DRAFT

DRAFT

coordinated Highways Action Response Team

[image: image55.wmf]state highway administration

[image: image56.wmf]
CHART R2B2 Design

In Response To:

PO#1600115
Document # M362-DS-020
March 21, 2006
By

Computer Sciences Corporation
	Revision
	Description
	Pages Affected
	Date

	0
	Initial Draft
	All
	March 21, 2006

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

iiTable of Contents

ivList of Figures

11
Introduction

11.1
Purpose

11.2
Objectives

11.3
Scope

11.4
Design Process

11.5
Design Tools

21.6
Work Products

32
Software Architecture

32.1
Current Network Architecture

32.2
CHART R2B2 Video Network Architecture

42.3
Definitions

72.4
CCTV Camera Video Display

72.4.1
Video Router

82.4.2
Image Display Override

92.4.3
Camera Image Revoke

102.5
CCTV Camera Control

102.5.1
Surveyor VFT Control Capabilities

122.5.2
Camera Presets

132.5.3
Camera Control Revoke

132.6
Video Related Configuration

132.7
JacORB and Java 1.5

132.8
Assumptions

142.9
Constraints

142.10
Items to be Resolved as Part of a Future Release

153
Models

153.1
Use Case Diagrams

153.1.1
HighLevelUseCases (Use Case Diagram)

193.1.2
ManageCamera (Use Case Diagram)

223.1.3
ManageCameraControl (Use Case Diagram)

253.1.4
SendCameraCommands (Use Case Diagram)

273.1.5
DisplayCamera (Use Case Diagram)

303.2
Class Diagrams

303.2.1
VideoHighLevel (Class Diagram)

393.2.2
VideoHighLevel-VideoSource (Class Diagram)

453.2.3
VideoHighLevel-VideoSink (Class Diagram)

493.2.4
VideoHighLevel-VideoTransmission (Class Diagram)

573.2.5
CameraControlModule (Class Diagram)

683.2.6
MonitorControlModule (Class Diagram)

723.2.7
MonitorGroupManagementDiagram (Class Diagram)

743.2.8
VideoTourClassDiagram (Class Diagram)

773.2.9
Router (Class Diagram)

803.2.10
BridgeCircuitManagement (Class Diagram)

833.2.11
V1500 (Class Diagram)

883.3
ApplicationPartitioning (Deployment Diagram)

903.4
Sequence Diagrams

903.4.1
CameraControlModule:AddCamera (Sequence Diagram)

913.4.2
CameraControlModule:BlockToPublic (Sequence Diagram)

923.4.3
CameraControlModule:CommandProcessorConnect (Sequence Diagram)

923.4.4
CameraControlModule:CommandProcessorExecuteCommand (Sequence Diagram)

933.4.5
CameraControlModule:CommandProcessorReceive (Sequence Diagram)

943.4.6
CameraControlModule:CommandProcessorSend (Sequence Diagram)

953.4.7
CameraControlModule:MoveToCOHU3955Preset (Sequence Diagram)

963.4.8
CameraControlModule:RemoveCamera (Sequence Diagram)

983.4.9
CameraControlModule:RequestCameraControl (Sequence Diagram)

993.4.10
CameraControlModule:RevokeControl (Sequence Diagram)

1023.4.11
CameraControlModule:RevokeDisplay (Sequence Diagram)

1043.4.12
CameraControlModule:SavePreset (Sequence Diagram)

1043.4.13
CameraControlModule:SetCameraConfiguration (Sequence Diagram)

1053.4.14
CameraControlModule:SurveyorVFTDirectCameraControl (Sequence Diagram)

1073.4.15
CameraControlModule:ViconSVFTProtocolHandlerAdjPan (Sequence Diagram)

1083.4.16
CameraControlModule:ViconSVFTrotocolHandlerSetTitle (Sequence Diagram)

1083.4.17
MonitorControlModule:ConnectRecToSend (Sequence Diagram)

1113.4.18
MonitorControlModule:CreateMonitor (Sequence Diagram)

1113.4.19
MonitorControlModule:DisconnectRecFmSend (Sequence Diagram)

1123.4.20
MonitorControlModule:DisplayImage (Sequence Diagram)

1133.4.21
MonitorControlModule:DisplayImageImpl (Sequence Diagram)

1153.4.22
MonitorControlModule:RemoveMonitor (Sequence Diagram)

1153.4.23
MonitorControlModule:SetMonitorConfiguration (Sequence Diagram)

1163.4.24
Router:CreateBridgeCircuit (Sequence diagram)

1173.4.25
Router:Connect (Sequence Diagram)

1193.4.26
Router:Disconnect (Sequence Diagram)

1213.4.27
Router:Initialize (Sequence Diagram)

1223.4.28
Router:RemoveBridgeCircuit (Sequence Diagram)

1223.4.29
Router:SetBridgeCircuitConfiguration

1233.4.30
Router:Shutdown (Sequence Diagram)

1243.4.31
SwitchControlModule:CreateSwitch (SequenceDiagram)

1253.4.32
SwitchControlModule:Initialize (Sequence Diagram)

1263.4.33
SwitchControlModule:RemoveSwitch (Sequence Diagram)

1273.4.34
SwitchControlModule:Shutdown (Sequence Diagram)

1283.4.35
SwitchControlModule:SetConfiuration (Sequence Diagram)

130Appendix A
Use Case Mapping

List of Figures

3Figure 2‑1 CHART Components and Network

Figure 2‑2 CHART R2B2 Video Components and Network
4
Figure 3‑1. HighLevelUseCases (Use Case Diagram)
16
Figure 3‑2. ManageCamera (Use Case Diagram)
19
Figure 3‑3. ManageCameraControl (Use Case Diagram)
23
Figure 3‑4. SendCameraCommands (Use Case Diagram)
26
Figure 3‑5. DisplayCamera (Use Case Diagram)
28
Figure 3‑6. VideoHighLevel (Class Diagram)
32
Figure 3‑7. VideoHighLevel-VideoSource (Class Diagram)
40
Figure 3‑8. VideoHighLevel-VideoSink (Class Diagram)
46
Figure 3‑9. VideoHighLevel-VideoTransmission (Class Diagram)
50
Figure 3‑10. CameraControlModule (Class Diagram)
59
Figure 3‑11. MonitorControlModule (Class Diagram)
69
Figure 3‑12. MonitorGroupManagementDiagram (Class Diagram)
72
Figure 3‑13. VideoTourClassDiagram (Class Diagram)
75
Figure 3‑14. Router (Class Diagram)
78
Figure 3‑15. BridgeCircuitManagement2 (Class Diagram)
81
Figure 3‑16. V1500 (Class Diagram)
85
Figure 3‑17. ApplicationPartitioning (Deployment Diagram)
89
Figure 3‑18. CameraControlModule:AddCamera (Sequence Diagram)
90
Figure 3‑19. CameraControlModule:BlockToPublic (Sequence Diagram)
91
Figure 3‑20. CameraControlModule:CommandProcessorConnect (Sequence Diagram)
92
Figure 3‑21. CameraControlModule:CommandProcessorExecuteCommand (Sequence Diagram)
93
Figure 3‑22. CameraControlModule:CommandProcessorReceive (Sequence Diagram)
94
Figure 3‑23. CameraControlModule:CommandProcessorSend (Sequence Diagram)
95
Figure 3‑24. CameraControlModule:MoveToCOHU3955Preset (Sequence Diagram)
96
Figure 3‑25. CameraControlModule:RemoveCamera (Sequence Diagram)
97
Figure 3‑26. CameraControlModule:RequestCameraControl (Sequence Diagram)
99
Figure 3‑27. CameraControlModule:RevokeControl (Sequence Diagram)
101
Figure 3‑28. CameraControlModule:RevokeDisplay (Sequence Diagram)
103
Figure 3‑29. CameraControlModule:SavePreset (Sequence Diagram)
104
Figure 3‑30. CameraControlModule:SetCameraConfiguration (Sequence Diagram)
105
Figure 3‑31. CameraControlModule:SurveyorVFTDirectCameraControl (Sequence Diagram)
106
Figure 3‑32. CameraControlModule:ViconSVFTProtocolHandlerAdjPan (Sequence Diagram)
107
Figure 3‑33. CameraControlModule:ViconSVFTProtocolHandlerSetTitle (Sequence Diagram)
108
Figure 3‑34. MonitorControlModule:ConnectRecToSend (Sequence Diagram)
110
Figure 3‑35. MonitorControlModule:CreateMonitor (Sequence Diagram)
111
Figure 3‑36. MonitorControlModule:DisconnectRecFmSend (Sequence Diagram)
112
Figure 3‑37. MonitorControlModule:DisplayImage (Sequence Diagram)
113
Figure 3‑38. MonitorControlModule:DisplayImageImpl (Sequence Diagram)
114
Figure 3‑39. MonitorControlModule:RemoveMonitor (Sequence Diagram)
115
Figure 3‑40. MonitorControlModule:SetMonitorConfiguration (Sequence Diagram)
116
Figure 3‑41. MonitorControlModule:CreateBridgeCircuit (Sequence Diagram)
117
Figure 3‑42. Router:Connect (Sequence Diagram)
118
Figure 3‑43. Router:Disconnect (Sequence Diagram)
120
Figure 3‑44. Router:Initialize (Sequence Diagram)
121
Figure 3‑45. Router:RemoveBridgeCircuit (Sequence Diagram)
122
Figure 3‑46. Router:SetBridgeCircuitConfigurationt (Sequence Diagram)
123
Figure 3‑47. Router:Shutdown (Sequence Diagram)
124
Figure 3‑48. SwitchControlModule:CreateSwitch (Sequence Diagram)
125
Figure 3‑49. SwitchControlModule:Initialize (Sequence Diagram)
126
Figure 3‑50. SwitchControlModule:RemoveSwitch (Sequence Diagram)
127
Figure 3‑51. SwitchControlModule:Shutdown (Sequence Diagram)
128
Figure 3‑52. SwitchControlModule:SetConfiguration (Sequence Diagram)
129

1 Introduction

1.1 Purpose
This document describes the design of the software for Release 2, Build 2 of the CHART II system. This build provides a number of new video capabilities:

· Integration of the Maryland Transportation Authority (MdTA) VICON V1500 Switching Network for displaying camera images.
· VICON Surveyor VFT Camera control capabilities for multiple Surveyor VFT cameras over a single RS-232 port that is not attached to the CHART IP network
· A camera preset capability for both the COHU 3955 and the Vicon Surveyor VFT cameras.

· An ability to revoke camera display and control capabilities from specific organizations and the public.
· Video related configuration tasks through CHARTLite and the CHART software rather than by manual entry into the CHART II database.

· Finally, this build will integrate a new Object Request Broker (ORB) into CHART II. JacORB will replace Iona’s Orbacus.
1.2 Objectives

The main objective of this design is to provide software developers with a framework in which to provide implementation of the specific CHART R2B2 requirements dealing with V1500 display, Surveyor VFT camera control, revoke, configuration, and camera presets identified for the CHART CCTV camera distribution as stated in the CHART Video Software Architecture Requirements, June 1, 2005. The specific requirements addressed by this release are listed in Appendix A.
1.3 Scope

This design is limited to Release 2, Build 2 (R2B2) of the CHART II System. Furthermore it addresses only the server components of CHART II. It does not address the CHARTLite Graphical User Interface (GUI) design. This design does not include designs for components implemented in earlier releases of the CHART II system, including those from AVCM, that do not require changes for this release.

1.4 Design Process

This design was created by extracting the Use Cases from the requirements. Class diagrams to support new and changed functions were created. Sequence diagrams to show major functionality were created. This process was iterative in nature – the creation of sequence diagrams sometimes caused re-engineering class diagrams, and vice versa.
1.5 Design Tools

The work products contained within this design are extracted from the Tau Unified Modeling Language (UML) Suite design tool. Within this tool, the design is contained in the CHART II project, CHART R2B2, Analysis phase and System Design phase.

1.6 Work Products

This design contains the following work products:

UML Use Case diagrams that capture the requirements of the system.

UML Class diagrams, showing the software objects which allow the system to accommodate the uses of the system described in the Use Case diagrams.

UML Sequence diagrams showing how the classes interact to accomplish major functions of the system.

2 Software Architecture

CHART R2B2 uses the Common Object Request Broker Architecture (CORBA) as the base architecture, with custom built software objects made available on the network to allow their data to be accessed via well defined CORBA interfaces.

The sections below discuss specific elements of the architecture and software components that are created, changed, or used in R2B2.

2.1 Current Network Architecture

The diagram below presents an overall view of the CHART II components, including some future components. Note that AVL equipped vehicles and Page and Fax recipients are the future CHART components.
[image: image1.wmf]CCTV

Cameras

Field Mgmt.

Server

HARs and

Shazams

ITS Device

Network

Detectors

K

R

O

W

D

A

O

R

2

1

M

-

A

0

3

1

-

M

T

P

I

0

X

1

E

Fixed and Portable DMS

AVL

Equipped

Vehicles

Page and Fax

External

Systems

CHART II

Archive Server

CHART II

Servers

CHART IP

Multicast

Video

Display

Monitors

NETWORK

MDOT

Internet

Figure 2‑1 CHART Components and Network
2.2 CHART R2B2 Video Network Architecture

The diagram below presents an overall view of the CHART II video components and network after R2B2, including the MdTA V1500 video network. MdTA’s video network consists of two V1500 switches, one at the Fort McHenry Tunnel (FMT) and the other at the Baltimore Harbor Tunnel (BHT). There are a limited number of managed connections between the current CHART IP network and the FMT V1500 video switch, and also a limited number of managed connections between the FMT and BHT switches. These new components require the addition of several new key definitions to CHART II and are described in Section 2.3.

[image: image2.emf]Video Switch

WAN

Video Switch

Network

Video Switch

Network

Video Fabric

Video Fabric

Video Fabric

M

1

2

AOC

Mon M

AOC

Mon 1

AOC

Mon 2

o

o

o

AOC C1

AOC C2

AOC CX

o

o

o

P

1

BHT

Mon P

BHT

Mon 1

BHT

Mon 2

o

o

BHT C1

BHT C2

BHT

CX

o

o

o

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

AX

BX

1

1

Vide

o

->Video Interface

Bridge

circuits

iVV 1

Y

iVV

Y

o

o

o

o

Y

W

1

2

SOC

Mon W

SOC

Mon 1

SOC

Mon 2

o

o

o

o

o

o

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

SX

1

1

1

SOC C1

SOC C2

SOC CX

.

.

.

Vide

o

->Video Interface

Bridge Circuits

iVV 1

16

iVV

16

o

o

o

o

16

.

.

.

.

.

.

.

.

.

1 1

Video<-Video Interface

Bridge Circuits

iVV 1

16

iVV

16

o

o o

o

16

.

.

.

.

.

.

.

.

.

1 1

FMT

Video

Switch

BHT

Video

Switch

Video<-Video Interface

Bridge Circuits

iVV 1

Z

iVV

Z

o

o

o

o

Z

.

.

.

.

.

.

.

.

. 1 1

W

1

2

D3

Mon

W

D3

Mon

1

D3

Mon

2

o

o

o

o

o

o

.

.

.

.

.

.

.

.

.

X

1

D3 C1

D3 C2

D3 CX

.

.

.

Legend

Video Switch

WAN

Route

Dynamic

Circuit

Bridge

Circuits

Destination

Connection

Source Connections

Switch

Fabric

Video Switch

Network

CHART

IP

Network

o 2

2

Figure 2‑2 CHART R2B2 Video Components and Network
2.3 Definitions

There are a number of terms that will be used throughout the document:

Bridge circuit – A physical connection between a sending device on one video fabric and a receiving device on another video fabric. Although CHART R2B1 need only implement a single video fabric, future CHART releases need multiple video fabrics.

Camera control – The ability to send Pan/Tilt/Zoom and other commands to a camera.

Camera region – A collection of cameras related in some manner. For example, a particular camera region may include cameras that are in close geographic proximity. Cameras may be in multiple camera regions.

Controlling operator – The operator controlling a camera.
Database – A persistent data store. CHART II uses Oracle 10g as its database.

Functional right – The CHART II concept of functional rights and roles will continue forward. Functional rights will be defined for all camera operations as they have been for other CHART II functions. Functional rights are assigned to operator roles. Functional rights will be assigned at fine granularity so as to provide greatest flexibility in creating operator roles. Functional rights cannot be created on the fly during operations; they must be created during development time. Examples of functional rights include: Request Control of a Camera (for all or certain organizations), Override Control of a Camera (for all or certain organizations), Pan or Tilt a Camera, Zoom a Camera, Focus a Camera, Set Camera Iris Control, Set Camera Color Balance, Reset a Camera). See Roles.

Local camera – The concept of a “local camera” refers to a camera homed to a particular CHART II server node. Local cameras will be able to be displayed on local monitors and controlled by local operators in the face of a network outage affecting communications among network nodes.

Local monitor –A monitor that is in the operator’s chosen monitor group. Normally, the operator’s monitor group will correspond to the operating center where the operator is logged in. Presumably, monitors in the user’s chosen monitor group will be visible to the user.

Monitor group – A collection of monitors that are related in some manner. For example, a particular monitor group may include monitors that are co-located. Monitors may be in multiple monitor groups.

Maintenance mode – A device (e.g., camera) that may be used by an operator to perform a limited number of tasks but not as part of normal operations. For R2B2, cameras will have online and offline mode, but not a maintenance mode. This may change with future releases.

Offline mode – A device (e.g., camera) that may not be used by an operator as part of normal operations. For R2B2, a camera and a monitor in offline mode will have one allowable operation: an ability to put the camera in online mode.

Online mode – A device (e.g., camera) that may be used as part of normal operations.

Organization – The CHART II concept of organizations will continue forward. Each camera would be associated with an organization, as are DMSs, HARs, etc. For R2B2, Monitor Groups are also associated with an organization. An operator is not directly associated with a single “home” organization but is allowed to perform functions on cameras (and other devices) associated with one or any number of organizations. The same organization that owns a camera would have special privileges regarding that camera, which operators from other organizations would not have.
Ownership – Devices have an owning organization by which some control can be exerted over which operators can manipulate the devices. In R2B2 ownership will be used for revoking display and control of cameras.
Owning organization – The owning organization is the organization defined in a device (DMS, HAR, camera, etc.) configuration as being the organization of that device. An operator with camera configuration privileges will be able to change the organization of the camera (as an operator with DMS configuration privileges can change the organization of a DMS).
Operating center – The CHART II concept of operating centers will continue forward. Any operator can choose to log in as part of any operating center. An operator will be associated with an organization, which is a part of the user profile which normal users cannot change. When an operator logs into an operating center, the operator will choose a monitor group, presumably a group of monitors that is visible to the operator at that operating center. The default monitor group for the operator will be the monitor group representing monitors located at the operating center.

Reachable camera – A camera (or other sending device) that can be commanded for video display or control from a particular server. A camera may be reachable from some servers or workstations but not others. Normally all cameras are reachable from all workstations unless there are hardware, network, or system problems.

Reachable monitor – A monitor (or other receiving device) that can be commanded for video display from a particular server. A monitor may be reachable from some servers or workstations but not others. Normally all monitors are reachable from all servers and workstations unless there are hardware, network, or system problem.

Receiving device – A device that can be commanded to receive video. This may include IP based receiving devices or a Vicon V1500 switch.
Remote monitor – A monitor not in the user’s chosen monitor group.

Role – Users will be assigned a role (or roles) via the privileged CHART II user configuration function. Users without the Configure Users functional right cannot modify their Role(s). The Functional Rights contained in a user’s role(s) defines what that operator is allowed to do in CHART II. Using the camera-related Functional Rights to be defined for CHART II, the exact functionality of each operator role can be configured. It will also be possible to modify these roles, or create any additional roles as desired throughout the life of the CHART II system. It is possible to assign multiple roles to users, so it will be possible to assign certain operators only roles pertaining to camera control, only roles pertaining to other existing CHART II devices, or any combination thereof. In CHART II, operator capabilities are determined solely by the user the operator logs in as, which specifies operator’s role(s) (comprised of functional rights), and not at all by the operating center the operator logs into.

Sending device – A device that can be commanded to send video from a camera or other video source, making the video available for receipt by a video receiving device. Sending devices may also have additional functionality such as providing an interface for camera control communications.
Server node – An application server on which CHART II services execute.

Video fabric – A group of one or more switches that do not require a bridge circuit to connect a sending device to a receiving device. For R2B1, all CHART cameras and monitors were part of the same video fabric, the CHART video network. However, when R2B2 is deployed, as shown in Figures 2.1-1, and 2.1-2, the CHART video network belongs to one video fabric, the Fort McHenry Tunnel (FMT) video switch belongs to another, and the Baltimore Harbor Tunnel (BHT) video switch belongs to a third video fabric (we are assuming the FMT and BHT video switches are managed separately).
Video switch network – A grouping of one or more video fabrics that use the same protocol.

Video switch wide area network (WAN) – A grouping of one or more video switch networks.

Video route - A logical path connecting a video source (e.g., a camera) on one switch fabric to a video sink (e.g., a monitor) on a different switch fabric. A video route will consist of one or more bridge circuits and two or more virtual circuits.

Video router – A software module that manages video routes in CHART II. Due to the need to limit the number of bridge circuits between switch fabrics, a video router is used in CHART II to optimize the use of the bridge circuits. For example, to display the same FMT camera on two different CHART monitors, one bridge circuit connecting the FMT and CHART switch fabrics should be used, rather than two. The Video Router is needed for R2B2 and beyond.
Video tour – A configured succession of cameras which can be played continuously on a monitor. Each camera can be optionally positioned at a preset position, and will remain on the monitor for a defined dwell time before being replaced with the next image. A video tour cycles continuously until stopped by an operator.

Virtual circuit – A connection between a sending device and a receiving device on the same switch fabric. A virtual circuit can be used to connect a camera to a monitor, a camera to a bridge circuit end point, a bridge circuit end point to a monitor, or two bridge circuits.

Video image override – The process by which a high priority request to display an image across switch fabrics causes the removal of a lower priority image to make a bridge circuit available to the high priority request. This process is based upon an agreed upon rule set.
2.4 CCTV Camera Video Display

The current CHART cameras (i.e., the COHU 3955), are attached to the CHART network using IP based video encoders. Likewise, the CHART monitors are attached to the CHART network using IP based video decoders. MdTA cameras and monitors will be attached to one of two Vicon V1500 Video Switches. CHART II R2B2 will incorporate the MdTA Vicon V1500 video network described in Figure 2-2 into CHART II. CHART R2B2 will manage the limited number of video connections between the CHART IP network and the MdTA V1500 network. Also, CHART R2B2 will manage the limited number of connections between MdTA video switches. In this way, CHART II will allow operators to display MdTA and CHART cameras on MdTA and CHART monitors.

This functionality was originally included in Release 3.0 of the Asynchronous Transfer Mode (ATM) Video Control Manager (AVCM). In fact, the AVCM V1500 Manager Service, used to communicate with the V1500 switch, will be reused completely and will be now be utilized by CHART II. R2B2 adds a video router to manage the limited number of video connections amongst switch fabrics. The video router is described in more detail below.
2.4.1 Video Router

The CHART II video router will be utilized whenever an operator makes a request to display a video source (camera) that is part of a switch fabric on a video sink (monitor) which is a part of a different switch fabric. The purpose of the router is to manage display requests across the limited number of bridge circuits between switch fabrics in order to minimize the number of required bridge circuits. The router makes unused bridge circuits available for display requests, guarantees a certain number of cross-bridge circuit images be available to high priority Monitor Groups, and minimizes the effects of overriding an existing bridge-circuit image in favor of a higher priority display request that must use a bridge circuit.

The video router will determine the best route to fulfill the display request and fulfill that request if possible. The video router will be re-used from AVCM as much as possible. It is anticipated that the computation of routes will remain largely unchanged. This design assumes there will be only one video router in the CHART system. If the video router is unavailable the images may not be displayed across bridge circuits.

The router design uses graph theory and set theory to build the set of routes that are available in the system. The video router will maintain a set of video routes. The video routes are the set of all paths through a directed graph consisting of a set V that contains all video fabrics defined in the system, a set E that contains all bridge circuits defined in the system (G(E,V)). The algorithm computes all paths from each video fabric that is an element of V to all other video fabrics that are an element of V using the bridge circuits that are elements in E, ensuring there are no cycles in the routes. The design uses graph theory and set theory to build the set of routes that are available in the system.
The video router will determine the route necessary to fulfill the display request and fulfill that request if possible. The business rules describing how display requests involving multiple video fabrics are mediated are described in the following section.
2.4.2 Image Display Override

Due to the limited number of connections (bridge circuits) that exist between video fabrics, it may not be possible to complete all image display requests as the required bridge circuits may already be in use. CHART II will manage this by enforcing the business rules described below and either override an existing image display or reject the image display request. These business rules are base on the business rules employed by AVCM.
AVCM makes use of a site (a collection of equipment including monitors and workstations at a location) concept to articulate these business rules. Because there is no exact equivalent of a site in CHART, the CHART monitor group concept will be utilized instead. An operator logs into an operating center, which has a default monitor group which normally represents the monitors that the operator can actually see. This means that monitor groups will have an associated priority as well as an associated number of guaranteed inter-video fabric images.

Certain monitor groups will be configured to have a guaranteed number of slots (cross-bridge-circuit image displays). An operator whose chosen monitor group is allocated a guaranteed number of slots and is not already using all of those slots will always be granted an image display request. If there are no freely available bridge circuits to accommodate this request, a bridge circuit will be made available by overriding (removing) an existing image display in order to provide the guaranteed number of slots.
The following rules will apply when CHART II is selecting an image display to override. In the context of these rules, ‘image’ is an image being displayed over a bridge circuit when that image is being considered for override:

1. Guaranteed number of slots for certain monitor groups. Select image in a monitor group displaying more than their guaranteed number of images over monitor groups that are not displaying their guaranteed number of images and over monitor groups that have no guaranteed number of images.
2. Monitor group hierarchy. Select an image being displayed at the lowest priority monitor group.
3. Total number of images displayed. Select an image that is only displayed on one monitor over an image that is displayed on multiple monitors.

4. Override an image from a camera that is not controlled.
5. Override the oldest connection.

These rules allow the following:

· A few high priority monitor groups can be configured to have guaranteed access to a configurable number of images from another video fabric.

· If any bridge circuits are not in use, they will be made available for any image display, regardless of the priority of the requesting operator’s monitor group.

· A high priority monitor group can not accidentally use up all bridge circuits making them unavailable to other monitor groups. Images above and beyond the guaranteed amount will be available for other lower priority monitor groups to override (oldest first).

When the system determines that an image override will be required in order to fulfill an image display request, CHART will employ logic similar to camera control override. A notification will be sent to the operator requesting a cross-switch-fabric display providing information that a currently active image display will need to be overridden to fulfill their request. The notification will provide the potential impacts of doing the override (e.g., which image displays are expected to be overridden if the operator chooses to override). The operator can then decide if the override should go ahead. The actual impact will be determined at the time the override is completed and the results will be provided to the operator in the completion response. The actual impact may be different from the original list of potential impacts due to the dynamic nature of the system. The override process will attempt to display a “No Video Available” image on each monitor that is overridden. This will require a “No Video Available” source on each video fabric.

2.4.3 Camera Image Revoke

A suitably privileged operator shall have the ability to revoke a camera image from any monitors owned by a particular organization. Furthermore the camera image may be revoked from any number of owning organizations.

When a camera image is revoked from an organization, any monitors owned by that organization, that are currently displaying the camera image will have a “No Video Available” image placed on the monitor. A camera that is revoked will not be available for display on monitors owned by revoked organizations until such time that they are un-revoked by a suitably privileged operator. It is anticipated that multiple organizations may be revoked for camera image display at one time.

A camera image may also be blocked from the public. Any monitors designated as public monitors may have their camera image revoked by a suitable privileged operator who chooses to block the camera image from the public. A camera that is blocked from the public will not be available for display on public monitors until such time that they are un-blocked by a suitably privileged operator.

2.5 CCTV Camera Control
CHART II R2B2 adds a new type of camera, the Vicon Surveyor VFT, to the system. This requires implementing a new protocol to command the Surveyor VFT. Furthermore, it is anticipated that the Surveyor VFT cameras will be commanded directly over an RS-232 port and that multiple Surveyor VFT cameras may be attached to a single RS-232 port.
R2B2 adds the ability for CHART to maintain a connection to an RS-232 port that would communicate with all Vicon Surveyor VFT cameras. It manages the commands to be sent to the cameras as transactions in a queue and each transaction would be serviced on a first in/first out (FIFO) basis. It is anticipated that all Vicon Surveyor VFT cameras will be homed to a single server, although the design can be easily adapted to allow for multiple servers. The design also allows for Surveyor VFT cameras to be controlled from multiple RS-232 ports on a server.
CHART R2B2 will not accommodate control of Surveyor VFT cameras attached to IP based encoders as is currently done in CHART for COHU 3955 cameras.

2.5.1 Surveyor VFT Control Capabilities

There are a number of differences between the Surveyor VFT control capabilities and the COHU 3955 camera control capabilities.

2.5.1.1 Surveyor VFT Pan, Tilt, Zoom, Focus

These capabilities operate largely as they do with a COHU 3955 camera. However, there is no capability to programmatically toggle between auto and manual focus. The Surveyor VFT will go to manual focus mode if it receives a Focus Far or Focus Near command. It will go to auto focus mode if it receives Zoom command

2.5.1.2 Surveyor VFT Setting and Saving Presets

The Surveyor VFT presets and titles will be stored directly on the camera itself. This capability is discussed in detail in section 2.5.2.
2.5.1.3 Surveyor VFT Color Gain
The Surveyor VFT does not provide a software interface to adjust the color gain of a camera. The color gain is accessed through the programming menus of the Surveyor VFT as described in the Surveyor VFT Camera Dome Programming Manual. A suitably privileged operator can activate a programming menu for color gain and then back out. The Surveyor VFT programming menu will be accessed by executing pre-compiled macros that will be re-used directly from AVCM. Also note that execution of those macros will use code that is re-used from AVCM and called from CHART.

Note that the macros will be used to set the proper camera color gain mode (automatic or manual) and to adjust the color balance itself.
2.5.1.4 Surveyor VFT Camera Power
The Surveyor VFT does not provide a software interface to power the camera on and off. This will indicate if the receiver is online or offline. The camera is considered to be online when it responds to a status query. Otherwise, it is offline.

2.5.1.5 Surveyor VFT Lens Speed
The Surveyor VFT does not provide a software interface to retrieve the current lens speed of the camera. The Surveyor VFT has 3 lens speeds – slow, medium, and fast. CHART will provide an interface to toggle the lens speed but will not provide feedback as to the current setting of the lens. The Surveyor VFT camera will be programmed to enable the lens title with fade control enabled for the lens title. This will provide feedback to the operator on a monitor where the image is displayed when the lens speed is toggled and then will fade from the image. See the Surveyor VFT Camera Dome Programming Manual for details on how to enable the lens title and how to enable fade control for the lens title. The lens title may also be positioned anywhere on the display.

2.5.1.6 Surveyor VFT Reset Camera
The Reset Camera capability will operate as it currently does. This will reset the Surveyor VFT camera. The camera will not respond to control commands while the camera is resetting. This can take up to 2 minutes.

2.5.1.7 Surveyor VFT Message Setup
The Surveyor VFT does not provide a software interface for setting camera and preset titles. This is done through the programming menus as described in the Surveyor VFT Camera Dome Programming Manual. CHART will execute pre-compiled macro commands that will navigate through this menu in order to provide titling capabilities. As noted earlier, execution of those macros will use code that is re-used from AVCM and called from CHART.

A suitably privileged operator will be able to set line 1 of the camera through the Surveyor VFT menu. The user may wait up to two minutes for a titling operation to complete. The Surveyor VFT does not provide a software interface for setting the titles to either the top or the bottom of the display or for enabling or disabling the titles. These capabilities are provided through the programming menus of the Surveyor VFT as described in the Surveyor VFT Camera Dome Programming Manual. CHART will provide a capability to access the Surveyor VFT programming menu as described in Section 2.5.1.8.
2.5.1.8 Surveyor VFT Programming Menu
Many configuration capabilities of the Surveyor VFT camera are provided through the programming menus of the Surveyor VFT as described in the Surveyor VFT Camera Dome Programming Manual. CHART will provide an interface that a suitably privileged operator can use to activate the programming menu. The operator will navigate through the Surveyor VFT programming menus by looking at the monitor(s) displaying the camera image.
2.5.2 Camera Presets
CHART R2B2 will provide the capability to store and move to preset positions (i.e., pan, tilt, zoom, focus) for both COHU 3955 and Surveyor VFT cameras. This includes not only the preset but an associated title to be displayed on line 2 of the camera display. Also, when a camera is no longer displayed on any monitor, the camera will move to a default preset, if available.

CHART will use raw values for saving and setting preset positions for COHU 3955 cameras. CHART will save the values in the database when a preset is saved. CHART will retrieve the values from the database and directly command the camera to move to the raw values for pan, tilt, zoom, and focus when moving to a preset. A separate command will be issued to set a title on line 2 of the camera.
The mechanism for saving and moving to presets is much different for Surveyor VFT cameras. Although the raw values for pan, tilt, zoom, and focus for a preset will be stored for a preset on the CHART database, the presets themselves, including the associated title, are stored directly on the camera. Although the Surveyor VFT may be commanded to move to a raw preset, there is no way to access line 2 of the camera title directly. The only way to access line 2 of the title is by associating it with a preset through the camera menu system. As outlined in 2.5.1, the Surveyor VFT menu system is used for storing presets and titles. The menu system is automatically negotiated by running precompiled macros for setting, moving to preset positions, and displaying the preset title on line 2. This process can take up to two minutes.
2.5.3 Camera Control Revoke

A suitably privileged operator shall have the ability to revoke a camera control from any operators whose chosen (or default) monitor group is owned by a particular organization. Furthermore camera control may be revoked from any number of owning organizations.

When camera control is revoked from an organization, any active camera control sessions initiated by operators whose monitor group is owned by the revoked organization, will be terminated. A camera that is revoked will not be available for control by operators with monitor groups that are owned by revoked organizations until such time that they are un-revoked by a suitably privileged operator. It is anticipated that multiple organizations may be revoked for camera control at one time.

2.6 Video Related Configuration

CHART R2B2 will enable suitably privileged operators to add, update, and delete all video related devices and associated items through the software.
CHART R2B2 will provide the necessary interfaces to add, update, and delete cameras (including No Image Available sources), monitors, monitor groups, codecs, control RS 232 interfaces, video fabrics, V1500 switches, and bridge circuits.

2.7 JacORB and Java 1.5
The current CHART ORB, Iona’s Orbacus product will be replaced with R2B2. The target ORB is JacORB version 2.2.3, a free Java object request broker (www.jacororb.org). The JacORB source will be compiled directly for use with CHART. Any necessary CHART code changes will be made and a thorough regression test of CHART functionality will be performed.

JacORB supports all of the CORBA services currently utilized by CHART: TradingService, OMG Notification Service and Event Service.

Because of the extensive regression testing needed for JacORB, CHART will be upgraded to be compiled and run under Java 1.5. This should entail no additional testing effort beyond the JacORB regression testing.
2.8 Assumptions

1. A camera connected to a video fabric may be displayed on up to n monitors within the video fabric, where n = the number of monitors connected to the video fabric.

2. The video fabrics are:

a) CHART IP Video Network

b) BHT Video Switch

c) FMT Video Switch

3. The BHT and FMT Video Switches are 2 distinct video switches. They are not a single fully or partially distributed system as defined in VICON NOVA 1500 V1500 Installation Instruction Manual, Vicon Part No. 8009-8087-02-00, Rev 503, Section 9.

4. One server manages all routes between video fabrics.
5. A “No Video Available” source will be defined for each video fabric. Because of Assumption #3, this means that two additional “No Video Available” sources will be needed, one at the FMT and one at the BHT.
6. A camera will move to it’s default preset (number 8, when numbered starting from 1), when the camera’s image has been removed from the last monitor.

2.9 Constraints

1. The R2B2 implementation will support one and only one video router.

2. The R2B2 implementation will have all routes local to the video router.
3. Surveyor VFT cameras may only be controlled over a direct RS-232 connection. They may not be controlled via an IP based encoder as is the COHU 3955.

4. COHU 3955 cameras may only be controlled via an IP based encoder. They may not be controlled over a direct RS-232 connection.

2.10 Items to be Resolved as Part of a Future Release
1. MdTA is interested in getting some type of alarm status from a Surveyor VFT camera. This is an additional capability of the Surveyor VFT camera and the V1500 switching network.

2. MdTA is interested in having the ability to swap new Surveyor VFT cameras into the system without having to re-program the presets. This may be possible but still needs to be investigated. MdTA is also interested in having the ability to load preset information already saved on a Surveyor VFT camera into CHART. This would likely have to be done by updating the CHART database, either manually or through an automated script, rather than through the CHART software itself.

3 Models

This section provides software designs modeled using the Unified Modeling Language (UML). A section is provided for each functional area of CHART II to be added in R2B2.

3.1 Use Case Diagrams
Use case diagrams may include both new and existing components. When a use case diagram contains both new and existing components, the new use cases are depicted in red and are further detailed in additional use case diagrams. When this is the case, the use case will contain a reference to the appropriate diagram. Existing components will not be detailed. When use diagrams depict only new use cases, there is no need to distinguish between old and new components, so all components are depicted in black.

3.1.1 HighLevelUseCases (Use Case Diagram)

This diagram shows the main uses of the system at a very high level. Most of the use cases will not be detailed further since they are not changing with CHART R2B2.

[image: image3.emf]View Device

Status

Configure

Operation

Centers

Operator

Control HAR

Control DMS

Manage Camera

Manage

Device

Queues

Manage

Dictionaries

Respond To

Traffic Event

Manage Stored

Messages

Manage Plans

Administrator

Configure Video

Tours

Configure Devices

All use cases

use this

Log System

Operation

Monitor

Controlled

Resources

System

alarm alarm

Figure 3‑1. HighLevelUseCases (Use Case Diagram)

3.1.1.1 Administrator (Actor)

An administrator is a CHART II user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

3.1.1.2 Configure Devices (Use Case)

An administrator (operator with the correct functional rights) may configure devices. This includes the devices themselves and all associated supporting configuration information.
3.1.1.3 Configure Operation Centers (Use Case)

A user with proper functional rights can configure operations centers that are known to the system. Administrators can add and remove operations centers. Users can also view the operations centers that have been defined in the system.

3.1.1.4 Configure Video Tours (Use Case)
A user with proper functional rights can configure video tours. Users can also view video that have been defined in the system.

3.1.1.5 Control DMS (Use Case)

The following DMS sign models are supported: FP1001, FP2001, FP9500, TS3801, ADCO, Display Solutions, Sylvia.

3.1.1.6 Control HAR (Use Case)

Highway Advisory Radio (HAR) allows the user to broadcast a message over an AM radio channel to inform motorists of traffic conditions, incidents, events, etc. The user can set the message on a HAR device, blank the message (which places the default message on the device), reset the device, and take the device offline from the Chart II system or place the device back on-line.

3.1.1.7 Log System Operation (Use Case)

The system shall log operations that are performed by users. View only type accesses to the system are not logged. Attempts by a user to access parts of the system for which they do not have the proper rights are also logged.

3.1.1.8 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera. Please refer to the Manage Camera Use Case diagram for more detailed information.

3.1.1.9 Manage Device Queues (Use Case)

Each HAR and DMS device contains a queue that serves to arbitrate the usage of the device when more than one user needs to display a message on the device. When a user is managing a traffic event and wishes to put a message on a HAR or DMS as part of the response for the traffic event, the message is not sent directly to the device and is instead sent to the device's arbitration queue. This arbitration queue uses a prioritization algorithm that determines which message is to be sent to the device based on the source of the message and the type of traffic event from which the message was sent. This determination of the message to put on the device is done every time a message is removed from the queue or added to the queue.

All messages set on DMS or HAR devices when the device is online must pass through the device's queue via a traffic event. No direct setting of the DMS or HAR message is allowed when the device is online.

The system allows users to view device queues to determine the priority of the messages in the queue, see the message that is currently active, and manually re-prioritize the queue.

3.1.1.10 Manage Dictionaries (Use Case)

An administrator (operator with the correct functional rights) may manage system dictionaries.

3.1.1.11 Manage Plans (Use Case)

An operator with the correct functional rights may manage plans.

3.1.1.12 Manage Stored Messages (Use Case)

An operator with the correct functional rights may manage stored messages.

3.1.1.13 Monitor Controlled Resources (Use Case)

Some objects in the system provide the capability for an operations center to take control of the object and block other operations centers from performing certain operations on the object. Some examples of such objects are Traffic Events and also DMS, HAR, and SHAZAM objects that have been placed in maintenance mode. An operation center must have at least one user logged in while the operation center has control of one or more of these objects. The system will not let an operator log out from an operations center that has control of one or more of these objects if there are no other users logged into the operation center. The system will automatically monitor these objects to detect the case where no users are logged into an operations center that has control of one or more of these objects. This condition could arise if the CHART II GUI workstation is powered off without the user logging out from CHART II.

3.1.1.14 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.1.15 Respond To Traffic Event (Use Case)

An operator may use the system to respond to traffic events which may include the control of field devices. These field devices to not include cameras for R2B1, however cameras are likely to be included ion a future release of CHART.

