_owningOrgID

NetworkConnectionSite m_networkConnectionSite

boolean m_pollingEnabled

long m_pollIntervalMinutes

PortLocationData m_portLocationData

CommPortConfig m_commPortConfig

string m_devicePhoneNumber

long m_deviceDropAddress

long m_deviceResponseTimeout

DMSMessage m_shazamMessage

HAR m_associatedHAR

Identifier m_associatedHARID

boolean m_enableDeviceLog

factory createDMSStatus() : DMSStatus

boolean m_performingPixelTest

DMSMessage m_currentMessage

CommunicationsMode m_commMode

OperationalStatus m_opStatus

ShortErrorStatus m_shortErrorStatus

long m_statusChangeTime

factory createChart2DMSStatus() : Chart2DMSStatus

OpCenterInfo m_controllingOpCenter

blankSign(AccessToken token, CommandStatus status) : void

getConfiguration(AccessToken token) : DMSConfiguration

getStatus() : DMSStatus

isBlank() : boolean

pollNow(AccessToken token, CommandStatus status) : void

remove(AccessToken token) : void

resetController(AccessToken token, CommandStatus status) : void

setConfiguration(AccessToken token, DMSConfiguration config,

 CommandStatus status) : void

setMessage(AccessToken token, DMSMessage message,

 CommandStatus status) : void

getID()

getName()

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

createDMS(AccessToken token, DMSConfiguration config) : DMS

getDMSList() : DMSList

sequence DMSList

getBeaconState() : boolean

getMessageText():string

getMultiString() : MULTIString

getMinimumCharacters() : long

isMessageTextMulti():boolean

factory createDMSMessage(MULTIString multiStringMessage,

 boolean beaconState,

 boolean isMessageTextMulti) : DMSMessage

string m_dmsMessageString

boolean m_dmsMessageBeacon

boolean m_isMessageTextMulti

MULTIString m_dmsMessageMultiString

Identifier dmsID

DMSStatus status

long vmsSignHeightPixels

long vmsSignWidthPixels

short vmsCharacterHeightPixels

short vmsCharacterWidthPixels

short fontHeight

short characterWidth

DMS theDMS

Identifier dmsID

DMSConfiguration config

other = 1

none = 2

oneBeacon = 3

twoBeaconSyncFlash = 4

etc.

other = 1

bos = 2

cms = 3

vmsChar = =4

etc.

getDMS() : Chart2DMS

getMessage() : DMSMessage

setDMS(Chart2DMS) : void

setMessage(DMSMessage) : void

factory create DMSRPIData() :

 DMSRPIData

Chart2DMS m_dms

DMSMessage m_message

getCommandStatus():CommandStatus

factory createHARNotifierArbQueueEntry(ArbQueueEntryIndicator,

 TrafficEvent[],

 DMSMessage,

 CommandStatus):HARNotifierArbQueueEntry

CommandStatus m_status

TrafficEvent[] m_trafficEventList

performPixelTest(AccessToken token,

 CommandStatus status) : void

getExtendedStatus(AccessToken token,

 CommandStatus status):FP9500DMSStatus

factory createFP9500Status() : FP9500Status

octet m_currentMsgNum

octet m_currentMsgSource

string reason

DMSEventType <discriminator>

 Identifier dmsID - forDMSDeleted

 or

 DMSConfigurationEventInfo dmsConfigInfo

 or

 DMSStatusEventInfo statusInfo

DMSAdded

DMSDeleted

CurrentDMSStatus

DMSConfigChanged

addEntry(AccessToken, ArbQueueEntry):void

removeEntry(AccessToken, byte[] trafficEventID):void

changePriority(AccessToken token,

 ArbQueueEntry entry, double priority):void

getEntries():ArbQueueEntry[]

getEntriesStatus():ArbQueueEntryStatusList

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

DMS_ADDCO

DMS_FP1001

DMS_FP2001

DMS_FP9500

DMS_PCMS

DMS_SYLVIA

DMS_TS3001

OK

COMM_FAILURE

HARDWARE_FAILURE

getDMSID() : Identifier

setDMS(DMS, Identifier) : void

getMessageID(): Identifier

setMessage (StoredMessage, Identifier) : void

factory createDMSPlanItemData():DMSPlanItemData

DMS m_dms

Identifier m_dmsID

StoredMessage m_storedMsg

Identifier m_storedMsgID

Figure 287. DMSControl (Class Diagram)

3.1.21.6.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.1.21.6.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent.)

3.1.21.6.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the BeaconTypeValues class. It is a part of a DMSConfiguration object.

3.1.21.6.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices (number of beacons and whether and in what manner they flash).

3.1.21.6.5 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the Chart II-specific DMS objects within Chart II. It provides an interface for traffic events to provide input as to what each traffic event desires to be on the sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface a HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic message. Chart II business rules include concepts such as shared resources, arbitration queues, and linking devices usage to traffic events, concepts which go beyond what would be industry-standard DMS control.

3.1.21.6.6 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to Chart II processing. Such information includes how to contact the sign under Chart II software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization. Such data extends beyond what would be industry-standard configuration information for a DMS.

3.1.21.6.7 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS objects). It implements the SharedResourceManager capbility to control DMS objects as shared resources.

3.1.21.6.8 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to Chart II processing, such as information on the controlling operations center for the sign. This data extends beyond what would be industry-standard status information for a DMS.

3.1.21.6.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling is halted. When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.6.10 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.

3.1.21.6.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign (DMS) objects within Chart II. It specifies methods for setting messages and clearing messages from a sign (in maintenance mode), polling a sign, changing the configuration of a sign, and reseting a sign. (Setting messages on a sign in online mode are not accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic events, which interfaces with the ArbitrationQueue of a sign. This activity involves the DMS extension, Chart2DMS, which defines interactions with signs under Chart II business rules.)

3.1.21.6.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used for most standard entries placed on the arbitration queue. When its setActive, setInactive, and setFailed methods are called, it adds a log entry to its traffic event and calls the appropriate method on its response plan item (setActive, setInactive, or update).

3.1.21.6.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract class which describes the configuration of a DMS device. This configuration information is normally fairly static: things like the size of the sign in characters and pixels, its name and location, and how to contact the sign (as opposed to dynamic information like the current message on the sign, which is defined in an analogous Status object).

3.1.21.6.14 MSConfigurationEventInfo (Class)

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType DMSConfigChanged. It contains a DMSConfiguration object which details the new configuration for a Chart II DMS object.

3.1.21.6.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities. The four types of events, defined by the enumeration DMSEventType, are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

3.1.21.6.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the four types of events relating to DMS operations which can be pushed on an Event Channel to update event consumers on DMS-related activities. The four types of events are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

3.1.21.6.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a method to get a list of DMS devices currently in the system.

3.1.21.6.18 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory and other classes for maintaining the list or other lists of DMS objects.

3.1.21.6.19 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It consists of two elements: a MULTI-formatted message and beacon state information (whether the message requires that the beacons be on). The DMSMessage is contained within a DMSStatus object, used to communicate the current message on a sign, and is stored within a DMSRPIData object, used to specify the message which should be on a sign when the response plan item is executed.

3.1.21.6.20 DMSModelID (Class)

The DMSModelID class enumerates the models of DMSs that are in the system.

3.1.21.6.21 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a DMS. It is derived from PlanItemData.

3.1.21.6.22 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself.

3.1.21.6.23 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a DMS. This status information is relatively dynamic: things like the current message on the sign, its beacon state, its current operational mode (online, offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More static information about the sign, such as its size and location, is defined in an analogous Configuration object.)

3.1.21.6.24 DMSStatusEventInfo (Class)

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType CurrentDMSStatus. It contains a DMSStatus object which details the new status for a Chart II DMS object.

3.1.21.6.25 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

3.1.21.6.26 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class which extends the Chart2DMSConfiguration class to provide configuration information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information.

3.1.21.6.27 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest method, which knows how to invoke and interpret a pixel test as supported by the FP9500 model DMS.

3.1.21.6.28 FP9500Status (Class)

The FP9500Status class is an abstract class which extends the Chart2DMSStatus class to provide status information specific to an FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific configuration information. In this case, additional information provided the FP9500 model would include things like the current message number and current message source, status bits, light status, pixel failure map, and so on.

3.1.21.6.29 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.6.30 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message.

3.1.21.6.31 HARNotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry used for entries that are placed on the arbitration queue to put a "SHAZAM" message on a DMS. These types of messages have a low priority and are not allowed to overwrite any standard message (from a DMSArbQueueEntry) that is currently displayed on a device. These types of messages are also different in that they are not added to the queue directly by a response plan item and are instead included as a sub-task of activating a message on a HAR. The HAR uses a command status object to track the progress of the HAR notifier message.

3.1.21.6.32 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.21.6.33 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to manage traffic event entries in a prioritized list.

3.1.21.6.34 MULTIParseFailure (Class)

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS message cannot be correctly parsed.

3.1.21.6.35 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class contains a MULTIString value to specify the content of the sign, in addition to the beacon state value.

3.1.21.6.36 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is running. This field is useful for administrators in debugging problems should an object become "software comm failed".. It is included in the Chart2DMSStatus.

3.1.21.6.37 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

3.1.21.6.38 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.1.21.6.39 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.1.21.6.40 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.21.6.41 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.6.42 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined by the NTCIP center to field standard for DMS that specifies error conditions that may be present on the device. This class is used to encapsulate the bit mask and provide a user friendly interface to the error conditions. The DMSStatus class contains a value of this type.

3.1.21.6.43 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration object.

3.1.21.6.44 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the SignTypeValues class. It is a part of a DMSConfiguration object.

3.1.21.6.45 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are bos, cms, vmsChar, etc.

3.1.21.6.46 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.7 FieldCommunications (Class Diagram)

This diagram shows system interfaces relating to field communications. These interfaces, typedefs, and enums specify the IDL for the FieldCommunications package.

[image: image290.emf]DataPort

«interface»

ModemPort

«interface»

DirectPort

«interface»

EVENT_CHANNEL_PORT_STATUS

«type»

Parity

«enumeration»

DataPortIOException

«exception»

Port

«interface»

VoicePort

«interface»

NoPortsFound

«exception»

CommPortConfig

«typedef»

StopBits

«enumeration»

DataBits

«enumeration»

FlowControl

«enumeration»

ModemInitFailure

«exception»

PortStatusInfo

«typedef»

PortStatusChangedEventInfo

«typedef»

PortEventType

«enumeration»

ModemResponseCode

«enumeration»

ModemConnectFailure

«exception»

ModemNotResponding

«exception»

PortOpenFailure

«exception»

DisconnectException

«exception»

GetPortTimeout

«exception»

PortStatus

«enumeration»

UniquelyIdentifiable

«interface»

PortManager

«interface»

ConnectFailure

«exception»

PortType

«enumeration»

Priority

«enumeration»

Other port types

such as VoicePort

VoicePortConnectFailure

«exception»

1 *

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis,

 long maxReadDurationMillis):byte[]

connect(CommPortConfig config,

 String phoneNo):void

connect(CommPortConfig config):void

string

PARITY_EVEN

PARITY_ODD

PARITY_NONE

PARITY_MARK

PARITY_SPACE

string reason

getStatus():PortStatus

disconnect():void

connect(String phoneNo):void

playDTMFTones(String dtmfCodes,

 boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

long m_baudRate

DataBits m_dataBits

StopBits m_stopBits

Parity m_parity

FlowControl m_flowControl

STOPBITS_1

STOPBITS_2

STOPBITS_1_5

DATABITS_5

DATABITS_6

DATABITS_7

DATABITS_8

FLOWCONTROL_NONE

FLOWCONTROL_RTS_CTS

FLOWCONTROL_XON_XOFF

string modemCmd;

ModemResponseCode rspCode;

Identifier id

string name

PortType type

PortStatus status

PortStatusInfo[] info PortStatusChanged

MODEM_RSP_OK

MODEM_RSP_CONNECT

MODEM_RSP_RING

MODEM_RSP_NO_CARRIER

MODEM_RSP_ERROR

MODEM_RSP_CONNECT_1200

MODEM_RSP_NO_DIAL_TONE

MODEM_RSP_BUSY

MODEM_RSP_NO_ANSWER

MODEM_RSP_UNKNOWN

string modemCmd;

ModemResponseCode rspCode;

string reason

string reason

string reason;

long timeoutMillis

STATUS_OK

STATUS_MARGINAL

STATUS_FAILED

STATUS_DISABLED-future

getPortsStatus():PortStatusInfo[]

getPort(PortType type, long maxWaitMillis,

 Priority requestPriority):Port

releasePort(Port thePort):void

string reason

ISDN_MODEM

POTS_MODEM

DIRECT_RS232

TELEPHONY

PRIORITY_POLLING

PRIORITY_ON_DEMAND

string reason

Figure 288. FieldCommunications (Class Diagram)

3.1.21.7.1 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

3.1.21.7.2 ConnectFailure (Class)

This exception is a catch-all for exceptions that do not fit in a more specific exception that can be thrown during a connection attempt.

3.1.21.7.3 DataBits (Class)

This enumeration defines the valid values for data bits that may be set in a CommPortConfig structure.

3.1.21.7.4 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.21.7.5 DataPortIOException (Class)

This exception is used to indicate an Input/Output error has occurred.

3.1.21.7.6 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The connect call needs only to open the communications port.

3.1.21.7.7 DisconnectException (Class)

This exception is thrown when an error is encountered while disconnecting. There is no action that can be taken by the catch handler for this exception except to warn the user. The port will be closed and should be released as normal even if this exception is caught.

3.1.21.7.8 EVENT_CHANNEL_PORT_STATUS (Class)

This is a static string that contains the name of the event channel used to push events relating to the change in Port status. The following PortEventTypes are pushed on EVENT_CHANNEL_PORT_STATUS channel: PortStatusChanged

3.1.21.7.9 FlowControl (Class)

This enumeration defines the valid types of flow control that may be set in a CommPortConfig structure.

3.1.21.7.10 GetPortTimeout (Class)

This class is an exception that is thown by a PortManager when a request to acquire a port of a given type cannot be fulfilled within the timeout specified.

3.1.21.7.11 ModemConnectFailure (Class)

This exception is thrown when there is an error establishing a remote connection via a modem during a connection attempt on a ModemPort. This exception is generated when there is an unfavorable result to the ATDT command on the modem.

3.1.21.7.12 ModemInitFailure (Class)

This exception is thrown when there is an error initializing the modem during a connection attempt on a ModemPort.

3.1.21.7.13 ModemNotResponding (Class)

This exception is thrown when there is a failure to command a modem because the modem is not responding to commands.

3.1.21.7.14 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN and POTS modems can be implemented under this interface.

3.1.21.7.15 ModemResponseCode (Class)

This enum defines the result codes for a standard modem.

3.1.21.7.16 NoPortsFound (Class)

This exception is thrown when a port is requested from a PortManager that does not have any of the requested type of port (available or in-use).

3.1.21.7.17 Parity (Class)

This enumeration defines the valid values for parity that may be set in a CommPortConfig structure.

3.1.21.7.18 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All ports must be able to supply their status when requested.

3.1.21.7.19 PortEventType (Class)

This enum defines the types of CORBA events that are pushed on a Field Communications event channel.

3.1.21.7.20 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.21.7.21 PortOpenFailure (Class)

This exception is thrown if there is an error opening the port while attempting a connection. This exception would most likely only occur if there is another application accessing the physical com port, which would be true if debugging activities were being done on a port while the FieldCommunications service is still running.

3.1.21.7.22 PortStatus (Class)

This enumeration specifies the values used to represent a Port's status. OK signifies the port is working properly. MARGINAL signifies errors have been experienced during recent use of the port. FAILED indicates the port is not working at all.

3.1.21.7.23 PortStatusChangedEventInfo (Class)

This class contains data that is pushed on a Field Communications event channel with a PortStatusChanged event.

3.1.21.7.24 PortStatusInfo (Class)

This class contains the data of status of a particular port.

3.1.21.7.25 PortType (Class)

This enumeration defines the types of ports that may be requested from a PortManager.

3.1.21.7.26 Priority (Class)

This enumeration specifies the priority levels used when requesting a port from a PortManager. ON_DEMAND is given higher priority than POLLING.

3.1.21.7.27 StopBits (Class)

This enumeration defines the valid values for stop bits that may be set in a CommPortConfig structure.

3.1.21.7.28 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.7.29 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

3.1.21.7.30 VoicePortConnectFailure (Class)

This exception is thrown when the voice port fails to connect because of one of the following reasons: no dial tone, line busy or no answer.

3.1.21.8 HARControl (Class Diagram)

This class diagram contains the interfaces used relating to the control of Highway Advisory Radio (HAR).

[image: image291.emf]1

1

*

1 1

1

*

Message

«interface»

HARMessage

HARMessageNotifierStruct

CommEnabled

«interface»

UniquelyIdentifiable

«interface»

HARMessageNotifierList

«typedef»

Body

Header/Trailer (optional)

ArbQueueEntry

HARArbQueueEntry

HARMessageClip

HARMessageAudioDataClip

HARMessageAudioClip

HARMessageTextClip

HARMessagePrestoredClip

SharedResourceManager

«interface»

HARFactory

«interface»

HAR

«interface»

HARMessageNotifier

«interface»

SharedResource

«interface»

HARMessageClipList

«typedef»

HARSlotUsageIndicator

«enumeration»

ArbitrationQueue

«interface»

HARSlotData

«typedef»

HARSlotNumber

«type»

HARList

«typedef»

GeoLocatable

«interface»

StoredMessage

«interface»

HARPlanItemData

HARStatusEventInfo

«typedef»

HARConfigurationEventInfo

«typedef»

HAREventType

«enumeration»

HARSlotDataList

«typedef»

HARRPIData

HARStatus

«typedef»

HARConfiguration

«typedef»

AudioClipOwner

«interface»

1

*

*

1

* 1

* 1

*

1

1

* 1

1

* *

1

*

1

*

1 1

* *

1

1

1

*

1

1

* *

1 1

1

setConfiguration(AccessToken, HARConfiguration, CommandStatus):void

getConfiguration() : HARConfiguration

getStatus():HARStatus

putInMaintModeWithSHAZAMs(AccessToken, HARMsgNotiferIDList, CommandStatus): void

putOnlineWithSHAZAMs(AccessToken, HARMsgNotifierIDList, CommandStatus): void

setMessage(AccessToken, HARMessage, HARMsgNotifierIDList, CommandStatus):void

blank(AccessToken, CommandStatus):void

getClipInSlot(HARSlotNumber): HARMessageClip

storeSlotMessage(AccessToken, HARSlotNumber, HARMessageClip,

 CommandStatus):void

deleteSlotMessage(AccessToken, HARSlotNumber, CommandStatus):void

isBlank():boolean

isMessageActive():boolean

reset(AccessToken, CommandStatus):void

setup(AccessToken, CommandStatus):void

setTransmitterOff(AccessToken, CommandStatus):void

setTransmitterOn(AccessToken, CommandStatus):void

monitorBroadcast(AccessToken, long seconds, long maxChunkSize,

 AudioPushConsumer, CommandStatus):void

monitorSlot(AccessToken, long seconds, HARSlotNumber, long maxChunkSize,

 AudioPushConsumer, CommandStatus)

remove(AccessToken, CommandStatus):void

msgNotifierDeactivated(AccessToken, Identifier notifierID): void

msgNotifierRemoved(AccessToken, Identifier notifierID): void

shouldHARNoticeBeActive(Identifier notifierID): void

DEFAULT_HEADER

DEFAULT_TRAILER

DEFAULT_MESSAGE

IMMEDIATE

USER

HARSlotNumber m_slotNumber

HARMessageClip m_slotMessageClip

HARSlotUsageIndicator m_slotUsageIndicator

setHAR(HAR theHAR):void

getHARID():Identifier

setMessage(StoredMessage msg):void

getMessageID():Identifier

factory createHARPlanItemData():

 HARPlanItemData

HAR m_har

Identifier m_harID

StoredMessage m_storedMsg

Identifier m_storedMsgID

Direction m_direction

Identifier id

HARStatus status

HAR theHAR

Identifier id

HARConfiguration config

HARAdded

HARRemoved

HARStatusChanged

HARConfigurationChanged

setHAR(HAR har):void

getHAR():HAR

setMessage(HARMessage msg):void

getMessage():HARMessage

factory createHARRPIData():HARRPIData

HAR m_har

HARMessage m_message

HARMsgNotifierList m_notifiersToActivate

HARMessage m_currentMessage

HARSlotDataList m_slotData

boolean m_transmitterOn

CommMode m_commMode

OperationalStatus m_OpStatus

OpCenterInfo m_controllingOpCenter

long m_statusChangeTime

long m_lastContactTime

string m_name

string m_deviceLocation

string m_devicePhoneNumber

string m_deviceMonitorPhoneNumber

string m_deviceAccessCode

HARMessageClip m_defaultMessage

HARMessageClip m_defaultHeader

HARMessageClip m_defaultTrailer

long m_maxStoredVoiceSeconds

int m_maxNumberOfSlots

HARMessageNotifierList m_msgNotifiers

Identifier m_owningOrgID

string m_networkConnectionSite

PortLocationData m_portLocationData

PortLocationData m_monitorPortLocationData

getHeader():HARMessageClip

getTrailer():HARMessageClip

getBody():HARMessageClipList

useDefaultHeader():boolean

useTrailer():boolean

useDefaultTrailer():boolean

setUseDefaultHeader(boolean):void

setUseTrailer(boolean):void

setUseDefaultTrailer(boolean):void

setHeader(HARMessageClip):void

setTrailer(HARMessageClip):void

setBody(HARMessageClip):void

addBodyClip(HARMessageClip):void

getBodyRunTime(): long

getTotalRunTime() : long

getNewDataRuntTime(): long

factory createHARMessage():HARMessage

HARMessageClipList m_body

boolean m_useDefaultHeader

HARMessageClip m_header

boolean m_useTrailer

boolean m_useDefaultTrailer

HARMessageClip m_trailer

HARMessageNotifier m_harNotifier

Identifier m_harNotifierID

ResponsePlanItem m_responsePlanItem

HARMsgNotifierList m_notifiersToActivate

getDescription():string

setDescription(string):void

getVoiceSeconds():long

setVoiceSeconds(long voiceSeconds):void

matches(HARMessageClip): boolean

string m_description

long m_voiceSeconds

factory createAudioDataClip(in AudioDataFormat format,

 in AudioData data):HARMessageAudioDataClip

AudioDataFormat m_audioDataFormat

AudioData m_audioData

registerInterest(AudioClipOwner owner): void

deregisterInterest(AudioClipOwner owner): void

stream(in long maxChunkSize,

 in AudioPushConsumer consumer:void

)factory createAudioClip(Identifier,

 AudioClipManager):HARMessageAudioClip

Identifier m_audioClipID

AudioClipManager m_clipMgr

getMessageText():string

setMessageText(string):void

stream(in AudioDataFormat format,

 in long maxChunkSize,

 in TTSPriority priority,

 in AudioPushConsumer consumer):void

factory createTextClip(string text):HARMessageTextClip

string m_messageText

getSlotNumber():HARSlotNumber

setSlotNumber(HARSlotNumber):void

stream(in AudioDataFormat format,

 in long maxChunkSize,

 in TTSPriority priority,

 in AudioPushConsumer consumer):void

factory createPrestoredClip():HARMessagePrestoredClip

HARSlotNumber m_slotNumber

Identifier m_harID

createHAR(AccessToken,

 HARConfiguration) : HAR

getHARs():HARList

Figure 289. HARControl (Class Diagram)

3.1.21.8.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

3.1.21.8.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent.)

3.1.21.8.3 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.21.8.4 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling is halted. When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.8.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.8.6 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler. This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

3.1.21.8.7 HARArbQueueEntry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a traffic event. This entry also specifies the HARMessageNotifiers to be activated when the message is activated.

3.1.21.8.8 HARConfiguration (Class)

This class (struct) contains configuration data for a HAR device. It is used to transmit current configuration data from the HAR to the client, and to transmit proposed new configuration data from the client to the HAR. It is also used internally by the HARService to maintain its configuration in memory, and is used to transmit configuration data to/from the HAR to the HARControlDB database interface class.

3.1.21.8.9 HARConfigurationEventInfo (Class)

This class defines data (HARConfiguration, and HAR ID and reference) pushed with a HARConfigurationChanged and HARAdded CORBA event.

3.1.21.8.10 HAREventType (Class)

This enumeration defines the types of CORBA events that are pushed on a HARControl event channel.

3.1.21.8.11 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR objects under the domain of the specific HARFactory object.

3.1.21.8.12 HARList (Class)

The HARList class is a collection of HAR objects.

3.1.21.8.13 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR. It stores the HAR message as a HAR message header, body and footer. The HARMessage can be configured to use the default header or can provide a custom header clip. The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided. The body can consist of one or more body clips. Users must specify one and only one body clip, but the HAR Service can combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

3.1.21.8.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is passed around the system, wherever possible instead of passing the actual voice data contained in the initial HARMessageAudioDataClip. When the actual voice data is needed to play to the user or to program the HAR device, this object's streamer is used to stream the actual voice data back to an AudioPushConsumer specified by the requester.

3.1.21.8.15 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data. Because audio data can be very large, this type of clip is reserved for use when recorded voice is first entered into the system. Recorded voice that already exists in the system is passed throughout the system using HARMessageAudioClip to avoid sending the large audio data when possible. A HARMessageAudioClip can stream the associated data back to an audio consumer when needed, by contacting its AudioClipManager.

3.1.21.8.16 HARMessageClip (Class)

This class represents a section of a HAR message. A HARMessage can contain up to three clips: a header, trailer, and body. See HARMessage for details. A HARMessageClip can be either plain text which would need to be converted to audio prior to broadcast, or audio (WAV) format, or it can refer to a clip which is prestored in a specific target HAR already. Audio clips are normally passed around as lightweight HARMessageAudioClips, which are created from HARMessageAudioDataClips at the point where the HARMessageAudioClip first enters a server.

3.1.21.8.17 HARMessageClipList (Class)

The HARMessageClipList is a collection of HARMessageClip objects. It is used to specify multiple clips contained in the body of a HARMessage. While a HARMessage specified by a user can contain only one body clip, a HARMessage generated by the HAR Service can contain multiple body clips, as a result of combining more than one message into a single message for download to and broadcast by a HAR.

3.1.21.8.18 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message.

3.1.21.8.19 HARMessageNotifierList (Class)

This class defines a list of HARMessageNotifierStruct objects.

3.1.21.8.20 HARMessageNotifierStruct (Class)

This class (struct) defines structure used for specifying a HARMessageNotifier, containing the notifier's ID and reference.

3.1.21.8.21 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a specific HAR device.

3.1.21.8.22 HARMessageTextClip (Class)

This class represents a HAR message content object which is in plain text format. This message can be checked for banned words and will be converted into a voice message using a speech engine, for downloading to a HAR device or to preview the voice audio to a user.

3.1.21.8.23 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.1.21.8.24 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and when the message is being broadcast on the HAR.

3.1.21.8.25 HARSlotData (Class)

This struct defines the data used to identify the contents and usage of a slot in the HAR controller.

3.1.21.8.26 HARSlotDataList (Class)

The HARSlotDataList class is simply a collection of HARSlotData objects.

3.1.21.8.27 HARSlotNumber (Class)

The HARSlotNumber is an integer used to specify slot numbers on a HAR controller.

3.1.21.8.28 HARSlotUsageIndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

3.1.21.8.29 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains other private status data elements which are not elements of this class.)

3.1.21.8.30 HARStatusEventInfo (Class)

This class contains data (HARStatus) that is pushed when the HARStatusChanged CORBA event is pushed on the HARControl event channel.

3.1.21.8.31 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.21.8.32 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.21.8.33 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.8.34 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.1.21.8.35 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.9 HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message notifications. The HAR notifiers can be SHAZAMs or DMS devices that are acting as SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from overwriting another type of DMS message.

[image: image292.emf]*

*

1

*

1

*

1 1 1 1

1 *

HARMessageNotifier

«interface»

SHAZAM

«interface»

CommEnabled

«interface»

GeoLocatable

«interface»

SharedResource

«interface»

UniquelyIdentifiable

«interface»

SHAZAMStatusChangeEventInfo

«typedef»

SHAZAMConfigurationEventInfo

«typedef»

SHAZAMEventType

«enumeration»

Identifier

HARMsgNotifierIDList

«typedef»

SHAZAMStatus

«typedef»

SHAZAMConfiguration

«typedef»

SharedResourceManager

«interface»

SHAZAMFactory

«interface»

DMSFactory

«interface»

boolean m_activated

CommunicationMode m_commMode

OperationalStatus m_opStatus

OpcenterInfo m_controllingOpCenter

long m_lastContactTime

long m_lastStatusChangeTime

string m_name

string m_location

Direction m_direction

string m_devicePhoneNumber

PortLocationData m_portLocationData

long m_refreshIntervalMins

NetworkConnectionSite m_networkConnectionSite

Identifier m_associatedHARID

HAR m_associatedHAR

createSHAZAM(AccessToken,

 SHAZAMConfigData) : SHAZAM

getSHAZAMList():SHAZAMList

getID()

getName()

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

setBeaconsOn(AccessToken, CommandStatus):void

setBeaconsOff(AccessToken, CommandStatus):void

refresh(AccessToken, CommandStatus):void

setConfiguration(AccessToken, SHAZAMConfiguration, CommandStatus)

getConfiguration(AccessToken) : OnOffDeviceConfiguration

getStatus() : SHAZAMStatus

remove(AccessToken):void

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

String getLocationDesc() getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

getID()

getName()

Identifier id

SHAZAMStatus status

SHAZAM theSHAZAM

Identifier id;

SHAZAMConfiguration config

SHAZAMAdded

SHAZAMRemoved

SHAZAMStatusChanged

SHAZAMConfigurationChanged

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

m_id

Figure 290. HARNotification (Class Diagram)

3.1.21.9.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling is halted. When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.9.2 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a method to get a list of DMS devices currently in the system.

