coordinated Highways Action Response Team

[image: image50.wmf]state highway administration

[image: image51.wmf]Trading Service

Event Service

Trading Service

Event Service

Replicated Data

Local Data

Local Data

District A

District B

District A Client

Server

Apps

O

b

j

e

c

t

R

e

f

e

r

e

n

c

e

s

O

b

j

e

c

t

R

e

f

e

r

e

n

c

e

s

Server

Apps

Object and Event

Channel Discovery

E

v

e

n

t

C

h

a

n

n

e

l

E

v

e

n

t

C

h

a

n

n

e

l

O

b

j

e

c

t

s

O

b

j

e

c

t

s

state changes

state changes

method

invocations

method

invocations

Object and Event

Channel Discovery

CHART R2B1 Design

In Response To:

PO#1600115
Document # M362-DS-019
February 10, 2006
By

Computer Sciences Corporation
	Revision
	Description
	Pages Affected
	Date

	0
	Initial Release
	All
	February 10, 2006

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

iiTable of Contents

viList of Figures

11
Introduction

11.1
Purpose

11.2
Objectives

11.3
Scope

11.4
Design Process

11.5
Design Tools

11.6
Work Products

22
Software Architecture

22.1
Network Architecture

32.2
Definitions

52.3
CCTV Camera Video Display

62.4
CCTV Camera Control

62.5
Video Tours

62.6
Database Usage

62.7
ITS National Standards Approach

62.8
Assumptions

72.9
Constraints

72.10
Items to be Resolved as Part of Release2, Build2

83
Models

83.1
Use Case Diagrams

83.1.1
HighLevelUseCases (Use Case Diagram)

123.1.2
ManageCamera (Use Case Diagram)

153.1.3
DisplayCamera (Use Case Diagram)

173.1.4
ManageCameraControl (Use Case Diagram)

203.1.5
SendCameraCommands (Use Case Diagram)

223.2
Class Diagrams

223.2.1
VideoHighLevel (Class Diagram)

313.2.2
VideoHighLevel-VideoSource (Class Diagram)

383.2.3
VideoHighLevel-VideoSink (Class Diagram)

423.2.4
VideoHighLevel-VideoTransmission (Class Diagram)

483.2.5
CameraControlModule (Class Diagram)

583.2.6
MonitorControlModule (Class Diagram)

633.2.7
Monitor Group Management (Class Diagram)

673.2.8
Video Tour Class (Class Diagram)

703.3
ApplicationPartitioning (Deployment Diagram)

713.4
Sequence Diagrams

713.4.1
CameraControlModule:DirectCameraControl (Sequence Diagram)

723.4.2
CameraControlModule:Initialize (Sequence Diagram)

723.4.3
CameraControlModule:InitializeCameraControl (Sequence Diagram)

733.4.4
CameraControlModule:OverrideCameraControl (Sequence Diagram)

743.4.5
CameraControlModule:PollTask (Sequence Diagram)

753.4.6
CameraControlModule:ProtocolHandlerAdjPan (Sequence Diagram)

763.4.7
CameraControlModule:RequestCameraControl (Sequence Diagram)

773.4.8
CameraControlModule:ShutdownServices (Sequence Diagram)

783.4.9
CameraControlModule:TakeCameraOffline (Sequence Diagram)

793.4.10
CameraControlModule:TerminateCameraControl (Sequence Diagram)

803.4.11
MonitorControlModule:CreateVideoTour (Sequence Diagram)

813.4.12
MonitorControlModule:Display (Sequence Diagram)

823.4.13
MonitorControlModule:DisplayImageImpl (Sequence Diagram)

843.4.14
MonitorControlModule:DisplayNoVideoAvailable (Sequence Diagram)

853.4.15
MonitorControlModule:DisplayNoVideoAvailableImpl (Sequence Diagram)

863.4.16
MonitorControlModule:GetNoVideoAvailable (Sequence Diagram)

873.4.17
MonitorControlModule:Initialize (Sequence Diagram)

893.4.18
MonitorControlModule:InitializeMonitors (Sequence Diagram)

893.4.19
MonitorControlModule:InitializeMonitorGroups (Sequence Diagram)

903.4.20
MonitorControlModule:InitializeVideoTours (Sequence Diagram)

913.4.21
MonitorControlModule:RemoveVideoTour (Sequence Diagram)

923.4.22
MonitorControlModule:RestartVideoTours (Sequence Diagram)

933.4.23
MonitorControlModule:SetVideoTourConfiguration (Sequence Diagram)

943.4.24
MonitorControlModule:Shutdown (Sequence Diagram)

953.4.25
MonitorControlModule:ShutdownVideoTour (Sequence Diagram)

963.4.26
MonitorControlModule:StartVideoTour (Sequence Diagram)

973.4.27
MonitorControlModule:StopVideoTour (Sequence Diagram)

99Appendix A
Un-Federated Traders

101A.1
Classes

101A.1.1
chartlite.util.corba

101A.1.1.1
Smart Trader

101A.1.1.2
Trader Group

102A.1.2
chartlite.util.wrappers

102A.1.2.1
CommLogWrapper

102A.1.2.2
DictionaryWrapper

102A.1.2.3
FirstAvailableOfferWrapper

103A.1.2.4
OfferIterator

103A.1.2.5
OfferKey

103A.1.2.6
OfferWrapper

103A.1.2.7
PrimaryComparator

103A.1.2.8
PrimaryFirstOfferWrapper

103A.1.2.9
PrimaryOfferIterator

103A.1.2.10
TraderInfo

103A.1.2.11
TTSWrapper

104A.1.2.12
UserManagerWrapper

104A.1.2.13
WrappedOffer

105A.2
Sequence Diagrams

105A.2.1
TraderGroup.performTraderQuery

106A.2.2
CommLogWrapper.addEntries

107A.2.3
OfferIterator.hasNext

108Appendix B
Direct Ports Implementation

108B.1
FieldCommunications-DirectPortChanges –High Level -(Class Diagram)

109B.1.1
CommPortConfig (Class)

109B.1.2
ConnectFailure (Class)

109B.1.3
DataBits (Class)

109B.1.4
DataPort (Class)

110B.1.5
ModemConnectFailure (Class)

110B.1.6
PortManager (Class)

110B.1.7
PortType (Class)

110B.1.8
UniquelyIdentifiable (Class)

110B.1.9
DataPortIOException (Class)

110B.1.10
DirectPort (Class)

110B.1.11
FlowControl (Class)

111B.1.12
ModemInitFailure (Class)

111B.1.13
ModemNotResponding (Class)

111B.1.14
DisconnectException (Class)

111B.1.15
ModemResponseCode (Class)

111B.1.16
NoPortsFound (Class)

111B.1.17
Parity (Class)

111B.1.18
GetPortTimeout (Class)

111B.1.19
ModemPort (Class)

111B.1.20
Port (Class)

111B.1.21
PortStatus (Class)

112B.1.22
Priority (Class)

112B.1.23
PortLocationData (Class)

112B.1.24
SpeechEngine (Class)

112B.1.25
StopBits (Class)

112B.1.26
DirectPortManager (Class)

112B.1.27
VoicePort (Class)

112B.1.28
PortManagerCommsData (Class)

112B.1.29
PortManagerCommsList (Class)

113B.1.30
PortOpenFailure (Class)

113B.2
FieldCommunications-DirectPortChanges - Implementation (Class Diagram)

114B.2.1
CHART2Service (Class)

114B.2.2
DataPort (Class)

114B.2.3
DirectPort (Class)

114B.2.4
DirectPortConfig (Class)

114B.2.5
DirectPortWaitListEntry (Class)

114B.2.6
FieldCommunicationsModuleDB (Class)

114B.2.7
java.util.Properties (Class)

114B.2.8
DirectPortImpl (Class)

115B.2.9
Port (Class)

115B.2.10
PushEventSupplier (Class)

115B.2.11
FieldCommunicationsModulePkg (Class)

115B.2.12
ModemPortConfig (Class)

115B.2.13
FieldCommunicationsProperties (Class)

116B.2.14
ServiceApplicationModule (Class)

116B.2.15
VoicePortConfig (Class)

116B.2.16
DirectPortManager (Class)

116B.2.17
DirectPortManagerImpl (Class)

116B.2.18
InstallablePort (Class)

116B.2.19
java.util.Timer (Class)

116B.2.20
java.util.Vector (Class)

116B.2.21
javax.comm.SerialPortEventListener (Class)

117B.2.22
java.util.TimerTask (Class)

117B.2.23
ModemPortImpl (Class)

117B.2.24
PortReclaimer (Class)

117B.2.25
javax.comm.SerialPort (Class)

117B.2.26
PortConfig (Class)

117B.2.27
ServiceApplication (Class)

117B.2.28
VoicePort (Class)

117B.2.29
java.util.Hashtable (Class)

118B.2.30
ModemPort (Class)

118B.2.31
PortManager (Class)

118B.2.32
PortManagerImpl (Class)

118B.2.33
VoicePortImpl (Class)

118B.2.34
WaitListEntry (Class)

119Appendix C
Use Case Mapping

List of Figures

2Figure 2.1‑1 CHART Components and Network

Figure 3.1‑1. HighLevelUseCases (Use Case Diagram)
9
Figure 3.1‑2. ManageCamera (Use Case Diagram)
13
Figure 3.1‑3. DisplayCamera (Use Case Diagram)
16
Figure 3.1‑4. ManageCameraControl (Use Case Diagram)
18
Figure 3.1‑5. SendCameraCommands (Use Case Diagram)
21
Figure 3.2‑1. VideoHighLevel (Class Diagram)
24
Figure 3.2‑2. VideoHighLevel-VideoSource (Class Diagram)
32
Figure 3.2‑3. VideoHighLevel-VideoSink (Class Diagram)
39
Figure 3.2‑4. VideoHighLevel-VideoTransmission (Class Diagram)
43
Figure 3.2‑5. CameraControlModule (Class Diagram)
50
Figure 3.2‑6. MonitorControlModule (Class Diagram)
60
Figure 3.2‑7. Monitor Group Management (Class Diagram)
64
Figure 3.2‑8. Video Tour Class (Class Diagram)
67
Figure 3.3‑1. ApplicationPartitioning (Deployment Diagram)
70
Figure 3.4‑1. CameraControlModule:DirectCameraControl (Sequence Diagram)
71
Figure 3.4‑2. CameraControlModule:Initialize (Sequence Diagram)
72
Figure 3.4‑3. CameraControlModule:InitializeCameraControl (Sequence Diagram)
73
Figure 3.4‑4. CameraControlModule:OverrideCameraControl (Sequence Diagram)
74
Figure 3.4‑5. CameraControlModule:PollTask (Sequence Diagram)
75
Figure 3.4‑6. CameraControlModule:ProtocolHandlerAdjPan (Sequence Diagram)
76
Figure 3.4‑7. CameraControlModule:RequestCameraControl (Sequence Diagram)
77
Figure 3.4‑8. CameraControlModule:ShutdownServices (Sequence Diagram)
78
Figure 3.4‑9. CameraControlModule:TakeCameraOffline (Sequence Diagram)
79
Figure 3.4‑10. CameraControlModule:TerminateCameraControl (Sequence Diagram)
80
Figure 3.4‑11. MonitorControlModule:CreateVideoTour (Sequence Diagram)
81
Figure 3.4‑12. MonitorControlModule:Display (Sequence Diagram)
82
Figure 3.4‑13. MonitorControlModule:DisplayImageImpl (Sequence Diagram)
83
Figure 3.4‑14. MonitorControlModule:DisplayNoVideoAvailable (Sequence Diagram)
85
Figure 3.4‑15. MonitorControlModule:DisplayNoVideoAvailableImpl (Sequence Diagram)
86
Figure 3.4‑16. MonitorControlModule:GetNoVideoAvailable (Sequence Diagram)
87
Figure 3.4‑17. MonitorControlModule:Initialize (Sequence Diagram)
88
Figure 3.4‑18. MonitorControlModule:InitializeMonitors (Sequence Diagram)
89
Figure 3.4‑19. MonitorControlModule:InitializeMonitorGroups (Sequence Diagram)
90
Figure 3.4‑20. MonitorControlModule:InitializeVideoTours (Sequence Diagram)
91
Figure 3.4‑21. MonitorControlModule:RemoveVideoTour (Sequence Diagram)
92
Figure 3.4‑22. MonitorControlModule:RestartVideoTours (Sequence Diagram)
93
Figure 3.4‑23. MonitorControlModule:SetVideoTourConfiguration (Sequence Diagram)
94
Figure 3.4‑24. MonitorControlModule:Shutdown (Sequence Diagram)
95
Figure 3.4‑25. MonitorControlModule:ShutdownVideoTour (Sequence Diagram)
96
Figure 3.4‑26. MonitorControlModule:StartVideoTour (Sequence Diagram)
97
Figure 3.4‑27. MonitorControlModule:StopVideoTour (Sequence Diagram)
98
Figure A-1. CORBA Trading and Event Services
100
Figure A-2. chartlite.util.corba classes
101
Figure A-3. chartlite.util.wrappers classes
102
Figure A-4. Trader Group performTraderQuery
105
Figure A-5. CommLogWrapper.addEntries
106
Figure A-6. OfferIterator.hasNext
107
Figure B-1. FieldCommunications-DirectPortChanges-High Level(Class Diagram)
109
Figure B-2. FieldCommunications-DirectPortChanges - Implementation(Class Diagram)
113

1 Introduction

1.1 Purpose
This document describes the design of the software for Release 2, Build 1 of the CHART II system. This build will support the Coordinated Highways Action Response Team (CHART) Program of the Maryland State Highway Administration’s (SHA) migration of Closed Circuit Television (CCTV) camera video distribution and management into the CHART II system, using an Internet Protocol (IP) based distribution system.

1.2 Objectives

The main objective of this design is to provide software developers with a framework in which to provide implementation of the requirements identified for the CHART CCTV camera distribution as stated in the CHART Video Software Architecture Requirements, June 1, 2005.

1.3 Scope

This design is limited to Release 2, Build 1 (R2B1) of the CHART II System. Furthermore it addresses only the server components of CHART II. It does not address the Graphical User Interface (GUI) design. This design does not include designs for components implemented in earlier releases of the CHART II system that do not require changes for this release.

Also, the design does not address the Maryland Transportation Authority (MdTA) V1500 Video Switch network, cameras, and monitors. This is planned for integration into CHART II during CHART Release 2, Build 2, with an estimated release date of June 2006.

1.4 Design Process

This design was created by extracting the Use Cases from the requirements. Class diagrams to support new and changed functions were created. Sequence diagrams to show major functionality were created. This process was iterative in nature – the creation of sequence diagrams sometimes caused re-engineering class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design are extracted from the Tau Unified Modeling Language (UML) Suite design tool. Within this tool, the design is contained in the CHART II project, CHART Video, Analysis phase and System Design phase.

1.6 Work Products

This design contains the following work products:

UML Use Case diagrams that capture the requirements of the system.

UML Class diagrams, showing the software objects which allow the system to accommodate the uses of the system described in the Use Case diagrams.

UML Sequence diagrams showing how the classes interact to accomplish major functions of the system.

2 Software Architecture

CHART R2B1 uses the R1B4 CHART II and FMS architecture. As such, the Common Object Request Broker Architecture (CORBA) is used as the base architecture, with custom built software objects made available on the network to allow their data to be accessed via well defined CORBA interfaces.

The sections below discuss specific elements of the architecture and software components that are created, changed, or used in R2B1.

2.1 Network Architecture

The diagram below presents an overall view of the CHART II components and network after R2B1, including some future components. Note that AVL equipped vehicles and Page and Fax recipients are the future CHART components.
[image: image1.wmf]CCTV

Cameras

Field Mgmt.

Server

HARs and

Shazams

ITS Device

Network

Detectors

K

R

O

W

D

A

O

R

2

1

M

-

A

0

3

1

-

M

T

P

I

0

X

1

E

Fixed and Portable DMS

AVL

Equipped

Vehicles

Page and Fax

External

Systems

CHART II

Archive Server

CHART II

Servers

CHART IP

Multicast

Video

Display

Monitors

NETWORK

MDOT

Internet

Figure 2.1‑1 CHART Components and Network

R2B1 will integrate display of video from CCTV cameras installed on the backbone network into CHART II. R2B1 will also integrate Pan/Tilt/Zoom (PTZ) control of CHART cameras on the network into CHART II. The video from the CHART cameras will be transported from the field location via IP. Likewise, the CCTV camera control commands and responses will be transported to/from the field location via IP.

2.2 Definitions

There are a number of terms that will be used throughout the document:

Bridge circuit – A physical connection between a sending device on one switch fabric and a receiving device on another switch fabric. Although CHART R2B1 need only implement a single switch fabric, future CHART releases need multiple switch fabrics.

Camera control – The ability to send Pan/Tilt/Zoom and other commands to a camera.

Camera region – A collection of cameras related in some manner. For example, a particular camera region may include cameras that are in close geographic proximity. Cameras may be in multiple camera regions.

Controlling operator – The operator controlling a camera.
Database – A persistent data store. CHART II uses Oracle 10g as its database.
Functional right – The CHART II concept of functional rights and roles will continue forward. Functional rights will be defined for all camera operations as they have been for other CHART II functions. Functional rights are assigned to operator roles. Functional rights will be assigned at fine granularity so as to provide greatest flexibility in creating operator roles. Functional rights cannot be created on the fly during operations; they must be created during development time. Examples of functional rights include: Request Control of a Camera (for all or certain organizations), Override Control of a Camera (for all or certain organizations), Pan or Tilt a Camera, Zoom a Camera, Focus a Camera, Set Camera Iris Control, Set Camera Color Balance, Reset a Camera). See Roles.

Local camera – The concept of a “local camera” refers to a camera homed to a particular CHART II server node. Local cameras will be able to be displayed on local monitors and controlled by local operators in the face of a network outage affecting communications among network nodes.

Local monitor –A monitor that is in the operator’s chosen monitor group. Normally, the operator’s monitor group will correspond to the operating center where the operator is logged in. Presumably, monitors in the user’s chosen monitor group will be visible to the user.

Monitor group – A collection of monitors that are related in some manner. For example, a particular monitor group may include monitors that are co-located. Monitors may be in multiple monitor groups.

Maintenance mode – A device (e.g., camera) that may be used by an operator to perform a limited number of tasks but not as part of normal operations. For R2B1, cameras will have online and offline mode, but not a maintenance mode. This may change with future releases.

Offline mode – A device (e.g., camera) that may not be used by an operator as part of normal operations. For R2B1, a camera and a monitor in offline mode will have one allowable operation: an ability to put the camera in online mode.

Online mode – A device (e.g., camera) that may be used as part of normal operations.

Organization – The CHART II concept of organizations will continue forward. Each camera would be associated with an organization, as are DMSs, HARs, etc. An operator is not directly associated with a single “home” organization but is allowed to perform functions on cameras (and other devices) associated one or any number of organizations. The same organization that owns a camera would have special privileges regarding that camera, which operators from other organizations would not have.

Override – There are several factors involved in camera override. First of all, if a camera is not currently controlled, any operator with the functional right to request control of the camera can control it. Requesting control is allowed by the functional right "Request Control of Camera", which can be set for all cameras or for only a subset of organizations. If the "Request Control of Camera" functional right includes the organization which is configured as the owning organization of the camera, the user can control the camera.

The right to request an override of a camera is determined by the functional right "Override Control of Camera", which also can be configured for all organizations or only a subset of organizations. This is the only criterion which must be met to override camera control. If a user has the functional right to override control for the camera in question, then that user may do so.
Ownership – In CHART R1B4, devices have an owning organization by which some control can be exerted over which operators can manipulate the devices. In R2B1, cameras and monitors will have an owning organization as well. Operators allowed to Request Control of a Camera for the organization which is configured to “own” a camera will be able to request control of that camera. Furthermore, operators allowed to Override Control of a Camera for the organization configured to own a camera will be allowed to override it. (Naturally, the set of organizations for override should not be configured to contain any organization for which the operator cannot request control in the first place.) If the operator is allowed to override control only for one organization, that organization could be presumed to be that operator’s “home” organization regarding camera control.
Owning organization – The owning organization is the organization defined in a device (DMS, HAR, camera, etc.) configuration as being the organization of that device. An operator with camera configuration privileges will be able to change the organization of the camera (as an operator with DMS configuration privileges can change the organization of a DMS). Note that it is anticipated there will be no GUI for configuring any video related devices in R2B1.
Operating center – The CHART II concept of operating centers will continue forward. Any operator can choose to log in as part of any operating center. An operator will be associated with an organization, which is a part of the user profile which normal users cannot change. When an operator logs into an operating center, the operator will choose a monitor group, presumably a group of monitors that is visible to the operator at that operating center. The default monitor group for the operator will be the monitor group representing monitors located at the operating center.

Reachable camera – A camera (or other sending device) that can be commanded for video display or control from a particular workstation. A camera may be reachable from some servers or workstations but not others. Normally all cameras are reachable from all workstations unless there are hardware, network, or system problems.

Reachable monitor – A monitor (or other receiving device) that can be commanded for video display from a particular workstation. A monitor may be reachable from some servers or workstations but not others. Normally all monitors are reachable from all servers and workstations unless there are hardware, network, or system problem.

Receiving device – A device that can be commanded to receive video. For R2B1, all receiving devices will be IP decoders, although the video will ultimately displayed on a monitor.
Remote monitor – A monitor not in the user’s chosen monitor group.

Role – Users will be assigned a role (or roles) via the privileged CHART II user configuration function. Users without the Configure Users functional right cannot modify their Role(s). The Functional Rights contained in a user’s role(s) defines what that operator is allowed to do in CHART II. Using the camera-related Functional Rights to be defined for CHART II, the exact functionality of each operator role can be configured. It will also be possible to modify these roles, or create any additional roles as desired throughout the life of the CHART II system. It is possible to assign multiple roles to users, so it will be possible to assign certain operators only roles pertaining to camera control, only roles pertaining to other existing CHART II devices, or any combination thereof. In CHART II, operator capabilities are determined solely by the user the operator logs in as, which specifies operator’s role(s) (comprised of functional rights), and not at all by the operating center the operator logs into.

Sending device – A device that can be commanded to send video from a camera or other video source, making the video available for receipt by a video receiving device. Sending devices may also have additional functionality such as providing an interface for camera control communications.
Server node – An application server on which CHART II services execute. R1B4 operates on two server nodes (HANOVERCHART1 and AOCCHART2). R2B1 will operate on seven server nodes.

Switch fabric – A group of one or more switches that do not require a bridge circuit to connect a sending device to a receiving device. For R2B1, all CHART cameras and monitors will be part of the same switch fabric. However, for future releases, there may be more that one switch fabric in the system. For example, when R2B2 is deployed, the MdTA Video Switch Network will be on a different switch fabric that the CHART video network. Although the switch fabric concept is not needed for R2B1, it must be part of the R2B1 design to allow the concept to be introduced in R2B2 and beyond.

Video router – Manager of routes consisting of virtual circuits and bridge circuits. The Video Router is needed for R2B2 and beyond.
Video tour – A succession of cameras, which play continuously on a monitor, with each camera optionally at a preset position remaining on the monitor for a defined dwell time before being replaced with the next image. A video tour cycles continuously until stopped by an operator.

Virtual circuit – A connection between a sending device and a receiving device on the same switch fabric.

2.3 CCTV Camera Video Display

It is anticipated that the current CHART cameras (i.e., the COHU 3955), will be attached to the network using IP based video encoders. Likewise, the CHART monitors will also be attached to the network using IP based video decoders. Although there are specific IP encoders and IP decoders that are expected to be deployed, the software design uses the concept of a sending device for a video source, and receiving device for a video sink to display CCTV camera video on a monitor. This design allows new types of sending and receiving devices (e.g., software decoders running on a desktop) to be added to the system without extensive code changes and re-design.

The IP video encoders will multicast compressed video where an IP video decoder on the network may be commanded to receive that video. A new CHART II Video Service will contain all of the necessary functionality for CCTV camera video display and control.

2.4 CCTV Camera Control
It is anticipated that the current CHART cameras (i.e., the COHU 3955), will be attached to the network. Camera command data will be sent to the cameras from the CHART II Server which serves that particular camera. Likewise, the camera response data will be sent from the camera to the same CHART II server. In the case of CHART R2B1, the CHART II Video Service will implement CCTV camera control.

2.5 Video Tours

Video tours will be supported in R2B1. However, because presets will not be supported until R2B2, there will be no capability to store preset information in tours. This means that when a camera is displayed as part of a tour, it will simply be at its current position, and may not be in the same position as when the camera tour started running.
2.6 Database Usage

R2B1 will use the CHART II database for object persistence. The database deployed for R1B4 will be modified to add the tables necessary to persist CCTV cameras, monitors, monitor groups, video tours, and related objects. For R2B1, configuration updates will be performed manually in the CHART II database. Although CHART II will retrieve and load the necessary configuration data from the database, configuration information may not be added, updated, or deleted through the CHART II system. There is one exception: it is anticipated that video tours will be able to be added, updated, or deleted through the CHART II system.
2.7 ITS National Standards Approach

CCTV camera related object information stored in the CHART II database will conform to the Traffic Management Data Dictionary (TMDD) standards. TMDD required data for CCTV cameras will be stored in the CHART II database to meet future Center-to-Center requirements and facilitate the possible future implementation of Center-to-Center communications in CHART II. Optional TMDD CCTV camera related data will be included in the CHART II database only when that data will help meet the immediate CHART II R2B1 requirements. Otherwise optional TMDD CCTV camera related data will be excluded from R2B1.
2.8 Assumptions

1. Only the IP video decoder needs to be commanded to receive IP video. The encoders will be pre-configured to send video on a specific multicast group.

2. This design addresses the CHART II server side design. GUI components will need to be designed and implement the interfaces necessary to carry out the required functionality of R2B1 (e.g., video display and control).
2.9 Constraints

1. The R2B1 implementation will support only the COHU 3955. Surveyor VFT cameras will not be supported with R2B1.
2. The design isolates the encoder and decoder specifics and facilitates the introduction of new sending devices and receiving devices. However, the R2B1 implementation itself will target a specific encoder/decoder for IP video and control.
2.10 Items to be Resolved as Part of Release2, Build2
Note that there are additional requirements that may be part of R2B2. Also, many of the CHART video requirements will be included in future releases beyond R2B2. See Appendix C for details.

1. CHART II shall provide the necessary interfaces to add, update, and delete configuration data from the CHART II database.

2. CHART II will integrate cameras and monitors attached to the MdTA’s V1500 Switch network, including Surveyor VFT camera control.
3 Models

This section provides software designs modeled using the Unified Modeling Language (UML). A section is provided for each functional area of CHART II to be added in R2B1.

3.1 Use Case Diagrams
Use case diagrams may include both new and existing components. When a use case diagram contains both new and existing components, the new use cases are depicted in red and are further detailed in additional use case diagrams. When this is the case, the use case will contain a reference to the appropriate diagram. Existing components will not be detailed. When use diagrams depict only new use cases, there is no need to distinguish between old and new components, so all components are depicted in black.

3.1.1 HighLevelUseCases (Use Case Diagram)

This diagram shows the main uses of the system at a very high level. Most of the use cases will not be detailed further since they are not changing with CHART R2B1. The major piece of functionality for CHART R2B1 is the Manage Camera use case which is further detailed with a corresponding use case diagram. One additional item, Configure Video Tours is also new for R2B1.

[image: image2.emf]View Device

Status

Configure

Operation

Centers

Operator

Control HAR

Control DMS

Manage Camera

Manage

Device

Queues

Manage

Dictionaries

Respond To

Traffic Event

Manage Stored

Messages

Manage Plans

Administrator

Configure Video

Tours

Configure Devices

All use cases

use this

Log System

Operation

Monitor

Controlled

Resources

System

alarm alarm

Figure 3.1‑1. HighLevelUseCases (Use Case Diagram)

3.1.1.1 Administrator (Actor)

An administrator is a CHART II user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

3.1.1.2 Configure Video Tours (Use Case)

An operator with the correct functional right may configure a video tour. Video tour information includes such items as a tour name, a list of the cameras and their presets (not applicable for R2B1), and a dwell time. A video tour will run on a monitor, with each camera in the list being displayed for the configured dwell time.

3.1.1.3 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.1.4 Configure Operation Centers (Use Case)

A user with proper functional rights can configure operations centers that are known to the system. Administrators can add and remove operations centers. Users can also view the operations centers that have been defined in the system.

3.1.1.5 Control DMS (Use Case)

The following DMS sign models are supported: FP1001, FP2001, FP9500 (Mark IV), TS3801 (Telespot), ADCO, Display Solutions, PCMS, NTCIP, and Sylvia.

3.1.1.6 Control HAR (Use Case)

Highway Advisory Radio (HAR) allows the user to broadcast a message over an AM radio channel to inform motorists of traffic conditions, incidents, events, etc. The user can set the message on a HAR device, blank the message (which places the default message on the device), reset the device, and take the device offline from the Chart II system or place the device back on-line.

3.1.1.7 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera. Please refer to the Manage Camera Use Case diagram for more detailed information.

3.1.1.8 Manage Device Queues (Use Case)

Each HAR and DMS device contains a queue that serves to arbitrate the usage of the device when more than one user needs to display a message on the device. When a user is managing a traffic event and wishes to put a message on a HAR or DMS as part of the response for the traffic event, the message is not sent directly to the device and is instead sent to the device's arbitration queue. This arbitration queue uses a prioritization algorithm that determines which message is to be sent to the device based on the source of the message and the type of traffic event from which the message was sent. This determination of the message to put on the device is done every time a message is removed from the queue or added to the queue.

All messages set on DMS or HAR devices when the device is online must pass through the device's queue via a traffic event. No direct setting of the DMS or HAR message is allowed when the device is online.

The system allows users to view device queues to determine the priority of the messages in the queue, see the message that is currently active, and manually re-prioritize the queue.

3.1.1.9 Manage Dictionaries (Use Case)

An administrator (operator with the correct functional rights) may manage system dictionaries.

3.1.1.10 Configure Devices (Use Case)

An administrator (operator with the correct functional rights) may configure devices.

3.1.1.11 Manage Plans (Use Case)

An operator with the correct functional rights may manage plans.

3.1.1.12 Log System Operation (Use Case)

The system shall log operations that are performed by users. View only type accesses to the system are not logged. Attempts by a user to access parts of the system for which they do not have the proper rights are also logged.

3.1.1.13 Manage Stored Messages (Use Case)

An operator with the correct functional rights may manage stored messages.

3.1.1.14 Monitor Controlled Resources (Use Case)

Some objects in the system provide the capability for an operations center to take control of the object and block other operations centers from performing certain operations on the object. Some examples of such objects are Traffic Events and also DMS, HAR, and SHAZAM objects that have been placed in maintenance mode. An operation center must have at least one user logged in while the operation center has control of one or more of these objects. The system will not let an operator log out from an operations center that has control of one or more of these objects if there are no other users logged into the operation center. The system will automatically monitor these objects to detect the case where no users are logged into an operations center that has control of one or more of these objects. This condition could arise if a workstation running CHART Lite is powered off without the user logging out from CHART II.

3.1.1.15 Respond To Traffic Event (Use Case)

An operator may use the system to respond to traffic events which may include the control of field devices. These field devices will not include cameras for R2B1; however cameras are likely to be included in a future release of CHART.

3.1.1.16 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

3.1.1.17 View Device Status (Use Case)

The user may view the status of a device. The information that encompasses a device status depends on the device type and sometimes even the device model within a device type. Device status is viewable by users.

3.1.2 ManageCamera (Use Case Diagram)

An operator will interact with cameras in a variety of ways. Cameras may be taken online or offline. Monitors may be taken online or offline as well. Cameras may be displayed. Cameras may also be controlled. Note that the term control as it applies to cameras has a slightly different meaning than when applied other types of CHART devices, such as DMSs. An operator who controls a camera establishes a control session which typically lasts some number of minutes. During this control session, the operator sends multiple commands to the camera (e.g., Pan Left, Pan Stop). While the session is active, no other operator may send commands to the camera. An operator may also view which cameras are displayed on which monitors.

[image: image3.emf]Operator

View Monitor

Assignments

The server will track which

cameras or tours are displayed

on which monitors. presentation to

operator is a GUI function.

Manage Camera

Take Camera

Offline

Put Camera

Online

Terminate Camera

Control

Take Monitor

Ofline

Remove Camera

From Monitors

Put Monitor

Online

Display Camera

Control Camera

Manage Camera

Control

Display No Video Available

Source On Monitor

Send Camera

Commands

Poll Camera

System

«uses»

«include» «include»

«include» «include»

«uses»

«uses»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«uses»

«include» «include»

«uses»

«include» «include»

«include» «include»

«include» «include»

Figure 3.1‑2. ManageCamera (Use Case Diagram)

3.1.2.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. The details are included in the Manage Camera Control use case diagram.
3.1.2.2 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera.

3.1.2.3 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.2.4 Manage Camera Control (Use Case)

An operator with the proper functional rights may either request control of a camera or terminate control of a camera. If the camera control request is successful, a camera control session is established. See the Request Camera Control use case for further details. When camera control is terminated, the camera control session is terminated. See the Terminate Camera Control use case for further details. Please see the overall Manage Camera Control use case diagram for further details.
3.1.2.5 Display Camera (Use Case)

An operator with the correct functional rights may display a camera on a monitor. See the Display Camera use case diagram for a more detailed explanation.

3.1.2.6 Display No Video Available Source On Monitor (Use Case)

A No Video Available source will be displayed on a monitor when the camera image has been removed without being replaced by a new camera image. A No Video Available source acts essentially like another camera in the system.

3.1.2.7 Put Camera Online (Use Case)

An operator with the proper functional rights can put a camera online if the camera is currently offline. Putting the camera online makes it available for display and control to any operators having the proper functional rights.

3.1.2.8 Put Monitor Online (Use Case)

An operator with the proper functional rights can put a monitor online if the monitor is currently offline. Putting the monitor online makes it available for display to any operators having the proper functional rights.
3.1.2.9 Remove Camera From Monitors (Use Case)

When a camera has been taken offline, the camera image must be removed from any monitors on which it is displayed.

3.1.2.10 Take Camera Offline (Use Case)

Operators with the proper functional rights may take a camera offline. A camera that has been taken offline may not be displayed or controlled until it is put back online.

3.1.2.11 Take Monitor Offline (Use Case)

Operators with the proper functional rights may take a monitor offline. A monitor that has been taken offline may not be displayed on until it is put back online.

3.1.2.12 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control session that the operator is actively using. Note that an operator who has the proper functional rights to establish the control session will always have the proper functional rights to terminate that session. Also, a camera control session may be terminated if that session is overridden by an appropriately privileged operator. Also, an active control session may be terminated if a camera is taken offline or if the camera is no longer displayed on a monitor within the controlling operator’s monitor group as a result of displaying a NoVideoAvailable source. Note that part of this process will include terminating the camera control GUI, although that is beyond the scope of this document.

3.1.2.13 Send Camera Commands (Use Case)

An operator with the proper functional rights may send commands to a camera. This includes sending the command to the camera and receiving a response from the camera. Commands sent to the camera include pan, tilt, zoom, iris control, focus, and color balance control commands. Commands may also include camera reset, camera power, and camera titling commands.

3.1.2.14 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control communications path. The polling process consists of sending the camera a poll command and receiving a response from the camera. This is done by the system for all cameras that are online, regardless of whether the cameras are controlled or not. It is also done immediately after camera control has been granted so that the camera control status is current. In addition, polling takes place while a camera is actively controlled. When a camera is actively controlled, the polling is typically much more frequent that when the camera is not actively controlled.

3.1.2.15 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

3.1.2.16 View Monitor Assignments (Use Case)

An operator may view which cameras or camera tours are assigned to which monitors. This information will be made available by the server for the GUI to interpret. The presentation to the user is beyond the scope of this design.

3.1.3 DisplayCamera (Use Case Diagram)

An operator may display any camera on any monitor subject to certain restrictions. First the operator must have the proper functional rights to display a camera on a monitor. Next, the operator must have the proper functional rights to display a particular camera. Finally, that camera must be online. An operator may display a local camera on a local monitor, a remote camera on a local monitor, a local camera on a remote monitor, or a remote camera on a remote monitor. A local camera is a camera homed to the same server as the operator's workstation. A local monitor refers to a monitor in the requesting operator’s monitor group. An operator with the correct functional rights may also start and stop a camera tour running on a local or remote monitor.

[image: image4.emf]«uses»

«uses»

Display Camera

Start Camera Tour

Stop Camera Tour

Operator

Display Camera

On Monitor

Command Decoder

Terminate Camera

Control

«include»

«include»

«include»

«include»

Figure 3.1‑3. DisplayCamera (Use Case Diagram)

3.1.3.1 Command Decoder (Use Case)

In order to accomplish the task of displaying a camera on a monitor, the system will command a decoder to perform the video switching. The decoder will actually stop receiving the video stream for the current camera and start receiving the video stream for the new camera. It will do so by dropping the multicast group associated with the current camera's video stream and joining the multicast group associated with the new camera's video stream.