3.1.1.16 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

3.1.1.17 View Device Status (Use Case)

The user may view the status of a device. The information that encompasses a device status depends on the device type and sometimes even the device model within a device type. Device status is viewable by users.

3.1.2 ManageCamera (Use Case Diagram)

An operator will interact with cameras in a variety of ways. Cameras may be taken online or offline. Monitors may be taken online or offline as well. Cameras may be displayed. Cameras may also be controlled. Note that the term control as it applies to cameras has a slightly different meaning than when applied other types of CHART devices, such as DMSs. An operator who controls a camera establishes a control session which typically lasts some number of minutes. During this control session, the operator sends multiple commands to the camera (e.g., Pan Left, Pan Stop). While the session is active, no other operator may send commands to the camera. An operator may also view which cameras are displayed on which monitors. Also, a camera may be revoked for display or control.

[image: image4.emf]Operator

View Monitor

Assignments

The server will track which

cameras or tours are displayed

on which monitors. presentation to

operator is a GUI function.

Manage Camera

Take Camera

Offline

Put Camera

Online

Terminate Camera

Control

Take Monitor

Ofline

Remove Camera

From Monitors

Put Monitor

Online

Display Camera

Revoke

Control

Control Camera

Revoke

Display

Display No Video Available

Source On Monitor

Terminate Camera

Control

Manage Camera

Control

Send Camera

Commands

Poll Camera

System

«uses»

«include» «include»

«include» «include»

«uses»

«uses»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«uses»

«include» «include»

«uses»

«include» «include»

«include» «include»

«include» «include»

«uses»

«include» «include»

«include» «include»

«uses»

Figure 3‑2. ManageCamera (Use Case Diagram)

3.1.2.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to the Send camera Commands use case diagram for more details.

3.1.2.2 Display Camera (Use Case)

An operator with the correct functional rights may display a camera on a monitor. See the Display Camera use case diagram for a more detailed explanation.

3.1.2.3 Display No Video Available Source On Monitor (Use Case)

A No Video Source will be displayed on a monitor when the camera image has been removed without being replaced by a new camera image. A No Video Source acts essentially like another camera in the system.

3.1.2.4 Manage Camera (Use Case)

An operator with the correct functional rights may perform basic operations on a camera. Please refer to the Manage Camera Use Case diagram for more detailed information.

3.1.2.5 Manage Camera Control (Use Case)

An operator with the proper functional rights may either request control of a camera or terminate control of a camera. If the camera control request is successful, a camera control session is established. See the Request Camera Control use case for further details. When camera control is terminated, the camera control session is terminated. See the Terminate Camera Control use case for further details.

3.1.2.6 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.2.7 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control communications path. The polling process consists of sending the camera a poll command and receiving a response from the camera. This is done by the system for all cameras that are online, regardless of whether the cameras are controlled or not. It is also done immediately after camera control has been granted so that the camera control status is current. In addition, polling takes place while a camera is actively controlled. When a camera is actively controlled, the polling is typically much more frequent that when the camera is not actively controlled.

3.1.2.8 Put Camera Online (Use Case)

An operator with the proper functional rights can put a camera online if the camera is currently offline. Putting the camera online makes it available for display and control to any operators having the proper functional rights.

3.1.2.9 Put Monitor Online (Use Case)

An operator with the proper functional rights can put a monitor online if the monitor is currently offline. Putting the monitor online makes it available for display to any operators having the proper functional rights.

3.1.2.10 Remove Camera From Monitors (Use Case)

When a camera has been taken offline, the camera image must be removed from any monitors on which it is displayed.

3.1.2.11 Revoke Control (Use Case)

An operator who revokes control of a camera does so from specific organizations. Since operators themselves are not “owned” by an organization, the organization of the camera control session is determined by the operators chosen (or assigned) monitor group.

3.1.2.12 Revoke Display (Use Case)

An operator who revokes display of a camera does so for a specific organization's monitor(s). This can include multiple organizations. This means that monitors owned by that organization cannot have the revoked camera image displayed on them. This includes a specific capability to block from the public (meaning monitors designated as public will be revoked).

3.1.2.13 Send Camera Commands (Use Case)

An operator with the proper functional rights may send commands to a camera. This includes sending the command to the camera and receiving a response from the camera. Commands sent to the camera include pan, tilt, zoom, iris control, focus, save preset, move to preset, and color balance control commands. Commands may also include camera reset, camera power, and camera titling commands.

3.1.2.14 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

3.1.2.15 Take Camera Offline (Use Case)

Operators with the proper functional rights may take a camera offline. A camera that has been taken offline may not be displayed or controlled until it is put back online.

3.1.2.16 Take Monitor Ofline (Use Case)

Operators with the proper functional rights may take a monitor offline. A monitor that has been taken offline may not be displayed on until it is put back online

3.1.2.17 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control session that the operator is actively using. Note that an operator who has the proper functional rights to establish the control session will always have the proper functional rights to terminate that session. Also, a camera control session may be terminated if that session is overridden by an appropriately privileged operator. Also, an active control session may be terminated if a camera is taken offline or if the camera is no longer displayed on a monitor within the controlling operator’s monitor group as a result of displaying a NoVideoAvailable source. Note that part of this process will include terminating the camera control GUI, although that is beyond the scope of this document.

3.1.2.18 View Monitor Assignments (Use Case)

An operator may view which cameras or camera tours are assigned to which monitors. This information will be made available by the server for the GUI to interpret. The presentation to the user is beyond the scope of this design.

3.1.3 ManageCameraControl (Use Case Diagram)

An operator may control establish a camera control session which will allow the operator to issue Pan/Tilt/Zoom and other commands to the camera while that control session is active. Only one camera control session at a time will be active so that only one operator at a time may control a particular camera. The cameras that are available for an operator to control include only those cameras that are displayed on monitors that are within the operator’s monitor group. Presumably, the monitors are physically visible to the operator. This is so that the operator will be able to see the camera image while the camera is actually being moved. In addition an operator may be able to override an existing camera control session, thereby taking control of a camera from another operator. The specific business rules which govern camera control override are described in the Override Camera Control use case.

[image: image5.emf]Operator

Notify Operator of

Camera Control

Status

Status will be updated on server side.

GUI will actually notify the operator. GUI

design will not be addressed here.

Control Camera

Terminate Camera

Control

Manage Camera

Control

Part of the request control process

includes launching the Camera

Control GUI. This process is strictly

part of GUI design.

Request Camera

Control

Override Camera

Control

Check If Camera Local

Monitor Display

Evaluate Camera

Control Request

Check If Camera

Controlled

Grant Camera

Control

Poll Camera

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«uses»

«uses»

«uses»

«uses»

«uses»

«include» «include»

«uses»

«uses»

Figure 3‑3. ManageCameraControl (Use Case Diagram)

3.1.3.1 Check If Camera Controlled (Use Case)

In order to evaluate a camera control request, the system must determine whether the camera is currently controlled by another operator.

3.1.3.2 Check If Camera Local Monitor Display (Use Case)

A camera control request will only be granted if the camera is displayed on a monitor that is in the monitor group of the operator requesting control. This is to implement the requirement that an operator may only control a camera when the operator can actually see the camera.

3.1.3.3 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to the Send Camera Commands use case diagram for more details.

3.1.3.4 Evaluate Camera Control Request (Use Case)

An operator may control establish a camera control session which will allow the operator to issue Pan/Tilt/Zoom and other commands to the camera while that control session is active. Only one camera control session at a time will be active so that only one operator at a time may control a particular camera. The cameras that are available for an operator to control include only those cameras that are displayed on monitors that are within the operator’s monitor group. Presumably, the monitors are physically visible to the operator. This is so that the operator will be able to see the camera image while the camera is actually being moved. In addition an operator may be able to override an existing camera control session, thereby taking control of a camera from another operator. The specific business rules which govern camera control override are described in the Override Camera Control use case.

3.1.3.5 Grant Camera Control (Use Case)

When a camera control request has been granted, the "circuit" is established, the control session becomes fully active, and the camera is polled so that the camera status may be immediately updated.

3.1.3.6 Manage Camera Control (Use Case)

An operator with the proper functional rights may either request control of a camera or terminate control of a camera. If the camera control request is successful, a camera control session is established. See the Request Camera Control use case for further details. When camera control is terminated, the camera control session is terminated. See the Terminate Camera Control use case for further details.

3.1.3.7 Notify Operator of Camera Control Status (Use Case)

An operator will be notified of camera control status under a number of circumstances. If another operator overrides the controlling operator's camera control session, the controlling operator will be notified. If an administrator with sufficient privileges takes a camera offline, then the controlling operator will be notified. Also, if the controlled camera is no longer displayed on a monitor within the controlling operator’s monitor group, the controlling operator will be notified that their camera control session has been terminated. The actual mechanism used to notify the operator through the GUI is beyond the scope of the server side design.

3.1.3.8 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.3.9 Override Camera Control (Use Case)

The Override Camera Control use case is invoked when an operator with the proper functional rights requests control of a camera that is currently controlled by another operator but where control would otherwise be allowed. If, based on a set of business rules, the operator may override the existing camera control session, the requesting operator will have the option to override the existing camera control session. If the requesting operator chooses to override, the existing control session will be terminated and the new one will start. Note that if the operator does choose to override an existing control session, control may not be granted immediately. This is because the existing camera control session will not terminate until all long running commands, such as setting a title on certain types of cameras, have completed. A requesting operator may override an existing camera control session based when the requesting operator has the Override Camera Control functional right for the camera’s owning organization

3.1.3.10 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control communications path. The polling process consists of sending the camera a poll command and receiving a response from the camera. This is done by the system for all cameras that are online, regardless of whether the cameras are controlled or not. It is also done immediately after camera control has been granted so that the camera control status is current. In addition, polling takes place while a camera is actively controlled. When a camera is actively controlled, the polling is typically much more frequent that when the camera is not actively controlled.

3.1.3.11 Request Camera Control (Use Case)

An operator with the proper functional rights may request control of a camera. This means that the operator may send pan/tilt/zoom (PTZ) and other commands to the camera. The system evaluates the request, and will accept the request, prompt the operator to override an existing camera control session, or reject the request. If the request is accepted or the user chooses to override an existing control session, a GUI will be launched which can be used to send commands to the camera. The GUI itself will not be addressed in this document.

3.1.3.12 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control session that the operator is actively using. Note that an operator who has the proper functional rights to establish the control session will always have the proper functional rights to terminate that session. Also, a camera control session may be terminated if that session is overridden by an appropriately privileged operator. Also, an active control session may be terminated if a camera is taken offline or if the camera is no longer displayed on a monitor within the controlling operator’s monitor group as a result of displaying a NoVideoAvailable source. Note that part of this process will include terminating the camera control GUI, although that is beyond the scope of this document.

3.1.4 SendCameraCommands (Use Case Diagram)

An operator with the proper functional rights may control a camera. Once a control session has been established, the operator will use the camera control GUI to issue control commands to the camera. Those commands include pan, tilt, zoom, iris, focus, color balance, camera reset, preset, and camera title commands. For each command sent to the camera, a response shall be received from the camera. In addition to commands sent by the user, the system will send poll commands to the camera and evaluate the responses from those poll commands. The Poll Camera use case is described as part of the Manage Camera use case diagram. Note that each type of command will have separate functional rights so that some operators may be able to send pan, tilt, and zoom commands to the camera but will not be allowed to set camera's color balance, for instance. For R2B2, only COHU 3955 and Surveyor VFT cameras may be controlled. COHU 3955 commands will be sent to the camera through an IP based encoder, which will convert IP control commands to serial camera control commands which will be sent to the camera over the encoder's COM port. Surveyor VFT commands will be sent through a Command Processor which in turn sends over an RS-232 port. The Command Processor manages sending commands to multiple cameras attached to a single RS-232 port.

[image: image6.emf]Operator

Control

Camera

Control Surveyor VFT

Camera

Execute Simple

Command

Send Camera

Commands

SendToCommandProcessor

Execute Command

Macro

Process3955ControlRequests

Control COHU 3955

Camera

Send to Encoder

«include» «include»

«include» «include»

«extends»

«include» «include»

«uses»

«extends»

«uses»

«include» «include»

«uses»

Figure 3‑4. SendCameraCommands (Use Case Diagram)

3.1.4.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to the Send Camera Commands use case diagram for more details.

3.1.4.2 Control COHU 3955 Camera (Use Case)

The Control COHU camera use case provides the functionality needed to send commands to COHU 3955 cameras. The command will be built, meaning that the command bytes will be generated, and those commands will be sent to the camera. Each command sent to the camera should elicit a response. Should no response be received from the camera, an error shall be returned to the user indicating that the command has failed. However, the camera will remain online and available to continue to receive commands.

3.1.4.3 Control Surveyor VFT Camera (Use Case)

The Control Surveyor VFT camera use case provides the functionality needed to send commands to Surveyor VFT cameras. The command will be built, meaning that the command bytes will be generated, and those commands will be sent to the camera. Each command sent to the camera should elicit a response. Should no response be received from the camera, an error shall be returned to the user indicating that the command has failed. However, the camera will remain online and available to continue to receive commands.

3.1.4.4 Execute Command Macro (Use Case)

For the Surveyor VFT camera, certain commands (such as setting a camera title) require multiple commands to be generated from a compiled macro. Once these simple commands have been assembled, camera control request processing for the Surveyor VFT camera includes actually building the simple binary command, sending that command to the camera via a Command Processor and receiving a response from the camera via the Command Processor.

3.1.4.5 Execute Simple Command (Use Case)

Simple camera control request processing for the Surveyor VFT camera includes actually building the simple binary command, sending that command to the camera via a Command Processor and receiving a response from the camera via the Command Processor.

3.1.4.6 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.4.7 Process3955ControlRequests (Use Case)

Camera control request processing for the COHU 3955 includes actually building the binary command, sending that command to the camera via an IP sending device and receiving a response from the camera via an IP sending device. Although the camera itself sends and receives data using an RS-422 connection, CHART instead communicates with an IP based encoder that converts TCP/IP data to serial data for transmission to the camera, and converts serial data from the camera to TCP/IP for transmission to the system.

3.1.4.8 Send Camera Commands (Use Case)

An operator with the proper functional rights may send commands to a camera. This includes sending the command to the camera and receiving a response from the camera. Commands sent to the camera include pan, tilt, zoom, iris control, focus, and color balance control commands. Commands may also include camera reset, camera power, and camera titling commands.

3.1.4.9 Send to Encoder (Use Case)

An IP based Encoder is used with COHU 3955 cameras. Commands are sent to/and received from the Encoder. The Encoder itself, takes communicates with the camera via RS-232.

3.1.4.10 SendToCommandProcessor (Use Case)

The utilize command processor use case encompasses sending and receiving camera commands to/from multiple cameras attached to a single RS-232 port.

3.1.5 DisplayCamera (Use Case Diagram)

An operator may display any camera on any monitor subject to certain restrictions. First the operator must have the proper functional rights to display a camera on a monitor. Next, the operator must have the proper functional rights to display a particular camera. Finally, that camera must be online. An operator may display a local camera on a local monitor, a remote camera on a local monitor, a local camera on a remote monitor, or a remote camera on a remote monitor. A local camera is a camera homed to the same server as the operator's workstation. A local monitor refers to a monitor in the requesting operator’s monitor group. An operator with the correct functional rights may also start and stop a camera tour running on a local or remote monitor. A display request may also entail displaying a camera on a monitor across video fabrics and using a router to manage the limited number of connections between the video fabrics.

[image: image7.emf]Operator

Display Camera

Terminate Camera

Control

Display Camera

On Monitor

StopVideoTour

Camera and Monitor

On Different

Switch Fabric

StartVideoTour

Camera and Monitor

On Same Switch Fabric

Build a

Route

Override Camera

Image Display

Command V1500

Switch

Command Decoder

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«uses»

«include» «include»

«uses»

«include» «include»

«include» «include»

«extend» «extend»

«include» «include»

«include» «include»

«include» «include»

Figure 3‑5. DisplayCamera (Use Case Diagram)

3.1.5.1 Build a Route (Use Case)

The Router tracks all routes between video fabrics. The limited number of connections is managed. This means that all requests are evaluated based on a set of business rules, and fulfilled if possible. It is possible, based on the business rules, that a current image, using one of the target routes, will need to be overridden. The Router will command either the V1500 Switch or the Decoder as it builds the legs of the route.

3.1.5.2 Camera and Monitor On Different Video fabric (Use Case)

After a display request has been evaluated and it has been determined that the camera and monitor are on different video fabrics, a route between the camera and monitor must be computed and evaluated.

3.1.5.3 Camera and Monitor On Same Video fabric (Use Case)

After a display request has been evaluated and it has been determined that both the camera and monitor are on the same video fabric, the receiving device can be commanded directly. For IP based cameras and monitors, a Decoder is commanded. For V1500 based cameras and monitors, a V1500 switch is commanded.

3.1.5.4 Command Decoder (Use Case)

In order to accomplish the task on displaying a camera on a monitor, the system will command an IP based decoder to perform the video switching. The decoder will actually stop receiving the video stream for the current camera and start receiving the video stream for the new camera. It will do so by dropping the multicast group associated with the current camera's video stream and joining the multicast group associated with the new camera's video stream.

3.1.5.5 Command V1500 Switch (Use Case)

A V1500 Switch is commanded whenever a source and a sink on a V1500 switch need to be connected.

3.1.5.6 Display Camera (Use Case)

An operator with the correct functional rights may display a camera on a monitor. See the Display Camera use case diagram for a more detailed explanation.

3.1.5.7 Display Camera On Monitor (Use Case)

An operator with the proper functional rights may display a camera on a monitor by commanding the proper Decoder or V1500 Switch. If the camera currently displayed on the target monitor is being controlled, and that monitor the only display within the controlling operator’s monitor group, the display request will be normally rejected. The exception to this rule occurs if a camera is being taken offline, and the camera is being controlled. In this case a NoVideoAvailable source is displayed on the monitor and camera control is terminated.
3.1.5.8 Move To Preset (Use Case)

When the last image of a camera is removed from any monitor (as part of a new display request), the camera will move to a default preset position if defined. A camera may also move to a pre-defined preset as part of a display associated with a video tour.

3.1.5.9 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.5.10 Override Camera Image Display (Use Case)

The Override Camera Image use case deals with the situation where a high priority display request comes into the system when there is no currently available route to fulfill the request. In such a case one of routes currently in use will have to be taken for use by the higher priority request. This means that a “No Video Available” source will be displayed on the monitor(s) that have had their camera image overridden.

3.1.5.11 StartVideoTour (Use Case)

An operator with the proper functional rights may start a video tour on the selected monitor. The video tour list is defined in the CHART II database. The video tour list consists of a list of cameras to be displayed in succession for a configurable dwell time.

3.1.5.12 StopVideoTour (Use Case)

An operator with the proper functional rights may stop a video tour running on the selected monitor. The operator need not be the operator who started the camera tour.

3.1.5.13 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control session that the operator is actively using. Note that an operator who has the proper functional rights to establish the control session will always have the proper functional rights to terminate that session. Also, a camera control session may be terminated if that session is overridden by an appropriately privileged operator. Also, an active control session may be terminated if a camera is taken offline or if the camera is no longer displayed on a monitor within the controlling operator’s monitor group as a result of displaying a NoVideoAvailable source. Note that part of this process will include terminating the camera control GUI, although that is beyond the scope of this document.

3.2 Class Diagrams
The following diagrams depict both the high level interfaces and the module level class diagrams. The high level interface diagrams are represented first. Classes that are shaded will be implemented in R2B2 or exist so that the future requirements for CHART video are accounted for in the R2B2 design.
3.2.1 VideoHighLevel (Class Diagram)

This diagram shows the High Level CHART II CORBA interfaces. This diagram does not show all VideoService IDL elements, but shows the highest level elements and their interrelationships. For further details, see VideoHighLevel-VideoSource, VideoHighLevel-VideoSink, and VideoHighLevel-VideoTransmission diagrams. The collection of these last three diagrams show all planned CORBA/IDL interface objects for the CHART II Video Service. In all four of these diagrams, some boxes are shown indicating objects planned to be implemented for later releases. These objects have been considered for future planning purposes, to ensure than the current design is well-thought out enough to be able to accommodate future planned enhancements.

This diagram shows cameras and related information generally on the left side, monitors and related information generally on the right side, and video transmission and routing capabilities in the central part of the diagram. The VideoProvider interface is the top of the interface set which contains the VideoCamera interface. VideoSource includes video sources including fixed cameras, image generators, etc. Likewise on the right side, VideoCollector is at the top, opposite VideoProvider, with VideoSink and Monitor lower down. In addition to VideoSource and VideoSink objects, BridgeCircuit objects will also be VideoProviders and VideoCollectors, since any bridge circuit both collects video from some other VideoProvider and provides video to the next VideoCollector in line. Multiple bridge circuits may be present between the ultimate VideoProvider (i.e., the VideoSource, that is, the camera, the true source of the image) and the ultimate VideoCollector (i.e., the VideoSink, that is, the monitor, the final sink of the image).

[image: image8.emf]Tau UML does not provide sterotypes for

distinguishing struct and valuetype classes.

So these stereotypes are used for all R2B1

Class Diagrams:

<<datatype>> - Defined in IDL as a simple data

 type, i.e., a struct.

<<powertype>> - Defined in IDL as the (more

 complicated) valuetype.

At this point no valuetypes are defined for

R2B1 or R2B2.

+createTour(token,tour)

+getTours(token):Tour[]

+getMonitorsWithActiveTours()

«interface»

VideoTourFactory

For R2B1 all create / add,

setConfiguration, and remove

methods and other similarly

named operations will not

be implemented except for in

Tours.

ACTIVE

INACTIVE

SUSPENDED

VideoTourState

+getStatus():VideoTourStatus

+getConfiguration(token):VideoTourConfig

+setConfiguration(token,TourConfig)

+remove(token)

«interface»

VideoTour

+m_name

+m_tourEntries:TourEntry[]

+m_temporary:boolean

+m_dwellTimeSecs:int

«datatype»

VideoTourConfig

+getProviderStatus():VideoProviderStatus

+getProviderConfig(token):VideoProviderConfig

+setProviderConfig(token,VideoProviderConfig)

+removeProvider(token)

+addDisplay(token,displayInfo:MonitorDisplayInfo)

+removeDisplay(token,displayID)

«interface»

VideoProvider

+m_opCenterInfo:OpCenterInfo

+m_userInfo:ControllingUserInfo

«datatype»

ControllingInfo

FUTURE:

m_temporary --

how to detect when

temp tour can be

deleted?

+m_sinkName:string

+m_sink:VideoSink

«datatype»

VideoSinkInfo

adjXxxx() methods -- For

pan, tilt, zoom, focus, iris --

any positive value means

right, up, in, far, open;

any negative value means

left, down, out, near, close;

zero means stop.

m_presetNumber of zero means none

(don't move to any preset).

+m_videoSourceName:string

+m_videoSource:VideoSource

+m_presetNumber:int

«datatype»

VideoTourEntry

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

«interface»

SharedResource

+moveToPreset(token,preset:int,onTour:boolean)

+savePreset(token, preset:int,title,cmdStat:CommandStatus)

«interface»

PresetEnabled

getID()

getName()

«interface»

UniquelyIdentifiable

+getDeviceStatus():VideoTransmissionDeviceStatus

+getDeviceConfig(token):VideoTransmissionDeviceConfig

«interface»

VideoTransmissionDevice

+m_activeState:VideoTourState

+m_sinkInfo:VideoSinkInfo[]

+m_temporary:boolean

«datatype»

VideoTourStatus

CMD_UP

CMD_DOWN

CMD_LEFT

CMD_RIGHT

CMD_SELECT

CMD_CANCEL

CMD_AUX1

CMD_AUX2

«enumeration»

ViconSVFTPgmCmd

+getSendingDeviceStatus():

 VideoSendingDeviceStatus

«interface»

VideoSendingDevice

+initialize()

+shutdown()

+connect()

+disconnect()

+send(messageByte)

+receive(data,length)

«interface»

CameraControlDevice

NTCIPCamera

+setAutoFocus(token,boolean)

+resendPreset(token,presetNum:int)

+enterProgramMode(token)

+exitProgramMode(token)

+programCommand(VFTPgmCmd, count:int)

+enterColorGainSetupScreen(token)

+exitColorGainSetupScreen(token)

+enterBlueColorGainMenu(token)

+enterRedColorGainMenutoken()

+programColorLess(token)

+programColorMore(token)

+programColorStop(token)

+programColorSavetoken()

+pogramColorCancel(token)

«interface»

ViconSVFTCamera

+adjPanTilt(token,panDir,tiltDir)

«interface»

DiagonallyMovable

CameraControlComPort

NOTE: Encoders and Decoders do not have any SwitchFabric

associated with them. Their SwitchFabric ID is the null ID (all

zeros). This way a VideoTransmissionDevice at a non-router

site does not have any need to contact a SwitchFabric at the

AOC site (which might be unreachable) at any time. This is in

support of independent operation in the face of network outages.

+getSourceStatus():VideoSourceStatus

+getSourceConfig(token):VideoSourceConfig

+setSourceConfig(token,VideoSourceConfig)

+setUserDisplayStatus(token, boolean)

+isNoVideoAvailable():boolean

+isDisplayable(token,info:VideoCollectorInfo,reason:string,sourceFabricID):bool

+isRemoveable(info:VideoCollectorInfo,monitorGroupIDs:Identifier[],reason:string):bool

+blockToPublic(token,ExtendedCommandStatus)

+unblockToPublic(token)

+revokeDisplay(token,revokedOrgIDs:IdentifierList, ExtendedCommandStatus)

+unrevokeDisplay(token,unrevokedOrgIDs:IdentifierList)

+isRevokedFor(orgId:Identifier)

«interface»

VideoSource

+m_name:string

+m_model:VideoSwitchModel

+m_switchFabricID:Identifier

+m_inPorts:short[]

+m_outPorts:short[]

«datatype»

VideoSwitchConfig

FUTURE (beyond R2B2).

«interface»

SwitchPort

«interface»

SwitchInputPort

+getStatus():VideoSwitchStatus

+getConfiguration(token):V1500CwitchConfig

+setConfiguration(token,V1500SwitchConfig)

+remove(token)

+connect(token,src:SwitchInputPort,dest:SwitchOutputPort)

+disconnect(token,dest:SwitchOutputPort)

+reloadSwitchConnections(token)

«interface»

VideoSwitch

+getCOHU3955CameraStatus(token):COHU3955CameraStatus

+getCOHU3955CameraConfig(token):COHU3955CameraConfig

+setCOHU3955CameraConfig(token, COHU3955CameraConfig)

+adjRed(token,direction:int)

+adjBlue(token,direction:int)

+setAutoFocus(token,boolean)

+setAutoColor(token,boolean)

+setLensFast(token,boolean)

+setPowerOn(token,boolean)

«interface»

COHU3955Camera

+getConfiguration(token):VideoFabricConfig

+setConfiguration((token,videoFabricConfig)

+setSwitchID(token,Identifier)

+remove(token)

«interface»

VideoFabric

«interface»

NoVideoAvailableSource

«interface»

Encoder

getIPAddress():IPAddress

«interface»

Codec

FUTURE (beoynd R2B2): resendPreset().

NOTE: disconnect() is a bookkeeping

exercise only (update database/status).

V1500 does not support a disconnect

function.

+getConfiguration():VideoRouteConfig

+getStatus():VideoRouteStatus

«interface»

VideoRoute

+getCameraStatus():VideoCameraStatus

+getCameraConfiguration(token):VideoCameraConfig

+setCameraConfiguration(token,VideoCameraConfig)

+isControllable():boolean

«interface»

VideoCamera

+m_name:string

+m_switchID:Identifier

«datatype»

VideoFabricConfig

+getReceivingDeviceStatus():VideoReceivingDeviceStatus

+connectFrom(token,VideoTransmissionDeviceConfig,

 VideoSourceID:Identifier):boolean

+disconnectFrom(token,VideoTransmissionDeviceConfig):boolean

+disconnect(token):boolean

«interface»

VideoReceivingDevice

+m_name:string

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_startProviderConfig:VideoProviderConfig

+m_endCollectorConfig:VideoCollectorConfig

«datatype»

BridgeCircuitConfig

takeOffline()

putOnline()

putInMaintenanceMode()

getCommMode()

«interface»

CommEnabled

+requestControl(token, overrideRequested:boolean,

 info:ControllingInfo,cmdStat:CommandStatus)

+terminateControl(token, cmdStat:CommandStatus)

+isControlled():boolean

+inhibitControl(token,hierarchyLevel:int)

+adjpan(token, direction:int)

+adjTilt(token, direction:int)

+adjZoom(token, direction:int)

+adjFocus(token, where:int)

+adjIris(token, direction:int)

+setAutoIris(token, boolean)

+setActiveTitle(token,title,lineNum:int,cmdStat:CommandStatus)

+resetCamera(token)

+pollCamera(token, refreshMonitorList:boolean)

«interface»

ControllableVideoCamera

+getConfiguration(token):BridgeCircuitConfig

+setConfiguration(token,BridgeCircuitConfig)

«interface»

BridgeCircuit

«interface»

SwitchOutputPort

getLocationDesc():String

setLocationDesc(token,String):void

getLocationProfiles():LocationProfileList

addLocationProfile(LocationProfile):void

deleteLocationProfile(token,LocationProfile):void

«interface»

GeoLocatable

+getCollectorStatus():VideoCollectorStatus

+getCollectorConfig(token):VideoCollectorConfig

+setCollectorConfig(token,VideoCollectorConfig)

+removeCollector(token)

+connectReceivingToSendingDevice(token,VideoProviderInfo,

 VideoSourceID, overrideRequested, testOnly,CommandStatus):void

+disconnectReceivingFromSendingDevice(oken,VideoProviderInfo,

 CommandStatus):void

«interface»

VideoCollector

«interface»

Decoder

+connect(token,VideoProviderInfo,VideoProviderConfig,

 VideoCollectorInfo, VideoCollectorConfig,

 overrideRequested,testOnly, reason:string, cmdStat)

+disconnect(token,VideoProviderInfo,VideoCollectorInfo)

+reinitialize(token)

«interface»

VideoRouteManager

connectRecevingToSendingDevice()

added to IDL (was implemented as a

VideoSinkImpl private method). Move

to VideoCollectorImpl and add

VideoSourceID for populating new

m_sourceID value of CollectorStatus.

New for R2B2:

setLocationDesc()

addLocationProfile(),

deleteLocationProfile().

setControllingOpCenter(token,opCtrInfo:OpCenterInfo)

«interface»

TransferableSharedResource

FUTURE: schedulDisplayImage()

+getSinkStatus():VideoSinkStatus

+getSinkConfig(token):VideoSinkConfig

+setSinkConfig(token,config:VideoSinkConfig)

+displayImage(token,overrideRequested, monitorGroupId,

 VideoProviderInfo, forTour:boolean,

 cmdStat:CommandStatus):void

+startTour(token, monitorGroupID, tourID, cmdStat)

+stopTour(token, monitorGroupID, tourID, cmdStat)

+suspendTour(token, monitorGroupID, tourID, cmdStat)

+resumeTour(token, monitorGroupID, tourID, cmdStat)

+tourConfigChanged(token,tourID:Identifier,tourConfig:

 VideoTourConfig)

+tourDeleted(token,tourID:Identifier)

+displayNoVideoAvailable(token,sourceIdToReplace,

 monitorGroupId:Identifier,cmdStat:CommandStatus)

+cameraUnavailable(token,sourceId:Identifier)

+scheduleDisplayImage(token,ScheduledSource)

«interface»

VideoSink

For R2B2, move displayImage()

from VideoCollector to VideoSink

(same signature). Added

connectReceivingToSendingDeivce()

to VideoCollector to replace

VideoCollector's displayImage().

+setPosition(token,xPos,yPos,xSize,ySize)

+getMonitorStatus():MonitorStatus

+getMonitorConfig(token):MonitorConfig

+setMonitorConfig(token,monitorConfig:MonitorConfig)

«interface»

Monitor

FUTURE: setPosition() FUTURE

SWMonitor

CommandProcessor

1

*

1

*

1 *

*

controls

camera

using

1

1

1

1

includes

*

is in

1

1

is carrying

* 1

1 1

1

routes video

to and from

*

uses

1 1

1

1

1

is running on

*

is

running

0..1

*

includes is part of

* *

1

1

uses

1

1

1

1

is carrying

1 *

is in

*

1

is managed by routes using

* 1

1

1

1 *

is displaying is displayed on

1 *

Figure 3‑6. VideoHighLevel (Class Diagram)

3.2.1.1 BridgeCircuit (Class)

The BridgeCircuit interface is implemented by a objects which serve to bridge disparate video fabrics within video routes. These video fabrics would include the video fabrics based around a V1500 switch and also the "null" video fabric consisting of no switch and codec VideoTransmissionDevice objects. The BridgeCircuit interface includes both the VideoCollector interface (meaning the BridgeCircuit receives video from another VideoProvider, ultimately the VideoSource) and the VideoProvider interface (meaning the BridgeCircuit provides video to another VideoCollector, ultimately to one or more VideoSink objects).

3.2.1.2 BridgeCircuitConfig (Class)

This represents configuration information for a bridge circuit. This is the status of a BridgeCircuit object. It consists primarily of configuration of the VideoProvider side (input to the bridge circuit) and of the VideoCollector side (output of the bridge circuit).

3.2.1.3 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port with direct connection to the control port of a video camera. It is used to send video camera control commands and return responses to a camera control process.

3.2.1.4 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides communications for access to control functions for a video camera. This includes encoders, command processors, and direct COM ports.

3.2.1.5 Codec (Class)

The Codec interface is implemented by objects representing codec devices (that is, encoders and decoders). It defines generic methods to be implemented by both encoders and decoders.

3.2.1.6 Command Processor (Class)

The CommandProcessor class provides an implementation of the CommandProccesor interface and is derived from the CameraControDevice class. The CommanProcessor manages the control of multiple cameras attached to one or more COM ports. The CommandProcessor may or may not be local to the camera that is being controlled

3.2.1.7 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by objects representing COHU model 3055 video cameras. It extends the ControllableVideoCamera interface by adding methods unique to the COHU 3955 cameras (unique within the universe of camera types planned for implementation within CHART II).

3.2.1.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This interface also supports a maintenance mode (although any given implementation may choose to implement putInMaintenanceMode() by throwing a CHART2Exception, if maintenance mode is not supported by that particular implementation). This interface is typically implemented only for field devices.

3.2.1.9 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The ControllableVideoCamera interface represents a controllable video camera as opposed to an uncontrollable, immovable VideoCamera. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of ControllableVideoCamera. The ControllableVideoCamera interface includes all methods common to the two known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

3.2.1.10 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or requesting to control) a VideoCamera.

3.2.1.11 Decoder (Class)

The Decoder interface is implemented by classes representing any type of video decoder. The Decoder interface includes both the Codec and the VideoReceivingDevice interfaces.

3.2.1.12 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by VideoCamera-enabled classes which can be moved diagonally in addition to standard orthogonal pan and tilt commands. A particular implementation may support 45-degree movements only, in which case the panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the parameters indicate the percent of movement proportionally in the pan/tilt directions. This interface is expected to be implemented beyond R2B2.

3.2.1.13 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder. The Encoder interface includes both the Codec and the VideoSendingDevice interfaces, which means in addition to providing forwarding of video, it also is used to send video camera control commands and return responses to a camera control process.

3.2.1.14 GeoLocatable (Class)

This interface must be supported by any system object that can be located via a geographic reference. This interface currently supports a basic textual location description and LRMS genometry (read only). For R2B2, it will be updated to support updating of a description profile and/or LRMS profile. It may potentially be expanded in future releases to include other latitude/longitude information or roadway position information necessary for placing objects on a system map, if necessary.

3.2.1.15 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a real, physical "television set" on which a video image can be displayed. This is the most common type of VideoSink (the other being a SWMonitor, part of a future requirement to stream video directly to user's workstations (or potentially other nearby computers).

3.2.1.16 NoVideoAvailableSource (Class)

The FixedVideoSource interface is implemented by objects which represent a video source other than a video camera, such as the "No Image Available" image generators. This interface could also represent a VCR or any other video source that is not a camera. The FixedVideoSource does not include the GeoLocatable interface because the location (e.g. lat/long) of a fixed video source is irrelevant in CHART II processing (unlike for a VideoCamera, for which the location (lat/long) of a camera could someday be used for automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.)

3.2.1.17 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard for CCTV cameras. As this is a future requirement for cameras not currently fielded by MDSHA, this interface is left to be defined at a later time.

3.2.1.18 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can store and move to presets. The savePreset() method saves the current camera position as the preset position. This interface is expected to be implemented in R2B2.

3.2.1.19 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.2.1.20 VideoFabric (Class)

The VideoFabric is implemented by a class which represents a "video fabric", that is a collection of VideoTransmissionDevice objects on a common "fabric" across which video can be routed directly. This includes any collection of switch input ports and switch output ports on a single video switch. (Note that a collection of encoder and decoder types of VideoTransmissionDevice objects represents a different, unnamed fabric across which video can be routed directly. The IP encoder/decoder fabric is therefore distinguished from other fabrics by their lack of an associated video fabric.

3.2.1.21 VideoFabricConfig (Class)

The VideoFabricConfig structure is used to store and transmit configuration information about a VideoFabric object.

3.2.1.22 SwitchInputPort (Class)

This is the interface for a switch input port. A switch input port is a type of switch port and is also a type of VideoSendingDevice, meaning it can send a video signal on behalf of the VideoProvider attached to it to any one or more VideoReceivingDevices (and corresponding VideoCollectors).

3.2.1.23 SwitchOutputPort (Class)

This is the interface for a switch output port. A switch output port is a type of switch port and is also a type of VideoReceivingDevice (meaning it receives a video signal on behalf of the VideoCollector attached to it). As a VideoReceivingDevice, a SwitchOutputPort is capable of being connected to any VideoSendingDevice.

3.2.1.24 SwitchPort (Class)

The is a generic SwitchPort interface. It is a CommEnabled interface, meaning a SwitchPort can be online or offline. (A SwitchPort cannot be in maintenance mode).

3.2.1.25 SWMonitor (Class)

The SWMonitor interface is implemented by objects which represent a software monitor capable of receiving and displaying video (i.e., a streaming video MPEG software decoder running on a PC). This interface supports a future requirement to display video directly to user's workstations.

3.2.1.26 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use but may also be allowed to transfer control of that resource to another operations center.

3.2.1.27 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

3.2.1.28 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon Surveyor VFT model video camera. (As there are no other Vicon brand cameras used within CHART II, there is no base ViconCamera interface representing all Vicon-brand cameras. For one thing, there would be no known basis for allocating methods to the base interface and the VFT interface.)

3.2.1.29 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enueration defines the values that can be used in the programCommand() method of the ViconSVFTCamera interface.

3.2.1.30 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within the CHART II system. Classes implementing this interface (and nothing below this interface would be fixed (non-controllable) video cameras. The VideoCamera interface includes the GeoLocatable interface, to someday allow for advanced features such as automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.

3.2.1.31 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

3.2.1.32 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

3.2.1.33 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is implemented by objects which can be used to receive video from a corresponding VideoSendingDevice. A VideoReceivingDevice may be an MPEG decoder or may be an output port on a video switch.

3.2.1.34 VideoRoute (Class)

This interface defines a route through CHART II video distribution system. A given implementation of a VideoRoute may or may not be actively in use at any given time. Routes are defined by the combinations of all bridge circuits between all pairs of video fabrics within the CHART II video distribution system. Routes cannot be added or deleted or enabled or disabled by users explicitly: the routes and their status are defined implicity by the configuration and status of bridge circuits defined in the system at any given time.

3.2.1.35 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing capabilities within CHART II. This router does not need to be used (in fact, cannot be used) when the VideoSource and VideoSink are on the same video fabric -- it is used only to make video routes across video fabrics. The implementation will use a set a rules to arbitrate among requested video displays when a set of bridge circuits between one or more pairs of video fabrics is fully utilized. Based on the override rules implemented, a new incoming routing request may or may not be able to be fulfilled depending upon priority, routing guarantees, number of images viewed, ongoing camera control sessions, etc. If an override can be granted, the overridden route(s) will be dropped in favor of the new route.

3.2.1.36 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an MPEG encoder or may be an input port on a video switch.

3.2.1.37 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video signals, such as video monitors and streaming video receivers directly on user workstations. Within the user interface, the VideoSink interface represents all objects on which a video source can be placed for viewing by users.

3.2.1.38 VideoSinkInfo (Class)

VideoSinkInfo represent information about a VideoSink that is used by a VideoTour.

3.2.1.39 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

3.2.1.40 VideoSwitch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video Switch in the CHART system. This interface provides access to configuration and status information for the siwtch, and provides connect and disconnect functions for making and breaking video connections.

3.2.1.41 VideoSwitchConfig (Class)

This represents the configuration information for a V1500 switch.

3.2.1.42 VideoTour (Class)

The Tour interface is implemented by a class which maintains the configuration and status of a single tour defined within the CHART II system.

3.2.1.43 VideoTourConfig (Class)

The TourConfig structure is used to hold and transmit configuration information about a given camera tour.

3.2.1.44 VideoTourEntry (Class)

The TourEntry structure is used to hold and transmit configuration information about a single entry in a camera tour.

