
[image: image265.png]

coordinated Highways Action Response Team

state highway administration

[image: image266.wmf]
CHART R3B1 Detailed Design Document

Contract SHA-06-CHART

· Document # WO9-DS-001

· Work Order 9, Deliverable 4

· July 13, 2007

· By

· Computer Sciences Corporation
[image: image267.png]Device Management
Operations Centers
Eolders

General

	Revision
	Description
	Pages Affected
	Date

	0
	Initial Release
	All
	07/13/2007

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

1-11
Introduction

1.1
Purpose
1-1
1.2
Objectives
1-1
1.3
Scope
1-1
1.4
Design Process
1-2
1.5
Design Tools
1-2
1.6
Work Products
1-2
2
Architecture
2-1
2.1
Network/Hardware
2-1
2.2
Software
2-1
2.2.1
COTS Products
2-1
2.2.2
Deployment /Interface Compatibility
2-3
2.3
Security
2-7
2.4
Data
2-8
2.4.1
Data Storage
2-8
2.4.2
Database Design
2-11
3
Key Design Concepts
3-1
3.1
Event Location Using Known Roads
3-1
3.2
Event Duplication Prevention and Merging
3-1
3.2.1
Event Duplication Prevention
3-1
3.2.2
Event Duplication Identification
3-2
3.2.3
Event Merging
3-2
3.3
Improved Lane Configuration Capabilities
3-2
3.4
Improved User Interface
3-2
3.5
Improve Text-To-Speech Capabilities
3-3
3.6
Alerts
3-3
3.7
Error Processing
3-5
3.8
Packaging
3-5
3.9
Assumptions and Constraints
3-8
4
Use Cases
4-1
4.1
High Level
4-1
4.1.1
HighLevelUseCases (Use Case Diagram)
4-1
4.2
Alerts
4-5
4.2.1
ManageAlerts (Use Case Diagram)
4-5
4.2.2
ManageAlertState (Use Case Diagram)
4-8
4.2.3
EditAndEscalateAlert (Use Case Diagram)
4-11
4.2.4
CreateAlert (Use Case Diagram)
4-13
4.2.5
ConfigureAlerts (Use Case Diagram)
4-16
4.2.6
ConfigureOperationCenters (Use Case Diagram)
4-19
4.3
Text To Speech Pronunciations
4-22
4.3.1
ManageDictionaries (Use Case Diagram)
4-22
4.3.2
ManagePronunciations (Use Case Diagram)
4-24
4.3.3
UsePronunciations (Use Case Diagram)
4-27
4.4
Traffic Events
4-29
4.4.1
ManageTrafficEvents (Use Case Diagram)
4-29
4.4.2
CreateTrafficEvent (Use Case Diagram)
4-33
4.4.3
SpecifyEventLocation (Use Case Diagram)
4-35
4.4.4
MergeTrafficEvents (Use Case Diagram)
4-39
5
Detailed Design
5-1
5.1
Human-Machine Interface
5-1
5.1.1
Home Page Redesign
5-1
5.1.2
Alerts
5-6
5.1.3
Create Traffic Event
5-11
5.1.4
Traffic Event Locations
5-11
5.1.5
Lane Configuration Changes
5-13
5.1.6
Merge Traffic Events
5-17
5.1.7
Text To Speech Pronunciations
5-20
5.2
Alert Module
5-24
5.2.1
Classes
5-24
5.2.2
Sequence Diagrams
5-36
5.3
Chart2Service
5-59
5.3.1
Class Diagram
5-59
5.3.2
Sequence Diagram
5-61
5.4
DMS Control Module
5-61
5.4.1
Classes
5-61
5.4.2
Sequence Diagrams
5-71
5.5
Data Model
5-73
5.5.1
Class Diagram
5-73
5.6
Dictionary Module
5-76
5.6.1
Classes
5-76
5.6.2
Sequence Diagrams
5-81
5.7
GUI charlite.Dependencies
5-95
5.7.1
Classes
5-95
5.8
GUI chartlite.Flex
5-96
5.8.1
Classes
5-96
5.9
GUI chartlite.Flex.Shared.util-flex
5-97
5.9.1
Classes
5-97
5.10
GUI chartlite.Flex.homepage
5-97
5.10.1
Classes
5-97
5.11
GUI chartlite.Flex.homepage.model
5-98
5.11.1
Classes
5-98
5.12
GUI chartlite.data
5-100
5.12.1
Classes
5-100
5.12.2
Sequence Diagrams
5-104
5.13
GUI chartlite.data.db
5-104
5.13.1
Classes
5-104
5.14
GUI chartlite.data.trafficevants-data
5-106
5.14.1
Classes
5-106
5.14.2
Sequence Diagrams
5-112
5.15
GUI chartlite.data.alerts-data
5-127
5.15.1
Classes
5-127
5.15.2
Sequence Diagrams
5-131
5.16
GUI chartlite.data.arbqueue-data
5-135
5.16.1
Classes
5-135
5.17
GUI chartlite.servlet
5-136
5.17.1
Classes
5-136
5.17.2
Sequence Diagrams
5-137
5.18
GUI chartlite.servlet.trafficevents
5-139
5.18.1
Classes
5-139
5.18.2
Sequence Diagrams
5-141
5.19
GUI chartlite.servlet.alerts
5-162
5.19.1
Classes
5-162
5.19.2
Sequence Diagrams
5-163
5.20
GUI chartlite.servlet.dictionaries
5-195
5.20.1
Classes
5-195
5.20.2
Sequence Diagrams
5-195
5.21
GUI chartlite.servlet.dms
5-201
5.21.1
Classes
5-201
5.21.2
Sequence Diagrams
5-202
5.22
GUI chartlite.servlet.tss
5-204
5.22.1
Classes
5-204
5.22.2
Sequence Diagrams
5-205
5.23
GUI chartlite.servlet.usermgmt
5-207
5.23.1
Classes
5-207
5.23.2
Sequence Diagrams
5-209
5.24
GUI chartlite.servlet.location
5-227
5.24.1
Classes
5-227
5.24.2
Sequence Diagrams
5-228
5.25
GUI chartlite.util
5-232
5.25.1
Classes
5-232
5.26
GUI chartlite.util.lane
5-232
5.26.1
Classes
5-232
5.27
GUI chartlite.lanedisplay
5-235
5.27.1
Classes
5-235
5.28
HAR Control Module
5-236
5.28.1
Classes
5-236
5.28.2
Sequence Diagrams
5-246
5.29
Resources Module
5-247
5.29.1
Classes
5-247
5.29.2
Sequence Diagrams
5-253
5.30
Roadway Location Module
5-257
5.30.1
Classes
5-257
5.30.2
Sequence Diagrams
5-261
5.31
SHAZAM Control Module
5-264
5.31.1
Classes
5-264
5.31.2
Sequence Diagrams
5-272
5.32
TSS Control Module
5-272
5.32.1
Classes
5-272
5.32.2
Sequence Diagrams
5-279
5.33
TTS Control Module
5-281
5.33.1
Classes
5-281
5.33.2
Sequence Diagrams
5-285
5.34
Traffic Event Module
5-286
5.34.1
Classes
5-286
5.34.2
Sequence Diagrams
5-302
5.35
User Mangement Module
5-317
5.35.1
Classes
5-317
5.36
Utility Package
5-321
5.36.1
Classes
5-321
5.36.2
Sequence Diagrams
5-332
5.37
Utility Package.Wrappers
5-334
5.37.1
Classes
5-334
5.38
Utility Package.Corba
5-337
5.38.1
Classes
5-337
5.39
Utility Package.ObjectCache
5-339
5.39.1
Classes
5-339
5.39.2
Sequence Diagrams
5-347
6
Mapping To Requirements
6-1
7
Acronyms/Glossary
7-1

Table of Figures

2-4Figure 2‑1 CHART and External Interfaces

Figure 2‑2 CHART Internal Interfaces (GUI Deployment)
2-6
Figure 2‑3 CHART Internal Interfaces (Server Deployment)
2-7
Figure 4‑1 HighLevelUseCases (Use Case Diagram)
4-1
Figure 4‑2. ManageAlerts (Use Case Diagram)
4-5
Figure 4‑3. ManageAlertState (Use Case Diagram)
4-8
Figure 4‑4. EditAndEscalateAlert (Use Case Diagram)
4-11
Figure 4‑5. CreateAlert (Use Case Diagram)
4-14
Figure 4‑6. ConfigureAlerts (Use Case Diagram)
4-17
Figure 4‑7. ConfigureOperationCenters (Use Case Diagram)
4-20
Figure 4‑8. ManageDictionaries (Use Case Diagram)
4-22
Figure 4‑9. ManagePronunciations (Use Case Diagram)
4-25
Figure 4‑10. UsePronunciations (Use Case Diagram)
4-27
Figure 4‑11. ManageTrafficEvents (Use Case Diagram)
4-29
Figure 4‑12. CreateTrafficEvent (Use Case Diagram)
4-33
Figure 4‑13. SpecifyEventLocation (Use Case Diagram)
4-35
Figure 4‑14. MergeTrafficEvents (Use Case Diagram)
4-39
Figure 5‑1. AlertModule (Class Diagram)
5-24
Figure 5‑2. AlertModule (Class Diagram)
5-28
Figure 5‑3. ProxyAlertClasses (Class Diagram)
5-34
Figure 5‑4. AlertModule:acceptWithDetails (Sequence Diagram)
5-37
Figure 5‑5. AlertModule:alertDBSetAlert (Sequence Diagram)
5-38
Figure 5‑6. AlertModule:archiveTimedOutAlerts (Sequence Diagram)
5-39
Figure 5‑7. AlertModule:checkAlertManageability (Sequence Diagram)
5-40
Figure 5‑8. AlertModule:closeAlert (Sequence Diagram)
5-41
Figure 5‑9. AlertModule:createEventStillOpenAlert (Sequence Diagram)
5-42
Figure 5‑10. AlertModule:escalateIfNecessary (Sequence Diagram)
5-43
Figure 5‑11. AlertModule:escalateTimedOutAlerts (Sequence Diagram)
5-44
Figure 5‑12. AlertModule:getBackupAMGsFor (Sequence Diagram)
5-45
Figure 5‑13. AlertModule:initAlert (Sequence Diagram)
5-46
Figure 5‑14. AlertModule:initialize (Sequence Diagram)
5-48
Figure 5‑15. AlertModule:initUnhandledResourcesAlert (Sequence Diagram)
5-49
Figure 5‑16. AlertModule:performEscalation (Sequence Diagram)
5-51
Figure 5‑17. AlertModule:reNewIfNecessary (Sequence Diagram)
5-52
Figure 5‑18. AlertModule:setAcceptTimeout (Sequence Diagram)
5-53
Figure 5‑19. AlertModule:unaccept (Sequence Diagram)
5-54
Figure 5‑20. AlertPushConsumer:push (Sequence Diagram)
5-56
Figure 5‑21. DiscoverAlertClassesCommand:execute (Sequence Diagram)
5-57
Figure 5‑22. ProxyAlert:isDuplicateOf (Sequence Diagram)
5-58
Figure 5‑23. CHART2ServiceClasses (Class Diagram)
5-59
Figure 5‑24. CHART2Service:Startup (Sequence Diagram)
5-61
Figure 5‑25. DMSControlClassDiagram (Class Diagram)
5-62
Figure 5‑26. DMSControlModule:HandleOpStatus (Sequence Diagram)
5-72
Figure 5‑27. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)
5-73
Figure 5‑28. DataModelClasses (Class Diagram)
5-74
Figure 5‑29. DictionaryClassDiagram (Class Diagram)
5-77
Figure 5‑30. DictionaryModClassDiagram (Class Diagram)
5-79
Figure 5‑31. DictionaryImpl:addApprovedWordList (Sequence Diagram)
5-82
Figure 5‑32. DictionaryImpl:addBannedWordList (Sequence Diagram)
5-82
Figure 5‑33. DictionaryImpl:addPronunciationList (Sequence Diagram)
5-83
Figure 5‑34. DictionaryImpl:checkForBannedWords (Sequence Diagram)
5-84
Figure 5‑35. DictionaryImpl:getApprovedWords (Sequence Diagram)
5-85
Figure 5‑36. DictionaryImpl:getBannedWords (Sequence Diagram)
5-86
Figure 5‑37. DictionaryImpl:getPronunciations (Sequence Diagram)
5-87
Figure 5‑38. DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)
5-88
Figure 5‑39. DictionaryImpl:removeApprovedWordList (Sequence Diagram)
5-89
Figure 5‑40. DictionaryImpl:removeBannedWordList (Sequence Diagram)
5-90
Figure 5‑41. DictionaryImpl:removePronunciationList (Sequence Diagram)
5-91
Figure 5‑42. DictionaryImpl:substitutePronunciations (Sequence Diagram)
5-92
Figure 5‑43. DictionaryModule:initialize (Sequence Diagram)
5-93
Figure 5‑44. DictionaryModule:shutdown (Sequence Diagram)
5-94
Figure 5‑45. ExternalClasses (Class Diagram)
5-95
Figure 5‑46. FlexClasses (Class Diagram)
5-96
Figure 5‑47. util_classes (Class Diagram)
5-97
Figure 5‑48. HomePageClasses (Class Diagram)
5-98
Figure 5‑49. FlexModelClasses (Class Diagram)
5-98
Figure 5‑50. chartlite.data_location_classes (Class Diagram)
5-100
Figure 5‑51. MiscDataClasses (Class Diagram)
5-102
Figure 5‑52. DiscoverLocationsCommand:execute (Sequence Diagram)
5-104
Figure 5‑53. DBClasses (Class Diagram)
5-105
Figure 5‑54. chartlite.data.trafficevents_classes (Class Diagram)
5-106
Figure 5‑55. chartlite.data.trafficevents_event_type_classes (Class Diagram)
5-108
Figure 5‑56. chartlite.data.trafficevents_merge_classes (Class Diagram)
5-110
Figure 5‑57. chartlite.data.trafficevents_misc_classes (Class Diagram)
5-111
Figure 5‑58. charlite.data.trafficevents:WebMergeEvent.mergeEventSection (Sequence Diagram)
5-113
Figure 5‑59. chartlite.data.trafficevents:WebMergeEvent.completeSection (Sequence Diagram)
5-114
Figure 5‑60. chartlite.data.trafficevents:WebMergeEvent.createTempTrafficEvent (Sequence Diagram)
5-115
Figure 5‑61. chartlite.data.trafficevents:WebMergeEvent.determineRequiredMergeSections (Sequence Diagram)
5-117
Figure 5‑62. chartlite.data.trafficevents:WebMergeEvent.doMergeAssociatedEventsData (Sequence Diagram)
5-118
Figure 5‑63. chartlite.data.trafficevents:WebMergeEvent.doMergeBasicEventdata (Sequence Diagram)
5-119
Figure 5‑64. chartlite.data.trafficevents:WebMergeEvent.doMergeEventSpecificData (Sequence Diagram)
5-120
Figure 5‑65. chartlite.data.trafficevents:WebMergeEvent.doMergeParticipantsData (Sequence Diagram)
5-121
Figure 5‑66. chartlite.data.trafficevents:WebMergeEvent.doMergeResponsePlanData (Sequence Diagram)
5-122
Figure 5‑67. chartlite.data.trafficevents:WebMergeEvent.doMergeVehiclesInvolvedData (Sequence Diagram)
5-123
Figure 5‑68. chartlite.data.trafficevents:WebMergeEvent.getMergeSectionDataTemplateName (Sequence Diagram)
5-124
Figure 5‑69. chartlite.data.trafficevents:WebMergeEvent.prepopulateMergeEvent (Sequence Diagram)
5-125
Figure 5‑70. LaneDisplayGIFManager:updateGIF (Sequence Diagram)
5-126
Figure 5‑71. data.alerts.classes (Class Diagram)
5-127
Figure 5‑72. data.alerts.DiscoveryAndEventHandlingClasses (Class Diagram)
5-129
Figure 5‑73. data.alerts:AlertDiscovery (Sequence Diagram)
5-132
Figure 5‑74. data.alerts:AlertEventHandling (Sequence Diagram)
5-134
Figure 5‑75. chartlite.data.arbqueue_classes (Class Diagram)
5-135
Figure 5‑76. ServletMiscClasses (Class Diagram)
5-136
Figure 5‑77. chartlite.servlet.MainServlet:handleRequest (Sequence Diagram)
5-138
Figure 5‑78. chartlite.servlet.trafficevents_add_copy_event_classes (Class Diagram)
5-139
Figure 5‑79. chartlite.servlet.trafficevents_classes (Class Diagram)
5-140
Figure 5‑80. AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)
5-142
Figure 5‑81. AddTrafficEventReqHdlr:addTrafficEventXML2 (Sequence Diagram)
5-143
Figure 5‑82. AddTrafficEventReqHdlr:copyTrafficEvent (Sequence Diagram)
5-145
Figure 5‑83. AddTrafficEventReqHdlr:createEvent (Sequence Diagram)
5-146
Figure 5‑84. AddTrafficEventReqHdlr:displayCopyEventForm (Sequence Diagram)
5-147
Figure 5‑85. AddTrafficEventReqHdlr:getBasicEventDataInitialFormDataXML (Sequence Diagram)
5-148
Figure 5‑86. AddTrafficEventReqHdlr:submitCopyEventBasicEventDataForm (Sequence Diagram)
5-149
Figure 5‑87. chartlite.servlet.trafficevents:MergeEvents (Sequence Diagram)
5-150
Figure 5‑88 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.displayMergeEventNextSection (Sequence Diagram)
5-151
Figure 5‑89 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.displayMergeEventSelectTargetForm (Sequence Diagram)
5-153
Figure 5‑90. chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEvents (Sequence Diagram)
5-154
Figure 5‑91 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEventSection (Sequence Diagram)
5-155
Figure 5‑92 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEventSelectTarget (Sequence Diagram)
5-156
Figure 5‑93. LaneConfigReqHdlr:submitLaneDirAndStateInfo (Sequence Diagram)
5-157
Figure 5‑94. TrafficEventReqHdlr:getPotentialDuplicateEventsXML (Sequence Diagram)
5-158
Figure 5‑95. TrafficEventReqHdlr:submitOpenEventRemindTime (Sequence Diagram)
5-159
Figure 5‑96. TrafficEventReqHdlr:viewPotentialDuplicateEventsFlex (Sequence Diagram)
5-160
Figure 5‑97. TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)
5-162
Figure 5‑98. AlertsClasses (Class Diagram)
5-163
Figure 5‑99. chartlite.servlet.alerts:addManualAlert (Sequence Diagram)
5-165
Figure 5‑100. chartlite.servlet.alerts:addManualAlertFlex (Sequence Diagram)
5-167
Figure 5‑101. chartlite.servlet.alerts:AlertReqHdlr.filterAlerts (Sequence Diagram)
5-168
Figure 5‑102. chartlite.servlet.alerts:AlertReqHdlr.getAlertSound (Sequence Diagram)
5-169
Figure 5‑103. chartlite.servlet.alerts:AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)
5-171
Figure 5‑104. chartlite.servlet.alerts:AlertReqHdlr.viewAlertsPeriodicUpdate (Sequence Diagram)
5-172
Figure 5‑105. chartlite.servlet.alerts:commentOnAlert (Sequence Diagram)
5-173
Figure 5‑106. chartlite.servlet.alerts:commentOnAlertFlex (Sequence Diagram)
5-174
Figure 5‑107. chartlite.servlet.alerts:filterAlertsChangeFilter (Sequence Diagram)
5-175
Figure 5‑108. chartlite.servlet.alerts:getOpCenterList (Sequence Diagram)
5-177
Figure 5‑109. chartlite.servlet.alerts:getOpCenterListFlex (Sequence Diagram)
5-178
Figure 5‑110. chartlite.servlet.alerts:HomePage.openURL (Sequence Diagram)
5-179
Figure 5‑111. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlex (Sequence Diagram)
5-181
Figure 5‑112. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexInit (Sequence Diagram)
5-182
Figure 5‑113. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexReminder (Sequence Diagram)
5-183
Figure 5‑114. chartlite.servlet.alerts:performAlertAction (Sequence Diagram)
5-185
Figure 5‑115. chartlite.servlet.alerts:performAlertActionFlex (Sequence Diagram)
5-186
Figure 5‑116. chartlite.servlet.alerts:resolveAlert (Sequence Diagram)
5-188
Figure 5‑117. chartlite.servlet.alerts:resolveAlertFlex (Sequence Diagram)
5-189
Figure 5‑118. chartlite.servlet.alerts:SpecifyAlertTimeout (Sequence Diagram)
5-191
Figure 5‑119. chartlite.servlet.alerts:viewAlertDetails (Sequence Diagram)
5-192
Figure 5‑120. chartlite.servlet.alerts:viewAlertDetailsFlex (Sequence Diagram)
5-193
Figure 5‑121. chartlite.servlet.alerts:viewNewAlerts (Sequence Diagram)
5-194
Figure 5‑122. GUIDictionaryClasses (Class Diagram)
5-195
Figure 5‑123. chartlite.servlet.dictionaries:previewTTSPronunciation (Sequence Diagram)
5-196
Figure 5‑124. DictionaryReqHdlr:AddTTSPronunciation (Sequence Diagram)
5-197
Figure 5‑125. DictionaryReqHdlr:modifyTTSPronunciation.getAddModifyTTSPronunciationFormReq (Sequence Diagram)
5-198
Figure 5‑126. DictionaryReqHdlr:RemoveTTSPronunciation.processRemoveTTSPronunciationReq (Sequence Diagram)
5-199
Figure 5‑127. DictionaryReqHdlr:ViewDefinedPronunciation.processViewTTSPronunciationListReq (Sequence Diagram)
5-200
Figure 5‑128. chartlite.servlet.dms_classes (Class Diagram)
5-201
Figure 5‑129. chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)
5-202
Figure 5‑130. chartlite.servlet.dms:setDMSConfigBasicSettings (Sequence Diagram)
5-203
Figure 5‑131. chartlite.servlet.tss_classes (Class Diagram)
5-204
Figure 5‑132. chartlite.servlet.tss:parseBasicConfigSettings (Sequence Diagram)
5-205
Figure 5‑133. chartlite.servlet.tss:setTSSConfigBasicSettings (Sequence Diagram)
5-206
Figure 5‑134. chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)
5-207
Figure 5‑135. chartlite.servlet.usermgmt_classes (Class Diagram)
5-208
Figure 5‑136. AppLauncher.vm:onLoad (Sequence Diagram)
5-209
Figure 5‑137. chartlite.servlet.usermgmt:ConfigureAlertAudioCue (Sequence Diagram)
5-210
Figure 5‑138. chartlite.servlet.usermgmt:ConfigureBackupCenters (Sequence Diagram)
5-211
Figure 5‑139. chartlite.servlet.usermgmt:OpCenterMgmtReqHdlr.viewOpCenterDetails (Sequence Diagram)
5-212
Figure 5‑140. chartlite.servlet.usermgmt:SpecifyAlertTypesForCenter (Sequence Diagram)
5-213
Figure 5‑141. chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureAlertPolicy (Sequence Diagram)
5-215
Figure 5‑142 chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureDuplicateEventsMatrix (Sequence Diagram)
5-217
Figure 5‑143 chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureTrafficEventStillOpen (Sequence Diagram)
5-219
Figure 5‑144. LoginReqHdlr:processGetHomePage (Sequence Diagram)
5-221
Figure 5‑145. LoginReqHdlr:processLogin (Sequence Diagram)
5-222
Figure 5‑146. SystemProfileReqHdlr:configAlertTimeout.getConfigAlertTimeoutForm (Sequence Diagram)
5-223
Figure 5‑147. SystemProfileReqHdlr:configAlertTimeout.processConfigAlertTimeout (Sequence Diagram)
5-224
Figure 5‑148. SystemProfileReqHdlr:getConfigEscalateAndArchiveTimeoutsForm (Sequence Diagram)
5-225
Figure 5‑149. SystemProfileReqHdlr:setAlertEscalateAndArchiveTimeouts (Sequence Diagram)
5-226
Figure 5‑150. chartlite.servlet.location_classes (Class Diagram)
5-227
Figure 5‑151. LocationReqHdlr:getAliasLocationInfoXML (Sequence Diagram)
5-228
Figure 5‑152. LocationReqHdlr:getCountyAndRegionNamesXML (Sequence Diagram)
5-229
Figure 5‑153. LocationReqHdlr:getIntersectingRoadsXML (Sequence Diagram)
5-230
Figure 5‑154. LocationReqHdlr:getRouteNumbersXML (Sequence Diagram)
5-231
Figure 5‑155. chartlite.util_classes (Class Diagram)
5-232
Figure 5‑156. chartlite.util.lane_classes (Class Diagram)
5-233
Figure 5‑157. chartlite.lanedisplay_classes (Class Diagram)
5-235
Figure 5‑158. HARControlModule (Class Diagram)
5-237
Figure 5‑159. HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)
5-246
Figure 5‑160. ResourceManagementClassDiagram (Class Diagram)
5-247
Figure 5‑161. ResourceClasses (Class Diagram)
5-250
Figure 5‑162. ResourcesModule:ChangeUser (Sequence Diagram)
5-253
Figure 5‑163. ResourcesModule:ForceLogout (Sequence Diagram)
5-254
Figure 5‑164. ResourcesModule:LoginUser (Sequence Diagram)
5-255
Figure 5‑165. ResourcesModule:LogoutUser (Sequence Diagram)
5-256
Figure 5‑166. RoadwayLocation (Class Diagram)
5-257
Figure 5‑167. RoadwayLocationModule (Class Diagram)
5-258
Figure 5‑168. RoadwayLocation:ProvideCountyData (Sequence Diagram)
5-261
Figure 5‑169. RoadwayLocationModule:Initialize (Sequence Diagram)
5-262
Figure 5‑170. RoadwayLocationModule:Shutdown (Sequence Diagram)
5-263
Figure 5‑171. SHAZAMControl (Class Diagram)
5-265
Figure 5‑172. SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)
5-272
Figure 5‑173. TSSManagementModulePkg (Class Diagram)
5-273
Figure 5‑174. RTMSImpl:poll (Sequence Diagram)
5-280
Figure 5‑175. TTSControlModuleClasses (Class Diagram)
5-281
Figure 5‑176. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)
5-285
Figure 5‑177. EventData (Class Diagram)
5-286
Figure 5‑178. EventManagementClassDiagram (Class Diagram)
5-288
Figure 5‑179. TrafficEventHierarchy (Class Diagram)
5-293
Figure 5‑180. TrafficEventModuleClasses (Class Diagram)
5-296
Figure 5‑181. BasicTrafficEventPushConsumer:push (Sequence Diagram)
5-304
Figure 5‑182. DiscoverBasicTrafficEventClassesCommand:execute (Sequence Diagram)
5-305
Figure 5‑183. ProxyBasicTrafficEvent:isDuplicateOf (Sequence Diagram)
5-307
Figure 5‑184. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)
5-309
Figure 5‑185. TrafficEventModule:Initialize (Sequence Diagram)
5-311
Figure 5‑186. TrafficEventModule:MergetoIncident2 (Sequence Diagram)
5-312
Figure 5‑187. TrafficEventModule:MonitorControlledResources (Sequence Diagram)
5-313
Figure 5‑188. TrafficEventModule:MonitorDuplicateEvents (Sequence Diagram)
5-314
Figure 5‑189. TrafficEventModule:MonitorEventStillOpen (Sequence Diagram)
5-315
Figure 5‑190. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)
5-316
Figure 5‑191. TrafficEventModule:SetRoadwayLocation (Sequence Diagram)
5-317
Figure 5‑192. UserManagementClassDiagram (Class Diagram)
5-318
Figure 5‑193. UserManagementModuleClasses (Class Diagram)
5-319
Figure 5‑194. UtilityClasses (Class Diagram)
5-322
Figure 5‑195. UtilityClasses2 (Class Diagram)
5-329
Figure 5‑196. DefaultServiceApplication:Start (Sequence Diagram)
5-333
Figure 5‑197. DiscoveryManager:start (Sequence Diagram)
5-334
Figure 5‑198. WrappersCD (Class Diagram)
5-335
Figure 5‑199. CorbaClassDiagram (Class Diagram)
5-338
Figure 5‑200. ObjectCacheClassDiagram (Class Diagram)
5-340
Figure 5‑201. DiscoverResourceMgmtOpCtrClassesCommand:execute (Sequence Diagram)
5-347
Figure 5‑202. ResourceMgmtOpCtrPushConsumer:push (Sequence Diagram)
5-349