3.1.3.2 Display Camera On Monitor (Use Case)

An operator with the proper functional rights may display a camera on a monitor by commanding the proper decoder. Also, a No Video Available source may be displayed on a monitor. If a No Video Available source is being displayed, and if the old camera displayed on the target monitor is being controlled, and that monitor is in the monitor group of the operator controlling the camera, and if that monitor has the only image of the controlled camera within the controlling operator’s monitor group, then that camera control session will be terminated. If, under this circumstance, a camera were being displayed instead of a No Video Available source, the display request would be rejected, and camera control would not be terminated.
3.1.3.3 Display Camera (Use Case)

An operator with the correct functional rights may display a camera on a monitor.
3.1.3.4 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.3.5 Start Video Tour (Use Case)

An operator with the proper functional rights may start a video tour on the selected monitor. The video tour list is defined in the CHART II database. The video tour list consists of a list of cameras to be displayed in succession for a configurable dwell time.

3.1.3.6 Stop Video Tour (Use Case)

An operator with the proper functional rights may stop a video tour running on the selected monitor. The operator need not be the operator who started the camera tour.

3.1.3.7 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control session that the operator is actively using. Note that an operator who has the proper functional rights to establish the control session will always have the proper functional rights to terminate that session. Also, a camera control session may be terminated if that session is overridden by an appropriately privileged operator. Also, an active control session may be terminated if a camera is taken offline or if the camera is no longer displayed on a monitor within the controlling operator’s monitor group as a result of displaying a NoVideoAvailable source. Note that part of this process will include terminating the camera control GUI, although that is beyond the scope of this document.

3.1.4 ManageCameraControl (Use Case Diagram)

An operator may control establish a camera control session which will allow the operator to issue Pan/Tilt/Zoom and other commands to the camera while that control session is active. Only one camera control session at a time will be active so that only one operator at a time may control a particular camera. The cameras that are available for an operator to control include only those cameras that are displayed on monitors that are within the operator’s monitor group. Presumably, the monitors are physically visible to the operator. This is so that the operator will be able to see the camera image while the camera is actually being moved. In addition an operator may be able to override an existing camera control session, thereby taking control of a camera from another operator. The specific business rules which govern camera control override are described in the Override Camera Control use case.

[image: image5.emf]Operator

Notify Operator of

Camera Control

Status

Status will be updated on server side.

GUI will actually notify the operator. GUI

design will not be addressed here.

Control Camera

Terminate Camera

Control

Manage Camera

Control

Part of the request control process

includes launching the Camera

Control GUI. This process is strictly

part of GUI design.

Request Camera

Control

Override Camera

Control

Check If Camera Local

Monitor Display

Evaluate Camera

Control Request

Check If Camera

Controlled

Grant Camera

Control

Poll Camera

«include» «include»

«include» «include»

«include» «include»

«uses»

«uses»

«uses»

«include» «include»

«uses»

«uses»

«uses»

«include» «include»

«uses»

Figure 3.1‑4. ManageCameraControl (Use Case Diagram)

3.1.4.1 Check If Camera Controlled (Use Case)

In order to evaluate a camera control request, the system must determine whether the camera is currently controlled by another operator.

3.1.4.2 Evaluate Camera Control Request (Use Case)

Once it has been established that the operator who is requesting control has the camera image displayed on a monitor within their monitor group, the control request is further evaluated. If the camera is not controlled, the control request is granted. If the camera is already controlled, the system determines if the operator requesting override may override the current control session based on business rules described in the Override Camera Control use case. If the requesting operator may not override the current control session, the camera control request is denied. If the requesting operator may override the current control session, the operator currently controlling the camera is notified, the current control session is terminated, and the newly requested camera control request is granted.

3.1.4.3 Grant Camera Control (Use Case)

When a camera control request has been granted, the control session becomes fully active, and the camera is polled so that the camera status may be immediately updated.

3.1.4.4 Notify Operator of Camera Control Status (Use Case)

An operator will be notified of camera control status under a number of circumstances. If another operator overrides the controlling operator's camera control session, the controlling operator will be notified. If an administrator with sufficient privileges takes a camera offline, then the controlling operator will be notified. Also, if the controlled camera is no longer displayed on a monitor within the controlling operator’s monitor group, the controlling operator will be notified that their camera control session has been terminated.

The actual mechanism used to notify the operator through the GUI is beyond the scope of the server side design.

3.1.4.5 Check If Camera Local Monitor Display (Use Case)

A camera control request will only be granted if the camera is displayed on a monitor that is in the monitor group of the operator requesting control. This is to implement the requirement that an operator may only control a camera when the operator can actually see the camera.

3.1.4.6 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc.
3.1.4.7 Manage Camera Control (Use Case)

An operator with the proper functional rights may either request control of a camera or terminate control of a camera. If the camera control request is successful, a camera control session is established. See the Request Camera Control use case for further details. When camera control is terminated, the camera control session is terminated. See the Terminate Camera Control use case for further details.

3.1.4.8 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.4.9 Override Camera Control (Use Case)

The Override Camera Control use case is invoked when an operator with the proper functional rights requests control of a camera that is currently controlled by another operator but where control would otherwise be allowed. If, based on a set of business rules, the operator may override the existing camera control session, the requesting operator will have the option to override the existing camera control session. If the requesting operator chooses to override, the existing control session will be terminated and the new one will start. Note that if the operator does choose to override an existing control session, control may not be granted immediately. This is because the existing camera control session will not terminate until all long running commands, such as setting a title on certain types of cameras, have completed.

A requesting operator may override an existing camera control session based when the requesting operator has the Override Camera Control functional right for the camera’s owning organization.

3.1.4.10 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control communications path. The polling process consists of sending the camera a poll command and receiving a response from the camera. This is done by the system for all cameras that are online, regardless of whether the cameras are controlled or not. It is also done immediately after camera control has been granted so that the camera control status is current. In addition, polling takes place while a camera is actively controlled. When a camera is actively controlled, the polling is typically much more frequent than when the camera is not actively controlled.

3.1.4.11 Request Camera Control (Use Case)

An operator with the proper functional rights may request control of a camera. This means that the operator may send pan/tilt/zoom (PTZ) and other commands to the camera. The system evaluates the request, and will accept the request, prompt the operator to override an existing camera control session, or reject the request. If the request is accepted or the user chooses to override an existing control session, a GUI will be launched which can be used to send commands to the camera. The GUI itself will not be addressed in this document.

3.1.4.12 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control session that the operator is actively using. Note that an operator who has the proper functional rights to establish the control session will always have the proper functional rights to terminate that session. Also, a camera control session may be terminated if that session is overridden by an appropriately privileged operator. Also, an active control session may be terminated if a camera is taken offline or if the camera is no longer displayed on a monitor within the controlling operator’s monitor group as a result of displaying a NoVideoAvailable source. Note that part of this process will include terminating the camera control GUI, although that is beyond the scope of this document.
3.1.5 SendCameraCommands (Use Case Diagram)

An operator with the proper functional rights may control a camera. Once a control session has been established, the operator will use the camera control GUI to issue control commands to the camera. Those commands include pan, tilt, zoom, iris, focus, color balance, camera reset, and camera title commands. For each command sent to the camera, a response shall be received from the camera. In addition to commands sent by the user, the system will send poll commands to the camera and evaluate the responses from those poll commands. The Poll Camera use case is described as part of the Manage Camera use case diagram. Note that each type of command will have separate functional rights so that some operators may be able to send pan, tilt, and zoom commands to the camera but will not be allowed to set camera’s color balance, for instance. For R2B1, only COHU 3955 cameras may be controlled.

[image: image6.emf]Operator

Control

Camera

Send Camera

Commands

Control COHU 3955

Camera

Receive Camera

Response

Process Camera

Control Requests

«extends»

«include» «include»

«include» «include»

«uses»

Figure 3.1‑5. SendCameraCommands (Use Case Diagram)

3.1.5.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc.
3.1.5.2 Control COHU 3955 Camera (Use Case)

The Control COHU 3955 camera use case provides the functionality needed to send commands to COHU 3955 cameras. The command will be built, meaning that the command bytes will be generated, and those commands will be sent to the camera. Each command sent to the camera should elicit a response. Should no response be received from the camera, an error shall be returned to the user indicating that the command has failed. However, the camera will remain online and available to continue to receive commands.

3.1.5.3 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.5.4 Process Camera Control Requests (Use Case)

Camera control request processing includes actually building the command, sending that command to the camera and receiving a response from the camera.
3.1.5.5 Receive Camera Response (Use Case)

Any time a command is sent to a camera, the camera will return a response. If no response data is received, an error will be returned to the operator to indicate that the command failed. It will be evaluated and the status of the camera will be updated. For instance, response data may include and indication of whether auto-iris is enabled for the camera.

3.1.5.6 Send Camera Commands (Use Case)

An operator with the proper functional rights may send commands to a camera. This includes sending the command to the camera and receiving a response from the camera. Commands sent to the camera include pan, tilt, zoom, iris control, focus, and color balance control commands. Commands may also include camera reset, camera power, and camera titling commands.

3.2 Class Diagrams
The following diagrams depict both the high level interfaces and the module level class diagrams. The high level interface diagrams are represented first. Classes that are shaded will not be implemented in R2B1 but exist so that the future requirements for CHART video are accounted for in the R2B1 design.
3.2.1 VideoHighLevel (Class Diagram)

This diagram shows the High Level CHART II CORBA interfaces. This diagram does not show all VideoService IDL elements, but shows the highest level elements and their interrelationships. For further details, see VideoHighLevel-VideoSource, VideoHighLevel-VideoSink, and VideoHighLevel-VideoTransmission diagrams. The collection of these last three diagrams show all planned CORBA/IDL interface objects for the CHART II R2B1 Video Service. In all four of these diagrams, some boxes are shown indicating objects planned to be implemented for R2B2 or later releases. These objects have been considered for future planning purposes, to ensure than the current design is well-thought out enough to be able to accommodate future planned enhancements, including Vicon SVFT cameras, Vicon V1500 Switches, and routing.

This diagram shows cameras and related information generally on the left side, monitors and related information generally on the right side, and video transmission and future routing capabilities in the central part of the diagram. The VideoProvider interface is the top of the interface set which contains the VideoCamera interface. VideoSource includes video sources including fixed cameras, image generators, etc. Likewise on the right side, VideoCollector is at the top, opposite VideoProvider, with VideoSink and Monitor lower down. In addition to VideoSource and VideoSink objects, future BridgeCircuit objects will also be VideoProviders and VideoCollectors, since any bridge circuit both collects video from some other VideoProvider and provides video to the next VideoCollector in line. Multiple bridge circuits may be present between the ultimate VideoProvider (i.e., the VideoSource, that is, the camera, the true source of the image) and the ultimate VideoCollector (i.e., the VideoSink, that is, the monitor, the final sink of the image. However, the BridgeCircuit, VideoRouteManager, and VideoRoute objects will be implemented at a later time.

[image: image7.emf]Tau UML does not provide sterotypes for

distinguishing struct and valuetype classes.

So these stereotypes are used for all R2B1

Class Diagrams:

<<datatype>> - Defined in IDL as a simple data

 type, i.e., a struct.

<<powertype>> - Defined in IDL as the (more

 complicated) valuetype.

At this point no valuetypes are defined for

R2B1 or R2B2.

+createTour(token,tour)

+getTours(token):Tour[]

+getMonitorsWithActiveTours()

«interface»

VideoTourFactory

For R2B1 all create / add,

setConfiguration, and remove

methods and other similarly

named operations will not

be implemented except for in

Tours.

ACTIVE

INACTIVE

SUSPENDED

VideoTourState

+getStatus():VideoTourStatus

+getConfiguration(token):VideoTourConfig

+setConfiguration(token,TourConfig)

+remove(token)

«interface»

VideoTour

+m_name

+m_tourEntries:TourEntry[]

+m_temporary:boolean

+m_dwellTimeSecs:int

«datatype»

VideoTourConfig

+getProviderStatus():VideoProviderStatus

+getProviderConfig(token):VideoProviderConfig

+setProviderConfig(token,VideoProviderConfig)

+remove(token)

+addDisplay(token,displayInfo:MonitorDisplayInfo)

+removeDisplay(token,displayID)

«interface»

VideoProvider

+m_opCenterInfo:OpCenterInfo

+m_userInfo:ControllingUserInfo

«datatype»

ControllingInfo

FUTURE:

m_temporary --

how to detect when

temp tour can be

deleted?

+m_sinkName:string

+m_sink:VideoSink

«datatype»

VideoSinkInfo

adjXxxx() methods -- For

pan, tilt, zoom, focus, iris --

any positive value means

right, up, in, far, open;

any negative value means

left, down, out, near, close;

zero means stop.

m_presetNumber of zero means none

(don't move to any preset).

+m_videoSourceName:string

+m_videoSource:VideoSource

+m_presetNumber:int

«datatype»

VideoTourEntry

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

«interface»

SharedResource

+moveToPreset(token,onTour:boolean,cmdStat:CommandStatus)

+savePreset(token, preset:int,title)

«interface»

PresetEnabled

+m_activeState:VideoTourState

+m_sinkInfo:VideoSinkInfo[]

+m_temporary:boolean

«datatype»

VideoTourStatus

getID()

getName()

«interface»

UniquelyIdentifiable

CMD_UP

CMD_DOWN

CMD_LEFT

CMD_RIGHT

CMD_SELECT

CMD_CANCEL

CMD_AUX1

CMD_AUX2

«enumeration»

ViconSVFTPgmCmd

+getDeviceStatus():VideoTransmissionDeviceStatus

+getDeviceConfig(token):VideoTransmissionDeviceConfig

«interface»

VideoTransmissionDevice

+getSendingDeviceStatus():

VideoSendingDeviceStatus

«interface»

VideoSendingDevice

+initialize()

+shutdown()

+connect()

+disconnect()

+send(messageByte)

+receive(data,length)

«interface»

CameraControlDevice

takeOffline()

putOnline()

putInMaintenanceMode()

getCommMode()

«interface»

CommEnabled

«interface»

NTCIPCamera

+setAutoFocus(token,boolean)

+resendPreset(token,presetNum:int)

+enterProgramMode(token)

+exitProgramMode(token)

+programCommand(VFTPgmCmd, count:int)

+enterColorGainSetupScreen(token)

+exitColorGainSetupScreen(token)

+enterBlueColorGainMenu(token)

+enterRedColorGainMenutoken()

+programColorLess(token)

+programColorMore(token)

+programColorStop(token)

+programColorSavetoken()

+pogramColorCancel(token)

«interface»

ViconSVFTCamera

+adjPanTilt(token,panDir,tiltDir)

«interface»

DiagonallyMovable

CameraControlComPort

+getSourceStatus():VideoSourceStatus

+getSourceConfig(token):VideoSourceConfig

+setSourceConfig(token,VideoSourceConfig)

+setUserDisplayStatus(token, boolean)

+isNoVideoAvailable():boolean

+isDisplayable(token,info:VideoCollectorInfo,reason:string):bool

+isRemoveable(info:VideoCollectorInfo,monitorGroupIDs:Identifier[],reason:string):bool

+blockToPublic(token,block:boolean)

+inhibitDisplay(token,hierarchyLevel:int)

+revokeDisplay(token,orgs:VideoDisplayRevokedOrg[])

+isRevokedFor(orgId:Identifier)

«interface»

VideoSource

+m_name

+m_inPorts:SwitchInputPort[]

+m_outPorts:SwitchOutputPort[]

«datatype»

V1500SwitchConfig

«interface»

SwitchPort

«interface»

NoVideoAvailableSource

«interface»

SwitchInputPort

NOTE: Encoders and Decoders do not have any SwitchFabric

associated with them. Their SwitchFabric ID is the null ID (all

zeros). This way a VideoTransmissionDevice at a non-router

site does not have any need to contact a SwitchFabric at the

AOC site (which might be unreachable) at any time. This is in

support of independent operation in the face of network outages.

+getStatus():V1500SwitchStatus

+getConfiguration(token):V1500CwitchConfig

+setConfiguration(token,V1500SwitchConfig)

+remove(token)

+connect(token,src:SwitchInputPort,dest:SwitchOutputPort)

+disconnect(token,dest:SwitchOutputPort)

+reloadSwitchConnections(token)

«interface»

V1500Switch

+getCOHU3955CameraStatus(token):COHU3955CameraStatus

+getCOHU3955CameraConfig(token):COHU3955CameraConfig

+setCOHU3955CameraConfig(token, COHU3955CameraConfig)

+adjRed(token,direction:int)

+adjBlue(token,direction:int)

+setAutoFocus(token,boolean)

+setAutoColor(token,boolean)

+setLensFast(token,boolean)

+setPowerOn(token,boolean)

«interface»

COHU3955Camera

+getConfiguration(token):SwitchFabricConfig

+setConfiguration((token,switchFabricConfig)

+remove(token)

«interface»

SwitchFabric

getIPAddress():IPAddress

«interface»

Codec

«interface»

Encoder

NOTE: disconnect() is a bookkeeping

exercise only (update database/status).

V1500 does not support a disconnect

function.

+getCameraStatus():VideoCameraStatus

+getCameraConfiguration(token):VideoCameraConfig

+setCameraConfiguration(token,VideoCameraConfig)

+isControllable():boolean

«interface»

VideoCamera

«interface»

VideoRoute

+m_name:string

+m_switchName:string

+m_switch:V1500Switch

«datatype»

SwitchFabricConfig

+m_name:string

+m_startPoint:VideoSendingDevice

+m_endPoint:VideoReceivingDevice

«datatype»

BridgeCircuitConfig

+requestControl(token, overrideRequested:boolean,

 info:ControllingInfo,cmdStat:CommandStatus)

+terminateControl(token, cmdStat:CommandStatus)

+isControlled():boolean

+inhibitControl(token,hierarchyLevel:int)

+adjpan(token, direction:int)

+adjTilt(token, direction:int)

+adjZoom(token, direction:int)

+adjFocus(token, where:int)

+adjIris(token, direction:int)

+setAutoIris(token, boolean)

+setActiveTitle(token,title,lineNum:int,cmdStat:CommandStatus)

+resetCamera(token)

+pollCamera(token, refreshMonitorList:boolean)

«interface»

ControllableVideoCamera

+getReceivingDeviceStatus():VideoReceivingDeviceStatus

+connectFrom(token,VideoTransmissionDeviceConfig):boolean

+disconnectFrom(token,VideoTransmissionDeviceConfig):boolean

+disconnect(token):boolean

«interface»

VideoReceivingDevice

+getConfiguration(token):BridgeCircuitConfig

+setConfiguration(token,BridgeCircuitConfig)

+remove(token)

«interface»

BridgeCircuit

«interface»

SwitchOutputPort

String getLocationDesc()

«interface»

GeoLocatable

+getCollectorStatus():VideoCollectorStatus

+getCollectorConfig(token):VideoCollectorConfig

+setCollectorConfig(token,VideoCollectorConfig)

+remove(token)

+displayImage(token,monitorGroupId,VideoSource,

 forTour:boolean,cmdStat:CommandStatus)

«interface»

VideoCollector

«interface»

Decoder

+connect(VideoSource,VideoSink)

+disconnect(VideoSource,VideoSink)

+addSwitchFabric(token,SwitchFabricConfig)

+addBridgeCircuit(token,BridgeCircuitConfig)

«interface»

VideoRouteManager

setControllingOpCenter(token,opCtrInfo:OpCenterInfo)

TransferableSharedResource

«interface»

Workstation

+getSinkStatus():VideoSinkStatus

+getSinkConfig(token):VideoSinkConfig

+setSinkConfig(token,config:VideoSinkConfig)

+startTour(token, monitorGroupID, tourID, cmdStat)

+stopTour(token, monitorGroupID, tourID, cmdStat)

+suspendTour(token, monitorGroupID, tourID, cmdStat)

+resumeTour(token, monitorGroupID, tourID, cmdStat)

+tourConfigChanged(token,tourID:Identifier,tourConfig:

 VideoTourConfig)

+tourDeleted(token,tourID:Identifier)

+displayNoVideoAvailable(token,sourceIdToReplace,

monitorGroupId:Identifier,cmdStat:CommandStatus)

+cameraUnavailable(token,sourceId:Identifier)

+scheduleDisplayImage(token,ScheduledSource)

«interface»

VideoSink

+setPosition(token,xPos,yPos,xSize,ySize)

+getMonitorStatus():MonitorStatus

+getMonitorConfig(token):MonitorConfig

+setMonitorConfig(token,monitorConfig:

 MonitorConfig)

«interface»

Monitor

«interface»

SWMonitor

*

controls

camera

using

1

1

1

1

1

routes

using

* 1

1

includes

*

is in

1

1

is carrying

*

1

*

1

prefers

0..1

*

"owns"

runs on

1 1

1

routes video

to and from

*

uses

1 1

1

1

1

is running on

*

is

running

1 *

0..1

*

includes is part of

* *

1

1

uses

1

1

1

1

is carrying

1 *

is in

*

1

1 *

is managed by routes using

* 1

is displaying is displayed on

1 *

Figure 3.2‑1. VideoHighLevel (Class Diagram)

3.2.1.1 BridgeCircuit (Class)

The BridgeCircuit interface is implemented by objects which serve to bridge disparate switch fabrics within video routes. These switch fabrics would include the switch fabrics based around a V1500 switch and also the "null" switch fabric consisting of no switch and codec VideoTransmissionDevice objects. The BridgeCircuit interface includes both the VideoCollector interface (meaning the BridgeCircuit receives video from another VideoProvider, ultimately the VideoSource) and the VideoProvider interface (meaning the BridgeCircuit provides video to another VideoCollector, ultimately to one or more VideoSink objects).

3.2.1.2 Codec (Class)

The Codec interface is implemented by objects representing codec devices (that is, encoders and decoders). It defines generic methods to be implemented by both encoders and decoders.

3.2.1.3 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by a class representing the COHU 3955 model video camera. This interface includes methods appropriate to the 3955 model specifically which are not applicable to all models of COHU video cameras.

3.2.1.4 BridgeCircuitConfig (Class)

This represents configuration information for a bridge circuit.

3.2.1.5 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provide communications for access to control functions for a video camera.
3.2.1.6 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or requesting to control) a VideoCamera.

3.2.1.7 Decoder (Class)

The Decoder interface is implemented by classes representing any type of video decoder. The Decoder interface includes both the Codec and the VideoReceivingDevice interfaces.

3.2.1.8 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder. The Encoder interface includes both the Codec and the VideoSendingDevice interfaces, which means in addition to providing forwarding of video, it also is used to send video camera control commands and return responses to a camera control process.

3.2.1.9 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a real, physical "television set" on which a video image can be displayed. This is the most common type of VideoSink (the other being a SWMonitor, part of a future requirement to stream video directly to user's workstations (or potentially other nearby computers).

3.2.1.10 SwitchFabric (Class)

The SwitchFabric is implemented by a class which represents a "switch fabric", that is a collection of VideoTransmissionDevice objects on a common "fabric" across which video can be routed directly. This includes any collection of switch input ports and switch output ports on a single video switch. (Note that a collection of encoder and decoder types of VideoTransmissionDevice objects represents a different, unnamed fabric across which video can be routed directly. The IP encoder/decoder fabric is therefore distinguished from other fabrics by their lack of an associated switch fabric.

3.2.1.11 SwitchInputPort (Class)

The SwitchInputPort interface is implemented by a class representing an input port (VideoSendingDevice) on a V1500 video switch.

3.2.1.12 SwitchOutputPort (Class)

The SwitchOutputPort interface is implemented by a class representing an output port (VideoReceivingDevice) on a V1500 video switch.

3.2.1.13 SwitchPort (Class)

The SwitchPort interface is implemented by objects representing ports (input and output ports) on a video switch.

3.2.1.14 GeoLocatable (Class)

This interface must be supported by any system object that can be located via a geographic reference. This interface will be expanded in future releases to include latitude/longitude information necessary for placing objects on a system map.

3.2.1.15 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard for CCTV cameras. As this is a future requirement for cameras not currently fielded by MDSHA, this interface is left to be defined at a later time.

3.2.1.16 SWMonitor (Class)

The SWMonitor interface is implemented by objects which represent a software monitor capable of receiving and displaying video (i.e., a streaming video MPEG software decoder running on a PC). This interface supports a future requirement to display video directly to user's workstations.

3.2.1.17 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port with direct connection to the control port of a video camera. It is used to send video camera control commands and return responses to a camera control process.

3.2.1.18 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This interface also supports a maintenance mode (although any given implementation may choose to implement putInMaintenanceMode() by throwing a CHART2Exception, if maintenance mode is not supported by that particular implementation). This interface is typically implemented only for field devices.

3.2.1.19 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The ControllableVideoCamera interface represents a controllable video camera as opposed to the uncontrollable, immovable VideoCamera. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of ControllableVideoCamera. The ControllableVideoCamera interface includes all methods common to the three known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day.
3.2.1.20 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can store and move to presets. The savePreset() method saves the current camera position as the preset position. This interface is expected to be implemented in R2B2.

3.2.1.21 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.2.1.22 SwitchFabricConfig (Class)

The SwitchFabricConfig structure is used to store and transmit configuration information about a SwitchFabric object.

3.2.1.23 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by ControllableVideoCamera-enabled classes which can be moved diagonally in addition to standard orthogonal pan and tilt commands. A particular implementation may support 45-degree movements only, in which case the panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the parameters indicate the percent of movement proportionally in the pan/tilt directions. This interface is expected to be implemented in R2B2.

3.2.1.24 NoVideoAvailableSource (Class)

The NoVideoAvailableSource interface is implemented by objects which represent the "No Image Available" image generators. This interface could also represent a VCR or any other video source that is not a camera. The NoVideoAvailableSource does not include the GeoLocatable interface because the location (e.g. lat/long) of a fixed video source is irrelevant in CHART II processing (unlike for a ControllableVideoCamera, for which the location (lat/long) of a camera could someday be used for automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.)

3.2.1.25 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

3.2.1.26 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

3.2.1.27 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is implemented by objects representing devices which can be used for sending and receiving video. This interface provides CHART-standard methods for accessing status and configuration information. Specific interfaces supporting sending and receiving inherit from this abstract base interface.

3.2.1.28 V1500Switch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video Switch in the CHART system. This interface provides access to configuration and status information for the switch, and provides connect and disconnect functions for making and breaking video connections.

3.2.1.29 V1500SwitchConfig (Class)

This represents the configuration information for a V1500 switch (R2B2).

3.2.1.30 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within the CHART II system. Classes implementing this interface (and nothing below this interface) would be fixed (non-controllable) video cameras. The VideoCamera interface includes the GeoLocatable interface, to someday allow for advanced features such as automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.

3.2.1.31 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is implemented by objects which can be used to receive video from a corresponding VideoSendingDevice. A VideoReceivingDevice may be an MPEG decoder or may be an output port on a video switch.

3.2.1.32 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video signals, such as video monitors and streaming video receivers directly on user workstations. Within the user interface, the VideoSink interface represents all objects on which a video source can be placed for viewing by users.

3.2.1.33 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

3.2.1.34 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon Surveyor VFT model video camera. (As there are no other Vicon brand cameras used within CHART II, there is no base ViconCamera interface representing all Vicon-brand cameras. For one thing, there would be no known basis for allocating methods to the base interface and the VFT interface.)

3.2.1.35 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enumeration defines the values that can be used in the programCommand() method of the ViconSVFTCamera interface.

3.2.1.36 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

3.2.1.37 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing capabilities within CHART II. This router does not need to be used (in fact, cannot be used) when the VideoSource and VideoSink are on the same switch fabric -- it is used only to make video routes across switch fabrics.

3.2.1.38 VideoRoute (Class)

The VideoRoute interface is implemented by a class which tracks usage of all the possible routes across all permutations of all bridge circuits within the CHART II video system.

3.2.1.39 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an MPEG encoder or may be an input port on a video switch.

3.2.1.40 VideoTour (Class)

The VideoTour interface is implemented by a class which maintains the configuration and status of a single tour defined within the CHART II system.

3.2.1.41 VideoTourConfig (Class)

The VideoTourConfig structure is used to hold and transmit configuration information about a given camera tour.

3.2.1.42 VideoTourEntry (Class)

The VideoTourEntry structure is used to hold and transmit configuration information about a single entry in a camera tour.

3.2.1.43 VideoTourState (Class)

The VideoTourState enumeration defines the values that can be used to indicate the status of a VideoTour.

3.2.1.44 VideoTourStatus (Class)

The VideoTourStatus structure is used to hold and transmit status information about a given camera tour (e.g., what VideoSink objects the Tour is currently running on.

3.2.1.45 VideoTourFactory (Class)

The VideoTourManager interface is implemented by a class which tracks tours defined in the CHART II video system. It tracks the existence and configuration of camera tours and also tracks the status of all camera tours, whether they are active or not.

3.2.1.46 Workstation (Class)

The Workstation interface is used when a workstation is used as a monitor to display a video source.
3.2.2 VideoHighLevel-VideoSource (Class Diagram)

This diagram shows the VideoSource side of the VideoHighLevel diagram in more detail, adding Factories, Configuration and Status structures, exceptions, and other supporting interface elements. In general each of the major interface objects, VideoProvider, VideoSource, VideoCamera, and ControllableVideoCamera have a factory and configuration and status structures used to store and transmit configuration and status information to clients and interested server objects.

 [image: image8.emf]For R2B1 all create / add,

setConfiguration, and remove

methods and other similarly

named operations will not

be implemented except for in

Tours.

FUTURE

+m_camera:VideoCamera-old

+m_cameraName:string

+m_failureCode:int

+m_failureText:string

«datatype»

EnMasseSetResult

+m_failedCameraData:EnMasseSetResult[]

«datatype»

EnMasseSetResultList

+m_name:string

+m_componentType:VideoComponentType

+m_providerType:VideoProviderType

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_sendingDeviceID:Identifier

+m_sendingDeviceConfig:VideoTransmissionDeviceConfig

«datatype»

VideoProviderConfig

SOURCE_TYPE_FIXED

SOURCE_TYPE_COHU_MPC

SOURCE_TYPE_COHU_3955

SOURCE_TYPE_VICON_SVFT

«enumeration»

VideoSourceType

FUTURE. This

method may be

incorporated into the

ControllableCamera

interface directly.

How to detect when

temp preset can be

deleted?

+m_providerConfig:VideoProviderConfig

+m_isNoVideoAvailable:boolean

«datatype»

VideoSourceConfig

FUTURE:

setAutoIris()

setAutoFocus()

setAutoColor()

(Note:these 3 will set

for all cameras under

this factory but obviously

only for camera types

that support the

corresponding function.)

+createVideoProvider(token,VideoProviderConfig)

+getProviderInfoList():VideoProviderInfo[]

«interface»

VideoProviderFactory

+m_presetNumber

+m_presetName

+m_presetTitle

+m_panPosition

+m_tiltPostion

+m_zoomPosition

+m_autoFocus:boolean

+m_focusPosition

+m_temporary:boolean

«datatype»

CameraPreset

+createVideoSource(tokenVideoSourceConfig)

+getSourceInfoList():VideoSourceInfo[]

+getNoVideoAvailableSource():VideoSourceInfo[]

+getNoVideoAvailableSourcesForFabric(switchFabricID):VideoSourceInfo[]

+getOnlineNoVideoAvailableSources():VideoSourceInfo[]

+getOnlineNoVideoAvailableSourcesForFabric(switchFabricID):VideoSourceInfo[]

«interface»

VideoSourceFactory

FUTURE:

m_skedMoveToDefaultPresetTime

m_maxControlIdleTimeMins

getResources():SharedResource[]

getControlledResources(OpCenterID):SharedResource[]

hasControlledResources(OpCenterID):boolean

«interface»

SharedResourceManager

+moveToPreset(token,onTour:boolean,cmdStat:CommandStatus)

+savePreset(token, preset:int,title)

«interface»

PresetEnabled

+createVideoCamera(token,VideoCameraConfig)

+getCameraInfoList():VideoCameraInfo[]

+getValidRegionList():string[]

+setAutoIris(token,cameras:VideoCamera[],state:boolean):EnMasseSetResultList

+setAutoFocus(token,cameras:VideoCamera[],state:boolean):EnMasseSetResultList

+setAutoColor(token,cameras:VideoCamera[],state:boolean):EnMasseSetResultList

«interface»

VideoCameraFactory

+m_sourceConfig:VideoSourceConfig

+m_cameraNumber:int

+m_deviceLocation:string

+m_regions:string[]

+m_tmddDeviceName:string

+m_tmddCCTVImage:TmddCctvImageType

+m_tmddControlType:TmddCameraControlType

+m_tmddLocnExtHorizDatum:LRMSHorizontalDatumType

+m_tmddLocnExtLRMSLatitude:int

+m_tmddLocnExtLRMSLongitude:int

+m_tmddLocnExtVertDatum:LRMSVerticalDatumType

+m_tmddLocnExtLRMSHeight:int

+m_tmddLocnExtVertLevel:int

+m_tmddRequestCommands:int

«datatype»

VideoCameraConfig

+getProviderStatus():VideoProviderStatus

+getProviderConfig(token):VideoProviderConfig

+setProviderConfig(token,VideoProviderConfig)

+remove(token)

+addDisplay(token,displayInfo:MonitorDisplayInfo)

+removeDisplay(token,displayID)

«interface»

VideoProvider

Might have to create different

subclasses of CameraPreset

if there is no single way to store

preset position universally.

after defaultTitle are extra attributes

that I left in, maybe used for R2B2.

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

«interface»

SharedResource

«interface»

NTCIPCamera

+m_cameraConfig:VideoCameraConfig

+m_controlDeviceConfig:VideoControlDeviceConfig

+m_temporarilyUncontrollable:boolean

+m_pollEnabled:boolean

+m_pollIntervalControlledSecs:int

+m_pollIntervalUncontrolledSecs:int

+m_enableDeviceLogging:boolean

+m_defaultTitle

+m_maxNumPresets:int

+m_presets:CameraPreset[]

+m_defaultPresetNum:intt

+m_skedMoveToDefaultPresetTime:long

+m_lockOnManualIFocus:boolean

+m_lockOnManualIris:boolean

+m_lockOnManualColor:boolean

+m_lowestControlHierarchyLevel:int

+m_maxControlIledTimeMins

ControllableVideoCameraConfig

setControllingOpCenter(token,opCtrInfo:OpCenterInfo)

TransferableSharedResource

resendPreset() --

presetNum=0 means

resend all stored presets.

+getSourceStatus():VideoSourceStatus

+getSourceConfig(token):VideoSourceConfig

+setSourceConfig(token,VideoSourceConfig)

+setUserDisplayStatus(token, boolean)

+isNoVideoAvailable():boolean

+isDisplayable(token,info:VideoCollectorInfo,reason:string):bool

+isRemoveable(info:VideoCollectorInfo,monitorGroupIDs:Identifier[],reason:string):bool

+blockToPublic(token,block:boolean)

+inhibitDisplay(token,hierarchyLevel:int)

+revokeDisplay(token,orgs:VideoDisplayRevokedOrg[])

+isRevokedFor(orgId:Identifier)

«interface»

VideoSource

FUTURE. This

method may be

incorporated into

3955 and SVFT

camera types

directly.

m_moitorInfo - what monitor(s)/site(s) this camera

is on, and for each monitor, if the camera on this

monitor as part of a tour (and which tour).

Each entry is a MonitorDisplayInfo which provides

this info.

+m_commMode:CommunicationMode

+m_opStatus:OperationalStatus

+m_controllingOpCenter:OperatingCenter

+m_monitorInfo:MonitorDisplayInfo[]

+m_deviceStatusChangeTimeSecs:int

+m_monitorStatusChangeTimeSecs:int

«datatype»

VideoProviderStatus

CMD_UP

CMD_DOWN

CMD_LEFT

CMD_RIGHT

CMD_SELECT

CMD_CANCEL

CMD_AUX1

CMD_AUX2

«enumeration»

ViconSVFTPgmCmd

VideoSource

objects are

all those shown

to user as valid

images to put

on a monitor.