3.2.1.45 VideoTourFactory (Class)

The TourManager interface is implemented by a class which tracks tours defined in the CHART II video system. It tracks the existence and configuration of tours and also tracks the status of all tours, whether they are active or not.

3.2.1.46 VideoTourState (Class)

The VideoTourState enumeration defines the values that can be used to indicate the status of a VideoTour.

3.2.1.47 VideoTourStatus (Class)

The TourStatus structure is used to hold and transmit status information about a given camera tour (e.g., what VideoSink objects the Tour is currently running on.

3.2.1.48 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is implemented by objects representing devices which can be used for sending and receiving video. This interface provides CHART-standard methods for accessing status and configuration information. Specific interfaces supporting sending and receiving inherit from this abstract base interface.

3.2.2 VideoHighLevel-VideoSource (Class Diagram)

This diagram shows the VideoSource side of the VideoHighLevel diagram in more detail, adding Factories, Configuration and Status structures, exceptions, and other supporting interface elements. In general each of the major interface objects, VideoProvider, VideoSource, VideoCamera, and ControllableVideoCamera have a factory and configuration and status structures used to store and transmit configuration and status information to clients and interested server objects.

[image: image9.emf]For R2B1 all create / add,

setConfiguration, and remove

methods and other similarly

named operations will not

be implemented except for in

Tours.

FUTURE

+m_camera:VideoCamera-old

+m_cameraName:string

+m_failureCode:int

+m_failureText:string

«datatype»

EnMasseSetResult

+m_failedCameraData:EnMasseSetResult[]

«datatype»

EnMasseSetResultList

+m_name:string

+m_componentType:VideoComponentType

+m_providerType:VideoProviderType

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_sendingDeviceID:Identifier

+m_sendingDeviceConfig:VideoTransmissionDeviceConfig

«datatype»

VideoProviderConfig

SOURCE_TYPE_FIXED

SOURCE_TYPE_COHU_MPC

SOURCE_TYPE_COHU_3955

SOURCE_TYPE_VICON_SVFT

«enumeration»

VideoSourceType

+m_reason:string

«exception»

PresetUndefinedException

FUTURE. This

method may be

incorporated into the

ControllableCamera

interface directly.

How to detect when

temp preset can be

deleted?

+m_providerConfig:VideoProviderConfig

+m_isNoVideoAvailable:boolean

«datatype»

VideoSourceConfig

FUTURE:

setAutoIris()

setAutoFocus()

setAutoColor()

(Note:these 3 will set

for all cameras under

this factory but obviously

only for camera types

that support the

corresponding function.)

+createVideoProvider(token,VideoProviderConfig)

+getProviderInfoList():VideoProviderInfo[]

«interface»

VideoProviderFactory

+m_presetNumber

+m_presetName

+m_presetTitle

+m_panPosition

+m_tiltPostion

+m_zoomPosition

+m_autoFocus:boolean

+m_focusPosition

+m_temporary:boolean

«datatype»

CameraPreset

+createVideoSource(tokenVideoSourceConfig)

+getSourceInfoList():VideoSourceInfo[]

+getNoVideoAvailableSource():VideoSourceInfo[]

+getNoVideoAvailableSourcesForFabric(switchFabricID):VideoSourceInfo[]

+getOnlineNoVideoAvailableSources():VideoSourceInfo[]

+getOnlineNoVideoAvailableSourcesForFabric(switchFabricID):VideoSourceInfo[]

«interface»

VideoSourceFactory

FUTURE:

m_skedMoveToDefaultPresetTime

m_maxControlIdleTimeMins

getResources():SharedResource[]

getControlledResources(OpCenterID):SharedResource[]

hasControlledResources(OpCenterID):boolean

«interface»

SharedResourceManager

+moveToPreset(token,preset:int,onTour:boolean)

+savePreset(token, preset:int,title,cmdStat:CommandStatus)

«interface»

PresetEnabled

+createVideoCamera(token,VideoCameraConfig)

+getCameraInfoList():VideoCameraInfo[]

+getValidRegionList():string[]

+setAutoIris(token,cameras:VideoCamera[],state:boolean):EnMasseSetResultList

+setAutoFocus(token,cameras:VideoCamera[],state:boolean):EnMasseSetResultList

+setAutoColor(token,cameras:VideoCamera[],state:boolean):EnMasseSetResultList

«interface»

VideoCameraFactory

+m_sourceConfig:VideoSourceConfig

+m_cameraNumber:int

+m_deviceLocation:string

+m_regions:string[]

+m_tmddDeviceName:string

+m_tmddCCTVImage:TmddCctvImageType

+m_tmddControlType:TmddCameraControlType

+m_tmddLocnExtHorizDatum:LRMSHorizontalDatumType

+m_tmddLocnExtLRMSLatitude:int

+m_tmddLocnExtLRMSLongitude:int

+m_tmddLocnExtVertDatum:LRMSVerticalDatumType

+m_tmddLocnExtLRMSHeight:int

+m_tmddLocnExtVertLevel:int

+m_tmddRequestCommands:int

«datatype»

VideoCameraConfig

+getProviderStatus():VideoProviderStatus

+getProviderConfig(token):VideoProviderConfig

+setProviderConfig(token,VideoProviderConfig)

+remove(token)

+addDisplay(token,displayInfo:MonitorDisplayInfo)

+removeDisplay(token,displayID)

«interface»

VideoProvider

Might have to create different

subclasses of CameraPreset

if there is no single way to store

preset position universally.

after defaultTitle are extra attributes

that I left in, maybe used for R2B2.

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

«interface»

SharedResource

NTCIPCamera

+m_cameraConfig:VideoCameraConfig

+m_controlDeviceConfig:VideoControlDeviceConfig

+m_temporarilyUncontrollable:boolean

+m_pollEnabled:boolean

+m_pollIntervalControlledSecs:int

+m_pollIntervalUncontrolledSecs:int

+m_enableDeviceLogging:boolean

+m_defaultTitle

+m_maxNumPresets:int

+m_presets:CameraPreset[]

+m_defaultPresetNum:intt

+m_skedMoveToDefaultPresetTime:long

+m_lockOnManualIFocus:boolean

+m_lockOnManualIris:boolean

+m_lockOnManualColor:boolean

+m_lowestControlHierarchyLevel:int

+m_maxControlIledTimeMins

ControllableVideoCameraConfig

setControllingOpCenter(token,opCtrInfo:OpCenterInfo)

«interface»

TransferableSharedResource

resendPreset() --

presetNum=0 means

resend all stored presets.

+getSourceStatus():VideoSourceStatus

+getSourceConfig(token):VideoSourceConfig

+setSourceConfig(token,VideoSourceConfig)

+setUserDisplayStatus(token, boolean)

+isNoVideoAvailable():boolean

+isDisplayable(token,info:VideoCollectorInfo,reason:string,sourceFabricID):bool

+isRemoveable(info:VideoCollectorInfo,monitorGroupIDs:Identifier[],reason:string):bool

+blockToPublic(token,ExtendedCommandStatus)

+unblockToPublic(token)

+revokeDisplay(token,revokedOrgIDs:IdentifierList, ExtendedCommandStatus)

+unrevokeDisplay(token,unrevokedOrgIDs:IdentifierList)

+isRevokedFor(orgId:Identifier)

«interface»

VideoSource

FUTURE. This

method may be

incorporated into

3955 and SVFT

camera types

directly.

m_moitorInfo - what monitor(s)/site(s) this camera

is on, and for each monitor, if the camera on this

monitor as part of a tour (and which tour).

Each entry is a MonitorDisplayInfo which provides

this info.

+m_commMode:CommunicationMode

+m_opStatus:OperationalStatus

+m_controllingOpCenter:OperatingCenter

+m_monitorInfo:MonitorDisplayInfo[]

+m_deviceStatusChangeTimeSecs:int

+m_monitorStatusChangeTimeSecs:int

«datatype»

VideoProviderStatus

CMD_UP

CMD_DOWN

CMD_LEFT

CMD_RIGHT

CMD_SELECT

CMD_CANCEL

CMD_AUX1

CMD_AUX2

«enumeration»

ViconSVFTPgmCmd

FUTURE

+getCameraStatus():VideoCameraStatus

+getCameraConfiguration(token):VideoCameraConfig

+setCameraConfiguration(token,VideoCameraConfig)

+isControllable():boolean

«interface»

VideoCamera

+setAutoFocus(token,boolean)

+resendPreset(token,presetNum:int)

+enterProgramMode(token)

+exitProgramMode(token)

+programCommand(VFTPgmCmd, count:int)

+enterColorGainSetupScreen(token)

+exitColorGainSetupScreen(token)

+enterBlueColorGainMenu(token)

+enterRedColorGainMenutoken()

+programColorLess(token)

+programColorMore(token)

+programColorStop(token)

+programColorSavetoken()

+pogramColorCancel(token)

«interface»

ViconSVFTCamera

+requestControl(token, overrideRequested:boolean,

 info:ControllingInfo,cmdStat:CommandStatus)

+terminateControl(token, cmdStat:CommandStatus)

+isControlled():boolean

+inhibitControl(token,hierarchyLevel:int)

+adjpan(token, direction:int)

+adjTilt(token, direction:int)

+adjZoom(token, direction:int)

+adjFocus(token, where:int)

+adjIris(token, direction:int)

+setAutoIris(token, boolean)

+setActiveTitle(token,title,lineNum:int,cmdStat:CommandStatus)

+resetCamera(token)

+pollCamera(token, refreshMonitorList:boolean)

«interface»

ControllableVideoCamera

+adjPanTilt(token,panDir,tiltDir)

«interface»

DiagonallyMovable

+m_sinkID:Identifier

+m_tourID:Identifier

+m_tourSuspended:boolean

«datatype»

MonitorDisplayInfo

panDir pos right, neg left

tiltDir pos = up, neg = down.

panDir 0 stop panning (but maybe

continue tilting based on tiltDir),

and vice versa for tiltDir 0.

(adjPanTilt(token, 0, 1) is not equiv

to adjTilt(token, 1) because the

latter does not imply commanding

the camera to stop panning.)

+m_sourceStatus:VideoSourceStatus

VideoCameraStatus

+m_providerStatus:VideoProviderStatus

+m_maintModeUserName

+m_blockedToPublic

+m_userDisplayStatus:boolean

+m_revokedDisplayOrgs:VideoDisplayRevokedOrg[]

«datatype»

VideoSourceStatus

+m_orgId:Identifier

+m_organization:Organization

«datatype»

VideoDisplayRevokedOrg

+m_cameraStatus:VideoCameraStatus

+m_controlled:boolean

+m_controllingUserInfo:ControllingUserInfo

+m_actionState:CameraActionState

+m_inAutoFocusMode:boolean

+m_inAutoIrisMode:boolean

+m_currentTitle:string

+m_lastControlCmdTimeSecs:long

+m_userControlStatus:boolean

+m_atPreset:CameraPreset

+m_controlInhibitLevel:int

ControllableVideoCameraStatus

FUTURE:

inhibitControl (inhibit

control at sites lower

than this level)

+getCOHU3955CameraStatus(token):COHU3955CameraStatus

+getCOHU3955CameraConfig(token):COHU3955CameraConfig

+setCOHU3955CameraConfig(token, COHU3955CameraConfig)

+adjRed(token,direction:int)

+adjBlue(token,direction:int)

+setAutoFocus(token,boolean)

+setAutoColor(token,boolean)

+setLensFast(token,boolean)

+setPowerOn(token,boolean)

«interface»

COHU3955Camera

FUTURE:

m_controlInhibitLevel

m_atPreset

NO_ACTION

PAN_LEFT

PAN_RIGHT

TILT_UP

TILT_DOWN

ZOOM_IN

ZOOM_OUT

FOCUS_FAR

FOCUS_NEAR

IRIS_OPEN

IRIS_CLOSE

SET_TITLE

RED_PLUS

RED_MINUS

BLUE_PLUS

BLUE_MINUS

«enumeration»

CameraActionState

+m_controllableStatus:ControllableVideoCameraStatus

+m_powerOn:boolean

+m_inAutoColorMode:boolean

+m_lensSpeedFast:boolean

+m_currentTitle2:string

«datatype»

COHU3955CameraStatus

+m_opCenterInfo:OpCenterInfo

+m_userInfo:ControllingUserInfo

«datatype»

ControllingInfo

+m_controllingInfo:ControllingInfo

+m_wouldBeAllowed:boolean

«exception»

CameraIsControlledException

+m_monitorGroupID:Identifier

+m_userName:string

«datatype»

ControllingUserInfo

+m_reason:CameraNotControlledReason

+m_actionState:CameraActionState

+m_controllingInfo:ControllingInfo

«exception»

CameraNotControlledException

m_controllingInfo is for currently controlling operator

m_wouldBeAllowed --

true: Override would have been alowed

but wasn't requested.

false: Override was requested but user does not

 have suficient privilege

+m_reason:string

+m_actionState:CameraActionState

«exception»

CameraBusyException

If request to move or otherwise control

camera comes in while camera cannot

be controlled.

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1 *

1 1

1

*

1

*

1 1

1 1

1 *

1

1

1

1

1 1

1

*

1 1

1

1

1

1

Figure 3‑7. VideoHighLevel-VideoSource (Class Diagram)

3.2.2.1 CameraActionState (Class)

This enumeration identifies what action the camera is currently performing (if any).

3.2.2.2 CameraBusyException (Class)

This exception is thrown if an atttempt to issue an immediate mode camera control command (such as pan, tilt, etc.) is issued while the camera is performing a long-running command (such as a moveToPresetCommand or a setTitleCommand). This indicates to the operator that the camera is momentarily busy, and the operator should try the action again in a few seconds, or when the camera image on the monitor shows that the long-running request has completed.

3.2.2.3 CameraIsControlledException (Class)

This exception is thrown if a request to control a camera is denied because the camera is already controlled, perhaps because a race condition where another operator has established control just before the request.

3.2.2.4 CameraNotControlledException (Class)

This is an exception thrown if an attempt to issue a camera control command is issued when the camera is not currently controlled by the requester. This is most likely to occur immediately after a control override, in cases where the client has not received or processed the override event yet.

3.2.2.5 CameraPreset (Class)

This structure stores information about a preset configured for a camera.

3.2.2.6 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by objects representing COHU model 3055 video cameras. It extends the ControllableVideoCamera interface by adding methods unique to the COHU 3955 cameras (unique within the universe of camera types planned for implementation within CHART II).

3.2.2.7 COHU3955CameraStatus (Class)

The COHUCameraStatus structure is used to hold status information about COHUCamera objects at the COHUCamera level.

3.2.2.8 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The ControllableVideoCamera interface represents a controllable video camera as opposed to an uncontrollable, immovable VideoCamera. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of ControllableVideoCamera. The ControllableVideoCamera interface includes all methods common to the two known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day. Current plans call for classes to represent a COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

3.2.2.9 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration information about ControllableVideoCamera objects at the ControllableVideoCamera level.

3.2.2.10 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

3.2.2.11 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or requesting to control) a VideoCamera.

3.2.2.12 ControllingUserInfo (Class)

The ControllingUserInfo structure contains information about the monitor group and user of the entity controlling (or requesting to control) a VideoCamera.

3.2.2.13 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by VideoCamera-enabled classes which can be moved diagonally in addition to standard orthogonal pan and tilt commands. A particular implementation may support 45-degree movements only, in which case the panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the parameters indicate the percent of movement proportionally in the pan/tilt directions. This interface is expected to be implemented beyond R2B2.

3.2.2.14 EnMasseSetResult (Class)

This structure will be used to communicate failures in setting a number of cameras to auto iris, auto focus, or auto color balance. It specifies results for one camera which failed.

3.2.2.15 EnMasseSetResultList (Class)

This structure will be used to communicate failures in setting a number of cameras to auto iris, auto focus, or auto color balance. It specifies results for all cameras which failed. (Cameras which succeeded are not included in this list.)

3.2.2.16 MonitorDisplayInfo (Class)

This structure holds details about each monitor on which the VideoProvider is currently being displayed.

3.2.2.17 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard for CCTV cameras. As this is a future requirement for cameras not currently fielded by MDSHA, this interface is left to be defined at a later time.

3.2.2.18 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can store and move to presets. The savePreset() method saves the current camera position as the preset position. This interface is expected to be implemented in R2B2.

3.2.2.19 PresetUndefinedException (Class)

This exception is thrown when an attempt is made to move to an undefined preset.

3.2.2.20 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.2.2.21 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

3.2.2.22 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use but may also be allowed to transfer control of that resource to another operations center.

3.2.2.23 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon Surveyor VFT model video camera. (As there are no other Vicon brand cameras used within CHART II, there is no base ViconCamera interface representing all Vicon-brand cameras. For one thing, there would be no known basis for allocating methods to the base interface and the VFT interface.)

3.2.2.24 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enueration defines the values that can be used in the programCommand() method of the ViconSVFTCamera interface.

3.2.2.25 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within the CHART II system. Classes implementing this interface (and nothing below this interface would be fixed (non-controllable) video cameras. The VideoCamera interface includes the GeoLocatable interface, to someday allow for advanced features such as automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.

3.2.2.26 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

3.2.2.27 VideoCameraFactory (Class)

The GenericVideoCameraFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of GenericVideoCamera objects.

3.2.2.28 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraStatus.

3.2.2.29 VideoDisplayRevokedOrg (Class)

This structure is used to store information about an organization for which display of the associated camera has been revoked.

3.2.2.30 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

3.2.2.31 VideoProviderConfig (Class)

The VideoProviderConfig structureis used to hold configuration information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderConfig.

3.2.2.32 VideoProviderFactory (Class)

The VideoProviderFactory interface is implemented by factory classes responsible for creating and maintaining a collection of VideoProvider objects.

3.2.2.33 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold status information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

3.2.2.34 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

3.2.2.35 VideoSourceConfig (Class)

The VideoSourceConfig structure is used to hold configuration information about VideoSource objects at the VideoSource level. Further details about lower-level VideoSource subclasses are provided by subclasses of VideoSourceConfig.

3.2.2.36 VideoSourceFactory (Class)

The VideoSourceFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of VideoSource objects.

3.2.2.37 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold status information about VideoSource objects at the VideoSource level. Further details about lower-level VideoSource subclasses are provided by subclasses of VideoSourceStatus.

3.2.2.38 VideoSourceType (Class)

This enumeration identifies the various types of cameras which can exist in the system. The fixed type is for all non-controllable cameras.

3.2.3 VideoHighLevel-VideoSink (Class Diagram)

This diagram shows the VideoSink side of the VideoHighLevel diagram in more detail, adding Factory interfaces, Configuration and Status objects, and other supporting interface elements.

[image: image10.emf]getID()

getName()

«interface»

UniquelyIdentifiable

+m_name:string

+m_componentType:VideoComponentType

+m_collectorType:VideoCollectorType

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_receivingDeviceID:Identifier

+m_receivingDeviceConfig:VideoTransmissionDeviceConfig

«datatype»

VideoCollectorConfig

+m_collectorConfig:VideoCollectorConfig

+m_monitorGroupIDs:Identifier[]

+m_public:boolean

«datatype»

VideoSinkConfig

takeOffline()

putOnline()

putInMaintenanceMode()

getCommMode()

«interface»

CommEnabled

+getMonitorGroupInfo():MonitorGroupInfo[]

«interface»

MonitorGroupFactory

+getSinkInfoList():VideoSinkInfo[]

+getSinksWithActiveTours():VideoSinkInfo[]

+suspendAllTours(token,monitorGroupID,

 commandStatus)

+resumeAllTours(token,monitorGroupID,

 commandStatus)

VideoSinkFactory

+getCollectorStatus():VideoCollectorStatus

+getCollectorConfig(token):VideoCollectorConfig

+setCollectorConfig(token,VideoCollectorConfig)

+removeCollector(token)

+connectReceivingToSendingDevice(token,VideoProviderInfo,

 VideoSourceID, overrideRequested, testOnly,CommandStatus):void

+disconnectReceivingFromSendingDevice(oken,VideoProviderInfo,

 CommandStatus):void

«interface»

VideoCollector

m_controlledCameraIDs:IdentifierList

MonitorGroupStatus

m_name:String

m_monitorIDs:Identifer[]

m_organizationId:Identifier

MonitorGroupConfig

New/Changed for R2B2: connectReceivingToSendingDevice().

+getMonitorInfoList():MonitorInfo[]

«interface»

MonitorFactory

+getStatus():MonitorGroupStatus

+getConfig(token):MonitorGroupConfig

+setConfig(token,monitorGroupConfig)

+addControlledCamera(token,

 cameraInfo:VideoProviderInfo)

+removeControlledCamera(token,

 cameraID)

«interface»

MonitorGroup

+getSinkStatus():VideoSinkStatus

+getSinkConfig(token):VideoSinkConfig

+setSinkConfig(token,config:VideoSinkConfig)

+displayImage(token,overrideRequested, monitorGroupId,

 VideoProviderInfo, forTour:boolean,

 cmdStat:CommandStatus):void

+startTour(token, monitorGroupID, tourID, cmdStat)

+stopTour(token, monitorGroupID, tourID, cmdStat)

+suspendTour(token, monitorGroupID, tourID, cmdStat)

+resumeTour(token, monitorGroupID, tourID, cmdStat)

+tourConfigChanged(token,tourID:Identifier,tourConfig:

 VideoTourConfig)

+tourDeleted(token,tourID:Identifier)

+displayNoVideoAvailable(token,sourceIdToReplace,

 monitorGroupId:Identifier,cmdStat:CommandStatus)

+cameraUnavailable(token,sourceId:Identifier)

+scheduleDisplayImage(token,ScheduledSource)

«interface»

VideoSink

Changed for R2B2: displayImage().

m_commMode:CommunicationMode

m_opstatus:OperationalStatus

m_providerID:Identifier

m_sourceID:Identifier

m_statusChangeTimeSecs:long

m_lastContactTimeSecs:long

«datatype»

VideoCollectorStatus

+m_sinkConfig:VideoSinkConfig

+m_xPos:int

+m_yPos:int

+m_xSize:int

+m_ySize:int

«datatype»

MonitorConfig

FUTURE (beyond R2B2):

m_scheduledSource

+setPosition(token,xPos,yPos,xSize,ySize)

+getMonitorStatus():MonitorStatus

+getMonitorConfig(token):MonitorConfig

+setMonitorConfig(token,monitorConfig:MonitorConfig)

«interface»

Monitor

+m_collectorStatus:VideoCollectorStatus

+m_tourID:Identifier

+m_suspended:boolean

+m_scheduledSource:ScheduledSource

VideoSinkStatus

FUTURE (beyond R2B2):

scheduleDisplayImage()

+m_reason

«exception»

CannotOverrideException

FUTURE (beyond R2B2):

xPos,yPos,xSize,ySize

+m_requestingUserName

+m_requestingWorkstation:Workstation

+m_scheduledSource:VideoSource

+m_scheduledPresetNum:int

+m_scheduledTime:long

ScheduledSource

+m_MonitorList

+m_cameraList

«exception»

OverrideNotRequestedException

FUTURE (beyond R2B2)

New for R2B2.

SWMonitor

FUTURE (beyond R2B2):

setPosition()

Future

1 1

1

1

1

1

1

1

1 1

1

1

*

is in

*

contains

1

*

1

*

1 1

1 1

1 1

1

1

1 1

1 1

Figure 3‑8. VideoHighLevel-VideoSink (Class Diagram)

3.2.3.1 CannotOverrideException (Class)

This exception is thrown when attempt is made to display an image with requires a route, but the route could not be made due to higher priority routes already existing.

3.2.3.2 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This interface also supports a maintenance mode (although any given implementation may choose to implement putInMaintenanceMode() by throwing a CHART2Exception, if maintenance mode is not supported by that particular implementation). This interface is typically implemented only for field devices.

3.2.3.3 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a real, physical "television set" on which a video image can be displayed. This is the most common type of VideoSink (the other being a SWMonitor, part of a future requirement to stream video directly to user's workstations (or potentially other nearby computers).

3.2.3.4 MonitorConfig (Class)

This structure is used to store and communicate configuration information about a monitor in the system.

3.2.3.5 MonitorFactory (Class)

The class which implements this interface is used to construct new monitors and maintain lists of monitors.

3.2.3.6 MonitorGroup (Class)

This interface will be used in a later release to maintain a configurable group on monitors (on which an image can be displayed with one operator action).

3.2.3.7 MonitorGroupConfig (Class)

This structure is used to store configuration information about a monitor group in the system. Specifically, it associates a list of monitors with the monitor group.

3.2.3.8 MonitorGroupFactory (Class)

This interface will be used in a later release to create a configurable group on monitors (on which an image can be displayed with one operator action).

3.2.3.9 MonitorGroupStatus (Class)

This structure is used to store information about a monitor group in the system. Specifically, it holds this list of cameras controlled within a monitor group.

3.2.3.10 OverrideNotRequestedException (Class)

his exception is thrown when attempt is made to display an image with requires a route, but the route could not be made due to all routes already in use. The implication is that if override had been requested, the route would be likely to be created (which would override another route, or routes). Information is provided about what monitor(s) would be likely to be overridden, along with what source each monitor is viewing.

3.2.3.11 ScheduledSource (Class)

This structure contains the information needed to schedule display of a camera on a monitor at a specific time.

3.2.3.12 SWMonitor (Class)

The SWMonitor interface is implemented by objects which represent a software monitor capable of receiving and displaying video (i.e., a streaming video MPEG software decoder running on a PC). This interface supports a future requirement to display video directly to user's workstations.

3.2.3.13 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

3.2.3.14 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

3.2.3.15 VideoCollectorConfig (Class)

This structure is used to store and communcate information about a generic VideoCollector.

3.2.3.16 VideoCollectorStatus (Class)

This class is used to store and transmit status information about a generic VideoCollector object.

3.2.3.17 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video signals, such as video monitors and streaming video receivers directly on user workstations. Within the user interface, the VideoSink interface represents all objects on which a video source can be placed for viewing by users.

3.2.3.18 VideoSinkConfig (Class)

This structure contains configuration information about a VideoSink. For R2B1 the only subtype of VideoSink will be a Monitor.

3.2.3.19 VideoSinkFactory (Class)

The class that implements this interface will be able to create new VideoSink objects and will be able to provide a list of VideoSink objects.

3.2.3.20 VideoSinkStatus (Class)

This structure contains status information about a VideoSink. For R2B1 the only subtype of VideoSink will be a Monitor.

3.2.4 VideoHighLevel-VideoTransmission (Class Diagram)

This diagram shows the video transmission elements of the VideoHighLevel class diagram. This diagram defines the VideoSendingDevice interface, which will include an IP Encoder interface and a V1500 SwitchInputPort interface. Likewise shown is the VideoReceivingDevice interface, which will include the IP Decoder interface and the V1500 SwitchOutputPort interface. Both the future SwitchPort interfaces are connected via the V1500Switch. The CameraControlDevice, used to control a camera, will be an Encoder, a COM port, or a CommandProcessor interface. Supporting Configuration and Status structures are shown in this diagram as well.

[image: image11.emf]+m_commMode:CommunicationMode

+m_opStatus:OperationalStatus

+m_controllingOpCenter:OperatingCenter

+m_monitorInfo:MonitorDisplayInfo[]

+m_deviceStatusChangeTimeSecs:int

+m_monitorStatusChangeTimeSecs:int

«datatype»

VideoProviderStatus

+m_name:string

+m_componentType:VideoComponentType

+m_providerType:VideoProviderType

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_sendingDeviceID:Identifier

+m_sendingDeviceConfig:VideoTransmissionDeviceConfig

«datatype»

VideoProviderConfig

Configured as one-to-many but contains

only one in R2B1/R2B2.

+m_compressionType:VideoCompressionType

+m_videoMulticastAddress:string

+m_videoMulticastPort:long

CodecVideoConnection

+m_bridgeCircuitIDs:IdentifierList

«datatype»

VideoRouteConfig

«interface»

UniquelyIdentifiable

+getConfiguration():VideoRouteConfig

+getStatus():VideoRouteStatus

«interface»

VideoRoute

+m_carryingImageID:Identifier

+m_isOnline:boolean

«datatype»

VideoRouteStatus

VideoSendingDeviceConfig

«interface»

CommEnabled

«interface»

VideoProvider

+m_mediumType:VideoTransmissionMedium

+m_deviceType:VideoDeviceType

+m_modelType:CameraControlDeviceModel

+m_name:string

+m_port:int

+m_codecConnections:CodecVideoConnection[]

+m_switchFabricID:Identifier

+m_switchID:Identifier

«datatype»

VideoTransmissionDeviceConfig

+getConfiguration(token):BridgeCircuitConfig

+setConfiguration(token,BridgeCircuitConfig)

«interface»

BridgeCircuit

«interface»

VideoCollector

+getSendingDeviceStatus():

 VideoSendingDeviceStatus

«interface»

VideoSendingDevice

+connect(token,VideoProviderInfo,VideoProviderConfig,

 VideoCollectorInfo, VideoCollectorConfig,

 overrideRequested,testOnly, reason:string, cmdStat)

+disconnect(token,VideoProviderInfo,VideoCollectorInfo)

+reinitialize(token)

«interface»

VideoRouteManager

+m_providerStatus:VideoProviderStatus

+m_collectorStatus:VideoCollectorStatus

«datatype»

BridgeCircuitStatus

+createBridgeCircuit(token,BridgeCircuitConfig)

+getBridgeCircuitInfoList():BridgeCircuitInfoList

«interface»

BridgeCircuitFactory

+m_name:string

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_startProviderConfig:VideoProviderConfig

+m_endCollectorConfig:VideoCollectorConfig

«datatype»

BridgeCircuitConfig

+m_generalStatus:

 VideoTransmissionDeviceStatus

+m_receiverIDs:Identifier[]

VideoSendingDeviceStatus

+m_hostName:string

+m_comPortName:string

CommanProcessorConfig

+m_switchPortConfig

SwitchInputPortConfig

+getDeviceStatus():VideoTransmissionDeviceStatus

+getDeviceConfig(token):VideoTransmissionDeviceConfig

«interface»

VideoTransmissionDevice

m_commMode:CommunicationMode

m_opstatus:OperationalStatus

m_providerID:Identifier

m_sourceID:Identifier

m_statusChangeTimeSecs:long

m_lastContactTimeSecs:long

«datatype»

VideoCollectorStatus

CommandProcessorStatus

+m_name:string

+m_model:VideoSwitchModel

+m_switchFabricID:Identifier

+m_inPorts:short[]

+m_outPorts:short[]

«datatype»

VideoSwitchConfig

EncoderConfig

«interface»

SwitchInputPort

+m_name:string

+m_componentType:VideoComponentType

+m_collectorType:VideoCollectorType

+m_owningOrgID:Identifier

+m_networkConnectionSite:string

+m_receivingDeviceID:Identifier

+m_receivingDeviceConfig:VideoTransmissionDeviceConfig

«datatype»

VideoCollectorConfig

m_sourceID is new for R2B2.

m_providerID - now is provider

directly connected (may not be

ultimate VideoSource)

m_sourceID is the Identifier of the

VideoSource (ultimate image

displayed).

+initialize()

+shutdown()

+connect()

+disconnect()

+send(messageByte)

+receive(data,length)

«interface»

CameraControlDevice

+cerateVideoSwitch(token, VideoSwitchConfig)

+createVideoFabric(token, SwitchFabricConfig)

+getSwitchInfoList():SwitchInfoList

+getVideoFabricInfoList():VideoFabricInfoList

«interface»

VideoSwitchFactory

CameraControlComPort

«interface»

VideoSwitch

+getControlDeviceStatus():

 VideoControlDeviceStatus

+getControlDeviceConfig(token):

 VideoControlDeviceConfig

+terminateControl(dropAddress:int):

 boolean

+send(data:byte[],initialTimeoutMs:int,

 interCharTimeoutMs:int,

 maxReadDurationMs:int):byte[]

«interface»

VideoControlDevice

«interface»

CommEnabled

+m_portNumber:int

SwitchPortConfig

+m_commMode:CommunicationsMode

+m_opStatus:OperationalStatus]

«datatype»

VideoSwitchStatus

+getConfiguration(token):VideoFabricConfig

+setConfiguration((token,videoFabricConfig)

+setSwitchID(token,Identifier)

+remove(token)

«interface»

VideoFabric

NOTE: Encoders and Decoders do not have any

SwitchFabric associated with them. Their

SwitchFabric ID is the null ID (all zeros). This way a

VideoTransmissionDevice at a non-router site does

not have any need to contact a SwitchFabric at the

AOC site (which might be unreachable) at any time.

This is in support of independent operation in the

face of network outages.

VICON_V1500_SWITCH

«enumeration»

VideoSwitchModel

+m_switchPortStatus

+m_portsConnectedTo:short[]

SwitchInputPortStatus

«interface»

SwitchPort

Port connection status (through

the switch) wouldn't have to

be stored here, it could be stored

only in the SwitchOutputPortStatus,

where it is one-to-one (or to-zero),

never one-to-many.

No maint mode

«interface»

Encoder

+m_opStatus:OperationalStatus

VideoTransmissionDeviceStatus

+m_commMode:CommunicationsMode

+m_sourceImageID:Identifier

SwitchPortStatus

VideoReceivingDeviceConfig

+m_ipAddress

CodecConfig

+m_name:string

+m_switchID:Identifier

«datatype»

VideoFabricConfig

+m_switchPortConfig

SwitchOutputPortConfig

setSwitchID()

is called only by

a VideoSwitch

as it is created

or removed.

getIPAddress():IPAddress

«interface»

Codec

+m_codecStaus:CodecStatus

EncoderStatus

+getReceivingDeviceStatus():VideoReceivingDeviceStatus

+connectFrom(token,VideoTransmissionDeviceConfig,

 VideoSourceID:Identifier):boolean

+disconnectFrom(token,VideoTransmissionDeviceConfig):boolean

+disconnect(token):boolean

«interface»

VideoReceivingDevice

m_switchID can be the

null ID briefly during

creation of a new switch

fabric and switch pair. It

will normally get a switch

assigned soon after

creation, as soon as the

switch is created. The

switch fabric is not useful

or complete until it has a

switch.

CodecStatus

«interface»

SwitchOutputPort

+m_switchPortStatus

+m_portConnectedTo:short

SwitchOutputPortStatus

DecoderConfig

+m_generalStatus:VideoTransmissionDeviceStatus

+m_senderId:Identifier

VideoReceivingDeviceStatus

«interface»

Decoder

+m_codecStatus:CodecStatus

DecoderStatus

CommandProcessor

1 1

1

*

gets routes to and

from other Switch

Fabrics made by

routes

across

0..1 *

1

*

has active switch

connection status

as shown

by these

*

* sending to

1

*

receving

from

1

1

1

1

1

1

1

1

1 1

1 1

1 1

1 1

1 1 1 1

1

1

1 1

1 1

1 1

1

1

1

1

1 1

1 *

1

*

1

1

1 1

1 1

1 1 1 1

1 1

1 1

is on

1

*

has

ports

1

1

1

* manages

1 1

1 1

1

1

1

1

1

*

defines

routes

using

*

*

contains

is part

of

1

1

1

1

1 1

1 1

1

1

1

1

1 1 1 1

1

1

1

1

1 *

1

is the

switch for

1

is

defined

by

1

1

*

is

managed

by

routes

using

1

1

1

1 1

1

1

Figure 3‑9. VideoHighLevel-VideoTransmission (Class Diagram)

3.2.4.1 BridgeCircuit (Class)

The BridgeCircuit interface is implemented by a objects which serve to bridge disparate video fabrics within video routes. These video fabrics would include the video fabrics based around a V1500 switch and also the "null" video fabric consisting of no switch and codec VideoTransmissionDevice objects. The BridgeCircuit interface includes both the VideoCollector interface (meaning the BridgeCircuit receives video from another VideoProvider, ultimately the VideoSource) and the VideoProvider interface (meaning the BridgeCircuit provides video to another VideoCollector, ultimately to one or more VideoSink objects).

3.2.4.2 BridgeCircuitConfig (Class)

This represents configuration information for a bridge circuit. This is the status of a BridgeCircuit object. It consists primarily of configuration of the VideoProvider side (input to the bridge circuit) and of the VideoCollector side (output of the bridge circuit).

3.2.4.3 BridgeCircuitFactory (Class)

The BridgeCircuitFactory is used to create bridge circuits bridging two video fabrics.

3.2.4.4 BridgeCircuitStatus (Class)

This is the status of a BridgeCircuit object. It consists primarily of a status on the VideoProvider side (input to the bridge circuit) and on the VideoCollector side (output of the bridge circuit).

3.2.4.5 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port with direct connection to the control port of a video camera. It is used to send video camera control commands and return responses to a camera control process.

3.2.4.6 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides communications for access to control functions for a video camera. This includes encoders, COM ports, and command processors.

3.2.4.7 Codec (Class)

The Codec interface is implemented by objects representing codec devices (that is, encoders and decoders). It defines generic methods to be implemented by both encoders and decoders.

3.2.4.8 CodecConfig (Class)

The CodecConfig structure contains configuration information relevant to a generic Codec object (Encoder or Decoder). It is included in the EncoderConfig and DecoderConfig structures

3.2.4.9 CodecStatus (Class)

The CodecStatus structure contains status information for a generic Codec.

3.2.4.10 CodecVideoConnection (Class)

The CodecVideoConnection structure contains the characteristics of a video stream emanating from or received by a Codec.

3.2.4.11 CommandProcessor (Class)

The CommandProcessor class provides an implementation of the CommandProccesor interface and is derived from the CameraControDevice class. The CommanProcessor manages the control of multiple cameras attached to one or more COM ports. The CommandProcessor may or may not be local to the camera that is being controlled.
3.2.4.12 CommandProcessorConfig (Class)

The CommandProcessorConfig structure is used to hold and transmit configuration information about a CommandProcessor object.

3.2.4.13 CommandProcessorStatus (Class)

The CommandProcessorStatus structure is used to hold and transmit status information about a CommandProcessor object.

3.2.4.14 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This interface also supports a maintenance mode (although any given implementation may choose to implement putInMaintenanceMode() by throwing a CHART2Exception, if maintenance mode is not supported by that particular implementation). This interface is typically implemented only for field devices.

3.2.4.15 Decoder (Class)

The Decoder interface is implemented by classes representing any type of video decoder. The Decoder interface includes both the Codec and the VideoReceivingDevice interfaces.

3.2.4.16 DecoderConfig (Class)

The DecoderConfig structure contains configuration information specific to a Decoder. It is derived from the VideoReceivingDeviceConfig structure and includes the generic CodecConfig structure.

3.2.4.17 DecoderStatus (Class)

The DecoderStatus structure contains status information specific to a Decoder. It is included in the VideoReceivingDeviceStatus structure and included in the generic CodecStatus structure.

3.2.4.18 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder. The Encoder interface includes both the Codec and the VideoSendingDevice interfaces, which means in addition to providing forwarding of video, it also is used to send video camera control commands and return responses to a camera control process.

3.2.4.19 EncoderConfig (Class)

The EncoderConfig structure contains configuration information specific to an Encoder. It is derived from the VideoSendingDeviceConfig structure and includes the generic CodecConfig structure.

3.2.4.20 EncoderStatus (Class)

The EncoderStatus structure contains status information specific to an Encoder. It is included in the VideoSendingDeviceStatus structure and includes in the generic CodecStatus structure.

3.2.4.21 VideoFabric (Class)

The VideoFabric is implemented by a class which represents a "video fabric", that is a collection of VideoTransmissionDevice objects on a common "fabric" across which video can be routed directly. This includes any collection of switch input ports and switch output ports on a single video switch. (Note that a collection of encoder and decoder types of VideoTransmissionDevice objects represents a different, unnamed fabric across which video can be routed directly. The IP encoder/decoder fabric is therefore distinguished from other fabrics by their lack of an associated video fabric.

3.2.4.22 VideoFabricConfig (Class)

The VideoFabricConfig structure is used to store and transmit configuration information about a VideoFabric object.

3.2.4.23 SwitchInputPort (Class)

This is the interface for a switch input port. A switch input port is a type of switch port and is also a type of VideoSendingDevice, meaning it can send a video signal on behalf of the VideoProvider attached to it to any one or more VideoReceivingDevices (and corresponding VideoCollectors).

3.2.4.24 SwitchInputPortConfig (Class)

This is the configuration of a SwitchInputPort. The SwitchInputPortConfig contains a SwitchPortConfig, which defines its port number of the switch. The SwitchInputPortConfig does not add any more specialized input-specific configuration information.

3.2.4.25 SwitchInputPortStatus (Class)

This is the status of a SwitchInputPort. The SwitchInputPortStatus contains a SwitchPortStatus, which defines its port status common to input and output ports (such as CommunicationsMode). The SwitchInputPortStatus further contains input-specific status information, such as the list of SwitchOutputPorts it is currently connected to.

3.2.4.26 SwitchOutputPort (Class)

This is the interface for a switch output port. A switch output port is a type of switch port and is also a type of VideoReceivingDevice (meaning it receives a video signal on behalf of the VideoCollector attached to it). As a VideoReceivingDevice, a SwitchOutputPort is capable of being connected to any VideoSendingDevice.

3.2.4.27 SwitchOutputPortConfig (Class)

This is the configuration of a SwitchOutputPort. The SwitchOutputPortConfig contains a SwitchPortConfig, which defines its port number of the switch. The SwitchOutputPortConfig does not add any more specialized output-specific configuration information.