1 Introduction
1.1 Purpose

This document describes the design of the software for Release 3, Build 1 of the CHART system. This build provides:

· Event location using pull downs of known roads. The user will be able to use pull down menus to select known intersections for use in events.

· Event duplication prevention and merging. The system will alert the user when a duplicate event is being created. Duplication will be based on the event location. The system will also provide the capability to merge duplicate events into a single event.
· Improved lane configuration capabilities. Additional lane configuration features will be added to the system including additional graphics for on ramps and toll booths, and the ability to specify the direction of any lane.
· Improved User Interface. The User Interface enhancements include a re-designed “home” page containing space for submitting events, alerts, and open events. In addition to the home page, there will be a working window where operators may perform their work.
· Improve text-to-speech capabilities. The system will provide a mechanism to use and maintain a pronunciation glossary. This will enable operators to type text without having to alter spelling in order to improve the pronunciation in the text-to-speech engine.
· Alerts. The system will provide an alert mechanism that will enable operators to be informed of, and optionally respond to, alerts issued by CHART. These alerts may be escalated to additional operators. For R3B1, there will be alerts issued for unhandled controlled resources, hardware failures, duplicate traffic events, and expired traffic events. A manual alert mechanism will exist as well.
1.2 Objectives

The main objective of this detailed design document is to provide software developers with a framework in which to implement the requirements identified in the CHART R3B1 Requirements document. A matrix mapping requirements to the design is presented in Section 6.
1.3 Scope

This design is limited to Release 3, Build 1 (R3B1) of the CHART System. It addresses both the design of the server components of CHART and the Graphical User Interface (GUI) components of CHART. Since the CHART GUI is browser based, the GUI refers to both the user interface and the components actually executing on the web server. This design does not include designs for components implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams. Class diagrams were generated showing the high level objects that address the Use Cases. Sequence diagrams were generated to show how each piece of major functionality will be achieved. This process was iterative in nature – the creation of sequence diagrams sometimes caused re-engineering of the class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling Language (UML) Suite design tool. Within this tool, the design will be contained in the CHART project, CHART R3B1, Analysis phase and System Design phase.

1.6 Work Products

The final R3B1 design will consist of the following work products:

· Use Case diagrams that capture the requirements of the system

· UML Class diagrams, showing the software objects which allow the system to accommodate the uses of the system described in the Use Case diagrams

· UML Sequence diagrams showing how the classes interact to accomplish major functions of the system

2 Architecture

The sections below discuss specific elements of the architecture and software components that are created, changed, or used in R3B1.

2.1 Network/Hardware

There are no major changes for CHART R3B1 that will affect the network and hardware elements of CHART.

2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base architecture, with custom built software objects made available on the network to allow their data to be accessed via well defined CORBA interfaces. Communications to remote devices use the Field Management Server (FMS) architecture. This architecture will continue forward for Release R3B1. There will be no major changes to the CHART software architecture infrastructure.

2.2.1 COTS Products

CHART uses numerous COTS products for both run-time and development.
	Product Name
	Description

	Apache Jakarta Ant
	CHART uses Apache Jakarta Ant 1.6.5 to build CHART applications and deployment jars.

	Apache Tomcat
	CHART uses Apache Tomcat 5.5.9 as the GUI web server.

	Bison/Flex
	CHART uses Bison and Flex as part of the process of compiling binary macro files used for performing camera menu operations on Vicon Surveyor VFT cameras.

	CoreTec Decoder Control
	CHART uses a CoreTec supplied decoder control API for commanding CoreTec decoders.

	Dialogic API
	CHART uses the Dialogic API for sending and receiving Dual Tone Multi Frequency (DTMF) tones for HAR communications.

	Flex2 SDK
	The CHART GUI uses the Flex2 SDK, version 2.0.1, provides the Flex compiler, the standard Flex libraries, and examples for building Flex applications.

	GIF89 Encoder
	Utility classes that can create .gif files with optional animation. This utility is used for the creation of DMS True Display windows.

	JDOM
	CHART uses JDOM b7 (beta-7) dated 2001-07-07. JDOM provides a way to represent an XML document for easy and efficient reading, manipulation, and writing.

	JacORB
	CHART uses a compiled, patched version of JacORB 2.2.4. The JacORB source code, including the patched code, is kept in the CHART source repository.

	Java Run-Time (JRE)
	CHART uses Java 1.5.0_09.

	JavaService
	CHART uses JavaService to install the server side Java software components as Windows services.

	JAXEN
	CHART uses JAXEN 1.0-beta-8 dated 2002-01-09. The Jaxen project is a Java XPath Engine. Jaxen is a universal object model walker, capable of evaluating XPath expressions across multiple models.

	JoeSNMP
	CHART uses JoeSNMP version 0.2.6 dated 2001-11-11. JoeSNMP is a Java based implementation of the SNMP protocol. CHART uses for commanding iMPath MPEG-2 decoders and for communications with NTCIP DMSs.

	NSIS
	CHART uses the Nullsoft Scriptable Installation System (NSIS), version 2.20, as the server side installation package.

	Nuance Text To Speech
	For text-to-speech (TTS) conversion CHART uses a TTS engine that integrates with Microsoft Speech Application Programming Interface (MSSAPI), version 5.1. CHART uses Nuance Vocalizer 4.0 with Nuance SAPI 5.1 Integration for Nuance Vocalizer 4.0.

	Oracle
	CHART uses Oracle 10.1.0.5 as its database and uses the Oracle 10G JDBC libraries (ojdbc1.4.jar) for all database transactions.

	O’Reilly Servlet
	Provides classes that allow the CHART GUI to handle file uploads via multi-part form submission.

	Prototype Javascript Library
	The CHART GUI uses the Prototype Javascript library, version 1.5.1, a cross-browser compatible Javascript library provides many features (including easy Ajax support).

	SAXPath
	CHART uses SAXPath 1.0-beta-6 dated 2001-09-27. SAXPath is an event-based API for XPath parsers, that is, for parsers which parse XPath expressions.

	Velocity Template Engine
	Provides classes that CHART GUI uses in order to create dynamic web pages using velocity templates.

	Vicon V1500 API
	CHART uses a Vicon supplied API for commanding the ViconV1500 CPU to switch video on the Vicon V1500 switch

2.2.2 Deployment /Interface Compatibility

2.2.2.1 External Interfaces

The diagram below presents an overall view of CHART within the context of other external systems. The green boundaries represent devices that the CHART software communicates with directly. The major external interfaces include:
1. CHART Web Server – Receives information from the CHART system for publishing on the Web. This information includes incident reports, lane closure data, speed sensor data, DMS messages, and camera video.
2. CHART Map – The CHART Web Event Listener is used to receive CORBA Events from CHART relating to roadway conditions for display with the CHART Mapping application. The data includes incident reports, lane closure data, DMS messages, and speed sensor data. For R3B1, CHART will also query the mapping database to get counties, roads, and road intersection data.
3. Emergency Operations Reporting System (EORS) – Legacy system providing information on road closures and road status.

4. Media – Commercial and public broadcasters.

5. SCAN – SHA legacy system supplying weather sensor data.
6. CHART Reporting Tool – Generates reports from data on CHART databases.

7. University of Maryland Center for Advanced Transportation Technology (CATT) Lab as Regional Integrated Transportation Information System (RITIS) - Receives CORBA Events from CHART.
[image: image1.emf]CHART

DMS

EORS

Baltimore Media

Washington Media

Broadcast

Television

SHAZAMs

HARs

RTMS

Speed Data

CCTV

Live

Traffic

Images

Traffic Cameras

Snapshot Cameras

DMS Messages

Interactive Mapping

Incident Reports

Lane Closures

Speed Sensor Data

Weather Station Data

Weather Service Data

SCAN

CHART

WEB SITE

RITIS

UMD

Event

Listener

Regional Web

Services:

Traffic Land Video

CHART

Reporting

Tool

Mapping

Data

Reports from:

CHART & SHA Units

MSP and Local Police

Other Agencies

Travelers

Weather Data

Snapshot Cameras

Roadway Surface Data

RWIS:

Input from:

EOC and SHA

Shop and District

personnel

Event

Listener,

FTP

Figure 2‑1 CHART and External Interfaces
2.2.2.2 Internal Interfaces

The architecture for the CHART system distributes complete system functionality to a number of districts throughout the State of Maryland. Each of these complete systems can provide full functionality for the devices connected to the system and objects created within that system (such as traffic events), and provides functionality for other district's systems that are available. Thus the absence of one district's server does not affect the ability of another district to use their own system or other systems that are available. Although the server deployment is spread across multiple sites, the user sees one large system, as CORBA is used to pull together objects served from the many deployment sites.

The CHART GUI is able to locate the software objects at all deployment sites through the use of the CORBA Trading Service. A CORBA Trading Service runs at each deployment site. Each CHART service that publishes CORBA objects offers the objects through its local CORBA Trading Service. The GUI provides a unified view of the system, even though the system is actually distributed over multiple deployment sites.

In addition to showing the software objects throughout the system on a single interface, it is also necessary to reflect the current state of the software objects as they are changed during real time operations. The CORBA Event Service is used to allow objects to push changes in their state to the GUI, other back end CHART services, the CHART Event Listener, or any other interested CORBA clients. Each deployment site has an instance of a CORBA Event Channel Factory, which is an extension of the CORBA Event Service that allows multiple event channels. Each CHART service whose objects are subject to real time changes will create one or more Event Channels in its local Event Channel Factory. Each event channel is earmarked for a specific class of events (such as DMS events). Each service that creates channels in the CORBA Event Channel Factory publishes the event channel in the CORBA Trading Service and then uses the channel to push events relating to object state, configuration updates, etc.

An interface that wishes to listen for events at a system wide level discovers all of the event channels via the CORBA Trading Service and registers itself as a consumer on each of the event channels. Using this scheme, an interface uses the Trading Service to discover all software objects and Event Channels regardless of their deployment site. The interface may then provide the user with a unified view of the system, both in the objects presented and the ability to show near real time updates of these objects. Since the nature of the system is dynamic, processes periodically rediscover new objects and event channels from known districts via the Trading Service.
Most CHART background services which communicate with physical devices deployed along Maryland highways do so via FMS servers. One or more CHART Communications Services run on each FMS in the system. The CHART background services requiring FMS services for this purpose are the DMS Service, HAR Service (which also serves SHAZAMs), and the TSS Service. The communications between these three services and the Communications Services are IIOP, over TCP/IP. Communications from the Communications Services out to the physical devices are accomplished by telephone (via either POTS or ISDN modems, or via Telephony DTMF communications) or by direct serial connection. Telephone service is usually provided via landline, although cellular service occasionally needs to be utilized.

The remaining CHART background service controlling physical field devices is the Video Service. Video communication is accomplished via TCP/IP. Communication to CoreTec decoders is accomplished via proprietary CoreTec protocol over TCP/IP. Communication to iMPath decoders is accomplished via SNMP over TCP/IP, with published MIBs. CHART does not directly command either the iMPath or the CoreTec encoders; they are used only as a pass-through to pass camera control commands and responses to/from the attached cameras. CHART’s communication with the encoders, then, is via TCP/IP with no proprietary protocol involved. Communications to the Vicon V1500 NTSC video switch is accomplished via a proprietary Vicon protocol over TCP/IP. Once video connections are thus established, video flows directly from encoder to decoder via MPEG2 or MPEG4 over TCP/IP, and/or through a V1500 analog video switch.

The following deployment diagrams show the deployment of CHART at a single district within the larger CHART system. The diagrams depict the various computers that are deployed at the site. Each computer shows the processes that are installed and running on it. The lines between the computers show the protocols that are used for communication between the various processes involved. The GUI deployment diagram shows that the web browser (Internet Explorer) on the operator workstation can send requests to the GUI web server machine using the standard HTTP or HTTPS protocols. These requests are handled by the Microsoft IIS web server process which uses the requested URL to determine that the request is intended for the CHART GUI servlet application. IIS forwards requests for CHART to the installed Apache Tomcat application which passes the request to the CHART GUI Servlet for processing. This servlet communicates with the processes on the CHART Server machine via the standard CORBA IIOP protocol which utilizes the TCP/IP protocol. Additionally this servlet communicates with the CHART Database server via the JDBC API which utilizes the TCP/IP protocol.
[image: image2.emf]HTTPS-JSON

CHART Application Server

See Server Deployment Diagram

for more details.

IIOP

Audio Recording Applet

GUI Flex2 Application

TCPIP-JDBC

TCPIP-JDBC

Microsoft IIS

CHART Application Server

HTTPS

HTTPS-XML

IIOP

Operator Workstation

Internet Explorer

Adobe Flash Player 9

Java 5 Plug In

Oracle RDBMS Service

CORBA Trading Service

TCPIP - JDBC

TCPIP-JDBC

CHART Services

CHART Database Server

Apache Tomcat

CORBA Event Service

CHART GUI Servlet

GUI Web Server

HTTPS-HTML

Figure 2‑2 CHART Internal Interfaces (GUI Deployment)
The server deployment diagram shows the services running on the CHART application server in more detail. New for R3B1 is the Alert Management Module, which has been added to the User Manager Service, and the Location Service. The CHART application server uses the standard CORBA IIOP protocol to communicate to the GUI web server to handle user requests and to update system state, and to the field management (FMS) server to communicate to DMS, HAR, SHAZA, and TSS field devices. It also uses TCP/IP to control camera and monitor video devices. Finally, the CHART application server communicates with the CHART Mapping database the JDBC API which utilizes the TCP/IP protocol.
[image: image3.emf]See GUI Deployment Diagram

for details.

Field Device

DMS HAR SHAZAM TSS

Video Device

Camera Monitor

ISDN POTS

Telephony

ISDN POTS

Telephony

TCPIP

TCPIP

DMS Service

HAR Service

Traffic Event Service

EORS Service

Oracle RDBMS Service

CHART Mapping Server

Mapping DB

Field Management Server

Communications Service

Web Server

TCPIP-JDBC

TCPIP-JDBC

IIOP

IIOP

IIOP

IIOP

Location Manager

County PrimaryRoad

Alert (remote)

Alert Manager

User Management Module

Resource Module

Alert Management Module

Location Module

User Manager Service

Alert History

New for R3B1.

New for R3B1.

CORBA Trading Service

Message Utility Service

Location Service

TSS Service

Video Service

CORBA Event Services

Alert

Figure 2‑3 CHART Internal Interfaces (Server Deployment)
2.3 Security

The CHART System runs entirely behind the MDOT firewall, so access to the CHART system from the outside world must be specifically enabled for users to connect from specific external locations. Control of video cameras is ostensibly limited to users which can see camera image on a local monitor, which are limited in number and restricted to controlled locations within designated facilities.

The CHART browser interface can be configured to run with HTTP or HTTPS (Secure HTTP). The fielded production system is always configured to run with HTTPS. HTTPS provides an additional SSL or TLS encryption/authentication layer between HTTP and TCP, which protects data in transit between the client machine web browser and the web server machine. Additionally, the system runs with Microsoft’s Internet Information Services (IIS).

All users connecting to CHART are required to provide a user name and password before any CHART information is provided or any actions can be attempted. Invalid login attempts are logged to the CHART Operations Log (database table), a permanently archived log of system activity. Users with appropriate rights can see all users logged into the system and can force users off the system at any time, directly from the CHART GUI. Before editing the CHART dictionary, a particularly sensitive area, a logged on user is reauthenticated on the spot by requiring the user to provide a user name and password again.
When a legitimate CHART user logs in, he or she is granted certain functional rights, based on the user ID. These rights typically include, for instance, the ability to create, edit and close traffic events and create and execute response plan items in response to traffic events. Other rights allow direct interaction with CHART devices, such as the ability to put them offline, online, or into maintenance mode, and to issue maintenance mode commands. Video rights are very granular, so camera control rights can be issued with a very fine grain. Users cannot perform actions for which they do not have rights. Typically rather than graying out buttons, prohibited actions do not even appear on the user’s browser, so in most cases users may not even know what they are missing. There is a special “view-only” user configured which can see CHART status within the system but cannot perform any actions which would change system status in any way.

Rights can be assigned to users on an organization-by-organization level. For instance, a user may be able to issue maintenance commands on one organization’s DMSs, but not others. The rights are stored in an opaque access control token obtained during the login transaction. Users cannot see or modify this token, and generally are not aware of its existence. It is held by the web service on behalf of the user and is passed from the web service to the background services on all but the most benign service requests.
2.4 Data

CHART R3B1 will be tested with the Oracle database patches that are available and will be deployed in the field at the time of CHART R3B1 deployment. The database patches may possibly be applied in the field before CHART R3B1 deployment.
2.4.1 Data Storage
The CHART System stores most of its data in an Oracle database. However, some data is stored in flat files on the CHART servers. This section describes the various types of flat files used for CHART data storage and configuration information.

2.4.1.1 Service Registration Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB Event Service directories has a set of files used to install and uninstall the particular service into the Windows services list. When the service is thus installed it can be controlled through the Windows Services Applet. The files to install and uninstall are *ServiceReg.cmd and *RemoveService.cmd, where “*” is the name of the service, for instance, HAR or DMS, or HAREvent or DMSEvent (for JacORB event services running for specific CHART services) or Event (for the generic event service used by the GUI and FMS processes) or Trading for the JacOrb Trader. These are created at installation time. The registration file is run at installation time, and then these files are not used again. They are merely stored in the unlikely event that they may be needed to re-register the service.