FUTURE

+getCameraStatus():VideoCameraStatus

+getCameraConfiguration(token):VideoCameraConfig

+setCameraConfiguration(token,VideoCameraConfig)

+isControllable():boolean

«interface»

VideoCamera

+setAutoFocus(token,boolean)

+resendPreset(token,presetNum:int)

+enterProgramMode(token)

+exitProgramMode(token)

+programCommand(VFTPgmCmd, count:int)

+enterColorGainSetupScreen(token)

+exitColorGainSetupScreen(token)

+enterBlueColorGainMenu(token)

+enterRedColorGainMenutoken()

+programColorLess(token)

+programColorMore(token)

+programColorStop(token)

+programColorSavetoken()

+pogramColorCancel(token)

«interface»

ViconSVFTCamera

+requestControl(token, overrideRequested:boolean,

 info:ControllingInfo,cmdStat:CommandStatus)

+terminateControl(token, cmdStat:CommandStatus)

+isControlled():boolean

+inhibitControl(token,hierarchyLevel:int)

+adjpan(token, direction:int)

+adjTilt(token, direction:int)

+adjZoom(token, direction:int)

+adjFocus(token, where:int)

+adjIris(token, direction:int)

+setAutoIris(token, boolean)

+setActiveTitle(token,title,lineNum:int,cmdStat:CommandStatus)

+resetCamera(token)

+pollCamera(token, refreshMonitorList:boolean)

«interface»

ControllableVideoCamera

+adjPanTilt(token,panDir,tiltDir)

«interface»

DiagonallyMovable

FUTURE:

inhibitDisplay (inhibit

display at sites lower

than this level)

revokeDisplay (revoke to

specific org(s))

+m_sinkID:Identifier

+m_tourID:Identifier

+m_tourSuspended:boolean

«datatype»

MonitorDisplayInfo

panDir pos right, neg left

tiltDir pos = up, neg = down.

panDir 0 stop panning (but maybe

continue tilting based on tiltDir),

and vice versa for tiltDir 0.

(adjPanTilt(token, 0, 1) is not equiv

to adjTilt(token, 1) because the

latter does not imply commanding

the camera to stop panning.)

+m_sourceStatus:VideoSourceStatus

VideoCameraStatus

+m_providerStatus:VideoProviderStatus

+m_maintModeUserName

+m_blockedToPublic

+m_userDisplayStatus:boolean

+m_revokedDisplayOrgs:VideoDisplayRevokedOrg[]

«datatype»

VideoSourceStatus

+m_orgId:Identifier

+m_organization:Organization

«datatype»

VideoDisplayRevokedOrg

+m_cameraStatus:VideoCameraStatus

+m_controlled:boolean

+m_controllingUserInfo:ControllingUserInfo

+m_actionState:CameraActionState

+m_inAutoFocusMode:boolean

+m_inAutoIrisMode:boolean

+m_currentTitle:string

+m_lastControlCmdTimeSecs:long

+m_userControlStatus:boolean

+m_atPreset:CameraPreset

+m_controlInhibitLevel:int

ControllableVideoCameraStatus

«datatype»

NoVideoAvailableConfig

FUTURE:

inhibitControl (inhibit

control at sites lower

than this level)

+getCOHU3955CameraStatus(token):COHU3955CameraStatus

+getCOHU3955CameraConfig(token):COHU3955CameraConfig

+setCOHU3955CameraConfig(token, COHU3955CameraConfig)

+adjRed(token,direction:int)

+adjBlue(token,direction:int)

+setAutoFocus(token,boolean)

+setAutoColor(token,boolean)

+setLensFast(token,boolean)

+setPowerOn(token,boolean)

«interface»

COHU3955Camera

FUTURE:

m_controlInhibitLevel

m_atPreset

+createNoVideoAvailableSource(token,NoVideoAvailableConfig)

«interface»

NoVideoAvailableFactory

«interface»

NoVideoAvailableSource

Are these four NoVideoAvailable blah's being

used at all? Probably could delete them all.

NO_ACTION

PAN_LEFT

PAN_RIGHT

TILT_UP

TILT_DOWN

ZOOM_IN

ZOOM_OUT

FOCUS_FAR

FOCUS_NEAR

IRIS_OPEN

IRIS_CLOSE

SET_TITLE

RED_PLUS

RED_MINUS

BLUE_PLUS

BLUE_MINUS

«enumeration»

CameraActionState

«datatype»

NoVideoAvailableStatus

+m_controllableStatus:ControllableVideoCameraStatus

+m_powerOn:boolean

+m_inAutoColorMode:boolean

+m_lensSpeedFast:boolean

+m_currentTitle2:string

«datatype»

COHU3955CameraStatus

+m_opCenterInfo:OpCenterInfo

+m_userInfo:ControllingUserInfo

«datatype»

ControllingInfo

+m_controllingInfo:ControllingInfo

+m_wouldBeAllowed:boolean

«exception»

CameraIsControlledException

+m_monitorGroupID:Identifier

+m_userName:string

«datatype»

ControllingUserInfo

+m_reason:CameraNotControlledReason

+m_actionState:CameraActionState

+m_controllingInfo:ControllingInfo

«exception»

CameraNotControlledException

m_controllingInfo is for currently controlling operator

m_wouldBeAllowed --

true: Override would have been alowed

but wasn't requested.

false: Override was requested but user does not

 have suficient privilege

+m_reason:string

+m_actionState:CameraActionState

«exception»

CameraBusyException

If request to move or otherwise control

camera comes in while camera cannot

be controlled.

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1 *

1 1

1

*

1

*

1

*

1 1

1 1

1 *

1

1

1

1

1 1

1

*

1

1

1 1

1

1

1

1

1

1

Figure 3.2‑2. VideoHighLevel-VideoSource (Class Diagram)

3.2.2.1 CameraBusyException (Class)

This exception is thrown if an attempt to issue an immediate mode camera control command (such as pan, tilt, etc.) is issued while the camera is performing a long-running command (such as a moveToPresetCommand or a setTitleCommand). This indicates to the operator that the camera is momentarily busy, and the operator should try the action again in a few seconds, or when the camera image on the monitor shows that the long-running request has completed.

3.2.2.2 CameraControlledException (Class)

This exception is thrown if a request to control a camera is denied because the camera is already controlled, perhaps because a race condition where another operator has established control just before the request.
3.2.2.3 CameraPreset (Class)

This structure stores information about a preset configured for a camera.

3.2.2.4 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by a class representing the COHU 3955 model video camera. This interface includes methods appropriate to the 3955 model specifically which are not applicable to all models of ControllableVideoCameras.

3.2.2.5 COHU3955CameraStatus (Class)

The COHU955CameraStatus is used to hold status information about COHU3955Camera objects at the COHU3955Camera level.
3.2.2.6 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The ControllableVideoCamera interface represents a controllable video camera as opposed to the uncontrollable, immovable VideoCamera. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of ControllableVideoCamera. The ControllableVideoCamera interface includes all methods common to the three known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day.
3.2.2.7 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

3.2.2.8 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by VideoCamera-enabled classes which can be moved diagonally in addition to standard orthogonal pan and tilt commands. A particular implementation may support 45-degree movements only, in which case the panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the parameters indicate the percent of movement proportionally in the pan/tilt directions. This interface is expected to be implemented in R2B2.

3.2.2.9 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration information about ControllableVideoCamera objects at the ControllableVideoCamera level.

3.2.2.10 EnMasseSetResult (Class)

This structure will be used to communicate failures in setting a number of cameras to auto iris, auto focus, or auto color balance. It specifies results for one camera which failed.

3.2.2.11 EnMasseSetResultList (Class)

This structure will be used to communicate failures in setting a number of cameras to auto iris, auto focus, or auto color balance. It specifies results for all cameras which failed. (Cameras which succeeded are not included in this list.)

3.2.2.12 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon Surveyor VFT model video camera. (As there are no other Vicon brand cameras used within CHART II, there is no base ViconCamera interface representing all Vicon-brand cameras. For one thing, there would be no known basis for allocating methods to the base interface and the VFT interface.)

3.2.2.13 NoVideoAvailableSource (Class)

The NoVideoAvailableSource interface is implemented by objects which represent the "No Image Available" image generators. This interface could also represent a VCR or any other video source that is not a camera. The NoVideoAvailableSource does not include the GeoLocatable interface because the location (e.g. lat/long) of a fixed video source is irrelevant in CHART II processing (unlike for a ControllableVideoCamera, for which the location (lat/long) of a camera could someday be used for automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.)
3.2.2.14 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can store and move to presets. The savePreset() method saves the current camera position as the preset position. This interface is expected to be implemented in R2B2.

3.2.2.15 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard for CCTV cameras. As this is a future requirement for cameras not currently fielded by MDSHA, this interface is left to be defined at a later time.

3.2.2.16 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enumeration defines the values that can be used in the programCommand() method of the ViconSVFTCamera interface.

3.2.2.17 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of VideoCamera objects. For R2B1, configuration of cameras will not be supported, so adding a VideoCamera will not be initially supported.
3.2.2.18 VideoDisplayRevokedOrg (Class)

This structure is used to store information about an organization for which display of the associated camera has been revoked.

3.2.2.19 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within the CHART II system. Classes implementing this interface (and nothing below this interface would be fixed (non-controllable) video cameras. The VideoCamera interface includes the GeoLocatable interface, to someday allow for advanced features such as automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.

3.2.2.20 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

3.2.2.21 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

3.2.2.22 VideoSourceFactory (Class)

The VideoSourceFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of VideoSource objects.

3.2.2.23 MonitorDisplayInfo (Class)

This structure holds details about each monitor on which the VideoProvider is currently being displayed.

3.2.2.24 VideoSourceConfig (Class)

The VideoSourceConfig is used to hold configuration information about VideoSource objects at the VideoSource level. Further details about lower-level VideoSource subclasses are provided by subclasses of VideoSourceConfig.

3.2.2.25 NoVideoAvailableConfig (Class)

The NoVideoAvailableConfig struct is used to hold and transmit configuration information about NoVideoAvailableSource objects at the NoVideoAvailableSource level.
3.2.2.26 NoVideoAvailableStatus (Class)

The NoVideoAvailableStatus structure is used to hold and transmit status information about NoVideoAvailableSource objects at the NoVideoAvailableSource level.
3.2.2.27 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold and transmit configuration information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

3.2.2.28 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold and transmit status information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraStatus.

3.2.2.29 CameraNotControlledException (Class)

This is an exception thrown if an attempt to issue a camera control command is issued when the camera is not currently controlled by the requester. This is most likely to occur immediately after a control override, in cases where the client has not received or processed the override event yet.

3.2.2.30 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.2.2.31 VideoProviderConfig (Class)

The VideoProviderConfig structure is used to hold and transmit configuration information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderConfig.

3.2.2.32 VideoProviderFactory (Class)

The VideoProviderFactory interface is implemented by factory classes responsible for creating and maintaining a collection of VideoProvider objects.

3.2.2.33 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold status information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

3.2.2.34 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or requesting to control) a VideoCamera.

3.2.2.35 NoVideoAvailableFactory (Class)

The NoVideoAvailableFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of NoVideoAvailableVideoSource objects.

3.2.2.36 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

3.2.2.37 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold status information about VideoSource objects at the VideoSource level. Further details about lower-level VideoSource subclasses are provided by subclasses of VideoSourceStatus.

3.2.2.38 VideoSourceType (Class)

This enumeration identifies the various types of cameras which can exist in the system. The fixed type is for all non-controllable cameras.

3.2.3 VideoHighLevel-VideoSink (Class Diagram)

This diagram shows the VideoSink side of the VideoHighLevel diagram in more detail, adding Factory interfaces, Configuration and Status objects, and other supporting interface elements.

[image: image9.emf]getID()

getName()

«interface»

UniquelyIdentifiable

«datatype»

VideoCollectorConfig

takeOffline()

putOnline()

putInMaintenanceMode()

getCommMode()

«interface»

CommEnabled

+m_collectorConfig:VideoCollectorConfig

+m_monitorGroupIDs:Identifier[]

+m_public:boolean

«datatype»

VideoSinkConfig

+getSinkInfoList():VideoSinkInfo[]

+getSinksWithActiveTours():VideoSinkInfo[]

+suspendAllTours(token,monitorGroupID,

 commandStatus)

+resumeAllTours(token,monitorGroupID,

 commandStatus)

VideoSinkFactory

+getMonitorGroupInfo():MonitorGroupInfo[]

«interface»

MonitorGroupFactory

+getCollectorStatus():VideoCollectorStatus

+getCollectorConfig(token):VideoCollectorConfig

+setCollectorConfig(token,VideoCollectorConfig)

+remove(token)

+displayImage(token,monitorGroupId,VideoSource,

 forTour:boolean,cmdStat:CommandStatus)

«interface»

VideoCollector

«interface»

Workstation

m_name:String

m_monitorIDs:Identifer[]

MonitorGroupConfig

+getMonitorInfoList():MonitorInfo[]

«interface»

MonitorFactory

+getStatus():MonitorGroupStatus

+getConfig(token):MonitorGroupConfig

+setConfig(token,monitorGroupConfig)

+addControlledCamera(token,

 cameraInfo:VideoProviderInfo)

+removeControlledCamera(token,

 cameraID)

«interface»

MonitorGroup

+getSinkStatus():VideoSinkStatus

+getSinkConfig(token):VideoSinkConfig

+setSinkConfig(token,config:VideoSinkConfig)

+startTour(token, monitorGroupID, tourID, cmdStat)

+stopTour(token, monitorGroupID, tourID, cmdStat)

+suspendTour(token, monitorGroupID, tourID, cmdStat)

+resumeTour(token, monitorGroupID, tourID, cmdStat)

+tourConfigChanged(token,tourID:Identifier,tourConfig:

 VideoTourConfig)

+tourDeleted(token,tourID:Identifier)

+displayNoVideoAvailable(token,sourceIdToReplace,

monitorGroupId:Identifier,cmdStat:CommandStatus)

+cameraUnavailable(token,sourceId:Identifier)

+scheduleDisplayImage(token,ScheduledSource)

«interface»

VideoSink

m_commMode:CommunicationMode

m_opstatus:OperationalStatus

m_providerID:Identifier

m_statusChangeTimeSecs:long

m_lastContactTimeSecs:long

«datatype»

VideoCollectorStatus

FUTURE:

m_scheduledSource

+m_sinkConfig:VideoSinkConfig

+m_xPos:int

+m_yPos:int

+m_xSize:int

+m_ySize:int

«datatype»

MonitorConfig

+setPosition(token,xPos,yPos,xSize,ySize)

+getMonitorStatus():MonitorStatus

+getMonitorConfig(token):MonitorConfig

+setMonitorConfig(token,monitorConfig:

 MonitorConfig)

«interface»

Monitor

+m_collectorStatus:VideoCollectorStatus

+m_tourID:Identifier

+m_suspended:boolean

+m_scheduledSource:ScheduledSource

VideoSinkStatus

FUTURE:

scheduleDisplayImage()

FUTURE:

xPos,yPos,xSize,ySize

+m_requestingUserName

+m_requestingWorkstation:Workstation

+m_scheduledSource:VideoSource

+m_scheduledPresetNum:int

+m_scheduledTime:long

ScheduledSource

FUTURE:

setPosition()

«interface»

SWMonitor

MonitorGroupStatus

m_controlledCameraIDs:IdentifierList

0..1 *

1

1

1

1

1

1

1 1

1

1

*

is in

*

contains

1

*

1

*

1 1

1 1

1 1

*

0..1

1

1

1 1

1 1

1 1

Figure 3.2‑3. VideoHighLevel-VideoSink (Class Diagram)

3.2.3.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This interface also supports a maintenance mode (although any given implementation may choose to implement putInMaintenanceMode() by throwing a CHART2Exception, if maintenance mode is not supported by that particular implementation). This interface is typically implemented only for field devices.

3.2.3.2 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a real, physical "television set" on which a video image can be displayed. This is the most common type of VideoSink (the other being a SWMonitor, part of a future requirement to stream video directly to user's workstations (or potentially other nearby computers).

3.2.3.3 MonitorConfig (Class)

This structure is used to store and communicate configuration information about a monitor in the system.

3.2.3.4 MonitorFactory (Class)

The class which implements this interface is used to construct new monitors and maintain lists of monitors.

3.2.3.5 MonitorGroup (Class)

This interface is used to maintain a configurable group of monitors. For R2B1, it is used to determine if an operator can see a camera image.

3.2.3.6 MonitorGroupConfig (Class)

This structure is used to store configuration information about a monitor group in the system. Specifically, it associates a list of monitors with the monitor group.

3.2.3.7 MonitorGroupFactory (Class)

This interface is used to create a configurable group of monitors. For R2B1, it is used to determine if an operator can see a camera image

3.2.3.8 MonitorGroupStatus (Class)

His structure is used to store information about a monitor group in the system. Specifically, it holds this list of cameras controlled within a monitor group.

3.2.3.9 SWMonitor (Class)

The SWMonitor interface is implemented by objects which represent a software monitor capable of receiving and displaying video (i.e., a streaming video MPEG software decoder running on a PC). This interface supports a future requirement to display video directly to user's workstations.

3.2.3.10 ScheduledSource (Class)

This structure contains the information needed to schedule display of a camera on a monitor at a specific time.

3.2.3.11 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

3.2.3.12 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

3.2.3.13 VideoCollectorConfig (Class)

This structure is used to store and communicate information about a generic VideoCollector.

3.2.3.14 VideoCollectorStatus (Class)

This class is used to store and transmit status information about a generic VideoCollector object.

3.2.3.15 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video signals, such as video monitors and streaming video receivers directly on user workstations. Within the user interface, the VideoSink interface represents all objects on which a video source can be placed for viewing by users.

3.2.3.16 VideoSinkFactory (Class)

The class that implements this interface will be able to create new VideoSink objects and will be able to provide a list of VideoSink objects.

3.2.3.17 VideoSinkConfig (Class)

This structure contains configuration information about a VideoSink. For R2B1 the only subtype of VideoSink will be a Monitor.

3.2.3.18 VideoSinkStatus (Class)

This structure contains status information about a VideoSink. For R2B1 the only subtype of VideoSink will be a Monitor.

3.2.3.19 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

3.2.3.20 Workstation (Class)

The Workstation interface is used when a workstation is used as a monitor to display a video source.

3.2.4 VideoHighLevel-VideoTransmission (Class Diagram)

This diagram shows the video transmission elements of the VideoHighLevel class diagram. This diagram defines the VideoSendingDevice interface, which will include an IP Encoder interface for R2B1 and a V1500 SwitchInputPort interface in the future. Likewise shown is the VideoReceivingDevice interface, which will include the IP Decoder interface for R2B1 and the V1500 SwitchOutputPort interface in the future. Both the future SwitchPort interfaces are connected via the V1500Switch. The CameraControlDevice, used to control a camera, will be an Encoder for R2B1 and will also include a CameraControlComPort interface in the future. Supporting Configuration and Status structures are shown in this diagram as well.

[image: image10.emf]VideoSendingDeviceConfig

+getSendingDeviceStatus():

VideoSendingDeviceStatus

«interface»

VideoSendingDevice

+m_mediumType:VideoTransmissionMedium

+m_deviceType:VideoDeviceType

+m_modelType:CameraControlDeviceModel

+m_name:string

+m_port:int

+m_codecConnections:CodecVideoConnection[]

+m_videoFabricID:Identifier

+m_switchId:Identifier

VideoTransmissionDeviceConfig

+m_hostName:string

+m_comPortName:string

CameraControlComPortConfig

SwitchInputPortConfig

+m_receiverIDs:Identifier[]

+m_generalStatus:

VideoTransmissionDeviceStatus

VideoSendingDeviceStatus

+connect(VideoSource,VideoSink)

+disconnect(VideoSource,VideoSink)

+addSwitchFabric(token,SwitchFabricConfig)

+addBridgeCircuit(token,BridgeCircuitConfig)

«interface»

VideoRouteManager

CameraControlComPortStatus

EncoderConfig

CameraControlHost

+getDeviceStatus():VideoTransmissionDeviceStatus

+getDeviceConfig(token):VideoTransmissionDeviceConfig

«interface»

VideoTransmissionDevice

«interface»

SwitchInputPort

+m_name

+m_inPorts:SwitchInputPort[]

+m_outPorts:SwitchOutputPort[]

«datatype»

V1500SwitchConfig

+initialize()

+shutdown()

+connect()

+disconnect()

+send(messageByte)

+receive(data,length)

«interface»

CameraControlDevice

CameraControlComPort

+getControlDeviceStatus():

 VideoControlDeviceStatus

+getControlDeviceConfig(token):

 VideoControlDeviceConfig

+terminateControl(dropAddress:int):

 boolean

+send(data:byte[],initialTimeoutMs:int,

 interCharTimeoutMs:int,

 maxReadDurationMs:int):byte[]

«interface»

VideoControlDevice

«interface»

V1500Switch

+m_portNumber:int

SwitchPortConfig

SwitchInputPortStatus

+m_outPortStatus:SwitchOutputPortStatus[]

V1500SwitchStatus

+getConfiguration(token):SwitchFabricConfig

+setConfiguration((token,switchFabricConfig)

+remove(token)

«interface»

SwitchFabric

«interface»

SwitchPort

Port connection status

(through the switch) is

not stored here, it is

stored on the output

side, where it is one-to-one

(or one-to-zero), never

one-to-many.

«interface»

Encoder

VideoReceivingDeviceConfig

+m_ipAddress

CodecConfig

+m_enabled:boolean

+m_inUse:boolean

+m_sourceImage:VideoSource

SwitchPortStatus

SwitchOutputPortConfig

+m_codecStaus:CodecStatus

EncoderStatus

+m_opStatus:OperationalStatus

VideoTransmissionDeviceStatus

getIPAddress():IPAddress

«interface»

Codec

NOTE: Encoders and Decoders do not have any

SwitchFabric associated with them. Their

SwitchFabric ID is the null ID (all zeros). This way a

VideoTransmissionDevice at a non-router site does

not have any need to contact a SwitchFabric at the

AOC site (which might be unreachable) at any time.

This is in support of independent operation in the

face of network outages.

+getReceivingDeviceStatus():VideoReceivingDeviceStatus

+connectFrom(token,VideoTransmissionDeviceConfig):boolean

+disconnectFrom(token,VideoTransmissionDeviceConfig):boolean

+disconnect(token):boolean

«interface»

VideoReceivingDevice

CodecStatus

«interface»

SwitchOutputPort

+m_portConnectedTo:int

SwitchOutputPortStatus

DecoderConfig

+m_generalstatus:VideoTransmissionDeviceStatus

+m_senderId:Identifier

VideoReceivingDeviceStatus

«interface»

Decoder

+m_codecStatus:CodecStatus

DecoderStatus

1

*

gets routes to and

from other Switch

Fabrics made by

routes across

0..1 *

1

*

has active switch

connection status

as shown

by these

provides camera

control using

1

*

is hosted on

1

1

*

* sending to

1

*

receving from

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1 1 1 1

1

1

1

1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

*

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1

*

1

1

1

1

 is on 1

1

is defined

by

Figure 3.2‑4. VideoHighLevel-VideoTransmission (Class Diagram)

3.2.4.1 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port with direct connection to the control port of a video camera. It is used to send video camera control commands and return responses to a camera control process.

3.2.4.2 CameraControlComPortConfig (Class)

The CameraControlComPortConfig structure is used to hold and transmit configuration information about a CameraControlComPort object.

3.2.4.3 CameraControlComPortStatus (Class)

The CameraControlComPortStatus structure is used to hold and transmit status information about a CameraControlComPort object.

3.2.4.4 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provide communications for access to control functions for a video camera. This includes encoders and direct COM ports.
3.2.4.5 CameraControlHost (Class)

The CameraControlHost interface is implemented by objects which host CameraControlComPort objects. This interface is planned for development in R2B2, and its definition is left for a later time.

3.2.4.6 Codec (Class)

The Codec interface is implemented by objects representing codec devices (that is, encoders and decoders). It defines generic methods to be implemented by both encoders and decoders.

3.2.4.7 CodecConfig (Class)

The CodecConfig structure contains configuration information relevant to a generic Codec object (Encoder or Decoder). It is included in the EncoderConfig and DecoderConfig structures.

3.2.4.8 CodecStatus (Class)

The CodecStatus structure contains status information for a generic Codec.

3.2.4.9 Decoder (Class)

The Decoder interface is implemented by classes representing any type of video decoder. Device specific classes may inherit from a decoder. The Decoder interface includes both the Codec and the VideoReceivingDevice interfaces.

3.2.4.10 EncoderConfig (Class)

The EncoderConfig structure contains configuration information specific to an Encoder. It is derived from the VideoSendingDeviceConfig structure and includes the generic CodecConfig structure.

3.2.4.11 EncoderStatus (Class)

The EncoderStatus structure contains status information specific to an Encoder. It is derived from the VideoSendingDeviceStatus structure and includes in the generic CodecStatus structure.

3.2.4.12 DecoderConfig (Class)

The DecoderConfig structure contains configuration information specific to a Decoder. It is derived from the VideoReceivingDeviceConfig structure and includes the generic CodecConfig structure.

3.2.4.13 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder. The Encoder interface includes both the Codec and the VideoSendingDevice interfaces, which means in addition to providing forwarding of video, an encoder may be used to send video camera control commands. Device specific classes may inherit from the Encoder.

3.2.4.14 SwitchInputPort (Class)

The SwitchInputPort interface is implemented by a class representing an input port (VideoSendingDevice) on a V1500 video switch.

3.2.4.15 VideoControlDevice (Class)

This interface is used to represent a video control device in the field. A video control device is used to communicate camera control commands to a camera, and return responses to the requester.

3.2.4.16 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is implemented by objects which can be used to receive video from a corresponding VideoSendingDevice. A VideoReceivingDevice may be an MPEG decoder or may be an output port on a video switch.

3.2.4.17 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an MPEG encoder or may be an input port on a video switch.

3.2.4.18 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is implemented by objects representing devices which can be used for sending and receiving video. This interface provides CHART-standard methods for accessing status and configuration information. Specific interfaces supporting sending and receiving inherit from this abstract base interface.

3.2.4.19 DecoderStatus (Class)

The DecoderStatus structure contains status information specific to a Decoder. It is derived from the VideoReceivingDeviceStatus structure and includes the generic CodecStatus structure.

3.2.4.20 SwitchOutputPort (Class)

The SwitchOutputPort interface is implemented by a class representing an output port (VideoReceivingDevice) on a V1500 video switch.

3.2.4.21 SwitchInputPortConfig (Class)

The SwitchInputPortConfig structure contains configuration information specific to a SwitchInputPort. It is derived from the VideoSendingDeviceConfig structure and includes the generic SwitchPortConfig structure.

3.2.4.22 SwitchInputPortStatus (Class)

The SwitchInputPortStatus structure contains status information specific to a SwitchInputPort. It is derived from the VideoSendingDeviceStatus structure and includes the generic SwitchPortStatus structure.

3.2.4.23 SwitchOutputPortConfig (Class)

The SwitchOutputPortConfig structure contains configuration information specific to a SwitchOutputPort. It includes the VideoReceivingDeviceConfig structure and includes the generic SwitchPortConfig structure.

3.2.4.24 SwitchOutputPortStatus (Class)

The SwitchOutputPortStatus structure contains status information specific to a SwitchOutputPort. It includes the VideoReceivingDeviceStatus structure and includes in the generic SwitchPortStatus structure.

3.2.4.25 SwitchFabric (Class)

The SwitchFabric is implemented by a class which represents a "switch fabric", that is a collection of VideoTransmissionDevice objects on a common "fabric" across which video can be routed directly. This includes any collection of switch input ports and switch output ports on a single video switch. (Note that a collection of encoder and decoder types of VideoTransmissionDevice objects represents a different, unnamed fabric across which video can be routed directly. The IP encoder/decoder fabric is therefore distinguished from other fabrics by their lack of an associated switch fabric.

3.2.4.26 SwitchPort (Class)

The SwitchPort interface is implemented by objects representing ports (input and output ports) on a video switch.

3.2.4.27 SwitchPortConfig (Class)

The SwitchPortConfig structure contains configuration information relevant to a generic (input or output) SwitchPort. It is included in the SwitchInputPortConfig and SwitchOutputPortConfig structures.

3.2.4.28 SwitchPortStatus (Class)

The SwitchPortStatus structure contains status information relevant to a generic (input or output) SwitchPort. It is included in the SwitchInputPortStatus and SwitchOutputPortStatus structures.

3.2.4.29 V1500Switch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video Switch in the CHART system. This interface provides access to configuration and status information for the switch, and provides connect and disconnect functions for making and breaking video connections.

3.2.4.30 VideoReceivingDeviceConfig (Class)

The VideoReceivingDeviceConfig structure is used to store generic configuration information common to all types of VideoReceivingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.31 VideoSendingDeviceConfig (Class)

The VideoSendingDeviceConfig structure is used to store generic configuration information common to all types of VideoSendingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.32 VideoSendingDeviceStatus (Class)

The VideoSendingDeviceStatus structure is used to store generic status information common to all types of VideoSendingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.33 VideoTransmissionDeviceConfig (Class)

The VideoTransmissionDeviceConfig structure is used to store generic configuration information common to all types of VideoTransmissionDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.34 VideoTransmissionDeviceStatus (Class)

The VideoTransmissionDeviceStatus structure is used to store generic status information common to all types of VideoTransmissionDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.35 VideoReceivingDeviceStatus (Class)

The VideoReceivingDeviceStatus structure is used to store generic status information common to all types of VideoReceivingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.36 V1500SwitchConfig (Class)

This represents the configuration information for a V1500 switch (R2B2).

3.2.4.37 V1500SwitchStatus (Class)

The V1500switchStatus structure is used to store status information for a V1500Switch.

3.2.4.38 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing capabilities within CHART II. This router does not need to be used (in fact, cannot be used) when the VideoSource and VideoSink are on the same switch fabric -- it is used only to make video routes across switch fabrics.

3.2.5 CameraControlModule (Class Diagram)

This diagram shows the classes with comprise the CameraControlModule. The CameraControlModule is an installable module that serves the camera-type objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions. The CameraControlModule is responsible for serving all VideoSource objects; including controllable cameras, fixed cameras, No Video Available sources, and potentially any other image generators, etc. The COHU3955CameraImpl object is the primary class operating in this module. This object provides all access to the camera status, configuration. (R2B1 will not include a capability to modify the camera configurations, but configurations will of course be available to clients to read to support camera operations.) The CameraControlModule also includes factory implementations responsible for providing lists of cameras and other such objects to interested clients.

[image: image11.emf]getID()

getName()

«interface»

UniquelyIdentifiable

+getCameraInfoList() : VideoCameraInfo[]

+getValidRegionList() : String[]

«interface»

VideoCameraFactory

takeOffline(token,cmdStat)

putOnline(token,cmdStat)

putInMaintenanceMode(token,cmdStat)

getCommMode():CommunicationMode

«interface»

CommEnabled

-m_allowSimulation : boolean

-m_providerImplVect : Vector

-m_cameraImplVect : Vector

-m_controllableImplVect : Vector

-m_db : CameraControlDB

-m_cameraPushEventSupplier : PushEventSupplier

-m_cameraStatusLogFile : LogFile

-m_hostName : String

-m_idObj : Identifier

-m_lockFactory : Object[]

-m_logFlags : boolean[]

-m_name : String

m_opCenterNames : Hashtable

-m_resMgmtPushEventSupplier : PushEventSupplier

-m_sharedResMonInt : int

-m_shutdown : boolean

-m_svcApp : ServiceApplication

-m_timeDownSecs : int

-m_props : CameraControlModuleProperties

-m_validRegions : String[]

m_videoSinkRefs : Hashtable

m_monitorGroupRefs : Hashtable

+getProviderInfoList() : VideoProviderInfo[]

+getSourceInfoList() : VideoSourceInfo[]

+getNoVideoAvailableSources() : VideoSource[]

+getNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]

+getOnlineNoVideoAvailableSources() : VideoSourceInfo[]

+getOnlineNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]

+getCameraInfoList() : VideoCameraInfo[]

+getValidRegionList() : String[]

+getControllableCameraInfoList() : ControllableVideoCameraInfo[]

+getID() : Identifier

+getName() : String

+getResources() : SharedResource[]

+getControlledResources(opCtrID) : SharedResource[]

+hasControlledResources(opCtrID) : boolean

checkForAbandonedCameraObjects()

+checkForCameraTimeout()

findOpCenterName(opCtrID) : String

-getOpCenterNamesFromTrader()

#getAllowSimulation() : boolean

getLogFlags() : boolean[]

getHostName() : String

getCameraPushEventSupplier() : PushEventSupplier

getProperties() : CameraControlModuleProperties

pollCameraObjects()

shutdown() : boolean

-addCameraTypesToTrader()

-alarmIfNoLoggedInUsers(Identifier, String)

-getControllingOpCenters() : Hashtable

+doGetNoVideoAvailableSources(switchFabricID,boolean) : VideoSourceInfo[]

-logProd(String, String)

#logStackProd(String,String,Exception)

-log(String, String, String)

#logLockDone(String)

#logLockRcvd(String)

#logLockRqst(String)

-opLog(token,String,int,String,String)

#setSimulationFlag(String, String) : boolean

-createDummyCamera()

findVideoSink(Identifier) : VideoSink

findMonitorGroup(Identifier) : MonitorGroup

-getVideoSinkRefsFromTrader()

-getMonitorGroupRefsFromTrader()

ControllableCameraFactoryImpl

+getProviderStatus():VideoProviderStatus

+getProviderConfig(token):VideoProviderConfig

+setProviderConfig(token,VideoProviderConfig)

+remove(token)

+AddDisplay(token,MonitorDisplayInfo):void

+removeDisplay(token,displayID)

«interface»

VideoProvider

+blockToPublic(token,block:boolean)

+inhibitDisplay(token,hierarchyLevel:int)

+revokeDisplay(token,orgs:VideoDisplayRevokedOrg[])

+isRevokedFor(orgId:Identifier)

+getSourceStatus():VideoSourceStatus

+getSourceConfig(Identifier):VideoSourceConfig

+setSourceConfig(Identifier,VideoSourceConfig)

+setUserDisplayStatus(Identifier,boolean)

+isNoVideoAvailable():boolean

+isDisplayable(Identifier,VideoCollectorInfo,reason:string):boolean

+isRemovable(VideoCollectorInfo,monitorGroupID[],reason:string):boolean

«interface»

VideoSource

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

«interface»

ServiceApplication

FullTourStatusUpdateFlag - says whether to push status

updates for camera status updates for changes to the

active monitor list pertaining to tours only. Probably

default to true unless that causes too much traffic.

FullTourOpsLoggingFlag - same except for writing to Ops

Log. Probably default to false unless we need it for

troubleshooting a problem, as this would be a lot of excess

Ops Log entries.