3.2.4.28 SwitchOutputPortStatus (Class)

This is the status of a SwitchOutputPort. The SwitchOutputPortStatus contains a SwitchPortStatus, which defines its port status common to input and output ports (such as CommunicationsMode). The SwitchOutputPortStatus further contains output-specific status information, such as the SwitchIinputPorts it is currently connected to.

3.2.4.29 SwitchPort (Class)

The is a generic SwitchPort interface. It is a CommEnabled interface, meaning a SwitchPort can be online or offline. (A SwitchPort cannot be in maintenance mode).

3.2.4.30 SwitchPortConfig (Class)

The SwitchPortConfig structure contains configuration information relevant to a generic (input or output) SwitchPort. It is included in the SwitchInputPortConfig and SwitchOutputPortConfig structures.

3.2.4.31 SwitchPortStatus (Class)

The SwitchPortStatus structure contains status information relevant to a generic (input or output) SwitchPort. It is included as generic port status in the SwitchInputPortStatus and SwitchOutputPortStatus structures.

3.2.4.32 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

3.2.4.33 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

3.2.4.34 VideoCollectorConfig (Class)

This structure is used to store and communcate information about a generic VideoCollector.

3.2.4.35 VideoCollectorStatus (Class)

This class is used to store and transmit status information about a generic VideoCollector object.

3.2.4.36 VideoControlDevice (Class)

This interface is used to represent a video control device in the field. A video control device is used to communicate camera control commands to a camera, and return responses to the requester.

3.2.4.37 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

3.2.4.38 VideoProviderConfig (Class)

The VideoProviderConfig structureis used to hold configuration information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderConfig.

3.2.4.39 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold status information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

3.2.4.40 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is implemented by objects which can be used to receive video from a corresponding VideoSendingDevice. A VideoReceivingDevice may be an MPEG decoder or may be an output port on a video switch.

3.2.4.41 VideoReceivingDeviceConfig (Class)

The VideoReceivingDeviceConfig structure is used to store generic configuration information common to all types of VideoReceivingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.42 VideoReceivingDeviceStatus (Class)

The VideoReceivingDeviceStatus structure is used to store generic status information common to all types of VideoReceivingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.43 VideoRoute (Class)

This interface defines a route through CHART II video distribution system. A given implementation of a VideoRoute may or may not be actively in use at any given time. Routes are defined by the combinations of all bridge circuits between all pairs of video fabrics within the CHART II video distribution system. Routes cannot be added or deleted or enabled or disabled by users explicitly: the routes and their status are defined implicity by the configuration and status of bridge circuits defined in the system at any given time.

3.2.4.44 VideoRouteConfig (Class)

This structure contains the configuration of a video route. The configuration consists of the bridge circuits comprising the route

3.2.4.45 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing capabilities within CHART II. This router does not need to be used (in fact, cannot be used) when the VideoSource and VideoSink are on the same video fabric -- it is used only to make video routes across video fabrics. The implementation will use a set a rules to arbitrate among requested video displays when a set of bridge circuits between one or more pairs of video fabrics is fully utilized. Based on the override rules implemented, a new incoming routing request may or may not be able to be fulfilled depending upon priority, routing guarantees, number of images viewed, ongoing camera control sessions, etc. If an override can be granted, the overridden route(s) will be dropped in favor of the new route.

3.2.4.46 VideoRouteStatus (Class)

This structure contains the status of a VideoRoute. If the route is carrying an image, the Identifier of the image is provided. If any component of the bridge circuit is not online, the route is marked as not online.

3.2.4.47 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an MPEG encoder or may be an input port on a video switch.

3.2.4.48 VideoSendingDeviceConfig (Class)

The VideoSendingDeviceConfig structure is used to store generic configuration information common to all types of VideoSendingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.49 VideoSendingDeviceStatus (Class)

The VideoSendingDeviceStatus structure is used to store generic status information common to all types of VideoSendingDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.50 VideoSwitch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video Switch in the CHART system. This interface provides access to configuration and status information for the siwtch, and provides connect and disconnect functions for making and breaking video connections.

3.2.4.51 VideoSwitchConfig (Class)

This represents the configuration information for a V1500 switch.

3.2.4.52 VideoSwitchFactory (Class)

The VideoSwitchFactory defines the interface which will be implemented by an object which constructs and manages video switches and video fabrics within CHART II. It will allow for adding switches and video fabrics. (Further configuration is controlled by the VideoSwitch or VideoFabric interfaces directly.)

3.2.4.53 VideoSwitchModel (Class)

This enumeration enumerates the models of Video switches supported by the system. Currently there is only one type, the Vicon 1500 switch.

3.2.4.54 VideoSwitchStatus (Class)

This is the status of a VideoSwitch. In includes a Communications Mode. A VideoSwitch can be either online or offline.

3.2.4.55 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is implemented by objects representing devices which can be used for sending and receiving video. This interface provides CHART-standard methods for accessing status and configuration information. Specific interfaces supporting sending and receiving inherit from this abstract base interface.

3.2.4.56 VideoTransmissionDeviceConfig (Class)

The VideoTransmissionDeviceConfig structure is used to store generic configuration information common to all types of VideoTransmissionDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.4.57 VideoTransmissionDeviceStatus (Class)

The VideoTransmissionDeviceStatus structure is used to store generic status information common to all types of VideoTransmissionDevice objects. Subclasses will provide additional information specific to the type of object/interface referenced at that level of the VideoTransmissionDevice inheritance tree at that point.

3.2.5 CameraControlModule (Class Diagram)

This diagram shows the classes with comprise the CameraControlModule. The CameraControlModule is an installable module that serves the camera-type objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions. The CameraControlModule is responsible for serving all VideoSource objects including controllable cameras, fixed cameras, No Video Available sources, and potentially any other image generators, etc. The COHU3955CameraImpl and the viconSVFTCameraImpl are the primary classes operating in this module. These objects provide all access to the camera status and configuration. The CameraControlModule also includes factory implementations responsible for providing lists of cameras and other such objects to interested clients.

[image: image12.emf]getID()

getName()

«interface»

UniquelyIdentifiable

+getCameraInfoList() : VideoCameraInfo[]

+getValidRegionList() : String[]

«interface»

VideoCameraFactory

takeOffline(token,cmdStat)

putOnline(token,cmdStat)

putInMaintenanceMode(token,cmdStat)

getCommMode():CommunicationMode

«interface»

CommEnabled

-m_allowSimulation : boolean

-m_providerImplVect : Vector

-m_cameraImplVect : Vector

-m_controllableImplVect : Vector

-m_db : CameraControlDB

-m_cameraPushEventSupplier : PushEventSupplier

-m_cameraStatusLogFile : LogFile

-m_hostName : String

-m_idObj : Identifier

-m_lockFactory : Object[]

-m_logFlags : boolean[]

-m_name : String

m_opCenterNames : Hashtable

-m_resMgmtPushEventSupplier : PushEventSupplier

-m_sharedResMonInt : int

-m_shutdown : boolean

-m_svcApp : ServiceApplication

-m_timeDownSecs : int

-m_props : CameraControlModuleProperties

-m_validRegions : String[]

m_videoSinkRefs : Hashtable

m_monitorGroupRefs : Hashtable

+createCamera(byte[], VideoProviderConfig):void

+getProviderInfoList() : VideoProviderInfo[]

+getSourceInfoList() : VideoSourceInfo[]

+getNoVideoAvailableSources() : VideoSource[]

+getNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]

+getOnlineNoVideoAvailableSources() : VideoSourceInfo[]

+getOnlineNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]

+getCameraInfoList() : VideoCameraInfo[]

+getValidRegionList() : String[]

+getControllableCameraInfoList() : ControllableVideoCameraInfo[]

+getID() : Identifier

+getName() : String

+getResources() : SharedResource[]

+getControlledResources(opCtrID) : SharedResource[]

+hasControlledResources(opCtrID) : boolean

checkForAbandonedCameraObjects()

+checkForCameraTimeout()

findOpCenterName(opCtrID) : String

-getOpCenterNamesFromTrader()

#getAllowSimulation() : boolean

getLogFlags() : boolean[]

getHostName() : String

getCameraPushEventSupplier() : PushEventSupplier

getProperties() : CameraControlModuleProperties

pollCameraObjects()

shutdown() : boolean

-addCameraTypesToTrader()

-alarmIfNoLoggedInUsers(Identifier, String)

-getControllingOpCenters() : Hashtable

+doGetNoVideoAvailableSources(switchFabricID,boolean) : VideoSourceInfo[]

-logProd(String, String)

#logStackProd(String,String,Exception)

-log(String, String, String)

#logLockDone(String)

#logLockRcvd(String)

#logLockRqst(String)

-opLog(token,String,int,String,String)

#setSimulationFlag(String, String) : boolean

-createDummyCamera()

findVideoSink(Identifier) : VideoSink

findMonitorGroup(Identifier) : MonitorGroup

-getVideoSinkRefsFromTrader()

-getMonitorGroupRefsFromTrader()

ControllableCameraFactoryImpl

+getProviderStatus():VideoProviderStatus

+getProviderConfig(token):VideoProviderConfig

+setProviderConfig(token,VideoProviderConfig)

+removeProvider(token)

+AddDisplay(token,MonitorDisplayInfo):void

+removeDisplay(token,displayID)

«interface»

VideoProvider

+blockToPublic(token,block:boolean)

+inhibitDisplay(token,hierarchyLevel:int)

+revokeDisplay(token,orgs:VideoDisplayRevokedOrg[])

+isRevokedFor(orgId:Identifier)

+getSourceStatus():VideoSourceStatus

+getSourceConfig(Identifier):VideoSourceConfig

+setSourceConfig(Identifier,VideoSourceConfig)

+setUserDisplayStatus(Identifier,boolean)

+isNoVideoAvailable():boolean

+isDisplayable(Identifier,VideoCollectorInfo,reason:string):boolean

+isRemovable(VideoCollectorInfo,monitorGroupID[],reason:string):boolean

«interface»

VideoSource

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

«interface»

ServiceApplication

FullTourStatusUpdateFlag - says whether to push status

updates for camera status updates for changes to the

active monitor list pertaining to tours only. Probably

default to true unless that causes too much traffic.

FullTourOpsLoggingFlag - same except for writing to Ops

Log. Probably default to false unless we need it for

troubleshooting a problem, as this would be a lot of excess

Ops Log entries.

PushEventSupplier

-m_props : Properties

-m_defaults : Properties

+getAllowSimulation() : boolean

+getSimulatedCommsSuccessRate() : int

+getLogFlags() : String

+getPollTimerDelayMillis() : int

+getRecoveryTimerDelaySecs() : int

+getSharedResMonInt() : int

+getCameraControlResponseTimeOutMilli() : int

+getCameraControlSessionTimeOutSecs() : int

+getLastNStateChangeMarginalDenominator() : int

+getLastNStateChangeMarginalNumerator() : int

+getRecentStateChangeCount() : int

+getRecentStateChangeTimeSecs() : int

+getCOHU3955ValidTitleCharacters() : String

CameraControlModuleProperties

schedule()

cancel()

java.util.Timer

+isControllable():boolean

+getCameraStatus():VideoCameraStatus

+getCameraConfig(token):VideoCameraConfig

+setCameraConfig(token,VideoCameraConfig)

«interface»

VideoCamera

+m_sourceConfig:VideoSourceConfig

+m_cameraNumber:int

+m_owningOrgId:Identifier

«datatype»

VideoCameraConfig

-m_svcApp : ServiceApplication

-m_db : CameraControlDB

-m_cameraEventSupplier : PushEventSupplier

-m_resMgmtEventSupplier : PushEventSupplier

-m_cameraFactory : CameraFactoryImpl

-m_props : CameraControlModuleProperties

-m_timer : Timer

+initialize(ServiceApplication) : boolean

+shutdown(ServiceApplication) : boolean

-createEventChannel(String) : PushEventSupplier

-createCameraFactory(int) : boolean

-addCameraFactoryTypesToTrader() : void

+getVersion() : ComponentVersion

CameraControlModule

+requestControl(token,info:ControllingInfo,cmdStat:CommandStatus)

+requestOverride(token,info:ControllingInfo,cmdStat:CommandStatus)

+terminateControl(token)

+isControlled():boolean

+inhibitControl(token,hierarchyLevel:int)

+adjpan(token, direction:int)

+adjTilt(token, direction:int)

+adjZoom(token, direction:int)

+adjFocus(token, where:int)

+adjIris(token, direction:int)

+setAutoIris(token, boolean)

+setActiveTitle(token,title,lineNum:in,cmdStat:CommandStatust)

+resetCamera(token)

+poll(token)

«interface»

ControllableVideoCamera

-m_controllableCameraFact:

 ControllableCameraFactoryImpl

+CheckForAbandonedCameraTask

 (ControllableCameraFactoryImpl)

+run()

CheckForAbandonedCameraTask

run()

«interface»

java.util.TimerTask

-m_dbConnMgr : DBConnectionManager

-m_cameraFactoryImpl : ControllableCameraFactoryImpl

-m_cameraPushEventSupplier : PushEventSupplier

-m_networkConnectionSite : String

-m_svcApp : ServiceApplication

+deleteSource(Identifier):void

+getCameraList() : VideoProviderImpl[]

+getRegionList() : String[]

+getProviderConfig(Identifier) : VideoProviderConfig

-getProviderConfigWithConnection(Identifier, Connection) : VideoProviderConfig

+getSourceConfig(Identifier) : VideoSourceConfig

-getSourceConfigWithConnection(Identifier, Connection) : VideoSourceConfig

+getCameraConfig(Identifier) : VideoCameraConfig

-getCameraConfigWithConnection(Identifier, Connection) : VideoCameraConfig

+getControllableCameraConfig(Identifier) : ControllableVideoCameraConfig

-getControllableCameraConfigWithConnection(Identifier, Connection) :

 ControllableVideoCameraConfig

+getCOHU3955CameraConfig(Identifier) : COHU3955CameraConfig

-getCOHU3955CameraConfigWithConnection(Identifier, Connection) :

 COHU3955CameraConfig

+getDeviceConfig(Identifier) : VideoTransmissionDeviceConfig

-getDeviceConfigWithConnection(Identifier, Connection) :

 VideoTransmissionDeviceConfig

+getProviderStatus(Identifier) : VideoProviderStatus

-getProviderStatusWithConnection(Identifier, Connection) : VideoProviderStatus

+getSourceStatus(Identifier) : VideoSourceStatus

-getSourceStatusWithConnection(Identifier, Connection) : VideoSourceStatus

+getCameraStatus(Identifier) : VideoCameraStatus

-getCameraStatusWithConnection(Identifier, Connection) : VideoCameraStatus

+getControllableCameraStatus(Identifier) : ControllableVideoCameraStatus

-getControllableCameraStatusWithConnection(Identifier, Connection) :

 ControllableVideoCameraStatus

+getCOHU3955CameraStatus(Identifier) : COHU3955CameraStatus

-getCOHU3955CameraStatusWithConnection(Identifier, Connection) :

 COHU3955CameraStatus

+getDeviceStatus(Identifier) : VideoTransmissionDeviceStatus

-getDeviceStatusWithConnection(Identifier, Connection) :

 VideoTransmissionDeviceStatus

-getCameraDataWithConnection(Identifier, Connection) : CameraData

+getViconSVFTCameraConfig(Identifier) : ViconSVFTCameraConfig

-getViconSVFTCameraConfigWithConnection(Identifier, Connection) :

 ViconSVFTCameraConfig

+getViconSVFTCameraStatus(Identifier) : ViconSVFTCameraStatus

-getViconSVFTCameraStatusWithConnection(Identifier, Connection) :

 ViconSVFTCameraStatus

+removeCamera(Idenifier):void

+setCOHU3955CameraConfig(Identifier,COHU3955CameraConfig):void

+setCOHU3955CameraStatus(Identifier, COHU3955CameraStatus)

-setCOHU3955CameraStatusWithConnection(Identifier,

 COHU3955CameraStatus, Connection)

+setSourceConfig(Identifier,SourceConfig):void

+setSourceStatus(Identifier, VideoSourceStatus)

-setSourceStatusWithConnection(Identifier, VideoSourceStatus, Connection)

+setVideoProviderConfig(Identifier,VideoProviderConfig):void

+setVideoProviderStatus(Identifier, VideoProviderStatus)

-setVideoProviderStatusWithConnection(Identifier,

 VideoProviderStatus, Connection)

+setControllableCameraConfig(Identifier,ControllablevideoCameraConfig):void

+setControllableCameraStatus(Identifier, ControllableVideoCameraStatus)

-setControllableCameraStatusWithConnection(Identifier,

 ControllableVideoCameraStatus, Connection)

+setFactoryImpl(ControllableCameraFactoryImpl)

+setCameraData(Identifier, CameraData)

-setCameraDataWithConnection(Identifier, CameraData, Connection)

+setCameraStatus(Identifier, VideoCameraStatus)

-setCameraStatusWithConnection(Identifier, VideoCameraStatus, Connection)

+setViconSVFTCameraConfig(Identifier,ViconSVFTCameraConfig):void

+setViconSVFTCameraStatus(Identifier, ViconSVFTCameraStatus)

-setViconSVFTCameraStatusWithConnection(Identifier,

 ViconSVFTCameraStatus, Connection)

CameraControlDB

getConnection():java.sql.Connection

releaseConnection():void

shutdown():void

DBConnectionManager

#m_sourceConfig:VideoSourceConfig

#m_cameraConfig:VideoCameraConfig

#m_sourceStatus:VideoSourceStatus

#m_cameraStatus:VideoCameraStatus

#m_cameraData:CameraData

-m_isVideoSourceOnly:boolean

+getCameraConfig(token):VideoCameraConfig

+getCameraStatus():VideoCameraStatus

+getControllingOpCenter():OpCenterInfo

+getLocationDesc():string

+getLocationProfiles():LocationProfiles[]

+getOwningOrgID():Identifier

+getSourceConfig(Identifier):VideoSourceConfig

+getSourceStatus():VideoSourceStatus

+isControllable():boolean

+isDisplayable(token,VideoCollectorInfo,string):boolean

+isNoVideoAvailable():boolean

+isRemovable(VideoCollectorInfo,monitorGroupID[],string)

#pushStatus(desc,warnTxt):boolean

#persistData(desc,warnTxt):boolean

#persistStatus(desc,warnTxt):boolean

+setCameraConfig(token,VideoCameraConfig)

+setControllingOpCenter(token,OpCenterInfo)

+setSourceConfig(token,VideoSourceConfig)

+setUserDisplayStatus(token,boolean)

+remove(token)

-checkControllingOpCenterName()

+clearDeviceForOfflineMode(token,CommandStatus)

createPOATie():Servant

debugPrintConfig(String,String,VideoSourceConfig)

debugPrintConfig(String,String,VideoCameraConfig)

debugPrintData(String,String,CameraData)

debugPrintStatus(String,String,VideoSourceStatus)

debugPrintStatus(String,String,VideoCameraStatus)

getServiceTypeName():String

getProviderType():VideoProviderType

#initDefaultCameraData():CameraData

#initDefaultCameraStatus():VideoCameraStatus

#initDefaultSourceStatus():VideoSourceStatus

isNoVideoAvailableSource():boolean

VideoCameraImpl

+m_cameraConfig:VideoCameraConfig

+m_maxNumPresets:int

+m_presets:CameraPreset[]

+m_defaultPresetNum:intt

+m_skedMoveToDefaultPresetTime:long

+m_maxControlIdleTimeMins

+m_pollEnabled:boolean

+m_pollIntervalControlledSecs

+m_pollIntervalUncontrolledSecs

+m_lockOnManualIFocus:boolean

+m_lockOnManualIris:boolean

+m_lockOnManualColor:boolean

+m_lowestControlHierarchyLevel:int

+m_defaultCameraTitle

ControllableVideoCameraConfig

-m_controllableCameraFact : ControllableCameraFactoryImpl

+run()

+PollCameraTask(ControllableCameraFactoryImpl)

PollCameraTask

#m_controllableConfig:ControllableVideoCameraConfig

#m_controllableStatus:ControllableVideoCameraStatus

#m_maxTitleLength:int

#m_maxTitleLineNum:int

#m_protocolHandler:CameraProtocolHdlr

#m_lockOperation:Object[]

m_lastHardOpStatus:OperationalStatus

-m_lastNPossibleStateChanges : LinkedList

m_numActualStateChanges:int

m_numPossibleStateChanges:int

m_simulatedCommsSuccessRate:int

-m_recentStateChanges:LinkedList

m_recentStateChangeCnt:int

m_recentStateChangeTimeSecs:int

-m_pollInProgress:boolean

#m_validCOHU3955Characters:Hashtable

#pushStatus(String, StringBuffer)

#persistStatus(String, StringBuffer)

+adjFocus(byte[], int)

+adjIris(token, int)

+adjPan(token, int)

+adjTilt(token, int)

+adjZoom(token, int)

+getControllableCameraConfig(token):ControllableVideoCameraConfig

+getControllableCameraStatus():ControllableVideoCameraStatus

+isControllable():boolean

+moveToPreset(token,short,boolean)

+pollCamera(token, boolean):boolean

+remove(token)

+requestControl(token,boolean,ControllingInfo,CommandStatus)

+resetCamera(token)

+savePreset(token,short,String)

+setActiveTitle(token,String,short,CommandStatus)

+setAutoIris(token,boolean)

+setControllableCameraConfig(token, ControllableVideoCameraConfig)

+setUserControlStatus(token, boolean)

+terminateControl(token, CommandStatus)

+clearDeviceForOfflineMode(token, CommandStatus)

+isRemovable(VideoCollectorInfo,monitorGroupID[],StringHolder):boolean

+isControlled():boolean

#isControlledBy(token)

#terminateControlImpl(token,CommandStatus)

debugPrintConfig(String,String,ControllableVideoCameraConfig)

debugPrintStatus(String, String, ControllableVideoCameraStatus)

#getControllableCameraConfig():ControllableVideoCameraConfig

#verifyController(byte[], CommandStatus)

+requestCameraControlImpl(token,CommandStatus,ControllingInfo)

#isDisplayedLocally(ControllingInfo,token):int

#checkControllable(token,CommandStatus int)

#hasCommandRunning()

+requestCameraOverrideImpl(byte[], CommandStatus, ControllingInfo)

#stopCameraIfNecessary(String)

pollIfNecessary()

#verifyCommModeNotOffline(String, CommandStatus)

-setPollInProgress(boolean)

#updateCameraTitle(int, String)

-updateLastAttemptedPollTime()

-updateLastCommandTime()

#updateLastContactTime()

-updateLastSuccessfulPollTime()

#handleOpStatus(OperationalStatus,boolean,CommandStatus,

 String,boolean,boolean):boolean

#updateCmdTimeSecs()

#convertToOperationalStatus(CameraOperationalStatus):OperationalStatus

#refreshMonitorList()

+populateValidTitleCharacters(String)

+isTitleValid(String):boolean

+getValidTitleChars():String

ControllableVideoCameraImpl

+initialize():boolean

+connect():boolean

+disconnect():boolean

+shutdown():boolean

+send(byteMessage:byte []):byte []

+send(messages:ArrayList, id:token):boolean

+receive(byte [], int):void

+receive(data:ArrayList, length:ArrayList, id:token)

+getActualBytesRead():int

+setConfiguration(COHU3955CameraConfig)

 :boolean

«interface»

CameraControlDevice

+m_commMode:CommunicationMode

+m_opStatus:OperationalStatus

+m_controllingOpCenter:OpCenterInfo

+m_monitorInfo:MonitorDisplayInfo

+m_deviceStatusChangeTimeSecs:int

+m_monitorStatusChangeTimeSecs:int

VideoProviderStatus

+m_providerStatus:VideoProviderStatus

+m_maintModeUserName:string

+m_blockedToPublic:boolean

+m_userDisplayStatus:boolean

+m_revokedDisplayOrgID[]

VideoSourceStatus

CameraControlComPort

m_cameraId:int

m_cameraName:String

+initialize():boolean

+connect():boolean

+disconnect():boolean

+shutdown():boolean

+setCameraId():void

+setCameraName():void

+getInitialCommands()

CameraProtocolHdlr

+m_cameraStatus:VideoCameraStatus

+m_controlled:boolean

+m_controllingUserInfo:ControllingUserInfo

+m_actionState:CameraActionState

+m_inAutoFocusMode:boolean

+m_inAutoIrisMode:boolean

+m_currentTitle:string

+m_lastControlCmdTimeSecs:long

+m_userControlStatus:boolean

+m_atPreset:CameraPreset

+m_controlInhibitLevel:int

ControllableVideoCameraStatus

+m_sourceStatus:VideoSourceStatus

VideoCameraStatus

CommandProcessor

Encoder

+m_header:byte []

+m_headerResponse:byte[]

+m_command:byte[]

+m_commandResponse:byte[]

+m_expectedLength:int

+m_commandType:int

CameraCommand

+adjPan(direction:int):CameraOperationalStatus

+adjTilt(direction:int):CameraOperationalStatus

+adjZoom(direction:int):CameraOperationalStatus

+adjFocus(where:int):CameraOperationalStatus

+adjIris(boolean):CameraOperationalStatus

+adjBlue(direction:int):CameraOperationalStatus

+adjRead(direction:int):CameraOperationalStatus

+setAutoIris(boolean):CameraOperationalStatus

+setAutoFocus(boolean):CameraOperationalStatus

+setAutoColor(boolean):CameraOperationalStatus

+setLensFast(boolean):CameraOperationalStatus

+resetCamera():CameraOperationalStatus

+setActiveTitle(title, lineNum):CameraOperationalStatus

+poll():CameraOperationalStatus

#buildCommand():byte[]

#getReturnedStatus(byte[]:cameraStatus)

+miscCommand(string, int):CameraOperationalStatus

-receiveACKorNAKStatus():CameraOperationalStatus

#sendACK(byte)

-sendCommandForData():CameraOperationalStatus

#sendMessage(byte[]):CameraOperationalStatus

+setTitleEnabled(boolean):CameraOperationalStatus

+setTitleToTop(boolean):CameraOperationalStatus

+shutdown():boolean

+stopAll()

COHUProtocolHdlr

+adjRed(token,direction:int)

+adjBlue(token,direction:int)

+setAutoColor(token,boolean)

+setLensFast(token,boolean)

+setPowerOn(token,boolean)

+adjPan(token, direction:int)

+setAutoFocus(token,boolean)

+getCOHU3955CameraStatus()

 :COHU3955CameraStatus

+getCOHU3955CameraConfig(Identifier)

 :COHU3955CameraConfig

+setCOHU3955CameraConfig(Identifier,

 COHU3955CameraConfig)

«interface»

COHU3955Camera

m_commands:LinkedList

m_shutdown:boolean

addCommand(QueueableCommand)

removeCommand(QueueableCommand)

shotdown()

-getNextCommand():QueueableCommand

CommandQueue

-m_cohu3955Config:COHU3955CameraConfig

-m_cohu3955Status:COHU3955CameraStatus

COHU3955CameraImpl

execute()

interrupted()

geCmdStatus():CommandStatus

getToken():byte[]

QueueableCommand

+adjPan(direction:int):CameraOperationalStatus

+adjTilt(direction:int):CameraOperationalStatus

+adjZoom(direction:int):CameraOperationalStatus

+adjFocus(where:int):CameraOperationalStatus

+adjIris(boolean):CameraOperationalStatus

+setAutoIris(boolean):CameraOperationalStatus

+setActiveTitle(string title, int lineNum):CameraOperationalStatus

+poll():CameraOperationalStatus

+setAutoFocus(boolean):CameraOperationalStatus

+setAutoColor(boolean):CameraOperationalStatus

+setLensFast(boolean):CameraOperationalStatus

+setAutoIris(boolean):CameraOperationalStatus

+resetCamera():CameraOperationalStatus

+setPosition(Command, Value):int

+getPosition():Position

+moveToPosition(Preset):int

+savePreset(number):int

ViconSVFTProtocolHdlr

-m_cVideoSinkImpl : VideoSinkImpl

-m_cmdStat : CommandStatus

-m_videoProviderInfoSrc : VideoProviderInfo

-m_bTour : boolean

-m_token : token

+execute()

+interrupted()

DisplayImageCmd

+m_siteName:string

+m_site:Site

+m_siteHierarchyLevel:int

+m_workstationName:string

+m_workstation:Workstation

+m_userName:string

«datatype»

ControllingInfo

-m_requesterToken:Token

-m_cmdStat:CommandStatus

-m_source:VideoCameraImpl

-m_presetNum:int

MoveToPresetCmd

-m_camera : ControllableVideoCameraImpl

-m_cmdStat : CommandStatus

-m_token : token

-m_info : ControllingInfo

+execute()

+interrupted()

RequestCameraOverrideCmd

+m_controllableStatus:ControllableVideoCameraStatus

+m_inAutoColorMode:boolean

+m_powerOn:boolean

+m_lensSpeedFast:boolean

+m_currentTitle2:string

COHU3955CameraStatus

-m_camera : ControllableVideoCameraImpl

-m_cmdStat:CommandStatus

-m_token : token

-m_info : ControllingInfo

+execute()

+interrupted()

RequestCameraControlCmd

+adjBlue(byte[],int):void

+adjMenuHorizontally(byte[],int):void

+adjMenuVertically(byte[],int):void

+adjRed(byte[],int):void

+getValidTitleChars():String

+getViconSVFTCameraConfig(byte[]):ViconSVFTCameraConfig

+getViconSVFTCameraStatus():ViconSVFTCameraStatus

#persistStatus(String,StringBuffer):boolean

#pushStatus(String,StringBuffer):boolean

+remove(byte[]):void

+setAutoColor(byte[],boolean):void

+setAux(byte[],short):void

+setLensSpeed(byte[],short);void()

+setProgrammingMode(byte[],boolean):void

+setViconSVFTCameraConfig(byte,ViconSVFTCamerConfig):void

updateCameraTitle(int,String):void

-verifyCommMode(CommunicationMode,String,CommandStatus,boolean):void

ViconSVFTCameraImp

-m_camera:ControllableVideoCameraImpl

-m_cmdStat:CommandStatus

-m_token:Token

+execute()

+interrupted()

PutCameraOnlineCmd

-m_provider : VideoProviderImpl

-m_cmdStat : CommandStatus

-m_token : token

+execute()

+interrupted()

TakeCameraOfflineCmd

-m_camera : ControllableVideoCameraImpl

-m_cmdStat : CommandStatus

-m_token : token

+execute()

+interrupted()

TerminateControlCmd

-m_camera : VideoCameraImpl

-m_cmdStat : CommandStatus

-m_token : token

-m_orgID : revokedOrgID

+execute()

+interrupted()

RevokeDisplayCmd

-m_camera : ControllableVideoCameraImpl

-m_cmdStat : CommandStatus

-m_token : token

-m_orgID : revokedOrgID

+execute()

+interrupted()

RevokeControlCmd

ViconSVFTCameraStatus

-m_camera : VideoCameraImpl

-m_cmdStat : CommandStatus

-m_token : token

+execute()

+interrupted()

BlockToPublicCmd

1 1

1

1

1 1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

gets module props using

1

1 creates

1

1 creates

1

1

1

1

1

1

*

*

1

1

1

*

1

1

1

1

1 1

1 1

1

1

Figure 3‑10. CameraControlModule (Class Diagram)

3.2.5.1 BlockToPublicCmd (Class)

This class represents the information needed to create a block camera to public command to be added on the CommandQueue.

3.2.5.2 CameraCommand (Class)

CameraCommand contains information about the commands sent to, and responses received from, the camera.

3.2.5.3 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port with direct connection to the control port of a video camera. It is used to send video camera control commands and return responses to a camera control process.

3.2.5.4 CameraControlDB (Class)

The CameraControlDB class provides an interface between the Camera service and the database used to persist and depersist the Camera objects and their configuration and status in the database. It contains a collection of methods that perform database operations on tables pertinent to Camera Control. The class is constructed with a DBConnectionManager object, which manages database connections. Methods exist to insert and delete Camera objects from the database, and to get and set their configuration and status information.

3.2.5.5 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides communications for access to control functions for a video camera. This includes encoders, command processors, and direct COM ports.

3.2.5.6 CameraControlModule (Class)

The CameraControlModule class is the service module for the Camera devices and a Camera factory. It implements the ServiceApplicationModule interface. It creates and serves a single CameraFactoryImpl object, which in turn serves zero or more CameraImpl objects. It also creates CameraControlDB, CameraControlModuleProperties, and PushEventSupplier objects.

3.2.5.7 CameraControlModuleProperties (Class)

The CameraControlModuleProperties class is used to provide access to properties used by the Camera Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Camera Control Module.

3.2.5.8 CameraProtocolHdlr (Class)

CameraProtocolHdlr classes provide implementations for all the camera commands. Each CameraImpl class will have a CameraProtocolHdlr instantiated when initialized. When a camera control command is sent to the CameraImpl, CameraProtocolHdlr will be called to translate the command to byte messages which the camera understands. Then those messages are sent by the CameraControlDevice to the camera. CameraProtocolHdlr is capable of using different CameraControlDevice which is created during the initialization.

3.2.5.9 CheckForAbandonedCameraTask (Class)

The CheckForAbandonedCameraTask is a timer task. When the timer fires, it checks to see if a camera control session has exceeded the timeout, or whether a camera is controlled by an Operations center with no one logged in.

3.2.5.10 COHU3955Camera (Class)

The COHUCamera interface is implemented by objects representing COHU-brand video cameras. The COHUCamera interface is extended by the COHUMPCCamera and COHU3955Camera interfaces. The COHUCamera interface includes all methods which are common to the two COHU cameras used by CHART II, the COHU MPC camera and the COHU 3955 camera. (Note that this interface may well contain a superset of methods which would be implemented by the entire line of all models of COHU video cameras).

3.2.5.11 COHU3955CameraImpl (Class)

This class implements the COHU3955Camera interface, and inherits from the ControllableCameraImpl class. The COHU3955CameraImpl implements methods of COHU3955Camera, extending the controllable camera to include 3955-specific operations. This class will contain a configuration and status object as necessary to convey 3955-specific configuration and status information.

3.2.5.12 COHU3955CameraStatus (Class)

The CameraStatus class is an abstract value-type class which provides status information for a Camera. This status information is relatively dynamic: things like the communication mode, operational status, operation center information, status change time.

3.2.5.13 COHUProtocolHdlr (Class)

COHUProtocolHdlr is the base class for all COHU cameras. At present, this class contains implementations for common functions for COHU MPC and COHU 3955 cameras

3.2.5.14 CommandProcessor (Class)

The CommandProcessor class provides an implementation of the CommandProccesor interface and is derived from the CameraControDevice class. The CommanProcessor manages the control of multiple cameras attached to one or more COM ports. The CommandProcessor may or may not be local to the camera that is being controlled.

3.2.5.15 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.2.5.16 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This interface also supports a maintenance mode (although any given implementation may choose to implement putInMaintenanceMode() by throwing a CHART2Exception, if maintenance mode is not supported by that particular implementation). This interface is typically implemented only for field devices.

3.2.5.17 ControllableCameraFactoryImpl (Class)

The CameraFactoryImpl class provides an implementation of the CameraFactory interface (and its CameraFactory and SharedResourceManager interfaces) as specified in the IDL. The CameraFactoryImpl maintains a list of CameraImpl objects and is responsible for publishing Camera objects in the Trader on startup and as new camera objects are created. Whenever a Camera is created or removed, that information is persisted to the database. This class is also responsible for performing the checks requested by the timer tasks: to poll the Camera devices, to look for Camera devices with timeout exceeded, to look for Camera devices with no one logged in at the controlling operations center, and to initiate recovery processing as needed

3.2.5.18 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The ControllableVideoCamera interface represents a controllable video camera as opposed to the uncontrollable, immovable VideoCamera. Current plans call for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of ControllableVideoCamera. The ControllableVideoCamera interface includes all methods common to the three known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day. Current plans call for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

3.2.5.19 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration information about ControllableVideoCamera objects at the ControllableVideoCamera level.

3.2.5.20 ControllableVideoCameraImpl (Class)

The ControllableCameraImpl class provides an implementation of the ControllableVideoCamera interface and is derived from the CameraImpl class implementing the VideoCamera interface.

This class contains a CommandQueue object that is used to sequentially execute long running operations related to camera control in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are ControllableVideoCameraConfig and ControlablVideoCameraStatus objects (used to store the configuration and status of the camera), and a VideCameraData object (used to store internal status information which is persisted but not pushed out to clients).

The ControllableCameraImpl contains *Impl methods that map to methods specified in the IDL, including requests to request control of the camera, terminate control of the camera, override control of the camera, and to send pan/tilt/zoom (PTZ) commands to the camera. Some of these requests are long running, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate ControllableCameraImpl method as the command is executed by the CommandQueue in its thread of execution. PTZ commands are not considered long running and are not placed on the command queue.

The ControllableCameraImpl also contains methods called by the CameraFactory to support the timer tasks of the Camera Service: to poll the Camera, to look for Camera devices with communications timeout exceeded.

3.2.5.21 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

3.2.5.22 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or requesting to control) a VideoCamera.

3.2.5.23 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.2.5.24 DisplayImageCmd (Class)

This class represents the information needed to create a display image command to be added on the CommandQueue.

3.2.5.25 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder. The Encoder interface includes both the Codec and the VideoSendingDevice interfaces, which means in addition to providing forwarding of video, it also is used to send video camera control commands and return responses to a camera control process.

3.2.5.26 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.2.5.27 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.2.5.28 MoveToPresetCmd (Class)

This class represents the information needed to create a move to preset command to be added on the CommandQueue.

3.2.5.29 PollCameraTask (Class)

The PollCameraTask is a timer task. When the timer fires it polls a camera by sending a poll command to the camera.

3.2.5.30 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set; causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.2.5.31 PutCameraOnlineCmd (Class)

This class represents the information needed to request a put camera online command to be added on the CommandQueue.

3.2.5.32 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

3.2.5.33 RequestCameraControlCmd (Class)

This class represents the information needed to request a camera control command to be added on the CommandQueue.

3.2.5.34 RequestCameraOverrideCmd (Class)

This class represents the information needed to request a camera control override command to be added on the CommandQueue.

3.2.5.35 RevokeControlCmd (Class)

This class represents the information needed to create a revoke camera control command to be added on the CommandQueue.

3.2.5.36 RevokeDisplayCmd (Class)

This class represents the information needed to create a revoke camera display command to be added on the CommandQueue.

3.2.5.37 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.5.38 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.5.39 TakeCameraOfflineCmd (Class)

This class represents the information needed to request a take camera offline command to be added on the CommandQueue.

3.2.5.40 TerminateControlCmd (Class)

This class represents the information needed to request a terminate camera control command to be added on the CommandQueue.

3.2.5.41 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.2.5.42 ViconSVFTCameraImpl (Class)

This class implements the ViconSVFTCamera interface, and inherits from the ControllableCameraImpl class. The ViconSurveyorVFTCameraImpl implements methods of ViconSVFTCamera, extending the controllable camera to include Vicon SVFT-specific operations. This class will contain a configuration and status object as necessary to convey Vicon SVFT-specific configuration and status information.

3.2.5.43 ViconSVFTCameraStatus (Class)

The ViconSVFTCameraStatus class is used to hold camera status information at the ViconSVFTCamera level. Only ViconSVFTCamera specific information is stored.

3.2.5.44 ViconSVFTProtocolHdlr (Class)

This class contains an implementation for Vicon SVFT camera control commands. It translates every camera command (pan, tilt, zoom…) into bytes that a Vicon SVFT camera understands. Then, it uses a CameraControlDevice to send the byte codes to the camera and evaluate responses from the camera.

3.2.5.45 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The VideoCamera interface represents a controllable video camera as opposed to the uncontrollable, immovable FixedVideoCamera, the other type of GenericVideoCamera. (The VideoCamera class could have been called the ControllableVideoCamera interface, but since the CHART II video system exists primarily to control controllable video cameras, the camera hierarchy has been arranged to avoid the longish name ControllableVideoCamera.) Current plans call for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of VideoCamera. The VideoCamera interface includes the GeoLocatable interface, to someday allow for advanced features such as automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.

The VideoCamera interface includes all methods common to the three known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day.

3.2.5.46 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

3.2.5.47 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of VideoCamera objects.

3.2.5.48 VideoCameraImpl (Class)

The CameraImpl class provides an implementation of the VideoCamera interface, and by extension the VideoSource, SharedResource, CommEnabled, GeoLocatable, and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long running operations in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are VideoCameraConfig and VideoCameraStatus objects (used to store the configuration and status of the camera), and a VideCameraData object (used to store internal status information which is persisted but not pushed out to clients).

The CameraImpl contains *Impl methods that map to methods specified in the IDL, including requests to display the camera video on a monitor, remove the camera video from a monitor, put the camera online, put the camera offline, put the camera in maintenance mode (future), or to change (set) the configuration of the camera (future). Some of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate CameraImpl method as the command is executed by the CommandQueue in its thread of execution.

The CameraImpl also contains methods called by the CameraFactory to support the timer tasks of the Camera Service: to look for Cameras with no one logged in at the controlling operations center, and to initiate recovery processing if needed (future).

3.2.5.49 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold and transmit status information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraStatus.

3.2.5.50 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

3.2.5.51 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

3.2.5.52 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

3.2.5.53 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold and transmit status information about VideoSource objects at the VideoSource level. Further details about lower-level VideoSource subclasses are provided by subclasses of VideoSourceStatus.