3.1.21.9.3 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.9.4 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which are allowed to provide a SHAZAM-like message.

3.1.21.9.5 HARMsgNotifierIDList (Class)

This typedef is a sequence of HARMessageNotifier identifiers.

3.1.21.9.6 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.1.21.9.7 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.21.9.8 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.9.9 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to interface with a SHAZAM field device. This interface is implemented by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command and control.

3.1.21.9.10 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. This class is used to store configuration within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

3.1.21.9.11 SHAZAMConfigurationEventInfo (Class)

This class contains data (a SHAZAMConfiguration object) that is pushed on the SHAZAMControl CORBA event channel with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

3.1.21.9.12 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control event channel.

3.1.21.9.13 SHAZAMFactory (Class)

This CORBA interface allows new SHAZAM objects to be added to the system. It can also provide a list of all SHAZAM objects to a requester.

3.1.21.9.14 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

3.1.21.9.15 SHAZAMStatusChangeEventInfo (Class)

This class contains data (a SHAZAMStatus object) that is pushed on a SHAZAMControl event channel with a SHAZAMStatusChanged event.

3.1.21.9.16 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.10 LibraryManagement (Class Diagram)

This class diagram shows all classes and relationships relating to message libaries.

[image: image293.emf]UniquelyIdentifiable

«interface»

StoredMessage

«interface»

MessageLibrary

«interface»

LibraryAddedEventInfo

«typedef»

LibraryNameChangedEventInfo

«typedef»

StoredMessageRemovedEventInfo

«typedef»

StoredMessageAddedEventInfo

«typedef»

StoredMessageData

«typedef»

LibraryEventType

«enumeration»

Message

«interface»

MessageLibraryList

«typedef»

MessageLibraryFactory

«interface»

StoredMessageList

«typedef»

1 *

1 *

1

1

1

*

*

*

setName(AccessToken token, string name):void

createStoredMessage(AccessToken token,

 Message msg,

 string description,

 string category):StoredMessage

getStoredMessages():StoredMessageList

isUsedByAnyPlan():boolean

isMessageUsedByAnyPlan(Identifier msgID):boolean

removeMessage(AccessToken, Identifier ,msgID):void

remove(AccessToken):void

Identifier id;

MessageLibrary lib;

string name;

Identifier id;

string name;

Identifier msgID

Identifier libID

StoredMessage storedMsg;;

StoredMessageData msgData;

Identifier msgID

Identifier libID

string description

string category

string lastModifiedBy

Message msg

LibraryAdded

LibraryRemoved

LibraryNameChanged

StoredMessageAdded

StoredMessageRemoved

StoredMessageChanged

validateMessageContent():void;

matches(Message): boolean

createLibrary(AccessToken token,string name):MessageLibrary

getLibraryList():MessageLibraryList

getID()

getName()

getMessageData():StoredMessageData

getMessage():Message

setMessage(AccessToken, Message):void

setMessageData(AccessToken token,

 string description,

 string category,

 Message msg):void

 remove(AccessToken):void

Figure 291. LibraryManagement (Class Diagram)

3.1.21.10.1 LibraryAddedEventInfo (Class)

This struct defines data passed with a DMSLibraryAdded event.

3.1.21.10.2 LibraryEventType (Class)

This enum defines the types of events that can be pushed on a LibraryManagement event channel.

3.1.21.10.3 LibraryNameChangedEventInfo (Class)

This struct defines data passed with a LibraryNameChanged event.

3.1.21.10.4 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.21.10.5 MessageLibrary (Class)

This class represents a logical collection of messages which are stored in the database.

3.1.21.10.6 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.1.21.10.7 MessageLibraryList (Class)

A collection of MessageLibrary objects.

3.1.21.10.8 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message description which are used to allow the user to organize messages.

3.1.21.10.9 StoredMessageAddedEventInfo (Class)

This struct defines the data passed with a StoredMessageAdded event.

3.1.21.10.10 StoredMessageData (Class)

This structure defines the data stored in a StoredMessage.

3.1.21.10.11 StoredMessageList (Class)

A collection of StoredMessage objects.

3.1.21.10.12 StoredMessageRemovedEventInfo (Class)

This struct defines data passed with a StoredMessageRemoved event.

3.1.21.10.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.11 LogCommon (Class Diagram)

This class diagram contains all interfaces that are necessary to multiple log types within the CHART II system.

[image: image294.emf]LogEntryDataList

«type»

LogIterator

«interface»

LogQueryResults

LogFilter

«interface»

LogEntry

«interface»

LogEntryList

«type»

LogEntryData

«typedef»

1

*

1 *

1

0..1

1

1

sequence LogEntryData

getMoreEntries(long maxCount) : LogEntryList

destroy():void

long m_timeOfLastUse

LogEntryList initialEntries

boolean hasAdditionalEntries

LogIterator additionalEntriesIterator

factory createLogFilter() : LogFilter

Source m_source

boolean m_sourceIsUsed

string m_author

TimeStamp m_startDate

TimeStamp m_endDate

Identifier m_eventID

Identifier m_logEntryID

string m_opCenterName

string m_containsText

boolean isCaseSensitive

getID():Identifier

matchesFilter(LogFilter filter) : boolean

factory createLogEntry() : LogEntry

Identifier m_id

TimeStamp m_timestamp

Identifier m_eventID

string m_text

string m_author

string m_opCenterName

string m_hostname

Source m_source

sequence LogEntry

String entryText

Identifier trafficEventID

Source entrySource

Figure 292. LogCommon (Class Diagram)

3.1.21.11.1 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

3.1.21.11.2 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate.

3.1.21.11.3 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which contain the data needed to create one Log Entry. Normally each LogEntryDataList will contain only one LogEntryData object, but if the CommLog service is unavailable for a time, it is possible that multiple LogEntryData objects may be queued up for insertion into the database.

3.1.21.11.4 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting process in one clump. (Some requests return so much data that data is returned in clumps. The initial request returns a LogIterator from which additional LogEntryList sequences can be requested, in order to complete the entire query.

3.1.21.11.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

3.1.21.11.6 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

3.1.21.11.7 LogQueryResults (Class)

This structure contains the data that is the results of a log entry query, including the first batch of entries (if any).

3.1.21.12 PlanManagement (Class Diagram)

This class diagram contains the interfaces used in the creation and management of plans. A plan is a group of actions that are set-up in advance to be used in response to a traffic event. Given the unpredictable nature of traffic events, pre-defined plans are usually only useful for congestion, safety messages, and weather related messages.

[image: image295.emf]PlanItemChangedEventInfo

«typedef»

PlanEventType

«enumeration»

PlanItemData

PlanList

«typedef»

PlanItemList

«typedef»

PlanItem

«interface»

Plan

«interface»

PlanFactory

«interface»

PlanItemAddedEventInfo

«typedef»

PlanItemRemovedEventInfo

«typedef»

PlanAddedEventInfo

«typedef»

PlanNameChangeEventInfo

«typedef»

UniquelyIdentifiable

«interface»

1 * 1 *

1

1

1

*

1

*

PlanItem thePlanItem;

PlanItemData itemData;

string itemName;

Identifier planID;

Identifier planItemID;

PlanAdded

PlanRemoved

PlanItemAdded

PlanItemRemoved

PlanNameChanged

PlanItemChanged

isUsingObject(IdentifierList objectIDs):boolean

setName(AccessToken, string):void

setData(AccessToken, PlanItemData):void

getData():PlanItemData

remove(AccessToken):void

getPlanID():Identifier

isUsingObject(IdentifierList):boolean

setName(AccessToken,string):void

addItem(AccessToken,PlanItemData):PlanItem

removeItem(AccessToken,PlanItem):void

getItems():PlanItemList

remove(AccessToken):void

isUsingObject(IdentifierList objectIDs)

createPlan(AccessToken token,

 string name):Plan

getPlans():PlanList

PlanItem planItem

Identifier planID

Identifier planItemID

Identifier planID

Identifier planItemID

Plan thePlan

Identifier planID

Identifier planID

string newName

getID()

getName()

Figure 293. PlanManagement (Class Diagram)

3.1.21.12.1 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items.

3.1.21.12.2 PlanAddedEventInfo (Class)

The PlanAddedEventInfo class defines the data passed in the PlanAdded event.

3.1.21.12.3 PlanEventType (Class)

The PlanEventType class is an enumeration which describes the types of events that can be pushed for plans. When a plan item is added or modified it is up to the derived item type to push the appropriate type of event.

3.1.21.12.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the system.

3.1.21.12.5 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This CORBA interface is subclassed for specific actions that can be planned in the system.

3.1.21.12.6 PlanItemAddedEventInfo (Class)

The PlanItemAddededEventInfo class defines the data passed in the PlanItemAdded event.

3.1.21.12.7 PlanItemChangedEventInfo (Class)

The PlanItemChangedEventInfo class defines the data passed in the PlanItemChanged event.

3.1.21.12.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

3.1.21.12.9 PlanItemList (Class)

The PlanItemList class is simply a collection of PlanItem objects.

3.1.21.12.10 PlanItemRemovedEventInfo (Class)

The PlanItemRemovedEventInfo defines the data passed in the PlanItemRemoved event.

3.1.21.12.11 PlanList (Class)

The PlanList class is simply a collection of Plan objects.

3.1.21.12.12 PlanNameChangeEventInfo (Class)

The PlanNameChangeEventInfo class defines the data passed in the PlanNameChanged event.

3.1.21.12.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.13 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers, user login sessions, and organizations.

[image: image296.emf]ResponseParticipantEventInfo

«typedef»

SharedResource

«interface»

TransferrableSharedResource

«interface»

LogoutFailure

«exception»

LoginFailure

«exception»

ResourceControlConflict

«exception»

HasControlledResources

«exception»

Organization

«interface»

UnhandledControlledResourcesInfo

«typedef»

ResponseParticipant

«typedef»

ResponseParticipantType

«enumeration»

OpCenterInfo

«typedef»

SharedResourceList

«typedef»

LoginSessionList

«typedef»

ControllingOpCtrChangeEventInfo

«typedef»

ResourceEventType

«enumeration»

UniquelyIdentifiable

«interface»

OperationsCenter

«interface»

OperationsCenterFactory

SharedResourceManager

«interface»

UserLoginSession

«interface»

InvalidOperationsCenter

«exception»

1

*

1*

1 1

1 *

1

1

*

*

* *

Identifier opCtrID

ResponseParticipant participant

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

void setControllingOpCenter(AccessToken token,

 Identifier opCtrID,

 string opCtrName)

string reason string reason

string reason

string controllingOpCenterName

string reason

OpCenterInfo opCtrInfo

string m_name

ResponseParticipantType m_type

TYPE_UNSPECIFIED

TYPE_AGENCY

TYPE_RESOURCE

TYPE_SPECIAL_NEEDS

TYPE_CHART_UNIT

Identifier m_id

string m_name

Identifier resourceID

string opCtrName

Identifier opCtrID

UnhandledControlledResourcesEvent

ResponseParticipantAdded

ResponseParticipantRemoved

getID()

getName()

loginUser(UserLoginSession loginSession,

 UserName name,

 string password,

 string hostname):AccessToken

logoutUser(AccessToken token,

 UserLoginSession loginSession):void

changeUser(AccessToken token,

 UserLoginSession oldSession,

 UserLoginSession newSession,

 UserName userName,

 string password):AccessToken

getControlledResources():SharedResourceList

getLoginSessions():LoginSessionList

forceLogout(AccessToken token,

 UserLoginSession loginSession):void

isUserLoggedIn(UserName userName):boolean

getNumLoggedInUsers():long

transferSharedResources(AccessToken token,

 TransferableSharedResourceList resources,

 OperationsCenter targetOpCenter):void

verifyUserPassword(UserName userName,

 string password):boolean

addResponseParticipant(AccessToken token,

 ResponseParticipant participant) : void

removeResponseParticipant(AccessToken token,

 ResponseParticipant participant) : void

getAllSystemResponseParticipants() : ResponseParticipant[]

getEligibleResponseParticipants() : ResponseParticipant[]

addEligibleResponseParticipants(AccessToken token,

 ResponseParticipant participant) :void

removeEligibleResponseParticipants(AccessToken token,

 ResponseParticipant participant) :void

remove(AccessToken token):void

setConfiguration(AccessToken token,

OpCenterConfig config):void

getOperationCenterList():OpCenterList

createOperationsCenter(AccessToken token):

 OperationsCenter

getResources() : SharedResourceList

getControlledResources(Identifier opCtrID) : SharedResourceList

hasControlledResources(Identifier opCtrID) : boolean

getOpCenter():OperationsCenter

getUsername():UserName

ping():boolean

void forceLogout(AccessToken token)

string reason

Figure 294. ResourceManagement (Class Diagram)

3.1.21.13.1 ControllingOpCtrChangeEventInfo (Class)

The ControllingOpCtrChangeEventInfo class defines data to be passed on a ControllingOpCtrChange event.

3.1.21.13.2 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do something which requires that no resources be controlled, yet the Operations Center which the user is logged in to is still controlling one or more shared resources.

3.1.21.13.3 InvalidOperationsCenter (Class)

Exception which describes a failure caused when the operations center specified is not valid for the attempted operation.

3.1.21.13.4 LoginFailure (Class)

This class represents an exception which describes a login failure.

3.1.21.13.5 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects.

3.1.21.13.6 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

3.1.21.13.7 OpCenterInfo (Class)

This structure contains the information about an OperationsCenter.

3.1.21.13.8 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used to log users into the system. If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user. This token is then used to call privileged methods within the system. Shared resources in the system are either available or under the control of an OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control. This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

3.1.21.13.9 OperationsCenterFactory (Class)

This class is used to create new operations centers and maintain them in a collection.

3.1.21.13.10 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an organization, that is an administrative body which can control or own resources.

3.1.21.13.11 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the resource is under the control of a different operations center and the requesting user does not have the functional right to override the restriction.

3.1.21.13.12 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types.

3.1.21.13.13 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response.

3.1.21.13.14 ResponseParticipantEventInfo (Class)

3.1.21.13.15 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a response to an event. This could be an external organization, a mobile unit, a mobile device or special purpose vehicle, or a special needs vehicle equipped to handle unusual or hazardous situations.

3.1.21.13.16 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.21.13.17 SharedResourceList (Class)

A SharedResourceList is simply a collection of SharedResource objects.

3.1.21.13.18 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.21.13.19 TransferrableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is implemented by SharedResource objects whose control can be transferred from one operations center to another.

3.1.21.13.20 UnhandledControlledResourcesInfo (Class)

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that an OperationsCenter is controlling one or more controlled resources but has no users logged in.

3.1.21.13.21 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.13.22 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system. This object is served from the GUI and provides a means for the servers to call back into the GUI process.

3.1.21.14 TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

[image: image297.emf]1

1 *

RoadwayEvent

«interface»

Incident

«interface»

WeatherServiceEvent

«interface»

DisabledVehicleEvent

«interface»

WeatherSensorEvent

«interface»

SpecialEvent

«interface»

PlannedRoadwayClosure

«interface»

SafetyMessageEvent

«interface»

CongestionEvent

«interface»

ActionEvent

«interface»

TrafficEvent

«interface»

TrafficEventFactory

«interface»

LaneState

«enumeration»

ResponsePlanItemStatus

«typedef»

LaneConfigurationList

«typedef»

ResponsePlanItemList

«typedef»

ResponseParticipationList

«typedef»

LaneType

«enumeration»

TrafficEventList

«typedef»

ResponsePlanItemData

HARRPIData DMSRPIData

Lane

LaneConfiguration

ResponsePlanItem

«interface»

CommandStatus

«interface»

ResourceDeployment

«interface»

OrganizationParticipation

«interface»

ResponseParticipation

«interface»

1 1

1 *

1

*

1

1

1 *

1

*

1 *

1

*

1 1

1 1

1

*

1

isRecurring(AccessToken token)

setRecurring(AccessToke token,

 boolean isRecurring):void

m_recurring

getType():TrafficEventTypeValues

addLogEntry(AccessToken token,

 string text):void

addResponseParticipation(AccessToken token,

 ResponseParticipationData rpdata):void

addResponseItem(AccessToken token,

 ResponsePlanItemData rpid):void

associateEvent(AccessToken token,

 TrafficEvent eventToAssociate,

 boolean primary): void

removeEventAssociation(AccessToken token,

 TrafficEvent associatedEvent,

 Identifier associatedEventID):void

close(AccessToken token):void

isClosed(TimeStamp closureTme):boolean

overrideClosureTime(AccessToken token,

 TimeStamp closeTime);void

executeResponse(AccessToken token):void

getAssociatedEvents():Identifier[]

getHistory(LogFilter filter, long maxCount,

 LogEntry[] entries):LogQueryResults

isPrimary():boolean

setPrimary(AccessToken token):void

setSecondary(AccessToken token):void

getResponseParticipations():ResponseParticipation[]

getBasicEventData():BasicEventData

getResponsePlanItems():ResponsePlanItem[]

addRPIStatusLogEntry(AccessToken token,string text,

 Identifier deviceID, boolean beaconState,

 boolean isMessageSet):void

getName() : string

createTrafficEvent(AccessToken token,

 TrafficEventType type,

 BasicEventData eventData,

 LogEntry[] initialEntries):TrafficEvent

getTrafficEvents():TrafficEventList

getStandardLaneConfigurations():LaneConfigurationList

getEORSPermits():PermitList

LANE_OPEN

LANE_CLOSED

LANE_NOT_EXIST

string lastKnownState

boolean isActive

boolean hasBeenExecuted

boolean m_modified

ON_RAMP

OFF_RAMP

SHOULDER

TRAFFIC_LANE

COLLECTOR_DISTRIBUTOR

getTargetID():Identifier

isExecutable() : boolean

execute(AccessToken token,

 TrafficEvent trafficEvt,

 CommandStatus status):void

revokeExecution(AccessTiken token,

 TrafficEvent trafficEvt):void

isUsingObject(Identifier[] objectIDs):boolean

eventTransferred(AccessToken token,

 TrafficEvent newTrafficEvt):void

getVerboseDescription(): string

getTrafficEventType(): int

string m_description

-int m_trafficEventType

LaneState m_currentState

Direction m_directionOfTravel

TimeStamp m_timeStateChanged

long m_offsetFromLeft

LaneType m_type

string m_description

getLanes():Lane[]

string m_configurationName

string m_configurationDescription

Lane[] m_lanes

getTargetID():Identifier

execute(AccessToken token):void

setItemData(AccessToken token,

 ResponsePlanItemData data):void

getItemData(AccessToken token):ResponsePlanItemData

isActive():boolean

hasBeenExecuted():boolean

setActive(AccessToken token):void

setInactive(AccessToken token):void

getDescription():string

setDescription(AccessToken token,

 string description):void

eventTransferred(AccessToken token,

 TrafficEvent newTrafficEvt,

 Identifier opCenterID,

 string opCenterName):void

isUsingObject(Identifier[] objectIDs):boolean

remove(AccessToken token):void

getItemStatus():ResponsePlanItemStatus

setArrivedOnScene(AccessToken token,

 boolean hasArrived) : void

setDepartedFromScene(AccessToken token,

 boolean hasDeparted) : void

overrideArrivalTime(AccessToken token,

 TimeStamp arrivalTime) : void

overrideDepartureTime(AccessToken token,

 TimeStampdepartureTime) : void

setRespondedToEvent(AccessToken token,

 boolean hasResponded) : void

overrideRespondedTime(AccessToken token,

 TimeStamp respondedTime) : void

getParticipationData() : ResponseParticipationData

setNotified(AccessToken token,

 boolean hasBeenNotified) : void

overrideNotificationTime(AccessToken token ,

 TimeStamp notificationTime) : void

remove(AccessToken token) : void

getLaneConfiguration():LaneConfiguration

setLaneConfiguration(AccessToken token,

 LaneConfiguration laneConfig)

overrideLaneOpenCloseTime(AccessToken token,

 Lane changedLane):void

setVehicleData(AccessToken token,

 IncidentVehicleData vehicleData):void

setType(AccessToken token,

 IncidentType type):void

setRoadConditions(AccessToke token,

 RoadConditionsData roadConditions):void

overrideLaneOpenCloseTime(

 AccessToken token,

 long laneOffsetFromLeft,

 TimeStamp timeOpenedOrClosed):void

Figure 295. TrafficEventManagement (Class Diagram)

3.1.21.14.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not fit well into the other event categories. An example of this type of event would be debris in the roadway.

3.1.21.14.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.21.14.3 CongestionEvent (Class)

This class models roadway congestion which may be tagged as recurring or non-recurring through the use of an attribute.

3.1.21.14.4 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

3.1.21.14.5 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself.

3.1.21.14.6 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and when the message is being broadcast on the HAR.

3.1.21.14.7 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves one or more vehicles and roadway lane closures.

3.1.21.14.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.1.21.14.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.1.21.14.10 LaneConfigurationList (Class)

A collection of LaneConfiguration objects.

3.1.21.14.11 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

3.1.21.14.12 LaneType (Class)

This enumeration lists the types of lanes.

3.1.21.14.13 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

3.1.21.14.14 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will be expanded in future releases to include interfacing with the EORS system.

3.1.21.14.15 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

3.1.21.14.16 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in response to a particular traffic event.

3.1.21.14.17 ResponseParticipationList (Class)

A collection of ResponseParticipation objects.

3.1.21.14.18 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.1.21.14.19 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.1.21.14.20 ResponsePlanItemList (Class)

A collection of ResponsePlanItem objects.

3.1.21.14.21 ResponsePlanItemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

3.1.21.14.22 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the heirarchy provides a break off point for traffic event types that pertain to other modals.

3.1.21.14.23 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety message to a device.

3.1.21.14.24 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or professional sporting event.

3.1.21.14.25 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.21.14.26 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

3.1.21.14.27 TrafficEventList (Class)

A collection of TrafficEvent objects.

3.1.21.14.28 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the system's weather monitoring devices. Operators will need to manually enter the information in these events for this release. In future releases, these events will be automatically generated by the system.

3.1.21.14.29 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by an operator in response to receiving an alert from the national weather service.

3.1.21.15 TrafficEventManagement2 (Class Diagram)

This class diagram contains all classes relating to Traffic Events

[image: image298.emf]ResponseParticipationData

IncidentType

«type»

ResponseParticipationChangedInfo

«typedef»

ResponseParticipationRemovedInfo

«typedef»

ResponseParticipationAddedInfo

«typedef»

ResponsePlanItemsRemovedInfo

«typedef»

WeatherConditions

«typedef»

WeatherServiceEventData

RevokeExecutionFailure

«exception»

UnknownEventType

«exception»

CountyState

«enumeration»

RoadCondition

«enumeration»

IncidentTypeValues

«interface»

TrafficEventType

«type»

TrafficEventTypeValues

«interface»

ResponsePlanItemInfo

«typedef»

TrafficEventTypeChangedInfo

«typedef»

LaneConfigurationChangedInfo

«typedef»

TrafficEventAssociationRemovedInfo

«typedef»

TrafficEventAssociatedInfo

«typedef»

LogEntriesAdded

«typedef»

TrafficEventAddedInfo

«typedef»

TrafficEventEventType

«enumeration»

PlannedRoadwayClosureEventData

ResponseParticipant

«typedef»

ActionEventData

IncidentData

IncidentVehicleData

«typedef»

BasicEventData

DisabledVehicleData

ResourceDeploymentData

OrganizationParticipationData

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1 1

Identifier m_participationID

ResponseParticipant m_participant

boolean m_notified

TimeStamp m_timeNotified

Identifier trafficEventID

ResponseParticipationData participationData

Identifier trafficEventID

Identifier participationID

Identifier trafficEventID

ReponseParticipationData participationData

ResponseParticipation participation

Identifier trafficEventID

Identifier[] planItemIDs

boolean hurricane

boolean tornado

boolean blizzard

boolean severeWind

boolean rain

boolean reducedVisibility

boolean ozone

boolean highWater

boolean flood

boolean landslide

boolean other

string otherDescription

RoadCondition m_roadCondition

WeatherConditions m_weatherConditions

boolean m_evacuationRequired

boolean m_cleanupRequired

string reason

string debug

IdentifierList targetIDs

ROAD_CONDITION_UNSPECIFIED

DRY

WET

ICE_OR_SNOW

CHEMICAL_WET

OTHER_NO_ADDL_INFO

OTHER_ADDL_INFO

VEHICLE_FIRE

WEATHER

DEBRIS_IN_ROADWAY

PERSONAL_INJURY

PROPERTY_DAMAGE

FATALITY

DISABLED_IN_ROADWAY

ROADWORK

COLLISION

MAINTENANCE

SIGNAL_CALL

POLICE_ACTIVITY

OFF_ROAD_ACTIVITY

DECLARATION_OF_EMERGENCY

TYPE_PLANNED_ROADWAY_CLOSURE

TYPE_INCIDENT

TYPE_DISABLED_VEHICLE

TYPE_WEATHER_SENSOR_ALERT

TYPE_WEATHER_SERVICE_ALERT

TYPE_ACTION

TYPE_CONGESTION

TYPE_RECURRING_CONGESTION

TYPE_SAFETY

TYPE_SPECIAL_EVENT

Identifier trafficEventID

Identifier planItemID

string planItemName

ResponsePlanItem planItem

ResponsePlanItemData planItemData

Identifier eventID

TrafficEvent newTrafficEvent

BasicEventData newEventData

Identifier eventID

LaneConfiguration newConfiguration

Identifier trafficEventAID

Identifier trafficEventBID

Identifier primaryEventID

TrafficEvent primaryEvent

Identifier secondaryEventID

TrafficEvent secondaryEvent

Identifier trafficEventID

LogEntry[] logEntries

TrafficEvent theTrafficEvent

BasicEventData trafficEventData

LogEntryList logEntries

ActionEventAdded

CongestionEventAdded

DisabledVehicleEventAdded

HistoryLogEntriesAdded

HistoryLogEntriesUpdated

IncidentAdded

LaneConfigurationChanged

OrganizationParticipationAdded

OrganizationParticipationChanged

ParticipationRemoved

PlannedRoadwayClosureEventAdded

ResourceDeploymentAdded

ResourceDeploymentChanged

ResponsePlanItemAdded

ResponsePlanItemModified

ResponsePlanItemRemoved

ResponsePlanStatusChanged

SafetyEventAdded

SpecialEventAdded

TrafficEventAssociated

TrafficEventAssociationRemoved

TrafficEventClosed

TrafficEventDeleted

TrafficEventStateChanged

WeatherServiceEventAdded

string m_eorsPermitTrackingNumber

string m_name

ResponseParticipantType m_type

boolean m_signal

boolean m_debris

boolean m_utility

boolean m_other

string m_otherDescription

IncidentType m_incidentType

RoadCondition m_roadConditions

IncidentVehicleData m_vehicleData

boolean m_hazmat

long numCarsInvolved

long numCarsOverturned

long numPickupVanSuvsInvolved

long numPickupVanSuvsOverturned

long numSingleUnitTrucksInvolved

long numSingleUnitTrucksOverturned

long numSingleUnitTrucksLostLoad

long numTractorTrailersInvolved

long numTractorTrailersOverturned

long numTractorTrailersLostLoad

long numTractorTrailersJackKnifed

long numMotorcyclesInvolved

getID():Identifier

Identifier m_id

string m_name

string m_locationDesc

Direction m_direction

string m_source

string m_countyState

string m_description

boolean m_isSceneCleared

TimeStamp m_sceneClearedTime

boolean m_isDelayCleared

TimeStamp m_delayClearedTime

boolean m_isConfirmed

TimeStamp m_confirmedTime

boolean m_isFalseAlarm

boolean m_isClosed

TimeStamp m_closedTime

long m_maxQueueLength

OpCenterInfo m_controllingOpCenter

boolean m_primary

string m_tagStateOfIssue

string m_tagNumber

boolean m_tireChange

boolean m_hotShot

boolean m_water

boolean m_gas

boolean m_directions

boolean m_ownDisposition

boolean m_callForService

boolean m_goneOnArrival

boolean m_abandonedVehicle

boolean m_relayOperator

boolean m_other

string m_otherDescription

boolean m_arrived

TimeStamp m_timeArrived

boolean m_departed

TimeStamp m_timeDeparted

boolean m_responded

TimeStamp m_timeResponded

Figure 296. TrafficEventManagement2 (Class Diagram)

3.1.21.15.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.1.21.15.2 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will inherit all data shown in this class.

3.1.21.15.3 CountyState (Class)

This enumeration defines the various counties in Maryland and the states surrounding Maryland that will be used for defining the traffic event.