PushEventSupplier

schedule()

cancel()

java.util.Timer

-m_props : Properties

-m_defaults : Properties

+getAllowSimulation() : boolean

+getSimulatedCommsSuccessRate() : int

+getLogFlags() : String

+getPollTimerDelayMillis() : int

+getRecoveryTimerDelaySecs() : int

+getSharedResMonInt() : int

+getCameraControlResponseTimeOutMilli() : int

+getCameraControlSessionTimeOutSecs() : int

+getLastNStateChangeMarginalDenominator() : int

+getLastNStateChangeMarginalNumerator() : int

+getRecentStateChangeCount() : int

+getRecentStateChangeTimeSecs() : int

+getCOHU3955ValidTitleCharacters() : String

CameraControlModuleProperties

+isControllable():boolean

+getCameraStatus():VideoCameraStatus

+getCameraConfig(token):VideoCameraConfig

+setCameraConfig(token,VideoCameraConfig)

«interface»

VideoCamera

+m_sourceConfig:VideoSourceConfig

+m_cameraNumber:int

+m_owningOrgId:Identifier

«datatype»

VideoCameraConfig

-m_svcApp : ServiceApplication

-m_db : CameraControlDB

-m_cameraEventSupplier : PushEventSupplier

-m_resMgmtEventSupplier : PushEventSupplier

-m_cameraFactory : CameraFactoryImpl

-m_props : CameraControlModuleProperties

-m_timer : Timer

+initialize(ServiceApplication) : boolean

+shutdown(ServiceApplication) : boolean

-createEventChannel(String) : PushEventSupplier

-createCameraFactory(int) : boolean

-addCameraFactoryTypesToTrader() : void

+getVersion() : ComponentVersion

CameraControlModule

+requestControl(token,info:ControllingInfo,cmdStat:CommandStatus)

+requestOverride(token,info:ControllingInfo,cmdStat:CommandStatus)

+terminateControl(token)

+isControlled():boolean

+inhibitControl(token,hierarchyLevel:int)

+adjpan(token, direction:int)

+adjTilt(token, direction:int)

+adjZoom(token, direction:int)

+adjFocus(token, where:int)

+adjIris(token, direction:int)

+setAutoIris(token, boolean)

+setActiveTitle(token,title,lineNum:in,cmdStat:CommandStatust)

+resetCamera(token)

+poll(token)

«interface»

ControllableVideoCamera

-m_controllableCameraFact:

 ControllableCameraFactoryImpl

+CheckForAbandonedCameraTask

 (ControllableCameraFactoryImpl)

+run()

CheckForAbandonedCameraTask

run()

«interface»

java.util.TimerTask

-m_dbConnMgr : DBConnectionManager

-m_cameraFactoryImpl : ControllableCameraFactoryImpl

-m_cameraPushEventSupplier : PushEventSupplier

-m_networkConnectionSite : String

-m_svcApp : ServiceApplication

+getCameraList() : VideoProviderImpl[]

+getRegionList() : String[]

+getProviderConfig(Identifier) : VideoProviderConfig

-getProviderConfigWithConnection(Identifier, Connection) : VideoProviderConfig

+getSourceConfig(Identifier) : VideoSourceConfig

-getSourceConfigWithConnection(Identifier, Connection) : VideoSourceConfig

+getCameraConfig(Identifier) : VideoCameraConfig

-getCameraConfigWithConnection(Identifier, Connection) : VideoCameraConfig

+getControllableCameraConfig(Identifier) : ControllableVideoCameraConfig

-getControllableCameraConfigWithConnection(Identifier, Connection) :

 ControllableVideoCameraConfig

+getCOHU3955CameraConfig(Identifier) : COHU3955CameraConfig

-getCOHU3955CameraConfigWithConnection(Identifier, Connection) :

 COHU3955CameraConfig

+getDeviceConfig(Identifier) : VideoTransmissionDeviceConfig

-getDeviceConfigWithConnection(Identifier, Connection) :

 VideoTransmissionDeviceConfig

+getProviderStatus(Identifier) : VideoProviderStatus

-getProviderStatusWithConnection(Identifier, Connection) : VideoProviderStatus

+getSourceStatus(Identifier) : VideoSourceStatus

-getSourceStatusWithConnection(Identifier, Connection) : VideoSourceStatus

+getCameraStatus(Identifier) : VideoCameraStatus

-getCameraStatusWithConnection(Identifier, Connection) : VideoCameraStatus

+getControllableCameraStatus(Identifier) : ControllableVideoCameraStatus

-getControllableCameraStatusWithConnection(Identifier, Connection) :

 ControllableVideoCameraStatus

+getCOHU3955CameraStatus(Identifier) : COHU3955CameraStatus

-getCOHU3955CameraStatusWithConnection(Identifier, Connection) :

 COHU3955CameraStatus

+getDeviceStatus(Identifier) : VideoTransmissionDeviceStatus

-getDeviceStatusWithConnection(Identifier, Connection) :

 VideoTransmissionDeviceStatus

-getCameraDataWithConnection(Identifier, Connection) : CameraData

+setCOHU3955CameraStatus(Identifier, COHU3955CameraStatus)

-setCOHU3955CameraStatusWithConnection(Identifier,

 COHU3955CameraStatus, Connection)

+setSourceStatus(Identifier, VideoSourceStatus)

-setSourceStatusWithConnection(Identifier, VideoSourceStatus, Connection)

+setVideoProviderStatus(Identifier, VideoProviderStatus)

-setVideoProviderStatusWithConnection(Identifier,

 VideoProviderStatus, Connection)

+setControllableCameraStatus(Identifier, ControllableVideoCameraStatus)

-setControllableCameraStatusWithConnection(Identifier,

 ControllableVideoCameraStatus, Connection)

+setFactoryImpl(ControllableCameraFactoryImpl)

+setCameraData(Identifier, CameraData)

-setCameraDataWithConnection(Identifier, CameraData, Connection)

+setCameraStatus(Identifier, VideoCameraStatus)

-setCameraStatusWithConnection(Identifier, VideoCameraStatus, Connection)

CameraControlDB

getConnection():java.sql.Connection

releaseConnection();

()shutdown();()

DBConnectionManager

#m_sourceConfig:VideoSourceConfig

#m_cameraConfig:VideoCameraConfig

#m_sourceStatus:VideoSourceStatus

#m_cameraStatus:VideoCameraStatus

#m_cameraData:CameraData

-m_isVideoSourceOnly:boolean

+getCameraConfig(token):VideoCameraConfig

+getCameraStatus():VideoCameraStatus

+getControllingOpCenter():OpCenterInfo

+getLocationDesc():string

+getLocationProfiles():LocationProfiles[]

+getOwningOrgID():Identifier

+getSourceConfig(Identifier):VideoSourceConfig

+getSourceStatus():VideoSourceStatus

+isControllable():boolean

+isDisplayable(token,VideoCollectorInfo,string):boolean

+isNoVideoAvailable():boolean

+isRemovable(VideoCollectorInfo,monitorGroupID[],string)

#pushStatus(desc,warnTxt):boolean

#persistData(desc,warnTxt):boolean

#persistStatus(desc,warnTxt):boolean

+setCameraConfig(token,VideoCameraConfig)

+setControllingOpCenter(token,OpCenterInfo)

+setSourceConfig(token,VideoSourceConfig)

+setUserDisplayStatus(token,boolean)

+remove(token)

-checkControllingOpCenterName()

+clearDeviceForOfflineMode(token,CommandStatus)

createPOATie():Servant

debugPrintConfig(String,String,VideoSourceConfig)

debugPrintConfig(String,String,VideoCameraConfig)

debugPrintData(String,String,CameraData)

debugPrintStatus(String,String,VideoSourceStatus)

debugPrintStatus(String,String,VideoCameraStatus)

getServiceTypeName():String

getProviderType():VideoProviderType

#initDefaultCameraData():CameraData

#initDefaultCameraStatus():VideoCameraStatus

#initDefaultSourceStatus():VideoSourceStatus

isNoVideoAvailableSource():boolean

VideoCameraImpl

+m_cameraConfig:VideoCameraConfig

+m_maxNumPresets:int

+m_presets:CameraPreset[]

+m_defaultPresetNum:intt

+m_skedMoveToDefaultPresetTime:long

+m_maxControlIdleTimeMins

+m_pollEnabled:boolean

+m_pollIntervalControlledSecs

+m_pollIntervalUncontrolledSecs

+m_lockOnManualIFocus:boolean

+m_lockOnManualIris:boolean

+m_lockOnManualColor:boolean

+m_lowestControlHierarchyLevel:int

+m_defaultCameraTitle

ControllableVideoCameraConfig

-m_controllableCameraFact : ControllableCameraFactoryImpl

+run()

+PollCameraTask(ControllableCameraFactoryImpl)

PollCameraTask

#m_controllableConfig:ControllableVideoCameraConfig

#m_controllableStatus:ControllableVideoCameraStatus

#m_maxTitleLength:int

#m_maxTitleLineNum:int

#m_protocolHandler:CameraProtocolHdlr

#m_lockOperation:Object[]

m_lastHardOpStatus:OperationalStatus

-m_lastNPossibleStateChanges : LinkedList

m_numActualStateChanges:int

m_numPossibleStateChanges:int

m_simulatedCommsSuccessRate:int

-m_recentStateChanges:LinkedList

m_recentStateChangeCnt:int

m_recentStateChangeTimeSecs:int

-m_pollInProgress:boolean

#m_validCOHU3955Characters:Hashtable

#pushStatus(String, StringBuffer)

#persistStatus(String, StringBuffer)

+adjFocus(byte[], int)

+adjIris(token, int)

+adjPan(token, int)

+adjTilt(token, int)

+adjZoom(token, int)

+getControllableCameraConfig(token):ControllableVideoCameraConfig

+getControllableCameraStatus():ControllableVideoCameraStatus

+isControllable():boolean

+pollCamera(token, boolean):boolean

+remove(token)

+requestControl(token,boolean,ControllingInfo,CommandStatus)

+resetCamera(token)

+setActiveTitle(token,String,short,CommandStatus)

+setAutoIris(token,boolean)

+setControllableCameraConfig(token, ControllableVideoCameraConfig)

+setUserControlStatus(token, boolean)

+terminateControl(token, CommandStatus)

+clearDeviceForOfflineMode(token, CommandStatus)

+isRemovable(VideoCollectorInfo,monitorGroupID[],StringHolder):boolean

+isControlled():boolean

#isControlledBy(token)

#terminateControlImpl(token,CommandStatus)

debugPrintConfig(String,String,ControllableVideoCameraConfig)

debugPrintStatus(String, String, ControllableVideoCameraStatus)

#getControllableCameraConfig():ControllableVideoCameraConfig

#verifyController(byte[], CommandStatus)

+requestCameraControlImpl(token,CommandStatus,ControllingInfo)

#isDisplayedLocally(ControllingInfo,token):int

#checkControllable(token,CommandStatus int)

#hasCommandRunning()

+requestCameraOverrideImpl(byte[], CommandStatus, ControllingInfo)

#stopCameraIfNecessary(String)

pollIfNecessary()

#verifyCommModeNotOffline(String, CommandStatus)

-setPollInProgress(boolean)

#updateCameraTitle(int, String)

-updateLastAttemptedPollTime()

-updateLastCommandTime()

#updateLastContactTime()

-updateLastSuccessfulPollTime()

#handleOpStatus(OperationalStatus,boolean,CommandStatus,

 String,boolean,boolean):boolean

#updateCmdTimeSecs()

#convertToOperationalStatus(CameraOperationalStatus):OperationalStatus

#refreshMonitorList()

+populateValidTitleCharacters(String)

+isTitleValid(String):boolean

+getValidTitleChars():String

ControllableVideoCameraImpl

+m_commMode:CommunicationMode

+m_opStatus:OperationalStatus

+m_controllingOpCenter:OpCenterInfo

+m_monitorInfo:MonitorDisplayInfo

+m_deviceStatusChangeTimeSecs:int

+m_monitorStatusChangeTimeSecs:int

VideoProviderStatus

+initialize(boolean,int,LogFile):boolean

+connect():boolean

+disconnect():boolean

+shutdown():boolean

+send(byteMessage:byte []):boolean

+receive(byte [], int):void

+getActualBytesRead():int

+setConfiguration(COHU3955CameraConfig)

 :boolean

«interface»

CameraControlDevice

+m_providerStatus:VideoProviderStatus

+m_maintModeUserName:string

+m_blockedToPublic:boolean

+m_userDisplayStatus:boolean

+m_revokedDisplayOrgID[]

VideoSourceStatus

CameraControlComPort

m_cameraId:int

m_cameraName:String

+initialize():boolean

+connect():boolean

+disconnect():boolean

+shutdown():boolean

+setCameraId():void

+setCameraName():void

+getInitialCommands()

CameraProtocolHdlr

+m_cameraStatus:VideoCameraStatus

+m_controlled:boolean

+m_controllingUserInfo:ControllingUserInfo

+m_actionState:CameraActionState

+m_inAutoFocusMode:boolean

+m_inAutoIrisMode:boolean

+m_currentTitle:string

+m_lastControlCmdTimeSecs:long

+m_userControlStatus:boolean

+m_atPreset:CameraPreset

+m_controlInhibitLevel:int

ControllableVideoCameraStatus

+m_sourceStatus:VideoSourceStatus

VideoCameraStatus

Encoder

+adjPan(direction:int)

+adjTilt(direction:int)

+adjZoom(direction:int)

+adjFocus(where:int)

+adjIris(boolean)

+setAutoIris(boolean)

+setActiveTitle(title, lineNum)

+poll()

+setAutoFocus(boolean)

COHUProtocolHdlr

+adjRed(token,direction:int)

+adjBlue(token,direction:int)

+setAutoColor(token,boolean)

+setLensFast(token,boolean)

+setPowerOn(token,boolean)

+adjPan(token, direction:int)

+setAutoFocus(token,boolean)

+getCOHU3955CameraStatus()

 :COHU3955CameraStatus

+getCOHU3955CameraConfig(Identifier)

 :COHU3955CameraConfig

+setCOHU3955CameraConfig(Identifier,

 COHU3955CameraConfig)

COHU3955Camera

m_commands

m_shutdown

addCommand(QueueableCommand cmd)

removeCommand(QueueableCommand cmd)

shutdown()

-getNextCommand():QueueableCommand

CommandQueue

-m_cohu3955Config:COHU3955CameraConfig

-m_cohu3955Status:COHU3955CameraStatus

COHU3955CameraImpl

execute()

interrupted()

getCmdStatus():CommandStatus

getToken():byte[]

QueueableCommand

-m_cVideoSinkImpl : VideoSinkImpl

-m_cmdStat : CommandStatus

-m_videoProviderInfoSrc : VideoProviderInfo

-m_bTour : boolean

-m_token : token

+execute()

+interrupted()

DisplayImageCmd

+m_siteName:string

+m_site:Site

+m_siteHierarchyLevel:int

+m_workstationName:string

+m_workstation:Workstation

+m_userName:string

«datatype»

ControllingInfo

-m_requesterToken:Token

-m_cmdStat:CommandStatus

-m_source:VideoCameraImpl

-m_presetNum:int

MoveToPresetCmd

-m_camera : ControllableVideoCameraImpl

-m_cmdStat : CommandStatus

-m_token : token

-m_info : ControllingInfo

+execute()

+interrupted()

RequestCameraOverrideCmd

+m_controllableStatus:ControllableVideoCameraStatus

+m_inAutoColorMode:boolean

+m_powerOn:boolean

+m_lensSpeedFast:boolean

+m_currentTitle2:string

COHU3955CameraStatus

-m_camera : ControllableVideoCameraImpl

-m_cmdStat:CommandStatus

-m_token : token

-m_info : ControllingInfo

+execute()

+interrupted()

RequestCameraControlCmd

-m_provider : VideoProviderImpl

-m_cmdStat : CommandStatus

-m_token : token

+execute()

+interrupted()

TakeCameraOfflineCmd

-m_camera : ControllableVideoCameraImpl

-m_cmdStat : CommandStatus

-m_token : token

+execute()

+interrupted()

TerminateControlCmd

COHU3955CameraConfig

+m_defaultTitle2:string

PutCameraOnlineCmd

-m_camera:VideoProviderImpl

-m_cmdStat:CommandStatus

-m_token:Token

+execute()

+interrupted()

1 1

1 1

1 1

11

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

gets module props using

1

1 creates

1

1 creates

1

1

1

1

*

*

1

1

*

1

1

1

1

1

1

1

1

1

1

1

Figure 3.2‑5. CameraControlModule (Class Diagram)

3.2.5.1 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port with direct connection to the control port of a video camera. It is used to send video camera control commands and return responses to a camera control process.

3.2.5.2 CameraControlDB (Class)

The CameraControlDB class provides an interface between the Camera service and the database used to persist the Camera objects and their configuration and status in the database. It contains a collection of methods that perform database operations on tables pertinent to Camera Control. The class is constructed with a DBConnectionManager object, which manages database connections. Methods exist to insert and delete Camera objects from the database, and to get and set their configuration and status information.

3.2.5.3 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes that provide communications for access to control functions for a video camera.

3.2.5.4 CameraControlModule (Class)

The CameraControlModule class is the service module for the Camera devices and a Camera factory. It implements the ServiceApplicationModule interface. It creates and serves a single CameraFactoryImpl object, which in turn serves zero or more CameraImpl objects. It also creates CameraControlDB, CameraControlModuleProperties, and PushEventSupplier objects.

3.2.5.5 CameraControlModuleProperties (Class)

The CameraControlModuleProperties class is used to provide access to properties used by the Camera Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Camera Control Module.

3.2.5.6 CameraImpl (Class)

The CameraImpl class provides an implementation of the VideoCamera interface and by extension the VideoSource, SharedResource, CommEnabled, GeoLocatable, and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long running operations in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are VideoCameraConfig and VideoCameraStatus objects (used to store the configuration and status of the camera), and a VideoCameraData object (used to store internal status information which is persisted but not pushed out to clients).

The CameraImpl contains *Impl methods that map to methods specified in the IDL, including requests to display the camera video on a monitor, remove the camera video from a monitor, put the camera online, put the camera offline, put the camera in maintenance mode (future), or to change (set) the configuration of the camera (future). Some of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate CameraImpl method as the command is executed by the CommandQueue in its thread of execution.

The CameraImpl also contains methods called by the CameraFactory to support the timer tasks of the Camera Service: to look for Cameras with no one logged in at the controlling operations center, and to initiate recovery processing if needed (future).

3.2.5.7 CameraProtocolHdlr (Class)

CameraProtocolHdlr classes provide implementations for all the camera commands. Each CameraImpl class will have a CameraProtocolHdlr instantiated when initialized. When a camera control command is sent to the CameraImpl, CameraProtocolHdlr will be called to translate the command to byte messages which the camera understands. Then those messages are sent by the CameraControlDevice to the camera. CameraProtocolHdlr is capable of using a different CameraControlDevice which is created during the initialization.

3.2.5.8 CheckForAbandonedCameraTask (Class)

The CheckForAbandonedCameraTask is a timer task. When the timer fires, it checks to see if a camera control session has exceeded the timeout, or whether a camera is controlled by an Operations center with no one logged in.
3.2.5.9 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by a class representing the COHU 3955 model video camera. This interface includes methods appropriate to the 3955 model specifically which are not applicable to all models of ControllableVideoCameras.
3.2.5.10 COHU3955CameraImpl (Class)

This class implements the COHU3955Camera interface, and inherits from the ControllableCameraImpl class. The COHU3955CameraImpl implements methods of COHU3955Camera, extending the controllable camera to include 3955-specific operations. This class will contain a configuration and status object as necessary to convey 3955-specific configuration and status information.

3.2.5.11 COHU3955CameraConfig (Class)

The COHU3955CameraConfig is used to hold and transmit configuration information about COHU3955Camera objects at the COHU3955Camera level.

3.2.5.12 COHU3955CameraStatus (Class)

The COHU3955CameraStatus class is used to hold camera status information at the COHU3955Camera level. Only COHU3955Camera specific information is stored.

3.2.5.13 COHUProtocolHdlr (Class)

This class contains an implementation for COHU 3955 camera control commands. It translates every camera command (pan, tilt, zoom…) into bytes that a COHU 3955 camera understands. Then, it uses a CameraControlDevice to send the byte codes to the camera and evaluate responses from the camera.
3.2.5.14 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.2.5.15 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This interface also supports a maintenance mode (although any given implementation may choose to implement putInMaintenanceMode() by throwing a CHART2Exception, if maintenance mode is not supported by that particular implementation). This interface is typically implemented only for field devices.

3.2.5.16 ControllableCameraImpl (Class)

The ControllableCameraImpl class provides an implementation of the ControllableVideoCamera interface and is derived from the CameraImpl class implementing the VideoCamera interface.

This class contains a CommandQueue object that is used to sequentially execute long running operations related to camera control in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are ControllableVideoCameraConfig and ControllabeVideoCameraStatus objects (used to store the configuration and status of the camera), and a VideoCameraData object (used to store internal status information which is persisted but not pushed out to clients).

The ControllableCameraImpl contains *Impl methods that map to methods specified in the IDL, including requests to request control of the camera, terminate control of the camera, override control of the camera, and to send pan/tilt/zoom (PTZ) commands to the camera. Some of these requests are long running, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate ControllableCameraImpl method as the command is executed by the CommandQueue in its thread of execution. PTZ commands are not considered long running and are not placed on the command queue.

The ControllableCameraImpl also contains methods called by the CameraFactory to support the timer tasks of the Camera Service: to poll the Camera, to look for Camera devices with communications timeout exceeded.

3.2.5.17 ControllableCameraFactoryImpl (Class)

The ControllableCameraFactoryImpl class provides an implementation of the CameraFactory interface (and its CameraFactory and SharedResourceManager interfaces) as specified in the IDL. The ControllableCameraFactoryImpl maintains a list of CameraImpl objects and is responsible for publishing Camera objects in the Trader on startup and as new camera objects are created. Whenever a Camera is created or removed, that information is persisted to the database. This class is also responsible for performing the checks requested by the timer tasks: to poll the Camera devices, to look for Camera devices with timeout exceeded, to look for Camera devices with no one logged in at the controlling operations center, and to initiate recovery processing as needed.

3.2.5.18 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The ControllableVideoCamera interface represents a controllable video camera as opposed to the uncontrollable, immovable VideoCamera. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of ControllableVideoCamera. The ControllableVideoCamera interface includes all methods common to the known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day.
3.2.5.19 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration information about ControllableVideoCamera objects at the ControllableVideoCamera level.

3.2.5.20 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

3.2.5.21 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or requesting to control) a VideoCamera.

3.2.5.22 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.2.5.23 DisplayImageCmd (Class)

This class represents the information needed to create a display image command to be added on the CommandQueue.
3.2.5.24 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder. The Encoder interface includes both the Codec and the VideoSendingDevice interfaces, which means in addition to providing forwarding of video, an encoder may be used to send video camera control commands. Device specific classes may inherit from the Encoder.

3.2.5.25 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.2.5.26 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.2.5.27 MoveToPresetCmd (Class)

This class represents the information needed to create a move to preset command to be added on the CommandQueue.

3.2.5.28 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.2.5.29 PollCameraTask (Class)

The PollCameraTask is a timer task. When the timer fires, it polls a camera by sending a poll command to the camera.

3.2.5.30 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set; causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.2.5.31 PutCameraOnlineCmd (Class)

This class represents the information needed to request a put camera online command to be added on the CommandQueue.

3.2.5.32 RequestCameraControlCmd (Class)

This class represents the information needed to request a camera control command to be added on the CommandQueue.

3.2.5.33 RequestCameraOverrideCommand (Class)

This class represents the information needed to request a camera control override command to be added on the CommandQueue.

3.2.5.34 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.5.35 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.5.36 TakeCameraOfflineCmd Class)

This class represents the information needed to request a take camera offline command to be added on the CommandQueue.

3.2.5.37 TerminateControlCmd (Class)

This class represents the information needed to request a terminate camera control command to be added on the CommandQueue.

3.2.5.38 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.2.5.39 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within the CHART II system. The VideoCamera interface represents a generic video camera, which may be controllable or fixed. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of VideoCamera. The VideoCamera interface includes the GeoLocatable interface, to someday allow for advanced features such as automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc. The VideoCamera interface includes all methods common to the known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day.

3.2.5.40 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold and transmit configuration information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

3.2.5.41 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of VideoCamera objects. For R2B1, configuration of cameras will not be supported, so adding a VideoCamera will not be initially supported

3.2.5.42 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold and transmit status information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraStatus.

3.2.5.43 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

3.2.5.44 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

3.2.6 MonitorControlModule (Class Diagram)

This diagram shows the classes with comprise the MonitorControlModule. The MonitorControlModule is an installable module that serves the monitor objects and factory to the rest of the CHART II system. It also serves MonitorGroups, VideoTours and their factories. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions. The MonitorImpl object is the primary class operating in this module. This object provides all access to the monitor status, and configuration. (R2B1 will not include a capability to modify the monitor configurations, but configurations will of course be available to clients to read to support camera operations.) Every request to display an image on a monitor comes to the MonitorImpl object first, through the Monitor interface. When a new image is displayed on a monitor, the Monitor's status is updated to indicate the new camera is being displayed on it, and the new Camera's status and old Camera's status will be updated correspondingly. The MonitorControlModule also includes factory implementations responsible for providing lists of monitors, monitor groups, and video tours to interested clients. Video Tours and their configurations are maintained in the VideoTourFactory, but execute within the Monitor(s) that they are running on. Likewise, Monitor Groups and their configurations are maintained in the MonitorGroupFactory, but execute within the Monitor(s) that they are running on.

[image: image12.emf]FullTourStatusUpdateFlag - says whether to push status

updates for camera status updates for changes to the

active monitor list pertaining to tours only. Probably

default to true unless that causes too much traffic.

FullTourOpsLoggingFlag - same except for writing to Ops

Log. Probably default to false unless we need it for

troubleshooting a problem, as this would be a lot of excess

Ops Log entries.

1

1

DBConnectionManager

*

1 1 1 1

1

ServiceApplication

«interface»

MonitorFactoryImpl

VideoCollector

«interface»

1

MonitorControlDB

MonitorImpl

MonitorControlModule

MonitorStatus

1

1

1

1

1

1

1

MonitorControlProperties

1

1

ServiceApplicationModule

«interface»

MonitorFactory

«interface»

Monitor

«interface»

VideoSink

«interface»

MonitorConfiguration

+getMonitorList():Monitor[]

+getMonitorsWithActiveTours():Monitor[]

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

+getMonitorList() : Camera;

-getID() : byte[];

-getName() : String;

+getResources() : SharedResource[];

+getControlledResources(byte[] opCtrIDDataToChk):

 SharedResource[];

+hasControlledResources(byte[] opCtrIDDataToChk) :

 boolean;

+removeMonitor(MonitorImpl c2monitorImpl,

 byte[] token) : void;

checkCommLoss() : void;

getAllowSimulation() : void;

getMonitorStatusLogFile() : LogFile;

getHostName() : String;

getMonitorPushEventSupplier() : PushEventSupplier;

getTimeDownSecs(): int;

getProperties() : CameraControlModulePropertie;

-addMonitorTypesToTrader() : void;

-alarmIfNoLoggedInUsers(Identifier opCtrIDObjToChk,

 String opCtrName): void;

-pushMonitorAdded(Monitor monitor,

 MonitorConfiguration c2MonitorCfg, String statMsg) :

 boolean;

+getMonitorsWithActiveTours():Monitor[]

boolean m_allowSimulation;

Vector m_MonitorImplVect;

MonitorControlDB m_db;

LogFile m_monitorStatusLogFile;

Identifier m_idObj;

String m_name;

int m_sharedResMonInt;

ServiceApplication m_svcApp;

MonitorControlModuleProperties m_props

+getCollectorStatus():VideoCollectorStatus

+getCollectorConfiguration(token):VideoCollectorConfig

+setCollectorConfiguration(token,VideoCollectorConfig)

+remove(token)

+displayImage(token,VideoSource,cmdStat:CommandStatus)

+dropImage(token)

-setDefaultSystemProperties() : void

+getSystemProperties() : void

+getAllowSimulation() : boolean

+getLogFlags() : String

+getSystemPropsRefreshMins() : int

+getMaxXameraControlSiteHierarchy()

+getFullTourStatusUpdateFlag():boolean

+getFullTourOpsLoggingFlag():boolean

+getMinimumTourDwellTime():boolean

m_maxCameraControlSiteHierarchy

+displayImage(VideoSource)

+dropImage()

+getStatus()

+getStatus():VideoSinkStatus

+getConfiguration(token):VideoSinkConfiguration

+setConfiguration(token,VideoSinkConfiguration)

+remove(token)

+initialize(ServiceApplication svcApp) : boolean

+shutdown(ServiceApplication svcApp) :

 boolean

-createEventChannel(String name) :

 PushEventSupplier

-createNotificationChannel(String name) :

 PushNotifySupplier

-createMonitorFactory(int timeDown) : boolean

-addMonitorFactoryTypesToTrader() : void

ServiceApplication m_svcApp;

MonitorControlDB m_db;

CommFailureDB m_commFailDB;

MonitorFactoryImpl m_cameraFactory;

MonitorControlModuleProperties m_props;

+setPosition(token,xPos,yPos,xSize,ySize)

+stopCameraTour(token,cameraTour)

+startCameraTour(token,cameraTour)

+getMonitorList() : MonitorImpl;

+getConfiguration(Identififer MonitorID) : MonitorConfiguration;

+getStatus(Identifier MonitorID) : MonitorStatus;

+setConfiguration(Identifier, MonitorConfiguration) : void;

+setStatus(Identifier MonitorID) : void;

-getConfigWithConnection(Identifier, Connection) :

 MonitorConfiguration;

-getStatusWithConnection(Identifier, Connection) :

 MonitorStatus;

+createMonitorImpl(Identifier, MonitorConfiguration,

 MonitorStatus) : MonitorImpl;

-setStatusWithConnection(Identifier, MonitorStatus,

 Connection) : void;

DBConnectionManager m_dbConnMgr;

MonitorFactoryImpl m_cameraFactoryImpl;

CommFailureDB m_commFailDB;

ServiceApplication m_svcApp;

+getCconfiguration(Access Oken) : MonitorConfiguration;

-verifyMonitorAccess(Access Token, rightId,

 descPrefix, descSuffix, CommandStatus) : void;

-opLog(Access Token, msg, Action, deviceName) : void

-logLockRcvd(String lock) : void

-logLockRqst(String lock) : void

-logLockDone(String lock) : void

-log(String flags, String method, String txt) : void

-setControllingOpCenter(Access token, OpCenterInfor opCtrInfo) :

 void

-getID():byte

-getLocationDesc():String

-getName():String

-getOwnerOrgID():byte[]

+getStatus() : CameraStatus

+setConfiguration(Access token, MonitorConfiguration,

 CommandStatus) : void

-logProd(String method, String txt):void

-validateCfg(MonitorConfiguration cfg, byte[] token):void

-getMonitorName() : String

-getIdentifier() : Identifier

-getServiceTypeName() : String

+setConfigurationImpl(token, newCfg, cmdStat) : void

-updateCfgBool(curr, repl, desc, rec) : boolean

-updateCfgStr(curr, repl, desc, rec) : Stromg

-checkControllingOpCenterName() : void

-cmdStatusCompleted(cmdStat, StatMsg, CompletionCode) :

 boolean

-cmdStatusFailure(cmsStat, statMsg) : boolean

-cmdStatusFailureMaybe(cmdStat, statMsg, complete) : boolean

-cmdStatusSuccess(cmdStat, statMsg) : boolean

-cmsStatusSuccessMaybe(cmdStat, statMsg, complete) :

 boolean

-cmdStatusUpdate(cmdStat, statMsg) : boolean

compareMonitorAccess(token, rightID)

+initializeNewMonitor() : void

-initStatus() : void

-sleep(int sleepTimeMs) : void

+shutdownCameraTourcameraTourvoid

()

CommFailureDB m_commFailDB;

MonitorConfiguration m_config ;

MonitorControlDB m_db ;

LogFile m_devLogFile;

boolean m_monitorCommsSimulated;

MonitorFactoryImpl m_factory;

Identifier m_idObj;

String m_createLogFlag;

MonitorStatus m_status;

ServiceApplication m_svcApp;

FunctionalRightType m_systemRight;

Object[] m_lockName;

Object[] m_lockStatus;

boolean m_logFlags[];

byte[] m_systemToken;

getConnection():java.sql.Connection

releaseConnection();

()shutdown();()

Figure 3.2‑6. MonitorControlModule (Class Diagram)

3.2.6.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.2.6.2 MonitorConfiguration (Class)

The MonitorConfiguration contains configuration information specific to Chart II processing. Such information includes, but is not limited to, the monitor name, owning organization, and decoder configuration.

3.2.6.3 MonitorControlDB (Class)

The MonitorControlDB class provides an interface between the Monitor service and the database used to persist the camera objects and their configuration and status in the database. This class provides the ability to retrieve and view the camera from local and remote workstations. The class is constructed with a DBConnectionManager object, which manages database connections

3.2.6.4 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a Monitor factory. It implements the ServiceApplicationModule interface providing a platform for displaying camera objects within a service application. This class is the controlling class for the Monitor Control Module, providing initialization and overall operation of the module. It also creates MonitorControlDB and MonitorControlModuleProperties objects.

3.2.6.5 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a real, physical "television set" on which a video image can be displayed. This is the most common type of VideoSink (the other being a SWMonitor, part of a future requirement to stream video directly to user's workstations (or potentially other nearby computers).

3.2.6.6 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by the Monitor Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Monitor Control Module.

3.2.6.7 MonitorFactory (Class)

This CORBA interface allows new devices to be added to the system. It allows an operator to acquire a list of camera tour objects under the domain of the specific MonitorFactory object. It also implements the SharedResourceManager capability to control Monitor objects as shared resources between workstations.

3.2.6.8 MonitorFactoryImpl (Class)

The MonitorFactoryImpl class provides an implementation of the MonitorFactory interface. It will provide a capability to depersist monitors from the database and maintain and provide the list of monitors to any object that requests it. It will also be able to provide a list of monitors with active tours. For R2B1, creation of Monitors within the software will not be supported

3.2.6.9 MonitorImpl (Class)

The MonitorImpl class provides an implementation of the Monitor interface by extension of the Monitor, SharedResource, and UniquelyIdentifiable interfaces, CommEnabled, as specified in the IDL. Also contained in this class are MonitorConfiguration and MonitorStatus objects used to store the configuration and status of the monitor.

3.2.6.10 MonitorStatus (Class)

This class (struct) contains data that indicates the current status of a Monitor device specific to Chart II processing, such as information on the particular controlling operation centers. The data contained in this class is that status information which can be transmitted from the local monitors to remote monitors. This struct is also used within the Monitor Service to transmit data to/from the MonitorControlDB database interface class.

3.2.6.11 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.6.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.6.13 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

3.2.6.14 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video signals, such as video monitors and streaming video receivers directly on user workstations. Within the user interface, the VideoSink interface represents all objects on which a video source can be placed for viewing by users.

3.2.7 Monitor Group Management (Class Diagram)

This diagram shows the classes with comprise the Monitor Group classes of the MonitorControlModule. The MonitorControlModule is an installable module that serves the Monitor Group objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image13.emf]«interface»

ServiceApplicationModule

MonitorControlProperties

MonitorControlModule

DBConnectionManager m_dbDBConnectionMgr

MonitorGroupFactoryImpl m_MonitorGroupFactoryImpl

ServiceApplication m_svcApp

PushEventSupplier m_monitorGroupPushEventSupplier

#createMonitorGroupImpl(Identifier, MonitorGroupConfig,

 MonitorGroupStatus):MonitorGroupImpl

+getConfiguration(Identifieritor):MonitorGroupConfig

+getMonitorGroupList():MonitorGroupImpl[]

+getStatus(Identifier):MonitorGroupStatus

+saveStatus(Identifier, MonitorGroupStatus):void

+getMonitorGroupFactoryImpl(

 MonitorGroupFactoryImpll):void

MonitorGroupControlDB

+getMonitorGroupInfoList():MonitorGroupInfoList

«interface»

MonitorGroupFactory

m_pendingDeleteMonitorGroupImplVec:Vector

m_factoryIDObj:Identifier

m_hostName:String

m_logFlags:boolean[]

m_monitorGroupImplVect:Vector

m_MonitorGroupInfoVect:Vector

m_monitorGroupPushEventSupplier;PushEventSupplier

m_monitorGroupStatusLogFile:LogFile

m_name:String

m_pendingDeleteMonitorGroupImplVect:Vector

m_props:MonitorControlModuleProperties

m_shutdown:boolean

m_svcApp:ServiceApplication

-addMonitorGroupTypesToTrader():void

getHostName():String

+getID():byte[]

getLogFlags():boolean[]

+getMonitorGroupInfoList():MonitorGroupInfo[]

getMonitorGroupPushEventSupplier():PushEventSupplier

+getName():String

getProperties():MonitorControlModuleProperties

-log(String flags, String method, String txt):void

-logProd(String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog(byte[] token, String msg, int action,

 String siteName):void

+shutdown():void

MonitorGroupFactoryImpl

«interface»

UniquelyIdentifiable

+addControlledCamera(AccessToken, VideoProviderInfo):void

+getConfiguration(AccessToken):MonitorGroupConfiguration

+removeControlledCamera(AccessToken, Identifier):void

+setConfiguration(AccessToken,MonitorGroupConfiguration)

«interface»

MonitorGroup

m_config:MonitorGroupConfig

m_createLogFlag:String

m_db:MonitorGroupControlDB

m_factory:MonitorFactoryImpl

m_idObj:Identifier

m_lockConfig:Object[]

m_lockName:Object[]

m_lockStatus:Object[]

m_logFlags:boolean[]

m_monitorGroupPushEventSupplier:PusheventSupplier

m_props:MonitorControlModuleProperties

m_status:MonitorGroupStatus

m_svcApp:ServiceApplication

+addControlledCamera(byte[] token,

 VideoProviderInfo videoInfoList):void

-cmdStatusCompleted(CommandStatus cmdStat, String statMsg,

 boolean completionCode):boolean

cmdStatusFailure(CommandStatus cmdStat, String statMsg):boolean

debugPrintConfig(String flags, String method, MonitorGroupConfig cfg):void

debugPrintStatus(String flags, String method, MonitorGroupStatus stat):void

+ getConfig(byte[] token):MonitorGroupConfig

+getID():byte[]

getIdentifier():Identifier

getMonitorGroupName():String

+getName():String

+getStatusMonitorGroupStatus()

getSvcApp():ServiceApplication

log (String flags, String method, String txt):void

-logLockDone(String lock):void

-logLockRcvd(String lock):void

-logLockRqst(String lock):void

-logProd (String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog (byte[] token, String msg, int action, String deviceName):void

#pushStatus(String desc, StringBuffer warnTxt):boolean

+removeControlledCamera(byte[] token, byte[] cameraID):void

+setConfig(byte[] token, MonitorGroupConfig config):void

-verifyMonitorGroupAccess(byte[] token, int rightID, String descPrefix,

 String descSuffix, CommandStatus cmdStat):void

MonitorGroupImpl

«interface»

ServiceApplication

PushEventSupplier

m_Name:String

m_monitorGroupIDs:Identifier[]

MonitorGroupConfiguration

m_controlledCameraIDs:Identifier[]

MonitorGroupStatus

1

1

1

1

1

1

1

1

1 *

1

1

1

1

1

1

1

1

Figure 3.2‑7. Monitor Group Management (Class Diagram)

3.2.7.1 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a Monitor factory. It implements the ServiceApplicationModule interface providing a platform for displaying camera objects within a service application. This class is the controlling class for the Monitor Control Module, providing initialization and overall operation of the module. It also creates MonitorControlDB and MonitorControlModuleProperties objects.