3.2.6 MonitorControlModule (Class Diagram)

This diagram shows the classes with comprise the MonitorControlModule. The MonitorControlModule is an installable module that serves the monitor objects and factory to the rest of the CHART II system. It also serves workstations, sites, tours, and their factories. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions. The MonitorImpl object is the primary class operating in this module. This object provides all access to the monitor status, and configuration. Every request to display an image on a monitor comes to the MonitorImpl object first, through the Monitor interface. When a new image is displayed on a monitor, the Monitor's status is updated to indicate the new camera is being displayed on it, and the new Camera's status and old Camera's status will be updated correspondingly. The MonitorControlModule also includes factory implementations responsible for providing lists of monitors, sites, workstations, and tours to interested clients. Tours and their configruations are maintained in the TourFactory, but execute within the Monitor(s) that they are running on.

[image: image13.emf]FullTourStatusUpdateFlag - says whether to push status

updates for camera status updates for changes to the

active monitor list pertaining to tours only. Probably

default to true unless that causes too much traffic.

FullTourOpsLoggingFlag - same except for writing to Ops

Log. Probably default to false unless we need it for

troubleshooting a problem, as this would be a lot of excess

Ops Log entries.

«interface»

ServiceApplication

+getMonitorList():Monitor[]

+getMonitorsWithActiveTours():Monitor[]

«interface»

MonitorFactory

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

boolean m_allowSimulation;

Vector m_MonitorImplVect;

MonitorControlDB m_db;

LogFile m_monitorStatusLogFile;

Identifier m_idObj;

String m_name;

int m_sharedResMonInt;

ServiceApplication m_svcApp;

MonitorControlModuleProperties m_props

+createMonitor(byte[] MonitorConfig):void

+getMonitorList() : Monitor;

-getID() : byte[];

-getName() : String;

+getResources() : SharedResource[];

+getControlledResources(byte[] opCtrIDDataToChk):

 SharedResource[];

+hasControlledResources(byte[] opCtrIDDataToChk) :

 boolean;

+removeMonitor(MonitorImpl c2monitorImpl,

 byte[] token) : void;

checkCommLoss() : void;

getAllowSimulation() : void;

getMonitorStatusLogFile() : LogFile;

getHostName() : String;

getMonitorPushEventSupplier() : PushEventSupplier;

getTimeDownSecs(): int;

getProperties() : CameraControlModulePropertie;

-addMonitorTypesToTrader() : void;

-alarmIfNoLoggedInUsers(Identifier opCtrIDObjToChk,

 String opCtrName): void;

-pushMonitorAdded(Monitor monitor,

 MonitorConfiguration c2MonitorCfg, String statMsg) :

 boolean;

+getMonitorsWithActiveTours():Monitor[]

MonitorFactoryImpl

+getCollectorStatus():VideoCollectorStatus

+getCollectorConfiguration(token):VideoCollectorConfig

+setCollectorConfiguration(token,VideoCollectorConfig)

+removeCollector(token)

+displayImage(token,VideoSource,cmdStat:CommandStatus)

+dropImage(token)

«interface»

VideoCollector

m_maxCameraControlSiteHierarchy

-setDefaultSystemProperties() : void

+getSystemProperties() : void

+getAllowSimulation() : boolean

+getLogFlags() : String

+getSystemPropsRefreshMins() : int

+getMaxXameraControlSiteHierarchy()

+getFullTourStatusUpdateFlag():boolean

+getFullTourOpsLoggingFlag():boolean

+getMinimumTourDwellTime():boolean

MonitorControlProperties

+displayImage(VideoSource)

+dropImage()

+getStatus()

+getStatus():VideoSinkStatus

+getConfiguration(token):VideoSinkConfiguration

+setConfiguration(token,VideoSinkConfiguration)

+remove(token)

«interface»

VideoSink

ServiceApplication m_svcApp;

MonitorControlDB m_db;

CommFailureDB m_commFailDB;

MonitorFactoryImpl m_cameraFactory;

MonitorControlModuleProperties m_props;

+initialize(ServiceApplication svcApp) : boolean

+shutdown(ServiceApplication svcApp) :

 boolean

-createEventChannel(String name) :

 PushEventSupplier

-createNotificationChannel(String name) :

 PushNotifySupplier

-createMonitorFactory(int timeDown) : boolean

-addMonitorFactoryTypesToTrader() : void

MonitorControlModule

+setPosition(token,xPos,yPos,xSize,ySize)

+stopCameraTour(token,cameraTour)

+startCameraTour(token,cameraTour)

«interface»

Monitor

DBConnectionManager m_dbConnMgr;

MonitorFactoryImpl m_cameraFactoryImpl;

CommFailureDB m_commFailDB;

ServiceApplication m_svcApp;

+deleteMonitor(Identifier):void

+getMonitorList() : MonitorImpl;

+getConfiguration(Identififer MonitorID) : MonitorConfiguration;

+getStatus(Identifier MonitorID) : MonitorStatus;

+setConfiguration(Identifier, MonitorConfiguration) : void;

+setStatus(Identifier MonitorID) : void;

-getConfigWithConnection(Identifier, Connection) :

 MonitorConfiguration;

-getStatusWithConnection(Identifier, Connection) :

 MonitorStatus;

+createMonitorImpl(Identifier, MonitorConfiguration,

 MonitorStatus) : MonitorImpl;

+setConfiguration(Identifier, MonitorConfig):void

+setStatusWithConnection(Identifier, MonitorStatus,

 Connection) : void;

MonitorControlDB

CommFailureDB m_commFailDB;

MonitorConfiguration m_config ;

MonitorControlDB m_db ;

LogFile m_devLogFile;

boolean m_monitorCommsSimulated;

MonitorFactoryImpl m_factory;

Identifier m_idObj;

String m_createLogFlag;

MonitorStatus m_status;

ServiceApplication m_svcApp;

FunctionalRightType m_systemRight;

Object[] m_lockName;

Object[] m_lockStatus;

boolean m_logFlags[];

byte[] m_systemToken;

+getCconfiguration(Access Oken) : MonitorConfiguration;

-verifyMonitorAccess(Access Token, rightId,

 descPrefix, descSuffix, CommandStatus) : void;

-opLog(Access Token, msg, Action, deviceName) : void

-logLockRcvd(String lock) : void

-logLockRqst(String lock) : void

-logLockDone(String lock) : void

-log(String flags, String method, String txt) : void

-setControllingOpCenter(Access token, OpCenterInfor opCtrInfo) :

 void

-getID():byte

-getLocationDesc():String

-getName():String

-getOwnerOrgID():byte[]

+getStatus() : CameraStatus

+setConfiguration(Access token, MonitorConfiguration,

 CommandStatus) : void

-logProd(String method, String txt):void

-validateCfg(MonitorConfiguration cfg, byte[] token):void

-getMonitorName() : String

-getIdentifier() : Identifier

-getServiceTypeName() : String

+remove(Token):void

+setConfigurationImpl(token, newCfg, cmdStat) : void

-updateCfgBool(curr, repl, desc, rec) : boolean

-updateCfgStr(curr, repl, desc, rec) : Stromg

-checkControllingOpCenterName() : void

-cmdStatusCompleted(cmdStat, StatMsg, CompletionCode) :

 boolean

-cmdStatusFailure(cmsStat, statMsg) : boolean

-cmdStatusFailureMaybe(cmdStat, statMsg, complete) : boolean

-cmdStatusSuccess(cmdStat, statMsg) : boolean

-cmsStatusSuccessMaybe(cmdStat, statMsg, complete) :

 boolean

-cmdStatusUpdate(cmdStat, statMsg) : boolean

compareMonitorAccess(token, rightID)

+initializeNewMonitor() : void

-initStatus() : void

-sleep(int sleepTimeMs) : void

+shutdownCameraTourcameraTourvoid

()

MonitorImpl

getConnection():java.sql.Connection

releaseConnection():void

shutdown():void

DBConnectionManager

MonitorConfiguration MonitorStatus

1

1

1

1

1

*

1

1

1 1 1 1

1

1

1

1

1

1

1

1

Figure 3‑11. MonitorControlModule (Class Diagram)

3.2.6.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

3.2.6.2 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a real, physical "television set" on which a video image can be displayed. This is the most common type of VideoSink (the other being a SWMonitor, part of a future requirement to stream video directly to user's workstations (or potentially other nearby computers).

3.2.6.3 MonitorConfiguration (Class)

The MonitorConfiguration contains configuration information specific to Chart II processing. Such information includes, but is not limited to, the monitor name, owning organization, and decoder configuration.

3.2.6.4 MonitorControlDB (Class)

The MoniorControlDB class provides an interface between the Monitor service and the database used to persist the camera objects and their configuration and status in the database. This class provides the ability to retrieve and view the camera from local and remote workstations. The class is constructed with a DBConnectionManager object, which manages database connections

3.2.6.5 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a Monitor factory. It implements the ServiceApplicationModule interface providing a platform for displaying camera objects within a service application. This class is the controlling class for the Minitor Control Module, providing initialization and overall operation of the module. It also creates MonitorControlDB and MonitorControlModuleProperties objects.

3.2.6.6 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by the Monitor Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Monitor Control Module.

3.2.6.7 MonitorFactory (Class)

This CORBA interface allows new devices to be added to the system. It allows an operator to acquire a list of camera tour objects under the domain of the specific MonitorFactory object. It also implements the SharedResourceManager capability to control Monitor objects as shared resources between workstations.

3.2.6.8 MonitorFactoryImpl (Class)

The MonitorFactoryImpl class provides an implementation of the MonitorFactory interface as specified in the IDL. The MonitorFactoryImpl maintains a list of MonitorImpl objects and is responsible for publishing Monitor objects in the Tradr on startup and as new monitor objects are created. Whenever a monitor is created or removed, that information is persisted in the database.
3.2.6.9 MonitorImpl (Class)

The MonitorImpl class provides an implementation of the Monitor interface by extension of the Monitor, SharedResource, and UniquelyIdentifiable interfaces, CommEnabled, as specified in the IDL. Also contained in this class are MonitorConfiguration and MonitorStatus objects used to store the configuration and status of the monitor.

3.2.6.10 MonitorStatus (Class)

This class (struct) contains data that indicates the current status of a Monitor device specific to Chart II processing, such as information on the particular controlling operation centers. The data contained in this class is that status information which can be transmitted from the local monitors to remote monitors. This struct is also used within the Monitor Service to transmit data to/from the MonitorControlDB database interface class.

3.2.6.11 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.6.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.6.13 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

3.2.6.14 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video signals, such as video monitors and streaming video receivers directly on user workstations. Within the user interface, the VideoSink interface represents all objects on which a video source can be placed for viewing by users.

3.2.7 MonitorGroupManagementDiagram (Class Diagram)

This diagram shows the classes with comprise the Monitor Group classes of the MonitorControlModule. The MonitorControlModule is an installable module that serves the Monitor Group objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image14.emf]«interface»

ServiceApplicationModule

MonitorControlProperties

MonitorControlModule

DBConnectionManager m_dbDBConnectionMgr

MonitorGroupFactoryImpl m_MonitorGroupFactoryImpl

ServiceApplication m_svcApp

PushEventSupplier m_monitorGroupPushEventSupplier

#createMonitorGroupImpl(Identifier, MonitorGroupConfig,

 MonitorGroupStatus):MonitorGroupImpl

+deleteMonitorGroup(Identifier):void

+getConfiguration(Identifieritor):MonitorGroupConfig

+getMonitorGroupList():MonitorGroupImpl[]

+getStatus(Identifier):MonitorGroupStatus

+saveStatus(Identifier, MonitorGroupStatus):void

+getMonitorGroupFactoryImpl(

 MonitorGroupFactoryImpll):void

+setConfig(Identifier, MonitorGroupConfig):void

MonitorGroupControlDB

+getMonitorGroupInfoList():MonitorGroupInfoList

«interface»

MonitorGroupFactory

m_pendingDeleteMonitorGroupImplVec:Vector

m_factoryIDObj:Identifier

m_hostName:String

m_logFlags:boolean[]

m_monitorGroupImplVect:Vector

m_MonitorGroupInfoVect:Vector

m_monitorGroupPushEventSupplier;PushEventSupplier

m_monitorGroupStatusLogFile:LogFile

m_name:String

m_pendingDeleteMonitorGroupImplVect:Vector

m_props:MonitorControlModuleProperties

m_shutdown:boolean

m_svcApp:ServiceApplication

-addMonitorGroupTypesToTrader():void

+createMonitoGroupr(byte[], MonitorGroupConfig):void

getHostName():String

+getID():byte[]

getLogFlags():boolean[]

+getMonitorGroupInfoList():MonitorGroupInfo[]

getMonitorGroupPushEventSupplier():PushEventSupplier

+getName():String

getProperties():MonitorControlModuleProperties

-log(String flags, String method, String txt):void

-logProd(String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog(byte[] token, String msg, int action,

 String siteName):void

+shutdown():void

MonitorGroupFactoryImpl

«interface»

UniquelyIdentifiable

+addControlledCamera(AccessToken, VideoProviderInfo):void

+getConfiguration(AccessToken):MonitorGroupConfiguration

+removeControlledCamera(AccessToken, Identifier):void

+setConfiguration(AccessToken,MonitorGroupConfiguration)

«interface»

MonitorGroup

m_config:MonitorGroupConfig

m_createLogFlag:String

m_db:MonitorGroupControlDB

m_factory:MonitorFactoryImpl

m_idObj:Identifier

m_lockConfig:Object[]

m_lockName:Object[]

m_lockStatus:Object[]

m_logFlags:boolean[]

m_monitorGroupPushEventSupplier:PusheventSupplier

m_props:MonitorControlModuleProperties

m_status:MonitorGroupStatus

m_svcApp:ServiceApplication

+addControlledCamera(byte[] token,

 VideoProviderInfo videoInfoList):void

-cmdStatusCompleted(CommandStatus cmdStat, String statMsg,

 boolean completionCode):boolean

cmdStatusFailure(CommandStatus cmdStat, String statMsg):boolean

debugPrintConfig(String flags, String method, MonitorGroupConfig cfg):void

debugPrintStatus(String flags, String method, MonitorGroupStatus stat):void

+ getConfig(byte[] token):MonitorGroupConfig

+getID():byte[]

getIdentifier():Identifier

getMonitorGroupName():String

+getName():String

+getStatusMonitorGroupStatus()

getSvcApp():ServiceApplication

log (String flags, String method, String txt):void

-logLockDone(String lock):void

-logLockRcvd(String lock):void

-logLockRqst(String lock):void

-logProd (String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog (byte[] token, String msg, int action, String deviceName):void

#pushStatus(String desc, StringBuffer warnTxt):boolean

+remove(Token):void

+removeControlledCamera(byte[] token, byte[] cameraID):void

+setConfig(byte[] token, MonitorGroupConfig config):void

-verifyMonitorGroupAccess(byte[] token, int rightID, String descPrefix,

 String descSuffix, CommandStatus cmdStat):void

MonitorGroupImpl

«interface»

ServiceApplication

PushEventSupplier

m_Name:String

m_monitorGroupIDs:Identifier[]

m_organizationId;Identifier

MonitorGroupConfiguration

m_controlledCameraIDs:Identifier[]

MonitorGroupStatus

1

1

1

1

1

1

1

1

1 *

1

1

1

1

1

1

1

1

Figure 3‑12. MonitorGroupManagementDiagram (Class Diagram)

3.2.7.1 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a Monitor factory. It implements the ServiceApplicationModule interface providing a platform for displaying camera objects within a service application. This class is the controlling class for the Minitor Control Module, providing initialization and overall operation of the module. It also creates MonitorControlDB and MonitorControlModuleProperties objects.

3.2.7.2 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by the Monitor Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Monitor Control Module.

3.2.7.3 MonitorGroup (Class)

This MonitorGroup interface is used to represent a monitor group. A monitor group has two purposes. A monitor group will basically mirror operations centers, or facilities: A monitor group named after an operations center, facility, site, will contain the monitors at that location. Users will choose (or be assigned) their monitor group upon logging in. This configuration of monitor group will determine which monitors are "local" for a user. It will be used to manage access to camera control.

3.2.7.4 MonitorGroupConfiguration (Class)

The MonitorGroup configuration class represents the configuration of MonitorGroups representing facilities at which physical monitors are present. The configuration is essentially a list of the monitors in a group.

3.2.7.5 MonitorGroupControlDB (Class)

This class provides the database methods to add, insert, persist and depersist information about sites.

3.2.7.6 MonitorGroupFactory (Class)

This CORBA interface allows an operator to acquire a list of monitor group objects under the domain of the specific MonitorGroupFactory object.

3.2.7.7 MonitorGroupFactoryImpl (Class)

The MonitorGroupFactoryImpl class provides an implementation of the MonitorGroupFactory interface as specified in the IDL. It will provide a capability to depersist monitor groups from the datbase and maintain and provide a list of the monitor groups to any object that requests it.

3.2.7.8 MonitorGroupImpl (Class)

The MonitorGroupImpl class implements the MonitorGroup interface by extension of the MonitorGroup and UniquelyIdentifiable interfaces, as specified in the IDL. Also contained in this class are the MonitorGroupConfiguration and MonitorGroupStatus objects used to store the configuration and status of the MonitorGroup.

3.2.7.9 MonitorGroupStatus (Class)

This class (struct) contains a list of cameras that are controlled by operators associated with the particular monitor group. If an operator has logged in, chosen a particular monitor group, displayed a camera on a monitor within that monitor group, and controlled that camera, then that camera is controlled within the monitor group.

3.2.7.10 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set; causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.2.7.11 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.7.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.7.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.2.8 VideoTourClassDiagram (Class Diagram)

This diagram shows the classes that comprise the video tour classes of the MonitorControlModule. The MonitorControlModule is an installable module that serves the monitor objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image15.emf]MonitorControlProperties

+createTour(AccessToken token,VideoTourConfig config):VideoTourConfig

+getTourInfoList(token):VideoTourInfoList

«interface»

VideoTourFactory

«interface»

ServiceApplicationModule

MonitorControlModule

m_db:DBConnectionManager

m_factoryIDObj:Identifier

m_hostName:String

m_logFlags:boolean[]

m_name:String

m_pendingDeleteVideoTourImplVect:Vector

m_props:MonitorControlModuleProperties

m_shutdown:boolean

m_svcApp:ServiceApplication

m_videoTourImplVect:Vector

m_videoTourInfoVect:Vector

m_videoTourPushEventSupplier:PushEventSupplier

m_videoTourStatusLogFile:LogFile

-addVideoTourTypesToTrader():void

+createTour(byte[] token,

 VideoTourConfig videoTourCfg):VideoTourInfo

getHostName():String

+getID():byte[]

getLogFlags():boolean[]

+getName():String

getProperties():MonitorControlModuleProperties

+getTourInfoList():VideoTourInfo[]

getVideoTourPushEventSupplier():PushEventSupplier

-log(String flags, String method, String txt):void

-logProd(String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog (byte[] token, String actionDesc, int actionType,

 String deviceID, String deviceName, String DeviceID2,

 String deviceName2):void

removeVideoTour(VideoTourImpl videoTourImpl, byte[] token):void

shutdown():boolean

VideoTourFactoryImpl

«interface»

UniquelyIdentifiable

+getVideoTourStatus():VideoTourStatus

+getVideotourConfig(token):VideoTourConfig

+setVideoTourConfig(AccessToken token,

 VideoTourConfig config,CommandStatus cmdStat)

+remove(token,cmdStat)

«interface»

VideoTour

m_config:VideoTourConfig

m_createLogFlag:String

m_db:DBConnectionManager

m_factory:VideoTourFactoryImpl

m_idObj:Identifier

m_lockConfig:Object[]

m_lockName:Object[]

m_lockStatus:Object[]

m_logFlags:boolean[]

m_props:MonitorControlModuleProperties

m_sinkRefs:VideoSink[]

m_status:VideoTourStatus

m_svcApp:ServiceApplication

m_VideoTourPushEventSupplier:PushEventSupplier

+addVideoSink(byte[] token, byte [] sinkID,

 VideoSink sinkRef):VideoTourConfig

-cmdStatusCompleted(CommandStatus cmdStat, String statMsg,

 boolean completionCode):boolean

cmdStatusFailure(CommandStatus cmdStat, String statMsg):boolean

-cmdStatusSuccess(CommandStatus cmdStat, String statMsg):boolean

debugPrintConfig(String flags, String method, VideoTourConfig cfg):void

debugPrintStatus(String flags, String method, VideoTourStatus stat):void

+getID():byte[]

getIdentifier():Identifier

+getName():String

getSvcApp():ServiceApplication

+getVideoTourConfig(byte[] token):VideoTourConfig

getVideoTourName():String

+getVideoTourStatus():VideoTourStatus

-initializeNewVideoTour():void

log (String flags, String method, String txt):void

-logLockDone(String lock):void

-logLockRcvd(String lock):void

-logLockRqst(String lock):void

-logProd (String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

-opLog (byte[] token, String actionDesc, int actionType,

	 String deviceID, String deviceName, String DeviceID2,	 String deviceName2:void

#pushStatus(String desc, StringBuffer warnTxt):boolean

+remove(byte[] token, CommandStatus cmdStat):void

+removeVideoSink(byte[] token, byte[] sinkID):void

+setVideoTourConfig(byte[] token, VideoTourConfig config,

 CommandStatus cmdStat):void

#verifyAccess(byte[] token, int[] rightIDs, String descPrefix,

 String descSuffix, CommandStatus cmdStat):void

-verifyVideoTourAccess(byte[] token, int rightID, String descPrefix,

 String descSuffix, CommandStatus cmdStat):boolean

VideoTourImpl

+m_sinkds:IdentifierList

«datatype»

VideoTourStatus

«interface»

java.util.TimerTask

m_cmdStat:CommandStatus

m_lastDisplayTime:long

m_lastRefreshTime:long

m_tourRefreshIntervalSecs:long

m_videoProviderIndex:int

m_videoSinkImpl:VideoSinkImpl

m_videoTour:VideoTour

m_videoTourConfig:VideoTourConfig

-getTourConfig():void

run()

VideoTourTimerTask

m_c2VideoTourFactoryImpl:VideoTourFactoryImp

m_dbConnMgr:DBConnectionManager

m_svcApp:ServiceApplication

m_VideoTourPushEventSupplier:PushEventSupplier

#createVideoTourImpl(Identifier videoTourID, VideoTourConfig config,

 VideoTourStatus status):VideoTourImpl

+deleteTour(Identifier videoTourID, VideoTourConfig config):void

+getConfiguration(Identifier videoTourID):VideoTourConfig

+getStatus(Identifier videoTourID):VideoTourStatus

+getVideoTourList():VideoTourImpl[]

+insertTour(Identifier videoTourID, VideoTourConfig config:void

+saveStatus(Identifier VideoTourID, VideoTourStatus status):void

+setConfiguration(Identifier videoTourID, VideoTourConfig config):Identifier

+setVideoTourFactoryImpl(VideoTourFactoryImpl c2VideoTourFactoryImpl):void

VideoTourControlDB

+m_name:String

+m_tourConfigID:Identifier

+m_entries:VideoTourEntryList

+m_temporary:boolean

+m_dwellTimeSecs:long

«datatype»

VideoTourConfig

+m_sourceID:Identifier

+m_presetNumber:int

«datatype»

VideoTourEntry

1 1

1

1

1 1

1 *

1 1

1 *

1

1

Figure 3‑13. VideoTourClassDiagram (Class Diagram)

3.2.8.1 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.2.8.2 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a Monitor factory. It implements the ServiceApplicationModule interface providing a platform for displaying camera objects within a service application. This class is the controlling class for the Minitor Control Module, providing initialization and overall operation of the module. It also creates MonitorControlDB and MonitorControlModuleProperties objects.

3.2.8.3 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by the Monitor Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Monitor Control Module.

3.2.8.4 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.8.5 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.2.8.6 VideoTour (Class)

This interface is represents a video tour - that is, a sequence of video sources (cameras), to be displayed in sequential order on a video sink (monitor). This interface is used only for maintaining and accessing the configuration and status of the video tour (and removing the tour), not controlling the execution of the tour. Execution of the video tour is controlled by the video sink (monitor), although the video tour's status is recorded by the VideoTour.

3.2.8.7 VideoTourConfig (Class)

The VideoTourConfig structure is used to hold configuration information about a given video tour.

3.2.8.8 VideoTourControlDB (Class)

The VideoTourControlDB class provides access to the video tour configuration and status data in the database.

3.2.8.9 VideoTourEntry (Class)

The TourEntry structure is used to hold configuration information about a single entry in a video tour.

3.2.8.10 VideoTourFactory (Class)

This CORBA interface allows an operator to create a video tour and acquire a list of video tour objects under the domain of the specific VideoTourFactory object.

3.2.8.11 VideoTourFactoryImpl (Class)

The VideoTourFactoryImpl class implements the VideoTourFactory interface. It creates the video tour objects in the video service.

3.2.8.12 VideoTourImpl (Class)

VideoTourImpl implements the VideoTour interface. This object is responsible for setting and retrieving video tour configuration and status. When the video tour configuration has changed, all video sinks (monitors) on which the video tour is running, are notified.

3.2.8.13 VideoTourStatus (Class)

The VideoTourStatus structure is used to hold the list of video sinks (monitors) that this video tour is running on.

3.2.8.14 VideoTourTimerTask (Class)

VideoTourTimerTask is a timer task . When the timer fires it displays a video image on a monitor.

3.2.9 Router (Class Diagram)

This class diagram shows the VideoRouteManager and associated classes comprising the routing part of the RouterControlModule, which builds, manages, and drops video display routes across video fabrics. The RouterImpl, which implements the VideoRouteManager, makes use of the AVCMRouterRequestManager, which is existing C++ code from AVCM 3.0, to do the bulk of the routing work. After the router is initialized, all routing connect and disconnect requests are passed down into the AVCMRouterRequestManager for processing. The AVCMRouterRequestManager makes calls back out to the Java environment to make the actual connections to and from the necessary bridge circuits. The RouterControlModule receives notification of the addition of devices (cameras, monitors, bridge circuits, fabrics, switches, etc.) added to the system by users, and also runs a discovery task in the background to detect any devices (which were inaccessible at the time of initialization).

[image: image16.emf]reason is an output parameter for

connect() and disconnect() to return

the reason for failure if failure occurs.

+initializeRouter() : boolean

+shutdown() : boolean

+getRoute(camID, MonID) : RouteList

+logMsgJNI(string)

+loadCameras()

+loadMonitors()

+loadSwitches()

+loadSwitchFabrics()

+loadBridgeCircuits()

+loadRoutes()

+setCameraControlled()

+setCameraNotControlled()

+nonlockingRemoveForOverrideOnly()

+display()

+removeDisplay()

+localDisplay()

+localRemoveDisplay()

+localNonlockingRemoveForOverrideOnly()

+localSetCameraControlled()

+localSetCameraNotControlled()

+localReinitialize()

+localLogActiveRoutes()

+localLogAllRoutes()

+addCamera()

+addMonitor()

+addBridgeCircuit()

+addSwitch()

RouterJNI

+connect(token,VideoProviderInfo,VideoProviderConfig,

 VideoCollectorInfo, VideoCollectorConfig,

 overrideRequested,reason):boolean

+disconnect(token,VideoProviderInfo,VideoProviderConfig,

 VideoCollectorInfo, VideoCollectorConfig, reason):boolean

+initialize(token)

«interface»

VideoRouteManager

We'll get the cameras,

monitors, switches, switch

fabrics, and the bridge

circuits from the traders.

initializeRouter():boolean

RouterImpl

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

+initializeRouter() : boolean

+logEvent(string, ...)

+display()

+reinitialize()

+setCameraControlled()

+setCameraNotControlled()

+nonlockingRemoveForOverrideOnly()

+removeDisplay()

+localDisplay()

+localRemoveDisplay()

+localNonlockingRemoveForOverrideOnly()

+localSetCameraControlled()

+localSetCameraNotControlled()

+localReinitialize()

+localLogActiveRoutes()

+localLogAllRoutes()

+addCamera()

+addMonitor()

+addBridgeCircuit()

+addSwitch()

RouterJNIDLL

+getRoutes()

+deleteRoute()

+addRoute()

RouterDB

ServiceApplication m_svcApp;

RouterDB m_db;

RouterControlModuleProperties m_props;

+initialize(ServiceApplication svcApp) : boolean

+shutdown(ServiceApplication svcApp) :

 boolean

-createEventChannel(String name) :

 PushEventSupplier

-createNotificationChannel(String name) :

 PushNotifySupplier

-addRouterTypeToTrader() : void

RouterControlModule

+Display(CameraID, MonitorID,

 bTestOnly, bOverrideRequested,

 pbRouteCreated,

 pNumOverrideMonitors,

 pvarOverrideMonitorNames,

 pvarOverrideCameraNames)

+Reinitialize()

+LogEvent(string, ...)

+SetCameraControlled(CameraID, SiteID)

+SetCameraNotControlled (CameraID)

+NonlockingRemoveForOverrideOnly(CameraID, MonitorID)

+RemoveDisplay(CameraID, MonitorID)

+LocalDisplay(CameraID, MonitorID,

 bTestOnly, bOverrideRequested,

 pbRouteCreated,

 pNumOverrideMonitors,

 pvarOverrideMonitorNames,

 pvarOverrideCameraNames)

+LocalRemoveDisplay(CameraID, MonitorID)

+LocalNonlockingRemoveForOverrideOnly(CameraID, MonitorID)

+LocalSetCameraControlled(CameraID, SiteID)

+LocalSetCameraNotControlled(CameraID)

+LocalReinitialize()

+LocalLogActiveRoutes()

+LocalLogAllRoutes()

+AddCamera()

+AddMonitor()

+AddBridgeCircuit()

+AddSwitch()

AVCMRouterRequestManager

RouterControlModuleProperties

schedule()

cancel()

java.util.Timer

+Display(CameraID, MonitorID,

 bTestOnly, bOverrideRequested,

 pbRouteCreated,

 pNumOverrideMonitors,

 pvarOverrideMonitorNames,

 pvarOverrideCameraNames)

+Initialize() : boolean

+Reinitialize()

+LogEvent(string, ...)

AVCMRouterRequestManagerImpl

run()

«interface»

java.util.TimerTask

+run()

+addCameraTask()

+addMonitorTask()

+addBridgeCircuitTask()

+addSwitchTask()

CheckForNewDevicesTask

+WriteToDB(simulationFlag)

Route

1 1

1

1

1

1

1 1

1 *

1 1

1

1

1 1

1 1

1

1

Figure 3‑14. Router (Class Diagram)

3.2.9.1 AVCMRouterRequestManager (Class)

This is the C++ DCOM interface class for managing routes between video fabrics. This class receives incoming DCOM calls on the public IAVCMRouterRequestManager interface methods and passes them off to the implementation class.

3.2.9.2 AVCMRouterRequestManagerImpl (Class)

The implementation of the AVCMRouterRequestManager DCOM interface. This class manages routes between video fabrics.

3.2.9.3 CheckForNewDevicesTask (Class)

This class will respond to adding a new device to the system by periodically checking the event channel for "add" events. It will then call the appropriate method to handle adding the new device to the router.
3.2.9.4 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

3.2.9.5 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

3.2.9.6 Route (Class)

Keeps track of one route between video fabrics. A "route" is a collection of bridge circuits that interconnect two video fabrics. All possible routes between any two video fabrics are stored as separate instances.

3.2.9.7 RouterControlModule (Class)

This class is the top level module used to manage routing of video across video fabrics within CHART II.
3.2.9.8 RouterControlModuleProperties (Class)

The RouterControlModuleProperties class is used to provide access to properties used by the Router Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Router Control Module.

3.2.9.9 RouterDB (Class)

The database code used by the Router to manage the active routes.

3.2.9.10 RouterImpl (Class)

The CORBA interface used by CHART II to handle display requests across video fabrics.

3.2.9.11 RouterJNI (Class)

The JAVA class used by CHART II to interface with the C++ Router via the RouterJNIDLL.

3.2.9.12 RouterJNIDLL (Class)

This is the C++ DLL that will bridge between CHART II (JAVA) and the heavily modified version of the AVCMDBServer (C++) that will only retain the Router code.

3.2.9.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.9.14 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing capabilities within CHART II. This router does not need to be used (in fact, cannot be used) when the VideoSource and VideoSink are on the same video fabric -- it is used only to make video routes across video fabrics.

3.2.10 BridgeCircuitManagement (Class Diagram)

This diagram shows the classes that comprise the bridge circuit classes of the RouterControlModule. The RouterControlModule is an installable module that serves the outer and bridge circuit objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image17.emf]«interface»

ServiceApplicationModule

RouterControlModuleProperties

RouterControlModule

+createBridgeCircuit(token, BridgeCircuitConfig)

+getBridgeCircuitinfoList():BridgecircuitInfoList

«interface»

BridgeCircuitFactory

m_db:DBConnectionManager

m_factoryIDObj:Identifier

m_hostName:String

m_logFlags:boolean[]

m_name:String

m_pendingDeleteBridgeCircuitImplVect:Vector

m_props:RouterControlModuleProperties

m_shutdown:boolean

m_svcApp:ServiceApplication

m_bridgeCircuitImplVect:Vector

m_bridgeCircuitInfoVect:Vector

m_bridgeCircuitPushEventSupplier:PushEventSupplier

m_bridgeCircuitStatusLogFile:LogFile

-addBridgeCircuitTypesToTrader():void

+createbridgeCircuit(byte[] token,

 BridgeCircuitConfig bridgeCircuitCfg):BridgeCircuitInfo

getHostName():String

+getID():byte[]

getLogFlags():boolean[]

+getName():String

getProperties():RouterControlModuleProperties

+getBridgeCircuitInfoList():BridgeCircuitInfo[]

getBridgeCircuitPushEventSupplier():PushEventSupplier

-log(String flags, String method, String txt):void

-logProd(String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

removeBridgeCircuit(BridgeCircuitImpl bridgeCircuitImpl, byte[] token):void

shutdown():boolean

BridgeCircuitFactoryImpl

+getConfiguration(token):BridgeCircuitConfig

+setConfiguration(token,BridgeCircuitConfig)

«interface»

BridgeCircuit

«interface»

ServiceApplication

m_config:BridgeCircuitConfig

m_createLogFlag:String

m_db:DBConnectionManager

m_factory:BridgeCircuitFactoryImpl

m_idObj:Identifier

m_lockConfig:Object[]

m_lockName:Object[]

m_lockStatus:Object[]

m_logFlags:boolean[]

m_props:RouterControlModuleProperties

m_status:BridgeCircuitStatus

m_svcApp:ServiceApplication

m_bridgeCircuitPushEventSupplier:PushEventSupplier

+getID():byte[]

getIdentifier():Identifier

+getName():String

getSvcApp():ServiceApplication

+getBridgeCircuitConfig(byte[] token):BridgeCircuitConfig

getBridgeCircuitName():String

+getBridgeCircuitStatus():VideoTourStatus

log (String flags, String method, String txt):void

-logLockDone(String lock):void

-logLockRcvd(String lock):void

-logLockRqst(String lock):void

-logProd (String method, String txt):void

-logStackProd (String method, String txt, Exception e):void

#pushStatus(String desc, StringBuffer warnTxt):boolean

+remove(byte[] token, CommandStatus cmdStat):void

+setBridgeCircuitConfig(byte[] token, BridgeCircuitConfig config,

 CommandStatus cmdStat):void

#verifyAccess(byte[] token, int[] rightIDs, String descPrefix,

 String descSuffix, CommandStatus cmdStat):void

-verifyAccess(byte[] token, int rightID, String descPrefix,

 String descSuffix, CommandStatus cmdStat):boolean

BridgeCircuitImpl

PushEventSupplier

+m_providerStatus;VideoProviderStatus

+m_collectorStatus:VideoCollectorStatus

«datatype»

BridgeCircuitStatus

m_c2BridgeCircuitFactoryImpl:BridgeCircuitFactoryImp

m_dbConnMgr:DBConnectionManager

m_svcApp:ServiceApplication

m_bridgeCircuitPushEventSupplier:PushEventSupplier

#createBridgeCircuitImpl(Identifier bridgeCircuitID, BridgeCircuitConfig config,

 BridgeCircuitStatus status):BridgeCircuitImpl

+deletebridgeCircuit(Identifier bridgeCircuitID, BridgeCircuitConfig config):void

+getConfiguration(Identifier bridgeCircuitID):BridgeCircuitConfig

+getStatus(Identifier bridgeCircuitID):BridgeCircuitStatus

+getBridgeCircuitList():BridgeCircuitImpl[]

+insertBridgeCircuit(Identifier bridgeCircuitID, BridgeCircuitConfig config:void

+saveStatus(Identifier BridgeCircuitID, BridgeCircuitStatus status):void

+setConfiguration(Identifier bridgeCircuitID, BridgeCircuitConfig config):Identifier

+setBridgeCircuitFactoryImpl(BridgeCircuitFactoryImpl c2BridgeCircuitFactoryImpl):void

BridgeCircuitlDB

+m_name:String

+m_owningOrrgID:Identifier

+m_networkConnectionSte:String

+m_startProviderConfig:VideoProviderConfig

+m_endCollectorConfig:VideoCollectorConfig

«datatype»

BridgeCircuitConfig

1

1

1 *

1

1

1

1

1

1

1 1

* 1

1

1

1 1

Figure 3‑15. BridgeCircuitManagement2 (Class Diagram)

3.2.10.1 BridgeCircuit (Class)

The BridgeCircuit interface is implemented by a objects which serve to bridge disparate video fabrics within video routes. These video fabrics would include the video fabrics based around a V1500 switch and also the "null" video fabric consisting of no switch and codec VideoTransmissionDevice objects. The BridgeCircuit interface includes both the VideoCollector interface (meaning the BridgeCircuit receives video from another VideoProvider, ultimately the VideoSource) and the VideoProvider interface (meaning the BridgeCircuit provides video to another VideoCollector, ultimately to one or more VideoSink objects).

3.2.10.2 BridgeCircuitConfig (Class)

This represents configuration information for a bridge circuit. This is the status of a BridgeCircuit object. It consists primarily of configuration of the VideoProvider side (input to the bridge circuit) and of the VideoCollector side (output of the bridge circuit).

3.2.10.3 BridgeCircuitFactory (Class)

The BridgeCircuitFactory is used to create bridge circuits bridging two video fabrics.

3.2.10.4 BridgeCircuitFactoryImpl (Class)

The BridgeCircuitFactoryImpl class provides an implementation of the BridgeCircuitFactory interface as specified in the IDL. The BridgeCircuitFactoryImpl maintains a list of BridgeCircuitImpl objects and is responsible for publishing BridgeCircuit objects in the Trader on startup and as new bridge Circuit objects are created. Whenever a BridgeCircuit is created or removed, that information is persisted to the database.

3.2.10.5 BridgeCircuitImpl (Class)

The BridgeCircuitImpl class provides an implementation of the BridgeCircuit interface. Contained in this class are BridgeCircuitConfig and BridgeCircuitStatus objects (used to store the configuration and status of the bridge circuit).

3.2.10.6 BridgeCircuitlDB (Class)

The BridgeCircuitDB class provides an interface between the SwitchControl service and the database used to persist the BridgeCircuit objects and their configuration and status in the database. It contains a collection of methods that perform database operations on tables pertinent to Bridge Circuits. The class is constructed with a DBConnectionManager object, which manages database connections. Methods exist to insert and delete Bridge Circuit objects from the database, and to get and set their configuration and status information.

3.2.10.7 BridgeCircuitStatus (Class)

This is the status of a BridgeCircuit object. It consists primarily of a status on the VideoProvider side (input to the bridge circuit) and on the VideoCollector side (output of the bridge circuit).

3.2.10.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set; causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.2.10.9 RouterControlModule (Class)

This class is the top level module used to manage routing of video across video fabrics within CHART II

3.2.10.10 RouterControlModuleProperties (Class)

The RouterControlModuleProperties class is used to provide access to properties used by the Router Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Router Control Module.

3.2.10.11 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.10.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.11 V1500 (Class Diagram)

This class diagram shows the SwitchControlModule and other classes associated with the SwitchControlModule. The SwitchControlModule runs VideoSwitchFactory, which allows for the creation and management of video switches and fabrics in the CHART II system. A video fabric, also known as a video fabric, is network of cameras and monitors which can be directly connected to each other without the need for the router or any bridge circuits. Bridge circuits interconnect the fabrics to allow for routing of video between fabrics.

The V1500 switch is the only supported switch for CHART R2B2. This module manages the interconnection of devices across a V1500 switch by employing the V1500Manager, C++ code created for AVCM 3.0 The V1500SwitchImpl, which implements the VideoSwitch interface, accepts connect and disconnect requests for a V1500 switch and passes the requests down to the V1500Manager and V1500ManagerService via JNI.