3.1.21.15.4 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.1.21.15.5 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

3.1.21.15.6 IncidentType (Class)

This typedef defines the type of the incident.

3.1.21.15.7 IncidentTypeValues (Class)

This interface lists all possible incident types.

3.1.21.15.8 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the exchange of data between GUI and server.

3.1.21.15.9 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic event is changed.

3.1.21.15.10 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event history log of a traffic event.

3.1.21.15.11 OrganizationParticipationData (Class)

This class represents the data required to describe an organization's participation in the response to a traffic event.

3.1.21.15.12 PlannedRoadwayClosureEventData (Class)

This class contains data specific to the PlannedRoadwayEvent type of traffic event.

3.1.21.15.13 ResourceDeploymentData (Class)

This class represents the data required to describe a resource's participation in the response to a traffic event.

3.1.21.15.14 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response.

3.1.21.15.15 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the response to a particular traffic event.

3.1.21.15.16 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response participation object changes state.

3.1.21.15.17 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

3.1.21.15.18 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

3.1.21.15.19 ResponsePlanItemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added or an existing response plan item is modified.

3.1.21.15.20 ResponsePlanItemsRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

3.1.21.15.21 RevokeExecutionFailure (Class)

This class defines a exception thrown when failed to revoke a response plan item's execution.

3.1.21.15.22 RoadCondition (Class)

This enumeration lists the possible roadway conditions at the scene of a traffic event.

3.1.21.15.23 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the system.

3.1.21.15.24 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

3.1.21.15.25 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic events is removed.

3.1.21.15.26 TrafficEventEventType (Class)

his enumeration defines the types of CORBA events that can be broadcast on a Traffic Event related CORBA Event channel.

3.1.21.15.27 TrafficEventType (Class)

This typedef defines the type of traffic event.

3.1.21.15.28 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The traffic event object that represented the traffic event previously is removed from the system and is replaced by the newTrafficEvent reference contained in this structure. If the consumer of this CORBA event has stored any references to the traffic event previously, those references should be replaced with this new reference.

3.1.21.15.29 TrafficEventTypeValues (Class)

This interface defines the types of traffic events that are supported by the system.

3.1.21.15.30 UnknownEventType (Class)

This class defines a exception thrown when the type of a traffic event type is not known and is not defined in TrafficEventTypeValues.

3.1.21.15.31 WeatherConditions (Class)

This structure contains all possible weather conditions. Each member should be set to true if that condition applies, false otherwise. The m_otherDescription member will only be considered valid if the m_other member is set to true.

3.1.21.15.32 WeatherServiceEventData (Class)

This class contains data specific to the WeatherServiceEvent type of traffic event.

3.1.21.16 TrafficEventManagement3 (Class Diagram)

This class diagram contains supporting classes relating to Traffic Events

[image: image299.emf]TrafficEventDataChangedList

«typedef»

TrafficEventDataChanged

«enumeration»

CountyState

«enumeration»

ResponsePlanStatusChangedInfo

«typedef»

TrafficEventStateChangedInfo

«typedef»

ResponsePlanItemStatusUpdateList

ResponsePlanItemStatusUpdate

«typedef»

1 1

1

1

1 *

1 *

TRAFFIC_EVENT_NAME

TRAFFIC_EVENT_LOCATION_DESC

TRAFFIC_EVENT_DIRECTION

TRAFFIC_EVENT_SOURCE

TRAFFIC_EVENT_COUNTY_STATE

TRAFFIC_EVENT_DESCRIPTION

TRAFFIC_EVENT_IS_SCENE_CLEARED

TRAFFIC_EVENT_SCENE_CLEARED_TIME

TRAFFIC_EVENT_IS_DELAY_CLEARED

TRAFFIC_EVENT_DELAY_CLEARED_TIME

TRAFFIC_EVENT_IS_CONFIRMED

TRAFFIC_EVENT_CONFIRMED_TIME

TRAFFIC_EVENT_IS_FALSE_ALARM

TRAFFIC_EVENT_IS_CLOSED

TRAFFIC_EVENT_CLOSED_TIME

TRAFFIC_EVENT_MAX_QUEUE_LENGTH

TRAFFIC_EVENT_CONTROLLING_OP_CENTER

TRAFFIC_EVENT_PRIMARY

INCIDENT_TYPE

INCIDENT_ROAD_CONDITION

INCIDENT_HAZMAT

INCIDENT_VEHICLE_DATA

DISABLED_VEHICLE_TAG_STATE_OF_ISSUE

DISABLED_VEHICLE_TAG_NUMBER

DISABLED_VEHICLE_TIRE_CHANGE

DISABLED_VEHICLE_HOT_SHOT

DISABLED_VEHICLE_WATER

DISABLED_VEHICLE_GAS

DISABLED_VEHICLE_DIRECTIONS

DISABLED_VEHICLE_OWN_DISPOSITION

DISABLED_VEHICLE_CALL_FOR_SERVICE

DISABLED_VEHICLE_GONE_ON_ARRIVAL

DISABLED_VEHICLE_ABANDONED_VEHICLE

DISABLED_VEHICLE_RELAY_OPERATOR

DISABLED_VEHICLE_OTHER

DISABLED_VEHICLE_OTHER_DESCRIPTION

ACTION_EVENT_SIGNAL

ACTION_EVENT_DEBRIS

ACTION_EVENT_UTILITY

ACTION_EVENT_OTHER

ACTION_EVENT_OTHER_DESCRIPTION

WEATHER_SERVICE_ROAD_CONDITION

WEATHER_SERVICE_WEATHER_CONDITIONS

WEATHER_SERVICE_EVACUATION_REQUIRED

WEATHER_SERVICE_STORM_CLEANUP_REQUIRED

CONGESTION_EVENT_IS_RECURRING

PLANNED_ROADWAY_CLOSURE_EORS_TRACKING_NUMBER

COUNTY_STATE_UNSPECIFIED

ALLEGANY_COUNTY

ANNEARUNDEL_COUNTY

BALTIMORE_CITY

BALTIMORE_COUNTY

CALVERT_COUNTY

CAROLINE_COUNTY

CARROL_COUNTY

CECIL_COUNTY

CHARLES_COUNTY

DORCHESTER_COUNTY

FREDERICK_COUNTY

GARRETT_COUNTY

HARFORD_COUNTY

HOWARD_COUNTY

KENT_COUNTY

MONTGOMERY_COUNTY

PRINCEGEORGES_COUNTY

QUEENANNES_COUNTY

SAINTMARYS_COUNTY

SOMERSET_COUNTY

TALBOT_COUNTY

WASHINGTON_COUNTY

WICOMICO_COUNTY

WORCESTER_COUNTY

WASHINGTON_DC

WEST_VIRGINIA

VIRGINIA

DELAWARE

PENNSYLVANIA

Identifier trafficEventID

ResponsePlanItemStatusUpdateList itemStatusList

BasicEventData data

TrafficEventDataChangedList dataChangedList

Identifier planItemID

ResponsePlanItemStatus planItemStatus

Figure 297. TrafficEventManagement3 (Class Diagram)

3.1.21.16.1 CountyState (Class)

This enumeration defines the various counties in Maryland and the states surrounding Maryland that will be used for defining the traffic event.

3.1.21.16.2 ResponsePlanItemStatusUpdate (Class)

This structure contains data that describes a status chnage to a particular response plan item.

3.1.21.16.3 ResponsePlanItemStatusUpdateList (Class)

This is a collection of ResponsePlanItemStatus objects.

3.1.21.16.4 ResponsePlanStatusChangedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items in the response plan of a traffic event change state.

3.1.21.16.5 TrafficEventDataChanged (Class)

This enumeration lists all the possible traffic event data fields. These will be used to indicate which data has changed in basic event data and the derived events data when the event state changes are broadcast via CORBA event service.

3.1.21.16.6 TrafficEventDataChangedList (Class)

A collection of TrafficEventDataChanged items.

3.1.21.16.7 TrafficEventStateChangedInfo (Class)

This structure contains the data that is broadcast when the traffic event state changes.

3.1.21.17 TSSManagement (Class Diagram)

This class diagram contains the interfaces, structs, and typedefs that are to be defined in IDL and provide the external interface to the TSSManagement package of the CHART II system.

[image: image300.emf]Mode

Changed

OpStatus

Changed

discriminator

equals

ObjectAdded

discriminator

equals

ConfigChanged

discriminator

equals

ObjectRemoved

discriminator

equals

CurrentStatus

1 1

acquires port

using

1

1

discriminator

equals

ObjectRemoved

RTMSFactory

«interface»

TransportationSensorSystemFactory

«interface»

TransportationSensorSystem

«interface»

CommEnabled

«interface»

UniquelyIdentifiable

«interface»

PortManagerCommsData

«typedef»

PortLocationData

«typedef»

DirectionValues

«interface»

Direction

«typedef»

RTMS

«interface»

Identifier

TSSStatus

«typedef»

TSSEventType

«enumeration»

TSSEvent

«typedef»

TSSConfiguration

«typedef»

GeoLocatable

«interface»

DataPort

«interface»

PortManager

«interface»

OperationalStatus

«enumeration»

CommunicationMode

«enumeration»

TrafficParameters

«typedef»

EVENT_CHANNEL_TSS_DATA

«type»

EVENT_CHANNEL_TSS_STATUS

«type»

ModeChangedEventInfo

«typedef»

OpStatusChangedEventInfo

«typedef»

ZoneGroupTrafficParms

«typedef»

ZoneGroup

«typedef»

TSSListEntry

«typedef»

ObjectAddedEventInfo

«typedef»

ZoneGroupTrafficParmsList

«typedef»

1

*

discriminator

equals

CurrentStatus

1

1

* 1 1 1

1

*

1 1

1 1

1 1

1

1

1

*

1

*

* 1

1

1

pushes

updates

within

1 1 1 *

1

1

Mode

Changed

1

1

OpStatus

Changed

1

*

returns TSS objects in

list using

1

1

discriminator

equals

ObjectAdded

1

*

1

*

1

1

discriminator

equals

ConfigChanged

1

1

communicates to

field device with

byte[] m_id

CommunicationMode m_mode

byte[] m_id

OperationalStatus m_opStatus

int m_zoneGroupNum

TrafficParameters m_trafficParms

int m_zoneGroupNum

string m_description

Direction m_direction

int[] m_zoneNumbers

int m_defaultSpeed

TransportationSensorSystem m_tssRef

byte[] m_tssID

TransportationSensorSystem m_tss

TSSConfiguration m_config

TSSStatus m_status

createRTMS(byte[] token, TSSConfiguration):RTMS

getList():TSSListEntry[]

remove(byte[] token, byte[] id):void

getStatus():TSSStatus

getConfiguration(byte[] token):TSSConfiguration

setConfiguration(byte[] token, TSSConfiguration):void

remove(byte[] token);

byte[] m_id;

ZoneGroupTrafficParms[] m_zoneGrpTrafficParms

CommunicationMode m_mode;

OperationalStatus m_opStatus;

long m_trafficParameterTimestamp;

ObjectAdded

ObjectRemoved

CurrentStatus

ConfigChanged

ModeChanged

OpStatusChanged

discriminator():TSSEventType

configInfo():TSSConfiguration

statusInfo():TSSStatus

opStatusInfo():OpStatusChangedEventInfo

modeChangeInfo():ModeChangedEventInfo

objAddedInfo():ObjectAddedEventInfo

id():byte[]

byte[] m_id

String m_name

String m_location

Identifier m_ownerOrg

int m_dropAddress

ZoneGroup[] m_zoneGroups

int m_pollIntervalSecs

CommPortConfig m_commPortCfg

PortLocationData m_portLocData

boolean m_debugComms

int m_speedData;

int m_volumeData;

int m_percentOccupancy;

string

string

Figure 298. TSSManagement (Class Diagram)

3.1.21.17.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling is halted. When put online, a device is again available for use through the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline except that maintenance commands to the device are allowed to help in troubleshooting.

3.1.21.17.2 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that the device is available only for maintenance / repair activities and testing.

3.1.21.17.3 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.21.17.4 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in DirectionValues.

3.1.21.17.5 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

3.1.21.17.6 EVENT_CHANNEL_TSS_DATA (Class)

This is a static string that contains the name of the event channel used to push events that contain Transportation Sensor System traffic parameter data. The following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_DATA channels:

CurrentStatus

3.1.21.17.7 EVENT_CHANNEL_TSS_STATUS (Class)

This is a static string that contains the name of the event channel used to push events relating to the change in a Transportation Sensor System status and/or configuration. The following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_STATUS channels:

ObjectAdded

ObjectRemoved

ConfigChanged

ModeChanged

OpStatusChanged

3.1.21.17.8 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

3.1.21.17.9 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.1.21.17.10 ModeChangedEventInfo (Class)

This struct contains information pushed with a ModeChanged event.

m_id - The ID of the TSS whose communication mode has changed.

m_mode - The new communication mode for the TSS.

3.1.21.17.11 ObjectAddedEventInfo (Class)

This structure contains information passed in the ObjectAdded event pushed on a TSS status event channel. It contains the object reference that has been added along with its configuration values and current status values.

3.1.21.17.12 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode), COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

3.1.21.17.13 OpStatusChangedEventInfo (Class)

This struct contains data passed with an OpStatusChanged event.

m_id - The ID of the TSS whose operational status has changed.

m_opStatus - The new operational status for the device.

3.1.21.17.14 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

3.1.21.17.15 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.21.17.16 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to access a device from the given port manager. This class exists to allow for the phone number used to access a device to differ based on the port manager to take into account the physical location of the port manager within the telephone network. For example, when dialing a device from one location the call may be long distance but when dialing from another location the call may be local.

3.1.21.17.17 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc. capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a roadway at a single location. This interface serves to identify TransportationSensorSystem objects as being of the type RTMS. It also provides a place holder for future operations that may not apply to TSS objects in general and are instead RTMS specific.

3.1.21.17.18 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

3.1.21.17.19 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535 is used to indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent. (thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a missing or invalid value.

3.1.21.17.20 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of technology used for detection within the transportation industry. Examples of TSS devices range from the advanced devices, such as RTMS, to basic devices, such as single loop detectors.

This software interface is implemented by objects that provide access to the traffic parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are capable of providing detection for one or more detection zones. A single loop detector would have one detection zone, while an RTMS would have 8 detection zones.

3.1.21.17.21 TransportationSensorSystemFactory (Class)

This interface is implemented by objects that are used to create and serve TransportationSensorSystem (TSS) Objects. All factories of TSS objects can return the list of TSS objects which they have created and serve. Derived interfaces are used to provide factories to create specific make, models, and types of TransportationSensorSystem objects.

3.1.21.17.22 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this TSS. When enabled, command and response packets exchanged with the device are logged to a debugging log file.

3.1.21.17.23 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo object.

3.1.21.17.24 TSSEventType (Class)

This enumeration defines the types of events that may be pushed on an event channel by a Transportation Sensor Status object. The values in this enumeration are used as the discriminator in the TSSEvent union.

ObjectAdded - a TransportationSensorSystem has been added to the system.

ObjectRemoved - a TransportationSensorSystem has been removed from the system.

CurrentStatus - The event contains the current status of one or more Transportation Sensor System objects.

ConfigChanged - One or more configuration values for the Transportation Sensor System have been changed.

ModeChanged - The communications mode of the TransportationSensorSystem has changed.

OpStatusChanged - The operational status of the TransportationSensorSystem has changed.

3.1.21.17.25 TSSListEntry (Class)

This struct is used to pass a TransporationSensorSystem object together with its ID. This struct is provided for convenience because when discovering an object, it is usually required to make a call to the object's getID() method.

3.1.21.17.26 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data was collected from the device.

3.1.21.17.27 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.21.17.28 ZoneGroup (Class)

This class is used to group one or more detection zones of a Transportation Sensor System into a logical grouping. Traffic parameters for all detection zones included in the group are averaged to provide a single set of traffic parameters for the group.

3.1.21.17.29 ZoneGroupTrafficParms (Class)

This struct contains traffic parameters for a ZoneGroup.

m_zoneGroupNumber - The number of the zone group for which the traffic parameters apply.

m_trafficParms - The traffic parameter values for the zone group.

3.1.21.17.30 ZoneGroupTrafficParmsList (Class)

A collection of ZoneGroupTrafficParms

3.1.21.18 UserManagement (Class Diagram)

This class diagram contains the interfaces necessary to manage and utilize user profiles.

[image: image301.emf]IncorrectPassword

«exception»

UnknownUser

«exception»

InvalidUserName

«exception»

RoleName

«type»

1

*

1 1

1

*

1

*

1

*

UserManager

«interface»

ProfilePropertyList

«typedef»

FunctionalRightList

«typedef»

UserList

«typedef»

RoleList

«typedef»

ProfileProperty

«typedef»

FunctionalRight

«typedef»

Role

«typedef»

UserName

«type»

InvalidFunctionalRight

«exception»

RoleInUse

«exception»

InvalidRole

«exception»

DuplicateRole

«exception»

InvalidPassword

«exception»

UserLoggedIn

«exception»

createUser(AccessToken,UserName,Password):void

deleteUser(AccessToken,UserName):void

getUsers(AccessToken):UserList

getRoles(AccessToken):RoleList

getUserRoles(AccessToken,UserName):RoleList

getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList

setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void

createRole(AccessToken, Role):void

deleteRole(AccessToken,RoleName):void

changeUserPassword(AccessToken, UserName,Password,Password):void

setUserRoles(AccessToken, UserName, RoleList):void

grantRole(AccessToken, UserName,RoleName):void

revokeRole(AccessToken,UserName,RoleName):void

setUserPassword(AccessToken, UserName,Password):void

ping():void

setUserProfileProperties(AccessToken, ProfilePorpertyList):void

deleteUserProfileProperties(AccessToken, ProfilePropertyKeyList):void

setSystemProfileProperties(AccesssToken, ProfilePropertyList):void

deleteSystemProfileProperties(AccessToken, ProfilePropertyKeyList):void

getSystemProfileProperties(AccessToken):ProfilePropertyList

getUserProfileProperties(AccessToken):ProfilePropertyList

string key

string value

long id

Identifier orgFilter

string description

RoleName name

FunctionalRight right

string reason

Password password

string reason

UserName name

string reason

Figure 299. UserManagement (Class Diagram)

3.1.21.18.1 DuplicateRole (Class)

This class represents an exception thrown when an attempt is made to define a role which already exists.

3.1.21.18.2 FunctionalRight (Class)

A functional right epresents a particular user capability. A functional right grants a particular capability to perform system functions. Each functional right may be limited by attaching the identifier of a particular organization to which this right is constrained. This capability allows an administrator to grant a particular Role the ability to modify only shared resources owned by the identified organization. The orgFilter identifier CHART2 will allow access to any organizations shared resources.

3.1.21.18.3 FunctionalRightList (Class)

A list of functional rights.

3.1.21.18.4 IncorrectPassword (Class)

This class represents an exception thrown when the password specified for a user does not match that user's password in the database.

3.1.21.18.5 InvalidFunctionalRight (Class)

This class represents an exception thrown when an attempt is made to add an invalid functional right to a role.

3.1.21.18.6 InvalidPassword (Class)

This class represents an exception thrown when the password specified is invalid.

3.1.21.18.7 InvalidRole (Class)

This class represents the exception thrown when the specified role name does not exist in the database.

3.1.21.18.8 InvalidUserName (Class)

This class represents an exception thrown when the username specified is not valid.

3.1.21.18.9 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the system database.

3.1.21.18.10 ProfilePropertyList (Class)

A list of profile properties.

3.1.21.18.11 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting the user all functional rights contained within the role.

3.1.21.18.12 RoleInUse (Class)

This class represents an exception thrown when an attempt is made to delete a role which has users assigned to it.

3.1.21.18.13 RoleList (Class)

This structure contains a list of roles.

3.1.21.18.14 RoleName (Class)

Name assigned to a role. The role name must be unique and must be no longer than 32 bytes.

3.1.21.18.15 UnknownUser (Class)

This class represents an exception thrown when a user name is passed that is not in the user database.

3.1.21.18.16 UserList (Class)

A list of user names.

3.1.21.18.17 UserLoggedIn (Class)

This class represents an exception thrown when an attempt is made to delete a user who is currently logged in.

3.1.21.18.18 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users, roles, and functional rights. The UserManager is largely an interface to the User Management database tables.

3.1.21.18.19 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

TrafficEventModule

3.1.22 Classes

3.1.22.1 TrafficEventHierarchy (Class Diagram)

This diagram depicts the relationships between Traffic event related interfaces and their implementing classes. It does not show all possible traffic event types. Instead it shows a few of the many possible types for illustrative purposes. The main point of the diagram is to show that each TrafficEvent implementation object implements the corresponding CORBA interface and derives from the implementation object that implements its corresponding interface's parent interface.

[image: image302.emf]RoadwayEventImpl

CongestionEventImpl

Lane

LaneConfiguration

IncidentImpl

TrafficEventImpl

IncidentVehicleData

«typedef»

RoadConditionsData

«enumeration»

WeatherServiceEventImpl

WeatherSensorEventImpl

DisabledVehicleImpl

PlannedRoadwayClosureEventImpl

TrafficEventGroup

ActionEventData

ActionEventImpl

DisabledVehicleData

SpecialEventImpl

SafetyMessageEventImpl

1 *

1

0..1

1 1

1

1

1 1

1 1

1

1

setLaneConfigurationInMemory(LaneConfiguration)

CongestionEventImpl()

m_recurring

LaneState m_currentState

Direction m_directionOfTravel

TimeStamp m_timeStateChanged

long m_offsetFromLeft

LaneType m_type

string m_description

getLanes():Lane[]

string m_configurationName

string m_configurationDescription

Lane[] m_lanes

IncidentImpl()

m_incidentType

TrafficEventImpl(TrafficEventGroup, TrafficEventDB)

getEventGroup():TrafficEventGroup

initializeFromImpl(TrafficEventImpl)

getType():TrafficEventTypeValues

getDB():TrafficEventDB

m_type

long numCarsInvolved

long numCarsOverturned

long numPickupVanSuvsInvolved

long numPickupVanSuvsOverturned

long numSingleUnitTrucksInvolved

long numSingleUnitTrucksOverturned

long numSingleUnitTrucksLostLoad

long numTractorTrailersInvolved

long numTractorTrailersOverturned

long numTractorTrailersLostLoad

long numTractorTrailersJackKnifed

long numMotorcyclesInvolved

boolean wet

boolean rain

boolean fog

boolean iceOrSnow

WeatherServiceEventImpl()

WeatherSensorEventImpl()

DisabledVehicleImpl()

PlannedRoadwayClosureEventImpl()

TrafficEventGroup(TrafficEventModule, DatabaseLogger)

getCurrentEvent()

addLogEntry()

addResponsePlanItem(ResponsePlanItemData)

removeResponsePlanItem(ResponsePlanItemImpl)

executeResponse(items)

getAssociatedEvents()

getBasicEventData()

addResponseParticipation(type, name)

removeResponseParticipation()

getResponseParticipations()

close()

isClosed()

getClosureTime()

associateEvent(token, trafficEvent, isPrimary)

changeEventType()

takeOffline()

getHistory(maxCount)

getHistory(filter, maxCount)

getCurrentTrafficEvent():TrafficEventImpl

getModule():TrafficEventModule

getParticipationObjects():ResourceParticipation[]

getResponsePlanItems():ResponsePlanItem[]

initialize(ServiceApplication, DatabaseLogger, TrafficEventDB, logEntries)

createTrafficEvent(typeCode)

isPrimary():boolean

setPrimary(boolean isPrimary)

createTrafficEventImpl(typeCode):TrafficEventImpl

getTrafficEventImpl(typeCode):TrafficEventImpl

monitorResponses()

responsePlanItemChanged(itemID)

getControllingOpCenter():identifier

setControllingOpCenter(opCenterID, opCenterName)

-sendResponseStatusUpdate()

-associationRemoved()

m_locationDesc

m_source

m_county

m_description

m_sceneCleared

m_sceneClearedTime

m_delayCleared

m_delayClearedTime

m_isFalseAlarm

m_falseAlarmTime

m_isConfirmed

m_isClosed

m_confirmedTime

m_openedTime

m_closedTime

m_controllingOpCenterID

m_controllingOpCenterName

m_maxQueueLength

TrafficEventModule m_module

boolean m_signal

boolean m_debris

boolean m_utility

boolean m_other

string m_otherDescription

ActionEventImpl()

string m_tagStateOfIssue

string m_tagNumber

boolean m_tireChange

boolean m_hotShot

boolean m_water

boolean m_gas

boolean m_directions

boolean m_ownDisposition

boolean m_callForService

boolean m_goneOnArrival

boolean m_abandonedVehicle

boolean m_relayOperator

boolean m_other

string m_otherDescription

SpecialEventImpl()

SafetyMessageEventImpl()

Figure 300. TrafficEventHierarchy (Class Diagram)

3.1.22.1.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.1.22.1.2 ActionEventImpl (Class)

This class provides an implementation of the ActionEvent interface. Each ActionEventImpl contains a reference to a ActionEventData describing the event.

3.1.22.1.3 CongestionEventImpl (Class)

This class provides an implementation of the CongestionEvent interface. This contains the state variable to indicate if the event is a recurring event.

3.1.22.1.4 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.1.22.1.5 DisabledVehicleImpl (Class)

This class provides an implementation of the DisabledVehicleEvent interface. Each DisableVehicleEventImpl contains a reference to DisabledVehicleData that describes the disabled vehicle details at the scene.

3.1.22.1.6 IncidentImpl (Class)

This class provides an implementation of the Incident interface. It contains state variables and processing that are unique to incident type traffic events.

3.1.22.1.7 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the exchange of data between GUI and server.

3.1.22.1.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.1.22.1.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.1.22.1.10 PlannedRoadwayClosureEventImpl (Class)

This class provides an implementation of the PlannedRoadwayClosureEvent interface.

3.1.22.1.11 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a traffic event.

3.1.22.1.12 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at the scene of the event.

3.1.22.1.13 SafetyMessageEventImpl (Class)

This class provides an implementation of the SafetyMessageEvent interface.

3.1.22.1.14 SpecialEventImpl (Class)

This class provides an implementation of the SpecialEvent interface.

3.1.22.1.15 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working. A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident. The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

3.1.22.1.16 TrafficEventImpl (Class)

This class provides an implementation of the TrafficEvent interface. It contains state variables and processing that common to all traffic events.

3.1.22.1.17 WeatherSensorEventImpl (Class)

This class provides an implementation of the WeatherSensorEvent interface.

3.1.22.1.18 WeatherServiceEventImpl (Class)

This class provides an implementation of the WeatherServiceEvent interface.

3.1.22.2 TrafficEventModuleClasses (Class Diagram)

This diagram shows traffic event related classes and interfaces.