3.2.7.2 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by the Monitor Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Monitor Control Module.
3.2.7.3 MonitorGroup (Class)

This MonitorGroup interface is used to represent a monitor group. A monitor group has two purposes. A monitor group will basically mirror operations centers, or facilities: A monitor group named after an operations center, facility, site, will contain the monitors at that location. Users will choose (or be assigned) their monitor group upon logging in. This configuration of monitor group will determine which monitors are "local" for a user. It will be used to manage access to camera control.

3.2.7.4 MonitorGroupConfiguration (Class)

The MonitorGroup configuration class represents the configuration of MonitorGroups representing facilities at which physical monitors are present. The configuration is essentially a list of the monitors in a group.

3.2.7.5 MonitorGroupControlDB (Class)

This class provides the database methods to add, insert, persist and depersist information about MonitorGroups.

3.2.7.6 MonitorGroupFactory (Class)

This CORBA interface allows an operator to acquire a list of monitor group objects under the domain of the specific MonitorGroupFactory object.

3.2.7.7 MonitorGroupFactoryImpl (Class)

The MonitorGroupFactoryImpl class provides an implementation of the MonitorGroupFactory interface as specified in the IDL. It will provide a capability to depersist monitor groups from the database and maintain and provide a list of the monitor groups to any object that requests it.
3.2.7.8 MonitorGroupImpl (Class)

The MonitorGroupImpl class implements the MonitorGroup interface by extension of the MonitorGroup and UniquelyIdentifiable interfaces, as specified in the IDL. Also contained in this class are the MonitorGroupConfiguration and MonitorGroupStatus objects used to store the configuration and status of the MonitorGroup.

3.2.7.9 MonitorGroupStatus (Class)

This class (struct) contains a list of cameras that are controlled by operators associated with the particular monitor group. If an operator has logged in, chosen a particular monitor group, displayed a camera on a monitor within that monitor group, and controlled that camera, then that camera is controlled within the monitor group.

3.2.7.10 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set; causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.2.7.11 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.7.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.7.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.2.8 Video Tour Class (Class Diagram)

This diagram shows the classes that comprise the video tour classes of the MonitorControlModule. The MonitorControlModule is an installable module that serves the monitor objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image14.emf]MonitorControlProperties

«interface»

ServiceApplicationModule

+createTour(AccessToken token,VideoTourConfig config):VideoTourConfig

+getTourInfoList(token):VideoTourInfoList

«interface»

VideoTourFactory

MonitorControlModule

m_db:DBConnectionManager

m_factoryIDObj:Identifier

m_hostName:String

m_logFlags:boolean[]

m_name:String

m_pendingDeleteVideoTourImplVect:Vector

m_props:MonitorControlModuleProperties

m_shutdown:boolean

m_svcApp:ServiceApplication

m_videoTourImplVect:Vector

m_videoTourInfoVect:Vector

m_videoTourPushEventSupplier:PushEventSupplier

m_videoTourStatusLogFile:LogFile

-addVideoTourTypesToTrader():void

+createTour(byte[] token,

 VideoTourConfig videoTourCfg):VideoTourInfo

getHostName():String

+getID():byte[]

getLogFlags():boolean[]

+getName():String

getProperties():MonitorControlModuleProperties

+getTourInfoList():VideoTourInfo[]

getVideoTourPushEventSupplier():PushEventSupplier

-log(String flags, String method, String txt):void

-logProd(String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog (byte[] token, String actionDesc, int actionType,

 String deviceID, String deviceName, String DeviceID2,

 String deviceName2):void

removeVideoTour(VideoTourImpl videoTourImpl, byte[] token):void

shutdown():boolean

VideoTourFactoryImpl

«interface»

UniquelyIdentifiable

+getVideoTourStatus():VideoTourStatus

+getVideotourConfig(token):VideoTourConfig

+setVideoTourConfig(AccessToken token,

 VideoTourConfig config,CommandStatus cmdStat)

+remove(token,cmdStat)

«interface»

VideoTour

+m_sinkds:IdentifierList

«datatype»

VideoTourStatus

m_config:VideoTourConfig

m_createLogFlag:String

m_db:DBConnectionManager

m_factory:VideoTourFactoryImpl

m_idObj:Identifier

m_lockConfig:Object[]

m_lockName:Object[]

m_lockStatus:Object[]

m_logFlags:boolean[]

m_props:MonitorControlModuleProperties

m_sinkRefs:VideoSink[]

m_status:VideoTourStatus

m_svcApp:ServiceApplication

m_VideoTourPushEventSupplier:PushEventSupplier

+addVideoSink(byte[] token, byte [] sinkID,

 VideoSink sinkRef):VideoTourConfig

-cmdStatusCompleted(CommandStatus cmdStat, String statMsg,

 boolean completionCode):boolean

cmdStatusFailure(CommandStatus cmdStat, String statMsg):boolean

-cmdStatusSuccess(CommandStatus cmdStat, String statMsg):boolean

debugPrintConfig(String flags, String method, VideoTourConfig cfg):void

debugPrintStatus(String flags, String method, VideoTourStatus stat):void

+getID():byte[]

getIdentifier():Identifier

+getName():String

getSvcApp():ServiceApplication

+getVideoTourConfig(byte[] token):VideoTourConfig

getVideoTourName():String

+getVideoTourStatus():VideoTourStatus

-initializeNewVideoTour():void

log (String flags, String method, String txt):void

-logLockDone(String lock):void

-logLockRcvd(String lock):void

-logLockRqst(String lock):void

-logProd (String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog (byte[] token, String actionDesc, int actionType,

	 String deviceID, String deviceName, String DeviceID2,	 String deviceName2:void

#pushStatus(String desc, StringBuffer warnTxt):boolean

+remove(byte[] token, CommandStatus cmdStat):void

+removeVideoSink(byte[] token, byte[] sinkID):void

+setVideoTourConfig(byte[] token, VideoTourConfig config,

 CommandStatus cmdStat):void

#verifyAccess(byte[] token, int[] rightIDs, String descPrefix,

 String descSuffix, CommandStatus cmdStat):void

-verifyVideoTourAccess(byte[] token, int rightID, String descPrefix,

 String descSuffix, CommandStatus cmdStat):boolean

VideoTourImpl

«interface»

java.util.TimerTask

m_cmdStat:CommandStatus

m_lastDisplayTime:long

m_lastRefreshTime:long

m_tourRefreshIntervalSecs:long

m_videoProviderIndex:int

m_videoSinkImpl:VideoSinkImpl

m_videoTour:VideoTour

m_videoTourConfig:VideoTourConfig

-getTourConfig():void

run()

VideoTourTimerTask

+m_name:String

+m_tourConfigID:Identifier

+m_entries:VideoTourEntryList

+m_temporary:boolean

+m_dwellTimeSecs:long

«datatype»

VideoTourConfig

m_c2VideoTourFactoryImpl:VideoTourFactoryImp

m_dbConnMgr:DBConnectionManager

m_svcApp:ServiceApplication

m_VideoTourPushEventSupplier:PushEventSupplier

#createVideoTourImpl(Identifier videoTourID, VideoTourConfig config,

 VideoTourStatus status):VideoTourImpl

+deleteTour(Identifier videoTourID, VideoTourConfig config):void

+getConfiguration(Identifier videoTourID):VideoTourConfig

+getStatus(Identifier videoTourID):VideoTourStatus

+getVideoTourList():VideoTourImpl[]

+insertTour(Identifier videoTourID, VideoTourConfig config:void

+saveStatus(Identifier VideoTourID, VideoTourStatus status):void

+setConfiguration(Identifier videoTourID, VideoTourConfig config):Identifier

+setVideoTourFactoryImpl(VideoTourFactoryImpl c2VideoTourFactoryImpl):void

VideoTourControlDB

+m_sourceID:Identifier

+m_presetNumber:int

«datatype»

VideoTourEntry

1 *

1 1

1 *

1

1

1 1

1

1

1 1

Figure 3.2‑8. Video Tour Class (Class Diagram)

3.2.8.1 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

.

3.2.8.2 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a Monitor factory. It implements the ServiceApplicationModule interface providing a platform for displaying camera objects within a service application. This class is the controlling class for the Monitor Control Module, providing initialization and overall operation of the module. It also creates MonitorControlDB and MonitorControlModuleProperties objects.

3.2.8.3 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by the Monitor Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Monitor Control Module.

3.2.8.4 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.8.5 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.2.8.6 VideoTour (Class)

This interface is represents a video tour - that is, a sequence of video sources (cameras), to be displayed in sequential order on a video sink (monitor). This interface is used only for maintaining and accessing the configuration and status of the video tour (and removing the tour), not controlling the execution of the tour. Execution of the video tour is controlled by the video sink (monitor), although the video tour's status is recorded by the VideoTour.
3.2.8.7 VideoTourConfig (Class)

The VideoTourConfig structure is used to hold configuration information about a given video tour.
3.2.8.8 VideoTourControlDB (Class)

The VideoTourControlDB class provides access to the video tour configuration and status data in the database.
3.2.8.9 VideoTourEntry (Class)

The VideoTourEntry structure is used to hold configuration information about a single entry in a video tour.

3.2.8.10 VideoTourFactory (Class)

This CORBA interface allows an operator to create a video tour and acquire a list of video tour objects under the domain of the specific VideoTourFactory object.
3.2.8.11 VideoTourFactoryImpl (Class)

The VideoTourFactoryImpl class implements the VideoTourFactory interface. It creates the video tour objects in the video service.
3.2.8.12 VideoTourImpl (Class)

VideoTourImpl implements the VideoTour interface. This object is responsible for setting and retrieving video tour configuration and status. When the video tour configuration has changed, all video sinks (monitors) on which the video tour is running, are notified.

3.2.8.13 VideoTourStatus (Class)

The VideoTourStatus structure is used to hold the list of video sinks (monitors) that this video tour is running on.

3.2.8.14 VideoTourTimerTask (Class)

VideoTourTimerTask is a timer task. When the timer fires it displays a video image on a monitor.
3.2.8.15 VideoTourStatus (Class)

The VideoTourStatus structure is used to hold the list of video sinks (monitors) that this video tour is running on.
.

3.3 ApplicationPartitioning (Deployment Diagram)

This diagram shows the configuration of the new CHART2 VideoService. The SwitchControlModule and RouterControlModule will be used starting with R2B2. The CameraControlModule and MonitorControlModule will exist starting with R2B1.

[image: image15.emf]VideoService

CameraControlModule

ControllableVideoCameraFactory

VideoCamera

Encoder

SwitchControlModule and

RouterControlModule will run only

at AOC, with R2B2. Starting with

R2B2, at the AOC only, the

CameraControlModule,

MonitorControlModule and

RouterControlModule depend on

SwitchControlModule there because

cameras/monitors/bridge circuits on

V1500 switches need SwitchPort,

Switch, and SwitchFabric objects.

No dependencies at other sites.

CameraControlComPort

R2B2

MonitorControlModule

SwitchControlModule

R2B2

MonitorGroupFactory

SwitchFabric

MonitorGroup

Corba Trading Service

Switch

MonitorFactory

SwitchPort

Monitor

RouterControlModule

Decoder

R2B2

VideoTourFactory

VideoTour

BridgeCircuit

VideoTourFactory is in

MonitorControlModule

because running a tour

is a monitor-centric

operation. One monitor

cycles through many

cameras. The tour

is more likely to be

created at the server

hosting the monitor than

a server hosting one of

the cameras (especially

with the concept of

"temporary" tours).

VideoRouteManager

VideoRoute

Encoder

CORBA Video Event Service

Decoder

Figure 3.3‑1. ApplicationPartitioning (Deployment Diagram)

3.4 Sequence Diagrams

The following are the sequence diagrams for module initialization, camera display, and camera control. The CameraControlModule sequence diagrams are presented first, followed by the monitor control sequence diagrams.

3.4.1 CameraControlModule:DirectCameraControl (Sequence Diagram)

This Sequence Diagram shows how a camera command is executed. There are two kinds of commands. Commands like pan, tilt, zoom, etc., require immediate feedback for direct control by the user, and are described in this diagram. Commands like savePreset can take a longer time to complete. They will execute in asynchronous mode as part of a future release. Direct commands are executed as follows: First a camera control command is sent to the CameraImpl. The sender must have a valid token, the camera must be in online mode, and must be currently controlled by the sender. The CameraImpl object then calls lock (synchronize) function which prevents it from executing other commands until this command is complete. After that, the Protocol Handler will be called to translate the command into camera byte codes and send the byte codes to the CameraControlDevice. Responses are returned to the Protocol Handler for evaluation to expected results. If there is an error during sending or receiving the byte codes, the CameraImpl class will be notified. Finally, the CameraImpl unlocks the control and return success or failure to the caller.

[image: image16.emf]Operator

CameraImpl TokenManipulator

The will guarantee no direct or queueable

command will execute.

A pan/tilt command will set the m_moving flag to sure

A stop command will set the m_moving lag to false

If camera is moving when a pan/tilt command is issued,

a stop command will be executed.

Check flags for currently running

asynchronous commnad

CameraProtocolHdlr

Different cameras have different protocol handlers to

translate commands into byte code.

Then cameraControlDevices talk to different backend

to send and receive each bye code command.

OperationsLog

See ProtocolHandlerAdjPan for detail

unlock unlock

[not online]

CHART2Exception

[not online]

CHART2Exception

[no controlled by me]

CameraNotControlledException

[no controlled by me]

CameraNotControlledException

error error

Failure Failure

adjPan(direction) adjPan(direction)

timed out timed out

Failure Failure

success success

success success

adjPan(token, direction) adjPan(token, direction)

checkAccess(token) checkAccess(token)

[no right]

log(token, "unauth attempt to control camera")

[no right]

log(token, "unauth attempt to control camera")

unlock unlock

[no right]

AccessDenied

[no right]

AccessDenied

[has command running]

CameraBusyException

[has command running]

CameraBusyException

setMovingFlag setMovingFlag

updateInactiveTimer() updateInactiveTimer()

unlock unlock

hasCommandsRunning() hasCommandsRunning()

isOnline isOnline

isControlled(token) isControlled(token)

lock lock

Figure 3.4‑1. CameraControlModule:DirectCameraControl (Sequence Diagram)

3.4.2 CameraControlModule:Initialize (Sequence Diagram)

This sequence shows the initialization of the camera control module. The module initializes the camera control module properties and event channels and the connection to the database. Then it depersists all the objects that are hosted by this and publishes them in the trader. Finally it starts a timer task to check for abandoned cameras, and another timer task to poll all of the cameras to check for good camera control communications.

[image: image17.emf]ServiceApplication

CameraControlModule

ServiceApplication

PushEventSupplier

timeDown passed to factory

during construction.

Two -- one for Cameras for status/config/existence changes,

one for the Module for abandoned cameras (active Cameras with

no one logged in at the controlling Op Ctr) (resourceMgtEventChannel).

RecoveryTimerTask

CameraControlDB

RecoveryTimerTask: periodically writes

the current time to a file. This is used to

track how long the video service has been down

so that the service can process accordingly during

restarting.

POA

CameraControlModuleProperties

CameraFactoryImpl

java.util.timer

COHU3955CameraImpl

COHUProtocolHdlr

CheckForAbandonedCameraTask

TIMER TASK:

1. To periodically check for active Cameras

 with no one logged in at the controlling Op Ctr.

2. Also check control sessions with no activity for

 more than m_maxControlIdleTimeMins and

 clear those sessions.

Commands

TIMER TASK: To periodically have each Camera

check to see if it is time to poll (poll interval

expired) andpoll if necessary.

PollCameraTask

VideoCameraImpl

CameraProtocolHdlr

CameraControlDevice

schedule schedule

initialize initialize

create create

initialize() initialize()

getCameraList getCameraList

create create

create create

getDBConnectionManager getDBConnectionManager

getEventChannelFactory getEventChannelFactory

getProperties getProperties

registerEventChannel

(EventChannel)

registerEventChannel

(EventChannel)

Type == COHU3955] create Type == COHU3955] create

create create

createCamera

ControlDevice()

createCamera

ControlDevice()

create create

[Type == VideoSource|| VideoCamera] create [Type == VideoSource|| VideoCamera] create

[*for

each

Camera

object]

[*for

each

Camera

object]

getRegionList() getRegionList()

getPOA() getPOA()

getAllowSimulation() getAllowSimulation()

registerObject(Camera) registerObject(Camera)

activate_object

(Camera)

activate_object

(Camera)

activate_object (CameraFactory) activate_object (CameraFactory)

create create

create create

success success

[* for each

camera in DB]

[* for each

camera in DB]

schedule schedule

getPOA getPOA

getOperationsLog getOperationsLog

error error

create create

getInitialCommands getInitialCommands

create create

getDefaultProperties getDefaultProperties

create create

create create

registerObject(CameraFactory) registerObject(CameraFactory)

getEventChannel getEventChannel

[2] [2]

Figure 3.4‑2. CameraControlModule:Initialize (Sequence Diagram)

3.4.3 CameraControlModule:InitializeCameraControl (Sequence Diagram)

This Sequence Diagram shows how the CameraImpl class connects to the encoder. When operator initializes the control for the camera, as part of requesting camera control, CameraImpl calls the connect function on the ProtocolHandler to initialize connection. This is different from the initialize function when CameraImpl object gets created. This connect function just makes the connection ready for the incoming commands. CameraImpl first calls the connect function on ProtocolHandler, which in turn calls the connect function on the CameraConrolDevice, in this case an Encoder. This is where the Encoder establishes the socket connection to the physical encoder. If there is an error connecting, CameraImpl will be notified of the failure. Success or failure is then returned to the caller.

[image: image18.emf]ControllableVideoCameraImpl

CameraImpl

CameraProtocolHdlr CameraControlDevice EncoderImpl

connect connect

initializeCameraControl initializeCameraControl

connect connect

connect connect

[connect fail] [connect fail]

success success

[connect fail] [connect fail]

isControlled isControlled

isControlledBy isControlledBy

[connect fail] [connect fail]

[connect fail] [connect fail]

success success

success success

success success

Figure 3.4‑3. CameraControlModule:InitializeCameraControl (Sequence Diagram)

3.4.4 CameraControlModule:OverrideCameraControl (Sequence Diagram)

This sequence shows the implementation of the override function of the ControllableVideoCamera. The override process begins when a user has requested to control a camera with the override flag set to true and the user may control the camera. If the camera image is still displayed locally and the operator has sufficient privileges, that is, an operator who may override cameras for this camera’s organization, the camera will be removed from the old controlling user’s MonitorGroup and added to the new controlling user’s MonitorGroup. The camera status is updated to reflect the new controlling user and the camera status is pushed out and written to the database. The new user now has control of the camera.

[image: image19.emf]Operator

CameraImpl TokenManipulator OperationsLog CommandQueue CameraControlDB PushEventSupplier

CameraProtocolHandler

CommandStatus

MonitorGroup

Poll thread should already be running to

constantly check the camera and

 update the status.

Starting from point

where camera is controlled

and operator is trying to

override and override command

has been placed on queue

(see RequestCameracontrol)

unlock() unlock()

[camera controlled] completed(false,"camera controlled. would or wouldnot be allowed") [camera controlled] completed(false,"camera controlled. would or wouldnot be allowed")

persistAndPushStatus() persistAndPushStatus()

saveStatus saveStatus

lock() lock()

cmdStatusSuccess(true, "Overrride camera control granted") cmdStatusSuccess(true, "Overrride camera control granted")

log(token,"control granted to xx") log(token,"control granted to xx")

isDisplayedLocally(info,token) isDisplayedLocally(info,token)

cmdStatusFailure(You must have a camera image displayed locally in order to control) cmdStatusFailure(You must have a camera image displayed locally in order to control)

log(token,"no rights") log(token,"no rights")

No image displayed No image displayed

return return

verifyAccess(token,OverrideFunctionaRight) verifyAccess(token,OverrideFunctionaRight)

cmdStatusFailure(No rights to override this camera) cmdStatusFailure(No rights to override this camera)

return return

connect() connect()

log(Connect to protocol handler) log(Connect to protocol handler)

Chart2Exception(Failed to control) Chart2Exception(Failed to control)

cmdStatusfailure(Failed to request control) cmdStatusfailure(Failed to request control)

return return

stopIfNecessary() stopIfNecessary()

Chart2Exception(Command Failed) Chart2Exception(Command Failed)

cmdsStatusFailure(Command to camera failed) cmdsStatusFailure(Command to camera failed)

return return

removeControlledCamera() removeControlledCamera()

Exception(Cannot findremove from MonitorGroup) Exception(Cannot findremove from MonitorGroup)

cmdStatusFailure(Failed to override camera control) cmdStatusFailure(Failed to override camera control)

return return

addControlledCamera() addControlledCamera()

Exception(Cannot findadd to MonitorGroup) Exception(Cannot findadd to MonitorGroup)

cmdStatusFailure(Failed to override camera control) cmdStatusFailure(Failed to override camera control)

return return

Figure 3.4‑4. CameraControlModule:OverrideCameraControl (Sequence Diagram)

3.4.5 CameraControlModule:PollTask (Sequence Diagram)

This sequence diagram is a TimerTask that is used to invoke the CameraFactory's pollCameraObjects() method via a timer. The run() method of this TimerTask object is called on a recurring basis by the timer object of the CameraControlModule, and when executed this run() method simply calls the pollCameraObjects() method of the CameraFactory. That polls each camera object which has not been contacted during the length of that camera's polling interval. In this way no Camera instance will go too long without contacting its actual Camera device.

[image: image20.emf]java.util.Timer

PollCameraTask CameraFactoryImpl

ControllableVideoCameraImpl

Return immediately if we have

had any communications with

the device within the poll interval.

TokenManipulator

AccessToken

Similar to

CameraControlModule:DirectCameraControl

Sequence Diagram

pollCameraObjects pollCameraObjects

pollIfNecessary(token, cmdStatus) pollIfNecessary(token, cmdStatus)

give token right to poll give token right to poll

create system token create system token

run() run()

[*for each

Camera]

[*for each

Camera]

[now - m_lastContactTime < m_config.m_pollInterval] [now - m_lastContactTime < m_config.m_pollInterval]

pollCamera() pollCamera()

Figure 3.4‑5. CameraControlModule:PollTask (Sequence Diagram)

3.4.6 CameraControlModule:ProtocolHandlerAdjPan (Sequence Diagram)

This Sequence Diagram shows how the pan command and other commands like tilt, zoom, focus, iris, and color balance adjustment/movement commands get executed. This example considers a pan command. First the CameraImpl class gets the command and sends it to the ProtocolHandler with the direction parameter. The direction parameter determines the direction of the pan command. Value 1 means pan right, value -1 means pan left and value 0 means stop. (For other movement commands, 1 means tilt up, zoom in, focus far, iris open, more color; -1 means the opposite.) Depending on the value of the direction parameter, the PanLeft, PanRight or Stop function gets called on the ProtocolHandler. The ProtocolHandler then creates the byte command for the camera and calls the send function on the CameraControlDevice. For R2B1, the CameraControlDevice will always be an Encoder. The Encoder transmits the command over the socket to the device. If there is an error during sending the message, the CameraImpl class will be notified. Otherwise, the ProtocolHandler will request the response from the Encoder, which will attempt to read the requested number of bytes from the socket. If no response is received, because of a timeout or other I/O error, the CameraImpl class will be notified. If a partial or full response is received, the ProtocolHandler will set its status and return success or failure to the CameraImpl.

[image: image21.emf]ControllableVideoCameraImpl

Camera will have already

sent a stop command if

there had beena movement

command such as pan, tilt,

etc., currently running

CameraProtocolHdlr

When direction == 0 in pan/tilt command,

a stop will be send. direction == 1 means pan/tilt right/up

direction == -1 mean pan/tilt left/down

CameraControlDevice

CameraControlDevice is abstract.

For R2B1, there is onlyone type of

Camera ControlDevice - an Encoder

EncoderImpl

[direction == 1]

panRight()

[direction == 1]

panRight()

[direction == 0]

stop()

[direction == 0]

stop()

send(byteMessage) send(byteMessage)

comFail comFail

success success

receive(ackReceived, expectedLength) receive(ackReceived, expectedLength)

setCommStatus() setCommStatus()

[receivePartialorFullResponse] [receivePartialorFullResponse]

setCommStatus() setCommStatus()

return return

[IOException - no response] [IOException - no response]

adjPan(direction) adjPan(direction)

sendMessage(byteMessage) sendMessage(byteMessage)

[send failed] [send failed]

success success

[IOException, no response] [IOException, no response]

[send failed] [send failed]

receiveACKorNAK(ackReceived, expectedLength) receiveACKorNAK(ackReceived, expectedLength)

[direction == -1]

 panLeft()

[direction == -1]

 panLeft()

comFail comFail

[receivePartialOrFullResponse] [receivePartialOrFullResponse]

Figure 3.4‑6. CameraControlModule:ProtocolHandlerAdjPan (Sequence Diagram)

3.4.7 CameraControlModule:RequestCameraControl (Sequence Diagram)

This sequence diagram shows the implementation of the RequestCameraControl interface of the ControllableVideoCamera object. The initial checks are to see if the camera is already controlled and by whom, and whether the user has sufficient rights to control the camera.
If the camera is controlled by another user, and the override flag passed in to RequestCameraControl is false, then an Exception is returned. If the override flag passed in is true, then camera control override processing begins. See the OverrideCameraConrol sequence diagram.

If the camera is not controlled there is an initial check to see if the camera is displayed on a local monitor – meaning displayed on a monitor in the operator’s chosen or default monitor group. If not an error is returned to the user. If so, a connection is made using the ProtocolHandler and the camera is stopped if it is moving. Any errors are returned to the operator via the commandStatus. At this point the camera is added to the appropriate monitor group, the camera status is updated and pushed out, and the commandStatus is returned to the operator.

[image: image22.emf]Operator

CameraImpl

Camera is

controlled

TokenManipulator

Camera not

controlled

Camera is controlled, and sufficient rights

OperationsLog CommandQueue CameraControlDB

RequestCameraControlCmd

PushEventSupplier

CameraProtocolHandler

CommandStatus

MonitorGroup

Poll thread should already be running to

constantly check the camera and

 update the status.

unlock() unlock()

CameraIsControlledException

(override = false)

CameraIsControlledException

(override = false)

Exception Exception

isControlled isControlled

[camera controlled] completed(false,"camera controlled. would or wouldnot be allowed") [camera controlled] completed(false,"camera controlled. would or wouldnot be allowed")

AddCommand AddCommand

requestCameraControlImpl() requestCameraControlImpl()

addControlledCamera addControlledCamera

log(connecting to protocol handler) log(connecting to protocol handler)

connect() connect()

cmdStatusFailure(camera is currently contolled by another operator) cmdStatusFailure(camera is currently contolled by another operator)

Success Success

add(token,Chart2System) add(token,Chart2System)

log(Done connecting to protocol handler) log(Done connecting to protocol handler)

execute() execute()

CHART2Exception CHART2Exception

cmdStatusFailure(Request for camera control failed) cmdStatusFailure(Request for camera control failed)

persistAndPushStatus() persistAndPushStatus()

saveStatus saveStatus

stopIfNecessary() stopIfNecessary()

checkAccess checkAccess

lock() lock()

CameraIsControlledException

(override = true)

CameraIsControlledException

(override = true)

(requestCameraControl

(token,ControllingInfo)

(requestCameraControl

(token,ControllingInfo)

cmdStatusFailure(You must have a camera image displayed locally in order to control it) cmdStatusFailure(You must have a camera image displayed locally in order to control it)

cmdStatusSuccess(true, "request camera control granted") cmdStatusSuccess(true, "request camera control granted")

isControlledBy(token) isControlledBy(token)

log(token,"norights") log(token,"norights")

log(token,"control granted to xx") log(token,"control granted to xx")

isDisplayedLocally(info, token) isDisplayedLocally(info, token)

ControllingInfo() ControllingInfo()

No image displayed No image displayed

Command Queued Command Queued

create create

Figure 3.4‑7. CameraControlModule:RequestCameraControl (Sequence Diagram)

3.4.8 CameraControlModule:ShutdownServices (Sequence Diagram)

This sequence diagram illustrates the process of shutdown when the ServiceApplication which contains the module is shut down. The CameraControlModule disconnects the CameraFactory from the ORB and then tells it to shut down. The CameraFactory tells each camera object to shut down and it deactivates the object from the ORB. When an object is shut down, it cancels its polling timer also.

[image: image23.emf]ServiceApplication

CameraControlModule CameraFactoryImpl VideoProviderImpl POA CommandQueue

delete delete

shutdown shutdown

[*for each

Camera]

[*for each

Camera]

shutdown shutdown

shutdown shutdown

delete delete

deactivate_object(CameraFactory) deactivate_object(CameraFactory)

deactivate_object(Camera) deactivate_object(Camera)

delete delete

shutdown shutdown

Figure 3.4‑8. CameraControlModule:ShutdownServices (Sequence Diagram)

3.4.9 CameraControlModule:TakeCameraOffline (Sequence Diagram)

This Sequence Diagram shows the process of taking a camera offline. This command is executed asynchronously to avoid having to block for commands that may take a long time.

First, a check is made to see if the operator has sufficient rights o take the camera offline. Another check is made to see if the camera is already offline. Any errors are returned to the operator.

Next the camera will be taken offline. If the camera is controlled, camera control will be terminated. Next, for each monitor the camera is displayed on, an attempt will be made to display a NoVideoAvailable source on that monitor. See MonitorControlModule:DisplayNoVideoAvailable for details. Finally, the camera status will be marked as offline, saved and pushed, and the commandStatus will be completed.

[image: image24.emf]Operator

VideoProviderImpll

CommandStatus

See CameraControlModule:

TerminateControl

Sequence Diagram

TokenManipulator CommandQueue

TakeOfflineCmd

OperationsLog

we don't care how many

monitors we are displayed

on, we will terminate

control no matter what.

VideoSink CameraProtocolHdlr PushEventSupplier MonitorGroup CameraControlDB

DisplayNoVideoAvailbleCmd

See MonitorControlModule::

DisplayNoVideoAvailable

verifyNoResourceConflict(token,cmdStat) verifyNoResourceConflict(token,cmdStat)

[isControlled == true] disconnect() [isControlled == true] disconnect()

persistAndPushStatus() persistAndPushStatus()

[isControlled == true] removeControlledCamera(sysToken, ID) [isControlled == true] removeControlledCamera(sysToken, ID)

verifyAccess(token) verifyAccess(token)

checkAccess(token) checkAccess(token)

[no right]

log(token,"doesn't have transfer shared resource right")

[no right]

log(token,"doesn't have transfer shared resource right")

isRevokedFor (Identifier) isRevokedFor (Identifier)

[revoked] [revoked]

sourceUnavailable () sourceUnavailable ()

[for each

monitor

displayed]

[for each

monitor

displayed]

completed () completed ()

push (status) push (status)

[offline]

Completed

[offline]

Completed

[offline]

Offline

[offline]

Offline

getProviderStatus () getProviderStatus ()

takeOffline (token,cmdStat) takeOffline (token,cmdStat)

[no right]

log(token, "unauth attempt to take camera offline")

[no right]

log(token, "unauth attempt to take camera offline")

[no right]

Completed

[no right]

Completed

addCommand(TakeOfflineCmd) addCommand(TakeOfflineCmd)

command queued command queued

takeOfflineImpl () takeOfflineImpl ()

log (token, "Camera image removed from monitor") log (token, "Camera image removed from monitor")

displayNoVideoAvailableImpl() displayNoVideoAvailableImpl()

[bIsControlled == true]

terminateControlImpl ()

[bIsControlled == true]

terminateControlImpl ()

create create

setStatus (cameraId) setStatus (cameraId)

update ("camera image removed from monitor") update ("camera image removed from monitor")

execute execute

create create

update("Command queued") update("Command queued")

isControlled () isControlled ()

checkAccess(token) checkAccess(token)

[no right]

Access Denied

[no right]

Access Denied

Figure 3.4‑9. CameraControlModule:TakeCameraOffline (Sequence Diagram)

3.4.10 CameraControlModule:TerminateCameraControl (Sequence Diagram)

This sequence diagram describes the implementation of the TerminateControl method of the ControllableVideoCamera interface. It releases the currently controlled CameraControlDevice resource and updates the database. This command is queueable command because we need to wait for long running commands like SetTitle command to finish before terminating control.

[image: image25.emf]Operator

ControllableVideoCamera TokenManipulator

TerminateControlCmd

CommandQueue CameraProtocolHandler PushEventSupplier CommandStatus

see CameraControlModule:

ProtocolHandlerAdjPan() to see

how commands issued to

camera. StopAll is similar.

CameraControlDB

MonitorGroup

OperationsLog

pushStatus() pushStatus()

isControlledBy() isControlledBy()

addCommand

(TerminateControlCmd)

addCommand

(TerminateControlCmd)

unlock() unlock()

log("unauthorized access") log("unauthorized access")

removeControlledCamera removeControlledCamera

stopAll() stopAll()

disconnect() disconnect()

Exception(Remove Controlled Camera Failed) Exception(Remove Controlled Camera Failed)

update("Command Queued") update("Command Queued")

CameraNotControlled CameraNotControlled

terminateControl

(token,controllingInfo)

terminateControl

(token,controllingInfo)

AccessDenied AccessDenied

command queued command queued

completed(true, "success") completed(true, "success")

lock() lock()

execute execute

updateStatus() updateStatus()

checkAccess(token) checkAccess(token)

log(token,"terminate") log(token,"terminate")

Figure 3.4‑10. CameraControlModule:TerminateCameraControl (Sequence Diagram)

3.4.11 MonitorControlModule:CreateVideoTour (Sequence Diagram)

This sequence diagram describes the creation of VideoTour objects from the user interface. When the operator creates a camera tour, the VideoTour object is added to the database and also published in the trader. VideoTourAdded Event is pushed on the event channel.

[image: image26.emf]VideoTourFactoryImpl VideoTourControlDB TokenManipulator OperationsLog POA

VideoTourImpl

ServiceApplication

PushEventSupplier

log(token,"no rights") log(token,"no rights")

activateObject(VideoTour) activateObject(VideoTour)

push(VideoTourAddedEvent) push(VideoTourAddedEvent)

checkAccess(token) checkAccess(token)

insertVideoTour

(id, videoTourConfig)

insertVideoTour

(id, videoTourConfig)

DB Error

(CHART2Exception)

DB Error

(CHART2Exception)

createVideoTour

(token, videoTourConfig)

createVideoTour

(token, videoTourConfig)

registerObject(VideoTour) registerObject(VideoTour)

log(token,"created video tour" <name>) log(token,"created video tour" <name>)

AccessDenied

[CHART2Exception]

AccessDenied

[CHART2Exception]

Figure 3.4‑11. MonitorControlModule:CreateVideoTour (Sequence Diagram)

3.4.12 MonitorControlModule:Display (Sequence Diagram)

This sequence diagram describes the process of displaying an image on a monitor. The token is checked for appropriate access. If there is an error, an operations log message is written, the command status is updated, and the failure is returned. Otherwise, a DisplayImageCommand is placed on the command queue. Note that the DisplayImageImpl sequence diagram provides more details about what happens during execution of that command.
[image: image27.emf]Same instance,

split for clarity

VideoSinkImpl

VideoSinkImpl

DisplayImageCommand

CommandStatus

See MonitorControlModule : DisplayImageImpl

Sequence Diagram

VideoCollectorImpl

CommandQueue

Log

verifyAccessAll (token, funcRightIDs, string, string, cmdStat) verifyAccessAll (token, funcRightIDs, string, string, cmdStat)

[Access Denied]

cmdStatusFailure ("Current user does not have the right to display on")

[Access Denied]

cmdStatusFailure ("Current user does not have the right to display on")

displayImage

(token, VideoProviderInfo,

bForTour, cmdStat)

displayImage

(token, VideoProviderInfo,

bForTour, cmdStat)

[AccessDenied]

log (token, "unauthorized attempt to display an image")

[AccessDenied]

log (token, "unauthorized attempt to display an image")

addCommand (DisplayCmd) addCommand (DisplayCmd)

command queued command queued

displayImageImpl

(VideoSinkImpl,

VideoProviderInfo,

bTour,

cmdStat)

displayImageImpl

(VideoSinkImpl,

VideoProviderInfo,

bTour,

cmdStat)

[no rights]

Access Denied

[no rights]

Access Denied

new new

cmdStatusUpdate ("Command queued") cmdStatusUpdate ("Command queued")

execute execute

Figure 3.4‑12. MonitorControlModule:Display (Sequence Diagram)

3.4.13 MonitorControlModule:DisplayImageImpl (Sequence Diagram)

When the display image command is executed, a check is made to see if the monitor is online. Also, there is a check to see if the new camera is revoked, offline, or if the “old” camera is controlled and this monitor has only display of the old camera within the controlling operator’s monitor group. If any of these conditions are true, or if an object cannot be reached, false is returned. Next, connectReceivingToSendingDevice is called. This in turn actually commands the monitor’s decoder to switch the image. An error here will cause false to be returned. Otherwise, the monitor status is updated, persisted, and pushed. The commandStatus is updated as well. Next, the “new” camera is updated to include this monitor in its list of VideoSinks. If the “new” camera cannot be updated, a NoVideoAvailable source will be displayed on the monitor. See the DisplayNoVideoAvailable sequence diagram for details. If the “new” camera can be updated, the “old” camera is updated to remove this monitor from its list of VideoSinks. Regardless of whether the “old” camera can be updated, an operations log message is written indicating that the display request was successful. Finally, the monitor status is persisted to the database, pushed out to the clients, and the commandStatus is updated.