[image: image18.emf]+getConfiguration(token):VideoFabricConfig

+setConfiguration((token,videoFabricConfig)

+setSwitchID(token,Identifier)

+remove(token)

«interface»

VideoFabric

+m_name:string

+m_switchID:Identifier

«datatype»

VideoFabricConfig

+getStatus():VideoSwitchStatus

+getConfiguration(token):V1500CwitchConfig

+setConfiguration(token,V1500SwitchConfig)

+remove(token)

+connect(token,src:SwitchInputPort,dest:SwitchOutputPort)

+disconnect(token,dest:SwitchOutputPort)

+reloadSwitchConnections(token)

«interface»

VideoSwitch

getV1500Hosts()

getV1500HostCount()

getV1500Keypads()

getV1500KeypadCount()

connect(int, int): int

V1500JNI

+m_owningOrgID : Identifier

VideoFabricImpl

These three objects

represent the C++ code

used by CHART to

communicate with the

V1500 Switch

getV1500Hosts()

getV1500HostCount()

getV1500Keypads()

getV1500KeypadCount()

Java_V1500JNI_connect(JNIEnv*, jobjectj, jint, jint) :jint

V1500JNIDLL

+createVideoSwitch(token, VideoSwitchConfig)

+createVideoFabric(token)

+getSwitchList():VideoSwitchInfoList

+getVideoFabricInfoList():VideoFabricInfoList

«interface»

VideoSwitchFactory

V1500SwitchImpl

Initialize()

V1500Manager

The Initialize() loads

the keypad and hosts

info for the v1500

getV1500Hosts()

getV1500HostCount()

getV1500Keypads()

getV1500KeypadCount()

V1500DB

Display(int, int)

V1500ManagerService

VideoSwitchFactoryImpl

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

+m_name:string

+m_model:VideoSwitchModel

+m_switchFabricID:Identifier

+m_inPorts:short[]

+m_outPorts:short[]

+m_owningOrdID:Identifier

«datatype»

VideoSwitchConfig

+m_commMode:CommunicationsMode

+m_outPortStatus:SwitchOutputPortStatus[]

«datatype»

VideoSwitchStatus

PushEventSupplier

+m_db:SwitchControlDB

+initialize(ServiceApplication svcApp) : boolean

+shutdown(ServiceApplication svcApp) :

 boolean

-createEventChannel(String name) :

 PushEventSupplier

-createNotificationChannel(String name) :

 PushNotifySupplier

-addRouterTypeToTrader() : void

SwitchControlModule

SwitchControlModuleProperties

SwitchControlDB

1 1

* 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1 *

1

1

1

1

1 1

1

1

1

1

Figure 3‑16. V1500 (Class Diagram)

3.2.11.1 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set; causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

3.2.11.2 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

3.2.11.3 SwitchControlDB (Class)

This class contains the database access methods for the SwitchControlModule, including both V1500 switch and video fabric configuration and status.

3.2.11.4 SwitchControlModule (Class)

This is the top level control module for managing V1500 video switches and their associated video fabrics.

3.2.11.5 SwitchControlModuleProperties (Class)

This class is used to read in configurable runtime properties from the service's .props properties file.

3.2.11.6 VideoFabric (Class)

The VideoFabric, also known as a VideoFabric, is implemented by a class which represents a "video fabric", that is a collection of VideoTransmissionDevice objects on a common "fabric" across which video can be created directly. This includes any collection of switch input ports and switch output ports on a single video switch. (Note that a collection of encoder and decoder types of VideoTransmissionDevice objects represents a different video fabric, across which video can be routed directly. The IP encoder/decoder fabric therefore is different from other fabrics in that it has no associated video switch.
3.2.11.7 VideoFabricConfig (Class)

This class contains the configuration information for a given VideoFabric.
3.2.11.8 VideoFabricImpl (Class)

This class contains the implementation of the VideoFabric interface.
3.2.11.9 V1500DB (Class)

The V1500DB class reads V1500 specific parameters from the database. These parameters include configuration information needed to utilize the Vicon supplied V1500 API.

3.2.11.10 V1500JNI (Class)

The V1500JNI class is CHART II JAVA class that will make calls into the V1500JNIDLL for the purpose of initialization.

3.2.11.11 V1500JNIDLL (Class)

The V1500JNIDLL is the C++ DLL that will bridge between CHART II (JAVA) and the V1500ManagerService (C++).

3.2.11.12 V1500Manager (Class)

The V1500Manager class loads any V1500 configuration information into the V1500ManagerService.

3.2.11.13 V1500ManagerService (Class)

The V1500ManagerService is used to communicate directly with the Vicon V1500 CPU using the Vicon supplied V1500 API (which utilizes a DCOM interface).

3.2.11.14 V1500SwitchImpl (Class)

This is the implementation of the VideoSwitch interface specific to a ViconV1500Switch. This is the only model of switch supported for R2B2.

3.2.11.15 VideoSwitch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video Switch in the CHART system. This interface provides access to configuration and status information for the siwtch, and provides connect and disconnect functions for making and breaking video connections.

3.2.11.16 VideoSwitchConfig (Class)

This represents the configuration information for a V1500 switch (R2B2).

3.2.11.17 VideoSwitchFactory (Class)

The VideoSwitchFactory interface is used to create and manage VideoSwitch objects and VideoFabric objects in the system.

3.2.11.18 VideoSwitchFactoryImpl (Class)

This is the implementation of the VideoSwitchFactory interface. It is used to create and manage VideoSwitch objects and VideoFabric objects in the system.

3.2.11.19 VideoSwitchStatus (Class)

This represents the status information for a V1500 switch (R2B2).

3.3 ApplicationPartitioning (Deployment Diagram)

This diagram shows the configuration of the new CHART2 VideoService. The SwitchControlModule and RouterControlModule will be used starting with R2B2.

[image: image19.emf]VideoService

CameraControlModule

VideoCameraFactory

VideoCamera

Encoder

SwitchControlModule and

RouterControlModule will run only

at AOC. At the AOC only, the

CameraControlModule,

MonitorControlModule and

RouterControlModule depend on the

SwitchControlModule there because

cameras/monitors/bridge circuits on

V1500 switches need SwitchPort,

Switch, and SwitchFabric objects.

No dependencies at other sites.

CameraControlComPort

R2B2

MonitorControlModule

SwitchControlModule

R2B2

SiteFactory

VideoSwitchFactory

Site

SwitchFabric

VideoSinkFactory

VideoSwitch

Corba Trading Service

VideoSink

SwitchPort

RouterControlModule

Decoder

R2B2

TourManager

Tour

BridgeCircuitFactory

BridgeCircuit

VideoTourFactory is in

MonitorControlModule

because running a tour

is a monitor-centric

operation. One monitor

cycles through many

cameras. The tour

is more likely to be

created at the server

hosting the monitor than

a server hosting one of

the cameras (especially

with the concept of

"temporary" tours).

VideoRouteManager

VideoRoute

Encoder

CORBA Video Event Service

Decoder

Figure 3‑17. ApplicationPartitioning (Deployment Diagram)

3.4 Sequence Diagrams

The following are the sequence diagrams for module initialization, camera display, and camera control. The CameraControlModule sequence diagrams are presented first, followed by the monitor control sequence diagrams.

3.4.1 CameraControlModule:AddCamera (Sequence Diagram)

This sequence diagram shows the implementation of the createCamera interface of the VideoCameraFactory. There are actually two create methods in the factory, one for each type of camera: COHU 3955 and Surveyor VFT. Since they both work the same way, they are both represented by createCamera(). First a check is performed to verify that the operator has sufficient privileges to create a camera. Next, the camera is inserted into the database. Part of this process includes creating the camera object itself. Finally, the new camera object is activated and the event is pushed out to clients.

[image: image20.emf]ORB

ControllableVideo

CameraFactoryImpl TokenManipulator CameraControlDB Log

createCamera

(token,config)

createCamera

(token,config)

checkAccess checkAccess

[no rights[

log(token, "unauth. attempt to create Camera)

[no rights[

log(token, "unauth. attempt to create Camera)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

pushAddCamera pushAddCamera

[no rights]

AccessDenied

[no rights]

AccessDenied

insertCamera

(Identifier, config)

insertCamera

(Identifier, config)

errorMessage errorMessage

Figure 3‑18. CameraControlModule:AddCamera (Sequence Diagram)

3.4.2 CameraControlModule:BlockToPublic (Sequence Diagram)

This Sequence Diagram shows the process of blocking a camera from being viewed by the public. The public video sinks are the TV station feeds and the website. This code will loop through all the video sinks displaying this camera, and attempt to display "No Source Available" on the public video sinks. If any video sinks could not be contacted, or were contacted and still did not remove this camera display, a timer will be started to try and remove the display from those video sinks once a minute until all public video sinks stop displaying this camera.

[image: image21.emf]VideoCameraImpl

CommandStatus TokenManipulator CommandQueue OperationsLog VideoSink

BlockToPublicCmd

CameraProtocolHdlr PushEventSupplier CameraControlDB

DisplayNoVideoAvailbleCmd

See CameraControlModule::

DisplayNoVideoAvailable

BlockToPublicTimer() BlockToPublicTimer()

(ifAnyRevokeFailed) (ifAnyRevokeFailed)

log("already done") log("already done")

[no right]

Access Denied

[no right]

Access Denied

verifyAccess(token) verifyAccess(token)

[for each

public

monitor

displayed]

[for each

public

monitor

displayed]

[no right]

log(token, "unauth attempt to block public camera display")

[no right]

log(token, "unauth attempt to block public camera display")

setVideoSourceStatus (cameraId) setVideoSourceStatus (cameraId)

update("Command queued") update("Command queued")

completed () completed ()

blockToPublic

(token,cmdStat)

blockToPublic

(token,cmdStat)

setVideoProviderstatus(cameraId) setVideoProviderstatus(cameraId)

command queued command queued

create create

create create

update(camera removed from monitor) update(camera removed from monitor)

getSourceStatus () getSourceStatus ()

addCommand(BlockToPublicTimer) addCommand(BlockToPublicTimer)

displayNoVideoAvailableImpl() displayNoVideoAvailableImpl()

execute execute

sourceUnavailable () sourceUnavailable ()

(isBlocked == true) (isBlocked == true)

checkAccess(token) checkAccess(token)

persistandPush(VideoSourcestatus) persistandPush(VideoSourcestatus)

[no right]

Completed

[no right]

Completed

log (token, "Camera image removed from monitor") log (token, "Camera image removed from monitor")

persistandPush(VideoProviderStatus) persistandPush(VideoProviderStatus)

Figure 3‑19. CameraControlModule:BlockToPublic (Sequence Diagram)

3.4.3 CameraControlModule:CommandProcessorConnect (Sequence Diagram)

This sequence illustrates how the protocol handler connects to the Command Processor. Protocol handler first calls the connect function on the Command Processor. The Command Processor then check if the camera is already in the list of cameras it servers. If the camera is not in the list, it throws an UnknowCamera exception. The protocol handler will catch the exception, and call the addCamera function to add the the camera to the Command Processor. After that, it will call connect. The Command Processor will then connect to its internal comport. If it's successful, a success will be returned to protocol handler.

[image: image22.emf]ProtocolHandler

Command Processor

Connect

Success

addCamera

Success

Comport

Camera info is in

Command Processor

Connect

initializeCamera

Connect

[No Camera Found]

UnknownCameraException

addCamera

Figure 3‑20. CameraControlModule:CommandProcessorConnect (Sequence Diagram)

3.4.4 CameraControlModule:CommandProcessorExecuteCommand (Sequence Diagram)

This sequence illustrates how the ViconTransactions are executed inside the Command Processor. Command Processor has a separate thread which checks (checkAvailableCommand) if there is a transaction on the CommandQueue. If there are transactions on the queue, the thread will take those transactions off the queue one by one. Then for each transaction, it will use a CameraControlDevice to send it to the camera and store the responses send back from the camera. Then the stored camera responses will be put into the response set and the thread will notify the caller who is waiting for the responses.

[image: image23.emf]CommandProcessorImpl

(thread)

ViconCommandQueue ControlDevice

UpdateTransaction add

camera response for the

command header and command

ViconResponseSet CommandProcessorImpl

Notify wakes up the request

waiting for the response from

the command processor

checkAvailableCommand checkAvailableCommand

ViconTransactionObj ViconTransactionObj

send send

addToResponseSet addToResponseSet

updateTransaction updateTransaction

Dequeue Dequeue

For

each

command

For

each

command

receive receive

notify notify

Figure 3‑21. CameraControlModule:CommandProcessorExecuteCommand (Sequence Diagram)

3.4.5 CameraControlModule:CommandProcessorReceive (Sequence Diagram)

This sequence describes how protocol handlers get responses from the commands sent to the Command Processor. Protocol handlers first call the receive function on the Command Processor with an id. Then the getResponse function on the ViconResponseSet will be called. If the response is already available, it will be returned. If the response is not ready yet, it will wait until the execution thread notify and wakes up it when the response is ready. After that the response will be sent back to the caller.

[image: image24.emf]ProcotolHandler

CommandProcessorImpl ViconResponseSet

If the response already available

when getResponse is called. It

will just return the response, without

the waiting for the notification.

CommandProcessorImpl

(Thread)

Camera responses Camera responses

receive(id) receive(id)

getResponse(id) getResponse(id)

notify notify

Exception or Timeout Exception or Timeout

wait wait

camera responses camera responses

Com Fail Com Fail

Figure 3‑22. CameraControlModule:CommandProcessorReceive (Sequence Diagram)

3.4.6 CameraControlModule:CommandProcessorSend (Sequence Diagram)

This sequence diagram describes how protocol handlers send commands to the Command Processor. The protocol handler first calls the send function on the Command Processor with a command structure and an id. The id is the unique id for the camera. Then, the Command Processor creates a ViconTransaction object using the command structure supplied and put it onto the ViconCommandQueue. If the transaction is successfully added to the queue, the send function will return success. Otherwise, it turns failure.

[image: image25.emf]ProtocolHandler

CommandProcessorImpl

If the camera is not

already initialized in the

Command Processor

ViconTransaction ViconCommandQueue

Adding command to the Command Queue

is running on same thread as the request.

Take command off the Command Queue and

executing the command are running on a

different thread than the request.

UnknownCameraException UnknownCameraException

createTransaction(command, id) createTransaction(command, id)

addCommand(ViconTransactionObject) addCommand(ViconTransactionObject)

Command Queued Command Queued

Error:AddCommandFailed Error:AddCommandFailed

send(command, id) send(command, id)

ViconTransactionObj ViconTransactionObj

add(ViconTransaction) add(ViconTransaction)

Success Success

Failure Failure

addCamera addCamera

Figure 3‑23. CameraControlModule:CommandProcessorSend (Sequence Diagram)

3.4.7 CameraControlModule:MoveToCOHU3955Preset (Sequence Diagram)

This sequence diagram describes the process of moving to a preset for a COHU 3955 camera. The absolute position of the camera is retrieved and the command is built up and sent to the camera by the protocol handler. Next, the camera is queried to get it’s absolute position as it moves to the preset. Once it reaches the expected position (within a tolerance), the operation succeeds. Otherwise the operation fails.

[image: image26.emf]ControllableVideoCamera Preset

CameraControlDB CameraProtocolHdlr CameraControlModuleProperties

while

 Preset - Position

> Tolerance

while

 Preset - Position

> Tolerance

getPosition() getPosition()

getPresetTolerance() getPresetTolerance()

moveToPreset(number) moveToPreset(number)

getPreset(number,cameraID) getPreset(number,cameraID)

return Preset return Preset

create create

moveCameraToPreset(number) moveCameraToPreset(number)

Figure 3‑24. CameraControlModule:MoveToCOHU3955Preset (Sequence Diagram)

3.4.8 CameraControlModule:RemoveCamera (Sequence Diagram)

This sequence diagram shows the implementation of the removeCamera interface of the VideoCameraFactory. First a check is performed to verify that the operator has sufficient privileges to remove a camera. Next a camera is checked to see if it is offline. Only offline cameras may be removed. Next, the factory removes the camera from the trader and calls the CameraControlDB class to delete the camera from the database. A message is written to the operations log and a cameraDeleted event is pushed out to the clients.

[image: image27.emf]Camera Impls TokenManipulator CommandQuue

ControllableCamera

FactoryImpl CameraControlDB

PushEvent

Supplier OperationsLog

[not found]

Chart2Exception

[not found]

Chart2Exception

push(CameraDeleted) push(CameraDeleted)

[not offline]

Chart2Exception

[not offline]

Chart2Exception

[not found]

Chart2Exception

[not found]

Chart2Exception

checkAccess checkAccess

[no rights]

AccessDenied

[no rights]

AccessDenied

pushCameraDeleted pushCameraDeleted

[error removing Camera]

chart2Exception

[error removing Camera]

chart2Exception

log(token, errorMessage) log(token, errorMessage)

checkCommMode checkCommMode

shutdown shutdown

log(token, error message) log(token, error message)

deleteCamera(Camera ID) deleteCamera(Camera ID)

[not offline]

push(currentStatus)

[not offline]

push(currentStatus)

removeCamera(this) removeCamera(this)

remove(token) remove(token)

[no rights]

log(token, "unauth. attempt to remove CAMERA <name>)

[no rights]

log(token, "unauth. attempt to remove CAMERA <name>)

log(token, "Camera<name> removed.") log(token, "Camera<name> removed.")

Figure 3‑25. CameraControlModule:RemoveCamera (Sequence Diagram)

3.4.9 CameraControlModule:RequestCameraControl (Sequence Diagram)

This sequence diagram shows the implementation of the RequestCameraControl interface of the VideoCamera object. This sequence arbitrates access to control the camera by checking the operator site's camera control hierarchy, and initializes the control device and database to start sending control commands.

It is possible that the camera that is requested for control may already be controlled. If the operator has the right to override camera control for the camera’s organization, then the camera control override processing will occur. If not, the request fails.

[image: image28.emf]Operator

CameraImpl

Yes,Camera

is controlled

TokenManipulator

Camera is controlled, and sufficient priority

OperationsLog

Camera not

controlled

CommandQueue CameraControlDB PushEventSupplier

CameraProtocolHandler

CommandStatus

MonitorGroup

Poll thread should already be running to

constantly check the camera and

 update the status.

isControlRevoked(orgID,token) isControlRevoked(orgID,token)

unlock() unlock()

CameraIsControlledException

(override = false)

CameraIsControlledException

(override = false)

Exception Exception

isControlled isControlled

[camera controlled] completed(false,"camera controlled. would or wouldnot be allowed") [camera controlled] completed(false,"camera controlled. would or wouldnot be allowed")

addControlledCamera addControlledCamera

log(connecting to protocol handler) log(connecting to protocol handler)

connect() connect()

cmdStatusFailure(camera is currently contolled by another operator) cmdStatusFailure(camera is currently contolled by another operator)

Success Success

log(camera is currently contolled by another operator) log(camera is currently contolled by another operator)

add(token,Chart2System) add(token,Chart2System)

log(Done connecting to protocol handler) log(Done connecting to protocol handler)

log(camera isControlled = true or false) log(camera isControlled = true or false)

CHART2Exception CHART2Exception

stopIfNecessary() stopIfNecessary()

lock() lock()

cmdStatusSuccess(true, "request camera control granted") cmdStatusSuccess(true, "request camera control granted")

ControllingInfo() ControllingInfo()

cmdStatusFailure(You must have a camera image displayed locally in order to control it) cmdStatusFailure(You must have a camera image displayed locally in order to control it)

log(token,"norights") log(token,"norights")

isDisplayedLocally(info, token) isDisplayedLocally(info, token)

No image displayed No image displayed

log(camera is not controlled by requester) log(camera is not controlled by requester)

(requestCameraControl

(token,ControllingInfo)

(requestCameraControl

(token,ControllingInfo)

isControlledBy(token) isControlledBy(token)

log(token,"control granted to xx") log(token,"control granted to xx")

return return

cmdStatusFailure(Request for camera control failed) cmdStatusFailure(Request for camera control failed)

saveStatus saveStatus

checkAccess checkAccess

CameraIsControlledException

(override = true)

CameraIsControlledException

(override = true)

persistAndPushStatus() persistAndPushStatus()

CHART2Exception

(control revoked for orgID)

CHART2Exception

(control revoked for orgID)

Figure 3‑26. CameraControlModule:RequestCameraControl (Sequence Diagram)

3.4.10 CameraControlModule:RevokeControl (Sequence Diagram)

This Sequence Diagram shows the process of revoking a user from controlling a camera. This code will find the Monitor Group ID for the user controlling the camera, and then get the Organization ID for that Monitor Group. If the controlling organization ID matches an organization being revoked, the code will then send a command to terminate that user's control. If the command does not successfully revoke control, a timer will be started to try and revoke control from that user once a minute until successful.

 [image: image29.emf]ControllableVideoCameraImpl

See CameraControlModule:

TerminateControl

Sequence Diagram

CommandStatus TokenManipulator CommandQueue OperationsLog VideoSink

RevokeControlCmd

CameraProtocolHdlr PushEventSupplier MonitorGroup CameraControlDB

(ifRevokedFailed) (ifRevokedFailed)

persistandPushVideoSourceStatus(CameraId) persistandPushVideoSourceStatus(CameraId)

[isControlled == true]

terminateControlImpl ()

[isControlled == true]

terminateControlImpl ()

execute execute

create create

update("Command queued") update("Command queued")

checkAccess(token) checkAccess(token)

[no right]

Access Denied

[no right]

Access Denied

persistandPushStatus(CameraId) persistandPushStatus(CameraId)

[revoked] [revoked]

completed () completed ()

getSourceStatus () getSourceStatus ()

revokeControl

(token,orgID,cmdStat)

revokeControl

(token,orgID,cmdStat)

[no right]

log(token, "unauth attempt to revoke control")

[no right]

log(token, "unauth attempt to revoke control")

[no right]

Completed

[no right]

Completed

addCommand(RevokeControlCmd) addCommand(RevokeControlCmd)

command queued command queued

revokeControTimer() revokeControTimer()

setVideoSourceStatusStatus(CameraId) setVideoSourceStatusStatus(CameraId)

Figure 3‑27. CameraControlModule:RevokeControl (Sequence Diagram)

3.4.11 CameraControlModule:RevokeDisplay (Sequence Diagram)

This Sequence Diagram shows the process of blocking a camera from being viewed by the listed organizations. This code will loop through all the video sinks displaying this camera, and if any belong to the revoked organization, it will attempt to display "No Source Available" on that video sink. If any video sinks could not be contacted, or were contacted and still did not remove this camera display, a timer will be started to try and remove the display from those video sinks once a minute until all video sinks belonging to the revoked organization stop displaying this camera.

[image: image30.emf]VideoCameraImpl

CommandStatus TokenManipulator CommandQueue OperationsLog VideoSink

RevokeDisplayCmd

CameraProtocolHdlr PushEventSupplier CameraControlDB

DisplayNoVideoAvailbleCmd

See CameraControlModule::

DisplayNoVideoAvailable

update("Command queued") update("Command queued")

(ifAnyRevokeFailed) (ifAnyRevokeFailed)

persistandPushVideoProviderStatus(CameraId) persistandPushVideoProviderStatus(CameraId)

persistandPushVideoSourceStatus(CameraId) persistandPushVideoSourceStatus(CameraId)

(isRevoked == true) (isRevoked == true)

log("already done") log("already done")

verifyAccess(token) verifyAccess(token)

revokeDisplay

(token,orgID,cmdStat)

revokeDisplay

(token,orgID,cmdStat)

checkAccess(token) checkAccess(token)

[no right]

Access Denied

[no right]

Access Denied

sourceUnavailable () sourceUnavailable ()

[for each

revokedOrgID

monitor

displayed]

[for each

revokedOrgID

monitor

displayed]

completed () completed ()

getSourceStatus () getSourceStatus ()

setVideoSourceStatus(CameraId) setVideoSourceStatus(CameraId)

[no right]

log(token, "unauth attempt to revoke camera display")

[no right]

log(token, "unauth attempt to revoke camera display")

[no right]

Completed

[no right]

Completed

addCommand(RevokeDisplayTimer) addCommand(RevokeDisplayTimer)

command queued command queued

log (token, "Camera image removed from monitor") log (token, "Camera image removed from monitor")

displayNoVideoAvailableImpl() displayNoVideoAvailableImpl()

create create

setVideoProviderStatus (cameraId) setVideoProviderStatus (cameraId)

update(camera removed from Monitor) update(camera removed from Monitor)

execute execute

create create

revokeDisplayTimer() revokeDisplayTimer()

Figure 3‑28. CameraControlModule:RevokeDisplay (Sequence Diagram)

3.4.12 CameraControlModule:SavePreset (Sequence Diagram)

 This sequence diagram shows the implementation of the SavePreset interface of the CameraImpl class (which represents VideoProviderImpl, VideoSourceImpl, VideoCameraImpl etc.). First a check is performed to verify that the operator has sufficient privileges to save a preset a camera. The position is returned from the ProtocolHandler and stored in the database. The ProtocolHandler obtains the camera position from a poll for either the Surveyor VFT or COHU 3955 camera. See adjPan sequence diagrams for the Surveyor VFT or COHU 3955 for more details about communications with the camera.

[image: image31.emf]ControllableVideoCamera CameraProtocolHdlr Position Preset

CameraControlDB

create create

savePreset(number) savePreset(number)

create(Position,Number,Description) create(Position,Number,Description)

persistPreset(Preset) persistPreset(Preset)

getPosition() getPosition()

Figure 3‑29. CameraControlModule:SavePreset (Sequence Diagram)

3.4.13 CameraControlModule:SetCameraConfiguration (Sequence Diagram)

This sequence diagram shows the implementation of the setConfiguration interface of the CameraImpl class (which represents VideoProviderImpl, VideoSourceImpl, VideoCameraImpl etc.). First a check is performed to verify that the operator has sufficient privileges to update a camera. Next a check is made to see that the camera is offline. Only offline cameras may have their configurations updated. If the camera is offline, the new configuration is validated. Next the new configuration is written to the database. Finally, the camera is apprised of its new configuration.

[image: image32.emf]VideoCameraImpls TokenManipulator

ControllableVideoCamera

FactoryImpl CameraControlDB

PushEvent

Supplier OperationsLog

pushConfig pushConfig

[invalid config]

Char2Exception

[invalid config]

Char2Exception

validateConfig validateConfig

checkCommdMode checkCommdMode

notOffline

Char2Exception

notOffline

Char2Exception

checkAccess checkAccess

acessDenied acessDenied

setConfiguration(cameraID, config) setConfiguration(cameraID, config)

setConfiguration(cameraID, config) setConfiguration(cameraID, config)

[invalid configuration]

log(token, "invalid data")

[invalid configuration]

log(token, "invalid data")

[online]

log(token, "must be offline to change configuration)

[online]

log(token, "must be offline to change configuration)

setConfig

(token,config)

setConfig

(token,config)

[no rights]

log(token, "unauth. attempto to configure camera)

[no rights]

log(token, "unauth. attempto to configure camera)

Figure 3‑30. CameraControlModule:SetCameraConfiguration (Sequence Diagram)

3.4.14 CameraControlModule:SurveyorVFTDirectCameraControl (Sequence Diagram)

This Sequence Diagram shows how a camera command is executed. There are two kinds of commands. Commands like pan, tilt, zoom, etc., require immediate feedback for direct control by the user, and are described in this diagram. Commands like setTitle and savePreset can take a longer time to complete. They are executed in asynchronous mode which described in the CameraControlModule:AsychronousCameraControl sequence diagram. Direct commands are executed as follows: First a camera control command is sent to the CameraImpl. The sender must have a valid token, the camera must be in online mode, and must be currently controlled by the sender. The CameraImpl object then calls lock (synchronize) function which prevents it from executing other commands until this command is complete. After that, Protocol Handler will be called to translate the command into camera byte codes and send the byte codes to the CameraControlDevice. Responses are returned to the Protocol Handler for evaluation to expected results. If there is an error during sending or receiving the byte codes, the CameraImpl class will be notified. Finally, the CameraImpl unlocks the control and return success or failure to the caller.

[image: image33.emf]Operator

ViconSurveyorVFTCameraImpl TokenManipulator

The will guarantee no direct or queueable

command will execute.

A pan/tilt command will set the m_moving flag to sure

A stop command will set the m_moving lag to false

If camera is moving when a pan/tilt command is issued,

a stop command will be executed.

Check flags for currently running

asynchronous commnad

ViconSurveyorVFTProtocolHdlr

Different cameras have different protocol handlers to

translate commands into byte code.

Then cameraControlDevices talk to different backend

to send and receive each bye code command.

OperationsLog

See ViconSurveyor2000ProtocolHdlr AdjPan for detail

unlock unlock

[no right]

AccessDenied

[no right]

AccessDenied

setMovingFlag setMovingFlag

hasCommandsRunning() hasCommandsRunning()

lock lock

[has command running]

CameraBusyException

[has command running]

CameraBusyException

unlock unlock

[not online]

CHART2Exception

[not online]

CHART2Exception

[no controlled by me]

CameraNotControlledException

[no controlled by me]

CameraNotControlledException

error error

Failure Failure

adjPan(direction) adjPan(direction)

timed out timed out

Failure Failure

success success

success success

adjPan(token, direction) adjPan(token, direction)

checkAccess(token) checkAccess(token)

[no right]

log(token, "unauth attempt to control camera")

[no right]

log(token, "unauth attempt to control camera")

updateInactiveTimer() updateInactiveTimer()

unlock unlock

isOnline isOnline

isControlled(token) isControlled(token)

Figure 3‑31. CameraControlModule:SurveyorVFTDirectCameraControl (Sequence Diagram)

3.4.15 CameraControlModule:ViconSVFTProtocolHandlerAdjPan (Sequence Diagram)

This Sequence Diagram shows how the pan command and other commands like tilt, zoom, focus, and iris adjustment/movement commands get executed. This example considers a pan command. First the CameraImpl class gets the command and sends it to the Protocol Handler with the direction parameter. The direction parameter determines the direction of the pan command. Value 1 means pan right, value -1 means pan left and value 0 means stop. (For other movement commands, 1 means tilt up, zoom in, focus far, iris open, more color; -1 means the opposite.) Depending on the value of the direction parameter, the panLeft, panRight or stop function gets called on the ProtocolHandler. The ProtocolHandler then creates the byte command for the camera and calls the send function on CameraControlDevice. The CameraControlDevice then encodes the byte message and transmits it to the device. If there is an error during sending the message, the CameraImpl class will be notified. Before CameraImpl class executes this command, it checks if there is a pan command or other movement command current running. If so, a stop command will be sent to stop the current movement before the new command gets executed.

[image: image34.emf]ViconSVFTCameraImp

Camera will have already

sent a stop command if

there had been a movement

command such as pan, tilt,

etc., currently running

ViconSurveyorVFTProtocolHdlr

When direction == 0 in pan title command,

a stop will be send. direction == 1 means pan/tilt right

direction == -1 mean pan/tilt left

ViconCommandProcessor

[direction == 1]

panRight()

[direction == 1]

panRight()

[direction == 0]

stop()

[direction == 0]

stop()

comFail comFail

comFail comFail

adjPan(direction) adjPan(direction)

send(CameraCommand [] commands, token) send(CameraCommand [] commands, token)

[exception] [exception]

recieve(CameraCommand [] commands, token) recieve(CameraCommand [] commands, token)

success success

[direction == -1]

 panLeft()

[direction == -1]

 panLeft()

[error] [error]

success success

Figure 3‑32. CameraControlModule:ViconSVFTProtocolHandlerAdjPan (Sequence Diagram)

3.4.16 CameraControlModule:ViconSVFTrotocolHandlerSetTitle (Sequence Diagram)

This Sequence Diagram shows how the set title command and other commands like it, including move to preset, save preset, and color balance adjustment/movement commands get executed. This example considers a set title command. First the CameraImpl class gets the command and sends it to the Protocol Handler. The ProtocolHandler then calls the Surveyor Virtual Machine to generate all of the necessary commands to go through the Surveyor VFT camera menu system to set the proper title. The Surveyor Virtual Machine itself is a reused component of AVCM which has been wrapped so as to be callable from Java. The Surveyor Virtual Machine takes the incoming title, reads the compiled macros and generates all of the commands that nee to be sent to the camera – up to 600 commands may be generated. The ProtocolHandler then executes each of these commands in the same manner as it executes commands like adjPan. See the ViconSVFTProtocolHandlerAdjPan sequence diagram for details.

[image: image35.emf]ViconSVFTCameraImp

ViconSurveyorVFTProtocolHdlr S2KVirtualMachine

Virtual Machine translates setTitle in to series commands

and put those commands into a string format. The string

format also indicates what commands need to be run together

in a transaction.

ViconCommandProcessor

setTitle(Message) setTitle(Message)

For each command For each command

success success

receive(CameraCommand [] commands, token) receive(CameraCommand [] commands, token)

comfail comfail

setTitle(message) setTitle(message)

commandString commandString

send(CameraCommand [] commands, token) send(CameraCommand [] commands, token)

error error

success success

getAllCommands(commandString) getAllCommands(commandString)

Figure 3‑33. CameraControlModule:ViconSVFTProtocolHandlerSetTitle (Sequence Diagram)

3.4.17 MonitorControlModule:ConnectRecToSend (Sequence Diagram)

This diagram shows the process of connecting this monitor's receiving device (decoder or switch output port) to the sending device of a video source (an encoder or switch input port). If the sending device is on the same fabric as the receiving device, a simple connectFrom() call is made to the local receiving device. If the video fabrics are different, the Router is called to make the connection, which will involve at least one bridge circuit and at least two pairs of sending and receiving devices.

[image: image36.emf]These are the same object.

Shown as separate for clarity.

VideoSinkImpl

VideoCollectorImpl

If providerConfig.m_sendingDeviceConfig.m_switchFabricID == my recevingDeviceConfig.m_switchFabricID

make a simple (non-routed) connection..

VideoProvider

m_recvDevice:

VideoReceivingDevice

If providerConfig.m_sendingDeviceConfig.m_switchFabricID != my recevingDeviceConfig.m_switchFabricID

make route.

cmdStat:

CommandStatus Router

[fabric IDs match &&

testOnly == true]

true

[fabric IDs match &&

testOnly == true]

true

[success]

true

[success]

true

[success]

true

[success]

true

[success] [success]

[success]

true

[success]

true

connectReceivingToSendingDevice(

token, VideoProviderInfo,

VideoSourceID, overrideIfNec,

 testOnly, CommandStatus)

connectReceivingToSendingDevice(

token, VideoProviderInfo,

VideoSourceID, overrideIfNec,

 testOnly, CommandStatus)

getProviderConfig() getProviderConfig()

[fabric IDs match]

connectFrom(token,

videoTransmissionDeviceConfig)

[fabric IDs match]

connectFrom(token,

videoTransmissionDeviceConfig)

[fail] [fail]

[fail] [fail]

[fail]

completed(falure, reason)

[fail]

completed(falure, reason)

[fail]

false

[fail]

false

[success]

providerConfig

[success]

providerConfig

[fail]

completed(failure, reason)

[fail]

completed(failure, reason)

[fail]

false

[fail]

false

[fabric IDs different]

connect(providerInfo, providerConfig, collectorInfo, collectorConfig, overrideIfNec, testOnly, reason)

[fabric IDs different]

connect(providerInfo, providerConfig, collectorInfo, collectorConfig, overrideIfNec, testOnly, reason)

[fail]

false, reason

[fail]

false, reason

[fail]

completed(failure, reason)

[fail]

completed(failure, reason)

[fail]

false

[fail]

false

Figure 3‑34. MonitorControlModule:ConnectRecToSend (Sequence Diagram)

3.4.18 MonitorControlModule:CreateMonitor (Sequence Diagram)

This sequence diagram shows the implementation of the createMonitor interface of the MonitorFactory. First a check is performed to verify that the operator has sufficient privileges to create a monitor. Next, the monitor is inserted into the database. Part of this process includes creating the monitor object itself. Finally, the new monitor object is activated and the event is pushed out to clients.

[image: image37.emf]ORB

MonitorFactoryImpl TokenManipulator MonitorControlDB Log

createMonitor

(token, config)

createMonitor

(token, config)

check Access check Access

pushAddMonitor pushAddMonitor

error messages error messages

[no rights]

Access Denied

[no rights]

Access Denied

insertMonitor

(Identifier, config)

insertMonitor

(Identifier, config)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

[no rights]

log(token,"unauth. attempt to create monitor)

[no rights]

log(token,"unauth. attempt to create monitor)

Figure 3‑35. MonitorControlModule:CreateMonitor (Sequence Diagram)

3.4.19 MonitorControlModule:DisconnectRecFmSend (Sequence Diagram)

This sequence diagram shows the process of disconnecting an image from a monitor. Any simple (R2B1-style) non-routed connections do not need to be dropped, so those requests just immediately return. For routes involving bridge circuits through the router, the router needs to be informed that the route is no longer in use and the bridge circuit(s) may become available. The Router's disconnect() call is invoked to accomplish this.

[image: image38.emf]These are the same object.

Shown as separate for clarity.

VideoSinkImpl

VideoCollectorImpl

If providerConfig.m_sendingDeviceConfig.m_switchFabricID == my recevingDeviceConfig.m_switchFabricID

do nothing. Do not need to drop simple connections, only Router routes over bridge circuits need to be dropped.

VideoProvider

If providerConfig.m_sendingDeviceConfig.m_switchFabricID != my recevingDeviceConfig.m_switchFabricID

make route.

m_recvDevice:

VideoReceivingDevice

cmdStat:

CommandStatus Router

[success]

true

[success]

true

getProviderConfig() getProviderConfig()

[fail]

completed(falure, reason)

[fail]

completed(falure, reason)

[success]

providerConfig

[success]

providerConfig

[fail]

false, reason

[fail]

false, reason

[fail]

false

[fail]

false

[success]

true

[success]

true

disconnectReceivingFromSendingDevice(

token, VideoProviderInfo,

VideoSourceID, CommandStatus)

disconnectReceivingFromSendingDevice(

token, VideoProviderInfo,

VideoSourceID, CommandStatus)

[fail] [fail]

[fail]

false

[fail]

false

[fabric IDs different]

disconnect(providerInfo, providerConfig, collectorInfo, collectorConfig, reason)

[fabric IDs different]

disconnect(providerInfo, providerConfig, collectorInfo, collectorConfig, reason)

[fail]

completed(failure, reason)

[fail]

completed(failure, reason)

[fabric IDs match]

true

[fabric IDs match]

true

Figure 3‑36. MonitorControlModule:DisconnectRecFmSend (Sequence Diagram)

3.4.20 MonitorControlModule:DisplayImage (Sequence Diagram)

This sequence diagram describes the process of displaying an image on a monitor. The token is checked for appropriate access. If there is an error, an operations log message is written, the command status is updated, and the failure is returned. Otherwise, a DisplayImageCommand is placed on the command queue. Note that the DisplayImageImpl sequence diagram provides more details about what happens during execution of that command.

[image: image39.emf]Same instance,

split for clarity

VideoSinkImpl

CommandStatus

Test call (testOnly = true) to see if it would work.

DisplayImageCommand

VideoCollectorImpl

See MonitorControlModule : DisplayImageImpl

Sequence Diagram

CommandQueue

Log

verifyAccessAll (token, funcRightIDs, string, string, cmdStat) verifyAccessAll (token, funcRightIDs, string, string, cmdStat)

[Access Denied]

cmdStatusFailure ("Current user does not have the right to display on")

[Access Denied]

cmdStatusFailure ("Current user does not have the right to display on")

displayImage(

token, overrideRequested,

VideoProviderInfo, forTour, cmdStat)

displayImage(

token, overrideRequested,

VideoProviderInfo, forTour, cmdStat)

[AccessDenied]

log (token, "unauthorized attempt to display an image")

[AccessDenied]

log (token, "unauthorized attempt to display an image")

addCommand (DisplayCmd) addCommand (DisplayCmd)

command queued command queued

displayImageImpl

(VideoSinkImpl,

VideoProviderInfo,

bTour,

cmdStat)

displayImageImpl

(VideoSinkImpl,

VideoProviderInfo,

bTour,

cmdStat)

[no rights]

Access Denied

[no rights]

Access Denied

cmdStatusUpdate ("Command queued") cmdStatusUpdate ("Command queued")

[not forTour]

connectReceivingToSendingDevice(token,

 videoProviderInfo, videoProviderInfo.providerID,

true,cmdStat)

[not forTour]

connectReceivingToSendingDevice(token,

 videoProviderInfo, videoProviderInfo.providerID,

true,cmdStat)

[test failed && override not requested

OverrideNotRequestedException]

[test failed && override not requested

OverrideNotRequestedException]

[test failed && override requested

CannotOverrideException

[test failed && override requested

CannotOverrideException

new new

execute execute

Figure 3‑37. MonitorControlModule:DisplayImage (Sequence Diagram)

3.4.21 MonitorControlModule:DisplayImageImpl (Sequence Diagram)

When the display image command is executed, a check is made to see if the monitor is online. Also, there is a check to see if the new camera is revoked, offline, or if the "old" camera is controlled and this monitor has only display of the old camera within the controlling operator's monitor group. If any of these conditions are true, or if an object cannot be reached, false is returned. Next, connectReceivingToSendingDevice is called.

If the sending device is on the same video fabric as the receiving device, this method commands the monitor's decoder to switch the image. An error here will cause false to be returned. Otherwise, the monitor status is updated, persisted, and pushed. The commandStatus is updated as well.

If the sending device is not on the same video fabric as the receiving device, the Router will be called to attempt to make a route. This will ultimately result in one or more receiving devices to be switched to the appropriate sending devices to create or update the route through one or two bridge circuits to put up the image. As in the simple non-routed case, an error here will cause false to be returned. Otherwise, the monitor status is updated, persisted, and pushed. The commandStatus is updated as well.