2.4.1.2 Service Property Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB Event Service directories has one properties file used to set runtime parameters used to control execution of the service. These parameters may include location of other services, the database, timeout parameters, retry parameters, etc. These file is named *.props, where “*” is the full name of the service, for instance, HARService, or HAREventService or TradingService. These are created at installation time with default values appropriate for most installations. Installation procedures may call for the person performing the installation to edit some files to make specific updates immediately following installation. These are user-editable ASCII files and parameters are stored in a Module.ParameterName=value format, with thorough in-line documentation of each parameter, including defaults and reasonable acceptable ranges and meanings where necessary. Typically only software engineers may occasionally change certain runtime parameters to fine tune performance characteristics.

2.4.1.3 GUI Property Files

The CHART GUI has two properties files used to specify runtime parameters. These parameters include location of other services, the database, timeout parameters, retry parameters, etc. The primarily file is named MainServlet.props. Additional parameters are stored in a velocity.props file. These files are stored in the chartlite directory under the WebApps directory in the Apache Tomcat installation area. These are created at installation time with default values appropriate for most installations. Installation procedures typically call for the person performing the installation to edit some files to make specific updates immediately following installation. These are user-editable ASCII files and parameters are stored in a Module.ParameterName=value format, with thorough in-line documentation of each parameter, including defaults and reasonable acceptable ranges and meanings where necessary. Typically only software engineers may occasionally change certain runtime parameters to fine tune performance characteristics.

2.4.1.4 Arbitration Queue Storage Files

Each CHART DMS and HAR contains an Arbitration Queue which is used to store and manage the messages requested to be on the online device as part of a response to ongoing traffic events. This data is stored in a file in a directory called MessageQueuePersist/, which is a subdirectory of the DMSService and HARService directories. These are binary files, and are not user-editable or user-viewable from Windows. The files are named by the 32-digit hexadecimal CHART ID plus the extension “.per”. Arbitration Queues are not generally maintained from one version of CHART to the next. Whenever the Java version changes, they cannot be maintained, as the old files will not be readable using the new version of Java.
2.4.1.5 Device Logs

DMSs, TSSs, and HARs have a capability to store communications transactions between CHART software and the physical devices over the telephone lines. This data can be used for debugging communications issues or for validating successful communications operations. The device logs can be toggled on or off by editing device properties from the appropriate device details screens. Typically all device communications logging is enabled for all devices. These logs are automatically deleted by the system after a set period of time, so they do not accumulate infinitely. They are stored in the DeviceLogs/ or DebugLogs/ subdirectories within the service install directory, and are named by device name and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel.

2.4.1.6 Traffic Sensor Raw Data Logs

TSSs are polled periodically (typically every five minutes) for traffic volume, speed, and occupancy data. The statistics gathered are stored in data files in the TSSService/RawData/ directory. From here these files are permanently archived for historical purposes. These files are stored in a human-readable, comma-delimited, ASCII format, although they are not designed for convenient routine interpretation directly by users.

2.4.1.7 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity undertaken by the services. These logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the service’s properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel.

2.4.1.8 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by the services. Most messages, including most errors, are captured by the CHART software and written to the process logs, but certain messages (typically produced by the Java Virtual Machine itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad installation; once the system is up and running, errors rarely appear in these error logs. Debugging information from the JacORB COTS, which is not usually indicative of errors, can routinely be found in these error logs, as well. These log files can be reviewed by software engineering personnel to diagnose an installation problem or other type of problem. These logs are automatically deleted by the system after a set period of time defined by the service's properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus an ".err" extension. These logs are typically read only by software engineering personnel.
2.4.1.9 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file, used to provide a historical record of activity undertaken by the process. These GUI process logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the GUI service’s properties file, so they do not accumulate infinitely. These files are stored in the chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat installation area. They are named by the service name (“chartlite”) and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel. Additional log files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache Tomcat installation area.

2.4.1.10 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named PortConfig.xml, upon startup, which indicates which ports are to be used by the service and how they are to be initialized. A Port Configuration Utility is provided which allows for addition, removal of ports and editing of initialization parameters. As indicated by the extension, these files are in XML format. This means these files are hand-editable, although the Port Configuration Utility allows for safer, more controlled editing. The Port Configuration files are typically modified only by software engineers or telecommunications engineers.

2.4.2 Database Design

The CHART database design is described below. The design is based on the CHART Business Area Architecture, and the CHART System Requirements.

The database design consists of these major areas:

· User/system management

· Device configuration

· Device status

· Traffic event response planning

· Events and logging

· Alerts (new for R3B1)

· System parameters
· Replication

· Archiving

All device configuration data is maintained by the CHART database and is supplied to the FMS as part of a service request. However, configuration data for devices related to video distribution is not supplied to the FMS, since CCTV camera communications do not use the FMS.

2.4.2.1 User/System Management

The user/system management entities consist of the complete suite of information to tie together the users, roles, organizations, and functional rights with the center's identification. The user/system management entities are considered static data in the sense that the majority of the data will be pre-loaded either through a GUI or via SQL loads.

2.4.2.2 Device Configuration

The DMS, HAR, SHAZAM, TSS, Camera, Monitor, and other CCTV video entities include data that define the configuration of the resources for devices. Each device or detector is associated with an organization via a foreign key. The organization is responsible for all devices and for each model type to which it is related.

All of the configuration data is considered static data. It is generally changeable, but changes infrequently.
2.4.2.3 Device Status

The DMS, HAR, SHAZAM, TSS, Camera, and Monitor entities include data that define the status or state of the devices. Some status information (e.g. last poll time, last polled detector speed data) changes very frequently. Other status information (e.g., the message on a DMS) changes less frequently.
2.4.2.4 Traffic Event Response Planning

The planning entity consists of all of the data necessary for an operator to execute a response plan from within an open traffic event. Response plans include preselected HAR and DMS devices with messages related to a well known event such as recurring congestion at a particular location.

This data is considered to be fairly static, although libraries and plans are easily updated. These data set up the plan scenario for a given event. It is used manually by operators to refine the plan or create their own.

The dictionary entity data assists the operator by checking spelling and checking for banned words when creating messages for the message library, for DMS messages, and for HAR text message clips, and by doing pronunciation substitution prior to text to speech for HAR text message clips.
2.4.2.5 Events and Logging
The events entity includes all informational data related to traffic incidents. It also includes any devices that are part of the response to an event, such as DMSs and HARs. Also included are various log data that are described in more detail below.

The logs that are maintained are listed below:

· Communications Log

· Event Log

· Operations Log

The Communications Log entity documents operator communications, and may or may not be tied to a specific traffic event. The event log contains operator and system generated entries specific to actions associated with a particular traffic event. The Operations Log entity stores all system generated events, including device usage and component failures.

2.4.2.6 Alerts

The alerts entity is new for R3B1. The alerts entity includes all informational data related to alerts. Alerts are dynamic data. Alerts are created by the system automatically. Alert status and history data are updated frequently.
2.4.2.7 System Parameters
The System Profile parameters are used for general CHART system operations. Examples of system parameters include:

· Days to purge operation log

· Which event types may be combined

· Which event types are comparable for event location duplication

· HAR date stamp format

· Alert system configuration parameters

· General GUI parameters

2.4.2.8 Replication

The database will provide replication of all entities required for a CHART server site to run independent of any other CHART server site, as might occur with a network outage between sites. This includes data related to CHART GUI (profile, folders), user management, and dictionary data. The data related to logging and resources is replicated as well.
Device configuration data is not replicated since each device is homed to only one server. Other CHART servers access that device configuration through the appropriate CORBA Trading Service. Similarly, traffic event information is homed to only one server and therefore not replicated.

2.4.2.9 Archiving

The CHART Archive database stores data from the CHART operational system as part of a permanent archive. The CHART Archive database design is a copy of the CHART operational system for those tables containing system and event log information. In addition, the CHART Archive database stores detector data. This data is stored as time annotated averages at selected frequencies. For R3B1, archiving will be updated to include alert data.
3 Key Design Concepts

3.1 Event Location Using Known Roads
CHART R3B1 will provide the capability to populate event locations using pull down menus for known roads. The location choices will be populated using data from the CHART Mapping application database. The user will select a county, select a roadway type from pick list ("I" "US" "MD"), select a route number, and select an intersecting or identifying roadway relationship (prior to, past, exit/entrance number, intersection, mile post). The choices for each step in the process would be filtered based on the information already entered. For example, if the user had already chosen Howard County, I-95, only roads intersecting I-95 in Howard County would be available.
Data entry rules will be enforced to produce more consistent location data in the database. If the user selects Maryland as the state, the user will not be able to use free-form text for county/region, roadway type, and route number. Instead, if the user wishes to specify one of these fields, they must make a choice from the values presented in the pick list. If the state is not specified or is other than Maryland, free-form text is allowed in these fields. Choices are not provided and freeform text is required for primary road and intersecting feature if the state is not Maryland or if a region is selected rather than a county. Freeform text is always allowed when specifying an intersecting roadway.
The concept of an alias list will be introduced. This list will contain “short cuts” for filling in the other location data. For example, selecting an alias of “Bay Bridge” would automatically fill in county of Anne Arundel, Route Type of “US”, and Route Number of 50. The user could then fill in the remaining fields. An alias will have an internal name (e.g. “BHT” and a public name “Baltimore Harbor Tunnel”). The aliases will be configurable for a suitably privileged user.

Traffic event location descriptions and traffic event names will be more closely controlled. The GUI will generate a traffic event location description using the values in the location fields. The traffic event name will consist of the type of traffic event, an ampersand (@) and the location description. A capability will exist to allow the user to override the GUI generated location description after the user agrees to warning messages. If the user overrides the location description, the traffic event name will include the overridden description.

3.2 Event Duplication Prevention and Merging
CHART R3B1 will provide the capability to help prevent duplicate events and merge existing duplicate events. Duplicate events will be identified based on the location data associated with the traffic event.

3.2.1 Event Duplication Prevention

The addition of the location fields (roadway type, route, intersection) will make it possible to help prevent duplicate traffic events from being entered. While the user selects these location fields, the system will find events with similar locations and show them to the user. In this way, the user will be aware of possible duplicate events and may opt to abandon the creation of an additional event.

3.2.2 Event Duplication Identification

CHART will detect existing open duplicate events based on their location. This process of identifying duplicates will occur in the background. When a duplicate event is identified an alert will be issued so the operator can take action. That action may include deleting an event or merging two events. The alert mechanism is addressed in Section 3.6.

3.2.3 Event Merging

A capability will be added to allow duplicate events to be merged. The merge process can be initiated after a duplicate is detected by the system, or initiated by the user. This feature can be used when different events exist in the system that may be using different resources. For example, TOC4, the AOC, and the SOC may all open events using different devices related to the Bay Bridge walk.

The system will show the user data from each of the events involved in the merge and let the user make some high level choices about the data that is to be merged, based on the group of data such as basic event data, roadway configuration, lane status, history, participants, response plan, etc. The system will then merge the events, combining the devices/messages, communications log entries, and other basic information based on the user input during the merge process. The target event will be kept, with fields from the source event merged in as requested, and the source event will be closed as a false alarm.
3.3 Improved Lane Configuration Capabilities
CHART R3B1 will provide additional lane configuration capabilities. Roadway configurations will be enhanced in several ways. Several new lane types will be added to allow definitions of tunnel bores, toll lanes, multiple medians/separators, left exits, and multi-lane exits. New roadway configurations making use of these new features will be created in the CHART database.

In addition, there will be a new capability to assign the current traffic flow direction of the lane regardless of the side of the median where a lane exists. This will accommodate situations such as when there is two- way traffic in a single tunnel bore. In addition to setting a lane to a single direction, a lane will be able to be configured to be bi-directional (alternating traffic) for use when a single lane of roadway is being controlled by a flagging or signaling operation.

3.4 Improved User Interface
CHART R3B1 will provide significant enhancements and redesign for the CHART GUI.

The CHART GUI will be re-engineered with two open windows: a “home page” window and a “working” window. The “home page” will be what the user sees immediately after logging into CHART. The “home page” will have the same basic current functionality, but the main work area of the home page will be split into sections for:

· New events (opens in new window) (this area is small and static).

· Alerts (alarms relevant to a particular operator, with an option to see all alerts).

· Center responsibilities (list of open events for the operator’s operations center).

The CHART “working” window will be used to perform tasks like editing traffic events, video display, camera control, working directly with signs etc.

Other enhancements requested include the following:

· Consolidated view of the center’s open events. Instead of showing all open events, show just incidents and have a concise summary listing for other types of events. For example, a summary will show “5 Action Events” and the user may click on the summary to cause the full list of action events to expand.

· The navigation bar will be made more concise using an expand /contract mechanism like that currently used for the Administration section.

· Police report number will be added to the basic traffic event data.

· The ability for a user to select their “Home Monitor” when they log in and provide an icon always visible on the home page to allow the user to view the home monitor. The home monitor will be tracked as a user cookie and will not be known to the server.

· Links/Tabs on the event details page to easily change to a previously accessed event.
3.5 Improve Text-To-Speech Capabilities
CHART R3B1 will provide the capability to use and maintain a pronunciation glossary. This will enable operators to type text without having to alter spelling in order to improve the pronunciation in the text-to-speech engine. The current CHART dictionary will be enhanced to allow a suitably privileged operator to maintain the pronunciation entries in the dictionary.

An operator will type a message using the correct spelling of all words. If a word requires substitution, that substitution will be performed before the text-to-speech conversion is done. The operator will not be aware of this process. This will not affect the way the text-to-speech is done, so that messages containing the currently used phonetic spellings will still work, and operators may choose to continue using the phonetic spellings.

3.6 Alerts

CHART R3B1 will provide the capability to create and manage alerts. For R3B1, the following alerts will be generated:

· Unhandled controlled resources

· Devices in hardware failure

· Duplicate traffic events

· Traffic events not closed by a specified time

· Manual, operator-initiated events

Each alert has a state, and alerts can transition from state to state during their lifetime. The planned alert states are: new, accepted, closed, and delayed until a certain time.

The possible actions which an operator can take on an alert are:

· Accept the alert, with an optional reminder time. This moves it from ‘new’ or ‘delayed’ to ‘accepted’ and indicates the accepting operator intends to soon take some action necessary before the alert can be closed. The system will move the alert back to ‘new’ at the reminder time. If a reminder time is not specified, a default reminder time will be used

· Unaccept the alert. This moves it from ‘accepted’ to ‘new’ and indicates the operator has changed his mind and will not soon be working on the alert.

· Close the alert. This moves it from ‘new’, ‘accepted’, or ‘delayed’ to ‘closed’, and requests if the same thing happens again, issue a new alert for it.

· Delay the alert, with an optional reminder time. This moves it from ‘new’ or ‘accepted’ to ‘delayed’. This indicates the alert is bogus, not of interest, or already handled. The system will move the alert back to ‘new’ at the reminder time. If a reminder time is not specified, a default reminder time will be used.

· Undelay the alert. This moves it from ‘delayed’ to ‘new’.

· Escalate the alert. This requests the alert immediately be escalated rather than waiting until the escalation timeout occurs.

· Provide a comment on the alert. The comment entered by the user will appear in the time stamped history log of the alert.

Alerts will be filtered by the alert state. By default, the new alerts will be shown, however the user can easily view alerts in other states (accepted, delayed, or closed). The CHART home page (discussed in Section 3.4) will show a summary of alerts by state (new, accepted, delayed, or closed). The user can also filter alerts to show those for which they are personally responsible, those for which their center is responsible, or all alerts (if they have a special functional right).

An alert will have a history, which can be viewed on the alert’s details page. The history will show the state transitions of each alert, indicating who modified the alert and when. A record of all operations centers with visibility to the alert will be shown, indicating when each operations center was added to the alert’s visibility.

Each operations center will be configured to have one or more backup operations centers, to be used for alert escalation. Every alert will be initially issued to one or more operations centers (in a future release this will be one or more AORs). If an alert remains in the new state for more than a configurable escalation time period, the alert will automatically be escalated to the backup operations center(s) for each of the operations centers the alert is issued to. Escalation will be forced immediately by the system if no users are logged in with the functional right to manage the alert’s type at the currently specified operations centers. Escalation is additive: When an alert is escalated, the list of backup operations centers will be ADDED to the list, rather than replacing the current list. In this way the universe of operators available to handle the alert will never shrink, because the alert was escalated.

Functional rights will include:

· View user’s own operations center’s alerts (by alert type)

· View all alerts

· Manage user’s own operations center’s alerts (by alert type)

· Manage all alerts

· Create Manual Alerts

Closed alerts will have an expiration time. Closed alerts will automatically expire and be removed from the system (as are traffic events) after a configurable period of time (say, 8 hours). Closed alerts will not influence system behavior -- i.e., their existence in the system will not suppress generation of new alerts for the same item. If suppression is desired, the delay feature must be explicitly requested by the operator.

The subsystems which use alerts will be designed, to reasonable extent, to avoid creation of duplicate alerts. (For instance, for a duplicate traffic event, the newer event will be flagged as a duplicate of the older, not vice versa.) Furthermore, the alert managers will also automatically detect and delete duplicate alerts. For instance, a device hardware failure will trigger an alert only when the device first transitions into hardware failure, but the alert manager de-duplication process will prevent duplicate alerts for a device which is oscillating between OK and hardware failure, or between comm failure and hardware failure. Additionally the delay feature can further be used to explicitly suppress certain bothersome repetitive alerts.

All alert data will be persisted and depersisted such that restarting an alert manager will have no visible effect on the system, once the alert manager returns to full operational status. All alert data, including all history, will be archived.
3.7 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are trapped by the GUI are reported immediately back to the user. The GUI will also report communications problems with the server back to the user. The server may also trap user errors and those messages will be written to a server log file and returned back to the GUI for display to the user. Additionally, server errors due to network errors or internal server problems will be written to log files and returned back to the GUI.
3.8 Packaging

This software design is broken into packages of related classes. The table below shows each of the CHART packages along with a description of each. There is a new Alert Module and a new Location Module for R3B1.
Table 1 Package Descriptions

	Package Name
	Package Description

	AlertModule
	This package contains an installable service application module that is responsible for handling Alerts in CHART. This is new for R3B1.

	AudioClipModule
	This package contains classes used during the creation and storage of HAR audio clips.

	AudioCommon
	This contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART AudioClipModule and other applications such as the CHART GUI.

	Camera Control Module
	This package contains an installable service application module that serves the Camera Factory, Camera and related objects as specified in the system interfaces.

	CHART2Service
	This package contains a class that serves as a generic service application.

	CommandProcessorModule
	This package contains an installable service application module that serves the CommandProcessorFactory, CommandProcessor and related objects as specified in the system interfaces.

	CommLogModule
	This package contains classes that are used to write the CommunicationsLog.

	CORBAUtilities
	This package contains classes included in the third party ORB product used for implementation.

	DataModel
	This package contains classes and methods that allow for storage, efficient lookup, and updating of object data.

	DeviceManagement
	This package contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART ArbitrationQueue and other applications such as the CHART GUI.

	DeviceUtility
	This package contains various utility classes used by CHART devices.

	DictionaryManagement
	This package contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART Dictionary and other applications such as the CHART GUI.

	DictionaryModule
	This package contains an installable service application module that serves Dictionary and related objects as specified in the system interfaces. This will change for R3B1.

	DMSControl
	This package serves the DMS Configuration and Status Factory, DMS Configuration and Status and related objects as specified in the system interfaces.

	DMSControlModule
	This package contains an installable service application module that serves the DMS Factory, DMS and related objects as specified in the system interfaces.

	DMSProtocols
	This package contains classes that encapsulate the functionality used to communicate with the various models of DMSs

	DMSUtility
	This package contains DMS related utility classes used by the server.

	EORS
	This package contains classes related to EORs.

	EORSModule
	This package contains an installable service application module that serves EORS and related objects as specified in the system interfaces.

	FieldCommunicationsModule
	This package contains an installable service application module that serves Port manager and related objects used to provide access to communications ports on the machine where this module is run.

	GUI
	This package contains all of the classes that comprise the CHART GUI.

	HAR Control
	This package contains HAR utility and other HAR related classes.

	HARControlModule
	This package contains an installable service application module that serves the HAR Factory, HAR and related objects as specified in the system interfaces.

	HARProtocols
	This package contains classes that encapsulate the functionality used to communicate with the various models of HARs.

	LogCommon
	This package contains objects related to the commLog.

	MessageLibaryModule
	This package contains an installable service application module that serves the MessageLibrary Factory, MessageLibrary and related objects as specified in the system interfaces.

	MonitorControlModule
	This package contains an installable service application module that serves the Monitor Factory, Monitor and related objects as specified in the system interfaces.

	NativeUtility
	This package contains utility classes used for calling C++ code.

	PlanModule
	This package contains an installable service application module that serves the Plan Factory, Plan and related objects as specified in the system interfaces.

	ResourcesModule
	This package contains an installable service application module that serves the OperationsCenter Factory, OperationsCenter and related objects as specified in the system interfaces.

	RoadwayLocationModule
	This package contains an installable service application module that provides interfaces for querying the location data contained on the CHART Mapping database. This is new for R3B1.

	RouterControlModule
	This package contains an installable service application module that serves the Router Factory, Router and related objects as specified in the system interfaces.

	SHAZAMControlModule
	This package contains an installable service application module that serves the SHAZAM Factory, SHAZAM and related objects as specified in the system interfaces.

	SHAZAMProtocols
	This package contains classes needed for communication to a specific model SHAZAM.

	SHAZAMUtility
	This package contains SHAZAM related utility.

	TrafficEventMangement
	This package contains classes related to TrafficEvent objects.

	TrafficEventModule
	This package contains an installable service application module that serves the TrafficEvent Factory, TrafficEvent and related objects as specified in the system interfaces. This will change for R3B1.

	TSSMangementModule
	This package contains an installable service application module that serves the RTMS Factory, RTMS and related objects as specified in the system interfaces.

	TSSUtility
	This package contains TSS related utility classes.

	TTSControlModule
	This package contains an installable service application module that is used to run the TTS server.

	Utility
	This package contains various utility classes used throughout CHART.

	VideoSwitchControlModule
	This package contains an installable service application module that serves the VideoSwitch Factory, VideoSwitch and related objects as specified in the system interfaces.

	VideoUtility
	This package contains Video related utility classes.

3.9 Assumptions and Constraints

1. The CHART Mapping database is reachable from all CHART servers and may be queried by CHART.

2. The structure of the CHART Mapping database will not change significantly during the update of the new base map information.

3. A traffic event will be detected as a duplicate if its traffic event type and location match. The conditions for detecting a duplicate will be hard coded and will not be configurable.