[image: image303.emf]TrafficEventModule

ServiceApplicationModule

«interface»

LaneConfiguration

LogEntryData

«typedef»

CommLog

«interface»

ResponsePlanItem

«interface»

ResponsePlanItemData

ResponsePlanItemImpl

ResponseParticipation

«interface»

OrganizationParticipation

«interface»

ResourceDeployment

«interface»

DatabaseLogger

TrafficEventGroup

ServiceApplication

«interface»

PushEventSupplier

TrafficEventModuleProperties

SharedResourceManager

«interface»

AudioClipOwner

«interface»

ResourceDeploymentImpl

OrganizationParticipationImpl

RoadwayEvent

«interface»

TrafficEvent

«interface»

RoadwayEventImpl

IncidentImpl

java.lang.Thread

ResourceMonitorThread

ResponseMonitorThread

TrafficEventDB

TrafficEventFactory

«interface»

TrafficEventFactoryImpl

Incident

«interface»

1 1

1

1

1 1

stores

event

history in

1 *

1

*

1

*

1

1

1

1

1

1

1 *

1

1

1

1

1 1

1 1

1

1

1

0..1

1

1

1 *

1 *

1 *

DatabaseLogger(tableName)

addEntry(logEntry) : void

checlExpiredEntries() : void

getEntries(filter, maxCount) : LogIterator

shutdown() : void

TrafficEventGroup(TrafficEventModule, DatabaseLogger)

getCurrentEvent()

addLogEntry()

addResponsePlanItem(ResponsePlanItemData)

removeResponsePlanItem(ResponsePlanItemImpl)

executeResponse(items)

getAssociatedEvents()

getBasicEventData()

addResponseParticipation(type, name)

removeResponseParticipation()

getResponseParticipations()

close()

isClosed()

getClosureTime()

associateEvent(token, trafficEvent, isPrimary)

changeEventType()

takeOffline()

getHistory(maxCount)

getHistory(filter, maxCount)

getCurrentTrafficEvent():TrafficEventImpl

getModule():TrafficEventModule

getParticipationObjects():ResourceParticipation[]

getResponsePlanItems():ResponsePlanItem[]

initialize(ServiceApplication, DatabaseLogger, TrafficEventDB, logEntries)

createTrafficEvent(typeCode)

isPrimary():boolean

setPrimary(boolean isPrimary)

createTrafficEventImpl(typeCode):TrafficEventImpl

getTrafficEventImpl(typeCode):TrafficEventImpl

monitorResponses()

responsePlanItemChanged(itemID)

getControllingOpCenter():identifier

setControllingOpCenter(opCenterID, opCenterName)

-sendResponseStatusUpdate()

-associationRemoved()

m_locationDesc

m_source

m_county

m_description

m_sceneCleared

m_sceneClearedTime

m_delayCleared

m_delayClearedTime

m_isFalseAlarm

m_falseAlarmTime

m_isConfirmed

m_isClosed

m_confirmedTime

m_openedTime

m_closedTime

m_controllingOpCenterID

m_controllingOpCenterName

m_maxQueueLength

TrafficEventModule m_module

getOfflineThresholdHours():int

getSharedResourceMonitorIntevalSeconds():int

getTrafficEventResponseMonitorIntervalSeconds():int

ResourceDeploymentImpl(TrafficEventGroup,

 ResourceDeploymentData)

m_resourceName

m_resourceType

m_notified

m_timeNotified

m_arrived

m_timeArrived

m_departed

m_timeDeparted

OrganizationParticipationImpl(TrafficEventGroup,

 OrganizationParticipationData)

m_organizationName

m_notified

m_timeNotified

m_responded

m_timeResponded

IncidentImpl()

m_incidentType

ResourceMonitorThread(factoryImpl)

shutdown()

ResponseMonitorThread(factoryImpl)

shutdown()

TrafficEventDB(DBConnectionManager)

getTrafficEvents():TrafficEventGroup[]

addResponsePlanItem(trafficEventID, ResponsePlanItemImpl)

updateResponsePlanItem(trafficEventID, ResponsePlanItemImpl)

addEventAssociation(trafficEventID, associatedEventID)

getAssociatedEvents(trafficEventID):Identifier[]

removeEventAssociation(trafficEventID, assoicatedEventID)

updateEventState(BasicEventData)

addTrafficEventToGroup(trafficEventID, trafficEventImpl)

markItemForRemoval(trafficEventID, planItemID)

setItemActive(trafficEventID, planItemID, isActive)

removeResponsePlanItem(trafficEventID, planItemID)

updateResponsePlanItemState(planItemID, hasExecuted, isActive)

setLaneConfiguration(trafficEventID, LaneConfiguration)

recordLaneStateChange(trafficEventID, laneOffset, newState)

overrideLaneStateChangeTime(trafficEventID, laneOffset, userTime)

setEventPrimary(trafficEventID, isPrimary)

addOrgParticipant(trafficEventID, orgParticipationData)

removeOrgParticipant(trafficEventID, participantID)

addResourceDeployment(trafficEventID, resourceDeploymentData)

removeResourceDeployment(trafficEventID, deploymentID)

takeEventOffline(trafficEventID);

getStandardLaneConfigurations():LaneConfiguration[]

DBConnectionManager m_db

getName() : string

createTrafficEvent(AccessToken token,

 TrafficEventType type,

 BasicEventData eventData,

 LogEntry[] initialEntries):

 TrafficEventCreationResult

getTrafficEvents():TrafficEventList

getStandardLaneConfigurations():LaneConfigurationList

getEORSPermits():PermitList

trafficEventFactoryImpl(TrafficEventModule,

offlineThresholdHours)

shutdown()

monitorResources()

takeEventsOffline()

monitorResponses()

-getControllingOpCenters():Identifier[]

-getOpCenterRef(opCenterID):OperationsCenter

TrafficEventModule m_module;

getServiceApp():ServiceApplication

getEventSupplierl():PushEventSupplier

getDB():TrafficEventDB

getProperties():TrafficEventModuleProperties

getPOA():POA

getORB():ORB

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

addCommLogEntry(token, text, eventID)

-addCommLogs(CommLog[])

-storeLogData(LogData)

-getLogData():LogData

getLanes():Lane[]

string m_configurationName

string m_configurationDescription

Lane[] m_lanes

String entryText

Identifier trafficEventID

Source entrySource

ResponsePlanItemImpl(TrafficEventGroup, ResponsePlanItemData)

getLastKnownState():String

-setExecuted(boolean)

-cleanup():void

m_isActive

m_hasExecuted

m_lastKnownState

m_removed

getParticipationData() : ResponseParticipationData

setNotified(AccessToken token,

 boolean hasBeenNotified) : void

overrideNotificationTime(AccessToken token ,

 TimeStamp notificationTime) : void

remove(AccessToken token) : void

Figure 301. TrafficEventModuleClasses (Class Diagram)

3.1.22.2.1 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be deleted.

3.1.22.2.2 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or specific log entries for a specific Traffic Event. This class is the primary interface for the CommLog service. It is used to persist log entries in the CHART II system and retrieve them for review. Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events.

3.1.22.2.3 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.1.22.2.4 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves one or more vehicles and roadway lane closures.

3.1.22.2.5 IncidentImpl (Class)

This class provides an implementation of the Incident interface. It contains state variables and processing that are unique to incident type traffic events.

3.1.22.2.6 java.lang.Thread (Class)

This class represents a java thread of execution.

3.1.22.2.7 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.1.22.2.8 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate.

3.1.22.2.9 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

3.1.22.2.10 OrganizationParticipationImpl (Class)

This class provides an implementation of the OrganizationParticipation interface. Each instance represents a particular organizations participation activities in response to a particular traffic event.

3.1.22.2.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.22.2.12 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

3.1.22.2.13 ResourceDeploymentImpl (Class)

This class provides an implementation of the ResourceDeployment interface. Each instance represents a resource that has been deployed to the scene of a traffic event. This class contains the state data that describes the resource's involvement in the traffic event.

3.1.22.2.14 ResourceMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it to monitor its shared resources.

3.1.22.2.15 ResponseMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it to notify each traffic event to monitor its response plan items for status changes.

3.1.22.2.16 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in response to a particular traffic event.

3.1.22.2.17 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.1.22.2.18 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.1.22.2.19 ResponsePlanItemImpl (Class)

This class provides an implementation of the ResponsePlanItem interface. Each instance represents one particular part of a response plan that can be in an executed, active or inactive state. This class also provides an implementation of the CommandStatus interface. This implies that devices that are activated on behalf of this traffic event can hold a copy of this object and call its update() method to provide a running status of the plan item as it changes.

3.1.22.2.20 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the heirarchy provides a break off point for traffic event types that pertain to other modals.

3.1.22.2.21 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at the scene of the event.

3.1.22.2.22 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.22.2.23 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.22.2.24 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

3.1.22.2.25 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.22.2.26 TrafficEventDB (Class)

This class provides an interface for the traffic event module to utilize the database. The interface provides methods needed to store and retrieve TrafficEvent related information.

3.1.22.2.27 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

3.1.22.2.28 TrafficEventFactoryImpl (Class)

This class is capable of creating a new TrafficEvent object in the system. Additionally, it acts as a manager of existing traffic event objects by performing calls on all traffic event objects such as shared resource or response plan monitoring.

3.1.22.2.29 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working. A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident. The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

3.1.22.2.30 TrafficEventModule (Class)

This class provides the resources and support functionality necessary to serve traffic event related objects in a service application. It implements the ServiceApplicationModule interface which allows it to be served from any ServiceApplication.

3.1.22.2.31 TrafficEventModuleProperties (Class)

This class provides operations for getting values in the service's java properties file.

Sequence Diagrams

3.1.22.3 TrafficEventModule:AddCommLogEntry (Sequence Diagram)

When a traffic event is opened, closed, or changes types it needs to add an entry to the communications log. This diagram depicts the fault tolerance built into this operation. When the TrafficEventModule is called to add an entry to the communications log, it will check if it has any cached entries which need to be added. These cached entries would be the result of prior calls which were not successful. If there are cached entries, the module will attempt to add them to the last communications log that was successfully used. If this is the first attempted use of a communications log or the attempt to use the last communications log fails, the module will search the trading service for all known communications logs. Each of these logs will be stored for future use. The module will then begin attempting to log all cached log data to each of the discovered communications logs until there are no more communications logs to try, or there are no more entries to log. If all communications logs are tried and the entry still could not be logged, the entry will be added to the cache and this process will repeat again the next time a comm log entry is attempted.

[image: image304.emf]CosTrading.Register TrafficEventModule

TrafficEvent

Check if there are any log entries

that could not be added previously. If

there are they should be logged first.

Attempt to add the entry to the last CommLog

that was successfully used.

LogData

CommLog

[unable to

log entry]

storeLogData

getLogData

addEntry

[* while more

comm logs and

not successful]

[exception caught]

addCommLogs

addEntry

[Exception caught]

query "CommLog objects"

addCommLogEntry

[while more

log data

and no exceptions]

getLogData

[while

more log

data]

Figure 302. TrafficEventModule:AddCommLogEntry (Sequence Diagram)

3.1.22.4 TrafficEventModule:AddLogEntry (Sequence Diagram)

This diagram shows how an entry is added to a traffic event's history log. The TrafficEventImpl is called to add the log entry, and after checking the user's rights, it calls the TrafficEventGroup to add the entry. The TrafficEventGroup creates a new LogEntry and calls the DatabaseLogger to add the entry to the database. A CORBA event is then pushed through the event service, to update all of the GUIs with the new entry.

[image: image305.emf]TrafficEventModule DatabaseLogger

LogEntry

TrafficEventGroup OperationsLog TokenManipulator TrafficEventImpl

ORB

DatabaseLogger

push(HistoryLogEntriesAdded)

getPushSupplier

addEntry

create

getOpCenterName

getUserName

addLogEntry

[no rights]

log "Invalid access attempt"

[no rights]

AccessDenied

checkAccess

addLogEnty

Figure 303. TrafficEventModule:AddLogEntry (Sequence Diagram)

3.1.22.5 TrafficEventModule:AddResponseItem (Sequence Diagram)

This diagram shows how a response item is added to a traffic event's response plan. The items can either be executable or non-executable (i.e., a placeholder containing only a target). The TrafficEvenImpl is called to add the ResponsePlanItem. After checking the user's rights, it calls the TrafficEventGroup to add the item. The TrafficEventGroup checks for existing ResponsePlanItems with the same target as the item being added. If an existing item is found and the new item is not executable, the new item is ignored. If an existing item is found and the new item is executable, the group sets the data in the existing ResponsePlanItem, which will overwrite the old data and cause the item's state to be "not executed" if it is already executed (see the sequence diagram SetMessageForUseInResponsePlan for details). Otherwise, if there was not already an existing item, a new ResponsePlanItemImpl is created, added to the database, and activated. A CORBA event is pushed to the event service to inform the GUIs of the new item, and entries are added to the traffic event's history log and the operations log.

[image: image306.emf]This call is made to check if

the new response plan item

is targeting the same object

as an existing item.

DatabaseLogger OperationsLog

Trafffic

EventModule

Traffic

EventDB

See InitializeResponsePlanItemData

sequence diagram for details.

PushEventSupplier ResponsePlanItemImpl

ResponsePlanItemImpl

ORB

TrafficEventImpl TokenManipulator TrafficEventGroup

POA

A non-executable item

will not overwrite

an executable item because

the executable item has

data that should not be

implicitly discarded. This

operation will be ignored.

If an executable item

is being added, the new

item's data will overwrite

the old data and the item

will be set to "not executed".

See the diagram:

SetMessageForUseInResponsePlan

for details.

getTargetID

addLogEntry

addResponsePlanItem

[* for each

ResponsePlanItem]

[item with matching target already in plan

and new item not executable]

[item with matching

target already in plan

and new item not

executable]

initialize

initialize

[setItemData called]

[setItemData called]

activate_object (ResponsePlanItem)

[item with matching

target in plan and

new item is

executable]

setItemData

[item with matching

target not in plan]

create

addResponseItem

[event closed]

CHART2Exception

checkAccess

getDB

getEventSupplier

[no rights]

AccessDenied

getOpCenterID

[not from controlling op

center and no override

right]

ResourceControlConflict

addResponsePlanItem

log "Invalid access attempt"

log "item added to response plan"

push "ResponsePlanItemAdded"

Figure 304. TrafficEventModule:AddResponseItem (Sequence Diagram)

3.1.22.6 TrafficEventModule:AddResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is added to a traffic event. The TrafficEventImpl is called to add the response participation, and after checking the user's rights, calls the TrafficEventGroup to add the response participation. The TrafficEventGroup creates a new OrganizationParticipationImpl or a ResourceDeploymentImpl, then adds it to the database, activates the object to receive CORBA calls, and pushes a CORBA event through the event service so that all of the GUIs will be updated. An entry is also added to the traffic event's history log.

[image: image307.emf]TrafficEventImpl OperationsLog

ORB

TrafficEventGroup

OrganizationParticipationImpl

TrafficEventModule TrafficEventDB POA PushEventSupplier

ResourceDeploymentImpl

[no rights]

log "Invalid access attempt"

[event closed]

CHART2Exception

[Participant previously

added]

CHART2Exception

addResponseParticipation

[OrganizationParticipationData]

activate_object

getPOA

[no rights]

AccessDenied

[not from controlling op center

and no override]

ResourceControlConflict

addResponseParticipation

getControllingOpCenter

[OrganizationParticipationData]

create

[previously added]

CHART2Exception

[OrganizationParticipationData]

addOrgParticipation

[OrganizationParticipationData]

push(OrganizationParticipationAdded)

getPushSupplier

log "Response participation added"

addLogEntry

getDB

[ResourceDeploymentData]

push(ResourceDeploymentAdded)

[ResourceDeploymentData]

activate_object

[ResourceDeploymentData]

addResourceDeployment

[ResourceDeploymentData]

create

Figure 305. TrafficEventModule:AddResponseParticipation (Sequence Diagram)

3.1.22.7 TrafficEventModule:AssociateEvent (Sequence Diagram)

This diagram shows how a traffic event is associated to another traffic event. The TrafficEventImpl is called to associate the other event, and it calls the TrafficEventGroup after checking the rights. The TrafficEventGroup updates the database, adds entries to its history, and calls the other (secondary) event. The other event calls its event group, which marks itself as secondary, and updates the database. CORBA events are pushed by both TrafficEventGroups to notify the GUIs of the new association, and the new association is also stored in the database. Entries are added to the traffic events' histories and the operations log to record the change.

[image: image308.emf]OperationsLog TokenManipulator TrafficEventImpl

ORB

TrafficEventGroup TrafficEventImpl TrafficEventDB TrafficEventModule PushEventSupplier

This call is actually made via the

TrafficEvent CORBA interface. The call

to the TrafficEventImpl is shown for brevity.

TrafficEventGroup

checkAccess

log "Invalid Access Attempt"

associateEvent

[TrafficEvent Closed]

CHART2Exception

[no rights]

AccessDenied

associateEvent

checkAccess

[is primary]

associateEvent

addLogEntry

"Event associated"

[error adding

association]

CHART2Exception

[error adding association]

CHART2Exception

addEventAssociation

getDB

push

(EventStateChanged)

getPushSupplier

[is secondary]

updateEventState

[is secondary]

setPrimary(false)

associateEvent

addEventAssociation

getDB

addLogEntry

"Event associated

and set to secondary"

[is primary]

push(TrafficEventAssociated)

log "Event associated"

log "Event associated"

log "Event associated"

Figure 306. TrafficEventModule:AssociateEvent (Sequence Diagram)

3.1.22.8 TrafficEventModule:CleanupResponsePlanItemData (Sequence Diagram)

This sequence diagrams shows the processing deletion of HARMessageAudioClip objects when a response plan item that is using them has been deleted. Each clip in response plan item data is checked if it is a HARMessageAudioClip and deregisterInterest method is invoked on the clip to delete the interest in the clip. See AudioClipModule.DeregisterInterest for more details about how the interest is deleted.

[image: image309.emf]Note: This can throw CORBA

exceptions and any other

exceptions defined in the

IDL (TBD). When defined

these should be logged.

ResponsePlanItemImpl

ResponsePlanItemImpl

HARRPIData HARMessage HARMessageAudioClip

[if Header instanceof

HARMessageAudioClip]

deregisterInterest

[if Body instanceof

HARMessageAudioClip]

deregisterInterest

[if Footer instanceof

HARMessageAudioClip]

deregisterInterest

getHeader

cleanup

HARMessageClip

getBody

getFooter

HARMessageClip

HARMessageClip

getMessage

HARMessage

[if ResponsePlanItemData is not

an instanceof HARRPIData]

Figure 307. TrafficEventModule:CleanupResponsePlanItemData (Sequence Diagram)

3.1.22.9 TrafficEventModule:CloseEvent (Sequence Diagram)

This diagram shows what happens when a traffic event is closed. The TrafficEventImpl is called to close the event. After checking the user's rights, it calls the TrafficEventGroup to close the event. The group updates the event state in the database, and removes all of the ResponsePlanItems from the event. Entries are added to the traffic event's history, the communications log, and the operations log.

[image: image310.emf]OperationsLog TokenManipulator TrafficEvent

ORB

TrafficEventGroup ResponsePlanItem

The traffic event group will

record the time of closure

at this point.

TrafficEventDB TrafficEventModule ResponsePlanItemData

Refer to RemoveResponsePlanItem

sequence diagram for details on this

operation.

PushEventSupplier

push(TrafficEventClosed)

addCommLogEntry

addLogEntry

log "event closed"

[already closed]

Success

[required data

missing]

CHART2Exception

log "Invalid access attempt" [no rights]

AccessDenied

checkAccess

close

[Not from controlling op

center and no override]

ResourceControlConflict

getControllingOpCenter

close

updateEventState

getDB

[* for each

ResponsePlanItem]

remove

Figure 308. TrafficEventModule:CloseEvent (Sequence Diagram)

3.1.22.10 TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

This diagram shows how a new traffic event is created. The TrafficEventFactoryImpl is called to create the new traffic event. After checking the user's rights, it creates a new TrafficEventGroup and calls it to create the appropriate type of TrafficEventImpl, based on the type of BasicTrafficEventData that is passed in. Then the factory calls the TrafficEventGroup to initialize. This adds any initial entries to the traffic event's history log, activates the TrafficEvent object, and publishes it in the trading service. It also adds entries to the communications log and the operations log, and pushes a CORBA event through the event service to inform the GUIs of the creation of the new event.

[image: image311.emf]SpecialEventImpl

SafetyMessageEventImpl

CongestionEventImpl

ActionEventImpl

WeatherServiceAlertImpl

WeatherSensorAlertImpl

DisabledVehicleImpl

PlannedRoadwayClosureImpl

IncidentImpl

TrafficEventGroup

TokenManipulator TrafficEventFactoryImpl

ORB

CosTrading.

Register POA TrafficEventModule

PushEventSupplier

OperationsLog

This will store the TrafficEventGroup and

the TrafficEvent data in the database.

TrafficEventDB

addGroup

[typeCode ==

DisabledVehicle]

create

[typeCode ==

PlannedRoadwayClosure]

create

[UnknownTrafficEventType]

UnknownTrafficEventType

[unknown traffic event type]

UnknownTrafficEventType

[typeCode == Incident]

create

createTrafficEvent

create

[no rights]

AccessDenied

checkAccess

createTrafficEvent

export(TrafficEvent)

getTradingRegister

log "New event created"

[typeCode ==

WeatherSensorAlert]

create

[no rights]

log "invalid access attempt"

[typeCode == SpecialEvent]

create

[typeCode == SafetyMessage]

create

[typeCode == Congestion ||

typecode == RecurringCongestion]

create

[typeCode == ActionEvent]

create

[typeCode ==

WeatherServiceAlertImpl]

create

activate_object(TrafficEvent)

getPOA

initialize

addCommLogEntry "New Event Opened"

push "traffic event added"

getEventSupplier

addLogEntry

[for each log entry]

addGroupToDatabase

addLogEntry(eventOpened)

[database error]

CHART2Exception

Figure 309. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

3.1.22.11 TrafficEventModule:ExecuteResponse (Sequence Diagram)

This diagram shows how a traffic event's response plan is executed. The TrafficEventImpl is called to execute the response. It checks the user's rights and then calls the TrafficEventGroup to execute the response. The TrafficEventGroup calls each ResponsePlanItem's execute method. See the ExecuteResponsePlanItem sequence diagram for details on how each response plan item is executed. The ResponseMonitorThread will be running in the background, and will periodically cause the factory to check all of the TrafficEventGroups for changes in the response plan item status. When prompted by this thread, each TrafficEventGroup will push a CORBA event to notify the GUIs if any of its response plan items have changed state.

[image: image312.emf]ResponseMonitorThread TrafficEventFactoryImpl

The response monitor

thread will trigger this

method every configurable

interval.

TrafficEventModule PushEventSupplier OperationsLog TokenManipulator TrafficEventGroup

ORB

TrafficEventImpl ResponsePlanItem

Refer to the

ExecuteResponsePlanItem

sequence diagram for details.

log "Invalid access attempt"

[event closed]

CHART2Exception

checkAccess

executeResponse

executeResponse

[controlled by

another op center

and no override]

ResourceControlConflict

getControllingOpCenter

execute

[* for each response

plan item]

[no rights]

AccessDenied

[* for each

trafficEventGroup]

monitorResponses

monitorResponses

sendResponseStatusUpdate

push(ResponsePlanStatusChanged)

getPushSupplier

Figure 310. TrafficEventModule:ExecuteResponse (Sequence Diagram)

3.1.22.12 TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)

This diagram shows what happens when a response plan item is executed, either individually or when a traffic event's response plan is executed. The user's rights are checked, and then the ResponsePlanItemImpl calls the ResponsePlanItemData to execute the item. The specific type of ResponsePlanItemData will call the appropriate target and the request to activate the message will be queued. Then the ResponsePlanItemImpl is marked as "executed", and the TrafficEventGroup is notified of the change in the item. The database is updated and an entry is added to the traffic event group's history log. The TrafficEventGroup will periodically be called on a background thread to push a CORBA event for any of its ResponsePlanItems that have changed state.

[image: image313.emf]TrafficEventGroup OperationsLog TokenManipulator ResponsePlanItemImpl

ORB

ResponsePlanItemData TrafficEventDB TrafficEventModule

At this point the

ResponsePlanItemData

object will interact with

a device arbitration queue

to activate the message in the

field.

[controlled by

another op center

and no override]

ResourceControlConflict

[event closed]

CHART2Exception

isClosed

getControllingOpCenter

log "Invalid access attempt" [no rights]

AccessDenied

checkAccess

execute

[has executed]

hasBeenExecuted

updateResponsePlanItemState

getDB

execute

responsePlanItemChanged

addLogEntry

setExecuted

log ("plan item executed")

Figure 311. TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)

3.1.22.13 TrafficEventModule:GetEventHistoryText (Sequence Diagram)

This diagram shows how entries are retrieved from the traffic event's history log. The TrafficEventImpl is called to get the event history. It checks the user's rights, then calls the TrafficEventGroup, which calls the DatabaseLogger to get the entries. See the sequence diagram DatabaseLogger:getEntries for more details.

[image: image314.emf]ORB

Refer to DatabaseLogger:getEntries for

details on how the database logger class

handles this method.

DatabaseLogger TrafficEventGroup TrafficEventImpl

getEntries

[no rights]

AccessDenied

getHistory

getHistory

LogEntries

and LogIterator

Figure 312. TrafficEventModule:GetEventHistoryText (Sequence Diagram)

3.1.22.14 TrafficEventModule:GetExecutedResponsePlanItem (Sequence Diagram)

This sequence diagram shows how a arbitration queue can obtain a response plan item that was queued for execution when it starts up. Note that the arbitration queue persists the id of the traffic event of the response plan items queued. Arbitration queue requests the traffic event for a response plan item using the device that the arbitration queue represents. If a response plan item using this device is not found in the traffic event, a SpecifiedObjectNotFound execption is raised. If the response plan item is found, the response plan item is returned.

[image: image315.emf]ResponsePlanItemImpl

TrafficEventImpl

Arbitration

Queue

ResponsePlanItemData

isUsingObject

ResponsePlanItem

true or false

[isUsingObject is true]

getStatus

[if a response plan item

using the device is not found]

SpecifiedObjectNotFound

getExecutedRPI(deviceID)

getItemData

[while more ResponsePlanItems

&& isUsingObject is false]

Figure 313. TrafficEventModule:GetExecutedResponsePlanItem (Sequence Diagram)

3.1.22.15 TrafficEventModule:Initialize (Sequence Diagram)

This diagram shows what happens when the TrafficEventModule is initialized. The ServiceApplication calls the TrafficEventModule to initialize, which reads in the properties from a file, overriding the default properties. It creates an event channel for traffic events and publishes the channel in the trading service so that other applications can see it. It creates a TrafficEventDB object to handle all of the database calls, and a TrafficEventFactoryImpl object to manage the traffic events. The TrafficEventFactoryImpl creates a DatabaseLogger for logging the traffic event's history log, then calls the TrafficEventDB to load the TrafficEventGroup objects from the database. Then for each group it will activate the current TrafficEvent, the ResponseParticipation objects, and the ResponsePlanItem objects. The TrafficEvent is exported to the trading service. The response plan items are then initialized for resolving the device being used and to get the status of any response plan items that were queued for execution (See IntializeResponsePlanItems sequence diagram for details). The resource monitor thread and the response monitor thread are created, and the TrafficEventFactory is exported to the trading service.

[image: image316.emf]TrafficEventGroup

POA

DatabaseLogger

ResponseMonitorThread

ResourceMonitorThread

See InitializeResponsePlanItems

sequence diagram for details

AudioClip

ManagerWrapper

TrafficEventModule

ServiceApplication

This event channel

is used to push

TrafficEvent state

changes.

PushEventSupplier

TrafficEventModuleProperties

CosTrading.Register

TrafficEventFactoryImpl

TrafficEventDB

ServiceApplication

activate_object

(ResponsePlanItem)

[*for each response

participation object]

activate_object

(ResponseParticipation)

create

initialize

create

start

start

setDaemon

setDaemon

export(TrafficEvent)

registerObject(TrafficEvent)

getTrafficEvents

InitializeResponse

PlanItems

export(Event Channel)

[* for each

ResponsePlanItem]

getDefaultProperties

initialize

get

create

initialize

create

getEventChannelFactory

create

getProperties

registerEventChannel

getTradingRegister

export(Traffic Event Factory)

create

create

getDBConnectionManager

activate_object

(TrafficEvent)

[* for each traffic

event group]

Figure 314. TrafficEventModule:Initialize (Sequence Diagram)

3.1.22.16 TrafficEventModule:InitializeResponsePlanItemData (Sequence Diagram)

This diagram shows how the response plan item data is initialized when the HAR response plan items are created at startup or on the fly. At startup, if the HAR message in the response plan items contain any HARMessageAudioClips, the database creates the clips with just clip ID read from the database. These clips are replaced with the actual HARMessageAudioClip objects by querying the AudioClipManagers found in the CORBA Trader with the clip ID. See HARUtility.GetHARMessageAudioClip sequence diagram for details about how a HARMessageAudioClip is obtained given an ID. This diagram also shows how the HAR message audio data clips associated with a response plan item are saved if the message being used contains HARMessageAudioClipData objects and/or HARMessageAudioClip objects when they are created on the fly. If the message contains HARMessageAudioClip objects, registerInterest() method is called on the object to establish an association between the response plan item data and the HARMessageAudioClip. If the message contains HARMessageAudioDataClip objects, they are saved by calling the storeClip() method on the nearest AudioClipManager which saves the audio clip data in the database and returns a streamable audio clip object. See HARUtility.StoreHARMessageAudioDataClip for details about how the nearest AudioClipManager is found.

[image: image317.emf]This will replace the clips that need to replaced.

HARMessageAudioDataClip will be replaced

with a HARMessageAudioClip.

At startup HARMessageAudioClips created from

database will be replaced with the clips obtained

by querying the AudioClipManager

HARMessageAudioClip HARMessage HARRPIData

AudioClip

ManagerWrapper

ResponsePlanItemImpl

ResponsePlanItemImpl

[if HARMessage is an

instance of HARMessageAudioClip]

registerInterest

HARMessageClip

getTrailer

[* for each

HARMessageClip

in body]

[if the body clips were updated]

setBody

HARMessageAudioClip

[if the trailer was updated]

setTrailer

HARMessageAudioCli

[if HARMessage is an instance of HARMessageAudioDataClip]

storeClip

[if the header was updated]

setHeader

[if HARMessage is an instance of HARMessageAudioDataClip]

storeClip

[if HARMessage is an

instance of HARMessageAudioClip]

registerInterest

HARMessageAudioClip

[if trailer is an HARMessageAudioClip and

needs to be initialized]

getAudioClip

HARMessageAudioClip

[if body clip is an HARMessageAudioClip and

needs to be initialized]

getAudioClip

HARMessageAudioClip

[if header is an HARMessageAudioClip and

needs to be initialized]

getAudioClip

HARMessageClip[]

getBody

HARMessageAudioClip

[if HARMessage is an instance of HARMessageAudioDataClip]

storeClip

[if HARMessage is an

instance of HARMessageAudioClip]

registerInterest

HARMessageClip

getHeader

HARMessage

getMessage

[if ResponsePlanItemData is

not an instance of HARRPIData]

initialize

Figure 315. TrafficEventModule:InitializeResponsePlanItemData (Sequence Diagram)

3.1.22.17 TrafficEventModule:InitializeResponsePlanItems (Sequence Diagram)

This sequence diagram shows how the device used by response plan items is resolved and the status of the response plan items is initialized by querying the arbitration queue of the device that the response plan item is using at startup. All the available DMSs in the system are found by looking up the CORBA Trading repository. A reference to the device being used by response plan items is set by matching the id of the target device with the ids of the DMSs found in the trader. After the device is found, the arbitration queue of the device is obtained. The arbitration queues being used by the response plan items are queried for response plan item status. The arbitration queue returns a list of status updates of the response plan items that are queued in the arbitration queue for execution. Each response plan item status is updated with the status information recieved from the arbitration queue.