Next, the "new" camera is updated to include this monitor in its list of VideoSinks. If the "new" camera cannot be updated, a NoVideoAvailable source will be displayed on the monitor. See the DisplayNoVideoAvailable sequence diagram for details. If the "new" camera can be updated, the "old" camera is updated to remove this monitor from its list of VideoSinks. Regardless of whether the "old" camera can be updated, an operations log message is written indicating that the display request was successful. Finally, the monitor status is persisted to the database, pushed out to the clients, and the commandStatus is updated.

[image: image40.emf]CommandQueue

VideoSinkImpl

failure to

communicate

with decoder

CommandStatus

This will reject if camera is controlled at site and request will remove last

display of camera at the controlling user's monitor group.

Checks if camera is not revoked for display at this site and is online

MonitorControlDB

Call connectReceivingToSendingDevice()

with testOnly = true, just to see if it would work.

See MonitorControlModule:StopCameraTour

Sequence Diagram, start at stopCameraTourImpl

oldCamera:

VideoSource

Disconnect old image from monitor. (If this connected directly,

this does nothing. If routed, route is dropped.) See

MonitorControlModule:DisconnectRecFmSend for details.

For R2B2 this is a method defined at the

VideoCollector level. See new R2B2 SD

MonitorControlModule::connectRecToSend

for details. testOnly flag false now --

requesting to actually make the route.

newCamera:

VideoSource

CameraControlDB

Text: "Adding the monitor to

the camera's status"

PushEventSupplier

OperationsLog

Attempt display of NVA if

error adding Video Sink to

new camera

Added the monitor to

the camera's status

no error processing other

than log if it fails

1) CommandStatus will

be NULL for Tours.

2) "reason" should

concatenated to the next

"reason", etc.

[false] [false]

disconnectReceivingToSendingDevice(

token,oldSource,cmdStat)

disconnectReceivingToSendingDevice(

token,oldSource,cmdStat)

[false] [false]

[failed to

add monitor]

[failed to

add monitor]

addDisplay non-error return addDisplay non-error return

push(status) push(status)

[regular display or tour display with tour logging on

opLog (token,"display request")

[regular display or tour display with tour logging on

opLog (token,"display request")

cmdStatusSuccess

(reason)

cmdStatusSuccess

(reason)

[failed to add monitor]

doDisplayNoVideoAvailable(vpiNVA, cmdStat)

[failed to add monitor]

doDisplayNoVideoAvailable(vpiNVA, cmdStat)

persistStatus

(cameraDisplayed)

persistStatus

(cameraDisplayed)

[failed to add monitor]

CHART2Exception

[failed to add monitor]

CHART2Exception

connectReceivingToSendingDevice(

token, vsNewSource, sourceID,

false, cmdStat)

connectReceivingToSendingDevice(

token, vsNewSource, sourceID,

false, cmdStat)

persistStatus(finalReason) persistStatus(finalReason)

setOpStatus("OK") setOpStatus("OK")

addDisplay(token, MonitorDisplayInfo) addDisplay(token, MonitorDisplayInfo)

persistStatus(finalReason) persistStatus(finalReason)

removeVideoSink(MonitorID) removeVideoSink(MonitorID)

[false] [false]

[false] [false]

[active or suspended tour]

stopTourImpl(tourID, cmdStat)

[active or suspended tour]

stopTourImpl(tourID, cmdStat)

persistStatus (camera image removed) persistStatus (camera image removed)

cmdStatusUpdate() cmdStatusUpdate()

[NOT a tour OR (is a tour AND tour status update true)]

push (status)

[NOT a tour OR (is a tour AND tour status update true)]

push (status)

cmdStatusUpdate() cmdStatusUpdate()

checkCameras (sysToken,vsNewSource,cmdStat) checkCameras (sysToken,vsNewSource,cmdStat)

[not online]

cmdStatusFailure("not online")

[not online]

cmdStatusFailure("not online")

[NOT a tour OR (is a tour AND tour status update true)]

push (currentStatus)

[NOT a tour OR (is a tour AND tour status update true)]

push (currentStatus)

displayImageImpl(token,

overrideRequested,monGrpID,

src,forTour,cmdStat)

displayImageImpl(token,

overrideRequested,monGrpID,

src,forTour,cmdStat)

connectReceivingToSendingDevice(

token, vsNewSource, sourceID,

,true,cmdStat)

connectReceivingToSendingDevice(

token, vsNewSource, sourceID,

,true,cmdStat)

Figure 3‑38. MonitorControlModule:DisplayImageImpl (Sequence Diagram)

3.4.22 MonitorControlModule:RemoveMonitor (Sequence Diagram)

This sequence diagram shows the implementation of the removeMonitor interface of the MonitorFactory. First a check is performed to verify that the operator has sufficient privileges to remove a monitor. Next a monitor is checked to see if it is offline. Only offline monitors may be removed. Next, the factory removes the monitor from the trader and calls the MonitorControlDB class to delete the monitor from the database. A message is written to the operations log and a monitorDeleted event is pushed out to the clients.

[image: image41.emf]ORB

MonitorImpl TokenManipulato MonitorFactory MonitorDb Log

log(token,error message) log(token,error message)

push

MonitorDeleted

push

MonitorDeleted

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

[Error removing Monitor]

Chart2Exception

[Error removing Monitor]

Chart2Exception

remove

(token)

remove

(token)

check Access check Access

[no rights]

Access Denied

[no rights]

Access Denied

check CommMode check CommMode

[Online]

CHART2Exception

[Online]

CHART2Exception

[no rights]

log(token,"unauth. attempt to remove monitor <name>)

[no rights]

log(token,"unauth. attempt to remove monitor <name>)

[online]

log(token,"must be offline to remove monitor")

[online]

log(token,"must be offline to remove monitor")

remove monitor

(MonitorImpl, token)

remove monitor

(MonitorImpl, token)

deleteMonitor

(Identifier)

deleteMonitor

(Identifier)

log(token, error message) log(token, error message)

Figure 3‑39. MonitorControlModule:RemoveMonitor (Sequence Diagram)

3.4.23 MonitorControlModule:SetMonitorConfiguration (Sequence Diagram)

This sequence diagram shows the implementation of the setConfiguration interface of the MonitorImpl class. First a check is performed to verify that the operator has sufficient privileges to update a monitor. Next a check is made to see that the monitor is offline. Only offline monitors may have their configurations updated. If the monitor is offline, the new configuration is validated. Next the new configuration is written to the database. Finally, the monitor is apprised of its new configuration.

[image: image42.emf]ORB

MonitorImpl TokenManipulator MonitorFactoryImpl MonitorControlDB OperationsLog Monitor

Check CommMode Check CommMode

[Online]

throws

CHART2Exception

[Online]

throws

CHART2Exception

validateCfg validateCfg

[invalid configuration]

CHART2Exception

[invalid configuration]

CHART2Exception

pushConfig pushConfig

[online]

log(token,"must be offline to change configuration"'

[online]

log(token,"must be offline to change configuration"'

[invalid configuration]

log(token, "invalid data")

[invalid configuration]

log(token, "invalid data")

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

setConfiguration(monitorId, config) setConfiguration(monitorId, config)

check Access check Access

changeConfiguration(monitorID, config) changeConfiguration(monitorID, config)

setConfiguration(

 monitorID, config)

setConfiguration(

 monitorID, config)

[no rights]

Access Denied

[no rights]

Access Denied

[no rights]

log(token,"unauth. attempt to configure monitor <name>)

[no rights]

log(token,"unauth. attempt to configure monitor <name>)

Figure 3‑40. MonitorControlModule:SetMonitorConfiguration (Sequence Diagram)

3.4.24 Router:CreateBridgeCircuit (Sequence diagram)

This sequence diagram shows the implementation of the createBridgeCircuit interface of the BridgeCircuitFactory. First a check is performed to verify that the operator has sufficient privileges to create a bridge circuit. Next, the bridge circuit is inserted into the database. Part of this process includes creating the bridge circuit object itself. Finally, the new bridge circuit object is activated and the event is pushed out to clients.

[image: image43.emf]ORB

BridgeCircuitFactoryImpl TokenManipulator BridgeCircuitControlDB Log

[no rights]

log(token,"unauth. attempt to create bridge ckt)

[no rights]

log(token,"unauth. attempt to create bridge ckt)

InsertBridgeCircuit

(Identifier, config)

InsertBridgeCircuit

(Identifier, config)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

DBException DBException

CreateBridgeCircuit

(token, config)

CreateBridgeCircuit

(token, config)

checkAccess checkAccess

[no rights]

Access Denied

[no rights]

Access Denied

pushAddBridgeCircuit pushAddBridgeCircuit

Figure 3‑41. MonitorControlModule:CreateBridgeCircuit (Sequence Diagram)

3.4.25 Router:Connect (Sequence Diagram)

This sequence diagram shows the process of using the wrapped C++ router (called AVCMRouterRequestManager) to make a route across video fabrics to connect a video source (sending device) to a video sink (receiving device). The router figures out the route to be made, invoking an override if necessary, and calls back out to the RouterImpl in the Java environment to connect a sending device to a receiving device for each hop of the route. Depending on the state of the video network, 1 to 3 connect calls may be necessary to complete the route.

Before a route is made, the Router can be called in a test-only mode, to test whether a route would be able to be made or not, before the old image is dropped off the monitor. If called in test-only mode, the route is computed, but no other work is done. The return code indicates whether a route would have been made.

[image: image44.emf]VideoCollectorImpl

Router RouterJNI

DeviceUtility

providerID is the ID of the ultimate VideoSource if providerType is CAMERA_CONNECTION,

else it is the ID of the provider end (output) of a bridge circuit.

collectorID is the ID of the ultimate Monitor if collectorType is MONITOR_CONNECTION,

else it is the ID of the collector end (input) of a bridge circuit.

RouterJNIDLL

connect() and disconnect() are synchronized,

so that only one connect/disconnect action

can be ongoing at any one time.

All these failure returns

are diagramed in short-

hand. Really the return

goes through the

RouterJNIDLL, RouterJNI,

and Router before

reaching the calling

VideoCollectorImpl., as

shown in the success case

and failure case below.

Called with testOnly = true to test

whether a route would be made.

- If it returns success, we know to

 drop the old route or virt ckt to the

 monitor and call Display() again with

 bTestOnly = false.

- If it returns failure, we know not to

 bother dropping the old route or virt

 ckt, it would be for no purpose.

Called with testOnly = false to

actually attempt to make a route.

See

RouterControlModule's

Router:Disconnect for

more details.

AVCMRouterRequestManager call was originally

to a AVCMVirtualCircuitRequestManager, which

is now a call back out to the Java environment and

back to the calling RouterImpl object in Java to

build the circuit. The original call in

AVCMRouterRequestManager::BuildVirtCkt() is:

pVirtCktReqMgr->Build(bstrSrcCxnStr, srcCxnType,

 bstrDestCxnStr, destCxnType,

 &bstrVirtCktIdStr,

 bstrRealCameraName, bstrRealMonitorName);

Need to add a &bstrReasonStr to get back a reason string to

return to the inital VideoCollectorImpl caller on any failure.

returnedVirtCktID is supposed to be the

ID of the created virt ckt, but in CHART

virt ckts don't have IDs. It may be okay to

just return a freshly created unique ID

that isn't an ID of anything. Need to be able

to completely regenerate routes on re-init.

AVCMRouterRequestManager

providerInfo down below is built from provider found where pointed to above..

m_worikingVPConfig.providerID down below refers to the provider (source)

passed in on the initial call at the very top of this diagram.

Same with m_workingCmdStat.

provider:

VideoProvider

Call may be made

1 to 3 times

in this loop.

The double-barred

in-scope region is

part of pre-existing

C++ code in the

AVCMRouterRequestManager.

It will be used in its existing

form as much as possible,

 except for the calls out to

the Router class for Build

and Drop as shown.

collector:

VideoCollector

AVCMRouterRequestManager.Display()

has error logic that attempts to undo the

work started to create a route if it cannot

be finished. If any "virtual circuits" are

created, and then another "virtual circuit"

 cannot be created (in loop iteration 2 or

3), the virtual circuits created are

undone in the loop below this one, below

the success return.

AVCMRouterRequestManager call was originally

to a AVCMVirtualCircuitRequestManager, which

is now a call back out to the Java environment and

back to the calling RouterImpl object in Java to

drop a circuit. The original call in

AVCMRouterRequestManager::DropVirtCkt() is:

pVirtCktReqMgr->Drop(bstrSrcCxnStr, srcCxnType,

 bstrDestCxnStr, destCxnType,

 bstrCktIdStr);

Need to add a &bstrReasonStr to get back a reason

string to return to the inital VideoCollectorImpl caller

 on any failure.

getProviderConfig getProviderConfig

getUniquelyIdentifiableCorbaObject(providerID) getUniquelyIdentifiableCorbaObject(providerID)

[fail or none] [fail or none]

[fail]

reason='Could not find source, or provider chosen for route'

[fail]

reason='Could not find source, or provider chosen for route'

[fail] [fail]

[success]

provider

[success]

provider

[fail]

reason='Could not contact source, or provider chosen for route'

[fail]

reason='Could not contact source, or provider chosen for route'

[success]

providerConfig

[success]

providerConfig

getUniquelIdentifiableCorbaObject(collectorID) getUniquelIdentifiableCorbaObject(collectorID)

[fail or none] [fail or none]

[fail]

reason='Could not find monitor, or collector chosen for route'

[fail]

reason='Could not find monitor, or collector chosen for route'

[success]

collector

[success]

collector

connectReceivingToSendingDevice(tokenPlusSystemRIght,

providerInfo, m_workingVPConfig.providerID, m_workingCmdStat)

connectReceivingToSendingDevice(tokenPlusSystemRIght,

providerInfo, m_workingVPConfig.providerID, m_workingCmdStat)

[fail] [fail]

[fail]

reason='Could not contact monitor, or collector chosen for route'

[fail]

reason='Could not contact monitor, or collector chosen for route'

[success] [success]

[success]

returnedRouteCreatedResult=true

populate eturnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams

[success]

returnedRouteCreatedResult=true

populate eturnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams

[testOnly]

true or false,

reason if false

[testOnly]

true or false,

reason if false

[failure building any circuit and other circut(s) already built]

Drop(providerID,providerType, collectorID,collectorType,

returnedVirtCktID, reason)

[failure building any circuit and other circut(s) already built]

Drop(providerID,providerType, collectorID,collectorType,

returnedVirtCktID, reason)

[failure] [failure]

clean up clean up

[success] [success]

[while

virtual circuits

added not

dropped yet,

if route was

not fully

built]

[while

virtual circuits

added not

dropped yet,

if route was

not fully

built]

[failure]

returnedRouteCreatedResult=false

populate eturnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams

[failure]

returnedRouteCreatedResult=false

populate eturnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams

save VideoProviderConfig

and cmdStat as

m_workingVPConfig

and m_workingCmdStat

for below

save VideoProviderConfig

and cmdStat as

m_workingVPConfig

and m_workingCmdStat

for below

connect(...) connect(...)

connect(...) connect(...)

[success]

reason=empty string, returnedVirtCktID=IdentifierGenerator.createIdentifier()

[success]

reason=empty string, returnedVirtCktID=IdentifierGenerator.createIdentifier()

[fail] [fail]

[fail] [fail]

[fail] [fail]

connect(VideoProviderInfo,

VideoProviderConfig,

VideoCollectorInfo,

VideoCollectorConfig,

overrideRequested,

testOnly,reason, cmdStat)

connect(VideoProviderInfo,

VideoProviderConfig,

VideoCollectorInfo,

VideoCollectorConfig,

overrideRequested,

testOnly,reason, cmdStat)

Display(providerID, collectorID, overrideRequested, testOnly,

returnedRouteCreatedResult,

returnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams)

Display(providerID, collectorID, overrideRequested, testOnly,

returnedRouteCreatedResult,

returnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams)

Build(providerID,providerType, collectorID,collectorType,

returnedVirtCktID, reason

providerConfig.m_name,collectorConfig.m_name)

Build(providerID,providerType, collectorID,collectorType,

returnedVirtCktID, reason

providerConfig.m_name,collectorConfig.m_name)

[while

virtual circuits

need to be

built]

[while

virtual circuits

need to be

built]

[testOnly]

true or false, reason if false

[testOnly]

true or false, reason if false

Figure 3‑42. Router:Connect (Sequence Diagram)

3.4.26 Router:Disconnect (Sequence Diagram)

This sequence diagram shows the process of using the wrapped C++ router (called AVCMRouterRequestManager) to break a route across video fabrics to disconnect a video source (sending device) from a video sink (receiving device). The router calls back out to the RouterImpl in the Java environment to disconnect each receiving device from the sending devices they are connected to for each hop of the route. Depending on the state of the video network, 1 to 3 disconnect calls may be necessary to completely break the route.

[image: image45.emf]VideoCollectorImpl

Router RouterJNI

DeviceUtility

providerID is the ID of the ultimate VideoSource if providerType is CAMERA_CONNECTION,

else it is the ID of the provider end (output) of a bridge circuit.

collectorID is the ID of the ultimate Monitor if collectorType is MONITOR_CONNECTION,

else it is the ID of the collector end (input) of a bridge circuit.

RouterJNIDLL

connect() and disconnect() are synchronized,

so that only one connect/disconnect action

can be ongoing at any one time.

All these failure returns

are diagramed in short-

hand. Really the return

goes through the

RouterJNIDLL, RouterJNI,

and Router before

reaching the calling

VideoCollectorImpl., as

shown in the success case

and failure case below.

AVCMRouterRequestManager call was originally

to a AVCMVirtualCircuitRequestManager, which

is now a call back out to the Java environment and

back to the calling RouterImpl object in Java to

drop a circuit. The original call in

AVCMRouterRequestManager::DropVirtCkt() is:

pVirtCktReqMgr->Drop(bstrSrcCxnStr, srcCxnType,

 bstrDestCxnStr, destCxnType,

 bstrCktIdStr);

Need to add a &bstrReasonStr to get back a reason string to

return to the inital VideoCollectorImpl caller on any failure.

See

RouterControlModule's

Router:Connect for

more details.

virtCktID is supposed to be the

ID of the virt ckt to drop, but in CHART

virt ckts don't have IDs. This param may

be ignored. The only possible use for

virt ckt IDs may be to be able to completely

regenerate routes on re-init.

AVCMRouterRequestManager

providerInfo down below is built from provider found where pointed to above..

m_worikingVPConfig.providerID down below refers to the provider (source)

passed in on the initial call at the very top of this diagram.

Same with m_workingCmdStat.

provider:

VideoProvider

Call may be made

1 to 3 times

in this loop.

The double-barred

in-scope region is

part of pre-existing

C++ code in the

AVCMRouterRequestManager.

It will be used in its existing

form as much as possible,

 except for the calls out to

the Router class for Build

and Drop as shown.

collector:

VideoCollector

AVCMRouterRequestManager's

RemoveDisplay() method has error logic

that attempts to undo the work started to

drop a route if it cannot be fully dropped.

If any "virtual circuits" are dropped, and

then another "virtual circuit" cannot be

dropped (in loop iteration 2 or 3), the

virtual circuits already dropped are

rebuilt in the loop below this one, below

the success return.

AVCMRouterRequestManager call was originally

to a AVCMVirtualCircuitRequestManager, which

is now a call back out to the Java environment and

back to the calling RouterImpl object in Java to

build the circuit. The original call in

AVCMRouterRequestManager::BuildVirtCkt() is:

pVirtCktReqMgr->Build(bstrSrcCxnStr, srcCxnType,

 bstrDestCxnStr, destCxnType,

 &bstrVirtCktIdStr,

 bstrRealCameraName,

 bstrRealMonitorName);

Need to add a &bstrReasonStr to get back a

reason string to return to the inital

VideoCollectorImpl caller on any failure.

clean up clean up

[success] [success]

[while

virtual circuits

dropped not

built back up yet,

if route was

not cleanly

dropped]

[while

virtual circuits

dropped not

built back up yet,

if route was

not cleanly

dropped]

[failure]

returnedRouteCreatedResult=false

populate eturnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams

[failure]

returnedRouteCreatedResult=false

populate eturnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams

save VideoProviderConfig

and cmdStat as

m_workingVPConfig

and m_workingCmdStat

for below

save VideoProviderConfig

and cmdStat as

m_workingVPConfig

and m_workingCmdStat

for below

[Camera or Monitor unknown, or not routed]

AVCM_NO_CAMERA_FOUND or AVCM_NO_MONITOR_FOUND or AVCM_NO_ROUTE_FOUND

[Camera or Monitor unknown, or not routed]

AVCM_NO_CAMERA_FOUND or AVCM_NO_MONITOR_FOUND or AVCM_NO_ROUTE_FOUND

[error]

false, reason

[error]

false, reason

getProviderConfig getProviderConfig

getUniquelyIdentifiableCorbaObject(providerID) getUniquelyIdentifiableCorbaObject(providerID)

[fail or none] [fail or none]

[fail]

reason='Could not find source or provider needing to be dropped'

[fail]

reason='Could not find source or provider needing to be dropped'

[fail] [fail]

[success]

provider

[success]

provider

[fail]

reason='Could not contact source or provider needing to be dropped'

[fail]

reason='Could not contact source or provider needing to be dropped'

[success]

providerConfig

[success]

providerConfig

getUniquelIdentifiableCorbaObject(collectorID) getUniquelIdentifiableCorbaObject(collectorID)

[fail or none] [fail or none]

[fail]

reason='Could not find monitor or collector needing to be dropped'

[fail]

reason='Could not find monitor or collector needing to be dropped'

[success]

collector

[success]

collector

disconnectReceivingToSendingDevice(tokenPlusSystemRIght,

providerInfo, m_workingVPConfig.providerID, m_workingCmdStat)

disconnectReceivingToSendingDevice(tokenPlusSystemRIght,

providerInfo, m_workingVPConfig.providerID, m_workingCmdStat)

[fail] [fail]

[fail]

reason='Could not contact monitor or collector needing to be dropped'

[fail]

reason='Could not contact monitor or collector needing to be dropped'

[success] [success]

[success]

SUCCESS

[success]

SUCCESS

discconnect(...) discconnect(...)

disconnect(...) disconnect(...)

[success]

reason=empty string, returnedVirtCktID=IdentifierGenerator.createIdentifier()

[success]

reason=empty string, returnedVirtCktID=IdentifierGenerator.createIdentifier()

[fail] [fail]

[fail] [fail]

[fail] [fail]

disconnect(VideoProviderInfo,

VideoProviderConfig,

VideoCollectorInfo,

VideoCollectorConfig,

reason, cmdStat)

disconnect(VideoProviderInfo,

VideoProviderConfig,

VideoCollectorInfo,

VideoCollectorConfig,

reason, cmdStat)

RemoveDisplay(providerID, collectorID) RemoveDisplay(providerID, collectorID)

Drop(providerID,providerType, collectorID,collectorType,

virtCktID, reason)

Drop(providerID,providerType, collectorID,collectorType,

virtCktID, reason)

[while

virtual circuits

need to be

dropped]

[while

virtual circuits

need to be

dropped]

[failure dropping any circuit and other circut(s) already droppedt]

Build(providerID,providerType, collectorID,collectorType,

returnedVirtCktID, reason

providerConfig.m_name,collectorConfig.m_name)

[failure dropping any circuit and other circut(s) already droppedt]

Build(providerID,providerType, collectorID,collectorType,

returnedVirtCktID, reason

providerConfig.m_name,collectorConfig.m_name)

[failure] [failure]

Figure 3‑43. Router:Disconnect (Sequence Diagram)

3.4.27 Router:Initialize (Sequence Diagram)

This sequence diagram shows the initialization of the RouterControlModule on Service startup. It includes both Router and Bridge Circuit factories and objects.

[image: image46.emf]ServiceApplication

RouterControlModule ServiceApplication

RouterControlModuleProperties

PushEventSupplier

how do we know if some or all

 of the traders are up before we

try and initiliaze the router?

RouterDB

RouterImpl

POA

This call gets

the object ID's

from the Traders

RouterJNI

RouterJNIDLL

*** = {BridgeCircuits,

Cameras,Monitors,

Switches,SwitchFabrics}

CommandQueue

AVCMRouterRequestManager

BridgeCircuitFactoryImpl

BridgeCircuitImpl

BridegCircuitDB

activate_object(Router) activate_object(Router)

create create

getProperties() getProperties()

registerObject(Router) registerObject(Router)

for each

bridge circuit

in the DB

for each

bridge circuit

in the DB

activate_object(BridgeCircuit) activate_object(BridgeCircuit)

initialize initialize

create create

registerEventChannel() registerEventChannel()

create create

create create

create create

create create

[return from Initialize()] [return from Initialize()]

[return from

initializeRouter()]

[return from

initializeRouter()]

[return from

initializeRouter()]

[return from

initializeRouter()]

getDefaultProperties() getDefaultProperties()

for each *** in

{ BridgeCircuits,

Cameras,

Monitors,

Switches,

SwitchFabrics }

for each *** in

{ BridgeCircuits,

Cameras,

Monitors,

Switches,

SwitchFabrics }

loadRoutes() loadRoutes()

loadRoutes() loadRoutes()

getRoutes() getRoutes()

[return from loadRoutes] [return from loadRoutes]

load***() load***()

load***() load***()

getOpLog() getOpLog()

getBridegCircuitList() getBridegCircuitList()

getDBConnectionManager() getDBConnectionManager()

create create

initializeRouter() initializeRouter()

Initialize() Initialize()

create create

initializeRouter() initializeRouter()

initializeRouter() initializeRouter()

create create

getEventChannelFactory() getEventChannelFactory()

registerObject(BridgeCircuit) registerObject(BridgeCircuit)

getEventChannel() getEventChannel()

Figure 3‑44. Router:Initialize (Sequence Diagram)

3.4.28 Router:RemoveBridgeCircuit (Sequence Diagram)

This sequence diagram shows the implementation of the removeBridgeCircuit interface of the BridgeCircuitFactory. First a check is performed to verify that the operator has sufficient privileges to remove a bridge circuit. Next a bridge circuit is checked to see if it is offline. Only offline bridge circuits may be removed. Since the bridge circuit consists of a video collector and a video provider, both would have to be offline for the bridge circuit to be removed. Next, the factory removes the bridge circuit from the trader and calls the BridgeCircuitControlDB class to delete the bridge circuit from the database. A message is written to the operations log and a bridgeCircuitDeleted event is pushed out to the clients.

[image: image47.emf]ORB

BridgeCircuitImpl TokenManipulator BridgeCircuitFactory BridgeCircuitControlDB Log

remove

(token)

remove

(token)

checkAccess checkAccess

[no rights]

log(token,"unauth. attempt to remove bridge circuit <name>)

[no rights]

log(token,"unauth. attempt to remove bridge circuit <name>)

[no rights]

Access Denied

[no rights]

Access Denied

checkCommMode checkCommMode

[online]

log(token,"must be offline to remove bridge circuit")

[online]

log(token,"must be offline to remove bridge circuit")

[Online]

CHART2Exception

[Online]

CHART2Exception

removeBridgeCircuit

(BridgeCircuitImpl, token)

removeBridgeCircuit

(BridgeCircuitImpl, token)

log

(token, errormessage)

log

(token, errormessage)

 Error removing BridgeCircuit]

Chart2Exception

 Error removing BridgeCircuit]

Chart2Exception

removeBridgeCircuit

(Identifier)

removeBridgeCircuit

(Identifier)

log(token, DBError) log(token, DBError)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

pushRemoveSwitch pushRemoveSwitch

Figure 3‑45. Router:RemoveBridgeCircuit (Sequence Diagram)

3.4.29 Router:SetBridgeCircuitConfiguration

This sequence diagram shows the implementation of the setConfiguration interface of the BridgeCircuitImpl class. First a check is performed to verify that the operator has sufficient privileges to update a bridge circuit. Next, a check is made to see that the bridge circuit is offline. Only offline bridge circuit may have their configurations updated. Since the bridge circuit consists of a video collector and a video provider, both would have to be offline for the bridge circuit to be updated. If the bridge circuit is offline, the new configuration is validated. Next the new configuration is written to the database. Finally, the bridge circuit is apprised of its new configuration.

[image: image48.emf]ORB

BridgeCircuitImpl TokenManipulator BridgeCircuitFactoryImpl BridgeCircuitControlDB OperationsLog BridgeCircuit

setSwitchConfig

(bridgeCktID, config)

setSwitchConfig

(bridgeCktID, config)

[no rights]

log(token,"unauth. attempt to configure bridge circuit <name>

[no rights]

log(token,"unauth. attempt to configure bridge circuit <name>

checkCommMode checkCommMode

[Online]

throws

CHART2Exception

[Online]

throws

CHART2Exception

[online]

log(token,"must be offline to change configuration"'

[online]

log(token,"must be offline to change configuration"'

setBridgeCircuitConfig

(bridgeCktID, config)

setBridgeCircuitConfig

(bridgeCktID, config)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

pushCinfig pushCinfig

[no rights]

Access Denied

[no rights]

Access Denied

validateCnf validateCnf

[invalid configuration]

CHART2Exception

[invalid configuration]

CHART2Exception

checkAccess checkAccess

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

[invalid configuration]

log(token, "invalid data")

[invalid configuration]

log(token, "invalid data")

changeConfiguration(bridgeCktID, config) changeConfiguration(bridgeCktID, config)

Figure 3‑46. Router:SetBridgeCircuitConfigurationt (Sequence Diagram)

3.4.30 Router:Shutdown (Sequence Diagram)

This sequence diagram shows the processing when the ServiceApplication which contains the RouterControlModule is shut down. The RouterControlModule disconnects the RouterImpl and BridgeCircuitImpl from the ORB and then tells them to shut down. The RouterImpl and BridgeCircuitImpl shut down their command queuse and disconnect from the ORB.

[image: image49.emf]ServiceApplication

RouterControlModule RouterImpl POA CommandQueue RouterJNIDLL AVCMRouterRequestManagerImpl BridgeCircuitFactoryImpl BridegCircuitImpl

shutdown() shutdown()

Shutdown() Shutdown()

shutdown() shutdown()

shutdown shutdown

delete delete

deactivate_object (Router) deactivate_object (Router)

shutdown() shutdown()

deactivateObject(BridgeCircuitFactory) deactivateObject(BridgeCircuitFactory)

shutdown() shutdown()

deactivateObject(BridgeCircuit) deactivateObject(BridgeCircuit)

shutdown() shutdown()

delete() delete()

(* for all

bridge circuits)

(* for all

bridge circuits)

delete delete

delete delete

Figure 3‑47. Router:Shutdown (Sequence Diagram)

3.4.31 SwitchControlModule:CreateSwitch (SequenceDiagram)

This sequence diagram shows the implementation of the createSwitch interface of the SwitchFactory. First a check is performed to verify that the operator has sufficient privileges to create a switch. Next, the switch is inserted into the database. Part of this process includes creating the switch object itself. Finally, the new switch object is activated and the event is pushed out to clients.

[image: image50.emf]ORB

SwitchFactoryImpl TokenManipulator SwitchControlControlDB Log

[no rights]

log(token,"unauth. attempt to create videoswitch)

[no rights]

log(token,"unauth. attempt to create videoswitch)

CreateSwitch

(Identifier, config)

CreateSwitch

(Identifier, config)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

DBException DBException

CreateSwitch

(token, config)

CreateSwitch

(token, config)

checkAccess checkAccess

[no rights]

Access Denied

[no rights]

Access Denied

pushAddSwitch pushAddSwitch

Figure 3‑48. SwitchControlModule:CreateSwitch (Sequence Diagram)

3.4.32 SwitchControlModule:Initialize (Sequence Diagram)

 This sequence diagram shows the initialization of the SwitchControlModule on Service startup.

[image: image51.emf]ServiceApplication

SwitchControlModule

ServiceApplication

PushEventSupplier

SwitchControlModuleProperties

V1500DB

V1500SwitchFactoryImpl

V1500SwitchImpl

POA

CommandQueue

getEventChannel() getEventChannel()

getDBConnectionManager() getDBConnectionManager()

 [*for each

switch in

the DB]

 [*for each

switch in

the DB]

registerObject(V1500Switch) registerObject(V1500Switch)

registerObject

(V1500SwitchFactory)

registerObject

(V1500SwitchFactory)

create create

initialize() initialize()

getEventChannelFactory() getEventChannelFactory()

create create

create create

registerEventChannel() registerEventChannel()

getOpLog() getOpLog()

activateObject(V1500Switch) activateObject(V1500Switch)

activateObject(V1500SwitchFactory) activateObject(V1500SwitchFactory)

create create

create create

getProperties() getProperties()

create create

getDefaultProperties() getDefaultProperties()

getSwitchList() getSwitchList()

Figure 3‑49. SwitchControlModule:Initialize (Sequence Diagram)

3.4.33 SwitchControlModule:RemoveSwitch (Sequence Diagram)

This sequence diagram shows the implementation of the removeSwitch interface of the SwitchFactory. First a check is performed to verify that the operator has sufficient privileges to remove a switch. Next a switch is checked to see if it is offline. Only offline switches may be removed. Next, the factory removes the switch from the trader and calls the SwitchControlDB class to delete the switch from the database. A message is written to the operations log and a switchDeleted event is pushed out to the clients.

[image: image52.emf]ORB

SwitchImpl TokenManipulator SwitchFactory SwitchControlDB Log

remove

(token)

remove

(token)

checkAccess checkAccess

[no rights]

log(token,"unauth. attempt to remove videoswitch <name>)

[no rights]

log(token,"unauth. attempt to remove videoswitch <name>)

[no rights]

Access Denied

[no rights]

Access Denied

checkCommMode checkCommMode

[online]

log(token,"must be offline to remove switch")

[online]

log(token,"must be offline to remove switch")

[Online]

CHART2Exception

[Online]

CHART2Exception

removeSwitch

(SwitchImpl, token)

removeSwitch

(SwitchImpl, token)

log

(token, errormessage)

log

(token, errormessage)

 Error removing VideoSwitch]

Chart2Exception

 Error removing VideoSwitch]

Chart2Exception

removeSwitch

(Identifier)

removeSwitch

(Identifier)

log(token, DBError) log(token, DBError)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

pushRemoveSwitch pushRemoveSwitch

Figure 3‑50. SwitchControlModule:RemoveSwitch (Sequence Diagram)

3.4.34 SwitchControlModule:Shutdown (Sequence Diagram)

This sequence diagram shows the processing when the ServiceApplication which contains the SwitchControlModule is shut down. The SwitchControlModule disconnects the VideoSwitchImpl from the ORB and then tells it to shut down. The VideoSwitchImpl shuts down its command queue and disconnects from the ORB.

[image: image53.emf]ServiceApplication

SwitchControlModule VideoSwitchFactoryImpl VideoSwitchImpl

POA

delete delete

delete delete

shutdown shutdown

delete delete

shutdown() shutdown()

deactivateObject (VideoSwitchFactory) deactivateObject (VideoSwitchFactory)

shutdown() shutdown()

(* for all

video switches)

(* for all

video switches)

deactivateObject(VideoSwitch) deactivateObject(VideoSwitch)

Figure 3‑51. SwitchControlModule:Shutdown (Sequence Diagram)

3.4.35 SwitchControlModule:SetConfiuration (Sequence Diagram)

This sequence diagram shows the implementation of the setConfiguration interface of the SwitchImpl class. First a check is performed to verify that the operator has sufficient privileges to update a switch. Next a check is made to see that the switch is offline. Only offline switches may have their configurations updated. If the switch is offline, the new configuration is validated. Next the new configuration is written to the database. Finally, the switch is apprised of its new configuration.

[image: image54.emf]ORB

SwitchImp TokenManipulator SwitchFactoryImpl SwitchControlDB OperationsLog VideoSwitch

setSwitchConfig

(switchID, config)

setSwitchConfig

(switchID, config)

[no rights]

log(token,"unauth. attempt to configure switch <name>

[no rights]

log(token,"unauth. attempt to configure switch <name>

checkCommMode checkCommMode

[Online]

throws

CHART2Exception

[Online]

throws

CHART2Exception

[online]

log(token,"must be offline to change configuration"'

[online]

log(token,"must be offline to change configuration"'

setSwitchConfig

(switchID, config)

setSwitchConfig

(switchID, config)

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

pushCinfig pushCinfig

[no rights]

Access Denied

[no rights]

Access Denied

validateCnf validateCnf

[invalid configuration]

CHART2Exception

[invalid configuration]

CHART2Exception

checkAccess checkAccess

[DB Error]

Chart2Exception

[DB Error]

Chart2Exception

[invalid configuration]

log(token, "invalid data")

[invalid configuration]

log(token, "invalid data")

changeConfiguration(switchD, config) changeConfiguration(switchD, config)

Figure 3‑52. SwitchControlModule:SetConfiguration (Sequence Diagram)

Appendix A Use Case Mapping
This appendix maps the requirements for CHART R2B1 as defined in CHART Video Software Architecture Requirements, June 1, 2005 to the use cases described under Section 3.1. To avoid confusion, the requirement numbers here are identical to those found in the above mentioned requirements document, including <TBR> references for future requirements which have not been resolved.
Note that the requirements are slated for CHART R2B1, R2B2 or some future release. Higher level requirements may contain sub requirements slated for more than one release. As long as a requirement will be met or partially met in R2B1 or R2B2, there should be a corresponding use case.

	Requirement
	Release
	Use case

	3.1
Camera Control
	
	

	 (CHART II Req 3.2.4.1) The system shall allow a suitably privileged user to control cameras.

	R2B1/2/F
	Manage Camera Control

	3.1.1
 (CHART II Req 3.2.4.1.1) The system shall
allow a
suitably privileged camera user to
block/unblock media

and web access to the video output
of a camera.
	R2B2/F
	RevokeDisplay

	
3.1.1.1
A suitably privileged user shall have the

ability to manually block/unblock media and

web access to the video output of the camera.
	R2B2
	RevokeDisplay

	
3.1.1.2
(CHART II Req 3.2.4.1.2) The system shall

block camera video from the media and web

automatically when specified user types open a

control session.
	Future
	

	

3.1.1.2.1
The user shall be
prompted to

automatically unblock the camera when

the camera control session ends.
	Future
	

	3.1.2
CHART II shall establish and maintain
communication with the camera for the duration of the
control session.
	R2B1/F
	Manage

Control Camera

	
3.1.2.1
An operator shall be notified if communications

with the camera is lost during a camera control.
	R2B1
	Send Camera
Commands

	
3.1.2.2
The camera control session shall have a

configurable maximum no activity duration,

after which the control session shall be dropped.
	R2B1
	Terminate Camera
Control

	

3.1.2.2.1
The controlling user shall be

informed if the control session has been

dropped.
	R2B1
	Notify Operator of
Camera Control

Status/ GUI

	3.1.3
A suitably privileged CHART II user shall have
the
capability to initiate camera control.
	R2B1/2/F
	Request Camera Control

	
3.1.3.1
An operator may have permission to initiate

camera control for one organization’s cameras

 or for multiple organizations’ cameras.
	R2B1
	Request Camera Control

	
3.1.3.2
CHART II shall only allow a camera to be

controlled when the operator has the camera

image displayed on a local monitor (i.e., a

monitor in the user’s current monitor group
	R2B1
	Request Camera
Control

	
3.1.3.3
The camera control window shall include

monitor display information for the controlled

camera (new).
	Future
	

	
3.1.3.4
A suitably privileged user shall be able to

pan or tilt a camera for which a control session

is open.
	R2B1/F
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.4.1
Pan and tilt will include controls for

moving the camera vertically and

horizontally.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.4.2
Pan and tilt will include controls for

moving the camera diagonally for those

cameras which support diagonal

movement (new).
	Future
	

	

3.1.3.4.3
Pan and tilt will be controlled by mouse

or keypad.
	R2B1
	NONE – GUI specific. Beyond scope of this design

	
3.1.3.5
A suitably privileged user shall be able to

zoom a camera for which a control session is

open.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.6
A suitably privileged user shall be able to

focus a camera for which a control session is

open.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.7
A suitably privileged user shall be able to

adjust iris control of a camera for which a

control session is open.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.8
A suitably privileged user shall be able to

adjust the color balance of a camera for which a

control session is
open.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.9
A suitably privileged user shall be able to

move a camera to a predefined preset position

for which a control session is open.
	R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.10
(CHART II Req 3.2.4.5) The system shall allow

a suitably privileged user to maintain CCTV

(camera) presets.
	R2B2/F
	

	

3.1.3.10.1 (CHART Req 3.2.4.5.1) The system

shall support resetting a camera to its

original default position at a scheduled

time..
	Future
	

	

3.1.3.10.2 A stored preset position shall include

pan, tilt, and zoom position for the

given preset.
	R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.10.3 A stored preset position shall include

the manual focus setting for the given

preset, if manual focus is enabled at the

time the preset position is saved.
	R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.10.4 A stored preset shall include an

operator-specified title to appear on the

camera image display for those camera

types which support that functionality.
	R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.10.4.1
The preset title will

appear on the display for those camera

types which support such an action.