4. For the new lane configuration capabilities, it is assumed that a graphical bi-directional status indicator similar to lane direction will be adequate. There is no plan to have a separate bi-directional lane graphic for each lane type.
5. It is assumed that home monitor concept should be per operator console, per user logged into the console. In this way an operator at a particular console should get the same home monitor each time they use that machine. When an operator logs in at a different console he/she will get the home monitor that they previously set for that machine.

6. Duplicate traffic event alerts will be per pair of duplicate alerts. So if three traffic events A, B, & C of the same type at the same location, there will be three alerts: B is a duplicate of A, C is a duplicate of A, and C is a duplicate of B. These are separate unique (non-duplicate) alerts which will all be displayed to the user. This makes some sense because only two events can be merged at a time.

7. There will be a default escalation operations center (naturally set to "SOC") which will be used if an operations center cannot be queried to determine its backup operations center for the alert type in question, (This may occur during the first minute or two after alert manager startup, although a configurable delay on startup of the automatic escalation task should limit this to manual escalations occurring immediately after global system startup.)

8. Escalation time is per alert type. The same escalation time will apply to all levels of escalation for an alert. (e.g., the alert can't escalate to TOC3 after 10 minutes, then escalate to SOC after 30 minutes.) Further, because a given alert may be simultaneously active in many operations centers, there will be one escalation time for each alert type system-wide.

9. There will be no alerts about alerts. No alert if an accepting user has logged off without closing the alert, no alert if an alert has been unaccepted too long, etc. (Alerts are not transferable shared resources that will prevent logout or be detected if no users logged in at the alert’s operations center(s)).

10. An alert cannot be unclosed. (An alert can be unaccepted or undelayed, however.)

11. No operation log entries will be made for alert creation or state transitions. Full history of the alert creation and state transitions will be stored in the alert tables directly. This alert data will be archived for future reporting capabilities.
4 Use Cases

The use case diagrams depict new functionality for new CHART R3B1 features.

4.1 High Level
4.1.1 HighLevelUseCases (Use Case Diagram)

This diagram shows the main uses of the system at a very high level. Most of the use cases will not be detailed further since they are not changing with CHART R3B1. New functionality for CHART R3B1 includes the Manage Alerts and Configure Alerts use cases which are further detailed with a corresponding use case diagram. The View Home Page and View Working Page use cases are also new, which are simple enough to not require further detail in separate use case diagrams. Some use cases are modified for R3B1, including the Manage Dictionaries use case. This is further detailed in a separate use case diagram.

[image: image4.emf]New forR3B1.Administer

System

See

ManageAlerts

Use Case Diagram.

See

ConfigureAlerts

Use Case Diagram

Updated for R3B1. See

ManageDictionaries &

ManagePronunciations

Use Case Diagrams.

Manage

Devices

Specify Home MonitorView HomeMonitorDetailsViewHome PageViewWorking PageLoginManage

Traffic Events

Manage Alerts

Configure Alerts

New for R3B1.

View DeviceStatusManage Plans

Administrator

Configure Devices

Control DMS Manage

Dictionaries

Control HAR Operator

Configure

Operation

Centers

Manage Video Manage Stored

Messages

Manage Device Queues «include»«extend»

«extend»

«extend» «extend» «extend» «extend» «extend»

«extend»

«extend»«extend»

«extend» «extend»

Figure 4‑1 HighLevelUseCases (Use Case Diagram)
4.1.1.1 Administer System (Use Case)

An administrator (operator with the correct functional rights) may perform administrative functions including configuring devices, configuring alerts, and managing dictionaries.

4.1.1.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.1.1.3 Configure Alerts (Use Case)

A user with proper functional rights can configure various features of alert types and alerts processing. Extended use cases define the types of configuration which can be performed.

4.1.1.4 Configure Devices (Use Case)

An administrator (operator with the correct functional rights) may configure devices. This includes the devices themselves and all associated supporting configuration information.

4.1.1.5 Configure Operation Centers (Use Case)

A user with proper functional rights can configure operations centers that are known to the system. Administrators can add and remove operations centers. Users can also view the operations centers that have been defined in the system.

4.1.1.6 Control DMS (Use Case)

The following DMS sign models are supported: FP1001, FP2001, FP9500, TS3801, ADCO, Display Solutions, Sylvia and NTCIP.

4.1.1.7 Control HAR (Use Case)

Highway Advisory Radio (HAR) allows the user to broadcast a message over an AM radio channel to inform motorists of traffic conditions, incidents, events, etc. The user can set the message on a HAR device, blank the message (which places the default message on the device), reset the device, and take the device offline from the CHART system or place the device back on-line.

4.1.1.8 Login (Use Case)

This use case diagram shows a user logging on to the system. The attached use cases Specify Home Monitor and View Home Page are new for R3B1.

4.1.1.9 Manage Alerts (Use Case)

A user with proper functional rights can view and respond to alerts generated by the system. This is new for R3B1. Details are shown in the Manage Alerts use case diagram.

4.1.1.10 Manage Device Queues (Use Case)

Each HAR and DMS device contains a queue that serves to arbitrate the usage of the device when more than one user needs to display a message on the device. When a user is managing a traffic event and wishes to put a message on a HAR or DMS as part of the response for the traffic event, the message is not sent directly to the device and is instead sent to the device's arbitration queue. This arbitration queue uses a prioritization algorithm that determines which message is to be sent to the device based on the source of the message and the type of traffic event from which the message was sent. This determination of the message to put on the device is done every time a message is removed from the queue or added to the queue.

All messages set on DMS or HAR devices when the device is online must pass through the device's queue via a traffic event. No direct setting of the DMS or HAR message is allowed when the device is online.

The system allows users to view device queues to determine the priority of the messages in the queue, see the message that is currently active, and manually re-prioritize the queue.

4.1.1.11 Manage Devices (Use Case)

An operator with the correct functional rights may perform basic operations on CHART devices including HARs, DMSs, Video related devices, TSSs, and SHAZAMs.

4.1.1.12 Manage Dictionaries (Use Case)

An administrator (operator with the correct functional rights) may manage system dictionaries. New in R3B1, Manage Dictionaries now includes managing pronunciations for Text to Speech. See the Manage Dictionaries use case diagram for details.

4.1.1.13 Manage Plans (Use Case)

An operator with the correct functional rights may manage plans.

4.1.1.14 Manage Stored Messages (Use Case)

An operator with the correct functional rights may manage stored messages.

4.1.1.15 Manage Traffic Events (Use Case)

This diagram models the actions that an operator may take that relate to traffic events. This includes responding to traffic events using field devices.

4.1.1.16 Manage Video (Use Case)

An operator with the correct functional rights may perform basic operations on Video related devices including cameras and monitors.

4.1.1.17 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.1.1.18 Specify Home Monitor (Use Case)

When logging on, a user can specify a preferred home monitor. A link to the user's home monitor (if one is selected) is displayed on the home page at all times for easy access.

4.1.1.19 View Device Status (Use Case)

The user may view the status of a device. The information that encompasses a device status depends on the device type and sometimes even the device model within a device type. Device status is viewable by users.

4.1.1.20 View Home MonitorDetails (Use Case)

If a user has specified a preferred home monitor upon logging in, a link to the user's home monitor (if one is selected) is displayed on the home page at all times. The user can view the details page for this monitor by clicking the link at any time.

4.1.1.21 View Home Page (Use Case)

This use case shows the home page being shown to the user. A user is shown the home page when logging in, and can view the home page at any other time during the login session.

4.1.1.22 View Working Page (Use Case)

This use case shows the working page being shown to the user. Most actions that the user perform which requires display of a new page brings up the working page to show the relevant data.

4.2 Alerts

4.2.1 ManageAlerts (Use Case Diagram)

A user with sufficient privileges may manage alerts including controlling and viewing alerts.

[image: image5.emf]SeeCreateAlert Use Case Diagram Filter AlertsViewNew AlertsViewAccepted AlertsView Closed Alerts View Delayed AlertsResolve AlertSeeManageAlertState Use Case Diagram Manage AlertsOperatorControl AlertsView AlertsCreateManual AlertModify AlertView AlertDetailsManage Alert State Edit Alert Escalate Alert SeeEditAndEscalateAlert Use Case Diagram «extend»«include»«extend»«extend»«extend»«extend»«extend»«extend»«extend»«extend»«extend»«extend» «extend» «extend»

Figure 4‑2. ManageAlerts (Use Case Diagram)

4.2.1.1 Control Alerts (Use Case)

A user with sufficient privileges may control alerts including being able to create and modify alerts.

4.2.1.2 Create Manual Alert (Use Case)

A user with sufficient privileges may create a manual alert. A manual alert is a free-form text alert sent to a non-empty set of AMGs. There is no requirement that any member of the AMGs actually be logged in.

4.2.1.3 Edit Alert (Use Case)

A user with proper functional rights can edit an alert. In this context "editing" an alert involves changes to the alert outside of state changes and escalation. This includes adding a comment, changing the Delay Timer (if in the Delayed state), and changing the Accept Timer (if in the Accepted state).

4.2.1.4 Escalate Alert (Use Case)

A user with sufficient privileges may manually escalate an alert. Manually escalating an alert provides the user with the ability to potentially increase the number of AMGs in the alert's AMG set and therefore show up as a new alert to potentially more users (see "Perform Escalation Cycle" use-case for details).

4.2.1.5 Filter Alerts (Use Case)

For alert types the user has privileges to view, the user may filter alerts by responsibility and alert state. Filtering by responsibility means alerts are shown based on who last changed the state of the alert: User, Center, and All. The User filter displays alerts where the user was the last one to change the alert's state. The Center filter displays alerts where the last user to change the alert's state belongs to the same Center as the current user. The All filter displays all alerts in the system regardless of who last changed the alert's state (effectively no filter). Within these filters, alerts are sorted by alert state: New, Accepted, Delayed, and Closed (but not yet archived). Because alerts in the New state might not yet have a responsible user, the User and Center filters populate the New state sort with alerts in the New state that are visible to the user's Center.

4.2.1.6 Manage Alert State (Use Case)

A user with sufficient privileges may move an alert through legal state transitions. The states are New, Accepted, Delayed, and Closed. All state transitions are legal except transitions from the Closed state. See ManageAlertState Diagram for sub use-cases.

4.2.1.7 Manage Alerts (Use Case)

A user with proper functional rights can view and respond to alerts generated by the system. This is new for R3B1. Details are shown in the Manage Alerts use case diagram.

4.2.1.8 Modify Alert (Use Case)

A user with sufficient privileges may modify an alert. Modifications include moving the alert though its states, editing alert properties, and manually escalating the alert.

4.2.1.9 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.2.1.10 Resolve Alert (Use Case)

A user with sufficient privileges may resolve alerts. Resolving an alert brings the user to a page where this type of alert can be addressed. The following resolve pages are envisioned for the R3B1 alerts: DeviceFailure: Device Details page to allow the device to be taken offline or put into maintenance mode, if appropriate UnhandledResource: Transfer Shareable Resource page EventStillOpenAlert: Event Details page DuplicateEventAlert: Merge Events page ManualAlert: Close the Alert

4.2.1.11 View Accepted Alerts (Use Case)

A user with sufficient privileges may view alerts in the Accepted state with the filter applied (see Filter Alerts use case) and ordered by the alert creation time (default sort order places the most recently created alert first).

4.2.1.12 View Alert Details (Use Case)

A user with sufficient privileges may view alert details including the alert type, alert description, create time, next escalation time (if New), Unaccept time (if Accepted), Undelay time (if Delayed), closed time (if Closed), the current set of AMGs, the predicted set of AMGs at next escalation, and a history of all modifications to the alert each with a comment.

4.2.1.13 View Alerts (Use Case)

A user with sufficient privileges may view alerts. Viewing an alert includes the ability to see the alert type, the alert description, and the alert creation time. Alerts are organized by their state including an indication of the number of alerts in each state. A visual and auditory cue is given when the user is a member of an AMG listed in at least one New alert and the user has the rights to control the alert. The ability to view alerts does not imply the ability to control alerts. Closed alerts may be viewed only if they have not yet been archived.

4.2.1.14 View Closed Alerts (Use Case)

A user with sufficient privileges may view alerts in the Closed state with the filter applied (see Filter Alerts use case) and ordered by the alert creation time (default sort order places the most recently created alert first). Only Closed alerts that have not yet been archived are displayed (see Close Alert use case).

4.2.1.15 View Delayed Alerts (Use Case)

A user with sufficient privileges may view alerts in the Delayed state with the filter applied (see Filter Alerts use case) and ordered by the alert creation time (default sort order places the most recently created alert first).

4.2.1.16 View New Alerts (Use Case)

A user with sufficient privileges may view alerts in the New state with the filter choice applied (see Filter Alerts use case) and ordered by the alert creation time (default sort order places the most recently created alert first).

4.2.2 ManageAlertState (Use Case Diagram)

A user with sufficient privileges may transition alerts through legal states.

[image: image6.emf]SeeManageAlertsUse Case DiagramOperatorManageAlert StateAcceptAlertDelayAlertUnacceptAlertUndelayAlertCloseAlertInit Alert Perform Escalation Cycle Monitor Accept Time Monitor Delay Time Monitor Archive Time System Specify Alert Accept Duration Specify Alert Delay Duration «include»«include»«include»«extend»«extend»«include»

Figure 4‑3. ManageAlertState (Use Case Diagram)

4.2.2.1 Accept Alert (Use Case)

A user with sufficient privileges may Accept an alert. Accepting an alert implies the user's AMG will handle the alert to closure. Accepting an alert stops any Escalation or Delay Timer, if running. To ensure alerts do not get accepted and forgotten, Accepting an alert starts the Accept timer for when the system should automatically revert the alert to the New state (See Configure Alert Timeouts). A typical duration of the Accept timer is expected to be less than a typical duration of the Delay timer.

4.2.2.2 Close Alert (Use Case)

A user with sufficient privileges may close an alert in the New, Accepted, or Delayed states. Closing an alert stops any Escalation, Delay, or Accept Timer and starts an Archive Timer. The alert remains visible to privileged viewers for the duration of the Archive Timer. After the Archive Timer expires the alert is removed from being seen by operators and only exists in the database archives.

4.2.2.3 Delay Alert (Use Case)

A user with sufficient privileges may Delay an alert. The implication is that the AMG is not going to handle the alert any time soon but still wants to take responsibility for handling the alert to closure. Delaying an alert stops any Escalation or Accept Timer, if running. To ensure alerts do not get delayed and forgotten, Delaying an alert starts the Delay Timer for when the system should automatically revert the alert to the New state (See Configure Alert Timeouts). A typical duration of the Delay timer is expected to be more than the typical duration of the Accept timer.

4.2.2.4 Init Alert (Use Case)

This use case is part of the CreateGenericAlert, Unaccept and Undelay use cases and represents the common processing involved in initializing and reinitializing an Alert. Expected processing is resetting timers and executing an escalation cycle if needed there are no users logged in to the members of the current AMG set with rights to manage this alert.

4.2.2.5 Manage Alert State (Use Case)

A user with sufficient privileges may move an alert through legal state transitions. The states are New, Accepted, Delayed, and Closed. All state transitions are legal except transitions from the Closed state. See ManageAlertState Diagram for sub use-cases.

4.2.2.6 Monitor Accept Time (Use Case)

When an alert enters the Accepted state the system calculates how far into the future the Accept Timer should fire. If the Accept Timer fires before the alert changes state, then the alert reverts to the New state with the same AMG list it had when it last transitioned from the New state. If a user changes this alert's Accept Duration while the alert is in the Accepted state (see "Specify Alert Accept Duration" use case), the system will recalculate the Accept Timer using the new value.

4.2.2.7 Monitor Archive Time (Use Case)

When an alert enters the Closed state the system calculates how far into the future the Archive Timer should fire. When the Archive Timer fires the alert is removed from the active system and can no be longer seen by users. At this point, the alert only exists in the archive database for reporting purposes.

4.2.2.8 Monitor Delay Time (Use Case)

When an alert enters the Delayed state the system calculates how far into the future the Delay Timer should fire. If the Delay Timer fires before the alert changes state, then the alert reverts to the New state with the same AMG list it had when it last transitioned from the New state. If a user changes this alert's Delay Duration while the alert is in the Delayed state (see "Specify Alert Delay Duration" use case), the system will recalculate the Delay Timer using the new value.

4.2.2.9 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.2.2.10 Perform Escalation Cycle (Use Case)

Perform Escalation Cycle is the process of extending the visibility of an alert. This can happen either when a user performs a manual escalation, or if the system determines that it is time to automatically escalate the alert (which happens when the alert stays in the New state too long, or if there are no users logged into any AMG in the alert's current visibility with rights to manage the alert). An escalation cycle consists of one or more "escalation steps" until either a operations center is added which has a user who can manage the alert or there are no more operations centers in the chain of backup operations centers left to add (full visibility is achieved). Each escalation step performs a union of the operations center(s) with current visibility to the alert with their backup operations center(s). Just because an escalation cycle terminates when the resulting AMG set is the same as the original AMG set, it does not mean a future escalation cycle will end the same way. This is because an administrator can change backup operations centers at any time. The results of an escalation cycle is added to the alert history including the date and time each AMG was added to the Alert's AMG set.

4.2.2.11 Specify Alert Accept Duration (Use Case)

A user with proper functional rights can specify a reminder time (up to a configurable maximum) for an accepted alert which indicates the maximum time the alert is expected to be in the Accepted state. If the alert is still in the Accepted state when this time expires, the alert will be moved to the New state again for review or action. This use case can be used as the alert is being accepted or at any time after the alert is accepted, to extend (or reduce) the reminder time. If a reminder time is not specified on initial acceptance, a configurable default reminder time is used.

4.2.2.12 Specify Alert Delay Duration (Use Case)

A user with proper functional rights can specify a reminder time (up to a configurable maximum) for a delayed alert which indicates the maximum time the alert is expected or intended to remain in the Delayed state. If the alert is still in the Delayed state when this time expires, the alert will be moved to the New state again for review or action. This use case can be used as the alert is being delayed or at any time after the alert is delayed, to extend (or reduce) the reminder time. If a reminder time is not specified as the alert is being delayed, a configurable default reminder time is used.

4.2.2.13 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.2.2.14 Unaccept Alert (Use Case)

A user with sufficient privileges may unaccept an alert in the Accepted state. Unaccepting an alert stops the Accept Timer, puts the alert in the New state, and begins the Escalation Timer. Unaccepting an alert implies that the user's AMG has changed their mind and no longer wishes to handle the alert.

4.2.2.15 Undelay Alert (Use Case)

A user with sufficient privileges may undelay an alert in the Delayed state. Undelaying an alert stops the Delay Timer, puts the alert in the New state, and begins the Escalation Timer. Undelaying an alert implies that the user's AMG has changed their mind and no longer wishes to handle the alert.

4.2.3 EditAndEscalateAlert (Use Case Diagram)

This Use Case Diagram describes actions in the alert system which modify an alert without changing its state. This includes expansion of the Use Cases "Edit Alert" and "Manually Escalate Alert" from the "Control and View Alerts" Use Case Diagram. (See the "Manage Alert State" Use Case Diagram for modifications to an alert which change its state.)

[image: image7.emf]OperatorEdit AlertComment On AlertSpecify Alert AcceptDurationSpecify Alert DelayDurationManually EscalateAlertPerformEscalationCycleMonitor Escalation Time System See MangeAlertsUse Case Diagram«extend»«extend»«extend» «include»«extend»

Figure 4‑4. EditAndEscalateAlert (Use Case Diagram)

4.2.3.1 Comment On Alert (Use Case)

A user with proper functional rights can add a comment to an alert. Previous comments cannot be changed or removed, nor can the text used to create the alert be changed, but any appropriate comment can be attached to the alert. The comment will be timestamped, attributed to the user, stored in the Alert History in chronological order with other history entries.

4.2.3.2 Edit Alert (Use Case)

A user with proper functional rights can edit an alert. In this context "editing" an alert involves changes to the alert outside of state changes and escalation. This includes adding a comment, changing the Delay Timer (if in the Delayed state), and changing the Accept Timer (if in the Accepted state).

4.2.3.3 Manually Escalate Alert (Use Case)

A user with proper functional rights can force escalation of an alert. This performs an escalation cycle, which, if possible, adds additional operations centers (or in a future release, Areas of Responsibility) to the visibility of the alert.

4.2.3.4 Monitor Escalation Time (Use Case)

The system monitors all alerts in the new state and performs an automatic escalation of any alert when that alert has been in the New state for longer than the escalation time configured for that alert's alert type. This performs an escalation cycle, which, if possible, adds additional operations centers (or in a future release, Areas of Responsibility) to the visibility of the alert. Upon system startup, this task is delayed for a period of time configurable via props file, to allow other system processes a chance to come online and to allow users a chance to log in and handle their alerts before automatic escalation resumes.
4.2.3.5 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.2.3.6 Perform Escalation Cycle (Use Case)

Perform Escalation Cycle is the process of extending the visibility of an alert. This can happen either when a user performs a manual escalation, or if the system determines that it is time to automatically escalate the alert (which happens when the alert stays in the New state too long, or if there are no users logged into any AMG in the alert's current visibility with rights to manage the alert). An escalation cycle consists of one or more "escalation steps" until either a operations center is added which has a user who can manage the alert or there are no more operations centers in the chain of backup operations centers left to add (full visibility is achieved). Each escalation step performs a union of the operations center(s) with current visibility to the alert with their backup operations center(s). Just because an escalation cycle terminates when the resulting AMG set is the same as the original AMG set, it does not mean a future escalation cycle will end the same way. This is because an administrator can change backup operations centers at any time. The results of an escalation cycle is added to the alert history including the date and time each AMG was added to the Alert's AMG set.

4.2.3.7 Specify Alert Accept Duration (Use Case)

A user with proper functional rights can specify a reminder time (up to a configurable maximum) for an accepted alert which indicates the maximum time the alert is expected to be in the Accepted state. If the alert is still in the Accepted state when this time expires, the alert will be moved to the New state again for review or action. This use case can be used as the alert is being accepted or at any time after the alert is accepted, to extend (or reduce) the reminder time. If a reminder time is not specified on initial acceptance, a configurable default reminder time is used.

4.2.3.8 Specify Alert Delay Duration (Use Case)

A user with proper functional rights can specify a reminder time (up to a configurable maximum) for a delayed alert which indicates the maximum time the alert is expected or intended to remain in the Delayed state. If the alert is still in the Delayed state when this time expires, the alert will be moved to the New state again for review or action. This use case can be used as the alert is being delayed or at any time after the alert is delayed, to extend (or reduce) the reminder time. If a reminder time is not specified as the alert is being delayed, a configurable default reminder time is used.

4.2.3.9 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.2.4 CreateAlert (Use Case Diagram)

A user with sufficient privileges may create an alert of various types. For R3B1, the alert types are: Device Failure Alert, Unhandled Resource Alert, Traffic Event Still Open Alert, Duplicate Event Alert, and Manual Alert.