[image: image318.emf]CorbaUtilities ResponsePlanItemImpl TrafficEventImpl TrafficEventFactoryImpl

TrafficEventFactoryImpl

When a response plan item is created

from the database, the id of the target

 device is stored in the RPIData impl to

 resolve the reference to the device here.

ResponsePlanItemDatal

ResponsePlanItems are stored

in a Hashtable with ID as key

ArbitrationQueues found are stored in a

Hashtable with ID as key

Note: If a target being used by a response plan item

is not found in the trader at startup, the reference

to the target is tried to be resolved upon first use

of the response plan item.

ArbitrationQueue

This initializes the response plan item

data if the data is an instance of HARRPIData.

See InitializeResponsePlanItemData sequence

diagram for details.

[if TargetID = ID of any ArbitrationQueue

found in the trader]

setTarget

getTargetID()

[* for each

Response Plan Item]

initializeResponsePlanItems

setStatus

initialize

[* for each TrafficEvent]

getResponsePlanItems

getItemData

[* for each

Response Plan Item

[* for each target

being used by the

Response Plan Items]

ArbQueueEntryStatusUpdate[]

getEntriesIStatus

ArbitrationQueue[]

findAllObjectsOfType(ArbitrationQueue)

Figure 316. TrafficEventModule:InitializeResponsePlanItems (Sequence Diagram)

3.1.22.18 TrafficEventModule:MonitorControlledResources (Sequence Diagram)

This diagram shows the periodic maintenance of the traffic events - the monitoring of the controlling operations center, and the removal of the traffic events from the system. When the ResourceMonitorThread calls the factory to monitor the resources, the factory first gets all of the controlling operations centers for all traffic events. If it does not have references for all of the operations centers' IDs, it will query the OperationsCenter object from the trading service. then it asks each OperationsCenter how many users are logged in. If no users are logged in, it pushes a CORBA event indicating that shared resources need to be transferred to another operations center. The ResourceMonitorThread will also call the factory to check if events need to be removed from the system. The factory asks each closed traffic event for its closure time and determines whether it has been closed long enough to remove it from the system. If a traffic event is removed, the database is updated, the offer is withdrawn from the tradiing service, the CORBA object is deactivated, and a CORBA event is pushed on the event channel indicating that the traffic event was just deleted.

[image: image319.emf]PushEventSupplier OperationsCenter TrafficEventDB CosTrading.Lookup TrafficEventModule TrafficEventFactoryImpl

Resource

Monitor

Thread

TrafficEventGroup CosTrading.Register POA

"Store op center refs"

getOpCenterRef

getPushEventSupplier

getNumLoggedInUsers

[op center ref not found]

query "all op center objects"

getTradingLookup

[* for each controlling

op center]

getControllingOpCenters

addLogEntry

[* for each

ResponseParticipation]

deactivate_object (ResponseParticipation)

isClosed

[curent time - closure time >=

 takeOfflineThreshold]

takeOffline

monitorResources

[numLoggedInUsers <= 0]

push(UnhandledControlledResourceEvent)

getClosureTime

takeEventsOffline

push (TrafficEventDeleted)

deactivate_object (TrafficEvent)

getPOA

withdraw

getTradingRegister

[* for each

trafficEvent]

takeEventOffline

getDB

Figure 317. TrafficEventModule:MonitorControlledResources (Sequence Diagram)

3.1.22.19 TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

This diagram shows what happens when a traffic event association is removed. One of the TrafficEventImpl objects is called to remove the association. It checks the user's rights and removes the association from its TrafficEventGroup and from the database and pushes an event. It also calls the associated event to remove the association from it. The associated event does the same thing, but when it calls back to the first TrafficEvent, the association has already been removed so it returns an exception to the second TrafficEvent and the association removal is complete.

[image: image320.emf]TrafficEventGroup

PushEvent

Supplier OperationsLog

TrafficEventImpl

ORB

TrafficEvent

TrafficEventDB

TrafficEventGroup TrafficEventModule

[no rights]

AccessDenied

removeEventAssociation

[event closed]

CHART2Exception

getDB

removeEventAssociation

[no rights]

log "Invalid access attempt"

[event not associated]

SpecifiedObjectNotFound

[event not associated]

SpecifiedObjectNotFound

removeEventAssociation

SpecifiedObjectNotFound

associationRemoved

removeEventAssociation

[event not associated]

SpecifiedObjectNotFound

removeEventAssociation

getDB

removeEventAssociation

[event not associated]

SpecifiedObjectNotFound

removeEventAssociation

[event not associated]

associationRemoved

push (TrafficEventAssociationRemoved)

push (TrafficEventAssociationRemoved)

log "association removed"

addLogEntry

log "association removed"

addLogEntry

Figure 318. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

3.1.22.20 TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is removed from a traffic event. The ResponseParticipationImpl is called to remove itself. After checking the user's rights, it calls the TrafficEventGroup that is attached to and asks it to remove the participation. The TrafficEventGroup removes it from the database, deactivates the object, pushes a CORBA event to the event service, and adds entries to the event history log and operations log.

[image: image321.emf]ResponseParticipationImpl TrafficEventDB TrafficEventModule PushEventSupplier

ORB

OperationsLog TrafficEventGroup POA

removeResponseParticipation

remove

[no rights]

log "Invalid access attempt"

[no rights]

AccessDenied

[not from controlling

op center and no

override]

ResourceControlConflict

getControllingOpCenter

[event closed]

CHART2Exception

[participant instanceof

OrganizationParticipation]

removeOrgParticipation

[participant instanceof

ResourceDeployment]

removeResourceDeploymnet

getDB

deactivate_object

getPOA

push(ParticipationRemoved})

getPushSupplier

log "Response participant removed"

addLogEntry

Figure 319. TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)

3.1.22.21 TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)

This diagram shows how a response plan item is removed from a traffic event. The ResponsePlanItemImpl is called to remove itself. After checking the user's rights, if it has been executed or is currently active it calls the arbitration queue of the target device to remore its entry from the queue. It then calls the TrafficEventGroup that is attached to and asks it to remove the plan item. The TrafficEventGroup removes it from the database, deactivates the object, pushes a CORBA event to the event service, and adds entries to the event history log and operations log.

[image: image322.emf]POA ArbitrationQueue ResponsePlanItemImpl OperationsLog TrafficEventModule PushEventSupplier ResponsePlanItemData TrafficEventDB

ORB

See CleanupResponsePlanItemData

sequence diagram for details.

TrafficEventGroup

getDB

getEventSupplier

push (responsePlanItemsRemoved)

[not from controlling

op center and no

override]

ResourceControlConflict

revokeExecution

removeResponsePlanItem

removeResponsePlanItem

log "Response Plan item removed"

[no rights]

AccessDenied

[Event closed]

CHART2Exception

remove

[no rights]

AccessDenied

cleanup

ObjectNotExists

addLogEntry

setInactive

getPOA

deactivate_object (ResponsePlanItem)

removeEntry

Figure 320. TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)

3.1.22.22 TrafficEventModule:SetLaneConfiguration (Sequence Diagram)

This diagram shows how the lane configuration is set for a roadway event. The RoadwayEventImpl is called to set the lane configuration. After checking the user's rights, it gets the old lane configuration and compares it to the new configuration. If there is a change in a lane's state, it records the state change in the database and a log entry is added to the traffic event's history log. Then a CORBA event is pushed indicating that the lane configuration has been set and entries are added to the traffic event's history log and operations log.

[image: image323.emf]ORB

LaneConfiguration LaneConfiguration RoadwayEventImpl TrafficEventModule TrafficEventGroup TrafficEventDB

This is the existing lane configuration

object.

PushEventSupplier OperationsLog

setLaneConfigurationInMemory

[offset existed in previous configuration

and state changed]

recordLaneStateChange

getLanes

[* for each lane

in new config]

getLanes

setLaneConfiguration

addLogEntry

setLaneConfiguration

[offset existed in previous config

and state changed]

addLogEntry

[no rights]

AccessDenied

push(LaneConfigurationChanged)

getDB

getModule

getEventSupplier

log "Lane configuration changed"

[no rights]

log "Invalid access attempt"

[not from controlling op

center and no override]

ResourceControlConflict

[event closed]

CHART2Exception

Figure 321. TrafficEventModule:SetLaneConfiguration (Sequence Diagram)

3.1.22.23 TrafficEventModule:SetMessageForUseInResponsePlan (Sequence Diagram)

This diagram shows how a message is modified within an existing response plan item. The ResponsePlanItemImpl is called to set the item data. After checking the user's rights, it marks the response plan item as being "not executed". It updates the plan item in the database and pushes a CORBA event via the event service indicating that the response plan item has changed. Entries are added to the traffic event's history log and the operations log.

[image: image324.emf]ORB

PushEventSupplier TrafficEventDB TrafficEventModule TrafficEventGroup OperationsLog ResponsePlanItemImpl

log "Response plan item modified"

getControllingOpCenter

[no rights]

log "Invalid access attempt"

[no rights]

accessDenied

setItemData

updateResponsePlanItem

getDB

[event closed]

CHART2Exception

[not from controlling

op center and no override]

ResourceControlConflict

push(ResponsePlanItemModified)

getPushSupplier

setExecuted(false)

addLogEntry

Figure 322. TrafficEventModule:SetMessageForUseInResponsePlan (Sequence Diagram)

3.1.22.24 TrafficEventModule:Shutdown (Sequence Diagram)

This diagram shows what happens at shutdown. The TrafficEventModule is called to shut down, and it calls the TrafficEventFactoryImpl, which calls all of the TrafficEventGroups. Each TrafficEventGroup deactivates the current TrafficEvent and all of its ResponseParticipation objects and ResponsePlanItem objects. Then the factory shuts down the resource monitor thread. The module deactivates the TrafficEventFactory object and shuts down.

[image: image325.emf]deactivate_object (ResponseParticipation)

getPOA

shutdown

shutdown

[* for each response

participation]

"Interrupt shared resource monitor thread"

shutdown

deactivate_object

(TrafficEvent)

shutdown

deactivate_object(TrafficEventFactory)

getPOA

delete

delete

delete

[* for each

TrafficEventGroup]

delete

"Interrupt plan status monitor thread"

[* for each response

plan item]

deactivate_object (ResponsePlanItem)

TrafficEventModule

ServiceApplication

TrafficEventFactoryImpl TrafficEventGroup POA ServiceApplication DatabaseLogger TrafficEventDB

Figure 323. TrafficEventModule:Shutdown (Sequence Diagram)

TSSManagement

3.1.23 Classes

3.1.23.1 RTMSFactoryClassDiagram (Class Diagram)

This diagram shows the classes of the TSSManagementModule relating to the RTMSFactoryImpl. The RTMSFactoryImpl holds RTMSImpl objects and allows RTMSs to be added and removed from the system.

[image: image326.emf]2 event channels, one

for status change,

one for traffic parameter data

RTMSImpl

Raw Data Log

LogFile

TSSManagementDB

RTMSFactoryImpl

RTMSFactory

«interface»

Stores list of

RTMS objects

java.util.Vector

PushEventSupplier

TSSEvent

«typedef»

TSSManagementProperties TSSDBData

TSSCurrentStatusPushTask

java.util.Timer

1

*

1 1

1

*

1 1

1

1 pushes event data in

1 1

1

1

1

1

returns persisted

TSS data in

1

1

1

1

getList(int TSSType):TSSDBData[]

add(byte[] id, int TSSType, TSSConfiguration):void

remove(byte[] id):void

updateConfig(byte[] id, TSSConfiguration):void

updateCommMode(byte[] id, int mode):void

updateOpStatus(byte[] id, int opStatus):void

DBConnectionManager m_dbConn

RTMSFactoryImpl(ServiceApplication,

 TSSManagementProperties,

 TSSManagementDB,

 LogFile, PushEventSupplier,

 PushEventSupplier)

remove(byte[] token, byte[] idl):void

createRTMS(byte[] token, TSSConfiguration):RTMS

getRawDataFileName():String

getDebugFileDir():String

getAutoStatusPushSecs():int

TSSConfiguration m_config

CommunicationMode m_mode

OperationalStatus m_opStatus

run

schedule

cancel

Figure 324. RTMSFactoryClassDiagram (Class Diagram)

3.1.23.1.1 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.23.1.2 java.util.Vector (Class)

A Vector is a growable array of objects.

3.1.23.1.3 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.23.1.4 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.23.1.5 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

3.1.23.1.6 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all RTMSImpl objects that have been created within an instance of the RTMSManagementModule and allows for the addition and removal of RTMS objects. It also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to collect the current status of each RTMSImpl and push the collective status in a single CORBA event.

3.1.23.1.7 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the current traffic parameters from an RTMS device. It makes use of an RTMSProtocolHandler to perform the device specific protocol to obtain the traffic parameters. It moves the data from the device specific format to the generic TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone group configuration, perform raw data logging, and other services that are common to Transportation Sensor System objects.

3.1.23.1.8 TSSCurrentStatusPushTask (Class)

This class is a timer task that is executed on a regular interval. When this task is run, it calls into the RTMSFactoryImpl object to have it collect the status for all RTMSImpl objects and to push a CurrentStatus event with the collected data.

3.1.23.1.9 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation Sensor System object that existed in the system during a prior run of the software.

3.1.23.1.10 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo object.

3.1.23.1.11 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database data pertaining to Transportation Sensor Systems. Because this class is designed to be generic and work for RTMS as well as other TSS derived objects, the add method requires a model id to be passed. This allows data for a specific model to be retrieved by model specific factories during system initialization.

3.1.23.1.12 TSSManagementProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to the properties specific to the TSSManagementModule. These properties include the name of the file where raw traffic parameter data is to be logged, the directory where debug log files are to be kept, and the interval at which the status of all TSS objects is to be collected and pushed in a CORBA event.

3.1.23.2 RTMSObject (Class Diagram)

This diagram shows classes in the TSSManagementModule relating to the RTMSImpl class. The RTMSImpl obtains most of its functionality from its base class, PolledTSSImpl. The RTMSImpl object provides logic that allows the base class to obtain traffic parameters from an RTMS device.

[image: image327.emf]2 event channels, one

for status change,

one for traffic parameter data

TSSPollResults

PolledTSSImpl

RTMSImpl

RTMS

«interface»

java.util.TimerTask

TSSPollingTask

Raw Data Log

LogFile

Used to log debugging

information only.

LogFile

TSSManagementDB

TSSStatus

«typedef»

TSSConfiguration

«typedef»

RTMSProtocolHdlr RTMSDeviceStatus

RTMSFactoryImpl

TransportationSensorSystem

«interface»

java.util.Timer

PushEventSupplier

TSSEvent

«typedef»

ModemPortLocator

TSSDBData

CommFailureDB

* 1

1 1

1 1

1

1

*

1

1

1

1 *

1

1

1 1

returns status info

using

1

1

1

1

1

1 pushes

event

data in

1

1

1

1

returns persisted

TSS data in

*

1

1

1

*

1

TrafficParameters[] m_trafficParms

OperationalStatus m_opStatus

TSSImpl(TSSConfiguration, TSSStatus, TSSManagementDB,

 TransportationSensorSystemFactoryl,

 PushEventSupplier, PortLocator)

abstract poll(DataPort):TSSPollResults

pollDevice():void

getStatus(boolean resetAvg):void

run

getList(int TSSType):TSSDBData[]

add(byte[] id, int TSSType, TSSConfiguration):void

remove(byte[] id):void

updateConfig(byte[] id, TSSConfiguration):void

updateCommMode(byte[] id, int mode):void

updateOpStatus(byte[] id, int opStatus):void

DBConnectionManager m_dbConn

byte[] m_id;

ZoneGroupTrafficParms[] m_zoneGrpTrafficParms

CommunicationMode m_mode;

OperationalStatus m_opStatus;

long m_trafficParameterTimestamp;

byte[] m_id

String m_name

String m_location

Identifier m_ownerOrg

int m_dropAddress

ZoneGroup[] m_zoneGroups

int m_pollIntervalSecs

CommPortConfig m_commPortCfg

PortLocationData m_portLocData

boolean m_debugComms

getStatus():RTMSDeviceStatus

byte m_sensorID;

LogFile m_debugLog;

toString()

TrafficParameters[] m_trafficParms

byte m_healthStatus

byte m_msgNum

RTMSFactoryImpl(ServiceApplication,

 TSSManagementProperties,

 TSSManagementDB,

 LogFile, PushEventSupplier,

 PushEventSupplier)

remove(byte[] token, byte[] idl):void

getStatus():TSSStatus

getConfiguration(byte[] token):TSSConfiguration

setConfiguration(byte[] token, TSSConfiguration):void

remove(byte[] token);

schedule

cancel

TSSConfiguration m_config

CommunicationMode m_mode

OperationalStatus m_opStatus

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

Figure 325. RTMSObject (Class Diagram)

3.1.23.2.1 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about any comm failure that occurs in the system.

3.1.23.2.2 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.1.23.2.3 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.1.23.2.4 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.23.2.5 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur.

3.1.23.2.6 PolledTSSImpl (Class)

This object implements the Transportation Sensor System interface as defined in IDL. This implementation provides the base functionality required for Transporation Sensor Systems that are polled periodically to retrieve traffic parameters. The only requirement for derived classes is to provide an implmentation of the abstract poll method, which communicates over a previously connected Port to obtain the traffic parameters from a TSS.

This implementation periodically polls the field device using the derived class implementation of the poll method. This implementation provides services such as raw data logging, averaging/summation of data into configured zone groups, asynchronous notification of configuration changes, and persistence/depersistence.

3.1.23.2.7 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.23.2.8 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc. capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a roadway at a single location. This interface serves to identify TransportationSensorSystem objects as being of the type RTMS. It also provides a place holder for future operations that may not apply to TSS objects in general and are instead RTMS specific.

3.1.23.2.9 RTMSDeviceStatus (Class)

This class is used to pass raw data retrieved from the RTMS to the caller of the RTMSProtocolHdlr getStatus() method.

m_trafficParameters - the traffic parameters sensed by the device, such as volume, speed, and occupancy.

m_healthStatus - The health status byte reported from the RTMS. A value other than 10, 20, 30, 40, 50, 60, or 70 indicates a hardware problem.

m_msgNum - The message number reported by the RTMS. This number is incremented sequentially when the RTMS dumps averaged data to a retrieval area at the end of a message period. It can be used to determine if the device is being polled too frequently or infrequently.

3.1.23.2.10 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all RTMSImpl objects that have been created within an instance of the RTMSManagementModule and allows for the addition and removal of RTMS objects. It also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to collect the current status of each RTMSImpl and push the collective status in a single CORBA event.

3.1.23.2.11 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the current traffic parameters from an RTMS device. It makes use of an RTMSProtocolHandler to perform the device specific protocol to obtain the traffic parameters. It moves the data from the device specific format to the generic TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone group configuration, perform raw data logging, and other services that are common to Transportation Sensor System objects.

3.1.23.2.12 RTMSProtocolHdlr (Class)

This class is a utility that encapsulates the communication protocol of the RTMS device. It provides a high level method to get the status as an object. It formats a command and sends it to the device and receives and interprets the response from the device, passing the data back to the caller in the form of an RTMSDeviceStatus object.

3.1.23.2.13 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of technology used for detection within the transportation industry. Examples of TSS devices range from the advanced devices, such as RTMS, to basic devices, such as single loop detectors.

This software interface is implemented by objects that provide access to the traffic parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are capable of providing detection for one or more detection zones. A single loop detector would have one detection zone, while an RTMS would have 8 detection zones.

3.1.23.2.14 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this TSS. When enabled, command and response packets exchanged with the device are logged to a debugging log file.

3.1.23.2.15 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation Sensor System object that existed in the system during a prior run of the software.

3.1.23.2.16 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo object.

3.1.23.2.17 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database data pertaining to Transportation Sensor Systems. Because this class is designed to be generic and work for RTMS as well as other TSS derived objects, the add method requires a model id to be passed. This allows data for a specific model to be retrieved by model specific factories during system initialization.

3.1.23.2.18 TSSPollingTask (Class)

This class is a TimerTask that is used by an RTMS to schedule its asynchronous polling with a Timer object.

3.1.23.2.19 TSSPollResults (Class)

This class is a data holder used to pass the results of device polling from the PolledTSSImpl derived class back to the base class for processing. The traffic parameter data passed is lane (detection zone) level. The operational status is the status as determined by the derived class.

m_trafficParms - An array of traffic parameters for the current poll cycle, with one array entry for each detection zone of the device.

m_opStatus - The operational status as determined by the derived class.

3.1.23.2.20 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data was collected from the device.

3.1.23.3 TSSModuleClassDiagram (Class Diagram)

This class diagram shows classes in the TSSManagementModule used to allow the module to run within the CHART II service framework and also to provide common services to other classes within the module.

[image: image328.emf]2 event channels, one

for status change,

one for traffic parameter data

Raw Data Log

LogFile

TSSManagementDB

RTMSFactoryImpl

TSSManagementModulePkg

ServiceApplicationModule

«interface»

PushEventSupplier

ServiceApplication

«interface»

TSSManagementProperties

TSSDBData

CommFailureDB

1

*

1

1

1 1

1 1

1

1

1

1

1

1 returns persisted

TSS data in

1 1

1

1

getList(int TSSType):TSSDBData[]

add(byte[] id, int TSSType, TSSConfiguration):void

remove(byte[] id):void

updateConfig(byte[] id, TSSConfiguration):void

updateCommMode(byte[] id, int mode):void

updateOpStatus(byte[] id, int opStatus):void

DBConnectionManager m_dbConn

RTMSFactoryImpl(ServiceApplication,

 TSSManagementProperties,

 TSSManagementDB,

 LogFile, PushEventSupplier,

 PushEventSupplier)

remove(byte[] token, byte[] idl):void

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

getRawDataFileName():String

getDebugFileDir():String

getAutoStatusPushSecs():int

TSSConfiguration m_config

CommunicationMode m_mode

OperationalStatus m_opStatus

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

Figure 326. TSSModuleClassDiagram (Class Diagram)

3.1.23.3.1 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about any comm failure that occurs in the system.

3.1.23.3.2 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.23.3.3 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.23.3.4 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all RTMSImpl objects that have been created within an instance of the RTMSManagementModule and allows for the addition and removal of RTMS objects. It also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to collect the current status of each RTMSImpl and push the collective status in a single CORBA event.

3.1.23.3.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.23.3.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.23.3.7 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation Sensor System object that existed in the system during a prior run of the software.

3.1.23.3.8 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database data pertaining to Transportation Sensor Systems. Because this class is designed to be generic and work for RTMS as well as other TSS derived objects, the add method requires a model id to be passed. This allows data for a specific model to be retrieved by model specific factories during system initialization.

3.1.23.3.9 TSSManagementModulePkg (Class)

This class is a ServiceApplicationModule used to serve an RTMSFactory object. The RTMSFactory serves zero or more RTMS objects. By providing an implementation of the ServiceApplicationModule interface, this class can be included in the CHART2 service application framework, which provides common services needed to serve CORBA objects within the CHART 2 system.

3.1.23.3.10 TSSManagementProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to the properties specific to the TSSManagementModule. These properties include the name of the file where raw traffic parameter data is to be logged, the directory where debug log files are to be kept, and the interval at which the status of all TSS objects is to be collected and pushed in a CORBA event.

Sequence Diagrams

3.1.23.4 PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)

A user with the proper functional rights can put a Transportation Sensor System in maintenance mode if it is not already in maintenance mode. The communication mode stored in the TSSStatus object is updated to indicate maintenance mode. If a polling timer does not already exist, it is created and the TSSPollingTask is scheduled for the configured polling interval. A CORBA event is pushed on the Status event channel to notify others of the change. An entry is made in the operations log to record that this action has been performed by the user.

[image: image329.emf]PushEventSupplier

(status channel) OperationsLog TSSStatus PolledTSSImpl

Administrator

TSSPollingTask

java.util.Timer

CommandStatus

push (ModeChanged)

log

m_mode = MAINT_MODE

[already in maint mode]

[not authorized]

AccessDenied

putInMaintenanceMode

[new timer was created]

schedule

[new timer was created]

create

[m_timer == null]

create

completed

[already in maint mode]

completed

[not authorized]

completed

Figure 327. PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)

3.1.23.5 PolledTSSImpl:putOnline (Sequence Diagram)

A user with the proper functional rights can put a Transportation Sensor System online if it is not already online. The communication mode stored in the TSSStatus object is updated to indicate the sensor is online. If a polling timer does not already exist, it is created and the TSSPollingTask is scheduled for the configured polling interval. A CORBA event is pushed on the Status event channel to notify others of the change. An entry is made in the operations log to record that this action has been performed by the user.

[image: image330.emf]TSSPollingTask

java.util.Timer

PushEventSupplier

(status channel) OperationsLog TSSStatus PolledTSSImpl

Administrator

CommandStatus

[new timer was created]

schedule

[new timer was created]

create

[m_timer == null]

create

push (ModeChanged)

log

m_mode = ONLINE

[mode already online]

[not authorized]

AccessDenied

putOnline

completed

[mode already online]

completed

[not authorized]

completed

Figure 328. PolledTSSImpl:putOnline (Sequence Diagram)

3.1.23.6 PolledTSSImpl:setConfiguration (Sequence Diagram)

A user with the proper functional rights can change the configuration of a Transportation Sensor System. The previous configuration values are used to detect values that have been changed. If the Port location data has been changed, a new PortLocator object is created with the new values. If the polling interval has been changed and the device is not offline, the existing polling timer is cancelled and destroyed, a new timer is created, and a new polling task is scheduled. If any values were changed, an entry is made in the operations log to record the values that the user has changed. A CORBA event is pushed on the Status event channel to provide notification of the configuration change to other applications.

[image: image331.emf]Tasks cannot be

removed from a

Timer, so we just

create a new one.

TSSPollingTask

java.util.Timer

If port location data

changed, create new

PortLocator and replace

the old one.

PortLocator

OperationsLog java.util.Timer PolledTSSImpl

Administrator

PushEventSupplier

(status channel)

[at least one config value changed]

logList (configuration changed by user, enumerating items changed)

[poll interval seconds changed AND NOT offline]

schedule

[poll interval seconds changed AND NOT offline]

create

[poll interval seconds changed AND NOT offline]

create

[poll interval seconds changed AND NOT offline]

delete

[poll interval seconds changed and NOT offline]

cancel

[PortLocation data changed]

create

[not authorized]

AccessDenied

setConfiguration

[at least one config value changed]

push (ConfigChanged)

Figure 329. PolledTSSImpl:setConfiguration (Sequence Diagram)

3.1.23.7 PolledTSSImpl:takeOffline (Sequence Diagram)

A user with the proper functional rights can take a Transportation Sensor System offline from the system if it is not already offline. The communication mode stored in the TSSStatus object is updated to indicate the sensor is offline. The timer used to periodically invoke the polling process is cancelled and a CORBA event is pushed on the Status event channel to notify others of the change. An entry is made in the operations log to record that this action has been performed by the user.

[image: image332.emf]PushEventSupplier

(status channel) OperationsLog TSSStatus PolledTSSImpl

Administrator

Polling Timer

is cancelled.

java.util.Timer CommandStatus

push (ModeChanged)

log

m_mode = OFFLINE

[mode already offline]

[not authorized]

AccessDenied

takeOffline

cancel

m_timer = null

completed

[mode already offline]

completed

[not authorized]

completed

Figure 330. PolledTSSImpl:takeOffline (Sequence Diagram)

3.1.23.8 RTMSFactoryImpl:constructor (Sequence Diagram)

When the RTMSFactoryImpl is constructed, it obtains persisted data for each previously existing RTMS from the database and constructs RTMSImpl objects using this data. Each object is connected to the ORB and registered in the CORBA trading service. The factory creates a timer that is used to cause it to periodically collect the status of all RTMS objects and push the data as a CORBA event.

[image: image333.emf]See RTMSImpl:constructor

for details on construction.

java.util.Vector

ORB ServiceApplication

RTMSImpl

TSSManagementDB

RTMSFactoryImpl

TSSManagementModulePkg

TSSCurrentStatusPushTask

java.util.Timer

add

schedule

create

create

registerObject

activate_object

getORB

create

[*for each TSSDBData]

TSSDBData[]

getList (TSSTypeRTMS)

create

create

Figure 331. RTMSFactoryImpl:constructor (Sequence Diagram)

3.1.23.9 RTMSFactoryImpl:createRTMS (Sequence Diagram)

A user with the proper functional rights can add an RTMS to the system. The RTMSFactoryImpl is called with configuration data for the RTMS to be added. The RTMSFactoryImpl adds the configuration data to the database, using status information indicating the device is offline and OK. An RTMSImpl object is created using this same data and the object is added to the list of RTMSImpl objects managed by the factory. The new RTMSImpl object is connected to the ORB and published in the CORBA Trading Service. A CORBA event is pushed to allow other applications to be notified of the existence of the RTMS object.