[image: image28.emf]CommandQueue

VideoSinkImpl CommandStatus

failure to

communicate

with decoder

MonitorControlDB

See MonitorControlModule:StopCameraTour

Sequence Diagram, start at stopCameraTourImpl

This will reject if camera is controlled

at site and request will remove last

display of camera at the controlling user's

 monitor group.

Checks if camera is not revoked

for display at this site and is online

oldCamera:

VideoSource

newCamera:

VideoSource

CameraControlDB

Adding the monitor to

the camera's status

PushEventSupplier

OperationsLog

Attempt display of NVA if

error adding Video Sink to

new camera

Added the monitor to

the camera's status

no error processing other

than log if it fails

1) CommandStatus will

be NULL for Tours.

2) "reason" should

concatenated to the next

"reason", etc.

[failed to

add monitor]

[failed to

add monitor]

addDisplay non-error return addDisplay non-error return

push(status) push(status)

[regular display or tour display with tour logging on

opLog (token,"display request")

[regular display or tour display with tour logging on

opLog (token,"display request")

cmdStatusSuccess

(reason)

cmdStatusSuccess

(reason)

[failed to add monitor]

doDisplayNoVideoAvailable(vpiNVA, cmdStat)

[failed to add monitor]

doDisplayNoVideoAvailable(vpiNVA, cmdStat)

persistStatus

(cameraDisplayed)

persistStatus

(cameraDisplayed)

[failed to add monitor]

CHART2Exception

[failed to add monitor]

CHART2Exception

connectReceivingToSendingDevice(vsNewSource, cmdStat)
connectReceivingToSendingDevice(vsNewSource, cmdStat)

persistStatus(finalReason) persistStatus(finalReason)

setOpStatus("OK") setOpStatus("OK")

addDisplay(token, MonitorDisplayInfo) addDisplay(token, MonitorDisplayInfo)

persistStatus(finalReason) persistStatus(finalReason)

removeVideoSink(MonitorID) removeVideoSink(MonitorID)

[false] [false]

[false] [false]

[active or suspended tour]

stopTourImpl(tourID, cmdStat)

[active or suspended tour]

stopTourImpl(tourID, cmdStat)

persistStatus (camera image removed) persistStatus (camera image removed)

cmdStatusUpdate() cmdStatusUpdate()

[NOT a tour OR (is a tour AND tour status update true)]

push (status)

[NOT a tour OR (is a tour AND tour status update true)]

push (status)

cmdStatusUpdate() cmdStatusUpdate()

checkCameras (sysToken,vsNewSource,cmdStat) checkCameras (sysToken,vsNewSource,cmdStat)

[not online]

cmdStatusFailure("not online")

[not online]

cmdStatusFailure("not online")

[NOT a tour OR (is a tour AND tour status update true)]

push (currentStatus)

[NOT a tour OR (is a tour AND tour status update true)]

push (currentStatus)

displayImageImpl() displayImageImpl()

Figure 3.4‑13. MonitorControlModule:DisplayImageImpl (Sequence Diagram)

3.4.14 MonitorControlModule:DisplayNoVideoAvailable (Sequence Diagram)

This sequence diagram describes the process of displaying a NoVideoAvailable source image on a monitor. First, the source (camera) to replace is checked for null. If the source is null, the DisplayNoVideoAvailable command can be placed on the command queue. Note that the DisplayNoVideoAvailableImpl sequence diagram provides more details on the actual execution of that command. Otherwise, access rights must be checked to see if the requesting user has the right to display on a local monitor, or the remote monitor depending on the user’s monitor group.

The token is checked for appropriate access. If there is an error, an operations log message is written, the command status is updated, and the failure is returned. Otherwise, a check is done to see if the source (camera) to replace matches what is passed in to DisplayNoVideoAvailable and that it is not null. If this is the case, a DisplayNoVideoAvailableCommand is placed on the command queue.
If the source (camera) to replace does not match what has been passed in, the NoVideoSource is displayed directly. This consists of connecting the sending device (Encoder for the NoVideoSource) to the receiving device (Decoder for the monitor), updating the monitor status, and persisting and pushing the monitor status to clients. Note that part of this process consists of finding a NoVideoSource. This process is detailed in the GetNoVideoAvailable sequence diagram.

[image: image29.emf]Operator

see MonitorControlModule:

DisplayNoVideoAvailable

for details

VideoSinkImpl

see MonitorControlModule:

DisplayNoVideoAvailable

for details

DisplayNoVideoAvailableCmd CommandQueue CommandStatus

Will call

connectReceivingToSendingDevice,

update status, persist and

push status (as needed). Same sequence

is detailed in

MonitorControlModule:DispalyImageImpl

completed completed

displayNoVideoAvailable(Identifier,cmdStat) displayNoVideoAvailable(Identifier,cmdStat)

[no rights]

AccessDeniedException

[no rights]

AccessDeniedException

addCommand(displayNoVideoAvailableCmd) addCommand(displayNoVideoAvailableCmd)

execute() execute()

command queued command queued

[no rights]

AccessDeniedException

[no rights]

AccessDeniedException

addCommand(displayNoVideoAvailableCmd) addCommand(displayNoVideoAvailableCmd)

[ID of "old" camera is correct and not null]

create

[ID of "old" camera is correct and not null]

create

update("Request to display No Video Available") update("Request to display No Video Available")

displayNoVideoAvailableImpl() displayNoVideoAvailableImpl()

update("Request to display No Video Available") update("Request to display No Video Available")

[if no current source on monitor]

create

[if no current source on monitor]

create

displayNoVideoAvailableImpl() displayNoVideoAvailableImpl()

command queued command queued

[monitor NOT in local monitor group]

verifyAccess(token,DisplayOnRemoteMonitorRight)

[monitor NOT in local monitor group]

verifyAccess(token,DisplayOnRemoteMonitorRight)

[monitor in local monitor group]

verifyAccess(tokenDisplayOnLocalMonitorRight)

[monitor in local monitor group]

verifyAccess(tokenDisplayOnLocalMonitorRight)

[ID of "old" camera NOT correct or IS null]

doDisplayNoVideoAvalable(NVASource,cmdStat)

[ID of "old" camera NOT correct or IS null]

doDisplayNoVideoAvalable(NVASource,cmdStat)

execute() execute()

Figure 3.4‑14. MonitorControlModule:DisplayNoVideoAvailable (Sequence Diagram)
3.4.15 MonitorControlModule:DisplayNoVideoAvailableImpl (Sequence Diagram)

When the display no video available command is executed a check is made to see if the monitor is online. If not, the command status is updated and failure is returned. Next, there is a check to see if the image expected to be replaced is actually on the monitor. If not, the command status is updated and no further action is taken.

If the image expected to be replaced is correct the NoVideoAvailable source is found. This is further detailed in the GetNoVideoAvailable sequence diagram. If no NoVideoAvailableSource can be found the command status is updated and control returns to the caller. If the NoVideoAvailableSource is found, the video source being replaced and the NoVideoAvailableSource are checked to verify that the objects can be reached and that the NoVideoAvailableSource is displayable. Next, the NoVideoAvailableSource status is updated.

Finally, the actual display of the NoVideoAvailableSource takes place. This consists of connecting the sending device (Encoder for the NoVideoAvailableSource) to the receiving device (Decoder for the monitor), updating the monitor status, and persisting and pushing the monitor status to clients.
[image: image30.emf]displayNoVideoAvailable()

Expected "old" image is on

 monitor or no image on monitor

from here down

VideoSinkImpl

Will call

connectReceivingDeviceToSendingDevice,

update status, persist and

push status (as needed). Same sequence

is detailed in

MonitorControlModule:DisplayImageImpl

checkCameras checks

"old" and "new" cameras

(NoVideoAvailable source here)

 for displayability

CommandStatus

MonitorImpl

see monitorControlModule:

GetNoVideoAvailable

sequence diagram for more

details.

MonitorFactoryImpl

doDisplayNoVideoAvailble(NVASource,cmdStat) doDisplayNoVideoAvailble(NVASource,cmdStat)

["old" image on monitor NOT null]

callRemoveDisplay()

["old" image on monitor NOT null]

callRemoveDisplay()

[no NVA source]

null Video Provider

[no NVA source]

null Video Provider

callAddDisplay(token,newImageSrc,tourFlag,cmdStat) callAddDisplay(token,newImageSrc,tourFlag,cmdStat)

[Exp "old" image not on monitor]

cmdStatusSuccess("Exp image not on monitor. No action")

[Exp "old" image not on monitor]

cmdStatusSuccess("Exp image not on monitor. No action")

cmdStatusSuccess cmdStatusSuccess

persistAndPushStatus() persistAndPushStatus()

displayNoVideoAvailableImpl(token,Identifier,cmdStat) displayNoVideoAvailableImpl(token,Identifier,cmdStat)

isOnline() isOnline()

[checkCameras returns false] [checkCameras returns false]

[offline]

cmdStatusFailure("Monitor Offline.")

[offline]

cmdStatusFailure("Monitor Offline.")

getNoVideoAvailable() getNoVideoAvailable()

[monitor offline]

Offline

[monitor offline]

Offline

persistAndPushStatus() persistAndPushStatus()

[valid "old" image on monitor]

checkCameras()

[valid "old" image on monitor]

checkCameras()

[invalid NVA source]

cmdStatusFailure("Unable to Display NoVideoAvailable")

[invalid NVA source]

cmdStatusFailure("Unable to Display NoVideoAvailable")

Figure 3.4‑15. MonitorControlModule:DisplayNoVideoAvailableImpl (Sequence Diagram)
3.4.16 MonitorControlModule:GetNoVideoAvailable (Sequence Diagram)

This sequence diagram describes the process of finding a NoVideoAvailableSource to display on a monitor. All NoVideoAvailableSources are cached in a hash table as they are found and are returned based on the switch fabric identifier passed in. An attempt is made to return a NoVideoAvailableSource for the switch ID. Furthermore, an attempt is made to return a NoVideoAvailableSource that is local to the monitor’s server if available.

If a no NoVideoAvailableSource has been cached, attempt to find a local source that is online. If a local online NoVideoAvailable can be found, return it. Otherwise, find a NoVideoAvailableSource for the requested switch fabric. If that source is offline, recursively keep searching. If it is online, return it.
If a no NoVideoAvailableSource has yet been cached, search each camera factory and get all of that factory’s online NoVideoAvailableSources for the requested switch fabric and add to the cache. Once all NoVideoAvailableSources have been cached, return one for the requested switch fabric, if any is available. Otherwise return null.
[image: image31.emf]same instance,

split for clarity

MonitorFactoryImpl

recursively keep

searching

MonitorFactoryImpl VideoProvideImpl ControllableVideoCameraFactory

for source for

switch fabric

add to cache add to cache

[*for each

camera factory]

[*for each

camera factory]

haveNVASrcCached haveNVASrcCached

NVASrc IS cached NVASrc IS cached

NVASrc NOT cached NVASrc NOT cached

getOnlineNoVideoAvailableSourcesForFabric() getOnlineNoVideoAvailableSourcesForFabric()

all NVASrc all NVASrc

findNoVideoProvider() findNoVideoProvider()

[NVA not found]

Exception

[NVA not found]

Exception

null null

[NVA found] [NVA found]

NVASrc NVASrc

getNoVideoAvaialable(switchID) getNoVideoAvaialable(switchID)

[localNVASrc avail, local NVASrc not cached]

findVideoProvider(localNVASrc)

[localNVASrc avail, local NVASrc not cached]

findVideoProvider(localNVASrc)

[local NVASrc online]

localNVASrc

[local NVASrc online]

localNVASrc

 NVASrc offline NVASrc offline

getCommMode() getCommMode()

[local NVASrc not available or is NVA already cached]

 findVideoProvider(cached NVASrc)

[local NVASrc not available or is NVA already cached]

 findVideoProvider(cached NVASrc)

NVASrc online NVASrc online

[NVASrc online]

NVASrc

[NVASrc online]

NVASrc

NVASrc online NVASrc online

getCommMode() getCommMode()

getNoVideoAvailable(switchID) getNoVideoAvailable(switchID)

Figure 3.4‑16. MonitorControlModule:GetNoVideoAvailable (Sequence Diagram)
3.4.17 MonitorControlModule:Initialize (Sequence Diagram)

This sequence shows the initialization of the monitor control module. The module initializes the monitor control module properties and event channels and the connection to the database. Then it depersists all the objects that are hosted by this module viz. monitors, monitor groups, video tours and publishes them in the trader. Finally it restarts any video tours that would have been running before the module shutdown.

[image: image32.emf]ServiceApplication

MonitorControlModule ServiceApplication

PushEventSupplier

MonitorControlModuleProperties

Refer respective sequence

diagrams

restartVideoTours() restartVideoTours()

initialize initialize

[2] [2]

createVideoTourFactory() createVideoTourFactory()

registerEventChannel

(EventChannel)

registerEventChannel

(EventChannel)

getOperationsLog getOperationsLog

getDBConnectionManager getDBConnectionManager

getEventChannelFactory getEventChannelFactory

create create

create create

getProperties getProperties

getDefaultProperties getDefaultProperties

getEventChannel getEventChannel

createMonitorFacory() createMonitorFacory()

createMonitorGroupFactory() createMonitorGroupFactory()

Figure 3.4‑17. MonitorControlModule:Initialize (Sequence Diagram)

3.4.18 MonitorControlModule:InitializeMonitors (Sequence Diagram)

This sequence shows the depersistence of monitors from the database and creation of monitor CORBA objects. It retrieves all the monitor objects from the database and creates MonitorFactoryImpl object which in turn creates MonitorImpl objects. The MonitorFactory and all the monitor CORBA objects are published in the trader.

[image: image33.emf]This is the

initializeMonitors

sequence which is part of

the module initialization

MonitorControlModule ServiceApplication

MonitorControlDB POA

MonitorFactoryImpl

MonitorImpl

CommandQueue

DecoderImpl

[* for each

monitor

object]

[* for each

monitor

object]

 [*for each monitor in

DB]

 [*for each monitor in

DB]

registerObject(MonitorFactory) registerObject(MonitorFactory)

getMonitorList getMonitorList

create create

activate_object (MonitorFactory) activate_object (MonitorFactory)

create create

activateObject

(Monitor)

activateObject

(Monitor)

create create

registerObject(Monitor) registerObject(Monitor)

getPOA getPOA

Figure 3.4‑18. MonitorControlModule:InitializeMonitors (Sequence Diagram)

3.4.19 MonitorControlModule:InitializeMonitorGroups (Sequence Diagram)

This sequence shows the depersistence of monitor groups from the database and creation of monitor group CORBA objects. It retrieves all the monitor group objects from the database and creates MonitorGroupFactoryImpl object which in turn creates MonitorGroupImpl objects. The MonitorGroupFactory and all the monitor group CORBA objects are published in the trader.

[image: image34.emf]This is the

initializeMonitorGroup

sequence which is part of

the module initialization

MonitorControlModule ServiceApplication

MonitorGroupControlDB POA

MonitorGroupFactoryImpl

MonitorGroupImpl

[* for each

monitorGroup

object]

[* for each

monitorGroup

object]

create create

registerObject(MonitorGroup

Factory)

registerObject(MonitorGroup

Factory)

create create

 [*for each monitor Group in

DB]

 [*for each monitor Group in

DB]

activate_object (MonitorGroupFactory) activate_object (MonitorGroupFactory)

activateObject

(MonitorGroup)

activateObject

(MonitorGroup)

registerObject(MonitorGroup) registerObject(MonitorGroup)

getMonitorGroupList getMonitorGroupList

create create

getPOA getPOA

Figure 3.4‑19. MonitorControlModule:InitializeMonitorGroups (Sequence Diagram)

3.4.20 MonitorControlModule:InitializeVideoTours (Sequence Diagram)

This sequence shows the depersistence of video tours from the database and creation of VideoTour CORBA objects. It retrieves all the VideoTour objects from the database and creates a VideoTourFactoryImpl object which in turn creates VideoTourImpl objects. The VideoTourFactory and all the VideoTour CORBA objects are published in the trader.

[image: image35.emf]This is the

createVideoTourFactory

sequence which is part of

the module initialization

MonitorControlModule ServiceApplication

VideoTourDB POA

VideoTourFactoryImpl

VideoTourImpl

CommandQueue

CommandQueue is

created for future use.

create create

[* for each

videotour

object]

[* for each

videotour

object]

create create

registerObject

(VideoTourFactory)

registerObject

(VideoTourFactory)

create create

 [*for each videotour in

DB]

 [*for each videotour in

DB]

activate_object (VideoTourFactory) activate_object (VideoTourFactory)

activateObject

(VideoTour)

activateObject

(VideoTour)

registerObject(VideoTour) registerObject(VideoTour)

getVideoTourList getVideoTourList

create create

getPOA getPOA

Figure 3.4‑20. MonitorControlModule:InitializeVideoTours (Sequence Diagram)

3.4.21
MonitorControlModule:RemoveVideoTour (Sequence Diagram)

This diagram describes the sequence of removing a video tour from the CHART database. The VideoTourImpl receives the request to remove itself and checks the token for sufficient privileges. It calls getActiveTourMonitors() to obtain the list of monitors on which the tour is currently running. stopVideoTour() is called on each monitor running this tour. The VideoTourImpl service then deletes the camera tour from the database and the corresponding CORBA object via a removeVideoTour() call to the VideoTourFactoryImpl().

[image: image36.emf]ORB

VideoTourImpl TokenManipulator

CommandQueue

VideoTourFactoryImpl CosTrading.Register Monitor POA VideoTourControlDB PushEventSupplier OperationsLog

[cannot stop video tour]

CHART2Exception

[cannot stop video tour]

CHART2Exception

[* for all active tour

monitors]

[* for all active tour

monitors]

[no rights]

AccessDenied

[no rights]

AccessDenied

[no rights]

log(token, "unauth. attempt to remove VideoTour <name>")

[no rights]

log(token, "unauth. attempt to remove VideoTour <name>")

checkAccess checkAccess

removeVideoTour(this) removeVideoTour(this)

[not found]

Chart2Exception

[not found]

Chart2Exception

remove(token) remove(token)

push (VideoTourDeleted) push (VideoTourDeleted)

log(token, "Video Tour <name> removed") log(token, "Video Tour <name> removed")

deactivate_object deactivate_object

deleteTour (videoTour ID) deleteTour (videoTour ID)

shutdown shutdown

stopTour(systemToken, this) stopTour(systemToken, this)

shutdown shutdown

withdraw withdraw

[not found]

Chart2Exception

[not found]

Chart2Exception

Figure 3.4‑21. MonitorControlModule:RemoveVideoTour (Sequence Diagram)

3.4.22 MonitorControlModule:RestartVideoTours (Sequence Diagram)

This sequence shows the restarting of video tours on monitors when the Video Service is restarted. Any tours that used to be running before the service was shutdown are restarted. The MonitorControlModule gets all the monitors with active tours on them and restarts the video tours on those monitors.

[image: image37.emf]MonitorControlModule

MonitorFactory Monitor MonitorControlDB

starts a tour if there

is an active tour

on the monitor

(* for all monitors

)

(* for all monitors

)

getStatus() getStatus()

hasActiveTour() hasActiveTour()

restartVideoTours()() restartVideoTours()()

startTourImpl(tourID,

true)

startTourImpl(tourID,

true)

Figure 3.4‑22. MonitorControlModule:RestartVideoTours (Sequence Diagram)

3.4.23 MonitorControlModule:SetVideoTourConfiguration (Sequence Diagram)

This sequence diagram shows processing when a setConfiguration request is received by the VideoTourImpl. The token is checked for appropriate permissions and then a list of monitors running the tour is obtained and an error is returned if there are any tours running. Next, setConfiguration() is called on the VideoTourDB object to update the database, the status is pushed and an operations log is generated.
[image: image38.emf]ORB

VideoTourImpl

TokenManipulator

VideoTourFactoryImpl

VideoTourControlDB PushEventSupplier OperationsLog Monitor

push (VideoTourUpdated) push (VideoTourUpdated)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

[no rights]

AccessDenied

[no rights]

AccessDenied

checkAccess checkAccess

[*for all active Monitors] [*for all active Monitors]

[no rights]

log(token, "unauth. attempt to configure VideoTour <name>")

[no rights]

log(token, "unauth. attempt to configure VideoTour <name>")

[not found]

Chart2Exception

[not found]

Chart2Exception

setConfiguration(this, videoTourConfig) setConfiguration(this, videoTourConfig)

setConfiguration

(token,videoTourConfig)

setConfiguration

(token,videoTourConfig)

log(token, "Video Tour <name> updated") log(token, "Video Tour <name> updated")

tourConfigChanged(sysToken, this, VideoTourConifg) tourConfigChanged(sysToken, this, VideoTourConifg)

Figure 3.4‑23. MonitorControlModule:SetVideoTourConfiguration (Sequence Diagram)

3.4.24 MonitorControlModule:Shutdown (Sequence Diagram)

This sequence diagram shows the processing when the ServiceApplication which contains the monitor control module is shut down. The MonitorControlModule disconnects the MonitorFactoryImpl from the ORB and then tells it to shut down. The MonitorFactoryImpl tells each Monitor object to shutdown any running tours (see MonitorControlModuleShutdownTour), shutdown its command queue, and disconnect from the ORB. This processing is done for each of the other object types initialized during the monitor control module service initialization including MonitorGroups and VideoTours (see MonitorControlModule:Initialize).
[image: image39.emf]ServiceApplication

MonitorControlModule MonitorFactoryImpl MonitorImpl

POA

ShutdownCommandQueue

MonitorRemovalCleanupCmd

(* for all

monitors)

(* for all

monitors)

shutdownTourImpl() shutdownTourImpl()

hasActiveTour() hasActiveTour()

execute() execute()

shutdown() shutdown()

shutdown shutdown

delete delete

deactivate_object(Monitor) deactivate_object(Monitor)

delete delete

delete delete

shutdown shutdown

addCommand addCommand

shutdown shutdown

deactivate_object (MonitorFactory) deactivate_object (MonitorFactory)

Figure 3.4‑24. MonitorControlModule:Shutdown (Sequence Diagram)

3.4.25 MonitorControlModule:ShutdownVideoTour (Sequence Diagram)

This sequence diagram shows how the MonitorImpl shuts down the video tour when the video service is stopped. The shutdownTourImpl() method returns immediately if no tour is running on the monitor. Otherwise, it calls the cancel() method of the VideoTourTimerTask to stop the video tour and writes a message to the operations log.

[image: image40.emf]see MCM:shutdown

 sequence

MonitorImpl VideoSinkmpl MonitorStatus OperationsLog VideoTourTimerTask

We leave the active tourstatus in the database,

so that the tours can be restarted when

service is restarted.

getStatus() getStatus()

[return] [return]

opLog("tour shutdown") opLog("tour shutdown")

shutdownTourImpl(tourID) shutdownTourImpl(tourID)

cancel() cancel()

isCurrentTourOnMonitor(tourID) isCurrentTourOnMonitor(tourID)

shutdown() shutdown()

Figure 3.4‑25. MonitorControlModule:ShutdownVideoTour (Sequence Diagram)

3.4.26 MonitorControlModule:StartVideoTour (Sequence Diagram)

This sequence diagram describes the starting of a video tour on a monitor. The token is checked for proper permissions, and a StartVideoTourCmd is created and added to the command queue.

At some point later, the StartVideoTourCmd is executed. A VideoTourTimerTask is created, which initializes configuration information about the tour and informs each camera in the tour that it is now in an active tour on this monitor. At the configured dwell time, the run() method is called which calls displayImage() to display the next camera in the video tour list. In a future release, the first time each camera is called in the tour, getControlAndMoveToTourPreset() would be called on the camera to move to the defined tour list camera preset position, which would be done if the camera is not already controlled and is not displayed anywhere else.

[image: image41.emf]VideoSinkImpl

OperationsLog TokenManipulator

ActiveTour Info

must be kept in

monitorStatus

CmdQueue

VideoTourTimerTask

StartVideoTourCmd

CommandStatus VideoTour VideoSource

camera status should keep

tour Id and monitor in which it is active

check if current

Image on the monitor

is removable.It may not

be removed if it is controlled

and this is the only display

this needs to be done

once only. if someone is

controlling camera already,

 then do not do anything.

Future

release

run ()

* for all cameras

run ()

* for all cameras

displayImage

(systemToken, tourFlag,VideoSource)

displayImage

(systemToken, tourFlag,VideoSource)

updateStatus() updateStatus()

isRemovable() isRemovable()

cmdStatusFailure("Cannot start tour. camera cannot be removed.") cmdStatusFailure("Cannot start tour. camera cannot be removed.")

schedule() schedule()

cmdcompleted(true, "video tour started") cmdcompleted(true, "video tour started")

getControlAndMoveToTourPreset(systemToken,preset) getControlAndMoveToTourPreset(systemToken,preset)

addVideoSink(token,tourID,this) addVideoSink(token,tourID,this)

getVideoTourConfig() getVideoTourConfig()

startTourImp(tourID,cmdStat,boolean)l startTourImp(tourID,cmdStat,boolean)l

execute() execute()

update("start video tour queued") update("start video tour queued")

checkAccess(token) checkAccess(token)

AccessDenied

[CHART2Exception]

AccessDenied

[CHART2Exception]

startTour

(token,MonGrpID,tourID,cmdStat)

startTour

(token,MonGrpID,tourID,cmdStat)

cmdStatusFailure("Cannot start tour.Monitor is not online") cmdStatusFailure("Cannot start tour.Monitor is not online")

log(token,"unauthorized

attempt to start cameratour")

log(token,"unauthorized

attempt to start cameratour")

addCommand(StartVideoTourCmd) addCommand(StartVideoTourCmd)

isOnline() isOnline()

Figure 3.4‑26. MonitorControlModule:StartVideoTour (Sequence Diagram)

3.4.27
MonitorControlModule:StopVideoTour (Sequence Diagram)

This sequence diagram describes the stopping of a video tour that is running on a monitor. The token is checked for proper permissions, and a StopVideoTourCommand is created and added to the command queue.

At some point later, the StopVideoTourCommand is executed. The VideoTourTimerTask is canceled and the monitor status is updated to indicate that the video tour is no longer running on the monitor. Each camera in the tour is then notified that it is no longer running in an active video tour on this monitor. Finally, an operations log message is generated indicating that the video tour is no longer running on this monitor.

[image: image42.emf]VideoSinkImpl MonitorStatus TokenManipulator OperationsLog

StopVideoTourCmd

CommandQueue CommandStatus VideoTourTimerTask VideoTour

completed(false,"tour does not run on monitor") completed(false,"tour does not run on monitor")

getVideoTourConfig() getVideoTourConfig()

this tour does not run on monitor

[CHART2Exception]

this tour does not run on monitor

[CHART2Exception]

isCurrentTourOnMonitor(tourID) isCurrentTourOnMonitor(tourID)

isCurrentTourOnMonitor(tourId) isCurrentTourOnMonitor(tourId)

log("video tour stopped") log("video tour stopped")

completed(true, video tour stopped") completed(true, video tour stopped")

cancel() cancel()

stopTourImpl(tourID,cmdStat) stopTourImpl(tourID,cmdStat)

update("stop camera tour command queued") update("stop camera tour command queued")

execute() execute()

addCommand(StopVideoTourCmd) addCommand(StopVideoTourCmd)

AccessDenied

[CHART2Exception]

AccessDenied

[CHART2Exception]

log(token,"unauthorized operation") log(token,"unauthorized operation")

checkAccess(token) checkAccess(token)

Tour does not run on monitor

[invalidState]

Tour does not run on monitor

[invalidState]

stopTour

(token, monitorGripID,tourID,cmdStat)

stopTour

(token, monitorGripID,tourID,cmdStat)

removeVideoSink(this) removeVideoSink(this)

setStatus() setStatus()

getStatus() getStatus()

Figure 3.4‑27. MonitorControlModule:StopVideoTour (Sequence Diagram)

Appendix A Un-Federated Traders

This appendix describes the design used in CHARTLite to un-federate the CHART II traders and will be similar in the rest of CHART II. This addresses CHART PR LevA00000144 ‘When Two traders are Linked, Cannot Work with One Trader’.

The architecture for the Chart II system distributes complete system functionality to a number of districts throughout the State of Maryland. Each of these complete systems can provide full functionality for the devices connected to the system and objects created within that system (such as traffic events and devices), and provides functionality for other district's systems that are available. Thus the absence of one district's server does not affect the ability of another district to operate their own system or other systems that are available. Although the server deployment is spread across multiple sites, both the CHART II GUI and the CHARTLite GUI currently present a view to the user of one large system, through the use of CORBA to pull together objects served from the many deployment sites.
The current implementation uses the link feature of the CORBA Trading Service where each Trading Service is linked to all other Trading Services throughout the system. Each CHART II GUI utilizes only its local (or an assigned) Trading Service for object discovery. Through the use of linked (federated) Trading Services, the GUI discovers objects that are deployed on the same site as the Trading Service as well as objects published in all other trading services in the system. However, if the linked trading services cannot communicate for some reason, even the local Trading Service for the GUI may become locked. The CHARTLite GUI, which will become the only GUI available for CHART II with R2B1, already has code in place to access all traders separately, declining to use the current links in place between the CHART II GUIs, which avoids this problem.

However, the CHART II services themselves also occasionally have need to find objects by using the Trader as well, and these services still require use of the link feature of the Traders to find all objects in the system. With R2B1, all CHART II services will be updated to find objects using multiple Traders and declining to use the Trader links, as the CHARTLite server already does. This will allow the Trader links to be permanently broken, thereby unfederating the Traders. By un-federating (unlinking) the CORBA trading services, the CHARTLite GUI and all CHART II services will be able to locate the software objects at all deployment sites through the use of multiple CORBA Trading Services. Furthermore, if any site(s)/Trader(s) are unreachable, all Traders and objects which are reachable will continued to be reachable, with no Trader hangs. As the diagram shows, a CORBA Trading Service shall exist at each deployment site. Each service that publishes CORBA objects shall offer the objects through its local CORBA Trading Service. Every CHARTLite server and CHART II server will be configured to utilize all Trading Services for object discovery. This will allow the GUI to continue to provide a unified view of the system, even though the system will be distributed over now seven deployment sites and all seven Traders will be un-federated.
[image: image52.wmf]
Figure A-1. CORBA Trading and Event Services
A.1 Classes

A.1.1 chartlite.util.corba

This diagram shows the CORBA utility classes used by the chartlite application. These classes allow chartlite to use multiple trading services. A TraderGroup class provides methods that operate over a collection of SmartTrader objects, each of which utilizes a CORBA Lookup interface and records information about failures that occur. Each SmartTrader implements the Comparable interface to allow the TraderGroup to sort them by last failure time before using them or returning them to other classes that want to utilize them directly. This sorting ensures that traders that have failed most recently will be queried last or not at all as appropriate.

[image: image43.wmf]-m_lastFailTimeMillis : long

+query(orb : org::omg::CORBA::ORB, type : java::lang::String, constraint : java::lang::String, preference : java::lang::String, policies : org::omg::CosTrading::Poliicy[], properties : java::lang::String[]) : org::omg::CosTrading::Offer[]

+findAllObjectsOfType(orb : org::omg::CORBA::ORB, type : java::lang::String) : org::omg::CORBA::Object[]

+getLastFailTimeMillis()

-recordFailureTime()

SmartTrader

(chartlite.util.corba)

TraderGroup

(chartlite.util.corba)

+performTraderQuery(orb : ORB, type : String, constraint : String, props : String[]) : Object[]

+findObjects(orb : ORB, type : String, constraint : String) : Object[]

+findAllObjectsOfType(orb : ORB, type : String) : Object[]

+TraderGroup(traders : Lookup[], maxHops : int)

+getPrimaryTrader() : SmartTrader

+getTraders() : SmartTrader[]

Lookup

(org.omg.CosTrading)

Comparable

*

1

Figure A-2. chartlite.util.corba classes

A.1.1.1 Smart Trader

This class provides a thin wrapper for a CORBA Trading Lookup interface. It provides the additional benefit of convenience methods for object discovery and keeps track of the last times that the underlying Lookup interface was successfully and unsuccessfully used. These values are used in order to allow the application to avoid repeatedly querying failed traders too frequently.

A.1.1.2 Trader Group

This class contains a collection of SmartTrader objects. It provides the application with methods for discovering objects. When these methods are called it will loop through all SmartTrader objects and query each of them. Additionally, this class provides access to the SmartTrader objects.

A.1.2 chartlite.util.wrappers

This diagram shows the classes that are used to provide redundant fault-tolerance for certain CHART II CORBA objects (CommLog, Dictionary, UserManager and TTSConverter). Each of the wrapper objects provides method signatures that mirror the CORBA interface of the wrapped object. The CommLogWrapper and DictionaryWrapper objects use a FirstAvailableOfferWrapper utility class because they give no preference to any particular CORBA object. The TTSWrapper uses a PrimaryOfferWrapper because it will always try to use a particular TTS converter before failing over to using a backup. Each OfferWrapper keeps a collection of SmartTrader objects and tracks when it last queried each trader. This is done to limit the number of trader queries performed. Each wrapper will not query a particular trader more than once per specified time interval. Each OfferWrapper provides an OfferIterator that allows the class using the wrapper to interate over the collection of available CORBA object offers. Each iterator keeps track of a collection of traders that it can use to discover objects.

[image: image44.wmf]PrimaryFirstOfferWrapper

#MIN_PRIMARY_RETRY_PERIOD_SECONDS : int = 0

-m_minPrimaryRetryIntervalSeconds : int

-m_lastPrimaryUseTime : Date = null

<<constructor>>+PrimaryFirstOfferWrapper(orb : ORB, traderGroup : TraderGroup, className : String, serviceType : String, constraint : String, minDiscoveryIntervalSeconds : int, primaryKey : String)

<<getter>>~getNewOffers(usedOffers : Vector, comparator : PrimaryComparator, traderToUse : SmartTrader) : Vector{guarded}

<<setter>>~setCurrentOffer(currentOffer : WrappedOffer, comparator : PrimaryComparator) : void{guarded}

<<setter>>+setMinPrimaryRetryIntervalSeconds(seconds : int) : void{guarded}

<<getter>>~getOffers(comparator : PrimaryComparator) : Vector{guarded}

<<getter>>-getSortedOffers(comparator : PrimaryComparator) : Vector

+createIterator(comparator : PrimaryComparator) : Iterator{guarded}

<<getter>>+getMinPrimaryRetryIntervalSeconds() : int{guarded}

-makeStringArray(string : String) : String[]

-canRetryPrimary() : boolean

OfferWrapper

#m_cachedOffersLookupTable : Hashtable = new Hashtable()

#MIN_REDISCOVERY_PERIOD_SECONDS : int = 60

-m_lastTraderLookupTime : Date = null

#m_minDiscoveryIntervalSeconds : int

-m_traderGroup : TraderGroup = null

-m_propertyStrings : String[] = null

-m_narrowMethod : Method = null

#m_offers : Vector = new Vector()

#m_currentOffer : WrappedOffer

-m_serviceType : String = null

-m_className : String = null

-m_constraint : String = null

-m_orb : ORB = null

<<constructor>>#OfferWrapper(orb : ORB, traderGroup : TraderGroup, className : String, serviceType : String, propertyStrings : String[], constraint : String, minDiscoveryIntervalSeconds : int)

<<getter>>#getNewOffers1(usedOffers : Vector, offers : Vector, traderToUse : SmartTrader) : Vector{guarded}

<<getter>>~getNewOffers(usedOffers : Vector, traderToUse : SmartTrader) : Vector{guarded}

<<setter>>~setCurrentOffer(currentOffer : WrappedOffer) : void{guarded}

<<getter>>#getOffers1(currentOffers : Vector) : Vector{guarded}

<<getter>>-getIdentifier(properties : Property[]) : Identifier

#printDetailedDebugMessage(message : String) : void

-canQueryTrader(trader : SmartTrader) : boolean

<<getter>>~getOffers() : Vector{guarded}

-narrow(reference : Object) : Object

#discover() : void

FirstAvailableOfferWrapper

<<constructor>>+FirstAvailableOfferWrapper(orb : ORB, traderGroup : TraderGroup, className : String, serviceType : String, constraint : String, minDiscoveryIntervalSeconds : int)

+createIterator() : Iterator{guarded}

SmartTrader

-m_lastFailTimeMillis : long

+query(orb : ORB, type : String, constraint : String, preference : String, policies : Poliicy[], properties : String[]) : Offer[]

+findAllObjectsOfType(orb : ORB, type : String) : Object[]

+getLastFailTimeMillis()

-recordFailureTime()

PrimaryOfferIterator

-m_comparator : PrimaryComparator

<<constructor>>~PrimaryOfferIterator(wrapper : PrimaryFirstOfferWrapper, comparator : PrimaryComparator)

<<setter>>#setCurrentOffer(wrappedOffer : WrappedOffer) : void{guarded}

<<getter>>-getWrapper() : PrimaryFirstOfferWrapper

<<setter>>#setNewOffers() : void{guarded}

OfferIterator

-m_discoveredThisIteration : boolean = false

#m_lastTraderTried : SmartTrader = null

#m_traders : SmartTrader[] = null

#m_offers : Vector = new Vector()

#m_wrapper : OfferWrapper

#m_currentIndex : int = 0

<<constructor>>~OfferIterator(wrapper : OfferWrapper, offers : Vector, traders : SmartTrader[])

<<setter>>#setCurrentOffer(wrappedOffer : WrappedOffer) : void{guarded}

-printDetailedDebugMessage(message : String) : void

<<setter>>#setOffers(offers : Vector) : void{guarded}

<<setter>>#setNewOffers() : void{guarded}

+hasNext() : boolean{guarded}

+remove() : void{guarded}

+next() : Object{guarded}

+m_properties : Property[]

+m_key : OfferKey

+m_offer : Object

WrappedOffer

<<constructor>>+WrappedOffer(offer : Object, key : OfferKey, properties : Property[])

PrimaryComparator

-m_primaryValue : String

-m_primaryKey : String

<<constructor>>+PrimaryComparator1(primaryKey : String, primaryValue : String)

<<getter>>+isPrimary(offer : WrappedOffer) : boolean

+compare(o1 : Object, o2 : Object) : int

<<constructor>>+PrimaryComparator()

<<getter>>+getPrimaryValue() : String

<<getter>>+getPrimaryKey() : String

OfferKey

-m_id : Identifier

-m_ior : String

<<constructor>>+OfferKey(id : Identifier, ior : String)

+equals(rhs : Object) : boolean

<<getter>>+getID() : Identifier

<<getter>>+getIOR() : String

+hashCode() : int

TraderInfo

-m_lastQueriedMillis : long

-m_trader : SmartTrader

+getLastQueryTimeMillis() : long

+getTrader() : SmartTrader

CommLogWrapper

TTSConverterOperations

UserManagerOperations

UserManagerWrapper

DictionaryOperations

CommLogOperations

DictionaryWrapper

TTSWrapper

1

*

1

*

1

1

*

1

*

1

Figure A-3. chartlite.util.wrappers classes

A.1.2.1 CommLogWrapper

This class provides fault tolerance by trying all known CommLog CORBA objects until one successfully performs the desired function successfully.