[image: image8.emf]SpecifyResponsibleCentersConfirmUniqueAlertInit AlertPerformEscalationCycleCreate DMS Failure Alert Create TSS Failure Alert Create Unhandled Resource Alert Create Device Failure Alert Create Event Still Open Alert Create Duplicate Event Alert System SeeControlAndViewAlertsUse Case Diagram.OperatorCreateManualAlertCreateGenericAlertNotify User of New Alerts «include»«include»«include» «include» «include» «include» «include» «include»«include»«include»«extend» «extend»

Figure 4‑5. CreateAlert (Use Case Diagram)

4.2.4.1 Confirm Unique Alert (Use Case)

The system ensures duplicate non-closed alerts are not seen by the users. A duplicate alert is defined as two alerts with the same alert type and the same discriminator based on the alert type. For R3B1 the alert discriminators are as follows: EventStillOpenAlert: same event DuplicateEventAlert: same event UnhandledResourceAlert: same resource ManualAlert: same alert description DeviceFailureAlert: same device

4.2.4.2 Create Device Failure Alert (Use Case)

The system creates a Device Failure Alert when a device transitions from a non-failed hardware state to a failed hardware state. The device itself must report the hardware failure; a simple communications failure does not generate a Device Failure Alert. This alert is only generated on the transition to a failed hardware state; not for every status poll showing a failed hardware state. When a device transitions to a failed hardware state, only one hardware error will be reported even if the device status indicates many failed components. For R3B1, the only devices capable of reporting hardware failures are DMS and TSS.

4.2.4.3 Create DMS Failure Alert (Use Case)

This use case shows creation of a Device Failure Alert for a DMS. See the Create Device Failure Alert use case for details.

4.2.4.4 Create Duplicate Event Alert (Use Case)

The system creates a Duplicate Event Alert when two Traffic Events have the same location data and their Traffic Event Types are defined as being able to be compared (see the Configure Duplicate Events use case in the Configure Alerts use case diagram).

4.2.4.5 Create Event Still Open Alert (Use Case)

The system creates an Event Still Open Alert when the operator-specified expected duration of a traffic event expires but the event has not yet been closed.

4.2.4.6 Create Generic Alert (Use Case)

The system will create a Generic Alert as part of the creation of any Alert type. This use case represents the common processing for all Alert types including uniqueness confirmation, timers and escalation.

4.2.4.7 Create Manual Alert (Use Case)

A user with sufficient privileges may create a manual alert. A manual alert is a free-form text alert sent to a non-empty set of AMGs. There is no requirement that any member of the AMGs actually be logged in.

4.2.4.8 Create TSS Failure Alert (Use Case)

This use case shows creation of a Device Failure Alert for a TSS. See the Create Device Failure Alert use case for details.

4.2.4.9 Create Unhandled Resource Alert (Use Case)

The system creates an Unhandled Resource Alert when an operations center owns a shared resource but there are no users logged in to that operations center. Examples of shared resources are DMSs, HARs, SHAZAMs in maintenance mode, controlled CCTV cameras, and open Traffic Events.

4.2.4.10 Init Alert (Use Case)

This use case is part of the CreateGenericAlert, Unaccept and Undelay use cases and represents the common processing involved in initializing and reinitializing an Alert. Expected processing is resetting timers and executing an escalation cycle if needed there are no users logged in to the members of the current AMG set with rights to manage this alert.

4.2.4.11 Notify User of New Alerts (Use Case)

The system will make a new alert visible on the New Alerts table of the Alert Manager section of the Home Page (if/when any suitably privileged user visits that page), and will cue a logged in user with sufficient privileges that a new alert has been created with an audio and visual cue. This audio cue will be different from the cue telling the user that there exists at least one alert in the New state in the system that the user has privileges to manage.

4.2.4.12 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.2.4.13 Perform Escalation Cycle (Use Case)

Perform Escalation Cycle is the process of extending the visibility of an alert. This can happen either when a user performs a manual escalation, or if the system determines that it is time to automatically escalate the alert (which happens when the alert stays in the New state too long, or if there are no users logged into any AMG in the alert's current visibility with rights to manage the alert). An escalation cycle consists of one or more "escalation steps" until either a operations center is added which has a user who can manage the alert or there are no more operations centers in the chain of backup operations centers left to add (full visibility is achieved). Each escalation step performs a union of the operations center(s) with current visibility to the alert with their backup operations center(s). Just because an escalation cycle terminates when the resulting AMG set is the same as the original AMG set, it does not mean a future escalation cycle will end the same way. This is because an administrator can change backup operations centers at any time. The results of an escalation cycle is added to the alert history including the date and time each AMG was added to the Alert's AMG set.

4.2.4.14 Specify Responsible Centers (Use Case)

When creating a manual alert, the user specifies a (possibly empty) set of AMGs for the alert's initial visibility. For R3B1, an AMG is equivalent to an operations center so this alert will be visible to all users logged into these operations centers with the rights to see this alert type.

4.2.4.15 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.2.5 ConfigureAlerts (Use Case Diagram)

This Use Case Diagram identifies the actions which can be performed to configure various features of alert types and alerts processing. This is an expansion of the action "Configure Alerts" in the "High Level Use Cases" Use Case Diagram.

[image: image9.emf]Configure

Duplicate Events

Matrix

(SeeConfigureOperationsCentersUse Case Diagram forconfiguring backup operationscenters for alert escalation.)Configure Operations Center Which alert types to never escalate. Which alert types to completely ignore (as if never coded). AdministratorConfigure AlertsConfigure Alert Types Configure Alert System Configure Alert Archive Time Configure Alert Reminder Audio Cue Configure Alert Escalation Policy Configure Alert Ignore Policy Configure

Alert Reminder

Audio Cue

Frequency

Configure Alert Timeouts Configure Alert Audio Cue Configure Alert Escalation Time «extend»

«extend» «extend»«extend» «extend» «extend» «extend» «extend» «extend» «extend» «extend»

Figure 4‑6. ConfigureAlerts (Use Case Diagram)

4.2.5.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.2.5.2 Configure Alerts (Use Case)

A user with proper functional rights can configure various features of alert types and alerts processing. Extended use cases define the types of configuration which can be performed.

4.2.5.3 Configure Alert Timeouts (Use Case)

For each alert type, there are four values related to state reminder timeouts that a privileged user can set: two for accepted alerts and two for delayed alerts. When an alert is accepted, a reminder timeout can be specified indicating how long the alert is expected to remain in the Accepted state. If the alert remains in the Accepted state longer than this timeout, it reverts to the New state. In this use case a maximum reminder timeout can be configured, as well as a default reminder timeout if the user does not specify one. Similar maximum and default parameters can be set for delayed alerts.

4.2.5.4 Configure Alert Archive Time (Use Case)

A user with proper functional rights can configure the period of time a closed alert remains in the system before it is removed from system memory and marked for archiving. (The actual archiving, the act of physically moving the data from the live database to the archive database, actually occurs via a nightly database job.)

4.2.5.5 Configure Alert Audio Cue (Use Case)

A user with proper functional rights can configure an audio cue (recorded sound / wave file) to be played when a new alert of that type enters into the system. The configured sound will become the standard sound for that alert type, for all users statewide.

4.2.5.6 Configure Alert Escalation Policy (Use Case)

A user with proper functional rights can configure alerts of a given type to never automatically escalate. This inhibits automatic escalation of all alerts of that type (although manual escalation is still allowed).

4.2.5.7 Configure Alert Escalation Time (Use Case)

A user with proper functional rights can configure the length of time that an alert should remain unhandled in the New state before it is automatically escalated to a higher level of visibility.

4.2.5.8 Configure Alert Ignore Policy (Use Case)

A user with proper functional rights can configure alerts of a given type to be completely ignored within the alert subsystem (as if alerts of that type had never been implemented). This allows a privileged user to "back out" implementation of a particular alert type in case users are overwhelmed by their quantity, until code updates can be made to reduce quantity, filter, or otherwise better control the alert type.

4.2.5.9 Configure Alert Reminder Audio Cue (Use Case)

A user with proper functional rights can configure an audio cue (recorded sound / wave file) to be played when alerts remain in the New state beyond their initial entry into the system. The configured sound will become the standard reminder sound for all alerts, for all users.

4.2.5.10 Configure Alert Reminder Audio Cue Frequency (Use Case)

A user with proper functional rights can configure the frequency at which the alert reminder audio cue is played when alerts remain in the New state beyond their initial entry into the system.

4.2.5.11 Configure Alert System (Use Case)

A user with proper functional rights can configure parameters of the alert subsystem itself. Details are included in the extended Use Cases.

4.2.5.12 Configure Alert Types (Use Case)

A user with proper functional rights can configure various parameters for alert types within this use case. The extended use cases identify the specific parameters which can be configured. Every parameter settable within this use case is settable per alert type.

4.2.5.13 Configure Duplicate Events Matrix (Use Case)

A user with proper functional rights can configure the combinations of event types which can be compared duplicates. For one example, Incidents can be considered to be duplicates of other Incidents and Congestion Events, but no other event types. For another example, Safety Events can be configured to never be considered as duplicates of any other events (including even other Safety Events).

4.2.5.14 Configure Operations Center (Use Case)

A user with proper functional rights can configure operations centers, which includes configuration of backup operations centers for alert escalation. Each operations center can have one or more "parent" backup operations centers. If an alert is not handled within the escalation timeout period while visible to an operations center, that alert will automatically be escalated to that operations center's backup operations centers. The backup operations set is used to extend an alert's visibility when the alert is escalated. The backup operations centers apply to all alert types, so alerts of all types follow the same backup escalation path.

4.2.6 ConfigureOperationCenters (Use Case Diagram)

This Use Case Diagram identifies the actions which can be performed to configure an operations center. These actions include viewing, adding, configuring, and removing operations centers. For R3B1, Alert types may be specified and backup centers may be configured.

[image: image10.emf]OperatorConfigure

Operations

Center

Configure

Backup

Centers

Specify Alert

Types for

Center

Administrator

Remove

Operations

Center

View Operations Centers Add

Operations

Center

«extend»

«extend»

«extend»

«extend»

«extend»

Figure 4‑7. ConfigureOperationCenters (Use Case Diagram)

4.2.6.1 Add Operations Center (Use Case)

An administrator (operator with the correct functional rights) may add an operations center.

4.2.6.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.2.6.3 Configure Backup Centers (Use Case)

A user with proper functional rights can configure backup operations centers for alert escalation. Each operations center can have one or more "parent" backup operations centers. If an alert is not handled within the escalation timeout period while visible to an operations center, that alert will automatically be escalated to that operations center's backup operations centers. The backup operations set is used to extend an alert's visibility when the alert is escalated. The backup operations centers apply to all alert types, so alerts of all types follow the same backup escalation path.

4.2.6.4 Configure Operations Center (Use Case)

A user with proper functional rights can configure operations centers, which includes configuration of backup operations centers for alert escalation. Each operations center can have one or more "parent" backup operations centers. If an alert is not handled within the escalation timeout period while visible to an operations center, that alert will automatically be escalated to that operations center's backup operations centers. The backup operations set is used to extend an alert's visibility when the alert is escalated. The backup operations centers apply to all alert types, so alerts of all types follow the same backup escalation path.

4.2.6.5 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.2.6.6 Remove Operations Center (Use Case)

An administrator (operator with the correct functional rights) may remove an operations center.

4.2.6.7 Specify Alert Types for Center (Use Case)

An administrator (operator with the correct functional rights) may specify the types of alerts that an operations center may receive.

4.2.6.8 View Operations Centers (Use Case)

An operator with the correct functional rights may view the configuration of an operations center.

4.3 Text To Speech Pronunciations

4.3.1 ManageDictionaries (Use Case Diagram)

This diagram shows the actions that an operator may take that affect or utilize the system dictionaries. R3B1 adds Manage Pronunciations capability.

[image: image11.emf]Manage

Pronunciations

Check

Spelling

System

View

Approved

Words

Remove

Approved

Word

Add

Approved

Word

View

Banned

Words

Administrator

Remove

Banned

Word

Add

Banned

Word

Operator

Check For

Banned Words

Figure 4‑8. ManageDictionaries (Use Case Diagram)

4.3.1.1 Add Approved Word (Use Case)

An operator with the correct functional rights (administrator) may add a word to the system list of approved words.

4.3.1.2 Add Banned Word (Use Case)

An operator with the correct functional rights (administrator) may add a banned word to the system list of banned words. This word will no longer be allowed for display on messaging devices.

4.3.1.3 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.3.1.4 Check For Banned Words (Use Case)

An operator (or the system) validates a text message by checking the words against the list of banned words for a particular device type. The check for banned words will be case insensitive.

4.3.1.5 Check Spelling (Use Case)

An operator checks the spelling of a text message by checking the words against the list of approved words for a particular device type. The comparison against the list of approved words will be case insensitive.

4.3.1.6 Manage Pronunciations (Use Case)

An operator with the correct functional rights (administrator) may manage pronunciations. This includes adding, removing and modifying pronunciations in the system.

4.3.1.7 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.3.1.8 Remove Approved Word (Use Case)

An operator with the correct functional rights (administrator) may remove a word from the system list of approved words.

4.3.1.9 Remove Banned Word (Use Case)

An operator with the correct functional rights (administrator) may use the system to remove a word from the system list of banned words. Removing the word from the banned words list will allow that word to be used on system messaging devices.

4.3.1.10 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.3.1.11 View Approved Words (Use Case)

An operator with the correct functional rights (administrator) may view the current list of system approved words.

4.3.1.12 View Banned Words (Use Case)

A user with the correct functional rights (administrator) may view the current list of banned words in the system.

4.3.2 ManagePronunciations (Use Case Diagram)

This diagram shows the actions that an administrator may take to manage the pronunciation dictionary.

The use cases needed include but are not limited to the following:

Use case that allows a user to view the list of pronunciations defined in the system dictionary. Use case that allows a user to add a pronunciation to the dictionary. Use case that allows a user to remove a pronunciation from the dictionary. Use case that allows a user to modify a pronunciation in the dictionary. Use case that allows a user to preview the pronunciation while adding or modifying the pronunciation. Use case that adds a new approved word to the dictionary when a user adds a pronunciation to a word that doesn't exist in the dictionary Use case that substitutes phonetic pronunciations for words and returns the pronunciation during user preview. Use case that inserts a pronunciation or a approved word pronunciation pair into the database when a user adds a pronunciation to the dictionary. Use case that updates an approved word in the database when a user modifies or removes a pronunciation from the dictionary. Use case that converts a text word or phrase into speech when the user previews a pronunciation. Use case that sends an event to the client when a user adds, modifies or removes a pronunciation from the dictionary. Use case that logs any changes to the pronunciation to the operational log.

[image: image12.emf]Add Word or Phrase to HAR Approved Words Dictionary Convert

Text To Speech

Convert Pronunciation AdministratorAdd TTS Pronunciation

View Defined Pronunciations

Modify TTS

Pronunciation

Remove TTS

Pronunciation

Log

Dictionary

Change

 Insert into Dictionary Update Dictionary

Push Dictionary

Change

Preview TTS

Pronunciation

Manage Dictionaries Manage

Text to Speech

Pronunciations

«include»

«extend»

«extend»

«extend»

«extend»

«include»

«extend»

«include»

«include»

«include» «extend»

«extend»

«include» «include»

«extend» «extend»

«include»

«include»

«extend»

Figure 4‑9. ManagePronunciations (Use Case Diagram)

4.3.2.1 Add TTS Pronunciation (Use Case)

An operator with the correct functional rights (administrator) may add a pronunciation to a word in the system list of approved words. If there is no corresponding approved word in the dictionary one will be added to the system list of approved words.

4.3.2.2 Add Word or Phrase to HAR Approved Words Dictionary (Use Case)

An operator with the correct functional rights (administrator) may add a word to the system list of approved words. This use case is used by add pronunciation when a pronunciation is being added for a word that is not in the approved words list. Add word adds the word to the system list.

4.3.2.3 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.3.2.4 Convert Pronunciation (Use Case)

Substitutes the phonetic spelling of the word for the actual word to be sent to the TTS converter

4.3.2.5 Convert Text To Speech (Use Case)

Converts a text message to speech.

4.3.2.6 Insert into Dictionary (Use Case)

Used to add new approved words with a pronunciation to the system list of approved words.

4.3.2.7 Log Dictionary Change (Use Case)

Used to log pronunciation changes to the operation log.

4.3.2.8 Manage Text to Speech Pronunciations (Use Case)

An operator with the correct functional rights (administrator) may manage test to speech pronunciations. This includes adding, removing and modifying pronunciations in the system.

4.3.2.9 Manage Dictionaries (Use Case)

An administrator (operator with the correct functional rights) may manage system dictionaries. New in R3B1, Manage Dictionaries now includes managing pronunciations for Text to Speech. See the Manage Dictionaries use case diagram for details.

4.3.2.10 Modify TTS Pronunciation (Use Case)

An operator with the correct functional rights (administrator) may modify a pronunciation in the system list of pronunciations.

4.3.2.11 Preview TTS Pronunciation (Use Case)

During add, modify or view pronunciations an operator with the correct functional rights may preview (listen to) the pronunciation to determine if the pronunciation sound as intended.

4.3.2.12 Push Dictionary Change (Use Case)

Used to push pronunciation and word events to the current user session.

4.3.2.13 Remove TTS Pronunciation (Use Case)

An operator with the correct functional rights (administrator) may remove a pronunciation from a word in the system list of approved words.

4.3.2.14 Update Dictionary (Use Case)

Used to update an existing pronunciation in the system dictionary

4.3.2.15 View Defined Pronunciations (Use Case)

An operator with the correct functional rights (administrator) may view the pronunciations in the system list of pronunciations.

4.3.3 UsePronunciations (Use Case Diagram)

 This diagram shows the actions that an operator may take to utilize the pronunciation dictionary.

The functions include but are not limited to the following:

Set Message Includes check pronunciation to determine if the message contains an approved word that has a pronunciation associated with it. Includes convert text to speech. Submits the message with the pronunciation instead of the approved word to convert text to speech.

Listen to Message. Includes check pronunciation to determine if the message contains an approved word that has a pronunciation associated with it. Includes convert text to speech. Submits the message with the pronunciation instead of the approved word if pronunciations exist to convert text to speech.

Check pronunciation Parses a message into words then checks the word for approved HAR word with associated pronunciations. Includes convert pronunciation to convert the word into a format suitable for the TTS converter Returns the message to the requestor with the pronunciations substituted for the approved HAR words.

Convert Text to Speech converts the submitted message to speech and returns it to the requestor.

[image: image13.emf]User

Preview Message

System

Listen to

Message

Set HAR Message

Check Pronunciation Convert Text To Speech

Substitute TTS

Pronunciations

«include» «extend»

«extend»

«extend» «extend»

«extend»

«extend»

«extend»

Figure 4‑10. UsePronunciations (Use Case Diagram)

4.3.3.1 Check Pronunciation (Use Case)

Check pronunciation is a process that occurs when a user wants to hear a text message (convert text to speech). Before the message is sent to the text to speech converter, it is checked for pronunciations. If the messages contains words that have pronunciations the pronunciation is substituted for the word.

4.3.3.2 Convert Text To Speech (Use Case)

Converts a text message to speech.

4.3.3.3 Listen to Message (Use Case)

An operator with the correct functional rights may listen to default and stored HAR text massages which contain phonetic pronunciations.

4.3.3.4 Preview Message (Use Case)

During set message an operator with the correct functional rights may preview (listen to) HAR text massages which contain phonetic pronunciations

4.3.3.5 Set HAR Message (Use Case)

A HAR's message is set through the execution of an event response plan or set directly by an administrator when the device is in maintenance mode. The message activation may specify messages which were previously stored in message slots in the controller or a message that was created using the HAR message editor.

When activating a HAR message created by the message editor the user may choose to use the default header and trailer or just use the message body for the entire message. Messages activated in this manner shall be loaded into the HAR controller in the slot designated for immediate broadcast.

A HAR message activation also specifies if each associated SHAZAM should be activated or not.

4.3.3.6 Substitute TTS Pronunciations (Use Case)

Substitutes the phonetic spelling of the word in the message.

4.3.3.7 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.3.3.8 User (Actor)

The User class represents a CHART system user. In order to log into the CHART system, a user must be defined in the user database.

4.4 Traffic Events

4.4.1 ManageTrafficEvents (Use Case Diagram)

This diagram models the actions that an operator may take that relate to traffic events.

[image: image14.emf]New for R3B1.

View Traffic

Events

Search Traffic

Events

MergeTrafficEvents

Edit Traffic Event

Lane Status

See

SpecifyEventLocation

Use Case Diagram.

New for R3B1. Create Traffic

Event

Record Organization

Notification

And Arrival

Associate

Event

Create

 Incident

Event

Specify Expected Duration Change Event

Attributes

Change Lane

Direction

Add Text to

Event History

Take Event

Offline

Change Event

Type

Record Lane

Closure

Respond to

Traffic Event

Operator

Modify

Traffic Event

System

Close Event

View Potential Duplicate Events Record Resource

Notification And

Arrival

Get Event

History Text

Specify

Event

Location

New/Updated for R3B1.

See CreateTrafficEvent

Use Case Diagram

Updated for

R3B1.

See MergeTrafficEventsUse Case Diagram.Describe Lane Closures

and Status Textually

Copy

Traffic

Event

Specify

WebsiteTraffic Alert

Settings

«extends»

«extends»

«include»

«include»

«extends»

«include»

«extends»

«include»

«include»

«include»

«include»«include»

«extends»

«extends»

«extends»

«extends»

«include»

«extends»

«extends»

«extends»

«include»

«include»

«include»

«extends»

«extend»

Figure 4‑11. ManageTrafficEvents (Use Case Diagram)

4.4.1.1 Add Text to Event History (Use Case)

An operator with the proper functional rights may add text to a traffic event's event history.

4.4.1.2 Associate Event (Use Case)

An operator with the proper functional rights may associate related traffic events.

4.4.1.3 Change Event Attributes (Use Case)

An operator with the proper functional rights may edit traffic event information after the event has been created. This includes closing the event, adding text to the event history, recording lane closures, and recording organization and resource arrivals.

4.4.1.4 Change Event Type (Use Case)

An operator with the proper functional rights may change the traffic event type.

4.4.1.5 Change Lane Direction (Use Case)

An operator with the proper functional rights may edit roadway conditions, including changing direction for a particular lane. This is new for R3B1.

4.4.1.6 Close Event (Use Case)

An operator with the proper functional rights may close an event.

4.4.1.7 Copy Traffic Event (Use Case)

The user with the correct functional rights will be able to create a copy of an existing traffic event.

4.4.1.8 Create Incident Event (Use Case)

An operator with the proper functional rights may create a new incident event.

4.4.1.9 Create Traffic Event (Use Case)

The user with the correct functional rights may add a new traffic event.