[image: image334.emf]ORB ServiceApplication

RTMSImpl

TSSManagementDB java.util.Vector RTMSFactoryImpl

Administrator

PushEventSupplier

(status)

registerObject

add

activate_object

create

[not authorized]

AccessDenied

addTSS

createRTMS

push (ObjectAdded)

Figure 332. RTMSFactoryImpl:createRTMS (Sequence Diagram)

3.1.23.10 RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)

The RTMSFactoryImpl contains a timer used to periodically push the current status of all sensors managed by the factory. The factory retrieves the status of each RTMS and bundles all status into a single CORBA event. This event is pushed on the Data event channel.

[image: image335.emf]PushEventSupplier

(Data Channel) TSSImpl

Vector to hold

status objects

for all RTMS objects.

Vector

RTMSFactory Vector TSSCurrentStatusPushTask

java.util.Timer

push (CurrentStatus)

toArray

add

getStatus

create

[*for each RTMSImpl

toArray

pushCurrentStatus

run

Figure 333. RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)

3.1.23.11 RTMSFactoryImpl:remove (Sequence Diagram)

A user with the proper functional rights can remove an RTMS from the system. The RTMSFactory withdraws the object from the CORBA trading service, disconnects the object from the ORB, removes the object's persisted data from the database, and finally removes the object from the factory's list of RTMS objects. A CORBA event is pushed to notify other applications of the object's removal.

Note that this diagram shows an object being removed through a direct call to the RTMSFactoryImpl. RTMS objects can also be removed using the remove method of the RTMS object. When this occurs, the RTMS object simply delegates the call to its factory and the processing occurs as if the factory was called directly.

[image: image336.emf]ORB Vector RTMSFactoryImpl

Administrator

TSSManagementDB ServiceApplication

PushEventSupplier

(status) RTMSImpl

removeTSS

deactivate_object

remove

withdrawObject

[not authorized]

AccessDenied

remove

push (ObjectRemoved)

shutdown

Figure 334. RTMSFactoryImpl:remove (Sequence Diagram)

3.1.23.12 RTMSImpl:constructor (Sequence Diagram)

This diagram shows the construction of the RTMSImpl object. The RTMSImpl invokes the base class constructor, allowing it to construct a PortLocator, LogFile (for debugging), and a polling timer (if the status passed to the constructor does not indicate the device is offline). After the base class is constructed, the RTMSImpl constructs an RTMSProtocolHandler to be used to perform the RTMS specific protocol to obtain traffic parameters from the RTMS device.

[image: image337.emf]PolledTSSImpl

RTMSImpl

RTMSFactoryImpl

create

[NOT offline]

schedule

[NOT offline]

create

[NOT offline]

create

create

create

super

create

TSSPollingTask

java.util.Timer

LogFile

PortLocator

RTMSProtocolHdlr

Figure 335. RTMSImpl:constructor (Sequence Diagram)

3.1.23.13 RTMSImpl:poll (Sequence Diagram)

The poll method of the RTMSImpl is called from its base class when it is time to poll the RTMS device. At the point when this method is called, the base class has already established a connection with the device. The RTMSImpl uses the RTMSProtocolHandler to send a data request to the device and parse the device response. Any communication failure, such as a non-responsive device, causes the base class to be notified that a communication failure occurred. If a communication failure did not occur, the RTMS health status is checked for an indication of a hardware failure. If no hardware failure exists, the lane level data is passed back to the base class to process the data.

[image: image338.emf][debug mode]

log (packet received)

[debug mode]

log (packet being sent)

[CommFailure]

TSSPollResults

[CommFailure]

m_opStatus = COMM_FAILURE

create

[no response, checksum error, or

invalid packet]

CommFailure

byte{}

receive

send(RTMS Data Request)

getStatus

poll

[HARDWARE_FAILURE]

TSSPollResults

RTMSProtocolHdlr

virtual call to derived

class impl.

RTMSImpl

PolledTSSImpl

The remainder of this sequence is only carried out if a valid response was received from the RTMS device.

RTMSDeviceStatus

LogFile

(Debugging)

TSSPollResults

DataPort

[debug mode]

log (RTMSDeviceStatus.toString())

TSSPollResults

m_trafficParms[i] =

RTMSDeviceStatus.m_trafficParms[i]

[*for each TrafficParameters

object in RTMSDeviceStatus]

[RTMSDeviceStatus.m_healthStatus

!= 10, 20, 30, 40, 50, 60, or 70]

m_opStatus = HARDWARE_FAILURE

RTMSDeviceStatus

create

Figure 336. RTMSImpl:poll (Sequence Diagram)

3.1.23.14 RTMSImpl:remove (Sequence Diagram)

A user with the proper functional rights can remove an RTMS from the system. When this is done through a call to the RTMS object, the RTMS delegates the call to the RTMS Factory. See the RTMSFactoryImpl:remove sequence for details.

[image: image339.emf]See RTMSFactoryImpl:remove

for details.

RTMSFactoryImpl RTMSImpl

Administrator

remove

[not authorized]

AccessDenied

remove

Figure 337. RTMSImpl:remove (Sequence Diagram)

3.1.23.15 TSSManagementModulePkg:initialize (Sequence Diagram)

The TSSManagementModule is initialized by the ServiceApplication framework when the Chart2Service configured to contain the TSSManagementModule is started. The TSSManagementModule first ensures that the proper offer types have been registered in the Trader for the types of objects this module will serve. It creates a wrapper to the service's properties object that provides easy access to properties that are specific to this module. A TSSManagementDB object is created to provide access to Transportation Sensor System data that is stored in the database. Two PushEventSupplier objects are created to provide access to two separate CORBA event channels. One event channel is used to push events relating to configuration and operational status of RTMS objects. The other channel is used to periodically push traffic parameter data to interested parties. A LogFile object is created to provide access to a raw data log file, used to log lane level data to a flat file. Finally, the RTMSFactoryImpl object is created, connected to the ORB, and registered in the CORBA Trading Service.

[image: image340.emf]create

create

getEventChannelFactory

create

getDBConnectionMgr

create

[*for i = 0; i < 2; i++]

Specify parent for RTMS

as TransportationSensorSystem.

Specify parent of RTMSFactory as

TransportationSensorSystemFactory

CorbaUtilities ORB

See RTMSFactory:constructor

for details on RTMSFactoryImpl

construction.

RTMSFactoryImpl

LogFile

PushEventSupplier

TSSManagementDB

TSSManagementProperties

ServiceApplication

TSSManagementModule

Service

Application

Two event

channels are

used. One for

status changes,

one for traffic

parameter data

getDefaultProperties

getProperties

create

addTypeToTraderRepos(RTMS)

addTypeToTraderRepos(RTMSFactory)

addTypeToTraderRepos(TransportationSensorSystem)

addTypeToTraderRepos(TransportationSensorSystemFactory)

getTradingRegister

registerEventChannel

registerObject

activate_object

create

Figure 338. TSSManagementModulePkg:initialize (Sequence Diagram)

3.1.23.16 TSSManagementModulePkg:shutdown (Sequence Diagram)

The TSSManagementModule is shutdown when the Chart2Service which contains the module is shut down. The TSSManagementModule disconnects the RTMSFactory from the ORB and then tells it to shut down. The RTMSFactoryImpl tells each RTMSImpl object to shut down and it disconnects the object from the ORB. When an RTMSImpl object is shut down, it cancels its polling timer (if any).

[image: image341.emf]java.util.Timer

(RTMS Polling

timer) RTMSImpl Vector RTMSFactoryImpl ORB TSSManagementModule

ServiceApplication

[timer NOT null]

cancel

shutdown

clear

deactivate_object

toArray

[*for each RTMSImpl]

shutdown

deactivate_object (RTMSFactoryImpl)

shutdown

Figure 339. TSSManagementModulePkg:shutdown (Sequence Diagram)

3.1.23.17 TSSPollingTask:run (Sequence Diagram)

A PolledTSSImpl object is polled on a regular interval specified in its TSSConfiguration object. When polled, the PolledTSSImpl returns immediately if it is offline. Otherwise, it establishes a connection with the field device using communications parameters specified in the TSSConfiguration. The PolledTSSImpl then calls its abstract poll method which is implemented by the derived class (RTMSImpl). Any changes to the operational status detected during polling of the device are pushed on the CORBA event channel used for status. Raw data obtained from the device is logged in the Raw Data log file. The lane level data provided by the derived class is combined according to the zone groups that have been configured in the TSSConfiguration. The speed for each lane (detection zone) included in a zone group is averaged to provide a single value for the zone group. If a lane does not have any volume (and thus no speed), the speed obtained the last time the lane had a volume is used. The volume across all detection zones in the zone group is summed, and the occupancy for all detection zones in the zone group is averaged (including detection zones reporting zero occupancy). The current speed for each detection zone with a non-zero volume is stored off for use when a zero occupancy occurs.

[image: image342.emf]PushEventSupplier

(online data)

PushEventSupplier

(status) TSSManagementDB TSSStatus

Virtual method

call to derived

class impl.

See RTMSImpl:poll

sequence for details

RTMSImpl

This task was scheduled

during the construction of the PolledTSSImpl.

The run method of the task is called on the

polling interval set in the TSSConfiguration.

PolledTSSImpl TSSPollingTask

java.util.Timer

LogFile

(Raw Data)

PushEventSupplier

(maint data)

If speed is not available

because volume is null,

use the last speed obtained

for the detection zone.

PortLocator

average the speed

[failed to connect AND opStatus changed]

push (OpStatusChanged)

[failed to connect AND opStatus changed]

updateOpStatus

[failed to connect]

m_opStatus = COMM_FAILED

[op status differs]

push (OpStatusChanged)

[TSSPollResults.m_opStatus != TSSStatus.m_opStatus]

updateOpStatus

m_trafficParameterTimestamp = now

[Op Status is NOT OK]

[TSSStatus.m_mode

is OFFLINE]

synchronized

[op status differs]

m_opStatus = TSSPollResults.m_opStatus

TSSPollResults

poll

[failed to connect]

pollDevice

run

end synchronization

[*for each zone group]

[op status is OK and ONLINE mode]

log

[offline]

[speed obtained for detection zone]

store speed as last speed for zone

[offline]

average the occupancy

sum the volume

[*for each detection

zone in zone group]

releasePort

ConnectedPortInfo

getConnectedPort

Figure 340. TSSPollingTask:run (Sequence Diagram)

TTSControlModule

3.1.24 Classes

3.1.24.1 TTSControlModuleClasses (Class Diagram)

The TTSControlModule serves an instance of the TTSConverter interface, which provides functionality to convert text messages into speech for the CHART2 system. This diagram shows how the implementation of a TTSConverter CORBA interface relies on other supporting classes to perform its functions.

[image: image343.emf]1 1

*1

1 1

1 1

TTSControlModuleDB

DBConnectionManager

ServiceApplicationModule

«interface»

java.lang.Runnable

«interface»

java.util.TreeMap

TTSTextMessageInfo

«typedef»

FileCacheManager

FileCacheInfo

«typedef»

ServiceApplication

«interface»

UniquelyIdentifiable

«interface»

TTSConverter

«interface»

AudioPushConsumer

«interface»

TTSControlModuleProperties

TTSConverterImpl

AudioDataFormat

«typedef»

AudioEncoding

«enumeration»

TTSControlModule

TTSServer

TTSMessageQueue

FileCacheCleaner

java.io.File

AudioPushThreadManager

LHTTSEngine

«interface»

1

1

1

1

1

1

1

1

1

*

1

*

1

1

1

1

1 1

1

1

1

*

1 *

1

1

* 1

1

1

1

1

1

1

TTSControlModuleDB(DBConnectionManager mgr)

insertFileCacheInfo()

getFileCacheInfo():FileCacheInfo[]

deleteFileCacheInfo()

updateFileCacheInfo()

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

run()

put(Object key, Object value)

get(Object key):value

string text

AudioDataFormat format

long chunkSize

AudioPushConsumer obj

int cmd

FileCacheManager(TTSControlDB db,

 long maxCacheSize)

getFileCacheInfo(String text,

 AudioDataFormat format)

 :FileCacheInfo

createFileCacheInfo(String fileName)

 :FileCacheInfo

-cleanupCachedFiles()

shutdown()

m_maxCacheSize

m_currentCacheSize

m_lastUsedFileCacheList

string m_text

AudioDataFormat m_format

string m_filename

long m_fileSize

long m_lastUsedTimeStamp

long m_voiceSeconds

getSupportedFormats(void):AudioDataFormatList;

convertTextToSpeech(string text,

 AudioDataFormat format,

 long maxChunkSize,

 TTSPriority priority,

 AudioPushConsumer consumer)

pushVoiceLength(string text,

 AudioDataFormat format,

 AudioPushConsumer consumer)

getVoiceLength(string text, AudioDataFormat format):

 long

pushAudio(AudioData data):boolean

pushAudioProperties(AudioDataFormat format,

 long seconds,

 long size):void

pushFailure(string errMsg):void

pushCompleted()

TTSControlModuleProperties(Properties props)

getVoiceType()

getAudioFileDirLocation()

getAudioDataFormats()

getAudioFileMaxCacheSize()

getAudioPushThreadPoolSize()

TTSConverterImpl(TTSServer server,

 TTSControlDB db,

 long maxCacheSize,

 long numPushThreads)

shutdown()

m_id

m_name

AudioEncoding m_encoding;

float m_sampleRate;

long m_sampleSizeInBits;

long m_channels;

long m_frameSize;

float m_frameRate;

boolean m_bigEndian;

PCM_SIGNED

PCM_UNSIGNED

A_LAW

U_LAW

TTSControlModule()

getProperties():TTSControlModuleProperties

TTSServer()

Initialize(int voiceType,

 AudioDataFormatList formats,

 string fileDirLocation)

GetSupportedAudioFormats()

ConvertTextToSpeech(string text,

 string filename,

 AudioDataFormat format)

Shutdown()

m_supportedAudioDataFormatList

TTSMessageQueue(TTSServer server,

 FileCacheManager mgr,

 long numPushThreads)

addMessage(TTSTextMessageInfo msgInfo,

 TTSPriority priority)

shutdown()

-pushAudioClipInfo(FileCacheInfo fileInfo,

 int cmd,

 AudioPushConsumer consumer)

static int CONVERT_TTS_CMD = 0

static int GET_VOICE_LENGTH_CMD = 1

m_systemMessageList

m_userMessageList

AudioPushThreadManager(int numPushThreads)

pushAudio(AudioPushConsumer consumer,

 InputStream stream,

 AudioDataFormat format,

 long chunkSize)

releaseAudioPushThread()

-getAudioPushThread()

m_freeThreads

m_inUseThreads

Initialize()

Stop()

Say()

ConfigIndex()

ConfigTotal()

ConfigFormat()

Figure 341. TTSControlModuleClasses (Class Diagram)

3.1.24.1.1 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.1.24.1.2 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.1.24.1.3 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

3.1.24.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to push audio clip information back to the client. It provides the functionality to manage access to the AudioPushThreads.

3.1.24.1.5 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.24.1.6 FileCacheCleaner (Class)

This class represents an instance of a thread which is created to delete the audio clips that have not been used recently when the cache size used by the audio clips exceeds the maximum limit assigned.

3.1.24.1.7 FileCacheInfo (Class)

This structure specifies the information about an audio clip file, which has been converted from a text message to voice and cached for future use.

3.1.24.1.8 FileCacheManager (Class)

This class maintains a mapping between text messages and the corresponding audio clip file information. This is accomplished by maintaining a list of TreeMaps (one for each audio format supported) with text as key and audio clip information as the value. This class also helps manage the amount of hard drive space consumed by the audio clips by deleting the old clip files when the maximum cache size limit is reached. The maximum cache size limit can be set by the administrator using the system properties.

3.1.24.1.9 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.1.24.1.10 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.24.1.11 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the map will be in ascending key order, sorted according to the natural order for the key's class, or by the comparator provided at creation time, depending on which constructor is used.

3.1.24.1.12 LHTTSEngine (Class)

This interface represents the L&H RealSpeak Server TTS engine used to convert text messages to speech.

3.1.24.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.24.1.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.24.1.15 TTSControlModule (Class)

This class implements the Service Application module interface. It publishes the TTSConverterImpl object, which provides the functionality to convert text messages to speech for the CHART2 system. It also creates the TTSServer object, which provides the functionality to access the LHTTSEngine and the TTSControlModuleDB object, which provides access to the database.

3.1.24.1.16 TTSControlModuleDB (Class)

This class is a database accessor class used to store and retrieve audio clip information.

3.1.24.1.17 TTSControlModuleProperties (Class)

This class represents the system properties specific to the TTS Control Module.

3.1.24.1.18 TTSConverter (Class)

This interface represents the Text to Speech converter object which allows text to be passed in and speech to be returned.

3.1.24.1.19 TTSConverterImpl (Class)

This is the implementation of the TTSConverter interface, which provides the functionality to convert text to speech for the CHART2 system.

3.1.24.1.20 TTSMessageQueue (Class)

This class provides the functionality to retrieve messages from the queue and process them by either retrieving the audio clip data using the FileCacheManager object if available or by converting the text messages to speech using the TTSServer object. For text messages not already converted and available in the cache, this class maintains two queues of messages to be converted into speech, one for message requests from the system and another for the users. The messages in system message queue get a higher priority over messages in user message queue. All the messages of a particular queue are processed in a First In First Out fashion. The audio data produced from conversion or retrieved from the cache is passed back to the client via the AudioPushConsumer object using the AudioPushThreadManager object.

3.1.24.1.21 TTSServer (Class)

This class provides the functionality to access and control the TTS Engine from the CHART2 system. It provides the functionality to start, stop and change the configuration of the TTS Engine. It also provides a method to convert a text message to speech.

3.1.24.1.22 TTSTextMessageInfo (Class)

This struct specifies the text message information required to process text to speech converter request, the call back object to pass the results back and the type of command requested.

3.1.24.1.23 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

Sequence Diagrams

3.1.24.2 TTSControlModule:AddMessageToQueue (Sequence Diagram)

This diagram shows how a TTSConverter request is added to the message queue. First, the TTSMessageQueue queries the FileCacheManager to check if an already converted audio clip exists for the text message of the desired audio format. The FileCacheManager looks in the TreeMap of the desired audio format for the audio clip using the text message as the key. The TreeMap returns the audio clip file information, if the audio clip already exists. Otherwise, it returns a null. If the audio clip was not found, the message is queued in the proper queue depending upon the priority and the request returns (see ProcessQueuedMessages sequence digram for details about how the queued messages are processed). If the audio clip is found, the last used timestamp in the file cache information is updated and the audio data is pushed back to caller using the AudioPushConsumer object passed with the request (see PushAudioClipInformation for details about how audio clip data are passed back to the client).

[image: image344.emf]m_userMessageQueue m_systemMessageQueue TreeMap FileCacheManager

TTSConverterImpl

TTSMessageQueue

This updates the

FileCacheInfo

TTSControlModuleDB

getFileCacheInfo

addMessage

[if audio clip not found

&

TTSPriority = USER]

add

[if audio clip not found

&

TTSPriority = SYSTEM]

add

Update last used

time stamp in

FileCacheInfo

[if audio clip found]

put

[if audio clip not found]

null

[if audio clip found]

FileCacheInfo

[if the key is not found]

null

[if the key exists]

FileCacheInfo

get

[if clip found]

pushAudioClipInfo

[if message

added to queue]

notify

updateFileCacheInfo

Figure 342. TTSControlModule:AddMessageToQueue (Sequence Diagram)

3.1.24.3 TTSControlModule:CleanupFileCache (Sequence Diagram)

This diagram shows how the FileCacheManager thread deletes the old audio clip files when the cache limit is exceeded.

[image: image345.emf][while Current Cache Size >

Max Allowed cache Size]

next

create(m_fileName)

FilecacheInfo

create

m_format

[if audioFormat

for the TreeMap = m_format]

remove(m_text)

deleteFileCacheInfo

delete

m_fileName

m_text

"Update current

cache size"

FileCacheManager

This deletes the file from

the file system.

For file info sorted

by last used time

stamp

FileCacheCleaner

TreeMap m_lastUsedFileCacheList FileCacheInfo Iterator

File

FileCacheManager

TTScontrolModuleDB

delete

cleanupCachedFiles

delete

values().iterator()

Iterator

Figure 343. TTSControlModule:CleanupFileCache (Sequence Diagram)

3.1.24.4 TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

This sequence diagram shows how a convert text to speech request is processed. The message is added to the TTSMessageQueue and audio clip information will be pushed back using the AudioPushComsumer object passed through this call. See ProcessQueuedMessages and HARUtility.PushAudio sequence diagrams for details about how the messages are processed and the data is pushed back.

[image: image346.emf]Message queue processes the

request and returns the audio data

asynchronously. See

AddMessageToQueue and

ProcessQueuedMessages

sequence diagram for details about

the order in which the messages

are converted.

TTSMessageQueue

ORB

TTSConverterImpl

convertTextToSpeech

addMessage

"Replace <MAE> Tag"

Figure 344. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

3.1.24.5 TTSControlModule:CreateFileCacheInfo (Sequence Diagram)

This diagram shows how the FileCacheManager creates a FileCacheInfo object, which stores the text message and audio clip file information for future use. A file object is created from the given file name and is passed to AudioSystem class to get the AudioInputStream object, which contains the audio format information and the actual data. The length of the audio message and the size of the audio file are calculated using the audio format properties. The AudioDataFormat object is created and a FileCacheInfo object is created using the various data available. Finally, the FileCacheInfo object is added to the TreeMap containing others clip information of similar audio format and the FileCacheInfo object is returned.

[image: image347.emf]getAudioInputStream

getAudioFormat

create

create

createFileCacheInfo

[if current cache size >

max cache size allowed]

cleanupCachedFiles

"Update current

cache size"

insertFileCacheInfo

[if TreeMap for

the AudioFormat]

put

[if treemap does not

exist for the AudioFormat]

create

create

AudioSystem

File

Note:

Length of audio clip =

number of frames / frame rate.

Size of the audio clip =

frame length * frame size

AudioFormat TTSControlModuleDB TreeMap AudioInputStream

TTSMessageQueue

AudioDataFormat

FileCacheManager

FileCacheInfo

getFrameSize

getFrameRate

getFrameLength

Figure 345. TTSControlModule:CreateFileCacheInfo (Sequence Diagram)

3.1.24.6 TTSControlModule:GetSupportedFormats (Sequence Diagram)

This diagram shows how to retrieve a list of currently supported audio formats from the TTS Engine.

[image: image348.emf]AudioDataFormat

ORB

TTSConverterImpl TTSServer

LHTTSEngine

create

getSupportedFormats

GetSupportedAudioFormats

ConfigTotal

[* for each Config]

ConfigIndex

ConfigFormat

AudioDataFormatList

AudioDataFormatList

Figure 346. TTSControlModule:GetSupportedFormats (Sequence Diagram)

3.1.24.7 TTSControlModule:GetVoiceLength (Sequence Diagram)

This sequence diagram shows how a request to get audio message length is processed. The message is added to the TTSMessageQueue and audio clip information will be pushed back using the AudioPushComsumer object passed through this call. See ProcessQueuedMessages sequence diagrams for details about how the messages are processed and the data is pushed back.

[image: image349.emf]ORB

Message queue processes the request and

returns the voice properties asynchronously.

See ProcessQueuedMessages sequence

diagram for details about how the voicelength

is pushed. Also, note that this request is

added to the user message queue which has a

lower priority than system message queue.

TTSMessageQueue TTSConverterImpl

getVoiceLength

addMessage

"Replace <MAE> Tag"

Figure 347. TTSControlModule:GetVoiceLength (Sequence Diagram)

3.1.24.8 TTSControlModule:Initialize (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the TTSControlModule is initialized. Upon creation, the TTSControlModule creates a TTSControlServiceProperties object, which provides the user defined system properties to the rest of the objects in the TTSControlModule. A TTSControlDB object is created to provide access to the database for TTSControlModule. A TTSServer object is created to control and provide access to the TTS engine. A TTSConverterImpl object is created, activated with the POA and published in the Trader to provide the capability to convert text to speech for the rest of the CHART2 system. The TTSConverterImpl object creates a TTSMessageQueue thread, which provides the functionality to queue and prioritize the TTSConverter requests. The TTSConverterImpl object also creates a FileCacheManager object, which manages the audio clip file info. The TTSMessageQueue creates a AudioPushThreadManager object, which contains a pool of AudioPushThreads that can be used to push audio clip information back to the clients of the TTSConverter. The number of AudioPushThreads to be created can be configured through the system properties file.

[image: image350.emf][* for each

AudioPushThread]

initialize

activate_object(TTSConverterImpl)

getMaxCacheSize

create

create

create

getFileCacheInfo

create

Initialize

[* for each

AudioClip]

[if TreeMap for

the AudioFormat]

put

[if TreeMap does not exist

for the AudioFormat]

create

FileCacheInfo[]

ServiceApplication

TTSControlModuleDB

TreeMap

POA

TTSControlModule

CHART2

Application Service

TTSConverterImpl

TTSServer

FileCacheManager

TTSControl

ModuleProperties

TTSMessageQueue

AudioPushThreadManager

AudioPushThread

create

getDBConnectionManager

getPOA

getProperties

getDefaultProperties

create

getAudioDataFormats

getAudioFileDirLocation

getAudioPushThreadPoolSize

getVoiceType

create

[can't read properties]

failure

create

registerObject(TTSConverterImpl)

Figure 348. TTSControlModule:Initialize (Sequence Diagram)

3.1.24.9 TTSControlModule:ProcessQueuedMessages (Sequence Diagram)

This diagram shows how TTSMessageQueue thread processes the queued messages. The thread continuously looks for messages added to System Message Queue and User Message Queue. At any time, messages queued in the System Message Queue have a higher priority over the messages queued in the User Message Queue. Once a message is retrieved from the queue, a check is made to see if the same text message with the desired audio format has been converted before. If the audio clip file is found, the audio data is pushed back to client using the AudioPushConsumer object passed with the request. If a pre-converted clip is not available, the thread requests the TTSServer to convert the text message to speech. If the TTS engine fails to convert the message, the consumer is notified. If the message is converted successfully, the audio clip information is stored in the FileCacheManager for future use and the audio properties are pushed to the client. See PushAudioClipInfo sequence diagram for details about how the audio clip information is pushed.

[image: image351.emf]get

[if no messages in queue]

wait

[if clip exists]

updateFileCacheInfo

[if clip exists]

put

TTSMessageQueue

LHTTSEngine

RealSpeakServer

TTSConverterImpl

FileCache

Manager

This sets the engine

to produce audio of

desired format

TTSControl

ModuleDB

See PushAudioProperties

sequence diagram for details.

AudioPush

ThreadManager

This looks in the TreeMap

corresponding to the audio

format desired to check if there

is a audio clip converted before

for the text message. If found,

the file info is returned.

AudioPush

Consumer TreeMap

See PushAudioProperties

sequence diagram for details.

Update last used

timestamp and put the

new file info.

See CreateFileCacheInfo

sequence diagram for details.

ConfigIndex

[while not shutdown]

start

[if message converted]

createFileCacheInfo

success

[TTSEngine error]

failure

Say

[if System Message Queue empty]

Get Message From

User Message Queue

[if clip does not exist]

ConvertTextToMessage

[if System Message Queue not empty]

Get Message From

System Message Queue

FileCacheInfo

[TTSEngine error]

pushFailure

[if clip does not exist]

null

[if clip exists]

FileCacheInfo

getFileCacheInfo

[if message converted]

pushAudioClipInfo

[if clip exists]

pushAudioClipInfo

[if the key is not found]

null

[if the key exists]

FileCacheInfo

Figure 349. TTSControlModule:ProcessQueuedMessages (Sequence Diagram)

3.1.24.10 TTSControlModule:PushAudioClipInformation (Sequence Diagram)

This diagram shows how the audio clip information is pushed back to the caller of a TTSConverter request. If the request is a get voice length command, the audio clip properties are pushed to client using the AudioPushConsumer passed with the request. If the request is for converted audio data, a File object is created to access the audio to retrieve the audio data. An AudioInputStream object is retrieved using the AudioSytem class . The input stream along with the AudioPushConsumer is passed to the AudioPushThreadManager for pushing the audio data. See HARUtility.PushAudio for details about how the audio data is pushed.

[image: image352.emf]AudioPushThreadManager AudioPushConsumer

TTSMessageQueue

TTSMessageQueue

See HARUtility.PushAudio for

details about the the audio data

are pushed to the caller.

AudioSystem

File

[if cmd = CONVERT_TTS_CMD]

pushAudio

[if cmd = GET_VOICE_LENGTH_CMD]

pushAudioProperties

[if cmd = CONVERT_TTS_CMD]

getAudioInputStream

[if cmd= CONVERT_TTS_CMD]

create

[if cmd = GET_VOICE_LENGTH_CMD]

pushAudioClipInfo

Figure 350. TTSControlModule:PushAudioClipInformation (Sequence Diagram)

3.1.24.11 TTSControlModule:Shutdown (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the TTSControlModule is shutdown. The TTSConverterImpl object is deactivated and shutdown. The TTSConverterImpl object in turn shuts down the TTSMessageQueue thread, which causes to shutdown the AudioPushThreadManager thread and AudioPushThreads. The TTSServer object is also shutdown and the TTSControlDB object is destroyed.