	R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.10.4.2
Preset titles and

positions shall be stored on the camera,

for those cameras which support such

an option. (e.g. Vicon Surveyor VFT

cameras).
	R2B2
	Control SVFT Camera/
Execute Macro Command

	

3.1.3.10.5 Camera preset positions and titles

shall be stored in the CHART II

database.
	R2B2/F
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.10.5.1
A suitable privileged

user shall be able to store preset

information for the current camera

control session only (new).
	Future
	

	

3.1.3.10.5.2
A suitably privileged

user shall be able to store preset

information across camera control

sessions.
	R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.10.5.3
The number of

presets that may be
stored for a

camera shall not exceed 10 <TBR>.
	R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	

3.1.3.10.5.4
The number of

presets that may be stored for a camera

may be limited by restrictions in the

camera itself.
	R2B2
	Control SVFT Camera

	

3.1.3.10.5.5
A suitably privileged

operator shall be able to force resending

any individual preset position as

defined in the database to a camera

(e.g. Vicon Surveyor VFT cameras),

provided that a control session is open

for that camera (original MdTA

request)
	Future
	

	

3.1.3.10.5.6
A suitably privileged

user shall be able to force resending

all preset positions defined in the

database to such a camera (e.g. Vicon

Surveyor VFT cameras) with a single

command, provided that a control

session is open for that camera (original

MdTA request).
	Future
	

	
3.1.3.11
A suitably privileged user shall be able to

reset a camera for which a control session is

open.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.12
A suitably privileged user shall be able to

power a camera on and off for those cameras

which support that function.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.13
A suitably privileged user shall be able to

enter programming mode on a camera which

supports a programming mode, provided a

control session is open for that camera.
	R2B2
	Control SVFT Camera/Execute
Macro Command

	

3.1.3.13.1
Programming mode, for

camera types which support it, shall

support all camera functions accessible

through the camera’s programming

mode.
	R2B2
	Control SVFT Camera/Execute

Macro Command

	

3.1.3.13.2
Programming mode, for

camera types which support it, will not

inhibit access to camera functions

which would more simply and more

appropriately be accessed via other

aspects of CHART II camera control.

(This means it may be possible to make

changes which CHART II cannot detect

by circumventing the normal means of

invoking the function through CHART

II.)
	R2B2
	Control SVFT Camera/Execute

Macro Command

	
3.1.3.14
A suitably privileged user shall be able to

directly control the titles which appear on the

camera image, for cameras which support direct

setting of line 1 and 2 of the camera titles,

provided a control session is open for that

camera.
	R2B1
	Process 3955

Control Requests/

Control SVFT Camera

	
3.1.3.15
A camera in offline mode shall not be able to be

controlled by any operator.
	R2B1
	Take Camera Offline

	
3.1.3.16
A camera in online mode shall be able to be

controlled by a suitably privileged user.
	R2B1
	Put Camera Online

	
3.1.3.17
A camera in maintenance mode shall be

controllable only by the operator who placed

that camera in maintenance mode.
	R2B2/Future
	

	
	
	

	3.1.4
Cameras shall be polled at a configurable interval to
verify control status.
	R2B1
	Poll Camera

	
3.1.4.1
Cameras that do not respond shall be identified

as having communications problems.
	R2B1
	Poll Camera

	
3.1.4.2
Control status polling may be disabled on a

camera by camera basis.
	R2B1
	Poll Camera

	
3.1.4.3
The polling interval shall be configurable for

each camera.
	R2B1
	Poll Camera

	3.1.5
CHART II shall provide the capability for a suitably
privileged user to set auto-iris, auto-focus, and
auto-color balance mode for multiple cameras, for
those cameras which support that capability.
	Future
	

	
3.1.5.1
A suitably privileged user shall be able to

select all cameras to be set to auto-iris, auto-

focus, and auto-color balance mode.
	Future
	

	
3.1.5.2
A suitably privileged user shall be able to

select individual cameras to be set to auto-iris,

auto-focus, and auto-color balance mode.
	Future
	

	
3.1.5.3
A suitably privileged user shall be able to

exclude individual cameras to be set to auto-iris,

auto-focus, and auto-color balance mode
	Future
	

	
	
	

	3.1.6 CHART II shall provide the capability to arbitrate
 requests for camera control based on the camera’s
 configured owning organization.
	R2B1/2
	Evaluate Camera Control Request

	3.1.6.1 CHART II shall have the capability to determine
 if a camera is being controlled.
	R2B1
	Check If Camera Controlled/

Override Camera Control

	3.1.6.2 Only one operator shall be permitted to control a
 camera at any given time.

	R2B1
	Evaluate Camera Control Request

	3.1.6.2.1 An operator denied control due to the
 camera already being controlled shall be
 notified which user is already exercising
 control.
	R2B1
	Notify Operator of Camera Control Status

	3.1.6.3 A suitably privileged user shall be able to
 control a camera if the camera is not already
 controlled.
	R2B1
	Check if Camera Controlled

	3.1.6.4 A suitably privileged user that has
 permission to override cameras for a particular
 owning organization shall be able to override the
 control session of any camera owned by that
 organization, regardless of who is controlling the
 camera.
	R2B1
	Override Camera Control

	3.1.6.4.1 An operator may have permission to
 override camera control for one
 organization’s cameras or for multiple
 organizations’ cameras.
	R2B1
	Override Camera Control

	3.1.6.4.2 An operator overriding a camera
 control session shall be required to expressly
 request override of camera control.
	R2B1
	Override Camera Control

	3.1.6.4.3 An operator whose camera control session
has been overridden shall be notified that the
control session has been overridden and by
whom.
	R2B1
	Notify Operator of Camera Control Status

	3.1.7
CHART II shall provide the capability to revoke camera
 control of cameras on a per organization basis.
	R2B2
	RevokeControl

	
3.1.7.1
If camera control has been revoked, the operator

who has lost control shall be notified.
	R2B2
	Notify Operator of
Camera Control

Status

	3.1.8
CHART II shall support video masking, based on
camera position, for those cameras which incorporate
such a feature.
	Future
	

	
3.1.8.1
A suitably privileged user shall have the

ability to set video masking for those cameras

which incorporate such a feature.
	Future
	

	

3.1.8.1.1
The video masking regions shall be

stored on the camera.
	Future
	

	
3.1.8.2
A suitably privileged user shall have the

ability to override the camera masking (new).
	Future
	

	3.1.9
CHART II will support control of COHU 3955 cameras,

NTCIPcompatible cameras, and Surveyor VFT cameras.
	R2B1/2/F –

COHU 3955,

SVFT only for R2B2
	Process 3955

Control Requests/

Control SVFT Camera

	3.1.10
CHART II shall support standards based protocols for
communicating with camera control sending

devices wherever possible, except when proprietary
protocols are the only option for communicating with
vendor devices.
	R2B1/F
	Send Camera Commands

	
3.1.10.1
CHART II shall support camera control over an

IP network.
	R2B1
	Send To
Encoder

	

3.1.10.1.1
CHART II shall support

communications with a sending device

for IP camera control.
	R2B1
	Send To Encoder

	
3.1.10.2
CHART II shall support direct camera control

over a COM port.
	R2B2
	Send To Command
Processor

	

3.1.10.2.1
CHART II shall support direct

camera control over multiple

COM ports on a single server.
	R2B2
	Send To Command
Processor

	

3.1.10.2.2
CHART II shall support direct

camera control of a single Surveyor

VFT camera on a COM port.
	R2B2
	Send To
Command

Processor

	

3.1.10.2.3
CHART II shall support direct

camera control of multiple Surveyor

VFT cameras on a COM port.
	R2B2
	Send To
Command Processor

	
	
	

	3.2
Standalone Camera Control (Laptop)
	Future
	

	CHART II shall provide a standalone version of the camera control software.

	
	

	3.2.1
The standalone camera control software shall run on a
Windows XP/2000 laptop computer.
	Future
	

	3.2.2
The standalone camera control software will provide
direct control of a single camera over a single COM port.
	Future
	

	3.2.3
All features for controlling a camera provided by the
standard CHART II camera control software shall be
available to the operator of the standalone camera control
software.
	Future
	

	3.2.4
The standalone camera control software shall support
control of COHU 3955 cameras, and Surveyor VFT

cameras.
	Future
	

	
	
	

	3.3
Camera Display
	R2B1/2/F
	

	(CHART Req 3.2.4.2) The system shall allow a suitably privileged user to control wall monitor assignments.

	
	

	3.3.1
CHART II shall provide the capability for a suitably
privileged user to display a camera image on any
local video monitor.
	R2B1/F
	Display Camera On Monitor

	
3.3.1.1
CHART II shall provide the capability to order

the list of available cameras for display sorted by camera

region.
	R2B1
	GUI requirement

	

3.3.1.1.1
The list of camera regions will be

configured in the database and will not be

modifiable via the CHART II application.
	R2B1
	Configure Device

	

3.3.1.1.2
A camera may be a part of any number

of camera regions.
	R2B1
	Configure Device

	
3.3.1.2
CHART II shall have a graphical representation

of the available monitors so that operators may

“drag and drop” a camera onto a monitor (new).

	Future
	

	
3.3.1.3
CHART II shall provide the capability for

users suitably privileged to concurrently

display the same camera image on any number

of local video monitors, including all local video

monitors.
	R2B1
	Display Camera On Monitor

	3.3.2
CHART II shall provide the capability for a suitably
privileged user to direct display of a camera image to
remote monitors.

	R2B1/F
	Display Camera On Monitor

	
3.3.2.1
CHART II shall provide the capability to order

the list of available cameras for display sorted

by camera region.
	R2B1
	GUI Requirement

	
3.3.2.2
The monitor selection list shall be sorted by
 monitor group.
	R2B1
	GUI Requirement

	
3.3.2.3
CHART II shall have a graphical representation

of the available monitors so that operators may

“drag and drop” a camera onto a monitor.
	Future
	

	
3.3.2.4
CHART II shall provide the capability for

users suitably privileged to concurrently

display the same camera image on any number

of remote video monitors, including all remote

video monitors.
	R2B1
	Display Camera On Monitor

	3.3.3
CHART II shall provide the capability for a suitably
privileged user to direct display of a camera image to
a
defined group of monitors.
	Future
	

	
3.3.3.1
A suitably privileged user shall define a

monitor grouping.
	Future
	

	
3.3.3.2
A monitor may be a part of any number of

monitor groups.
	Future
	

	3.3.4
CHART II shall be able to display a camera image on a
monitor at a specified time.
	Future
	

	
3.3.4.1
A suitably privileged user shall be able to

schedule display of a camera image on a

specified monitor.
	Future
	

	

3.3.4.1.1
A suitably privileged user shall

optionally be able to have the scheduled

camera move to a specified preset.
	Future
	

	
3.3.4.2
An operator shall be notified when a scheduled

display is about to occur.
	Future
	

	

3.3.4.2.1
A scheduled camera display shall occur

only after an operator has confirmed.
	Future
	

	3.3.5
Cameras in offline mode shall not be selectable for
display.
	R2B1
	Take Camera Offline

	
3.3.5.1
Upon transition from online mode to offline

mode, the camera image shall be removed from

all monitors.
	R2B1
	Remove Camera From Monitors

	3.3.6
Cameras in online mode shall be selectable for display.
	R2B1
	Put Camera Online

	3.3.7
Cameras in maintenance mode shall be selectable for
display only by the operator that placed the camera in
maintenance mode.
	Future
	

	
3.3.7.1
A camera in maintenance mode shall be placed

in offline mode when the operator who placed

the camera in maintenance mode terminates

their session.
	Future
	

	

3.3.7.1.1
Upon transition from maintenance

mode to offline mode, the camera

image shall be removed from all

monitors.
	Future
	

	3.3.8
A user logged into CHART II shall optionally have a

preferred monitor for camera image display.
	Future
	

	
3.3.8.1
 The operator shall have the capability to choose

the preferred monitor or a non-preferred monitor

for camera display.
	Future
	

	
3.3.8.2
A suitably privileged user shall be able to

configure a preferred monitor for a user.
	Future
	

	

3.3.8.2.1
If no preferred monitor has been

configured for a user, the workstation that the

operator has logged into shall be the default

preferred monitor.
	Future
	

	3.3.9
CHART II shall provide a mechanism for organizations
 to inhibit display of their cameras on other organization’s
 monitors.
	R2B2/F
	Revoke Display

	
3.3.9.1
CHART II shall allow a suitably privileged

user to revoke a camera image from a

monitor.
	R2B2
	Revoke Display

	

3.3.9.1.1
CHART II shall allow a camera image

to be revoked from one or more

organization’s monitors.
	R2B2
	Revoke Display

	

3.3.9.1.2
CHART II shall allow a camera image

to be revoked from all media

organization’s monitors at one time.
	R2B2
	Revoke Display

	

3.3.9.1.3
When a camera image has been

revoked from a monitor, an image from

a No Video Available source shall be

displayed on that monitor.
	R2B2
	Revoke Display

	3.3.10
CHART II shall support standards based protocols for
communicating with video sending/receiving devices
wherever possible, except where proprietary protocols are
the only option for communicating with vendor devices.
	R2B1/2/F
	Display Camera On Monitor

	
3.3.10.1
CHART II shall support video distribution from

sending devices/cameras to receiving

devices/monitors over IP.
	R2B1
	Display Camera On Monitor

	

3.3.10.1.1
CHART II shall support

communications with a sending device

and a receiving device for distribution

of IP video.
	R2B1
	Command Decoder

	
3.3.10.2
CHART II shall support video distribution from

sending devices/cameras to receiving

devices/monitors using a Vicon V1500 Video

Switch Network.
	R2B2
	Command V1500 Switch

	

3.3.10.2.1
CHART II shall manage the

use of a limited number of video

hardware interfaces between individual

Vicon V1500 Video Switches.
	R2B2
	Build a Route

	
3.3.10.3
CHART II shall manage the use of a limited

number of hardware interfaces between the

Vicon V1500 Video Switch output and the IP

based receiving devices.
	R2B2
	Build a Route

	
3.3.10.4
CHART II shall manage the use of a limited

number of hardware interfaces between the IP

based sending devices output and the Vicon

Video Switch input.
	R2B2
	Build a Route

	
3.3.10.5
CHART II shall support the distribution of video

to a “non” hardware based monitor (e.g. –

desktop display)
	Future
	

	
3.3.10.6
CHART II shall monitor the number of video

images being displayed at certain sites.
	Future
	

	

3.3.10.6.1
CHART II shall notify the

operator if the request cannot be

completed due to insufficient resources.

	Future
	

	3.4
Camera Video Checker
	Future
	

	3.4.1
CHART II shall provide a mechanism to verify camera
display capabilities for all configured cameras.
	Future
	

	3.4.2
An operator shall have the ability to choose a monitor for
displaying each camera.
	Future
	

	3.4.3
CHART II shall report a CHART II failure to display a
camera on the requested monitor.
	Future
	

	3.4.4
CHART II shall prompt the operator to visually confirm
each camera display on the chosen monitor.
	Future
	

	
3.4.4.1
CHART II shall report operator reported camera

display failures.
	Future
	

	

	
	

	3.5
View Monitor Assignments
	
	

	CHART II shall allow operators to view which cameras
are assigned to which monitors (Monitor Assignments).
	R2B1/F
	

	3.5.1
CHART II shall allow operators to view a list of cameras
assigned to local monitors.
	R2B1
	View Monitor Assignments

	3.5.2
CHART II shall allow operators to view a list of cameras
assigned to remote monitors.
	R2B1
	View Monitor Assignments

	3.5.3
Monitor assignments shall include monitor, camera or
Tour List name and camera control status.
	R2B1
	View Monitor Assignments

	3.5.4
Monitor Assignments shall be optionally sortable.
	Future
	

	
3.5.4.1
By default, the Monitor Assignments shall be

sorted by monitor.
	R2B1
	GUI requirement – beyond scope of this document

	
3.5.4.2
Monitor Assignments shall be optionally sorted

by camera.
	Future
	

	
3.5.4.3
Monitor Assignments shall be capable of
 filtering to display currently controlled cameras.
	Future
	

	
3.5.4.4
Monitor Assignments shall be optionally
 sortable by monitor group
	Future
	

	3.6
Camera Tours
	
	

	3.6.1
 (CHART II Req 3.2.4.3) The system shall allow a
suitably privileged user to activate camera tours.
	R2B1/2/F
	Start Video Tour

	3.6.2
(CHART II Req 3.2.4.4) The system shall allow a
suitably privileged user to maintain the camera tour
information.
	R2B1
	Configure Video Tours

	3.6.3
CHART II shall provide the capability to create, modify
and delete a camera tour list.
	R2B1/Future
	Configure Video Tours

	
3.6.3.1
CHART II shall allow a suitably privileged

user the capability to create a tour list for a

single logon session.
	Future
	

	
3.3.6.2
CHART II shall allow a suitably privileged

user the capability to create a persistent tour

list useable by any suitably privileged user

at any time.
	R2B1
	Configure Video Tours

	3.6.4
CHART II shall provide a suitably privileged user the
capability to view the contents of a camera tour list.
	R2B1
	Configure Video Tours

	3.6.5
CHART II shall have the capability for a suitably
privileged user to store a camera tour list.
	R2B1
	Configure Video Tours

	3.6.6
CHART II shall have the capability for a suitably
privileged user to assign a camera tour list to a local
monitor.
	R2B1
	Start Video Tour

	3.6.7
CHART II shall have the capability for a suitably

privileged user to assign a camera tour list to a

remote monitor.
	R2B1
	Start Video Tour

	3.6.8
CHART II shall have the capability for a suitably
privileged user to stop a camera tour.
	R2B1
	Stop Video Tour

	3.6.9
CHART II shall have the capability for a suitably
privileged user to configure a preset position for
cameras assigned to a camera tour list.
	R2B2
	Configure Video Tours

	3.6.10
CHART II shall have the capability for a suitably
privileged user to configure multiple preset positions
for a single camera assigned to a camera tour list.
	R2B2
	Configure Video Tours

	3.6.11
CHART II shall have the capability to move a camera to
a configured preset when displaying a camera as part of a
camera tour.
	R2B2
	Start Video Tour/

Move To Preset

	
3.6.11.1
CHART II shall not move a camera to a

configured preset as part of a camera tour if that

camera is already controlled.
	R2B2
	Start Video Tour/

Move To Preset

	3.6.12
CHART II shall allow setting a single dwell time for the
camera tour, and shall display each camera/preset on the
camera tour for that dwell time before moving to the next.
	R2B1
	Configure Video Tours/Start Video Tour

	
3.6.12.1
The dwell time will start counting dwell time at

the time the display request completes, not the

time at which the image display completes and

stabilizes on the monitor.
	R2B1
	Start Video Tour

	
3.6.12.2
The minimum dwell time shall be configurable.

	R2B1
	Configure Video Tour

	3.7
Video System Status Display
	
	

	CHART II shall provide a video system status display.

	Future
	

	3.7.1
The Video System Status display shall be a single page.
	Future
	

	3.7.2
The Video System Status display shall include a list of all
controlled cameras
	Future
	

	
3.7.2.1
The operating center shall be provided for each

controlled camera.
	Future
	

	3.7.3
The Video System Status display shall provide the status
of each camera.
	Future
	

	
3.7.3.1
The camera status may be online or offline.
	Future
	

	
3.7.3.2
The camera status shall be available to all

operators.
	Future
	

	
3.7.3.3
The Video System Status display shall provide

access to diagnostic information from the

sending device/camera, if the sending

device/camera supports this feature.
	Future
	

	
3.7.3.4
The Video System Status display shall provide

access for a suitably privileged user to edit

the camera status.
	Future
	

	
3.7.3.5
The Video System Status display shall provide

access to a device status log that gives status

information for all cameras.
	Future
	

	

3.7.3.5.1
An operator shall have the ability to

filter the device status log by camera.
	Future
	

	

3.7.3.5.2

Each device status log entry

shall contain a date and time as part of

the entry.
	Future
	

	

3.7.3.5.3
CHART II shall write entries to the

device status log.
	Future
	

	

3.7.3.5.4

A suitably privileged user

may create an entry in the device status

log.
	Future
	

	3.8
Cameras in Traffic Events
	
	

	3.8.1
A suitably privileged user shall be able to include
cameras as part of the response plan of a CHART II event
 <TBR – part of CHART Req 3.7.2>
	Future
	

	3.8.2
A suitably privileged user shall be able to indicate
any number of monitors on which to display a response
plan item camera upon execution of the response plan
item.
	Future
	

	
3.8.2.1
The default monitor on which the camera will be

displayed shall be the preferred monitor of the

workstation where the operator is working.
	Future
	

	3.8.3
A suitably privileged user shall be able to indicate a
preset to which the response plan item camera will move
upon execution of the response plan item.
	Future
	

	
3.8.3.1
The response plan item camera shall not be

moved to a preset if it is already being

controlled.
	Future
	

	3.8.4
A suitably privileged user shall be provided direct
capability to disable display of any response plan item
camera to the public.
	Future
	

	3.8.5
Upon specifying the latitude and longitude of a traffic
event, a user shall be notified of camera(s) within a
configurable distance of the event.
	Future
	

	
3.8.5.1
A suitably privileged user shall be provided

direct capability to display any camera on the

nearby cameras list on the preferred monitor of

the workstation on which the operator is

working.
	Future
	

	

3.8.5.1.1
The operator shall have the ability to

select an alternate set of one or more

monitors on which to display the

camera, instead of or in addition to the

preferred monitor.
	Future
	

	
3.8.5.2
A suitably privileged user shall be provided

direct capability to open a camera control

session for any camera on the nearby cameras

list.
	Future
	

	

3.8.5.2.1

If the camera is currently

being controlled by another operator,

standard camera control override

processing shall be invoked to

determine if the operator has authority

to override the camera, and, if so, the

operator will be given an option to

override control in order for the camera

control session to be opened.
	Future
	

	
3.8.5.3
A suitably privileged user shall be able to

request the camera on the nearby cameras list to

point in the general direction of the event, based

on the latitude-longitude of the event and

latitude-longitude of the camera.
	Future
	

	

3.8.5.3.1
It will not be necessary for the operator

to open a camera control session on the

camera in order to request it to point to

the event.
	Future
	

	

3.8.5.3.2
If the camera is currently being

controlled by another operator, standard

camera control override processing

shall be invoked to determine if the

operator has authority to override the

camera, and, if so, the operator will be

given an option to override control in

order for the camera to be pointed.
	Future
	

	
3.8.5.4
A suitably privileged user shall be provided

direct capability to disable display of any camera

to the public.
	Future
	

	
3.8.5.5
A suitably privileged user shall be provided

direct capability to include any camera on the

nearby cameras list as a response plan item for

the event.
	Future
	

	

3.8.5.5.1
It will not be necessary for the operator

to include a camera on the nearby

cameras list in the response plan of the

event in order to display, control, point,

or disable public access to the camera.
	Future
	

	3.8.6
Upon execution of a response plan item camera will be
displayed on any monitor(s) indicated on the plan, will be
disabled to the public if indicated in the plan, and, if the
camera is not currently being controlled, will move to the
preset if a preset is indicated in the plan.
	Future
	

	
3.8.6.1
If a camera response plan item being executed

has not been set up to display on a monitor,

move to a preset, or disable access to the public,

execution of the response plan item shall have

no effect, and shall not be considered an error.
	Future
	

	3.8.7
A suitably privileged user shall be provided direct
capability to open a camera control session on any
camera in a response plan, provided the camera is
displayed on a local monitor, regardless of whether the
response plan item has been executed. Upon execution of
a response plan item camera will be displayed on any
monitor(s) indicated on the plan, will be disabled to the
public if indicated in the plan, and, if the camera is not
currently being controlled, will move to the preset if a
preset is indicated in the plan.
	Future
	

	3.8.8
A suitably privileged user will be able to include a
camera snapshot in the event history of a traffic event, for
any camera included as a response plan item of the event.
	Future
	

	
3.8.8.1
Any number of camera snapshots from any

number of cameras shall be able to be included

in the traffic event history at any time while the

traffic event is open.
	Future
	

	3.9
Plans
	
	

	3.9.1
A suitably privileged user shall be able to include
cameras into a CHART II plan. (CHART II Req
3.5.1 and 3.5.2).
	Future
	

	3.9.2
Cameras shall be able to be included in a plan along with
other types of CHART II devices, such as DMSs.
	Future
	

	3.9.3
A suitably privileged user shall have the option to
specify any number of monitors on which to display a
camera in a plan upon execution of the plan.
	Future
	

	3.9.4
A suitably privileged user shall have the option to
specify a preset to which the camera should move upon
execution of the plan. <TBR - Question: select an
existing preset on the camera (which would allow the
preset to change or be deleted “out from under” the plan
after the plan is created) (easier to implement), or store
the preset in the plan (which would be less subject to
unintended/unexpected changes through camera control
later, but which would be much harder to implement)>
	Future
	

	3.9.5
A suitably privileged user shall be able to
include a plan which contains camera(s) in the
response plan for a traffic event.
	Future
	

	
3.9.5.1
Once a plan which includes one or more

cameras is put into a response plan for a traffic

event, any individual camera-related response

plan items shall be editable by a suitably

privileged user to add, change, or delete

monitor(s) on which to put the camera upon

execution of the response plan item.
	Future
	

	
3.9.5.2
Once a plan which includes one or more

cameras is put into a response plan for a traffic

event, any individual camera-related response

plan item shall be editable by a suitably

privileged user to add, change, or delete the

preset to which the camera should move upon

execution of the response plan item.
	Future
	

	
9.5.3
Once a camera is included as a response plan

item of a traffic event by inclusion of a plan in

the traffic event, the camera response plan item

shall be able to be manipulated in the same

fashion as if it had been placed in the response

plan as a separate item outside of the predefined

plan.
	Future
	

	3.10
Schedule Management
	
	

	3.10.1
(CHART II Req 3.1.5.9) The system shall support the
scheduling of camera presets. <TBR - See CHART II Req
3.1.5 Schedule Management and sub-requirements.>
	Future
	

	
3.10.1.1
The system shall allow a scheduled event (to

include Special Event (CHART II Req

3.1.5.15.1), Recurring Congestion (CHART II

Req 3.1.5.15.2) or Safety Event (CHART II Req

3.1.5.15.3)) to include any number of cameras,

each of which may specify a preset to be moved

to when the scheduled event is executed.
	Future
	

	3.10.2
 (CHART II Req 3.1.5.10) The system shall support the
scheduling of camera (source) to wall monitor
(destination) configuration commands. <See CHART II
Req 3.1.5 Schedule Management and sub-requirements.>
	Future
	

	3.10.3
The system shall allow a scheduled event (to include
Special Event (CHART II Req 3.1.5.15.1), Recurring
Congestion (CHART II Req 3.1.5.15.2) or Safety Event
(CHART II Req3.1.5.15.3)) to include any number of
cameras, each of which may specify any number of
monitors on which the camera will be displayed when the
scheduled event is executed.
	Future
	

	3.11
Standalone Operations
	
	

	All CHART II server sites shall be capable of reduced operation when communications with other CHART II servers are lost.

	R2B1
	Manage Camera

	3.11.1
A CHART II server shall be capable of stand-alone
operations when communications with all other CHART
servers’ sites are lost.
	R2B1
	Manage Camera

	3.11.2
The CHART II software shall be capable of displaying
reachable cameras on reachable monitors when
communications with other CHART server sites are lost.
	R2B1
	Display Camera

	3.11.3
The CHART II software shall be capable of controlling
reachable cameras when communications with other
CHART server sites are lost
	R2B1
	Control Camera

	

	
	

	3.12
User Roles
	
	

	
	
	

	CHART II shall provide a mechanism to enforce role based access for operators (covered under CHART II Requirement 3.1.1.1)

	R2B1/2/F
	Manage Camera

	3.12.1
CHART II shall restrict activities operators may perform
to users with that specific functional right.
	R2B1/2/F
	

	
3.12.1.1
CHART II shall restrict camera control activities

to operators with the initiate Camera Control

functional right.
	R2B1/2/F
	Request Camera Control

	

3.12.1.1.1
The Camera Control

functional right shall be configurable

on a per organization basis.
	R2B1
	Request Camera Control

	

3.12.1.1.2
CHART II shall restrict

camera pan/tilt to operators with the

Camera Pan Tilt functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.3
CHART II shall restrict

camera zoom to operators with the

Camera Zoom functional right
	R2B1
	Send Camera Commands

	

3.12.1.1.4
CHART II shall restrict

camera focus to operators with the

Camera Focus functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.5
CHART II shall restrict

camera iris control to operators with the

Camera Iris Control functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.6
CHART II shall restrict

camera color balance to operators with

the Camera Color Balance Control

functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.7
CHART II shall restrict setting

persistent camera position presets to

operators with the Camera Set

Persistent Preset functional right.
	R2B2
	Configure Video Tours

	

3.12.1.1.8
CHART II shall restrict

moving a camera to a persistent preset

to operators with the Camera Move to

Persistent Preset functional right.
	R2B2
	Configure Video Tours

	

3.12.1.1.9
CHART II shall restrict saving

and moving to camera position presets

for a single control session to operators

with the Camera Temporary Preset

functional right (new)
	Future
	

	

3.12.1.1.10
CHART II shall restrict

camera reset to operators with the

Camera Reset functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.11
CHART II shall restrict

camera power on/off to operators with

the Camera Power functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.12
CHART II shall restrict

camera program mode access to

operators with the Camera Program

Mode functional right
	R2B2
	Control Surveyor
VFT Camera/

Execute Command Macro

	

3.12.1.1.13
CHART II shall restrict

camera title setup to operators with the

Camera Title Setup functional right.
	R2B1
	Send Camera Commands

	

3.12.1.1.14
CHART II shall restrict

disabling the camera video masking to

operators with the Camera Disable

Masking functional right.
	Future
	

	

3.12.1.1.14.1
The Camera Disable

Masking functional right shall be

configurable on a per organization

basis.
	Future
	

	

3.12.1.1.15
CHART II shall restrict

revoking and unrevoking camera

control to those users with the Camera

Revoke Control functional right.
	R2B2
	Revoke Control

	

3.12.1.1.15.1
The Camera Revoke

Control functional right shall be

configurable on a per organization

basis.
	R2B2
	Revoke Control

	

3.12.1.1.16
CHART II shall restrict
 preemption of camera control
 to operators with the Camera
 Preempt Control functional
 right.
	R2B1
	Evaluate Camera Control Request

	

3.12.1.1.16.1
The camera Preempt

Control functional right shall be

configurable on a per organization

basis.
	R2B1
	Evaluate Camera Control Request

	
3.12.1.2
CHART II shall restrict camera display to

operators with the Camera Display functional

right.
	R2B1/2/F
	Display Camera On Monitor

	

3.12.1.2.1
The Camera Display

functional right shall be configurable

on an organization by organization

basis.
	R2B1
	Display Camera On Monitor

	

3.12.1.2.2
CHART II shall restrict local

camera display to operators with the

Camera Local Display functional right.
	R2B1
	Display Camera On Monitor

	

3.12.1.2.3
CHART II shall restrict

remote camera display to operators

with the Camera Remote Display

functional right.
	R2B1
	Display Camera On Monitor

	

3.12.1.2.4
CHART II shall restrict

camera group display to operators with

the Camera Group Display functional

right (new)
	Future
	

	

3.12.1.2.5
.CHART II shall restrict which

specific cameras may be displayed to

operators with the Assign Displayable

Cameras functional right.
	Future
	

	

3.12.1.2.6
CHART II shall restrict

revoking and unrevoking camera

display to operators with the Camera

Revoke Display functional right.
	R2B2
	Revoke Display

	

3.12.1.2.6.1
The Camera Revoke

Display functional right shall be

configurable on a per organization

basis.
	R2B2
	Revoke Display

	

3.12.1.2.7
CHART II shall restrict

revoking and unrevoking camera

display to the media to operators with

the Camera Revoke Media Display

functional right.
	Future
	Revoke Display

	

3.12.1.2.7.1
The Camera Revoke

Media Display functional right shall be

configurable on a per organization

basis.
	Future
	Revoke Display

	
3.12.1.2.8
CHART II shall restrict assigning a

preferred monitor for a user to operators with the

Assign Preferred Monitor functional right.
	Future
	

	
3.12.1.3
CHART II shall restrict configuring and

activating temporary tours to users with Activate

Temporary Tours functional right.
	Future
	

	
3.12.1.4
CHART II shall restrict starting and stopping

persistent tours to users with the Camera

Start/Stop Tour functional right.
	R2B1
	Start Camera Tour/ Stop Camera Tour

	3.12.2
CHART II shall restrict adding a camera to a traffic event
to operators with the Configure Camera in Traffic Event
functional right.
	Future
	

	
3.12.2.1
The Configure Camera in Traffic Event shall be

configurable on a per organization basis.
	Future
	

	
3.12.2.2
CHART II shall restrict disabling camera video

to the media as part of a traffic event to users

with the Revoke Camera from Media in Traffic

Event functional right.
	Future
	

	

3.12.2.2.1
The Revoke Camera from

Media in Traffic Event shall be

configurable on a per organization

basis.
	Future
	

	
3.12.2.3
CHART II shall restrict adding a camera

snapshot to a traffic event to operators with the

Add Camera Snapshot to Traffic Event

functional right.
	Future
	

	

3.12.2.3.1
The Add Camera Snapshot to

Traffic Event shall be configurable on a

per organization basis.
	Future
	

	3.12.3
CHART II shall restrict adding a camera to a Plan to
operators with the Add Camera to Plan functional right.
	Future
	

	
3.12.3.1
The Add Camera to Plan functional right shall

be configurable on a per organization basis.
	Future
	

	3.12.4
CHART II shall restrict the ability to schedule a camera
for display and/or control to operators with the Schedule
Camera functional right.
	Future
	

	
3.12.4.1
The Schedule Camera functional right shall be

configurable on a per organization basis.
	Future
	

	3.12.5
CHART II shall restrict configuration activities to
privileged operators.
	R2B1/2/F
	

	
3.12.5.1
CHART II shall restrict configuring a camera to

operators with the Configure Camera functional

right.
	R2B2
	Configure Devices

	

3.12.5.1.1
The Configure Camera

functional right shall be configurable

on a per organization basis.
	R2B2
	Configure Devices

	
3.12.5.2
CHART II shall restrict configuring a monitor to

operators with the Configure Monitor functional

right.
	R2B2
	Configure Devices

	

3.12.5.2.1
The Configure Monitor

functional right shall be configurable

on a per organization basis.
	R2B2
	Configure Devices

	
3.12.5.3
CHART II shall restrict monitor grouping

configuration to users with the Configure

Monitor Group functional right.
	Future
	

	

3.12.5.3.1
The Configure Monitor Group

functional right shall be configurable

on a per organization basis.
	Future
	

	
3.12.5.4
CHART II shall restrict configuring a V1500

Switch to operators with the Configure V1500

Switch functional right.
	R2B2
	Configure Devices

	

3.12.5.4.1
The Configure V1500 Switch

functional right shall be configurable

on a per organization basis.
	R2B2
	Configure Devices

	
3.12.5.5
CHART II shall restrict configuring a Switch

Fabric to operators with the Configure Switch

Fabric functional right.
	R2B2
	Configure Devices

	
3.12.5.6
CHART II shall restrict configuring a no video

source to operators with the Configure No Video

Source functional right.
	R2B2
	Configure Devices

	
3.12.5.7
CHART II shall restrict configuring a bridge

circuit to operators with the Configure Bridge

Circuit functional right.
	R2B2
	Configure Devices

	
3.12.5.8
CHART II shall restrict configuring a V1500

CDU to operators with the Configure V1500

CDU functional right.
	R2B2
	Configure Devices

	
3.12.5.9
CHART II shall restrict configuring a V1500

keypad to operators with the Configure V1500

Keypad functional right.
	R2B2
	Configure Devices

	
3.12.5.10
CHART II shall restrict configuring a

V1500 host to operators with the Configure

V1500 Host functional right.
	R2B2
	Configure Devices

	
3.12.5.11
CHART II shall restrict configuring a

camera tour list to operators with the Configure

Tour List functional right.
	R2B1
	Configure Video Tours

	
3.12.5.12
CHART II shall restrict scheduling a

camera display to users with the Configure

Camera Display Schedule functional right.
	Future
	

	

3.12.5.12.1
The Configure Camera

Display Schedule functional right shall

be configurable on a per organization

basis.
	Future
	

	3.12.6
CHART II shall restrict viewing camera status
information to operators with the Camera View Status
functional right.
	Future
	

	
3.12.6.1
The Camera View Functional Status functional

right shall be configurable on a per organization

basis.
	Future
	

	3.12.7
CHART II shall restrict updating camera status
information to operators with the Camera Update Status
functional right.
	Future
	

	
3.12.7.1
The Camera Update Status functional right shall

be configurable on a per organization basis.
	Future
	

	3.13
Operations Log
	
	

	(CHART Req 3.1.2.13) The system shall log messages generated from operations activities.
	R2B1/2
	

	3.13.1
CHART II shall audit an operator putting a camera image
on a monitor.
	R2B1
	Display Camera On Monitor

	3.13.2
CHART II shall audit an operator removing a camera
image from a monitor.
	R2B1
	Display Camera On Monitor

	3.13.3
CHART II shall audit an operator making any device
configuration changes.
	R2B2
	Configure Devices

	3.13.4
CHART II shall audit an operator making camera tour list
configuration changes.
	R2B1
	Configure Camera Tours

	3.13.5
CHART II shall audit an operator starting a camera tour.
	R2B1
	Start Camera Tour

	3.13.6
CHART II shall audit an operator stopping a camera tour.
	R2B1
	Stop Camera Tour

	3.13.7
CHART II shall audit an operator resetting a camera or
camera controller.
	R2B1
	Send Camera Commands

	3.14
User Login
	
	

	(CHART Req 3.1.1.2) The system shall require a user to provide a userid and password in order to login.
	
	

	3.14.1
A user will be assigned a monitor group at login
	R2B1
	Configure Operation Centers

	
3.14.1.1
The user may use the default monitor group.
	R2B1
	Configure Operation Centers

	

3.14.1.1.1
The default monitor group

shall be based on the operating center

that the user logs into.
	R2B1
	Configure Operation Centers

	
3.14.1.2
A suitably privileged operator may override the

default monitor group and choose any other

monitor group.
	R2B1
	Display Camera

	
3.14.1.3
Each operating center shall be assigned a default

monitor group
	R2B1
	Configure Operation Centers

	
	
	

� EMBED Visio.Drawing.6 ���

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAC8AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAC8AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAEZAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAEZAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAGDAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAGDAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAHaAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkACMAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkACMAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AA2AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AA2AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1ALwAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1ALwAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AL3AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AL3AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AJQAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AJQAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPCyTwfxAXAAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPCyTwfxAXAAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBULYExAIEBMaAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBULYExAIEBMaAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAAmAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBULpIdwBhAAmAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBULpIdwBhASbAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBULpIdwBhASbAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPg8CknVAAoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPg8CknVAAoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAkvAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAkvAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPjSfclyAKMAGgAAQAAAAEA -diag Graph:UFAJxBEPjSfclyAKqAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPjSfclyAKMAGgAAQAAAAEA -diag Graph:UFAJxBEPjSfclyAKqAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FTIAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEOqlxsC2AARAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPwy9wC1AAiAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FTIAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAf7AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAf7AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPL1b46EAEjAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPL1b46EAEjAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAqlAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAqlAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AS5AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AS5AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1ATVAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1ATVAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AScAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1AScAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO9Ic4ruABuAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO9Ic4ruABuAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkATaAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkATaAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPU86wd5ABwAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPU86wd5ABwAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO_4VopZAFiAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO_4VopZAFiAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO_4VopZAAsAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO_4VopZAAsAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO_fMEj7ABnAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO_fMEj7ABnAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO8MAop5AAPAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEO8MAop5AAPAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPDu7EoHANjAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPDu7EoHANjAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPFCAkkaACxAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPFCAkkaACxAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPU86wd5AAhAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AAcAGgAAQAAAAEA -diag Graph:UFAJxBEPU86wd5AAhAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1Fb7AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1Fb7AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAWDAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAWDAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAUrAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAUrAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAPoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAPoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FXoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FXoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAWrAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAWrAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEO1Of4b7AGqAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEO1Of4b7AA0AGgAAQAAAAEA -diag Graph:UFAJxBEO1Of4b7AGqAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FSyAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FSyAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FS8AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FS8AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FSoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEPwy9wC1FSoAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAZSAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPg8CknVAAQAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAZSAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPjSfclyAKMAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAhtAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPjSfclyAKMAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAhtAGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPjSfclyAKMAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAg7AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATAEND_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPjSfclyAKMAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAg7AGgAAQAAAAEA

�PAGE \# "'Page: '#'�'" ��ATASTART_ -proj Project:UFAJxBTqlW7UB1QAEAGgAAQAAAAAA -config ConfigVersion:UFAJxBEOqlxsC2AALAGgAAQAAAAEA -phase PhaseVersion:UFAJxBEO1Of4b7AAKAGgAAQAAAAEA -sys SystemVersion:UFAJxBEPjSfclyAKMAGgAAQAAAAEA -diag Graph:UFAJxBEP7HlkIkAg7AGgAAQAAAAEA

�Probably too specific. The hierarchy will be dynamically adjustable by users like it is now with AVCM site priorities. (Site hierarchy is not built into CHART II so we’ll have to think about how we’ll do this.)

�The CHART II way of displaying a camera on a monitor would be to drag a camera onto a monitor. I’m not sure what the CHARTLite way of doing this would be. The verb “select” may be too implementation-dependent.

�I think the CHART II requirements used a phrase like “an operator so-privilege” or “an operator with the appropriate functional right” or something to that effect in pretty much all requirements that addressed operator capabilities.

PAGE
ii
DRAFT

_1203307743.vsd

_1138179403.vsd