4.4.1.10 Describe Lane Closures and Status Textually (Use Case)

An operator with the proper functional rights may enter text describing lane closures and status.

4.4.1.11 Edit Traffic Event Lane Status (Use Case)

An operator with the proper functional rights may edit the lane status, including changing direction for a particular lane.

4.4.1.12 Get Event History Text (Use Case)

An operator with the correct functional rights may view the text entries that have been added to an event.

4.4.1.13 Merge Traffic Events (Use Case)

This use case represents the merge traffic event operation. An user with manage traffic event right merges the data of two traffic events. See MergeTraffic Events usecase diagram.

4.4.1.14 Modify Traffic Event (Use Case)

An operator with the proper functional rights may edit traffic event information after the event has been created. This includes responding to the event, editing lane status, editing location, associating with another event, and specifying other event attributes.

4.4.1.15 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.4.1.16 Record Lane Closure (Use Case)

An operator with the proper functional rights may record lane closures when editing roadway information.

4.4.1.17 Record Organization Notification And Arrival (Use Case)

An operator with the proper functional rights may record the participation of various organizations in the event resolution.

4.4.1.18 Record Resource Notification And Arrival (Use Case)

An operator with the proper functional rights may record the participation of various resources in the event resolution.

4.4.1.19 Respond to Traffic Event (Use Case)

The system allows an operator to control devices in response to an event through the use of a response plan. The user may add devices to the plan, select the desired state of the devices, then activate the plan. Any of the devices used by the event response plan may be deactivated while the event is open by removing the item for that device from the plan. When the event is closed, if the response plan is active, it will be deactivated automatically.

4.4.1.20 Search Traffic Events (Use Case)

An operator with the proper functional rights may search the CHART system for traffic events.

4.4.1.21 Specify Event Location (Use Case)

The event location choices will be populated using data from the CHART Mapping application database.

By default, MD will be selected as the state.

If the selected state is MD, the user will be required to select a predefined MD county/region. If a route is specified, the user will first select a route type from a pick list ("I", "US", or "MD") and the route type will be used to populate the list of predefined routes. To specify a route, the user will be required to select one of the predefined routes if the state is MD. If the state is not MD, the user will be able to enter a county name / region name and route number as freeform text.

If a route number is specified, the user will be able to select intersecting roads by route number or route name, or specify the state or county milepost. Additionally the user will be able to specify whether the traffic event is at, prior, or past the intersecting feature ("at" will be selected by default).

If the state is MD, the list of intersecting route numbers and names will be populated for the user as suggestions; however, the user can still specify freeform text for an intersecting route number, route name, county milepost, and state milepost even if the state is MD.

4.4.1.22 Specify Expected Duration (Use Case)

An operator with the proper functional rights may specify the expected duration of an event.

4.4.1.23 Specify WebsiteTraffic Alert Settings (Use Case)

An operator with the proper functional rights may specify whether or not the traffic event warrants a "Traffic Alert" on the public CHART web site, and may optionally provide specific alert text to be associated with the Alert.

4.4.1.24 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.4.1.25 Take Event Offline (Use Case)

The system periodically checks for closed events and takes them offline provided that a configured interval of time has elapsed since the event was closed.

4.4.1.26 View Potential Duplicate Events (Use Case)

An operator with the correct functional rights will be presented with a list of potential duplicate traffic events based on the event location. The operator will have the option to then merge these events.

4.4.1.27 View Traffic Events (Use Case)

An operator with the correct functional rights may view a traffic event.

4.4.2 CreateTrafficEvent (Use Case Diagram)

This use case diagram describes the types of traffic events that the CHART GUI will support.

[image: image15.emf]Create Traffic Event

Operator

Add Weather Sensor Alert EventAdd Disabled Vehicle Event Add Action Event Add Congestion EventAdd Weather Service Alert Event Add

Special

Event

Add

Safety Message

Event

Updated for R3B1.

Specify Event

Location

See

SpecifyEventLocation

Use Case Diagram.

«include»

«extend» «extend» «extend»«extend» «extend» «extend»

«extend»

Figure 4‑12. CreateTrafficEvent (Use Case Diagram)

4.4.2.1 Add Action Event (Use Case)

The user with the correct functional rights may add a new action event. An action event can describe what is affecting the flow of traffic, such as roadway debris or utility work. The location and the event name are required.

4.4.2.2 Add Congestion Event (Use Case)

The user with the correct functional rights may add a new congestion event. The location and the event name are required.

4.4.2.3 Add Disabled Vehicle Event (Use Case)

The user with the correct functional rights may add a new disabled vehicle event. The location and the event name are required.

4.4.2.4 Add Safety Message Event (Use Case)

The user with the correct functional rights may add a new safety message event. A safety message event can be a message to obey the motor vehicle laws. The location and the event name are required.

4.4.2.5 Add Special Event (Use Case)

The user with the correct functional rights may add a new special event. A special event can be any event that isn't regular congestion and is not weather related such as a sporting event. The location and the event name are required.

4.4.2.6 Add Weather Sensor Alert Event (Use Case)

The user with the correct functional rights may add a weather based event that impacts traffic. The user is required to specify the location that is being impacted. The event name and the location are required.

4.4.2.7 Add Weather Service Alert Event (Use Case)

The user can create a weather based event that impacts traffic. The weather information will be received from the National Weather Service. The user is required to specify the location that is being impacted.

4.4.2.8 Create Traffic Event (Use Case)

The user with the correct functional rights may add a new traffic event.

4.4.2.9 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.4.2.10 Specify Event Location (Use Case)

The event location choices will be populated using data from the CHART Mapping application database.

By default, MD will be selected as the state.

If the selected state is MD, the user will be required to select a predefined MD county/region. If a route is specified, the user will first select a route type from a pick list ("I", "US", or "MD") and the route type will be used to populate the list of predefined routes. To specify a route, the user will be required to select one of the predefined routes if the state is MD. If the state is not MD, the user will be able to enter a county name / region name and route number as freeform text.

If a route number is specified, the user will be able to select intersecting roads by route number or route name, or specify the state or county milepost. Additionally the user will be able to specify whether the traffic event is at, prior, or past the intersecting feature ("at" will be selected by default).

If the state is MD, the list of intersecting route numbers and names will be populated for the user as suggestions; however, the user can still specify freeform text for an intersecting route number, route name, county milepost, and state milepost even if the state is MD.

4.4.3 SpecifyEventLocation (Use Case Diagram)

This use case diagram details what information will be used to specify a specific location. Information will be provided by a GIS mapping database. Also, free form text will be allowed if the location is not Maryland based or is not easily described by the provided data.

[image: image16.emf]Generate Event Name

Generate Event

Location Description

Specify Milepost Specify County Milepost Specify Intersecting Route Name Specify Intersecting Route Number Provide State and County Data Provide Alias Data OperatorSystem Provide Route Data Specify Event Location Enter LocationUsing AliasSpecify County

or Region of

Traffic Event

Specify Route Type

and Route Traffic

Event is On

Override Event Location Description «include»«include» «include»«include»«extend» «extend» «extend» «extend»

Figure 4‑13. SpecifyEventLocation (Use Case Diagram)

4.4.3.1 Enter Location Using Alias (Use Case)

The user will be able to specify a location by a well known alias. For example, FMT will describe the Fort McHenry Tunnel.

4.4.3.2 Generate Event Location Description (Use Case)

The system will generate a textual location description for a traffic event based on the selected location fields, unless the location description has been overridden by the user. The rules for generating this description are complex and are perhaps easiest to express using a grammar:

 generatedLocationDesc: mainRouteDesc optionalAlias | countyStateDesc | 'UNKNOWN';

optionalAlias: ' (' publicAliasName ')' | '';

mainRouteDesc: mainRouteType ' ' routeNum optionalMainRouteQualifiers;

mainRouteType: 'I' | 'US' | stateAbbrev;

optionalMainRouteQualifiers: ' ' direction ' ' intersectingFeatureProximityInfo | ' ' direction | ' ' intersectingFeatureProximityInfo | '';

direction: 'EASTBOUND' | 'WESTBOUND' | 'EAST/WEST' | 'NORTHBOUND' | 'SOUTHBOUND' | 'NORTH/SOUTH' | 'INNER LOOP' | 'OUTER LOOP' | 'INNER/OUTER LOOPS';

intersectingFeatureInfo: proximity ' ' intersectingFeatureDesc;

proximity: 'AT' | 'PAST' | 'PRIOR';

intersectingFeatureDesc: 'MP ' milePost | 'COUNTY MP ' milepost | routeTypeAndNumber | routeName;

countyStateDesc: optionalCountyName stateAbbrev;

optionalCountyName: countyName ' ' | '';

4.4.3.3 Generate Event Name (Use Case)

The system will generate the traffic event name, unless the event name has been explicitly overridden by the user. The generated event is specified by the following grammar:

generatedEventName: eventTypeDesc optionalIncidentType ' @ ' locationDesc;

eventTypeDesc: 'Action Event' | (7 others...) ;

optionalIncidentType: ' [' incidentTypeDesc ']' | '';

incidentTypeName: 'Collision, Fatality' | (others...) ;

(Note that the location description may be truncated if the event name becomes too long for the database.)

4.4.3.4 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.4.3.5 Override Event Location Description (Use Case)

The user may specifying free form text for the location description field to override the event location description generated by the GUI from the input fields. However, the GUI will warn the user twice before allowing an overridden location description to be used.

4.4.3.6 Provide Alias Data (Use Case)

A location service will provide the location alias information for defined aliases, to allow the user to select an alias.

4.4.3.7 Provide Route Data (Use Case)

A location service will query the GIS database and will provide the GUI with route and route type information for at least the state of Maryland.

4.4.3.8 Provide State and County Data (Use Case)

A location service will provide the GUI with the state and county names that the user is allowed to select from. For Maryland, it will return at least all counties and the following regions: Statewide, Baltimore Region, Western Maryland, Eastern Shore, and Southern Maryland.

4.4.3.9 Specify County Milepost (Use Case)

The user will be able to enter a county milepost number to specify the location of a traffic event along the roadway.

4.4.3.10 Specify County or Region of Traffic Event (Use Case)

The user will select from a drop down list the name of a county or region based on what state is selected. The user will be allowed to enter free form text if the state is not Maryland.

4.4.3.11 Specify Event Location (Use Case)

The event location choices will be populated using data from the CHART Mapping application database.

By default, MD will be selected as the state.

If the selected state is MD, the user will be required to select a predefined MD county/region. If a route is specified, the user will first select a route type from a pick list ("I", "US", or "MD") and the route type will be used to populate the list of predefined routes. To specify a route, the user will be required to select one of the predefined routes if the state is MD. If the state is not MD, the user will be able to enter a county name / region name and route number as freeform text.

If a route number is specified, the user will be able to select intersecting roads by route number or route name, or specify the state or county milepost. Additionally the user will be able to specify whether the traffic event is at, prior, or past the intersecting feature ("at" will be selected by default).

If the state is MD, the list of intersecting route numbers and names will be populated for the user as suggestions; however, the user can still specify freeform text for an intersecting route number, route name, county milepost, and state milepost even if the state is MD.

4.4.3.12 Specify Intersecting Route Name (Use Case)

The user will be able to specify the intersecting route by name, if a main route was specified. The list of intersecting route name will be populated for MD, and the user may select one of the predefined routes in this case. However, the user is not required to select a predefined route, and can enter freeform text for MD or any other state.

4.4.3.13 Specify Intersecting Route Number (Use Case)

The user will be able to specify the intersecting route number, if a main route was specified. The list of intersecting route numbers will be populated for MD, and the user may select one of the predefined route numbers in this case. However, the user is not required to select one of a predefined route and can enter freeform text for MD or any other state.

4.4.3.14 Specify Milepost (Use Case)

The user will be able to enter a State milepost number to specify the location of a traffic event along the roadway.

4.4.3.15 Specify Route Type and Route Traffic Event is On (Use Case)

The user will be able to specify the route type and route a traffic event is on. To specify a route, the user will first select the state, county, and route type. The route types will be shown in a pick list ("I", "US", or "MD"). If route information is available for the specified state, county, and route type, the routes pick list will be populated. To specify a route the user will be required to select one of the predefined routes if the state is MD. If the state is not MD, the user will be able to enter a route number as freeform text.

4.4.3.16 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.4.4 MergeTrafficEvents (Use Case Diagram)

This use case diagram describes how an operator will go about merging two traffic events. The operator may merge two of the same event types or two different event types.

[image: image17.emf]Select Basic Event Data to Use for Merged Event Select Participants to Use for Merged Event Select Associated

Events to use for Merged

Event

Operator

False Alarm

Event

Modify Event

Merge Traffic

Events

Select TargetEvent of MergeSelect Road Condition and Lane Closure Data to Use for Merged EventSelect Response Devices and Messages for Merged Event Select Traffic Event

Type Specific Data to Use

for Merged Event

Execute Merge

Add Text to

Event History

«include»

«include»

«extend»

«include»

«include»

«extend» «include»«include»«include» «include»

«include»

Figure 4‑14. MergeTrafficEvents (Use Case Diagram)

4.4.4.1 Add Text to Event History (Use Case)

An operator with the proper functional rights may add text to a traffic event's event history.

4.4.4.2 Execute Merge (Use Case)

An operator with the proper functional rights may execute a request to the server to merge two traffic events after picking from various event attributes.

4.4.4.3 False Alarm Event (Use Case)

An operator with the proper functional rights may False Alarm an event. This means that the event is closed and will not be preserved for archival purposes.

4.4.4.4 Merge Traffic Events (Use Case)

This use case represents the merge traffic event operation. An user with manage traffic event right merges the data of two traffic events. See MergeTraffic Events usecase diagram.

4.4.4.5 Modify Event (Use Case)

An operator with the proper functional rights may edit traffic event information after the event has been created. This includes responding to the event, editing lane status, editing location, associating with another event, and specifying other event attributes.

4.4.4.6 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.4.4.7 Select Associated Events to use for Merged Event (Use Case)

An operator with the proper functional rights may select from the associated events of the two events to be merged.

4.4.4.8 Select Basic Event Data to Use for Merged Event (Use Case)

An operator with the proper functional rights may select from the basic event data of the two events to be merged.

4.4.4.9 Select Participants to Use for Merged Event (Use Case)

An operator with the proper functional rights may select from the participant data of the two events to be merged.

4.4.4.10 Select Response Devices and Messages for Merged Event (Use Case)

An operator with the proper functional rights may select from the associated devices of the two events to be merged. This will include HARs, DMSs and their respective messages.

4.4.4.11 Select Road Condition and Lane Closure Data to Use for Merged Event (Use Case)

An operator with the proper functional rights may select from the road conditions and lane closure data of the two events to be merged.

4.4.4.12 Select Target Event of Merge (Use Case)

An operator with the proper functional rights may select from which event the data is to be chosen for the merged event.

4.4.4.13 Select Traffic Event Type Specific Data to Use for Merged Event (Use Case)

An operator with the proper functional rights may choose from event type specific data to merge when merging two different types of events.

5 Detailed Design

5.1 Human-Machine Interface

R3B1 builds on the existing web based user interface that has been used for the CHART system for past releases. A usable prototype of the proposed interface changes has been created in order to allow the user to preview the changes and to better facilitate a common understanding of the requirements. The prototype focuses on those changes that will be used by operators on a daily basis or those where the development team felt that we could benefit from letting users see it early. These changes fall into the areas of Home Page Redesign, Alerts, Create Traffic Event, Traffic Event Locations, Lane Configuration Changes, Merge Traffic Events, and Text To Speech Pronunciations.

5.1.1 Home Page Redesign

The home page redesign involves the creation of two distinct windows provided by the GUI – an always present home page, and a secondary working window. The home page is the first window the user sees when they log in, and it is used to view alerts, view traffic events owned by the user’s center, and to create new traffic events. The home page also provides the links to the other pages of the application that were also present in the current release of the software, R2B3. All links provided on the home page that link to other CHART pages will cause the results of clicking the link to appear in a working window (not the home page). With this arrangement, the home page provides an overall/regional view of the system and acts as a launch pad for operator actions in the system. The working window is where the user can work on traffic events and view other detailed information in the system.

5.1.1.1 Home Page

The home page contains a Flex2 application which allows the home page to contain advanced controls. An accordion control is used to allow the user to expand or contract sections of the page. The home page contains two such sections, one with alerts and traffic events, and one section with a form used to enter a new traffic event. The screen shot below shows the home page with its alerts and traffic events section expanded (The bubble messages point to each of these areas). Both the alerts and traffic events are shown using a tab control. The tab control is used to filter the alerts according to their state, and to filter traffic events based on their type. A number at the top of each tab shows the number of objects that appear on the tab (alerts or traffic events), and the user can click the tab to switch to the tab and see those objects.
[image: image18.png]2 HOME - CHART - Microsoft Internet Explorer,

-
Back | Forward | Refresh | Home | Center Rpt | Communications Log | Instant Messaqging | Paging | Map | Traffic Events | Help | Logout

This is the
alert area

Traffic svants list updated,

Create Traffic Event

Recently Viewed Events

View Open Events
view All Events

O sdmin

— Select County —

Open3 | Accepted0 | Delayed 0 | Closed 63 | Create Manual Alert

Device Management

. Type | Text Times Actions
Onerations Centers
e [l Possle dulicate cvens:Disabled Vehide Svert @ tstz, Disbled ehie Sent @ tesit Crastedi 12:070M / ZaX b
Folders Escalates: 1:41 PM PED
General
" £ o et PO G TR GTR' s contledresureesand o wsars ey logsed Crasted 12100/ ZaX b
Links N Escalates: 1i44 PM PED
£ o centar oG hesconvald eseuras and o st curerly ogged Crasted 122100/ ZaX b

Ecalates: 142m PGS

the traffic
event area.

ol

Name County /state Lane closures Vehicles
Incident@MD 185 Montgomery County

Location: MD 185

Incident@MD 185 Montgomery County

Location: MD 185

Incident@Baltimore City MD Baltimore City 1 car inolved
Location: Baltimors City MD

Incident@Baltimore City MD Baltimore City 2 cars involusd
Location: Baltimors City MD

Incident@1-95 North Anne Arundel County

Location: 1-95 North

Incident@1-95 North Anne Arundel County

Location: 1-95 North

Incident@MD 32 Allegany County g

G it

Each tab on the traffic event tab control contains a table showing traffic events of a specific type and includes the event name, location description, and county/state (if entered) for each event. The event name is a link that when clicked causes the details page of the event to appear in the working window. Additional data specific to the type of events shown on the tab may also be shown. The incidents, road closures, and special events tabs show the current lane closures. The incidents tab also shows the number of vehicles involved. The congestion tab has a column for the “recurring” indicator. The disabled vehicle tab has a column for vehicle color/make and tag number. The weather service event tab has a column for road conditions. The screen shot below shows a close up view of the events tab control.

[image: image19.png]ol g s b [@© g A s [BE

Name

Incident @ 1-05 North at MD 152
Location: 1-95 North st MD 152
Incident@MD 185

Location: MD 185

Incident@MD 185

Location: MD 185

Incident@Baltimore City MD

Location: Baltimors City MD

County /state

Harford County

Montgomery
Caunty

Montgomery
Caunty

Baltimore City

Lane Closures

Vehicles

1 car invalved

The screen shot shown below shows the home page with the Create Traffic Event section expanded. When this section is expanded, the section with alerts and traffic events is contracted, however the number of alerts in the new state is still shown to the user at the top of the contracted section, and an audio cue will sound when a new alert is received, regardless of whether the alerts and events page section is expanded or contracted.

[image: image20.png]2 HOME - CHART - Microsoft Internet Explorer.

Alerts comm

Back | Forward | Refresh | Home | Center Rot | Communications Loq | Instant Messading | Paging | Map.

Sour

| Traffic Events | Heln

| Logout

Recently Viewed Events

View Open Events
view All Events

— Select County — v

Device Management
Operations Centers
Eolders
General
Links

Admi

Traffic svants list updated,

Create Traffic Event

stater [M0 I~
Count
Routs Type.

Route

Diraction:

Wilepost; () state Mp
O county mp

Int Rosdi () Rosd

Creste New Event at location:

= o s) [

Number of new alerts
is shown here.

Source type
Source name!
Incidant Type.
Color/Make:
Tag Info
Alias

Ouaride Locstion,

G it

More information about creating traffic events can be found in the Create Traffic Event section below.
5.1.1.2 Navigation Links

The navigation links shown on the home page have been changed in R3B1 to have the various groups of links contracted, as shown on the left below. When a user clicks the title of a grouping, its associated links appear, as shown on the right below.

[image: image268.png]Recently Viewed Events

— Select County —

— Select Fiter—

— Select Fiter—

— Select Fiter—

— Select Filter —
— Select Filter —
- — Select Filter —

[image: image269.png]

5.1.1.3 Home Monitor

The user can optionally choose a home monitor when logging in (see login page below).

[image: image21.png]User Name:

I
Password:
Operations Center: PRAVENSTOC v

Home Monitor (optional):

If the user chooses a home monitor, an icon will appear in the upper left corner of the home page (see below) that is a link to the details page for that monitor. This allows the user quick and easy access to their default monitor (e.g., to display a camera image). The user may unasign a home monitor from the logon screen as well (by selecting <blank> instead of a specific monitor).
[image: image22.png]

5.1.1.4 Working Window

Clicking on any link on the home page that will cause a new CHART web page to be displayed will cause that page to be displayed in the working window. Below is an example of the working window after the link for a traffic event has been clicked on the home page.

[image: image23.png]3 * Incident @ I-95 North at MD 152 Details - CHART - Microsoft Internet Explorer [~ [B]ix]
Fie Edt View Favorkes Tods el s ” @sneatt [AN

o TR N 1 [5

Recent Events | Center Rot | Communications Loa | Instant Messaging | Home Page | Paaing | Map | Traffic Events | Heln

Incident @ I-95 North at MD 152

(Event Open; Controlled By RAVENSTOC)

General Info Incident Info Roadway Conditions Participation Response Event History Summary gssociated Events

General Event Information (Edit’ Location Information (Edit,

Event Name Incident @ 1-65 North at MD 152
Source *

Location Description 1-95 North at MD 152

County Harford County
Max Queue Length (mi) 0.0 State MD

Confirmed No Route Type Interstate
Delay Cleared No Route 195
Scene Cleared No Direction North
Closed No Point Along Roadway at MD 152

Open Event Remind Time ot set.

(*) Indicates required

False Alam

General Info Incident Info Roadway Conditions Participation Response Event History Summary gssociated Events

Incident Information

Incident Type: Other HAZMAT: NO

vehicle Count
Involved Overturned Lost Load Jack-Knifed

cars 0

Pickups/Vans/sUvs

Single Unit Trucks

Tractar Trailers

Motorcycles

Loaded Commercial Bus

Unloaded Commercial Bus

Loaded Schoal Bus

Unloaded Schaol Bus

CIETr

Any time the user clicks a link on the home page that will cause a new web page to be displayed, it will be displayed in the working window, replacing its current content. If a working window does not already exist, a new one will be created.