[image: image353.emf]shutdown

TTSConverterImpl TTSServer TTSControlModule POA

CHART2

Application Service

FileCache

Manager

LHTTSEngine

TTSControlModuleDB TTSMessageQueue AudioPushThread

AudioPush

ThreadManager

[* for each Thread]

shutdown

shutdown

Stop

shutdown

deactivate_object(TTSConverterImpl)

shutdown

shutdown

delete

Shutdown

Figure 351. TTSControlModule:Shutdown (Sequence Diagram)

UserManagementModule

3.1.25 Classes

3.1.25.1 UserManagementModuleClasses (Class Diagram)

This class diagram shows classes that support user management in the Chart II system. The purpose of this module is to serve the object implementing the UserManager interface and to serve the objects implementing the Profile interface.

[image: image354.emf]ServiceApplicationModule

«interface»

ServiceApplication

«interface»

UserManagementModule UserManagerImpl

UserManager

«interface»

CosTrading.Register

«interface»

CosTrading.Lookup

«interface» UserManagementDB

ProfileImpl

Profile

«interface»

1

1

1

1

1

1

1 * 1 1

1

1

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

UserManagementModule()

m_application

UserManagerImpl(UserManagementDatabase db, CosTrading.Register traderReg, CosTrading.Lookup traderLookup)

m_database

createUser(AccessToken,UserName,Password):void

deleteUser(AccessToken,UserName):void

getUsers(AccessToken):UserList

getRoles(AccessToken):RoleList

getUserRoles(AccessToken,UserName):RoleList

getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList

setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void

createRole(AccessToken, Role):void

deleteRole(AccessToken,RoleName):void

changeUserPassword(AccessToken, UserName,Password,Password):void

setUserRoles(AccessToken, UserName, RoleList):void

grantRole(AccessToken, UserName,RoleName):void

revokeRole(AccessToken,UserName,RoleName):void

setUserPassword(AccessToken, UserName,Password):void

ping():void

setUserProfileProperties(AccessToken, ProfilePorpertyList):void

deleteUserProfileProperties(AccessToken, ProfilePropertyKeyList):void

setSystemProfileProperties(AccesssToken, ProfilePropertyList):void

deleteSystemProfileProperties(AccessToken, ProfilePropertyKeyList):void

getSystemProfileProperties(AccessToken):ProfilePropertyList

getUserProfileProperties(AccessToken):ProfilePropertyList

getUsers

getRoles

getUser

getUserRoles

getUserPassword

setUserPassword

createRole

deleteRole

setRoleFunctionalRights

getRoleFunctionalRights

createUser

deleteUser

grantRole

revokeRole

setUserPassword

setUserRoles

getUserProfile

deleteUserProfile

getUserProfileProperties

setUserProfileProperties

deleteProfileProperty

getSystemProfile

getSystemProfileProperties

setSystemProfileProperties

DBConnectionManager m_db;

destroy

setProfileProperties(AccessToken, ProfilePropertyList):void

deleteProfileProperty(AccessToken,ProfileProperties):void

getProfileProperties():ProfilePropertyList

Figure 352. UserManagementModuleClasses (Class Diagram)

3.1.25.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published.

3.1.25.1.2 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover.

3.1.25.1.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to configure how the CHART II system behaves or presents information to a user.

3.1.25.1.4 ProfileImpl (Class)

This class is the specific implementation of a Profile interface which will be served by the User Management Service. As such, it contains the profile properties and provides methods to get, add and delete the properties..

3.1.25.1.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.25.1.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.25.1.7 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Managment data in the database. This class uses a Database object to retrieve a connection to the database for its exclusive use during a method call.

3.1.25.1.8 UserManagementModule (Class)

This module creates, publishes and deletes the object that implements the UserManager interface for user configuration and manipulation.

3.1.25.1.9 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users, roles, and functional rights. The UserManager is largely an interface to the User Management database tables.

3.1.25.1.10 UserManagerImpl (Class)

This class is the specific implementation of a UserManager interface which will be served by the User Management Service. As such, it provides implementations of each of the methods in the UserManger interface.

Sequence Diagrams

3.1.25.2 UserManagementModule:AddUser (Sequence Diagram)

A user with the proper functional rights may add a new user to the system. The user will be added to the user database provided the password and username specified for the new user are valid.

[image: image355.emf]UserManagerImpl UserManagementDB

ORB

OperationsLog

TokenManipulator

[database error]

CHART2Exception

[invalid password]

InvalidPassword

InvalidPassword

createUser

[no rights]

AccessDenied

checkAccess

createUser

log

[no rights]

log

[database error]

CHART2Exception

Success

[invalid user name]

InvalidUserName

InvalidUserName

createUserProfile

Figure 353. UserManagementModule:AddUser (Sequence Diagram)

3.1.25.3 UserManagementModule:ChangeUserPassword (Sequence Diagram)

A user may change his/her own password. The system will verify that the invoking user is actually the user whose password is being changed and will require the user to pass his/her current password which must match the password in the user database.

[image: image356.emf]OperationsLog

Thrown if the

invoking user is

not the user

whose password

is being changed

TokenManipulator UserManagerImpl

ORB

UserManagementDB

Thrown if the

old password

passed does not

match the users

password in the

database

[database error]

CHART2Exception

InvalidPassword

setUserPassword

[incorrect password]

IncorrectPassword

IncorrectPassword

getUserPassword

Success

[unknown user]

UnknownUser

[no rights]

AccessDenied

UnknownUser

checkAccess

changeUserPassword

[database error]

CHART2Exception

[invalid password]

InvalidPassword

[no rights]

log

log

Figure 354. UserManagementModule:ChangeUserPassword (Sequence Diagram)

3.1.25.4 UserManagementModule:CreateRole (Sequence Diagram)

A user with the proper functional rights may create a new role in the user database. The system will verify that the role is not already defined before creating it.

[image: image357.emf]UserManagerImpl

ORB

OperationsLog UserManagementDB

TokenManipulator

checkAccess

createRole

[database error]

CHART2Exception

log

[no rights]

log

[duplicate role]

DuplicateRole

createRole

[no rights]

AccessDenied

Success

DuplicateRole

[database error]

CHART2Exception

Figure 355. UserManagementModule:CreateRole (Sequence Diagram)

3.1.25.5 UserManagementModule:DeleteProfileProperty (Sequence Diagram)

A user with proper functional rights can delete a profile property from the profile.

[image: image358.emf]If the Profile being modified is

the System Profile check to see

if the user has 'ConfigureSystemProfile'

functional right. Otherwise, the profile

should belong to the user modifying it

and the user should have 'ConfigureSelf'

functional right.

OperationsLog TokenManipulator UserManagementDB Profile

ORB

Success

checkAccess

[database error]

CHART2Exception

[database error]

CHART2Exception

log

deleteProfileProperty

[no rights]

AccessDenied

[no rights]

log

deleteProfileProperty

Figure 356. UserManagementModule:DeleteProfileProperty (Sequence Diagram)

3.1.25.6 UserManagementModule:DeleteRole (Sequence Diagram)

A user with the proper functional rights may delete a role from the user database. The system will verify that the role is not currently assigned to any users before deleting it.

[image: image359.emf]UserManagementDB

TokenManipulator

UserManagerImpl

ORB

OperationsLog

RoleInUse

deleteRole

[database error]

CHART2Exception

[no rights]

AccessDenied

checkAccess

deleteRole

log

[no rights]

log

[database error]

CHART2Exception

Success

[invalid role]

InvalidRole

InvalidRole

[role in use]

RoleInUse

Figure 357. UserManagementModule:DeleteRole (Sequence Diagram)

3.1.25.7 UserManagementModule:DeleteUser (Sequence Diagram)

A user with the proper functional rights may delete a user from the user database. The system will check if the user who is being deleted is currently logged in. If the user is logged in, the administrator will be notified of this fact and will not be able to delete the user. Note that the administrator may use the system to force the user to logout and then delete the user. The check to see if the user is currently logged in is a warning to the administrator and, due to its use of the trader, cannot be guaranteed to successfully check all logins. If the user is deleted from the database while logged in, however, it will not affect his/her current session. He/she will simply not be able to use the system subsequent to logging out.

[image: image360.emf]OperationsLog

Check if the user

is logged in.

UserLoginSession OperationsCenter

Get the published

operations centers

CosTrading.Lookup UserManagementDB

TokenManipulator

UserManagerImpl

ORB

Profile

query

delete

create

[user logged in]

UserLoggedIn

[for each Operations Center]

isUserLoggedIn

[database error]

CHART2Exception

[database error]

CHART2Exception

checkAccess

deleteUser

[unknown user]

UnknownUser

UnknownUser

Success

deleteUser

log

[no rights]

log

[no rights]

AccessDenied

deleteUserProfile

[if User Profile exists]

delete

Figure 358. UserManagementModule:DeleteUser (Sequence Diagram)

3.1.25.8 UserManagementModule:GetSystemProfile (Sequence Diagram)

A user can get the system profile which is common to all the users in the CHART2 system.

[image: image361.emf]UserManagerImpl

ORB

Profile

getSystemProfile

[unexpected error]

CHART2Exception

Figure 359. UserManagementModule:GetSystemProfile (Sequence Diagram)

3.1.25.9 UserManagementModule:GetUserProfile (Sequence Diagram)

A user with proper functional rights can get his or her own Profile.

[image: image362.emf]Profile

OperationsLog POA UserManagerDB TokenManipulator UserManagerImpl

ORB

Profile

[if User Profile exists]

Profile

activate_object(Profile)

create

getUserProfileProperties

[no rights]

AccessDenied

[no rights]

log

checkAccess

getUserProfile

ProfilePropertyList

[user does not exist]

UnknownUser

[user does not exist]

UnknownUser

[invalid username]

InvalidUserName

[database error]

CHART2Exception

[unexpected database error]

CHART2Exception

Figure 360. UserManagementModule:GetUserProfile (Sequence Diagram)

3.1.25.10 UserManagementModule:GrantRole (Sequence Diagram)

A user with the proper functional rights may grant a role to a user. The user will not get his/her new functional rights until he/she logs off and logs back on.

[image: image363.emf]UserManagementDB

TokenManipulator

UserManagerImpl

ORB

OperationsLog

[duplicate role]

DuplicateRole

DuplicateRole

[invalid role]

InvalidRole

InvalidRole

log

[no rights]

log

[database error]

CHART2Exception

[database error]

CHART2Exception

grantRole

[no rights]

AccessDenied

checkAccess

grantRole

[unknown user]

UnknownUser

UnknownUser

Success

Figure 361. UserManagementModule:GrantRole (Sequence Diagram)

3.1.25.11 UserManagementModule:Initialize (Sequence Diagram)

Upon initialization the user manager module will create the objects which it is responsible for serving, activates them using the POA, and exports them to the CORBA trading service. After initialization this module is available for use by clients.

[image: image364.emf]Profile

Service Application

UserManagementModule

Store the offer so

we can withdraw it later.

UserManagerImpl

POA ServiceApplication CosTrading.Register

UserManagementDB

success

initialize

activate_object(UserManagerImpl)

create

export(UserManagerImpl)

Store Offer ID

create

getTradingRegister

getTradingLookup

getDBConnectionManager

getPOA

create

activate_object(Profile)

getSystemProfileProperties

Figure 362. UserManagementModule:Initialize (Sequence Diagram)

3.1.25.12 UserManagementModule:ModifyRole (Sequence Diagram)

A user with the proper functional rights may change the functional rights that belong to a role. This will have the effect of changing the actions that users who have been granted that role may perform. However, these changes will not be recognized until the user logs out and logs back in.

[image: image365.emf]UserManagerImpl

ORB

UserManagementDB OperationsLog TokenManipulator

checkAccess

setRoleFunctionalRights

log

[no rights]

log

[database error]

CHART2Exception

[database error]

CHART2Exception

Success

[invalid role]

InvalidRole

InvalidRole

[invalid funtional right]

InvalidFunctionalRight

InvalidFunctionalRight

setRoleFunctionalRights

[no rights]

AccessDenied

Figure 363. UserManagementModule:ModifyRole (Sequence Diagram)

3.1.25.13 UserManagementModule:RevokeRole (Sequence Diagram)

A user with the proper functional rights may revoke a role that has previously been granted to a user. This action will result in the user having a reduced set of functional rights, and thus reduce the number of system activities the user may perform. The user will get his/her new list of functional rights the next time he/she logs in.

[image: image366.emf]UserManagerImpl

ORB

OperationsLog

UserManagementDB

TokenManipulator

InvalidRole

revokeRole

[access denied]

AccessDenied

checkAccess

revokeRole

log

[AccessDenied]

log

[database error]

CHART2Exception

[database error]

CHART2Exception

[unknown user]

UnknownUser

UnknownUser

[invalid role]

InvalidRole

Success

Figure 364. UserManagementModule:RevokeRole (Sequence Diagram)

3.1.25.14 UserManagementModule:SetProfileProperties (Sequence Diagram)

A user with the proper functional rights can store a set of properties in a profile.

[image: image367.emf]OperationsLog TokenManipulator UserManagementDB Profile

If the Profile being modified is

the System Profile check to see

if the user has 'ConfigureSystemProfile'

functional right. Otherwise, the profile

should belong to the user modifying it

and the user should have 'ConfigureSelf'

functional right.

ORB

Success

[database error]

CHART2Exception

[database error]

CHART2Exception

checkAccess

log

[no rights]

AccessDenied

[no rights]

log

setProfileProperties

setProfileProperties

Figure 365. UserManagementModule:SetProfileProperties (Sequence Diagram)

3.1.25.15 UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)

A user with proper functional rights may set the list of Functional Rights belonging to a role. Note that at the completion of this sequence the role will only have the rights that were set by this call.

[image: image368.emf]OperationsLog UserManagementDB TokenManipulator UserManagerImpl

ORB

log

success

[unexpected database error]

CHART2Exception

[invalid role]

InvalidRole

[role does not exist]

InvalidRole

[database error]

CHART2Exception

setRoleFunctionalRights

[no rights]

AccessDenied

[no rights]

log

checkAccess

setRoleFunctionalRights

[invalid functional right]

InvalidFunctionalRight

[functional right not in functional right table]

InvalidFunctionalRight

Figure 366. UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)

3.1.25.16 UserManagementModule:SetUserPassword (Sequence Diagram)

A user with the proper functional rights may set the password that a user must specify in order to log into the system. This action does not require that the administrator be able to supply the users current password and, therefore, is restricted to administrative users. This function is included to deal with situations where users forget their system password.

[image: image369.emf]UserManagementDB OperationsLog

TokenManipulator

UserManagerImpl

ORB

InvalidPassword

UnknownUser

Success

log

[invalid password]

InvalidPassword

[unknown user]

UnknownUser

setUserPassword

[no rights]

AccessDenied

checkAccess

setUserPassword

[no rights]

log

[database error]

CHART2Exception

[database error]

CHART2Exception

Figure 367. UserManagementModule:SetUserPassword (Sequence Diagram)

3.1.25.17 UserManagementModule:SetUserRoles (Sequence Diagram)

A user with the proper functional rights may assign set of roles to a user. The user will not get his/her new functional rights until he/she logs off and logs back on. Note that at the end of this operation the user will have only the roles assigned by this operation.

[image: image370.emf]UserManagementDB

TokenManipulator

UserManagerImpl

ORB

OperationsLog

checkAccess

setUserRoles

[unknown user]

UnknownUser

UnknownUser

Success

[no rights]

AccessDenied

[invalid role]

InvalidRole

InvalidRole

log

[no rights]

log

[database error]

CHART2Exception

[database error]

CHART2Exception

setUsertRoles

Figure 368. UserManagementModule:SetUserRoles (Sequence Diagram)

3.1.25.18 UserManagementModule:Shutdown (Sequence Diagram)

The user management module will withdraw the user management object from the trader, deactivates it from the POA and delete it.

[image: image371.emf]UserManagementModule

Service Application

CosTrading.Register UserManagerImpl POA ServiceApplication UserManagementDB Profile

delete

["system profile"]

deactivate(Profile)

delete

success

shutdown

getPOA

getTradingLookup

deactivate(UserManagerImpl)

delete

withdraw(UserManagerImpl)

Figure 369. UserManagementModule:Shutdown (Sequence Diagram)

Utility

3.1.26 Classes

3.1.26.1 UtilityClasses (Class Diagram)

This Class Diagram shows various utility classes that are used by various applications.

[image: image372.emf]DBUtility

MultiParseListener

«interface»

IdentifiableLookupTable

EventConsumer

«interface»

java.lang.Thread

RecurringTimer

Log

MultiFormatter

DBConnectionManager

Identifier

PushEventSupplier

OpLogQueue

UniquelyIdentifiable

«interface»

ObjectRemovalListener

«interface»

CommandStatusWatcher

CorbaUtilities

DictionaryWrapper

Dictionary

«interface»

DMSHardwarePage

POA

«interface»

IdentifierGenerator

BucketSet

OpLogMessage

PushEventConsumer

LogFile

OperationsLog

ServiceApplicationModule

«interface»

FMS

QueueableCommand

CommandQueue

TokenManipulator

MultiConverter

FunctionalRightType

java.lang.Runnable

«interface»

java.util.Properties

EventConsumerGroup

CosEventChannelAdmin.EventChannel

«interface»

ServiceApplicationProperties

ServiceApplication

«interface»

DefaultServiceApplication

1 *

*

1

1 *

1

*

1

1

1

*

1

*

* 1

* 1

1 1

logs message

using

1

1

1 *

1

1

1

*

1

1

1

*

11

1 *

1

*

escapeSingleQuotes(string):string

executeSQLStatement(conn, query, string, int):void

messageTxt(text)

lineJustification(justify)

newLine(pixelSkip)

newPage()

pageDisplayTime(timeOn, timeOff)

unknownTag(tag)

parseComplete()

put(Identifiable)

find(identifier)

remove(identifier)

elements()

size()

verifyConnection()

connect()

isEqual(consumer)

start()

interrupt()

setDaemon(boolean)

run():void

addTimerListener(TimerUpdatable):void

removeTimerListener(TimerUpdatable):void

getIntervalMillis():long

setIntervalMillis(long):void

shutdown():void

-long m_intervalMillis

get():Log;

log()

logStack()

m_instance

plainTextToMulti(text)

getConnection():java.sql.Connection

releaseConnection();

shutdown();

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

m_id

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)

getChannel():EventChannel;

getMaxReconnectInterval(void):int;

setMaxReconnectInterval(int seconds):void;

push(Any data):void;

disconnectPushConsumer(void):void;

OpLogQueue()

put()

flush()

getFirstMessage()

removeFirstMessage()

m_logQueueTime

getID()

getName()

objectRemoved(Object obj):void;

add(CommandStatus):void

start(long intervalMillis):void

stop():void

waitForCompletion():void

Vector m_cmdStatusList

CommandStatus m_masterStatus

String m_masterStatusText

long m_total

long m_success

long m_failure

long m_undetermined

findAllObjectsOfType(ORB, lookup, type):Object[]

char[][] m_pageText

int m_pageOnTime

int m_pageOffTime

activate_object(Servant obj)

deactivate_object(object_id)

deactivate()

the_POAManager() : POAManager

create_POA() : POA

createIdentifier()

areIdentifiersEqual()

add(comparable)

remove(comparable)

removeAll()

getElements(int)

size()

isEmpty()

m_comparables

String m_actionDesc

String m_actionType

String m_opCenter

Date m_timeStamp

String m_user

PushEventConsumer(channel, pushConsumer)

m_event_channel

m_pushConsumer

log(Object obj, String message, int level)

logStack(Object obj, String message, int level, Throwable th)

setKeepDays(int days)

setLogFileName(String fileName)

getKeepDays()

getLogFileName()

OpenLogFile()

setLogLevel(int level)

getLogLevel()

deleteLogFiles(Date presentTime)

m_logFileName

m_keepDays

m_logFile

m_creationDate

m_defFileName

m_logLevel

OperationsLog(DBConnectionManager db)

log()

flushLog

shutdown

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

addDMS

removeDMS

blankSign

stopPolling

startPolling

forcedPoll

resetController

setMessage

getMessage

setPollInterval

getPollInterval

setCommLostTimeout

getCommLostTimeout

getAsyncPollingResults

execute()

interrupted()

getCmdStatus():CommandStatus

getToken():byte[]

addCommand(QueueableCommand cmd)

removeCommand(QueueableCommand cmd)

shutdown()

-getNextCommand():QueueableCommand

m_commands

m_shutdown

TokenManipulator()

createToken(userName, opCenterID, opCenterName)

optimize(operation, orgFilter)

add(userToken, operation, orgFilter)

add(userToken, operation)

remove(userToken, operation, orgFilter)

remove(userToken, operation)

getOpCenterName(userToken)

getOpCenterID(userToken)

getHostName(userToken)

getUserName(userToken)

checkAccess(userToken, operation, orgFilter)

checkAccess(userToken, operation)

hasRight(userToken, operation, orgFilter)

validateToken(userToken)

calcCheckSum(userToken)

printToken(userToken)

printNybble(nybble)

multiToPlainText(multi)

plainTextToMulti(text, formatter)

parseMulti(multi, listener)

hardwareMsgToMulti(DMSHardwarePage[] msg):String

description()

enumerate()

fromInt()

name()

value()

ConfigureDMS

ConfigureSelf

ConfigureUsers

ForceDMSPoll

ManageDeviceComms

ManageDictionary

ManageUserLogins

ModifyMessageLibrary

ModifyPlans

ResetDMSGroup

SetDMSMessage

TransferAnySharedResource

UsePlans

ViewDictionary

ViewUserConfig

ViewUserLogins

run()

getProperty()

setProperty()

add(consumer)

setInterval()

remove(consumer)

-hasConsumer(consumer)

-verifyConnections()

for_consumers()

for_suppliers()

destroy()

ServiceApplicationProperties(

String propertiesFilename)

getProperties()

getDefaultProperties()

getThreadModel():int

getThreadPoolSize():int

getDatabaseConnectString():String

getDatabaseUserName():String

getDatabasePassword():String

getModuleNames():String[]

getNetConnectionSite():String

start

shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

getEventChannelFactory():EventChannelFactory

getDBConnectionManager():DBConnectionManager

getOperationsLog():OperationsLog

getProperties():java.util.Properties

getDefaultProperties():java.util.Properties

registerObject(obj, id, name, type, publish):void

registerEventChannel(EventChannel, name):void

withdrawObject(id):void

getIDGenerator():IdentifierGenerator

DefaultServiceApplication(String propertiesFilename)

-writeOffersToFile(String moduleName, int[] offerIDs):boolean

-removeOffersFromFile(String moduleName):boolean

Figure 370. UtilityClasses (Class Diagram)

3.1.26.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects added to this collection must be of the same concrete type. Each element in the collection has an associated counter which tracks how many times this element has been added. It is then possible to get only the elements which have been added to the collection n times where n is a positive integer value. This class is very useful for creating GUI menu's for multiple objects as it allows all objects to insert their menu items and then allows the user to get only those items which all objects inserted.

3.1.26.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.26.1.3 CommandStatusWatcher (Class)

Helper class used to monitor a collection of CommandStatus objects to summarize the status of commands.

3.1.26.1.4 CorbaUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server and GUI for CORBA Trader service transactions.

3.1.26.1.5 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and consumers of information.

3.1.26.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.1.26.1.7 DBUtility (Class)

This class contains methods that allow interaction with the database.

3.1.26.1.8 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed a properties file during construction. This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available, provide database connectivity, etc. The properties file also contains the class names of service modules that should be served by the service application. During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service. Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization. The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is expected to remove its offers from the trader during a shutdown. If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start. This keeps multiple offers for the same object from being placed in the trader.

3.1.26.1.9 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in a CHART2 messaging device. Examples of messaging devices are DMS, HAR etc,..

3.1.26.1.10 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

3.1.26.1.11 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware. A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character. This format maps well to the way DMS protocols return the current message being displayed in a status query. This class can then be passed to a MultiConverter object to convert the message into MULTI format.

3.1.26.1.12 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be managed in an EventConsumerGroup must implement.

3.1.26.1.13 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

3.1.26.1.14 FMS (Class)

This class represents the CHART II system's interface to the FMS SNMP manager. Most methods included in this class have an associated method in the FMS SNMP Manager DLL provided by the FMS Subsystem. The other methods in this class exist to provide easier interface to the DLL. As an example, this class contains a blankSign method that actually calls setMessage on the FMS Subsystem with the message set to blank and beacons off.

3.1.26.1.15 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the CHART2 system. It contains a static member for each possible functional right.

3.1.26.1.16 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

3.1.26.1.17 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

3.1.26.1.18 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers which are to be used in Identifiable objects.

3.1.26.1.19 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

3.1.26.1.20 java.lang.Thread (Class)

This class represents a java thread of execution.

3.1.26.1.21 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

3.1.26.1.22 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for system trace messages.

3.1.26.1.23 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

3.1.26.1.24 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text. It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

3.1.26.1.25 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to MULTI formatted messages.

3.1.26.1.26 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs. An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

3.1.26.1.27 ObjectRemovalListener (Class)

This interface is implemented by objects that wish to be notified of objects being removed from the system. This is typically used by objects that store a collection of other objects, such as a factory, to allow them to remove objects from their collection when the object is to be removed from the system.

3.1.26.1.28 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.

3.1.26.1.29 OpLogMessage (Class)

This class holds data for a message to be stored in the system's Operations Log.

3.1.26.1.30 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system's Operations Log. Messages added to the queue can be removed in FIFO order.

3.1.26.1.31 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

3.1.26.1.32 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

3.1.26.1.33 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.1.26.1.34 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.1.26.1.35 RecurringTimer (Class)

A recurring timer is a thread that notifies each TimerUpdatable object that has been registered on a specified period.

3.1.26.1.36 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.1.26.1.37 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.1.26.1.38 ServiceApplicationProperties (Class)

This class provides methods which allow the DefaultServiceApplication to access the necessary properties from the java properties configuration file. It also provides a default properties file which can be retrieved by anyone holding a ServiceApplication interface reference. This gives each installed service module the opportunity to load default values before retrieving property values from the properties file.

3.1.26.1.39 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information. Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

3.1.26.1.40 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.26.2 UtilityClasses2 (Class Diagram)

This Class Diagram shows various utility classes related to log entries that are used by GUI and servers.

[image: image373.emf]ValueType

LogFilter

«interface» DatabaseLogger

LogEntry

«interface»

LogIterator

«interface»

LogIteratorImpl LogEntryCache

CachedLogEntry

ValueType

Constructor sets m_refCount to 1.

Additional references recorded by LogEntryCache

with incdRefCount() and decrRefCount()

LogEntryCache deletes a CachedLogEntry from

hashtable when its refCount hits 0.

m_keys is an ordered array of

slots in the cache for the LogEntries

which match the filter. Each key

is used to extract the appropriate

LogEntry from the LogEntryCache.

m_nextEntry indexes into array

of m_entrySlots, pointing to the

next entry to extract.

* 1

1

*

* 1 1 *

1

1

1 *

factory createLogFilter() : LogFilter

Source m_source

boolean m_sourceIsUsed

string m_author

TimeStamp m_startDate

TimeStamp m_endDate

Identifier m_eventID

Identifier m_logEntryID

string m_opCenterName

string m_containsText

boolean isCaseSensitive

DatabaseLogger(tableName)

addEntry(logEntry) : void

checlExpiredEntries() : void

getEntries(filter, maxCount) : LogIterator

shutdown() : void

getID():Identifier

matchesFilter(LogFilter filter) : boolean

factory createLogEntry() : LogEntry

Identifier m_id

TimeStamp m_timestamp

Identifier m_eventID

string m_text

string m_author

string m_opCenterName

string m_hostname

Source m_source

getMoreEntries(long maxCount) : LogEntryList

destroy():void

long m_timeOfLastUse

addEntry(LogEntry entry)

Object[] m_keys

int m_nextEntry

addEntry(LogEntry entry) : Object

getEntry (Object key) : LogEntry

java.util.Hashtable hashTable

decrRefCount() : void

equals() : boolean

getEntry() : LogEntry

getRefCount() : int

hashCode() : int

incrRefCount() : void

m_logEntry

m_refCount

Figure 371. UtilityClasses2 (Class Diagram)

3.1.26.2.1 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient LogEntryCache. The object of this class encapsulates the stored log entry and adds a reference count.

3.1.26.2.2 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.1.26.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

3.1.26.2.4 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess of the requestor-specified maximum number of entries to return at one time. The LogIterator stores references to the LogEntry objects thus cached, and requests additional objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate copies of LogEntry objects, and it deletes LogEntry objects when they are no longer needed.

3.1.26.2.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

3.1.26.2.6 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

3.1.26.2.7 LogIteratorImpl (Class)

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work which clients can request via the LogIterator interface. The LogIteratorImpl stores data relating to cached LogEvents for a single retrieval request, and implements the client request to get additional clumps of data pertaining to that request.

Sequence Diagrams

3.1.26.3 OperationsLog:LogMessage (Sequence Diagram)

When a log operation is invoked on the OperationsLog object, it creates a OpMessageLog and adds this object to the OpLogQueue. The OpLogQueue driver thread wakes up at a pre-configured interval and writes all the queued messages to the database.

[image: image374.emf]OpLogQueue OperationsLog

write

[written log]

delete

log

create

add

Application

OpLogMessage

The writing of the log

message to the database

is not immediate.