A.1.2.2 DictionaryWrapper

This class provides fault tolerance by trying all known Dictionary CORBA objects until one successfully performs the desired function successfully.

A.1.2.3 FirstAvailableOfferWrapper

This class provides a generic wrapper for any services that require

robust use of references from the Trader, using the first available reference.

It will attempt to use other references if it tries to use a reference from the trader

and the object cannot be contacted.

A.1.2.4 OfferIterator

This class provides an iterator interface for getting Offers from the Trader.

It uses an OfferWrapper to keep the offers and maintain state.

A.1.2.5 OfferKey

This class provides a unique key for each offer used by a wrapper.

It does this by comparing a provided CHART II unique identifier and

the IOR string obtained from the object reference. Using this key,

we ascertain that if the same application object is published multiple

times with unique object references, the OfferWrapper will iterate over

all references before considering the object invalid.

A.1.2.6 OfferWrapper

This class provides a generic wrapper for any services that require

robust use of references from the Trader. It will attempt to use

other references if it tries to use a reference from the trader

and the object cannot be contacted.

A.1.2.7 PrimaryComparator

A comparator used to compare OfferWrappers. It can also determine whether

an offer is primary or not, and primary offers are considered "less than"

other offers during a comparison

A.1.2.8 PrimaryFirstOfferWrapper

This class provides a generic wrapper for any services that require

robust use of references from the Trader, using references marked as primary

before others. It will attempt to use other references if it tries to use a

reference from the trader and the object cannot be contacted. If a primary

service fails and a secondary is used, this class will periodically retry the

primary service in an effort to use it again if possible.

A.1.2.9 PrimaryOfferIterator

This class provides an iterator interface for getting Offers from the Trader.

It uses an OfferWrapper to keep the offers and maintain state.

A.1.2.10 TraderInfo

This class stores information about when the encapsulated SmartTrader was last queried from this wrapper.

A.1.2.11 TTSWrapper

This class provides fault tolerance by trying all known TTSConverter CORBA objects until one successfully performs the desired function successfully.

A.1.2.12 UserManagerWrapper

CHART2 contains redundant UserManager objects served from different hosts. This class provides a fault tolerant wrapper around these redundant objects. It provides duplicates of interface methods contained in the UserManager. Each time a particular method is called, this class will delegate the call to an actual CHART 2 UserManager object. When failures occur, this class will try each CHART2 UserManager object in succession until one completes the request successfully or until all fail.

A.1.2.13 WrappedOffer

This class encapsulates a narrowed Offer with it's Identifier and Properties.

A.2 Sequence Diagrams

A.2.1 TraderGroup.performTraderQuery

Chartlite will support the ability to obtain CORBA object references from multiple trading services. The chartlite configuration file (set by the system administrator) specifies the hostname and port of each trading service to be utilized. Chartlite creates a SmartTrader object for each trading service to be used and stores them in a TraderGroup object.

This diagram shows how the TraderGroup will utilize all known CORBA trading services when an application class is attempting to find objects. The TraderGroup will create a Vector to store the objects that are found in the various traders. Then it will loop through all known SmartTrader objects and perform a query on each. Each offer that is returned from a trader is added to the Vector so it can be returned to the calling class. Finally the discovered objects are moved into an array for return to the caller.

[image: image45.wmf]: TraderGroup

: SmartTrader

Calling Class

: Lookup

: Vector

: Offer

[Each SmartTrader]

loop

[Each Offer]

loop

[query times out]

[else]

alt

query(orb, type, constraint, preference, policies, properties)

3:

reference()

7:

2:

addElement(obj)

8:

toArray()

9:

return

10:

query

4:

recordFailureTime()

5:

recordSuccessTime()

6:

performTraderQuery(orb, type, constraint, props)

1:

Figure A-4. Trader Group performTraderQuery
A.2.2 CommLogWrapper.addEntries

This diagram shows how the CommLogWrapper adds entries buy using the FirstAvailableOfferWrapper to find any CommLog CORBA interface that can get the entries added. The CommLogWrapper calls the FirstAvailableOfferWrapper to get an OfferIterator. The CommLogWrapper then loops through the CommLog objects that are returned by the OfferIterator until the entries are added or all available CommLog CORBA objects have been tried.

[image: image46.wmf]

: FirstAvailableOfferWrapper

: CommLogWrapper

: CommLog

: TraderGroup

: OfferIterator

Calling Class

[while iterator.hasNext() == true && entr

ies not

added]

loop

4:

getTraders()

3:

createIterator()

2:

hasNext()

5:

next()

6:

addEntries(token, entries)

7:

return

8:

addEntries(token, entries)

1:

Figure A-5. CommLogWrapper.addEntries
A.2.3 OfferIterator.hasNext

This diagram shows how an OfferIterator determines if it has more offers to iterate over. The calling class calls the hasNext() method. If the iterator has offers that it has previously discovered that have not yet been tried, the iterator will return the next known offer object. Otherwise the iterator will need to attempt to discover more objects to use. To do this the OfferIterator will loop through each SmartTrader object that it was constructed with until an untried offer is found or all traders have been queried. For each SmartTrader it will call the FirstAvailableOfferWrapper and ask it for new offers telling it which trader to query. The OfferWrapper will check when it last queried the specified trader. If enough time has passed since the last query, then a query will be made to the trader to look for new offers. Otherwise, no query will be made and no new offers will be found for that trader.

[image: image47.wmf]: FirstAvailableOfferWrapper

: SmartTrader

: OfferIterator

Calling Class

[m_currentIndex < m_offers.length]

[else]

alt

[while more traders to try and new offer not found]

loop

[can query trader]

[else]

alt

Return the previously

discovered offer.

Return will include any

newly discovered offers that

 were not already known to

the iterator.

Trader specified cannot be

queried because it was

searched too recently.

Return will be an empty

array.

Return will be true if any

new offers were found,

false otherwise.

canQueryTrader(trader)

4:

query(orb, type, constraint, preference, policies, properties)

5:

return

6:

return

7:

return

2:

getNewOffers(usedOffers, traderToUse)

3:

return

8:

hasNext()

1:

Figure A-6. OfferIterator.hasNext
Appendix B Direct Ports Implementation
This appendix provides a design for implementing direct ports for CHART II. Implementation of this design will provide the enhancement requested in CHART II PR LevA00000329 “Direct Ports needed to devices via FMS”. This change requires minor changes to the FieldCommunications and DeviceManagement sections of CHART II, as documented below. In addition to the changes detailed below, very minor changes will be required to the DMSControlModule and TSSControlModule to accept and make use of the new CHART II direct port capability – the configuration validation must allow for a Direct Port to be specified in the configuration, and the correct type of PortLocator (ModemPortLocator or DirectPortLocator, already coded) must be created at initialization time or configuration change time. This design draws on source code provided by CHART and originally developed by PB Farradyne, Inc. Implementation will start with incorporation of this source code into the CHART II baseline, which will complete most of the entire implementation of this PR.

B.1 FieldCommunications-DirectPortChanges –High Level -(Class Diagram)

This class diagram shows the high level IDL updates necessary for completing implementation of direct ports for CHART II. Direct ports exist in R1B4, but there is no direct port manager capable of providing direct ports to objects which need one. This diagram shows all FieldCommunicationsModule details, plus one interface which will require modification in the DeviceManagement IDL. The primary FieldCommuncationsModule change adds the DirectPortManager interface, to support distribution and management of direct ports. The DeviceManagement change modifies the PortManagerCommsData IDL structure. All other classes on this diagram remain unchanged. As in the rest of the R2B1 design, boxes shaded grey are not going to be implemented/modified for R2B1. This design draws on source code provided by CHART and originally developed by PB Farradyne, Inc.

[image: image48.emf]DirectPortManager

«interface»

NEW: getPortType()

*

1

1

1

1

1

DeviceManagement

structures.

NEW: DirectPortManager interface

PortManager

«interface»

UniquelyIdentifiable

«interface»

PortType

«enumeration»

DataPort

«interface»

Port

«interface»

Priority

«enumeration»

ModemPort

«interface»

CommPortConfig

«typedef»

VoicePort

«interface»

DataBits

«enumeration»

DirectPort

«interface»

GetPortTimeout

ModemInitFailure

StopBits

«enumeration»

NoPortsFound

Parity

«enumeration»

ModemConnectFailure

ConnectFailure

SpeechEngine

«interface»

Future port types

FlowControl

«enumeration»

PortOpenFailure DataPortIOException

DisconnectException

ModemResponseCode

«enumeration» ModemNotResponding

PortStatus

«enumeration»

PortManagerCommsData

«datatype»

PortManagerCommsList

«datatype»

PortLocationData

«datatype»

NEW: Add m_portName.

m_portName will apply for direct ports,

m_devicePhoneNumber for modem ports.

getPort(portType:PortType,maxWaitMillis:int, requestPriority:Priority):Port

releasePort(Port):void

getDirectPort(portName:string,maxWaitMillis:int,requestPriority:Priority)

+m_portManagerName

+m_devicePhoneNumber

+m_portName

m_portManagerList:PortManagerCommsList

m_portType:PortType

m_portWaitTimeSecs:long

getStatus():PortStatus

disconnect():void

getPortType():PortType

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis):byte[]

int m_baudRate

DataBits m_dataBits

StopBits m_stopBits

Parity m_parity

FlowControl m_flowControl

connect(CommPortConfig config,

 String phoneNo):void

connect(String phoneNumber)

sendDTMF(String dtmf)

playText(String preDTMF, String text, String postDTMF)

playWav(String preDTMF, WavFile wav, String postDTMF)

record(int numSeconds):WavFile

DATABITS_5

DATABITS_6

DATABITS_7

DATABITS_8

connect(CommPortConfig config):void

ISDN_MODEM

POTS_MODEM

DIRECT_RS232

TELEPHONY

STOPBITS_1

STOPBITS_2

STOPBITS_1_5

string modemCmd;

ModemResponseCode rspCode;

PARITY_EVEN

PARITY_ODD

PARITY_NONE

string reason

convertTextToSpeech(String text):WavFile

FLOWCONTROL_NONE

FLOWCONTROL_RTS_CTS

FLOWCONTROL_XON_XOFF

string modemCmd;

ModemResponseCode rspCode;

string reason

STATUS_OK

STATUS_MARGINAL

STATUS_FAILED

STATUS_DISABLED-future

string reason

PRIORITY_POLLING

PRIORITY_ON_DEMAND

string reason;

MODEM_RSP_OK

MODEM_RSP_CONNECT

MODEM_RSP_RING

MODEM_RSP_NO_CARRIER

MODEM_RSP_ERROR

MODEM_RSP_CONNECT_1200

MODEM_RSP_NO_DIAL_TONE

MODEM_RSP_BUSY

MODEM_RSP_NO_ANSWER

 Figure B-1. FieldCommunications-DirectPortChanges-High Level(Class Diagram)
B.1.1 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

B.1.2 ConnectFailure (Class)

This exception is a catch-all for exceptions that do not fit in a more specific exception that can be thrown during a connection attempt.

B.1.3 DataBits (Class)

This enumeration defines the valid values for data bits that may be set in a CommPortConfig structure.

B.1.4 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

B.1.5 ModemConnectFailure (Class)

This exception is thrown when there is an error establishing a remote connection via a modem during a connection attempt on a ModemPort. This exception is generated when there is an unfavorable result to the ATDT command on the modem.

B.1.6 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

B.1.7 PortType (Class)

This enumeration defines the types of ports that may be requested from a PortManager.

B.1.8 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

B.1.9 DataPortIOException (Class)

This exception is used to indicate an Input/Output error has occurred.

B.1.10 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The connect call needs only to open the communications port.

B.1.11 FlowControl (Class)

This enumeration defines the valid types of flow control that may be set in a CommPortConfig structure.

B.1.12 ModemInitFailure (Class)

This exception is thrown when there is an error initializing the modem during a connection attempt on a ModemPort.

B.1.13 ModemNotResponding (Class)

This exception is thrown when there is a failure to command a modem because the modem is not responding to commands.

B.1.14 DisconnectException (Class)

This exception is thrown when an error is encountered while disconnecting. There is no action that can be taken by the catch handler for this exception except to warn the user. The port will be closed and should be released as normal even if this exception is caught.

B.1.15 ModemResponseCode (Class)

This enum defines the result codes for a standard modem.

B.1.16 NoPortsFound (Class)

This is an exception that is thrown if no ports of the requested type are served by the PortManager from which a port has been requested.

B.1.17 Parity (Class)

This enumeration defines the valid values for parity that may be set in a CommPortConfig structure.

B.1.18 GetPortTimeout (Class)

This class is an exception that is thown by a PortManager when a request to acquire a port of a given type cannot be fulfilled within the timeout specified.

B.1.19 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN and POTS modems can be implemented under this interface.

B.1.20 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All ports must be able to supply their status when requested.

B.1.21 PortStatus (Class)

This enumeration specifies the values used to represent a Port's status. OK signifies the port is working properly. MARGINAL signifies errors have been experienced during recent use of the port. FAILED indicates the port is not working at all.

B.1.22 Priority (Class)

This enumeration specifies the priority levels used when requesting a port from a PortManager. ON_DEMAND is given higher priority than POLLING.

B.1.23 PortLocationData (Class)

This structure stores information about how a device object wishes to acquire a port for communication with the represented physical device. This data type will not change for R2B1, it is shown only to indicate how PortManagerCommsData fits in with other DeviceManagement IDL elements.

B.1.24 SpeechEngine (Class)

This class provides services for converting text to speech. It acts as a wrapper for the third party speech engine.

B.1.25 StopBits (Class)

This enumeration defines the valid values for stop bits that may be set in a CommPortConfig structure.

B.1.26 DirectPortManager (Class)

The class which implements this interface will be able to manage a pool of direct ports for distribution to objects requesting them. The getDirectPort method is used to request a direct port by name. In all other aspects the DirectPortManager interface is similar to the PortManager interface which it extends.

B.1.27 VoicePort (Class)

A voice port object provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

B.1.28 PortManagerCommsData (Class)

This class stores information about how a device object can acquire a port which it needs to communicate with its physical hardware device. This is the only DeviceManagement IDL object changing for R2B1. The m_portName object will be added to allow a device to require a specific port by name, as needed for direct port operation. The m_portName will not be used for modem ports, and the m_devicePhoneNumber will not be used for direct ports.

B.1.29 PortManagerCommsList (Class)

This structure is defined as a sequence of PortManagerCommsData elements, and is used to hold a sequence of possible port location data values, any of which could be used to acquire a port for communication with the represented physical device. This data type will not change for R2B1, it is shown only to indicate how PortManagerCommsData fits in with other DeviceManagement IDL elements.

B.1.30 PortOpenFailure (Class)

This is an exception which is thrown if a port is selected by a port manager but then cannot be opened.

B.2 FieldCommunications-DirectPortChanges - Implementation (Class Diagram)

This class diagram shows the updates necessary for completing implementation of direct ports for CHART II. Direct ports exist in R1B4, direct ports, but there is no direct port manager capable of providing direct ports to objects which need one. This diagram shows the DirectPortManager and related classes which will be added to provide direct port manager capability. Modifications to PortManagerImpl are required, as well. All other classes on this diagram remain unchanged. As in the rest of the R2B1 design, boxes shaded grey are not going to be implemented/modified for R2B1. Most of the classes which will not change are shaded grey, except some classes (ServiceApplication, ServiceApplicationModule, and PushEventSupplier) which appear on other diagrams and would be confusing if colored grey on those diagrams. This design draws on source code provided by CHART and originally developed by PB Farradyne, Inc.

[image: image49.emf]ServiceApplication

«interface»

javax.comm.SerialPort

PortConfig

«typedef»

CHART2Service

DirectPortConfig

«typedef»

PushEventSupplier

ServiceApplicationModule

«interface»

FieldCommunicationsModulePkg

ModemPortConfig

«typedef»

FieldCommunicationsProperties

java.util.Properties

FieldCommunicationsModuleDB

NEW classes

(Unchanged but

cannot be colored

grey.)

(Unchanged but

cannot be colored

grey.)

NEW: getFreeList(), getInUseList(),

getWaitList(), getMarginalList() by key,

which represents the port type (normal

or direct).

1

VoicePortConfig

«typedef»

1

DirectPortManager

«interface»

DirectPortManagerImpl

DirectPortWaitListEntry

java.util.Hashtable

java.util.Vector

1

1

1

1

*

1

*

1

1

1

1

1

1

1

Port

«interface»

DataPort

«interface»

InstallablePort

«interface»

VoicePort

«interface»

VoicePortImpl

PortManager

«interface»

One each for free, in-use,

and marginal ports. Each hash table

keeps a vector for each port type.

DirectPort

«interface»

java.util.Hashtable

ModemPort

«interface»

java.util.Vector

java.util.Vector

javax.comm.SerialPortEventListener

«interface»

DirectPortImpl

PortManagerImpl

java.util.Hashtable

WaitListEntry

java.util.Timer

Keyed on port type. One

vector for each port type.

PortReclaimer

java.util.TimerTask

«interface»

ModemPortImpl

*

1 *

1

*

1

* 1

* 1

1

1

* 1

1

1

1

1

*

1

1

1

1

1

1 1

1 1

byte[] m_identifier

String m_name

String m_className

PortType m_type

boolean m_disabled

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis,

 long maxReadDurationMillis):byte[]

getStatus():PortStatus

disconnect():void

String m_comPortName

connect(String phoneNo):void

playDTMFTones(String dtmfCodes,

 boolean useInterToneDelay):void

playWAV(String fileName):void

recordWAV(String fileName, int numSecs):void

String m_initString

init(PortConfig config, long inactivityTime) :void

isInactive():boolean

shutdown():boolean

getServant():org.omg.PortableServer.Servant

int m_interToneDelay

string m_channelID

getServant():org.omg.PortableServer.Servant

isOpen():boolean

-dial(String phoneNo):int

-hangup():int

String m_name

byte[] m_id

org.omg.PortableServer.Servant m_servant

connect(CommPortConfig config):void

connect(CommPortConfig config,

 String phoneNo):void

getPortsStatus():PortStatusInfo[]

getPort(PortType type, long maxWaitMillis,

 Priority requestPriority):Port

releasePort(Port thePort):void

schedule()

cancel()

serialEvent(SerialPortEvent evt);()

open():void

close():void

isOpen():boolean

&setConfig(byte[] id, String m_name, int inactivityTimeMillis,

 org.omg.PortableServer.Servant, String commPortName):void

String m_name;

int m_inactivityTimeMillis;

int m_lastUseTime;

javax.comm.CommPortIdentifier m_portIdentifier;

byte[] m_id;

org.omg.PortableServer.Servant m_servant;

String m_commPortName;

boolean m_marginal;

run()

retrieveAvailablePort(PortType):InstallablePort

relinquishPort(InstallablePort, PortType):boolean

getFreeList(key:int):Vector

getInUseList(key:int):Vector

getWaitList(key:int):Vector

getMarginalList(key:int):Vector

getDirectPort(portName:string,maxWaitMillis:int,requestPriority:Priority)

getServant():org.omg.PortableServer.Servant

String m_modemInitString;

org.omg.PortableServer.Servant m_servant;

Priority m_priority;

InstallablePort m_port;

boolean m_abandoned;

main(string[] args):void

retrieveAvailablePort(portName:string):InstallablePort

relinquishPort(port:InstallablePort,type:PortType):boolean

-removeAbandonedEntriesFromWaitList():void

m_entryIDCounter:long

m_portName:string

m_entryID:long

getProperty()

setProperty()

PortConfig[] getPorts()

getDefaultInactivityTimeoutMillis():int

getPortReclaimerIntervalMillis():int

 Figure B-2. FieldCommunications-DirectPortChanges - Implementation(Class Diagram)
B.2.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in the CHART II system.

B.2.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

B.2.3 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The connect call needs only to open the communications port.

B.2.4 DirectPortConfig (Class)

This class holds configuration data for a direct connect port, which includes only the name of the comm port.

B.2.5 DirectPortWaitListEntry (Class)

This class contains values that are placed on a wait list to allow prioritized fulfillment of requests for a specific, named, direct port.

B.2.6 FieldCommunicationsModuleDB (Class)

This class provides methods used to access Field Communications configuration data. The getPorts() method returns an array of PortConfig derived objects that contain configuration data specific to the type of port that has been configured. The configuration data is retrieved from a configuration file where PortConfig objects were previously persisted.

B.2.7 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

B.2.8 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL. Its connect method opens a javax.comm.SerialPort object and sets the port settings according to the baud, data bits, stop bits, and parity that was passed. Its disconnect method closes the javax.comm.SerialPort. This class also implements the send and receive functions as specified in the DataPort IDL interface. The send and receive methods use the read and write methods of the javax.comm.SerialPort object to send and receive bytes on the com port. While the send method contains little processing other than calling the javax.comm.SerialPort object's write method, the receive method contains logic that allows it to receive a burst of bytes before returning. This causes the receive method to return all available bytes on the port and thus helps to prevent the need for multiple calls to receive for a single command response. This class updates a timestamp each time send or receive is called. When its isInactive() method is called, it checks the current time vs. the last send/receive time and if the difference is greater than the current inactivity timeout, it returns true.

B.2.9 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All ports must be able to supply their status when requested.

B.2.10 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

B.2.11 FieldCommunicationsModulePkg (Class)

This class is a service application module that can be installed into a CHART2Service. This module serves one PortManager object which provides access to one or more Port objects. It publishes the reference to this PortManager in the CORBA Trader. This class contains a FieldCommunicationsModuleDB object used to provide database access to the other classes within the package.

B.2.12 ModemPortConfig (Class)

This class holds configuration data that is specific to modem ports. The com port name is included as well as the type of modem port (ISDN or POTS) and a default modem initialization string.

B.2.13 FieldCommunicationsProperties (Class)

This class provides access to properties in the Chart2Service properties file that are specific to the FieldCommunicationsModule.

B.2.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

B.2.15 VoicePortConfig (Class)

This class holds configuration data for a voice port, which includes the delay in milliseconds between DTMF tones to be dialed.

B.2.16 DirectPortManager (Class)

The class which implements this interface will be able to manage a pool of direct ports for distribution to objects requesting them. The getDirectPort method is used to request a direct port by name. In all other aspects the DirectPortManager interface is similar to the PortManager interface which it extends.

B.2.17 DirectPortManagerImpl (Class)

This class implements the DirectPortManager interface as specified in the IDL. It operates like a PortManagerImpl for normal ports, and adds capability to manage direct ports as well. Hashtables are used to keep lists of ports according to their port type. Three of these hashtables are used to separate ports based on their current state - in use, available, or marginal. Ports that are in the marginal hashtable are available but are in a marginal state. The getPort or getDirectPort method looks for an available port in the available list prior to the marginal list.

B.2.18 InstallablePort (Class)

This interface is implemented by Port implementations that can be installed into the FieldCommunicationsModule and PortManager generically. The PortManagerImpl instantiates the specific impl using the class name that is part of a port's configuration data. The PortManager then calls each port's init method to allow each port to initialize its internal state. The PortManagerImpl's use of this interface allows it to manage all types of ports (current and future) in a generic way.

B.2.19 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

B.2.20 java.util.Vector (Class)

This standard Java class provides management of a vector of objects.

B.2.21 javax.comm.SerialPortEventListener (Class)

This interface is implemented by objects that wish to be notified of events that occur on a javax.comm.SerialPort.

B.2.22 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

B.2.23 ModemPortImpl (Class)

This class implements the ModemPort interface as defined in IDL. The ModemPortImpl's connect method calls its base class connect method which opens a communications port. The connect method then goes on to initialize and dial the modem and determine if the modem has connected to a remote modem. The disconnect method interrupts the modem, hangs up the modem, and calls the base class disconnect method which closes the com port. This class inherits its base class (DirectPortImpl) send and receive methods which send and receive data over the connected modem.

B.2.24 PortReclaimer (Class)

This is a TimerTask which runs on a regular basis to find and reclaim ports which have been idle for some configurable period of time. This prevents ports from being lost to misbehaving classes which request ports and then do not explicitly release them when they are done with them.

B.2.25 javax.comm.SerialPort (Class)

This Java extension class provides direct access to a serial port on the host computer, for reading and writing data to a device (such as a modem or a directly connected hardware device) connected to the serial port.

B.2.26 PortConfig (Class)

This class holds data that is common to all types of ports. The PortManager uses this data to generically construct port objects.

B.2.27 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

B.2.28 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

B.2.29 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

B.2.30 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN and POTS modems can be implemented under this interface.

B.2.31 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

B.2.32 PortManagerImpl (Class)

This class implements the PortManager interface as specified in the IDL. Hashtables are used to keep lists of ports according to their port type. Three of these hashtables are used to separate ports based on their current state - in use, available, or marginal. Ports that are in the marginal hashtable are available but are in a marginal state. The getPort method looks for an available port in the available list prior to the marginal list.

B.2.33 VoicePortImpl (Class)

This class implements the VoicePort interface as defined in IDL. The VoicePortImpl's connect method acquires a port from the telephony board, dials the destination number to connect the call. The disconnect method hangs up, sets the telephone line connection on hook and releases the port being used. This class also implements the recordWAV method to record a message being on a connected call and playWAV method to play a message on the connected call. It also implements the playDTMF method to generate DTMF tones.

B.2.34 WaitListEntry (Class)

This class contains values that are placed on a wait list to allow prioritized fulfillment of requests for ports.

Appendix C Use Case Mapping
This appendix maps the requirements for CHART R2B1 as defined in CHART Video Software Architecture Requirements, June 1, 2005 to the use cases described under Section 3.1. To avoid confusion, the requirement numbers here are identical to those found in the above mentioned requirements document, including <TBR> references for future requirements which have not been resolved.
Note that the requirements are slated for CHART R2B1, R2B2 or some future release. Higher level requirements may contain sub requirements slated for more than one release. As long as a requirement will be met or partially met in R2B1, there should be a corresponding use case.

	Requirement
	Release
	Use case

	3.1
Camera Control
	
	

	 (CHART II Req 3.2.4.1) The system shall allow a suitably privileged user to control cameras.

	R2B1/2/F
	Manage Camera Control

	3.1.1
 (CHART II Req 3.2.4.1.1) The system shall
allow a
suitably privileged camera user to
block/unblock media

and web access to the video output
of a camera.
	R2B2/F
	

	
3.1.1.1
A suitably privileged operator shall have the

ability to manually block/unblock media and

web access to the video output of the camera.
	R2B2
	

	
3.1.1.2
(CHART II Req 3.2.4.1.2) The system shall

block camera video from the media and web

automatically when specified user types open a

control session.
	Future
	

	

3.1.1.2.1
The user shall be
prompted to

automatically unblock the camera when

the camera control session ends.
	Future
	

	3.1.2
CHART II shall establish and maintain
communication with the camera for the duration of the
control session.
	R2B1/F
	Manage

Control Camera

	
3.1.2.1
An operator shall be notified if communications

with the camera is lost during a camera control.
	R2B1
	Receive Camera

Response/

Poll Camera

	
3.1.2.2
The camera control session shall have a

configurable maximum no activity duration,

after which the control session shall be dropped.
	Future
	

	

3.1.2.2.1
The controlling operator shall be

informed if the control session has been

dropped.
	Future
	

	3.1.3
A suitably privileged CHART II operator shall have
the
capability to initiate camera control.
	R2B1/2/F
	Request Camera Control

	
3.1.3.1
An operator may have permission to initiate

camera control for one organization’s cameras

 or for multiple organizations’ cameras.
	R2B1
	Request Camera Control

	
3.1.3.2
CHART II shall only allow a camera to be

controlled when the operator has the camera

image displayed on a local monitor (i.e., a

monitor in the user’s current monitor group
	
	

	
3.1.3.3
The camera control window shall include

monitor display information for the controlled

camera (new).
	Future
	

	
3.1.3.4
A suitably privileged operator shall be able to

pan or tilt a camera for which a control session

is open.
	R2B1/F
	Process Camera Control Requests

	

3.1.3.4.1
Pan and tilt will include controls for

moving the camera vertically and

horizontally.
	R2B1
	Process Camera Control Requests

	

3.1.3.4.2
Pan and tilt will include controls for

moving the camera diagonally for those

cameras which support diagonal

movement (new).
	Future
	

	

3.1.3.4.3
Pan and tilt will be controlled by mouse

or keypad.
	R2B1
	NONE – GUI specific. Beyond scope of this design

	
3.1.3.5
A suitably privileged operator shall be able to

zoom a camera for which a control session is

open.
	R2B1
	Process Camera Control Requests

	
3.1.3.6
A suitably privileged operator shall be able to

focus a camera for which a control session is

open.
	R2B1
	Process Camera Control Requests

	
3.1.3.7
A suitably privileged operator shall be able to

adjust iris control of a camera for which a

control session is open.
	R2B1
	Process Camera Control Requests

	
3.1.3.8
A suitably privileged operator shall be able to

adjust the color balance of a camera for which a

control session is
open.
	R2B1
	Process Camera Control Requests

	
3.1.3.9
A suitably privileged operator shall be able to

move a camera to a predefined preset position

for which a control session is open.
	R2B2
	

	
3.1.3.10
(CHART II Req 3.2.4.5) The system shall allow

a suitably privileged operator to maintain CCTV

(camera) presets.
	R2B2/F
	

	

3.1.3.10.1 (CHART Req 3.2.4.5.1) The system

shall support resetting a camera to its

original default position at a scheduled

time..
	Future
	

	

3.1.3.10.2 A stored preset position shall include

pan, tilt, and zoom position for the

given preset.
	R2B2
	

	

3.1.3.10.3 A stored preset position shall include

the manual focus setting for the given

preset, if manual focus is enabled at the

time the preset position is saved.
	R2B2
	

	

3.1.3.10.4 A stored preset shall include an

operator-specified title to appear on the

camera image display for those camera

types which support that functionality.
	R2B2
	

	

3.1.3.10.4.1
The preset title will

appear on the display for those camera

types which support such an action.

	R2B2
	

	

3.1.3.10.4.2
Preset titles and

positions shall be stored on the camera,

for those cameras which support such

an option. (e.g. Vicon Surveyor VFT

cameras).
	R2B2
	

	

3.1.3.10.5 Camera preset positions and titles

shall be stored in the CHART II

database.
	R2B2/F
	

	

3.1.3.10.5.1
A suitable privileged

operator shall be able to store preset

information for the current camera

control session only (new).
	Future
	

	

3.1.3.10.5.2
A suitably privileged

operator shall be able to store preset

information across camera control

sessions.
	R2B2
	

	

3.1.3.10.5.3
The number of

presets that may be
stored for a

camera shall not exceed 10 <TBR>.
	R2B2
	

	

3.1.3.10.5.4
The number of

presets that may be stored for a camera

may be limited by restrictions in the

camera itself.
	R2B2
	

	

3.1.3.10.5.5
A suitably privileged

operator shall be able to force resending

any individual preset position as

defined in the database to a camera

(e.g. Vicon Surveyor VFT cameras),

provided that a control session is open

for that camera (original MdTA

request)
	Future
	

	

3.1.3.10.5.6
A suitably privileged

operator shall be able to force resending

all preset positions defined in the

database to such a camera (e.g. Vicon

Surveyor VFT cameras) with a single

command, provided that a control

session is open for that camera (original

MdTA request).
	Future
	

	
3.1.3.11
A suitably privileged operator shall be able to

reset a camera for which a control session is

open.
	R2B1
	Process Camera Control Requests

	
3.1.3.12
A suitably privileged operator shall be able to

power a camera on and off for those cameras

which support that function.
	R2B1
	Process Camera Control Requests

	
3.1.3.13
A suitably privileged operator shall be able to

enter programming mode on a camera which

supports a programming mode, provided a

control session is open for that camera.
	R2B2
	

	

3.1.3.13.1
Programming mode, for

camera types which support it, shall

support all camera functions accessible

through the camera’s programming

mode.
	R2B2
	

	

3.1.3.13.2
Programming mode, for

camera types which support it, will not

inhibit access to camera functions

which would more simply and more

appropriately be accessed via other

aspects of CHART II camera control.