Note that a power user may choose to open links on the home page using the browser’s “open in new window” feature. If the user does this, the working window is not used and the link is opened in a new window as requested. An asterisk appears in the window title of the working window so the user can distinguish it from other browser windows they may have open.

5.1.2 Alerts

Support for Alerts exists in the R3B1 GUI on the home page, and through the alerts detail page. The home page contains a tab control that filters alerts by their state and shows basic information for each alert. The home page also provides icons to allow alerts to be managed by the user with one click. The details page provides more detailed information about an alert, and the page is customized for each alert type.

5.1.2.1 View Alerts

A tab control on the home page allows the user to view alerts for which they have rights to view. Alerts are filtered into tabs according to the current state of the alert (New, Accepted, Delayed, or Closed). The tab shows the number of events that exist in each state. A fifth tab is used to allow the user to create a new Generic Alert.

[image: image24.png]Open3 | Accepted0 | Delayed 0 | Closed 63 | Create Manual Alert

Type | Text

[oD s iy P e B e B D B e
ﬂ Op Center 'PG GO TRIP GTR' has controlled resources and no users currently logged in.

ﬂ Op Center 'NOC' has controlled resources and no users currently logged in,

Times
Crested: 12
Escalates: 2
Crested: 12
Escalates: 2
Crested: 12
Escalates: 2

07 oM
29 M

11 pm
29 M

21 pm
29 M

Actions

2 X
e

VX
pree

VX
e

5.1.2.2 Filter Alerts

In addition to filtering alerts by their state on tabs, radio buttons (shown below) exist to allow the user to filter the alerts shown in their tab control.

[image: image25.png]admin RAVENSTOC Al

They can view their own alerts (i.e., those related to their CHART logged in userid: ‘admin’ in the above picture), their center’s alerts, or all alerts. A user’s own alerts include all new alerts for their center, all accepted alerts the user has accepted, all delayed alerts the user has delayed, and all closed alerts the user has closed. A user’s center’s alerts include all new alerts for their center, all accepted alerts the user’s center has accepted, all delayed alerts the user’s center has delayed, and all closed alerts the user’s center has closed.

5.1.2.3 Manage Alerts

Icons that are applicable to the alert state appear for each alert, as follows:

	New:
	[image: image26.png]

	Accepted:
	[image: image27.png]Kz X =

	Delayed:
	[image: image28.png]vV OX=

	Closed:
	[image: image29.png]

Following are the actions performed when the user clicks each icon:

The [image: image30.png]

 icon is used to place the alert into the Accepted State using the default accept timeout for the alert type.

The [image: image31.png]2::

 icon is used to place the alert into the Delayed state using the default delay timeout for the alert type.

The [image: image32.png]

 icon is used to close the alert.

The [image: image33.png]

 icon is used to resolve the alert, or show a page in the working window that will help the user to resolve the alert. The resolve action is dependent on the type of alert as follows. A generic alert’s resolve action closes the alert. An unhandled resources alert’s resolve action causes the Uncontrolled Resources page to be shown in the working window. A duplicate event alert’s resolve action causes the merge events page to be shown in the working window. A device failure alert’s resolve action will cause the device’s details page to be shown in the working window. An Event Still Open Reminder alert’s resolve action will cause the traffic event details page to be shown in the working window.

The [image: image34.png]

 icon is used to cause the details page for the alert to be shown in the working window.

The [image: image35.png]

 is used to escalate a new alert, which causes it to become visible to more operations centers, as defined by the backup operations centers defined for the currently alerted centers.

The [image: image36.png]

 icon is used to cause a popup to be displayed that allows the user to add a comment to the alert’s history.

The [image: image37.png]

 icon is used to move the alert from the accepted state to the “new” state.

The [image: image38.png]

 icon is used to move the alert from the delayed state to the “new” state.

5.1.2.4 Create Generic Alert

The last tab on the alerts tab control allows users with the appropriate rights to create a generic alert. The user can enter text and then select the operations centers they want to alert. The list of operations centers initially shows centers the user has alerted recently, followed by other centers that have users logged in. The ‘Show All’ checkbox causes all operations centers to appear in the select list, even those without users logged in. After entering text and selecting one or more centers, the user clicks the ‘Add’ button to create the alert, which will then appear as a “new” alert for users in the selected centers.

[image: image39.png]Open2 | Accepted 1 | Delayed0 | Closed 69 | create Manual Alert
Alert Taxt

op centers: [ravensroc] L] show Al

dd

cloar

5.1.2.5 Alert Details Page

The alert details page shows detailed information about an alert. It contains links to allow users to perform each of the actions available on the tab control, plus additional actions to allow the user to perform actions such as accept, delay, or close an alert while providing additional details while doing so. For example, ‘Accept with details’ and ‘Delay with details’ allow the user to specify a comment and a reminder time for the alert. The reminder time is used to cause the system to automatically move the alert to the “new” state if the alert remains in the accepted or delayed state for the specified amount of time.

The alert details page will vary slightly for each type of alert. An Event Still Open Alert’s details page will provide a link to the event details page for the event that is still open after its timer has elapsed. A duplicate event alert’s details page will provide links to the details pages of the two alerts that are thought to be duplicates. An uncontrolled resources alert’s details page will provide a link to the details page of the center that has control of resources with no users logged in. A device failure alert’s details page will show the device that has reported a failure and provide a link to the details page for the device.

A sample alert details page is shown below:

[image: image40.png]3 * CHART - Microsoft Internet Explorer

Fie

Edt View Favortes Tooks

Help

comm 3

Log

ext

EECTE

[- [E]x]

ke > @soocr: (| A

Recent Events | Center Rot | Communications Loa | Instant Messaging | Home Page | Paaing | Map | Traffic Events | Heln

—

Duplicate Events:

State:
Created:

Responsible Centers:

Duplicate Event Alert Details

Disabled ehidle Event @ test23

test23

Disabled Vehile Event @ test1

test1
open
12:07 PM

Center Name

Date/Time Alerted

Tocs

12:07 PM

RAVENSTOC

12:13PM

REDSKINSTOC

12:19PM

MCTMC

1

16 PM

NoC

1

21 M

UofMD CATT_LAB

26 PM

US PARK POLICE

31 PM

MTA

36 PM

DISTE

41 PM

viewonly

47 P11

SHA UP MARLBORO

52 PM

SHA RADIO SHOP.

57 PM

soc

02 PM

SHA OWINGS MILLS

08 M

SHA LAUREL

14pM

Toc4,

19pM

SHA GAITHERSBURG

24 PM

Toca

29 P

SHA FAIRLAND

34 PM

SHA DAYTON

40 PM

sHA 707

45 P

PG CO TRIP CTR

50 PM

MSP WATERLOO

55 PM

MSP ROCKVILLE

00 M

MSP GOLDEN RING

05 PM

MSP GLEN BURNIE

ft
ft
ft
ft
ft
ft
ft
2
2
2
2
2
2
2
2
2
2
2
E
E
E

11pM

Actions

Resolve
Accent

‘Accept With Details.
Delay

Delay with Details.
Close

Close With Details.

CIETr

5.1.3 Create Traffic Event

R3B1 changes the manner in which users create traffic events. Traffic events are now created using the Create Traffic Event section of the home page. The user may enter location data as well as some fields that are usually made known to the user prior to opening an event, such as the Color/Make of a car and its tag information, or the type of incident. The user then clicks a button to specify the type of event to be created, and the details page for the newly created event is opened in the user’s working window. Following is a screen shot of the Create Traffic Event section of the home page. See the following section for more details on specifying traffic event locations.

[image: image41.png]2 HOME - CHART - Microsoft Internet Explorer.

comm

3
oo EETCRENEE I D B B

Back | Forward | Refresh | Home | Center Rot | Communications Log | Instant Messaging | Paging | Map | Traffic Events | Heln | Logout

Recently Viewed Events

Incident@mp 185

Incident @ 1-55 North st
WD 152

View Open Events
view All Events

— Select County — v

Device Management
Message Sians

o e

video Sources

=
—SelectFiter— v

Monitors

— Select Filler— v,

Highway Radios

—SelectFilter— v
—SelectFilter— v

= SHAZAM Signs

— SelectFiter— v

Field Communications
Status

Show Backup Devices

Operations Centers
Eolders
General
Links

Administration

Traffic svants list updated,

Create Traffic Event

state,
Caunty
Routs Type.
Route
Diraction:

Milepost

Int, Road

D I~ Source type
Baltimare Region Source name
Interstate | v Incident Type
1895 Colon/Make:
- Tag Info
O state me s
O county me Oueide Lacation
Oresd (at |+

Create New Euent at location: 1-835 (Baltimore Harbor Tunnel)

o) o] |)| A]3| o)

BHT

o mranet

5.1.4 Traffic Event Locations

R3B1 adds the capability to define the location of a new traffic event, or edit the location of an existing traffic event by using fields to specify state, county, route type, route, direction, and an intersection. The intersection can be defined as at, prior, past, north of, south of, west of, or east of a milepost, intersecting route name, or intersecting route number. Milepost can be specified as either a state or county milepost. The GUI constructs a text location description based on the location data supplied, and also uses this location description as part of the traffic event name. The user is provided the ability to override the generated location description, but is discouraged from doing so. The user can also pick a well known location using a location alias. When an alias is used (such as the Bay Bridge), the location information is automatically filled in for the user using values configured in the system for the selected alias. Aliases will be managed via data pre-populated into the database and will consist of a single list available to the entire system. Following is a screen shot of the new location fields:

[image: image42.png]stater [MD v
County: | Baltimore Ragion

Route Type: [Interstate | v

Route: | 1-895

Direction: -

Wilepost; () state Mp
O county mp

Int Rosd: O Road [at |w

Create New Event at location: 1-895 (Baltimore Harbor Tunnel)

When specifying a location and the selected state is Maryland, the system does not allow free-form text for the county, route type, or route fields. Instead, if the user wishes to specify a value in the field, they must select from a list of values that are applicable to other portion of the location the user has already entered. For example, if the user selects a county in Maryland, only route types and routes that occur in that county will appear in the list. Likewise, after a route type is chosen, only routes of the given type appear in the route list. After the user has selected a county and route, the intersecting road number/name lists are populated with known intersecting roads, however the user can still use free-form text in this field if their road does not appear in the list.

Following is a screen shot of the window used to edit the location information for an existing traffic event. Note that as the location of an existing traffic event is changed, by default its location description and the event name are also changed. The user can use a checkbox at the bottom of the window to keep the system from changing the name of the traffic event, however the user is discouraged from doing so.

[image: image43.png]2 Edit Event Location Information - CHART, - Microsoft Internet Explorer

=4 CHART

Edit Location: Incident@MD 185

New Name Incident @ 1-495 North [Other]
New Location 1-495 North

state, Alias

Countys [Mantgamery County ueride Locstion:]
Route Type: [Interstate | v
Route: 1495 |
Direction: | North
Milepasts () Stats
O county we

O rosd

Suggest Name: V] Subs cancel

5.1.5 Lane Configuration Changes

Several new lane types are being added that will be used in several new lane configurations to allow users to specify lane status in areas such as tunnels, bridges, and toll plazas, and to better represent medians and ramps. Additionally, the user will have the ability to show the traffic flow direction for each lane. This feature is useful in areas such as the bay bridge where directions of lanes are changed to accommodate traffic volume or to allow traffic to flow around an incident.

5.1.5.1 New Lane Types

The existing graphics for on and off ramps have been changed from the prior release to allow them to be combined in road configurations that have multi-lane exits. Following is an image that shows the new on and off ramps on the right. New on and off ramp lane types also exist for the left side of the roadway (not shown).

[image: image44.png]

The image below shows an example of multi-lane ramps using the new ramp lane types. This example has a 3 lane off ramp, and 2 lane on ramp, with a transition area.

 [image: image45.png]

The following graphic illustrates the new tunnel lane type, with the new median lane type between each tunnel bore.

[image: image46.png]

The following graphic illustrates the new lane type for toll lanes:

[image: image47.png]3
P

MY |
I
I
I
I
I
I
I
I
I

g ———

-
g ———
-
g ———
-
g ———
-
g ———
-
g ———
-
g ———
-
g ———
-
g ———
-
g ———
-
- =

The following graphic shows the new lane type graphic for a center turn lane:

[image: image48.png]

The following graphic shows the new Double Yellow Line lane (median) type:

[image: image49.png]North

South

The following graphic shows the new left merge lane type. A similar right merge lane is being added but is not shown):

[image: image50.png]

The following graphic illustrates the new left turn/exit lane type. A similar right turn/exit lane also exists but is not shown.

[image: image51.png]

5.1.5.2 Specify Traffic Flow Direction

The following screen shot shows the area of a traffic event details page where the user can now specify the direction of traffic flow for each lane. Arrows are used to indicate the current traffic flow direction of each lane. In this example, the roadway configuration represents the bay bridge and the traffic flow for a lane on the northern bridge span has been reversed. The user changes the traffic flow direction in the same manner as they currently set the lane status, using new buttons added below the lane status buttons. The user selects one or more lanes and clicks a button to set the traffic flow direction. The button “Alternating Traffic” is used when a flagging operation has traffic sharing a single lane.

[image: image52.png]Legend

M Open
Closed

B Unknown

B Nonexistent

[Open] [Closed | ["Unknown | [Nonexistent] [___Edit Time State Changed

Alterating Traffic

Click ane or more lanss to selact, Click buttan to st state of selacted lanes,

5.1.6 Merge Traffic Events

The GUI provides the ability to merge the data from two traffic events into one of the events and close the other event as a false alarm. This feature is accessed when the user chooses the resolve link for a duplicate traffic event alert, or when the user chooses the merge traffic event link from a traffic event’s details page.

The merge feature is implemented as a multi-page “wizard” type interface, where the user is presented choices to determine the data that is to be contained in the merged traffic event. The user does not choose individual data elements for inclusion; instead their choices apply to groups of related data. The first choice the user must make is to select the event that data will be merged into (the target), which implicitly selects the event that will be closed as a false alarm. If the merge process is started by clicking the link to resolve a duplicate event alert, the user also may choose to close one of the events as a false alarm without merging, or to associate the two events instead of merging.

[image: image53.png]Select Target Traffic Event For Merge

@ 2. Basic Event Info 3. Incident - Type Data

4. Incident - Vehicles Involved

5. Road Conditions

6. Confirmation

Event 1

Event 2

Description/Location

Incident @ wrappertests [Other]

Incident @ wrappertest3 [Other]

Direction

None

None

Event Type Incident (Other) Incident (Other)
Op Center NOC NOC
County/State Carroll County Carroll County

Lane Closures

Vehicles Involved

Action

The interface uses a “tab-like” layout to display the different groups of data applicable to the merge. The actual sections of data presented depend on the types of events being merged; merging events of different types is permitted. A blue tab without a symbol denotes the active tab. A red tab with an exclamation indicates that the tab requires the user to take some action on that tab. A green tab with a check mark indicates the user has already made their choice on that tab, or a choice does not need to be made because both events contain identical data, or because the data only applies to the target event (and is therefore kept). As the user completes a tab, they are automatically moved to the next tab. They can also access tabs directly to work on the data in any order they choose. To complete the first selection screen, the user clicks the “Merge Into This Event” link for the event they wish to keep, which implicitly chooses the other event to be closed as a false alarm.

[image: image54.png]1. Target Event
Selection

Select Traffic Event Basic Details To Merge

Incident
Involved

vehicles

7.
Confirmation

Associated
Events

Target Traffic Event
Incident & 1-95 North at WD 152

Merge Traffic Event
Incident@1-95 North at 1-195

Location: 1-85 North at MD 152 Location: 1-85 North at [-195
Name: Incident @ 1-95 North at MD 152 Name: Incident@1-95 North at I-195
Source: Source:
Source Description: Source Description:
Direction: East Directiol North
Max Queue Length (mi 0o Max Queue Length (mi): 00
County/State: Harford County County/State: Howard County
Confirmed: No Confirmed: No
Delay Cleared: o Delay Cleared: o
Scene Cleared: No Scene Cleared: No
False Alarm: No False Alarm: No
Closed: No Closed: No

Keep Target Basic Event Data

Use This Data For Target Event.

The Basic Event Info tab shows all basic data that applies to all types of traffic events and allows the user to select a radio button to indicate which event’s data to keep. The user then clicks the Next button to see the next data section.

[image: image55.png]Select Traffic Event Incident Details To Merge

1. Target Event Incident - Vehicles associated
Selection Involved Events

Target Traffic Event Merge Traffic Event
Incident & 1-95 North at WD 152 Incident@1-95 North at 1-195
IncidentType: other IncidentType: other
HazMat: No HazMat: No
© Keep Target Incident Data Use This Data For Target Event.

If the target event is an incident, the Incident-Type Data tab will be present. If the other event being merged into the target is also an incident, the user will be able to choose to keep the target’s incident type data, or use the other event’s incident type data. If the other event is not an incident, the only choice will be for the user to keep the target event’s incident type data.

[image: image56.png]Select Traffic Event Vehicles Involved Details To Merge

7.
@ psnaea comimaion

Selection

Events

Target Traffic Event Merge Traffic Event
Incident & 1-95 North at WD 152 Incident@1-95 North at 1-195
Vehicle Count Vehicle Count

Involved Overturned Lost Load Jack-Knifed Involved Overturned Lost Load Jack-Ki
cars o o cars 2 o
Pickups/Vans/SUvs o o Pickups/Vans/SUvs o o
Single Unit Trucks. o o Single Unit Trucks. o0 o0
Tractor Trailers o0 o0 o0 Tractor Trailers o0 o0 o0
Motorcycles. o Motorcycles o0
Loaded Commercial Bus 0 o0 Loaded Commercial Bus 0 o0
Unloaded Commercial Bus 0 o0 Unloaded Commercial Bus 0 o0
Loaded School Bus o0 o0 Loaded School Bus o0 o0
Unloaded School Bus, 0 0 Unloaded School Bus, 0 0

Keep Target Vehicle Count Combine Vehicle Count Use This Vehicle Count

The Incident-Vehicles Involved tab is similar to the incident type data tab. It only appears if the target event is an incident, and the only choice the user will have if the other event isn’t also an incident is to keep the target event’s data. If the other event is also an incident, then the user could choose to use the other event’s data, or to combine the data from both events.

The user continues working through the tabs for each section of data as described for the two tabs above, choosing to keep the target event’s data, the other event’s data, or where applicable, a union of all data. The last tab the user sees is the confirmation tab, shown below.

[image: image57.png]comm

Text

o EECTENN I T E E5

Recent Events | Center Rot | Communications Loq | Instant Messaging | Home Page | Paning | Map | Traffic Events | Help

. Target Event
Selection

Merge Event Confirmation Form

Incident - Vel
Involved

Basic Event Information

6. Associated 7.

[Eeerts Confirmation

Location:
Name:

Sourcs

Source Description:
Direction:

Max Queue Length (mi
County/State:
Confirmed:

Delay Cleared:

Scene Cleared:

False Alarm:

Closed:

1-95 Narth at MD 152
Incident @ 1-95 North at MD 152

East.
00
Harford Caunty
No
No
No
No
o

Incident Data

IncidentType:
HazMat:

cars
Pickups/Vans/sUvs

Single Unit Trucks

Tractar Trailers
Motorcycles

Loaded Commercial Bus
Unloaded Commercial Bus
Loaded Schoal Bus
Unloaded Schaol Bus

vehicle Count
Overturned Lost Load
0

Participation Information

There are currently no partisipants assigned to this event.

Response Plan Information

There are no response plan items to displa:

Associated Event Information

There are no associated events to displa

Top | Center Rot | Communications Log | Instant Messaging | Home Page | Paging | Map | Traffic Events | Help | Save Window Position

The confirmation tab shows the expected data that will appear in the target traffic event after the merge. To complete the merge the user clicks the Submit Merge button and they will be taken to the details page for the target event where the merged data will appear.

5.1.7 Text To Speech Pronunciations

Text to speech pronunciations allow the administrator to define how the text to speech engine should pronounce words. This feature frees users from having to use strange spellings or combinations of words to work around text to speech engine mispronunciations.

The pronunciations are managed using the Manage TTS Pronunciation List page, shown below.

[image: image58.png]Manage TTS Pronunciation List

Show al wxyz
ward [|
Replacement word | | preview
AddWord
Remove Selected Word Replacment Word
[m] 695 SIX NINETY FIVE
[m] 195 EYE NINETY FIVE
[m] METRORAIL METTRO RAIL

Show all

Preview
Preview

Preview

Actions
Remove
Remove

Remove

Modify
Modify
Modify

This page shows all current pronunciations in the system and allows the list to be filtered by the starting letter of the word. New pronunciations are added by simply typing in a word, then its pronunciation, and clicking the “AddWord” button. The user can remove individual words by clicking the remove link for a word, or select multiple words and use the “Remove Selected” link. The user can modify an existing pronunciation by using the Modify link for the word. The user can preview an existing pronunciation, or preview a pronunciation before they add it. When the user clicks the preview link, a pop-up window appears to show the status of the conversion process and to cause the browser to play the audio that results from converting the text to speech. When previewing a pronunciation, the system repeats the pronunciation several times to give the user several chances to listen to the pronunciation.

Pronunciations can also be managed from the existing approved words list. Any approved word that also has a pronunciation will show the pronunciation following the approved word, as shown below.

[image: image59.png]Remove Modify

ACCIDENT , Pronounced: ACKSIDENT Modify TT8 Pronunciation

Remove TTS Pronunciation

When a pronunciation exists for an approved word, the pronunciation is also a link that when clicked allows the user to preview the pronunciation. Links also exist to allow the user to modify the pronunciation or remove the pronunciation from the approved words list. If a word doesn’t already have a pronunciation, a link appears to allow the user to add a pronunciation, assuming they have rights to do so.

[image: image60.png]Remove Modify
ACTION
add TTS Pronundiation

For convenience, a link to add a pronunciation also exists on the HAR editor, shown below. This link is a shortcut to the Add TTS Pronunciation page (described below).
[image: image61.png]3 CHART - Microsoft Internet Explorer

== CHART

Edit HAR RPI - 400

Clip Type: @Text O sudio

New link to add
pronunciation

Preview Add Pronuncistion Inddent Append Date Use Template: Incident
Roadwork Roadwork 2

Message Notifiers to Activate

Select Notifiers: North South Al None

Location Direction HAR Notice

nowhere south Not Active

test location 4 North Not Active

[SpeliCheck] [ShowAdvEditor] [Cancel |

6 MDSHA, All rights

When the ‘Add Pronunciation’ link is clicked the Add Pronunciation window is shown.