The OpLogQueue driver

thread wakes up at a

preconfigured interval and

writes the queued log

messages to the database

Figure 372. OperationsLog:LogMessage (Sequence Diagram)

4 Deployment

The planned architecture of the Chart 2 system is to distribute complete system functionality to a number of districts throughout the State of MD. For R1B3 the planned deployment is to distribute servers at SOC and AOC operations centers as shown in Figure 374. Each of these complete systems can provide full functionality for the devices connected to the system and objects created within that system (such as traffic events), and provides functionality for other district's systems that are available. Thus the absence of one district's server does not affect the ability of another district to operate their own system or other systems that are available. Although the server deployment is spread across multiple sites, the GUI presents a view to the user of one large system, using CORBA to pull together objects served from the many deployment sites.

The GUI is able to locate the software objects at all deployment sites through the use of the CORBA Trading Service. As the diagram shows, a CORBA Trading Service shall exist at each deployment site. Each service that publishes CORBA objects shall offer the objects through its local CORBA Trading Service. Using the link feature of the CORBA Trading Service, each Trading Service is linked to all other Trading Services in the system. Each GUI is configured to utilize its local (or an assigned) Trading Service for object discovery. Through the use of linked (federated) Trading Services, the GUI discovers objects that are deployed on the same site as the Trading Service as well as objects published in all other trading services in the system. This allows the GUI to provide a unified view of the system, even though the system is actually distributed over multiple deployment sites.

In addition to showing the software objects throughout the system on a single GUI, it is also necessary to reflect the current state of the software objects as they are changed during real time operations. The CORBA Event Service is used to allow objects to push changes in their state to the GUI (or other interested CORBA clients). Each deployment site shall have an instance of a CORBA Event Channel Factory, which is an extension of the CORBA Event Service that allows multiple event channels. Each Chart II service whose objects are subject to real time changes will create one or more Event Channels in its local Event Channel Factory. Each event channel is earmarked for a specific class of events (such as DMS events). Each service that creates channels in the CORBA Event Channel Factory publishes the event channel in the CORBA Trading Service and then uses the channel to push events relating to object state, alarms, etc.

Since the CORBA Event Service does not provide for a linking mechanism (such as that of the Trading Service), a GUI that wishes to listen for events at a system wide level discovers all of the event channels via the CORBA Trading Service and registers itself as a consumer on each of the event channels. Using this scheme, a GUI uses the Trading Service to discover all software objects regardless of their deployment site and also uses the Trading Service to discover Event Channels, regardless of their deployment site. The GUI may then provide the user with a unified view of the system, both in the objects presented and the ability to show near real time updates of these objects. Since the nature of the system is dynamic, processes that discover objects will do so on a periodic basis so that they can discover new services and objects that are added to the system.

Most Chart II software objects used in this system are typical distributed software objects. Each of these objects is served from one and only one deployment site. The data inside an object pertains only to the instance of the object and operations pertain only to the instance of the object on which they are performed. Other parts of the system (such as the GUI) must go to the instance of an object to view the object's data or perform operations on the object. For example, there is one and only one software object in the system that represents a specific DMS in the field. If an operation such as setting the message needs to be done to the Field DMS, the GUI must perform the operations on the one and only software object that represents the DMS. This software object may be served from a deployment site other than the site where the GUI exists.

The system includes three classes whose instances do not act as the typical objects described above. Instead, each instance of the class provides access to exactly the same data. Multiple instances of the class serve as replicated software objects. The system uses this type of object for the Dictionary, UserManager, and Communications Log. These objects are different than the rest of the objects in the system because it is required that the dictionary, user data, and communications log be shared throughout all deployment sites in the system. Using the same dictionary data throughout the system provides consistency in messages displayed on DMSs. Using the same user data throughout the system allows a user to log in at any site, even in the event of a catastrophe at the user's normal operating site.

While the design could accomplish this use of shared data through using single instances of the objects, this type of design would include single points of failure. Thus if the one and only one Dictionary object were not available, no messages would be able to be placed on a DMS anywhere in the system since the message contents could not be checked for banned words. To overcome these single points of failure, the replication feature of the DBMS will be used to replicate data to each deployment site's database. Each deployment site will have its own instances of the Dictionary, UserManager, and Communications Log objects that front end the replicated database.

This diagram illustrates the deployment of CHART II servers at SOC and AOC operations centers.

[image: image375.emf]CHART II GUI

 SOC WS2

EORS Service

CHART II GUI

 AOC WS1

CHART II GUI

 TOC3 WS1

CHART II GUI

 TOC4 WS1

LAN

WAN

WAN

LAN

LAN

WAN

WAN

WAN

WAN

 AOC FMS CHART II Server

Traders are connected

using links to form a

federation

CHART II GUI

 SOC WS1

DMS Service

HAR Service

Message UtilityService

UserManagementService

Field Communications

Service

CORBA

Event Service

Traffic Event

Service

CORBA

Trading Service

Oracle Database

Server

Audio Clip Manager

Service

Hanover

 SOC AVCM FMS CHART II Server

WAN

Message Utility

Service

DMS Service

HAR Service

Field Communications

Service

Traffic Event

Service

CORBA

Event Service

User Management

Service

Audio Clip Manager

Service

CORBA Trading

Service

Oracle Database

Server

Figure 373. Multiple Site Deployment Diagram (Deployment Diagram)

Acronyms

The following acronyms appear throughout this document:

API
Application Program Interface

BAA
Business Area Architecture

CORBA
Common Object Request Broker Architecture

DBMS
Database Management System

DMS
Dynamic Message Sign

DTMF
Dual Tone Multiple Frequency

EORS
Emergency Operations Reporting System

FMS
Field Management Station

GUI
Graphical User Interface

HAR
Highway Advisory Radio

IDL
Interface Definition Language

ITS
Intelligent Transportation Systems

LATA
Local Access and Transport Areas

NTCIP
National Transportation Communications for ITS Protocol

OMG
Object Management Group

ORB
Object Request Broker

POA
Portable Object Adapter

R1B2
Release 1, Build 2 of the CHART II System

TTS
Text To Speech

UML
Unified Modeling Language

Bibliography
CHART II Release 4 Interim BAA Report, document number M361-BA-004R0, Computer Sciences Corporation and PB Farradyne.

CHART II System Requirements Specification Release 1 Build 3, Computer Sciences Corporation and PB Farradyne.

R1B3 High Level Design, document number M362-DS-009R0, Computer Sciences Corporation and PB Farradyne.

FMS R1B2 Detailed Design, document number M303-DS-003R0, Computer Sciences Corporation and PB Farradyne, Inc.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

TELE-SPOT 3001 Sign Controller Communications Protocol, document number 750208-040 v2.3, T-S Display Systems Inc., 1995

Functional Specification for FP9500ND – MDDOT Display Control System, document number A316111-080 Rev. A6, MARK IV Industries Ltd., 1998.

Maintenance Manual for the FP1001 Display Controller, document number 316000-443 Rev. E, Ferranti-Packard Displays, 1987

FP2001 Display Controller Application Guide, document number A317875-012 Rev. 8, F-P Electronics, 1991

Engineering Specification - Brick Sign Communications Protocol, Rev. 1, ADDCO Inc., 1999.

PCMS Protocol version 4, document number 32000-150 Rev. 5, Display Solutions, 2000

BSC Protocol Specification (Data Link Protocol Layer), v. 1.3, Fiberoptic Display Systems Inc., 1996

Sylvia Variable Message Sign, Command Set 9403-1, v. 1.4, Fiberoptic Display Systems Inc., 1996

2.5 Mile AM Travelers Information Station Instruction Manual For: Maryland State Highway Administration, Information Station Specialists.

Technical Practice RC-2A Remote Touch-Tone On/Off Industrial Controller, Viking Electronics Inc., August 1993.

Appendix A – Functional Rights

This table lists the functional rights that exist in the CHART II system and the operations to which they grant access.

Functional Right Required
Operation
Organization Filterable

BasicOperations

Add Comm Log entries
No

Get Comm Log entries
No

ConfigureDMS

Add DMS
Yes

Remove DMS
Yes

Set DMS Configuration
Yes

ConfigureDMS or ViewDMSConfig
Get DMS Configuration
Yes

ConfigureHAR

Add HAR
Yes

Add SHAZAM
Yes

Remove HAR
Yes

Remove SHAZAM
Yes

Set HAR Associated with a Notifier(DMS or SHAZAM)
Yes

Set HAR Configuration
Yes

Set HAR Message Notifier(DMS or SHAZAM) Direction
Yes

Set SHAZAM Configuration
Yes

ConfigureHAR or ViewHARConfig

Get HAR Configuration
Yes

Get SHAZAM Configuration
Yes

ConfigureSelf

Get User Profile
No

Set User Password
No

ConfigureSelf, ConfigureSystemProfile

Delete Profile Properties
No

Set Profile Properties
No

ConfigureTrafficEvent
Add Traffic Event Log Entry
No

Associate Event
No

Change Event type
No

Check if Congestion Event is a Recurring event
No

Close Traffic Event
No

Override Incident Lane Open Close Time
No

Override Traffic Event Closure Time
No

Set Congestion Event as a Recurring event
No

Set Incident Road Conditions
No

Set Incident Type
No

Set Incident Vehicle Data
No

Set Roadway Event lane configuration
No

Set Traffic Event as Primary event
No

Set Traffic Event as Secondary event
No

ConfigureUsers

Change User Password
No

Create Role
No

Create User
No

Delete Role
No

Delete User
No

Grant Role
No

Revoke Role
No

Set Role Functional Rights
No

Set User Roles
No

Maintain DMS

Blank DMS
Yes

Perform DMS Pixel Test
Yes

Perform DMS Test
Yes

Poll DMS
Yes

Reset DMS Controller
Yes

Set DMS Message
Yes

MaintainHAR

Blank HAR
Yes

Delete HAR Slot Message
Yes

Refresh SHAZAM
Yes

Reset HAR
Yes

Set HAR Message
Yes

Set HAR Transmitter Off
Yes

Set HAR Transmitter On
Yes

Set SHAZAM Beacons Off
Yes

Set SHAZAM Beacons On
Yes

Setup HAR
Yes

Store HAR Slot Message
Yes

Manage Services
Shutdown Service
No

ManageDeviceComms

Put a device in Maintenance Mode
Yes

Put a device Online
Yes

Take a device Offline
Yes

ManageDictionary

Add a list of Approved Words to Dictionary
No

Add a list of Banned Words from Dictionary
No

Remove a list of Approved Words from Dictionary
No

Remove a list of Banned Words from Dictionary
No

ManageDictionary or ViewDictionary

Get Approved Words from Dictionary
No

Get Banned Words from Dictionary
No

ManageUserLogins

Force Logout
No

Force Logout
No

ModifyMessageLibrary

Create Message Library
No

Create Stored Message
No

Remove Library
No

Remove Stored Message
No

Remove Stored Message
No

Set Message associated with Stored Message
No

Set Message Library Name
No

Set Stored Message Data
No

ModifyPlans

Add Plan Item
No

Create Plan
No

Remove Plan
No

Remove Plan Item
No

Remove Plan Item
No

Set Plan Item Data
No

Set Plan Item Name
No

Set Plan Name
No

Must pass the token of the user logging out

Change User
No

Logout User
No

RespondToTrafficEvent

Add a message to Arbitration Queue
No

Add Resource Response Participation
No

Add Response Plan Item
No

Execute Response Plan Item
No

Execute Traffic Event Response
No

Override Organization responded time
No

Override Resource arrival time
No

Override Resource departure time
No

Remove a message from Arbitration Queue
No

Remove Response Device
No

Remove Response Participation
No

Remove Response Plan Item
No

Set Organization notification.
No

Set Organization participation response to Event
No

Set Resource arrived on scene
No

Set Resource departed from scene
No

Set Response Plan Item data
No

Set Response Plan Item description
No

RespondToTrafficEvent, ViewTrafficEventData
Get Response Plan Item data
No

SetHARMessage

Activate HAR Message Notice
Yes

Deactivate HAR Message Notice
Yes

Set HAR message and Notifiers
Yes

TransferAnySharedResource

Clear Controlling Operations Center
Yes

Set Controlling Operations Center
Yes

Transfer Shared Resources
Yes

ViewUserConfig or ConfigureUsers

Get Role Functional Rights
No

Get Roles
No

Get User Roles
No

Get Users
No

ViewUserLogins
Get Login Sessions
No

Appendix B – Glossary

Action Event
A Traffic Event related to the disposition of actions in response to device failures and non-blockage events (e.g. signals, debris, utility, and signs).

Approved Word
A word that is known to the system and has been approved for use when communicating with the motoring public via a messaging device. The dictionary will suggest words to the operator when it encounters a word that has not been previously approved.

Arbitration Queue
A prioritized queue containing messages for display or broadcast on a traveler information device.

Banned Word
A word that may not be used when communicating with the motoring public via a messaging device such as a HAR or DMS.

Comm Log
A collection of information received from any source that requires no action.

Congestion Event
A Traffic Event related to roadway congestion situations. Congestion Events may be recurring or non-recurring.

CORBA Event
A CORBA mechanism using which different Chart2 components exchange information without explicitly knowing about each other.

CORBA Trader
A CORBA service that facilitates object location and discovery. A server advertises an object in the Trading Service based on the kind of service provided by the object. A client locates objects of interest by asking the Trading Service to find all objects that provide a particular service.

Data Model
An object repository that keeps track of changes to the various objects in the repository and informs about these changes as they occur, to observers who are interested in the objects in the repository. A Data Model identifies the subject in a Subject/Observer design pattern.

Dictionary

A collection of banned and approved words.

Deployable Resource
Any resource that can be deployed to the scene in order to provide assistance during a traffic event.

DMS
A Dynamic Message Sign that can be controlled by one Operations Center at a time.

DMS Stored Message Item
A plan item that is used to set a specific message on a specific DMS when added to a Traffic Event response plan and activated.

Emergency Operations Reporting System
A system external to CHART II that (among other things) keeps track of planned roadway closures and permits.

Factory
A CORBA object that is capable of creating other CORBA objects of a particular type. The newly created object will be served from the same process as the factory object that creates it.

FMS
Field Management Station through which the CHART II system communicates with the devices in the field.

Functional Right
A privilege that gives a user the right to perform a particular system action or related group of actions. A functional right may be limited to pertain only to those shared resources owned by a particular organization or can pertain to the shared resources of all organizations.

Graphical User Interface
Part of a software application that provides a graphical interface to its user.

GUI Wrapper Object
A GUI wrapper object is one that wraps a server object to provide it with GUI functionality such as menu handling. It also helps in performance enhancement by caching data locally thereby avoiding network calls when not necessary.

HAR
A Highway Advisory Radio which can be controlled by one Operations Center at a time.

HAR Message
A message which is capable of being stored on a HAR. It is composed of a message header, body and footer.

HAR Message Clip
A message clip is part of a HAR message that could be a header or body or footer. It can be stored either as a text or in one of the binary forms (WAV, MP3 etc).

HAR Message Slot
A message slot is one of the numbered message stores inside the HAR device that can be used to store pre-fabricated messages useful for quick retrieval and playing.

Incident Event
A Traffic Event that is entered by an Operator in response to one of the following types of incidents: Disabled in roadway, Personal injury, Property damage, Fatality, Debris in roadway, Vehicle fire, Maintenance, Signal call, Police activities, Off-road activity, Declaration of emergency, Weather, or Other.

Installable Module
A plugable GUI module that provides a specific function, which when registered with the GUI is called on to initialize itself at the time of GUI startup and shut down at the time of GUI shut down.

Lane Closure
The closure of one or more roadway lanes resulting from a Traffic Event.

Message Library
A collection of stored messages that can be displayed on the DMS or broadcast on a HAR.

Navigator
A Navigator is a GUI window that contains a tree on the left-hand side and a list on the right hand side. Tree elements represent groups of objects and the list on the right hand side represents the objects in the selected group.

Object Discovery
A GUI mechanism in which the client periodically asks the CORBA Trading Service to find objects of those types that are of interest to the GUI, such as DMS, HAR, Plan etc.

Operations Center
A center where one or more users may log in to operate the Chart II system. Operations centers are assigned responsibility for shared resources that are controlled by users who are logged in at that operations center.

Operator
A Chart II user that works at an Operations Center.

Organization

An organization is an agency that participates in the CHART II system and owns one or more Shared Resources.

Plan
A collection of plan items that can be added to the response plan of a traffic event as a group.

Plan Item
An action in the system that can be set up in advance to be activated one or more times in the future. Plan items must be contained in a plan. Specific types of plan items exist for specific functionality. A plan item may be copied to a traffic event response plan and subsequently activated.

Port
A CORBA object used to generically represent a single communications resource available on a computer. Derived interfaces define functionality specific to the type of communications resource.

PortManager
A CORBA object used by clients to gain access to Port objects. The PortManager manages access to pre-configured Port objects and allows ports to be shared amongst many clients.

ProtocolHandler
A software object that contains code that is knowledgeable of the protocol used to command a specific make and model of a device.

Response Plan
A collection of response plan items created in response to a traffic event that can be activated as a group..

Response Plan Item
An action in the system that can be set up in response to a traffic event. Response plan items must be contained in a response plan. Specific types of response plan items exist for specific functionality. A response plan item carries out its specific task when activated

Role
A Role is a collection of functional rights that a user may perform. The roles that pertain to a particular user for a particular login session are determined when he/she logs into the system.

Safety Message Event
A Traffic Event that is entered by an Operator to display and/or broadcast safety messages.

Service Application
A software application that can be configured to run one or more service application modules and provides them basic services needed to serve CORBA objects.

Service Application Module
A software module that serves a related group of CORBA objects and can be run within the context of a service application.

Shared Resource
A resource that is owned by an organization. A user may be granted access to a shared resource owned by an organization through the functional rights scheme.

SHAZAM
A device used to notify the traveling public of the broadcast of a HAR message.

Sign
see DMS

Stored Message
A message that may be broadcast on a HAR or displayed on a DMS.

System Profile
Information used to define the configuration of the system. Properties stored in the system profile apply to all users when they are logged in.

Token
A token or access token is a security blob that encloses information about a user and the functional rights associated with the user. All secured Chart2 operations require a token to be passed to it and based on the functional rights found in a token a user is allowed or denied access.

Traffic Event
A traffic event represents a roadway event that is affecting traffic conditions and requires action from system operators.

Transferable Shared Resource
A shared resource that can be transferred from one operations center to another by a user with the appropriate functional rights.

User
A user is somebody who uses the CHART II system. A user can perform different operations in the system depending upon the roles they have been granted.

User Profile
A set of information used to correctly configure an individual user’s GUI on startup.

VoicePort

A type of port that provides access to a telephone

Weather Service Alert Event
A Traffic Event that is entered by an Operator in response to National Weather Service advisories.

� EMBED MSPhotoEd.3 ���

� EMBED Word.Picture.8 ���

� EMBED WangImage.Document ���

� EMBED Word.Picture.8 ���

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxnmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxnmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxVQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxVQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxgOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxYdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxYdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxQTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxQTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxa_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxa_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxSKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxSKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxZgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxZgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxE6AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxcMAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxqOAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxqzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxqOAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxqzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxqOAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxrjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxqOAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxrjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxqOAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxrEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxqOAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxrEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxzEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxzEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxvRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxvRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxw9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxw9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxyvAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxyvAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxyFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxyFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxwMAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxwMAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxuqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxuRAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxuqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxr7AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxt.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxr7AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpxt.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyT6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyT6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyRWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyRWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyPzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyPzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyQXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyQXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyUGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyUGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyTEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyTEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyVhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyVhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyQxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyQxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyPJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyPJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyVHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyVHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyRwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyRwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpySzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpySzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyemAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyemAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyf3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyf3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyd8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyd8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyeUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyeUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpygjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpygjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpycsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpycsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpybwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpybwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpygNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpygNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpydkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpydkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpydHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpydHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpycSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpybXAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpycSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp89zAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp89zAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8TEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8TEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9UCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9UCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9D5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9D5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_MIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_MIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8kWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8kWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9x5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9x5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8gEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8gEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9IlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9IlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9lQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9lQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9i8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9i8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9PtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9PtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9LCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9LCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8USAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8USAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_JHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_JHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9cgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9cgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9iIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9iIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgHuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgHuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9b9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9b9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8yFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8yFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9hRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9hRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_EUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_EUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgE0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgE0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9e_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9e_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8tAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8tAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8pPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8pPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8bLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8bLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_O9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_O9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9GwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9GwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_J2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_J2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8VfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8VfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8X8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8X8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9.IAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9.IAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8mHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp8mHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_X3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_X3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9dcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9dcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9WvAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9WvAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_VoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_VoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgICAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgICAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp95GAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp95GAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9ZBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9ZBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp82ZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp82ZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp91qAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp91qAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9zzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp9zzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_RpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp14wAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp_RpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyBKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyBKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyAuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyAuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyC.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyC.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyCiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyCiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyBrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyBrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyCEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpxzjAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyCEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyT6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyOwAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyT6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyjEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpylpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpylpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyj9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyj9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpypQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpypQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyrgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyrgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyowAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyowAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyo8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyo8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpypiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpypiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyp_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyp_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyqyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyqyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyojAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyojAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyxSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyxSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpywyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpywyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyrBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyrBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpynqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpynqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyoMAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyoMAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpynbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpynbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpym6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpym6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpylMAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpylMAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyrxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyrxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpysPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpysPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpylzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpylzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpymXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpymXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpykZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpykZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpykHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpykHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpykqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpykqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyk.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBpyitAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBpyk.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0DGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0DGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0CdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0CdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ZbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ZbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ZzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ZzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0MpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0MpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0j7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0j7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0jeAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0jeAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0fFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0fFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0mmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0mmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0MIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0MIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0YUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0YUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0aOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0aOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0IiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0IiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0LSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0LSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0BpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0BpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0GXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0GXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0K_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0K_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ewAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ewAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0KqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0KqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ZLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ZLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0Y5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0Y5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqmKH4BtAExAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqmKH4BtAExAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0anAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0anAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0iuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0iuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0OmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0OmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0bkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0bkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0gWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0gWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0hFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0hFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqropsCcQATAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqropsCcQATAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0XDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0XDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0OUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0OUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0b2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0b2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0coAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0coAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0dXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0dXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0XfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0XfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0c.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0c.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0lXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0lXAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0KPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0KPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0iEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0iEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0hsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0hsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0pGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0pGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0d5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0d5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgFcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgFcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgCxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgCxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0NFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0NFAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0J3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0J3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0oHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0oHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0JiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0JiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0RyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0RyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0RfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0RfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0Q8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0Q8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0JEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0JEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0F0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0F0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0fZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0fZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0nDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0nDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0GrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0GrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0pkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0pkAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0HnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0HnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0nwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0nwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ENAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ENAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0H4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0H4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0HOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0HOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ErAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0ErAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0N2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0N2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0f0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0f0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0eaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0BQAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0eaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03dAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03dAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgAZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgAZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgBtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgBtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03TAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03TAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03EAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp03EAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp02vAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp02vAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqnkssBbgBwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqnkssBbgBwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp02YAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp02YAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp01.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp01.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp01cAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp01cAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp006AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp006AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgA3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgA3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgBWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgBWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp00ZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp00ZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0ynAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp01sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0_PAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp08DAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp08DAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp067AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp067AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp07TAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp07TAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp08iAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp08iAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0_aAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp0_aAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp09fAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp09fAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp07sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp06jAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp07sAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0.aAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1AdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp0.aAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1AdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1EjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1EjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1F8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1F8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1IWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1IWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1FDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1FDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1KtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1KtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1LLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1LLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1MJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1MJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1KAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1KAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1IAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1IAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1NuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1NuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1L2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1L2AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1NaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1NaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1IzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1IzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1NCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1NCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1MlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1MlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1GPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1GPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1GrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ELAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1GrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1RiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1RiAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1OcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1OcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1U.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1U.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1UbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1UbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1PCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1PCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1RTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1RTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1T4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1T4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1TVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1TVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1Q1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1Q1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1S9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1S9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1SjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1SjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1SOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1SOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1R3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp1ODAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp1R3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxdrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxdrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxcKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxcKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxclAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxclAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxb1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxb1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxblAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxblAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxe4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxe4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxfIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxfIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxYhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxYhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxekAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxekAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxeSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxeSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxd.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxd.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxXlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxXlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxdHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxdHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxbGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxbGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxX.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxX.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxZHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxXMAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxZHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxsrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxsrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxmGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxmGAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxmmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxmmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxlrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxlrAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxlPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxlPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxk9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxk9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxm8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxm8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxkuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxkuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxkBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxkBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgGqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgGqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxjgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxjgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxi_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxi_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgIgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTqo7ZMBXgIgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxiZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxiZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxf6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxf6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxh4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxh4AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxrjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxrjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxhHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxhHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxgZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxgZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxtnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxtnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxtKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxfhAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxtKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp25aAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp25yAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp25aAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp25yAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp26GAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp26dAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp26GAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp27HAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp26GAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp27HAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3H7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3H7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3K7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3K7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3AmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3C1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3C1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3HNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3HNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3GxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3FpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3FpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3LnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3I_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3I_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3CNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3CNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3IUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3IUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3IUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3JcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3EWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3EuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3EuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3KbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp27oAGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp3KbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxv1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxv1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyFxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyFxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxwdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxwdAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx0ZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx0ZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyHpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyHpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx5AAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx5AAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxuhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxuhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyGNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyGNAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxziAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxziAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxw5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxw5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxvTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxvTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxz8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxz8AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx8NAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx8NAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyJEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyJEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyGlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyGlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyHPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyHPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyIlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyIlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxyZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpxyZAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx3WAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx3WAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx1LAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx1LAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyIHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyIHAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx5gAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx5gAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx0xAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx0xAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpxuIAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpx8fAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4kqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4kqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4hcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4hcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4keAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4keAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4iTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4iTAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4jBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4jBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4jVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4jVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4isAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4isAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4fVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4fVAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4h9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4h9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4hDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4hDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4goAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4goAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4eJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4eJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4dWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4dWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4gYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4gYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4f0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4f0AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4hpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4hpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4jxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqlhcsBp4c9AGcAAQAAAAEA -diag Graph:UFAJxBTqlhcsBp4jxAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyPWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyPWAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyR9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyR9AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyQQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyQQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyNpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyNpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyRBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyRBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyP3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyP3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyS3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyS3AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyN_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyN_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpySYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpySYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyRnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyRnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyO5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyKrAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyO5AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyWIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyWIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyYtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyYtAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyb6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyb6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpybqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpybqAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyceAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyceAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpybYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpybYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyYSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyYSAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyXyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyXyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyc_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyc_AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyYAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyYAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyWgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyWgAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpybJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpybJAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpycOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpycOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpycuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpycuAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyXeAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyXeAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyZYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyZYAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyXBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyXBAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyVwAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyZDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyjCAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyjzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpyjzAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTql2KEBpyddAGcAAQAAAAEA -diag Graph:UFAJxBTql2KEBpylfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 6���ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBTqlW7UB1QB1AGcAAQAAAAEA -phase PhaseVersion:UFAJxBTqlhcsBpxEmAGcAAQAAAAEA -sys SystemVersion:UFAJxBTqswe0CigDSAGcAAQAAAAEA -diag Graph:UFAJxBTqswe0CigEoAGcAAQAAAAEA

4
4
R1B2 Servers Detailed Design Rev. 0

02/01/02

[image: image382.wmf][image: image383.wmf][image: image384.wmf]CNSI

_1044253465.vsd

_1073283364.doc

m_status:

Chart2DMSStatus

OperationsLog

Can't fix message mismatch, calls update on commandStatus

in each of the currently active entries.

ArbQueueEntry

PushEventSupplier

CommandStatus

handleOpStatus(result, cmdStatus)

[message mismatch]

setMessage(currentMessage)

[failure]

log

log

[failure and online]

report("redisplay failed", false,

false, null, m_activeArbQueueEntries)

[failure]

completed("fix message mismatch failed")

handleOpStatus(return, cmdStatus)

updateStatus(m_status)

[regular pole and not online]

push (CurrentDMSStatus)

completed("poll complete, change detected")

getStatus(port)

[regular pole and not online]

completed("not online")

pollNowImpl(token,

cmdStatus)

[no change in status]

completed("success, no status change")

[failure]

[no change in status]

[failure]

completed("failed")

[failure and online]

setInactive("DMS <name>: message unex. changed to <text>")

for each ArbQEntry

DMSProtocolHdlr

Chart2DMSImpl

PollDMSNowCmd

DMSControlDB

Updates cmdStatus

on status change.

[falure]

fmsReleasePort

[failure]

updateStatus(m_status)

[failure]

updateStatus(m_status)

[failure]

fmsGetConnectedPort(cmdStat, true)

[not maint mode]

push(currentStatus)

[regular pole and not online]

push(currentStatus)

[not maint mode]

[not maint mode]

completed("not maint mode")

[shortErrorStatus changed]

setShortErrorStatus

[no change in status]

updateStatus(m_status)

fmsReleasePort

_1035374508.doc
[image: image1.bmp]

_1044252757.vsd

_1037099059.doc

CNSI

_989147791.bin

_968676586.bin