(This means it may be possible to make

changes which CHART II cannot detect

by circumventing the normal means of

invoking the function through CHART

II.)
	R2B2
	

	
3.1.3.14
A suitably privileged operator shall be able to

directly control the titles which appear on the

camera image, for cameras which support direct

setting of line 1 and 2 of the camera titles,

provided a control session is open for that

camera.
	R2B1
	Process Camera Control Requests

	
3.1.3.15
A camera in offline mode shall not be able to be

controlled by any operator.
	R2B1
	Take Camera Offline

	
3.1.3.16
A camera in online mode shall be able to be

controlled by a suitably privileged operator.
	R2B1
	Put Camera Online

	
3.1.3.17
A camera in maintenance mode shall be

controllable only by the operator who placed

that camera in maintenance mode.
	R2B2/Future
	

	
	
	

	3.1.4
Cameras shall be polled at a configurable interval to
verify control status.
	R2B1
	Poll Camera

	
3.1.4.1
Cameras that do not respond shall be identified

as having communications problems.
	R2B1
	Poll Camera

	
3.1.4.2
Control status polling may be disabled on a

camera by camera basis.
	R2B1
	Poll Camera

	
3.1.4.3
The polling interval shall be configurable for

each camera.
	R2B1
	Poll Camera

	3.1.5
CHART II shall provide the capability for a suitably
privileged operator to set auto-iris, auto-focus, and
auto-color balance mode for multiple cameras, for
those cameras which support that capability.
	Future
	

	
3.1.5.1
A suitably privileged operator shall be able to

select all cameras to be set to auto-iris, auto-

focus, and auto-color balance mode.
	Future
	

	
3.1.5.2
A suitably privileged operator shall be able to

select individual cameras to be set to auto-iris,

auto-focus, and auto-color balance mode.
	Future
	

	
3.1.5.3
A suitably privileged operator shall be able to

exclude individual cameras to be set to auto-iris,

auto-focus, and auto-color balance mode
	Future
	

	
	
	

	3.1.6 CHART II shall provide the capability to arbitrate
 requests for camera control based on the camera’s
 configured owning organization.
	R2B1/2
	Evaluate Camera Control Request

	3.1.6.1 CHART II shall have the capability to determine
 if a camera is being controlled.
	R2B1
	Check If Camera Controlled/

Override Camera Control

	3.1.6.2 Only one operator shall be permitted to control a
 camera at any given time.

	R2B1
	Evaluate Camera Control Request

	3.1.6.2.1 An operator denied control due to the
 camera already being controlled shall be
 notified which user is already exercising
 control.
	R2B1
	Notify Operator of Camera Control Status

	3.1.6.3 A suitably privileged operator shall be able to
 control a camera if the camera is not already
 controlled.
	R2B1
	Check if Camera Controlled

	3.1.6.4 A suitably privileged operator that has
 permission to override cameras for a particular
 owning organization shall be able to override the
 control session of any camera owned by that
 organization, regardless of who is controlling the
 camera.
	R2B1
	Override Camera Control

	3.1.6.4.1 An operator may have permission to
 override camera control for one
 organization’s cameras or for multiple
 organizations’ cameras.
	R2B1
	Override Camera Control

	3.1.6.4.2 An operator overriding a camera
 control session shall be required to expressly
 request override of camera control.
	R2B1
	Override Camera Control

	3.1.6.4.3 An operator whose camera control session
has been overridden shall be notified that the
control session has been overridden and by
whom.
	R2B1
	Notify Operator of Camera Control Status

	3.1.7
CHART II shall provide the capability to revoke camera
 control of cameras on a per organization basis.
	R2B2
	

	
3.1.7.1
If camera control has been revoked, the operator

who has lost control shall be notified.
	R2B2
	

	3.1.8
CHART II shall support video masking, based on
camera position, for those cameras which incorporate
such a feature.
	R2B2/Future
	

	
3.1.8.1
A suitably privileged operator shall have the

ability to set video masking for those cameras

which incorporate such a feature.
	R2B2
	

	

3.1.8.1.1
The video masking regions shall be

stored on the camera.
	R2B2
	

	
3.1.8.2
A suitably privileged operator shall have the

ability to override the camera masking (new).
	Future
	

	3.1.9
CHART II will support control of COHU 3955 cameras,

NTCIPcompatible cameras, and Surveyor VFT cameras.
	R2B1/2/F –

COHU 3955 only for R2B1
	Send Camera Commands /

Control COHU 3955 Camera

	3.1.10
CHART II shall support standards based protocols for
communicating with camera control sending

devices wherever possible, except when proprietary
protocols are the only option for communicating with
vendor devices.
	R2B1/F
	Send Camera Commands

	
3.1.10.1
CHART II shall support camera control over an

IP network.
	R2B1
	Grant Camera Control/Process Camera Control Requests

	

3.1.10.1.1
CHART II shall support

communications with a sending device

for IP camera control.
	R2B1
	Process Camera Control Requests

	
3.1.10.2
CHART II shall support direct camera control

over a COM port.
	R2B2
	

	

3.1.10.2.1
CHART II shall support direct

camera control over multiple

COM ports on a single server.
	R2B2
	

	

3.1.10.2.2
CHART II shall support direct

camera control of a single Surveyor

VFT camera on a COM port.
	R2B2
	

	

3.1.10.2.3
CHART II shall support direct

camera control of multiple Surveyor

VFT cameras on a COM port.
	R2B2
	

	
	
	

	3.2
Standalone Camera Control (Laptop)
	Future
	

	CHART II shall provide a standalone version of the camera control software.

	
	

	3.2.1
The standalone camera control software shall run on a
Windows XP/2000 laptop computer.
	Future
	

	3.2.2
The standalone camera control software will provide
direct control of a single camera over a single COM port.
	Future
	

	3.2.3
All features for controlling a camera provided by the
standard CHART II camera control software shall be
available to the operator of the standalone camera control
software.
	Future
	

	3.2.4
The standalone camera control software shall support
control of COHU 3955 cameras, and Surveyor VFT

cameras.
	Future
	

	
	
	

	3.3
Camera Display
	R2B1/2/F
	

	(CHART Req 3.2.4.2) The system shall allow a suitably privileged operator to control wall monitor assignments.

	
	

	3.3.1
CHART II shall provide the capability for a suitably
privileged operator to display a camera image on any
local video monitor.
	R2B1/F
	Display Camera On Monitor

	
3.3.1.1
CHART II shall provide the capability to order

the list of available cameras for display sorted by camera

region.
	R2B1
	GUI requirement

	

3.3.1.1.1
The list of camera regions will be

configured in the database and will not be

modifiable via the CHART II application.
	R2B1
	Configure Device

	

3.3.1.1.2
A camera may be a part of any number

of camera regions.
	R2B1
	Configure Device

	
3.3.1.2
CHART II shall have a graphical representation

of the available monitors so that operators may

“drag and drop” a camera onto a monitor (new).

	Future
	

	
3.3.1.3
CHART II shall provide the capability for

operators suitably privileged to concurrently

display the same camera image on any number

of local video monitors, including all local video

monitors.
	R2B1
	Display Camera On Monitor

	3.3.2
CHART II shall provide the capability for a suitably
privileged operator to direct display of a camera image to
remote monitors.

	R2B1/F
	Display Camera On Monitor

	
3.3.2.1
CHART II shall provide the capability to order

the list of available cameras for display sorted

by camera region.
	R2B1
	GUI Requirement

	
3.3.2.2
The monitor selection list shall be sorted by
 monitor group.
	R2B1
	GUI Requirement

	
3.3.2.3
CHART II shall have a graphical representation

of the available monitors so that operators may

“drag and drop” a camera onto a monitor.
	Future
	

	
3.3.2.4
CHART II shall provide the capability for

operators suitably privileged to concurrently

display the same camera image on any number

of remote video monitors, including all remote

video monitors.
	R2B1
	Display Camera On Monitor

	3.3.3
CHART II shall provide the capability for a suitably
privileged operator to direct display of a camera image to
a defined group of monitors.
	Future
	

	
3.3.3.1
A suitably privileged operator shall define a

monitor grouping.
	Future
	

	
3.3.3.2
A monitor may be a part of any number of

monitor groups.
	Future
	

	3.3.4
CHART II shall be able to display a camera image on a
monitor at a specified time.
	Future
	

	
3.3.4.1
A suitably privileged operator shall be able to

schedule display of a camera image on a

specified monitor.
	Future
	

	

3.3.4.1.1
A suitably privileged operator shall

optionally be able to have the scheduled

camera move to a specified preset.
	Future
	

	
3.3.4.2
An operator shall be notified when a scheduled

display is about to occur.
	Future
	

	

3.3.4.2.1
A scheduled camera display shall occur

only after an operator has confirmed.
	Future
	

	3.3.5
Cameras in offline mode shall not be selectable for
display.
	R2B1
	Take Camera Offline

	
3.3.5.1
Upon transition from online mode to offline

mode, the camera image shall be removed from

all monitors.
	R2B1
	Remove Camera From Monitors

	3.3.6
Cameras in online mode shall be selectable for display.
	R2B1
	Put Camera Online

	3.3.7
Cameras in maintenance mode shall be selectable for
display only by the operator that placed the camera in
maintenance mode.
	Future
	

	
3.3.7.1
A camera in maintenance mode shall be placed

in offline mode when the operator who placed

the camera in maintenance mode terminates

their session.
	Future
	

	

3.3.7.1.1
Upon transition from maintenance

mode to offline mode, the camera

image shall be removed from all

monitors.
	Future
	

	3.3.8
A user logged into CHART II shall optionally have a

preferred monitor for camera image display.
	Future
	

	
3.3.8.1
 The operator shall have the capability to choose

the preferred monitor or a non-preferred monitor

for camera display.
	Future
	

	
3.3.8.2
A suitably privileged operator shall be able to

configure a preferred monitor for a user.
	Future
	

	

3.3.8.2.1
If no preferred monitor has been

configured for a user, the workstation that the

operator has logged into shall be the default

preferred monitor.
	Future
	

	3.3.9
CHART II shall provide a mechanism for organizations
 to inhibit display of their cameras on other organization’s
 monitors.
	R2B2/F
	

	
3.3.9.1
CHART II shall allow a suitably privileged

operator to revoke a camera image from a

monitor.
	R2B2
	

	

3.3.9.1.1
CHART II shall allow a camera image

to be revoked from one or more

organization’s monitors.
	R2B2
	

	

3.3.9.1.2
CHART II shall allow a camera image

to be revoked from all media

organization’s monitors at one time.
	Future
	

	

3.3.9.1.3
When a camera image has been

revoked from a monitor, an image from

a No Video Available source shall be

displayed on that monitor.
	R2B2
	

	3.3.10
CHART II shall support standards based protocols for
communicating with video sending/receiving devices
wherever possible, except where proprietary protocols are
the only option for communicating with vendor devices.
	R2B1/2/F
	Display Camera On Monitor

	
3.3.10.1
CHART II shall support video distribution from

sending devices/cameras to receiving

devices/monitors over IP.
	R2B1
	Display Camera On Monitor

	

3.3.10.1.1
CHART II shall support

communications with a sending device

and a receiving device for distribution

of IP video.
	R2B1
	Command Decoder

	
3.3.10.2
CHART II shall support video distribution from

sending devices/cameras to receiving

devices/monitors using a Vicon V1500 Video

Switch Network.
	R2B2
	

	

3.3.10.2.1
CHART II shall manage the

use of a limited number of video

hardware interfaces between individual

Vicon V1500 Video Switches.
	R2B2
	

	
3.3.10.3
CHART II shall manage the use of a limited

number of hardware interfaces between the

Vicon V1500 Video Switch output and the IP

based receiving devices.
	R2B2
	

	
3.3.10.4
CHART II shall manage the use of a limited

number of hardware interfaces between the IP

based sending devices output and the Vicon

Video Switch input.
	R2B2
	

	
3.3.10.5
CHART II shall support the distribution of video

to a “non” hardware based monitor (e.g. –

desktop display)
	Future
	

	
3.3.10.6
CHART II shall monitor the number of video

images being displayed at certain sites.
	Future
	

	

3.3.10.6.1
CHART II shall notify the

operator if the request cannot be

completed due to insufficient resources.

	Future
	

	3.4
Camera Video Checker
	Future
	

	3.4.1
CHART II shall provide a mechanism to verify camera
display capabilities for all configured cameras.
	Future
	

	3.4.2
An operator shall have the ability to choose a monitor for
displaying each camera.
	Future
	

	3.4.3
CHART II shall report a CHART II failure to display a
camera on the requested monitor.
	Future
	

	3.4.4
CHART II shall prompt the operator to visually confirm
each camera display on the chosen monitor.
	Future
	

	
3.4.4.1
CHART II shall report operator reported camera

display failures.
	Future
	

	

	
	

	3.5
View Monitor Assignments
	
	

	CHART II shall allow operators to view which cameras
are assigned to which monitors (Monitor Assignments).
	R2B1/F
	

	3.5.1
CHART II shall allow operators to view a list of cameras
assigned to local monitors.
	R2B1
	View Monitor Assignments

	3.5.2
CHART II shall allow operators to view a list of cameras
assigned to remote monitors.
	R2B1
	View Monitor Assignments

	3.5.3
Monitor assignments shall include monitor, camera or
Tour List name and camera control status.
	R2B1
	View Monitor Assignments

	3.5.4
Monitor Assignments shall be optionally sortable.
	Future
	

	
3.5.4.1
By default, the Monitor Assignments shall be

sorted by monitor.
	R2B1
	GUI requirement – beyond scope of this document

	
3.5.4.2
Monitor Assignments shall be optionally sorted

by camera.
	Future
	

	
3.5.4.3
Monitor Assignments shall be capable of
 filtering to display currently controlled cameras.
	Future
	

	
3.5.4.4
Monitor Assignments shall be optionally
 sortable by monitor group
	Future
	

	3.6
Camera Tours
	
	

	3.6.1
 (CHART II Req 3.2.4.3) The system shall allow a
suitably privileged operator to activate camera tours.
	R2B1/2/F
	Start Video Tour

	3.6.2
(CHART II Req 3.2.4.4) The system shall allow a
suitably privileged operator to maintain the camera tour
information.
	R2B1
	Configure Video Tours

	3.6.3
CHART II shall provide the capability to create, modify
and delete a camera tour list.
	R2B1/Future
	Configure Video Tours

	
3.6.3.1
CHART II shall allow a suitably privileged

operator the capability to create a tour list for a

single logon session.
	Future
	

	
3.3.6.2
CHART II shall allow a suitably privileged

operator the capability to create a persistent tour

list useable by any suitably privileged operator

at any time.
	R2B1
	Configure Video Tours

	3.6.4
CHART II shall provide a suitably privileged operator the
capability to view the contents of a camera tour list.
	R2B1
	Configure Video Tours

	3.6.5
CHART II shall have the capability for a suitably
privileged operator to store a camera tour list.
	R2B1
	Configure Video Tours

	3.6.6
CHART II shall have the capability for a suitably
privileged operator to assign a camera tour list to a local
monitor.
	R2B1
	Start Video Tour

	3.6.7
CHART II shall have the capability for a suitably

privileged operator to assign a camera tour list to a

remote monitor.
	R2B1
	Start Video Tour

	3.6.8
CHART II shall have the capability for a suitably
privileged operator to stop a camera tour.
	R2B1
	Stop Video Tour

	3.6.9
CHART II shall have the capability for a suitably
privileged operator to configure a preset position for
cameras assigned to a camera tour list.
	R2B2
	

	3.6.10
CHART II shall have the capability for a suitably
privileged operator to configure multiple preset positions
for a single camera assigned to a camera tour list.
	R2B2
	

	3.6.11
CHART II shall have the capability to move a camera to
a configured preset when displaying a camera as part of a
camera tour.
	R2B2
	

	
3.6.11.1
CHART II shall not move a camera to a

configured preset as part of a camera tour if that

camera is already controlled.
	R2B2
	

	3.6.12
CHART II shall allow setting a single dwell time for the
camera tour, and shall display each camera/preset on the
camera tour for that dwell time before moving to the next.
	R2B1
	Configure Video Tours/Start Video Tour

	
3.6.12.1
The dwell time will start counting dwell time at

the time the display request completes, not the

time at which the image display completes and

stabilizes on the monitor.
	R2B1
	Start Video Tour

	
3.6.12.2
The minimum dwell time shall be configurable.

	R2B1
	Configure Video Tour

	3.7
Video System Status Display
	
	

	CHART II shall provide a video system status display.

	Future
	

	3.7.1
The Video System Status display shall be a single page.
	Future
	

	3.7.2
The Video System Status display shall include a list of all
controlled cameras
	Future
	

	
3.7.2.1
The operating center shall be provided for each

controlled camera.
	Future
	

	3.7.3
The Video System Status display shall provide the status
of each camera.
	Future
	

	
3.7.3.1
The camera status may be online or offline.
	Future
	

	
3.7.3.2
The camera status shall be available to all

operators.
	Future
	

	
3.7.3.3
The Video System Status display shall provide

access to diagnostic information from the

sending device/camera, if the sending

device/camera supports this feature.
	Future
	

	
3.7.3.4
The Video System Status display shall provide

access for a suitably privileged operator to edit

the camera status.
	Future
	

	
3.7.3.5
The Video System Status display shall provide

access to a device status log that gives status

information for all cameras.
	Future
	

	

3.7.3.5.1
An operator shall have the ability to

filter the device status log by camera.
	Future
	

	

3.7.3.5.2

Each device status log entry

shall contain a date and time as part of

the entry.
	Future
	

	

3.7.3.5.3
CHART II shall write entries to the

device status log.
	Future
	

	

3.7.3.5.4

A suitably privileged operator

may create an entry in the device status

log.
	Future
	

	3.8
Cameras in Traffic Events
	
	

	3.8.1
A suitably privileged operator shall be able to include
cameras as part of the response plan of a CHART II event
 <TBR – part of CHART Req 3.7.2>
	Future
	

	3.8.2
A suitably privileged operator shall be able to indicate
any number of monitors on which to display a response
plan item camera upon execution of the response plan
item.
	Future
	

	
3.8.2.1
The default monitor on which the camera will be

displayed shall be the preferred monitor of the

workstation where the operator is working.
	Future
	

	3.8.3
A suitably privileged operator shall be able to indicate a
preset to which the response plan item camera will move
upon execution of the response plan item.
	Future
	

	
3.8.3.1
The response plan item camera shall not be

moved to a preset if it is already being

controlled.
	Future
	

	3.8.4
A suitably privileged operator shall be provided direct
capability to disable display of any response plan item
camera to the public.
	Future
	

	3.8.5
Upon specifying the latitude and longitude of a traffic
event, a user shall be notified of camera(s) within a
configurable distance of the event.
	Future
	

	
3.8.5.1
A suitably privileged operator shall be provided

direct capability to display any camera on the

nearby cameras list on the preferred monitor of

the workstation on which the operator is

working.
	Future
	

	

3.8.5.1.1
The operator shall have the ability to

select an alternate set of one or more

monitors on which to display the

camera, instead of or in addition to the

preferred monitor.
	Future
	

	
3.8.5.2
A suitably privileged operator shall be provided

direct capability to open a camera control

session for any camera on the nearby cameras

list.
	Future
	

	

3.8.5.2.1

If the camera is currently

being controlled by another operator,

standard camera control override

processing shall be invoked to

determine if the operator has authority

to override the camera, and, if so, the

operator will be given an option to

override control in order for the camera

control session to be opened.
	Future
	

	
3.8.5.3
A suitably privileged operator shall be able to

request the camera on the nearby cameras list to

point in the general direction of the event, based

on the latitude-longitude of the event and

latitude-longitude of the camera.
	Future
	

	

3.8.5.3.1
It will not be necessary for the operator

to open a camera control session on the

camera in order to request it to point to

the event.
	Future
	

	

3.8.5.3.2
If the camera is currently being

controlled by another operator, standard

camera control override processing

shall be invoked to determine if the

operator has authority to override the

camera, and, if so, the operator will be

given an option to override control in

order for the camera to be pointed.
	Future
	

	
3.8.5.4
A suitably privileged operator shall be provided

direct capability to disable display of any camera

to the public.
	Future
	

	
3.8.5.5
A suitably privileged operator shall be provided

direct capability to include any camera on the

nearby cameras list as a response plan item for

the event.
	Future
	

	

3.8.5.5.1
It will not be necessary for the operator

to include a camera on the nearby

cameras list in the response plan of the

event in order to display, control, point,

or disable public access to the camera.
	Future
	

	3.8.6
Upon execution of a response plan item camera will be
displayed on any monitor(s) indicated on the plan, will be
disabled to the public if indicated in the plan, and, if the
camera is not currently being controlled, will move to the
preset if a preset is indicated in the plan.
	Future
	

	
3.8.6.1
If a camera response plan item being executed

has not been set up to display on a monitor,

move to a preset, or disable access to the public,

execution of the response plan item shall have

no effect, and shall not be considered an error.
	Future
	

	3.8.7
A suitably privileged operator shall be provided direct
capability to open a camera control session on any
camera in a response plan, provided the camera is
displayed on a local monitor, regardless of whether the
response plan item has been executed. Upon execution of
a response plan item camera will be displayed on any
monitor(s) indicated on the plan, will be disabled to the
public if indicated in the plan, and, if the camera is not
currently being controlled, will move to the preset if a
preset is indicated in the plan.
	Future
	

	3.8.8
A suitably privileged operator will be able to include a
camera snapshot in the event history of a traffic event, for
any camera included as a response plan item of the event.
	Future
	

	
3.8.8.1
Any number of camera snapshots from any

number of cameras shall be able to be included

in the traffic event history at any time while the

traffic event is open.
	Future
	

	3.9
Plans
	
	

	3.9.1
A suitably privileged operator shall be able to include
cameras into a CHART II plan. (CHART II Req
3.5.1 and 3.5.2).
	Future
	

	3.9.2
Cameras shall be able to be included in a plan along with
other types of CHART II devices, such as DMSs.
	Future
	

	3.9.3
A suitably privileged operator shall have the option to
specify any number of monitors on which to display a
camera in a plan upon execution of the plan.
	Future
	

	3.9.4
A suitably privileged operator shall have the option to
specify a preset to which the camera should move upon
execution of the plan. <TBR - Question: select an
existing preset on the camera (which would allow the
preset to change or be deleted “out from under” the plan
after the plan is created) (easier to implement), or store
the preset in the plan (which would be less subject to
unintended/unexpected changes through camera control
later, but which would be much harder to implement)>
	Future
	

	3.9.5
A suitably privileged operator shall be able to
include a plan which contains camera(s) in the
response plan for a traffic event.
	Future
	

	
3.9.5.1
Once a plan which includes one or more

cameras is put into a response plan for a traffic

event, any individual camera-related response

plan items shall be editable by a suitably

privileged operator to add, change, or delete

monitor(s) on which to put the camera upon

execution of the response plan item.
	Future
	

	
3.9.5.2
Once a plan which includes one or more

cameras is put into a response plan for a traffic

event, any individual camera-related response

plan item shall be editable by a suitably

privileged operator to add, change, or delete the

preset to which the camera should move upon

execution of the response plan item.
	Future
	

	
9.5.3
Once a camera is included as a response plan

item of a traffic event by inclusion of a plan in

the traffic event, the camera response plan item

shall be able to be manipulated in the same

fashion as if it had been placed in the response

plan as a separate item outside of the predefined

plan.
	Future
	

	3.10
Schedule Management
	
	

	3.10.1
(CHART II Req 3.1.5.9) The system shall support the
scheduling of camera presets. <TBR - See CHART II Req
3.1.5 Schedule Management and sub-requirements.>
	Future
	

	
3.10.1.1
The system shall allow a scheduled event (to

include Special Event (CHART II Req

3.1.5.15.1), Recurring Congestion (CHART II

Req 3.1.5.15.2) or Safety Event (CHART II Req

3.1.5.15.3)) to include any number of cameras,

each of which may specify a preset to be moved

to when the scheduled event is executed.
	Future
	

	3.10.2
 (CHART II Req 3.1.5.10) The system shall support the
scheduling of camera (source) to wall monitor
(destination) configuration commands. <See CHART II
Req 3.1.5 Schedule Management and sub-requirements.>
	Future
	

	3.10.3
The system shall allow a scheduled event (to include
Special Event (CHART II Req 3.1.5.15.1), Recurring
Congestion (CHART II Req 3.1.5.15.2) or Safety Event
(CHART II Req3.1.5.15.3)) to include any number of
cameras, each of which may specify any number of
monitors on which the camera will be displayed when the
scheduled event is executed.
	Future
	

	3.11
Standalone Operations
	
	

	All CHART II server sites shall be capable of reduced operation when communications with other CHART II servers are lost.

	R2B1
	Manage Camera

	3.11.1
A CHART II server shall be capable of stand-alone
operations when communications with all other CHART
servers’ sites are lost.
	R2B1
	Manage Camera

	3.11.2
The CHART II software shall be capable of displaying
reachable cameras on reachable monitors when
communications with other CHART server sites are lost.
	R2B1
	Display Camera

	3.11.3
The CHART II software shall be capable of controlling
reachable cameras when communications with other
CHART server sites are lost
	R2B1
	Control Camera

	

	
	

	3.12
User Roles
	
	

	
	
	

	CHART II shall provide a mechanism to enforce role based access for operators (covered under CHART II Requirement 3.1.1.1)

	R2B1/2/F
	Manage Camera

	3.12.1
CHART II shall restrict activities operators may perform
to users with that specific functional right.
	R2B1/2/F
	

	
3.12.1.1
CHART II shall restrict camera control activities

to operators with the initiate Camera Control

functional right.
	R2B1/2/F
	Request Camera Control

	

3.12.1.1.1
The Camera Control

functional right shall be configurable

on a per organization basis.
	R2B1
	Request Camera Control

	

3.12.1.1.2
CHART II shall restrict

camera pan/tilt to operators with the

Camera Pan Tilt functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.3
CHART II shall restrict

camera zoom to operators with the

Camera Zoom functional right
	R2B1
	Send Camera Commands

	

3.12.1.1.4
CHART II shall restrict

camera focus to operators with the

Camera Focus functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.5
CHART II shall restrict

camera iris control to operators with the

Camera Iris Control functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.6
CHART II shall restrict

camera color balance to operators with

the Camera Color Balance Control

functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.7
CHART II shall restrict setting

persistent camera position presets to

operators with the Camera Set

Persistent Preset functional right.
	R2B2
	

	

3.12.1.1.8
CHART II shall restrict

moving a camera to a persistent preset

to operators with the Camera Move to

Persistent Preset functional right.
	R2B2
	

	

3.12.1.1.9
CHART II shall restrict saving

and moving to camera position presets

for a single control session to operators

with the Camera Temporary Preset

functional right (new)
	Future
	

	

3.12.1.1.10
CHART II shall restrict

camera reset to operators with the

Camera Reset functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.11
CHART II shall restrict

camera power on/off to operators with

the Camera Power functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.12
CHART II shall restrict

camera program mode access to

operators with the Camera Program

Mode functional right
	R2B2
	

	

3.12.1.1.13
CHART II shall restrict

camera title setup to operators with the

Camera Title Setup functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.14
CHART II shall restrict

disabling the camera video masking to

operators with the Camera Disable

Masking functional right.
	R2B2
	

	

3.12.1.1.14.1
The Camera Disable

Masking functional right shall be

configurable on a per organization

basis.
	R2B2
	

	

3.12.1.1.15
CHART II shall restrict

revoking and unrevoking camera

control to those users with the Camera

Revoke Control functional right.
	R2B2
	

	

3.12.1.1.15.1
The Camera Revoke

Control functional right shall be

configurable on a per organization

basis.
	R2B2
	

	

3.12.1.1.16
CHART II shall restrict
 preemption of camera control
 to operators with the Camera
 Preempt Control functional
 right.
	R2B1
	Evaluate Camera Control Request

	

3.12.1.1.16.1
The camera Preempt

Control functional right shall be

configurable on a per organization

basis.
	R2B1
	Evaluate Camera Control Request

	
3.12.1.2
CHART II shall restrict camera display to

operators with the Camera Display functional

right.
	R2B1/2/F
	Display Camera On Monitor

	

3.12.1.2.1
The Camera Display

functional right shall be configurable

on an organization by organization

basis.
	R2B1
	Display Camera On Monitor

	

3.12.1.2.2
CHART II shall restrict local

camera display to operators with the

Camera Local Display functional right.
	R2B1
	Display Camera On Monitor

	

3.12.1.2.3
CHART II shall restrict

remote camera display to operators

with the Camera Remote Display

functional right.
	R2B1
	Display Camera On Monitor

	

3.12.1.2.4
CHART II shall restrict

camera group display to operators with

the Camera Group Display functional

right (new)
	Future
	

	

3.12.1.2.5
.CHART II shall restrict which

specific cameras may be displayed to

operators with the Assign Displayable

Cameras functional right.
	Future
	

	

3.12.1.2.6
CHART II shall restrict

revoking and unrevoking camera

display to operators with the Camera

Revoke Display functional right.
	R2B2
	

	

3.12.1.2.6.1
The Camera Revoke

Display functional right shall be

configurable on a per organization

basis.
	R2B2
	

	

3.12.1.2.7
CHART II shall restrict

revoking and unrevoking camera

display to the media to operators with

the Camera Revoke Media Display

functional right.
	Future
	

	

3.12.1.2.7.1
The Camera Revoke

Media Display functional right shall be

configurable on a per organization

basis.
	Future
	

	
3.12.1.2.8
CHART II shall restrict assigning a

preferred monitor for a user to operators with the

Assign Preferred Monitor functional right.
	Future
	

	
3.12.1.3
CHART II shall restrict configuring and

activating temporary tours to users with Activate

Temporary Tours functional right.
	Future
	

	
3.12.1.4
CHART II shall restrict starting and stopping

persistent tours to users with the Camera

Start/Stop Tour functional right.
	R2B1
	Start Camera Tour/ Stop Camera Tour

	3.12.2
CHART II shall restrict adding a camera to a traffic event
to operators with the Configure Camera in Traffic Event
functional right.
	Future
	

	
3.12.2.1
The Configure Camera in Traffic Event shall be

configurable on a per organization basis.
	Future
	

	
3.12.2.2
CHART II shall restrict disabling camera video

to the media as part of a traffic event to users

with the Revoke Camera from Media in Traffic

Event functional right.
	Future
	

	

3.12.2.2.1
The Revoke Camera from

Media in Traffic Event shall be

configurable on a per organization

basis.
	Future
	

	
3.12.2.3
CHART II shall restrict adding a camera

snapshot to a traffic event to operators with the

Add Camera Snapshot to Traffic Event

functional right.
	Future
	

	

3.12.2.3.1
The Add Camera Snapshot to

Traffic Event shall be configurable on a

per organization basis.
	Future
	

	3.12.3
CHART II shall restrict adding a camera to a Plan to
operators with the Add Camera to Plan functional right.
	Future
	

	
3.12.3.1
The Add Camera to Plan functional right shall

be configurable on a per organization basis.
	Future
	

	3.12.4
CHART II shall restrict the ability to schedule a camera
for display and/or control to operators with the Schedule
Camera functional right.
	Future
	

	
3.12.4.1
The Schedule Camera functional right shall be

configurable on a per organization basis.
	Future
	

	3.12.5
CHART II shall restrict configuration activities to
privileged operators.
	R2B1/2/F
	

	
3.12.5.1
CHART II shall restrict configuring a camera to

operators with the Configure Camera functional

right.
	R2B2
	

	

3.12.5.1.1
The Configure Camera

functional right shall be configurable

on a per organization basis.
	R2B2
	

	
3.12.5.2
CHART II shall restrict configuring a monitor to

operators with the Configure Monitor functional

right.
	R2B2
	

	

3.12.5.2.1
The Configure Monitor

functional right shall be configurable

on a per organization basis.
	R2B2
	

	
3.12.5.3
CHART II shall restrict monitor grouping

configuration to users with the Configure

Monitor Group functional right.
	Future
	

	

3.12.5.3.1
The Configure Monitor Group

functional right shall be configurable

on a per organization basis.
	Future
	

	
3.12.5.4
CHART II shall restrict configuring a V1500

Switch to operators with the Configure V1500

Switch functional right.
	R2B2
	

	

3.12.5.4.1
The Configure V1500 Switch

functional right shall be configurable

on a per organization basis.
	R2B2
	

	
3.12.5.5
CHART II shall restrict configuring a Switch

Fabric to operators with the Configure Switch

Fabric functional right.
	R2B2
	

	
3.12.5.6
CHART II shall restrict configuring a no video

source to operators with the Configure No Video

Source functional right.
	R2B2
	

	
3.12.5.7
CHART II shall restrict configuring a bridge

circuit to operators with the Configure Bridge

Circuit functional right.
	R2B2
	

	
3.12.5.8
CHART II shall restrict configuring a V1500

CDU to operators with the Configure V1500

CDU functional right.
	R2B2
	

	
3.12.5.9
CHART II shall restrict configuring a V1500

keypad to operators with the Configure V1500

Keypad functional right.
	R2B2
	

	
3.12.5.10
CHART II shall restrict configuring a

V1500 host to operators with the Configure

V1500 Host functional right.
	R2B2
	

	
3.12.5.11
CHART II shall restrict configuring a

camera tour list to operators with the Configure

Tour List functional right.
	R2B1
	Configure Video Tours

	
3.12.5.12
CHART II shall restrict scheduling a

camera display to users with the Configure

Camera Display Schedule functional right.
	Future
	

	

3.12.5.12.1
The Configure Camera

Display Schedule functional right shall

be configurable on a per organization

basis.
	Future
	

	3.12.6
CHART II shall restrict viewing camera status
information to operators with the Camera View Status
functional right.
	Future
	

	
3.12.6.1
The Camera View Functional Status functional

right shall be configurable on a per organization

basis.
	Future
	

	3.12.7
CHART II shall restrict updating camera status
information to operators with the Camera Update Status
functional right.
	Future
	

	
3.12.7.1
The Camera Update Status functional right shall

be configurable on a per organization basis.
	Future
	

	3.13
Operations Log
	
	

	(CHART Req 3.1.2.13) The system shall log messages generated from operations activities.
	R2B1/2
	

	3.13.1
CHART II shall audit an operator putting a camera image
on a monitor.
	R2B1
	Display Camera On Monitor

	3.13.2
CHART II shall audit an operator removing a camera
image from a monitor.
	R2B1
	Display Camera On Monitor

	3.13.3
CHART II shall audit an operator making any device
configuration changes.
	R2B2
	

	3.13.4
CHART II shall audit an operator making camera tour list
configuration changes.
	R2B1
	Configure Camera Tours

	3.13.5
CHART II shall audit an operator starting a camera tour.
	R2B1
	Start Camera Tour

	3.13.6
CHART II shall audit an operator stopping a camera tour.
	R2B1
	Stop Camera Tour

	3.13.7
CHART II shall audit an operator resetting a camera or
camera controller.
	R2B1
	Send Camera Commands

	3.14
User Login
	
	

	(CHART Req 3.1.1.2) The system shall require a user to provide a userid and password in order to login.
	
	

	3.14.1
A user will be assigned a monitor group at login
	R2B1
	Configure Operation Centers

	
3.14.1.1
The user may use the default monitor group.
	R2B1
	Configure Operation Centers

	

3.14.1.1.1
The default monitor group

shall be based on the operating center

that the user logs into.
	R2B1
	Configure Operation Centers

	
3.14.1.2
A suitably privileged operator may override the

default monitor group and choose any other

monitor group.
	R2B1
	Display Camera

	
3.14.1.3
Each operating center shall be assigned a default

monitor group
	R2B1
	Configure Operation Centers

	
	
	

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.5 ���

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEBJPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEBJPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAbcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAbcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULEYLcPWAaEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULEYLcPWAaEAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULEYLcPWAXwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULEYLcPWAXwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULEYLcPWAGlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULEYLcPWAGlAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAcRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAcRAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAyQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAyQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEA2MAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEA2MAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAu7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAu7AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAH.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEAH.AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEBMaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULYExAIEBMaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAAmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAAmAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhACnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhACnAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhASbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhASbAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULBngsMbALDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULBngsMbALDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULnfnUVDAAhAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAKQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAKQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAOLAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAWfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAWfAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAFUAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULnjakJ2AGcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqANsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqANsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAV6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAV6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqADAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAM1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAM1AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULEYLcPWADlAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAXpAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqACjAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAOIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAOIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqADeAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqADeAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAEcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAEcAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAOsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAOsAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAPPAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAL6AGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAEoAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAIyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqALDAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAJwAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAIKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAVaAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAOIAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqABOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqABOAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAIyAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULYExAIEBLDAGcAAQAAAAEA -diag Graph:UFAJxBULvjmAUqAIKAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAlAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBUJ.XIYPfAAoAGcAAQAAAAEA -sys SystemVersion:UFAJxBULBngsMbAAHAGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqAlAAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULz1JYUqAo5AGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqApQAGcAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGcAAQAAAAAA -config ConfigVersion:UFAJxBUJ.XIYPfAAiAGcAAQAAAAEA -phase PhaseVersion:UFAJxBULEYLcPWADSAGcAAQAAAAEA -sys SystemVersion:UFAJxBULz1JYUqAo5AGcAAQAAAAEA -diag Graph:UFAJxBULz1JYUqApQAGcAAQAAAAEA

�Probably too specific. The hierarchy will be dynamically adjustable by users like it is now with AVCM site priorities. (Site hierarchy is not built into CHART II so we’ll have to think about how we’ll do this.)

�The CHART II way of displaying a camera on a monitor would be to drag a camera onto a monitor. I’m not sure what the CHARTLite way of doing this would be. The verb “select” may be too implementation-dependent.

�I think the CHART II requirements used a phrase like “an operator so-privilege” or “an operator with the appropriate functional right” or something to that effect in pretty much all requirements that addressed operator capabilities.

PAGE
ii
DRAFT

[image: image53.wmf]Trading Service

Event Service

Trading Service

Event Service

Replicated Data

Local Data

Local Data

District A

District B

District A Client

Server

Apps

O

b

j

e

c

t

R

e

f

e

r

e

n

c

e

s

O

b

j

e

c

t

R

e

f

e

r

e

n

c

e

s

Server

Apps

Object and Event

Channel Discovery

E

v

e

n

t

C

h

a

n

n

e

l

E

v

e

n

t

C

h

a

n

n

e

l

O

b

j

e

c

t

s

O

b

j

e

c

t

s

state changes

state changes

method

invocations

method

invocations

Object and Event

Channel Discovery

_1174721207.doc

: FirstAvailableOfferWrapper

: CommLogWrapper

: CommLog

: TraderGroup

: OfferIterator

Calling Class

[while iterator.hasNext() == true && entries not added]

loop

4:

getTraders()

3:

createIterator()

2:

hasNext()

5:

next()

6:

addEntries(token, entries)

7:

return

8:

addEntries(token, entries)

1:

_1183542339.vsd
�

�

�

Trading Service�

Event Service�

Trading Service�

Event Service�

Replicated Data�

Local Data�

Local Data�

�

District A�

District B�

District A Client�

ServerApps�

Object References�

Object References�

Server Apps�

�

Objects�

�

Event Channel�

state changes�

state changes�

method invocations�

Object and Event
Channel Discovery�

Event Channel�

Objects�

method invocations�

Object and Event
Channel Discovery�

_1138179403.vsd