[image: image62.png]2 Add TTS Pronunciation - CHART - Microsoft Internet Explorer.

gl dlerts Comm SOU°

Recent Events | Center Rot | Communications Log | Instant Messaging | Home Page |
Paging | Map | Traffic Events | Help

Add TTS Pronunciation

ward [|

Replacement Word | | preview

Add Word

Tep | Center Rt | CommUeations Log | IGEart Weszaing | Home Pace | Facing | Wb
T d

5.2 Alert Module

5.2.1 Classes
5.2.1.1 AlertModule (Class Diagram)

This class diagram depicts the CORBA IDL interface defined for working with Alerts in the CHART system. The classes defined in this diagram make up the AlertManagement package. The classes are generated based on the Alertmanagement.idl file.
[image: image63.emf]getAlerts() : AlertInfo[]

getOpenAlertIds() : Identifier[]

createDeviceFailureAlert(token : AccessToken, deviceId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createDuplicateEventAlert(token : AccessToken, olderEventId : Identifier, newerEventId : Identifier,

 desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createEventStillOpenAlert(token : AccessToken, eventId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createGenericAlert(token : AccessToken, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createUnhandledResourceAlert(token : AccessToken, deviceId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

«interface»

AlertFactory

getID()

getName()

«interface»

UniquelyIdentifiable

AlertAdded

AlertChanged

AlertDeleted

«enumeration»

AlertEventType

alertId : Identifier

theAlert : Alert

type : AlertType

extAlertData : ExtendedAlertData

creationWarningMessage : string

«datatype»

AlertCreationResult

reason : string

«exception»

AlertTypeDiabledException

getType(): AlertType

getData() : AlertData

getExtendedAlertData() : ExtendedAlertData

addComment(token : AccessToken, comment : string) : void

escalate(token : AccessToken, comment : string) : void

accept(token : AccessToken) : void

acceptWithDetails(token : AccessToken, reminderTimeMsec : unslgned long,

 comment : string) : void

setAcceptTimeout(AccessToken token, reminderTimeMsec : unslgned long,

 comment : string) : void

unaccept(token : AccessToken) : void

delay(token : AccessToken) : void

delayWithDetails(token : AccessToken, reminderTimeMsec : unslgned long,

 comment : string) : void

setDelayTimeout(AccessToken token, reminderTimeMsec : unslgned long,

 comment : string) : void

undelay(token : AccessToken) : void

close(token : AccessToken, comment : string) : void

«interface»

Alert

id : Identifier

type : AlertType

ref : Alert

«datatype»

AlertInfo

reason : string

«exception»

AlreadyAtMaxVisibilityException

ALERT_TYPE_GENERIC_ALERT

ALERT_TYPE_UNHANDLED_RESOURCES

ALERT_TYPE_DEVICE_FAILURE

ALERT_TYPE_DUPLICATE_EVENT

ALERT_TYPE_TRAFFIC_EVENT_STILL_OPEN

«enumeration»

AlertType

getFailedDeviceId() : Identifier

getDeviceType() : DeviceFailureDeviceType

getDeviceFailureAlertData() : DeviceFailureAlertData

«interface»

DeviceFailureAlert

«interface»

GenericAlert

alertId: Identifier

description: string

type: AlertType

description: string

state: AlertState

alertCreationTimeMsec : unsigned long

responsibleUser : string

responsibleCenterInfo : OpCenterInfo

alertCreationTime: datetime

alertCurrentVisibility: AlertManagementGroup[]

alertNextVisibility: AlertManagementGroup[]

nextActionTimeMsec : unsigned long

alertLastStateChangeTime: unsigned long

alertHistory : AlertHistory[]

«datatype»

AlertData

getNewerEventId() : Identifier

getOlderEventId() : Identifier

getDuplicateAlertData() : DuplicateEventAlertData

«interface»

DuplicateEventAlert

ALERT_STATE_NEW

ALERT_STATE_ACCEPTED

ALERT_STATE_DELAYED

ALERT_STATE_CLOSED

«enumeration»

AlertState

DEVICE_TYPE_DMS

DEVICE_TYPE_TSS

«enumeration»

DeviceFailureDeviceType

getEventId() : Identifier

getEventStillOpenAlertData() : EventStillOpenAlertData

«interface»

EventStillOpenAlert

baseAlertData: AlertData

eventId: Identifer

typeOfFailedDevice: DeviceFailureDeviceType

«datatype»

DeviceFailureAlertData

timestamp: unsigned long

state: AlertState

action: AlertAction

opCenterId: Identifier

user: string

userComment: string

nextActionTimeMsec : unsigned long

addedVisibility: AMGList

«datatype»

AlertHistory

getOpCenterId() : Identifier

getUnhandledResourcesAlertData() : UnhandledResourcesAlertData

«interface»

UnhandledResourcesAlert

ALERT_ACTION_CREATE

ALERT_ACTION_ACCEPT

ALERT_ACTION_UNACCEPT

ALERT_ACTION_DELAY

ALERT_ACTION_UNDELAY

ALERT_ACTION_CLOSE

ALERT_ACTION_ADD_COMMENT

ALERT_ACTION_ESCALATE

ALERT_ACTION_EDIT

«enumeration»

AlertAction

baseAlertDate: AlertData

newerEvent: Identifier

olderEvent: Identifier

«datatype»

DuplicateEventAlertData

union on AlertType

contains appropriate type-specific AlertData struct

ExtendedAlertData

baseAlertData: AlertData

eventId: Identifer

«datatype»

EventStillOpenAlertData

baseAlertData: AlertData

opCenterId: Identifier

«datatype»

UnhandledResourcesAlertData

1 1

1

1 1

1

1 1

1 1

1 *

1 *

1

1

1 1

1

1

1 1

Figure 5‑1. AlertModule (Class Diagram)

5.2.1.1.1 Alert (Class)

This IDL interface contains the base set of operations that can be performed on an Alert. This is the base interface for all Alert Type specific interfaces defined in the AlertModule IDL.

5.2.1.1.2 AlertAction (Class)***
This IDL enumeration defines the actions that can be done to an Alert.

5.2.1.1.3 AlertCreationResult (Class)

This IDL struct represents the data that will be returned as a result of an alert creation using the AlertFactory calls. It includes: alert id, alert CORBA reference, alert type, extended alert data, and a warning string used to describe non-fatal conditions when creating the alert.

5.2.1.1.4 AlertData (Class)

This IDL struct represents the base data used to describe an alert.

5.2.1.1.5 AlertEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the AlertModule. Its primary use is as a discriminator value used when handling AlertEvents. These can either be Alert Added, Changed, or Deleted.

5.2.1.1.6 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts and storing alert information on the alerts the factory created.

5.2.1.1.7 AlertHistory (Class)

This IDL struct contains information used to describe an action being done to an alert. A collection of these structs represents the history of the alert from beginning to end.

5.2.1.1.8 AlertInfo (Class)

This IDL struct contains information about an Alert in the system. Its primary use is to be returned as part of a list of AlertInfo objects in response to an AlertFactory's getAlerts() call.

5.2.1.1.9 AlertState (Class)

AlertState is an IDL enumeration of the four defined states for an Alert.

5.2.1.1.10 AlertType (Class)

AlertType is an IDL enumeration of the five Alert types.

5.2.1.1.11 AlertTypeDiabledException (Class)

This exception is thrown by the AlertFactory create operations if the alert type being created is disabled within the system. (Server-side clients can ignore this alert; GUI-side clients may wish to display this to the user.)

5.2.1.1.12 AlreadyAtMaxVisibilityException (Class)

This exception is thrown by the Alert escalate() operation if the alert is already at maximum visibility (no additional AMGs are configured in the backup set(s) of the AMG(s) in the current visibility list). Clients may wish to try escalation after receipt of this exception (or at any time the nextVisibility array is empty), in case an administrator may have modified the backup set of AMGs in the meanwhile.

5.2.1.1.13 DeviceFailureAlert (Class)

The DeviceFailureAlert Interface extends the Alert Interface and provides operations specific to DeviceFailureAlerts in the CHART system.

5.2.1.1.14 DeviceFailureAlertData (Class)

This struct, defined in the alert IDL, contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.2.1.1.15 DeviceFailureDeviceType (Class)

The DeviceFailureDeviceType is an enumeration of the possible device failure types supported in a device failure alert.

5.2.1.1.16 DuplicateEventAlert (Class)

The DuplicateEventAlert Interface extends the Alert Interface and provides operations specific to DuplicateEventAlerts in the CHART system.

5.2.1.1.17 DuplicateEventAlertData (Class)

This struct, defined in the alert IDL, contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.2.1.1.18 EventStillOpenAlert (Class)

The EventStillOpenAlert Interface extends the Alert Interface and provides operations specific to EventStillOpenAlerts in the CHART system.

5.2.1.1.19 EventStillOpenAlertData (Class)

This struct, defined in the alert IDL, contains the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.2.1.1.20 ExtendedAlertData (Class)

ExtendedAlertData is a union of the four type specific alert datatypes: DeviceFailureAlertData, DuplicateEventAlertData, EventStillOpenAlertData, and UnhandledResourceAlertData. Note that the GenericAlert does not include any type specific data. The AlertType enumeration is used as the discriminator over the data in this union.

5.2.1.1.21 GenericAlert (Class)

The GenericAlert Interface extends the Alert Interface and provides operations specific to GenericAlerts in the CHART system. These are manual alerts create by the user. No operations are currently defined for this interface.

5.2.1.1.22 UnhandledResourcesAlert (Class)

The UnhandledResourcesAlert Interface extends the Alert Interface and provides operations specific to UnhandledResourcesAlerts in the CHART system.

5.2.1.1.23 UnhandledResourcesAlertData (Class)

This struct, defined in the alert IDL, contains base alert data plus data specific to an UnhandledResourcesAlert. Specific to this alert is the id of the reporting operations center.

5.2.1.1.24 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

5.2.1.2 AlertModule (Class Diagram)

This class diagram defined the classes in the AlertModule package. These classes define the AlertModule server. It utilizes generated IDL classes as wells as other CHART utility classes.

[image: image64.emf]«interface»

UniquelyIdentifiable

«interface»

AlertFactory

alertFactoryImpl(factoryId : Identifier, svcApp : ServiceApplication,

 db : AlertDB, alertPushEventSupplier : PushEventSupplier,

 props : AlertModuleProperties) : ctor

+checkAlertManageability(type: AlertType, visibiliity : AMG[]) : boolean

+discoverOpCenters() : void

+discoverRemoteAlerts() : void

+escalateTimedOutAlerts() : void

+findOpCenterConfig(opCenterId : Identifier) : OpCenterConfiguration

+getBackupAMGsFor(currentVis : AlertManagementGroup[]) :AlertManagementGroup[]

+getOpCenterConfigsFromTrader() : void

+markTimedOutAlertsForArchiving() : void

+reNewTimedOutAlerts() :void

+shutdown() : void

-addAlertTypesToTrader() : void

-log(flags : string, method : string, txt : string) : void

-logProd(method : string, txt : string) :void

-pushAlertAdded(theAlert : Alert, extAlertData : ExtendedAlertData) :boolean

-pushAlertDeleted(alertId : Identifier) : void

-verifyUnique(extAlertData : ExtendedAlertData) : void

-verifyUniqueLocally(extAlertData : ExtendedAlertData) : void

-verifyUniqueRemote(extAlertData : ExtendedAlertData) : void

«implementationClass»

AlertFactoryImpl

java.util.Properties

getEscalateTimerStartupDelay() : int

getEscalateTimerInterval() : int

getAcceptDelayTimerStartupDelay() : int

getAcceptDelayTimerInterval() : int

getArchiveTimerInterval() : int

AlertModuleProperties

m_event_channel : EventChannel

m_pushConsumer : CosEvent.PushConsumer

PushEventConsumer(channel, pushConsumer)

PushEventConsumer

«interface»

Alert

getAlerts() : AlertImpl[]

getAlert() : ExtendedAlertData

setAlert(connMgr:DBConnectionManager, alert:ExtendedAlertData,

 privAlertPrivateData) : void

setAlertOffline(id : Identifier) : void

AlertDB

+getConnection() : java.sql.Connection

+getCurrentOpenCursors() : int

+releaseConnection() : void

+shutdown() : void

+verifyDBInitialized() : boolean

DBConnectionManager

+AlertImpl(id : Identifier, data : AlertData, factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication,

 db AlertDB) : ctor

+equals(AlertImpl other) : boolean

#changeState(AlertState newState) : boolean

#compare(AlertImpl other) : boolean

#escalateIfNecessary() : boolean

#getTypeSpecificData() : ExtendedAlertData

#markOfflineIfNecessary() : boolean

#persistAndPushAlert() : void

#persistAlert() : void

#performEscalation() : boolean

#pushAlertAdded(theAlert : Alert, extAlertData : ExtendedAlertData) :boolean

#reNewIfNecessary() : boolean

#log(flags : string, method : string, txt : string) : void

#logProd(method : string, txt : string) :void

#logLockDone(lock : string) : void

#logLockRcvd(lock : string) : void

#logLockRqst(lock : string) : void

«implementationClass»

AlertImpl

«interface»

ServiceApplication

«interface»

DeviceFailureAlert

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

schedule() : void

cancel() : void

java.util.Timer

AlertModule() : ctor

-createEventChannel(name) : PushEventSupplier

-createAlertFactory() : boolean

- addAlertFactoryTypesToTrader() : void

«implementationClass»

AlertModule

«interface»

DuplicateEventAlert

run()

java.util.TimerTask

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

«implementationClass»

DeviceFailureAlertImpl

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

«implementationClass»

DuplicateEventAlertImpl

EscalateTimerTask

«interface»

EventStillOpenAlert

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)

getChannel():EventChannel;

getMaxReconnectInterval(void):int;

setMaxReconnectInterval(int seconds):void;

push(Any data):void;

disconnectPushConsumer(void):void;

PushEventSupplier

AcceptDelayTimerTask

ArchiveTimerTask

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

«implementationClass»

EventStillOpenAlertImpl

DataModel

«interface»

GenericAlert

ObjectCache

prevEscalationResetTime : Timestamp

isOffline : boolean

AlertPrivateData

ProxyAlert

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor

«implementationClass»

GenericAlertImpl

See

ProxyAlertClasses

Class Diagram for

details.

«interface»

UnhandledResourcesAlert

+AlertImpl(id : Identifier,

 extData : ExtendedAlertData,

 factory : AlertFactoryImpl,

 pushEventSupplier : PushEventSupplier,

 svcApp : ServiceApplication,

 db AlertDB) : ctor#compare(AlertImpl other) : boolean

#getTypeSpecificData() : ExtendedAlertData

«implementationClass»

UnhandledResourcesAlertImpl

baseAlertData: AlertData

eventId: Identifer

typeOfFailedDevice: DeviceFailureDeviceType

«datatype»

DeviceFailureAlertData

alertId: Identifier

description: string

type: AlertType

description: string

state: AlertState

responsibleUser: string

responsibleCenterInfo: OpCenterInfo

alertCreationTime: datetime

alertCurrentVisibility: AlertManagementGroup[]

alertNextVisibility: AlertManagementGroup[]

nextActionTimeMsec : unsigned long

alertLastStateChangeTime: unsigned long

alertHistory : AlertHistory[]

«datatype»

AlertData

baseAlertDate: AlertData

newerEvent: Identifier

olderEvent: Identifier

«datatype»

DuplicateEventAlertData

baseAlertData: AlertData

eventId: Identifer

«datatype»

EventStillOpenAlertData

baseAlertData: AlertData

opCenterId: Identifier

«datatype»

UnhandledResourcesAlertData

* 1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

1

1

1 1

1 1

1 1

1

1

*

1

*

1

1

1

1 1

1

1

1

1

*

1

Figure 5‑2. AlertModule (Class Diagram)

5.2.1.2.1 AcceptDelayTimerTask (Class)

This class implements the alert accept-and-delay timer task. It periodically inspects alerts in the accept state for those that have taken too long completion in the accept state. This accept timeout limit is established in the system profile for each alert. Similarly it periodically reviews the alerts in the delay state for those whose delay period has expired. As with the accept state timeout, the delay timeout period is established in the system profile for each alert type. When either the accept timeout or the delay timeout expires, this task calls into the AlertImpl to escalate the alert.

5.2.1.2.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.2.1.2.3 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.2.1.2.4 AlertDB (Class)

This class provides a database interface for the AlertModule. It includes methods needed to store and retrieve Alert related information.

5.2.1.2.5 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts and storing alert information on the alerts that it created.

5.2.1.2.6 AlertFactoryImpl (Class)

This AlertFactoryImpl class implements the IDL AlertFactory interface and is responsible for creating and managing the objects created to represent alerts (AlertImpls) in the CHART system.

5.2.1.2.7 AlertImpl (Class)

The AlertImpl class implements the IDL Alert interface. The AlertImpl class contains the base class functionality for all other alert types in the CHART system. Each instance of one of the AlertImpls derived types represents a specific alert.

5.2.1.2.8 AlertModule (Class)

This class provides the resources and support functionality necessary to serve alert related objects in a service application. It implements the ServiceApplicationModule interface which allows it to be served from any ServiceApplication.

5.2.1.2.9 AlertModuleProperties (Class)

This class provides operations for getting values in the service's Java properties file.

5.2.1.2.10 AlertPrivateData (Class)

This class contains base alert data which is private to the AlertImpl class, Among the data stored in AlertPrivateData is the time of the previous escalation or reset time, and the isOffline flag to indicate the alert is ready for archiving.

5.2.1.2.11 ArchiveTimerTask (Class)

This class implements the alert archive timer task. It periodically sweeps through the closed alerts in the system for those alerts deemed old enough to be archived. If an alert is found that has aged beyond the system defined archive timer limit, it will set a flag on the alert to mark it for removal. At some later time a separate database task will run to remove and off-load these alerts to an archive file.

5.2.1.2.12 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.2.1.2.13 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.2.1.2.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is implemented by classes representing DeviceFailureAlerts in the CHART System.

5.2.1.2.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.2.1.2.16 DeviceFailureAlertImpl (Class)

The DeviceFailureAlertImpl class is derived from the AlertImpl class and implements the IDL DeviceFailureAlert interface. Type specific functionality is provided by this class for Device Failure alerts.

5.2.1.2.17 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is implemented by classes representing DuplicateEventAlertsDevice in the CHART System.

5.2.1.2.18 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.2.1.2.19 DuplicateEventAlertImpl (Class)

The DuplicateEventAlertImpl class is derived from the AlertImpl class and implements the IDL DuplcateEventAlert interface. Type specific functionality is provided by this class for Duplicate Event alerts.

5.2.1.2.20 EscalateTimerTask (Class)

This class implements the alert escalate timer task. It periodically checks the new alerts in the system for those that have not been accepted, delayed, or closed within the escalation timeout period. This timeout period is established in the system profile for each alert type. If an alert is found that has exceeded the escalation timer limit, a call into AlertImpl will be made to escalate the alert. Upon system startup, this task is delayed for a period of time, configurable via props file, to allow other system processes a chance to come online and to allow users a chance to log in and handle their alerts before automatic escalation resumes.
5.2.1.2.21 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is implemented by classes representing EventStillOpenAlerts in the CHART System.

5.2.1.2.22 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.2.1.2.23 EventStillOpenAlertImpl (Class)

The EventStillOpenAlertImpl class is derived from the AlertImpl class and implements the IDL EventStillOpenAlert interface. Type specific functionality is provided by this class for Event Still Open alerts.

5.2.1.2.24 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is implemented by classes representing GenericAlerts in the CHART System.

5.2.1.2.25 GenericAlertImpl (Class)

The GenericAlertImpl class is derived from the AlertImpl class and implements the IDL GenericAlert interface. Any type specific functionality that may be implemented in the future would be provided by this class for Generic alerts.

5.2.1.2.26 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.2.1.2.27 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.2.1.2.28 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.2.1.2.29 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.2.1.2.30 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including the local service). The complete set of data for each alert is stored in the ProxyAlert, along with its ID and a reference to the Alert object it represents. These proxy alerts allow every alert module service in the system to have some knowledge of every alert in the entire system, for the quickly determining whether a proposed new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert class is the super class for derived classes for each specialized type of alert in the system, so that type specific data can be stored and accessed for each alert type, and can be queried for comparison for the Duplicatable isDuplicateOf() method.

5.2.1.2.31 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

5.2.1.2.32 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.2.1.2.33 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a Chart2service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.2.1.2.34 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.2.1.2.35 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to a Unhandled Resources alert. This interface is implemented by classes representing UnhandledResourceAlerts in the CHART System.

5.2.1.2.36 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.2.1.2.37 UnhandledResourcesAlertImpl (Class)

The UnhandledResourceAlertImpl class is derived from the AlertImpl class and implements the IDL UnhandledResourceAlert interface. Type specific functionality is provided by this class for Unhandled Resource alerts.

5.2.1.2.38 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.2.1.3 ProxyAlertClasses (Class Diagram)

This class diagram shows all classes related to the storage of proxy alerts in the object cache. The ProxyAlert class, and its subclasses, provide access to all alerts known to be in the system, so that an alert factory can quickly determine whether a requested new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again).

[image: image65.emf]m_deviceFailureAlertData : DeviceFailureAlertData

+getDeviceFailureAlertData() : DeviceFailureAlertData

+setDeviceFailureAlertData(data : DeviceFailureAlertData) : void

+isDuplicateOf(other : ProxyDeviceFailureAlert) :boolean

ProxyDeviceFailureAlert

ObjectCache

«datatype»

DeviceFailureAlertData

isDuplicateOf(type : Class, other : Duplicatable) : boolean

«interface»

Duplicatable

m_duplicateEventAlertData : DuplicateEventAlertData

+getDuplicateEventAlertData() : DuplicateEventAlertData

+setDuplicateEventAlertData(data : DuplicateEventAlertData) : void

+isDuplicateOf(other : ProxyDuplicateEventAlert) :boolean

ProxyDuplicateEventAlert

DataModel

m_ref : Alert

m_alertData : AlertData

+getRef() : Alert

+getAlertData() : AlertData

+setAlertData(data : AlertData) : void

+getExtendedAlertData() : ExtendedAlertData

+isDuplicateOf(other : ProxyAlert): boolean

ProxyAlert

«datatype»

DuplicateEventAlertData

m_eventStillOpenAlertData : EventStillOpenAlertData

+getEventStillOpenAlertData() : EventStillOpenAlertData

+setEventStillOpenAlertData(data : EventStillOpenAlertData) : void

+isDuplicateOf(other : ProxyEventStillOpenAlert) :boolean

ProxyEventStillOpenAlert

«interface»

Alert

«datatype»

EventStillOpenAlertData

«datatype»

AlertData

+isDuplicateOf(other : ProxyGenericAlert) :boolean

ProxyGenericAlert

m_unhandledResourcesAlertData : UnhandledResourcesAlertData

+getUnhandledResourcesAlertData() : UnhandledResourcesAlertData

+setUnhandledResourcesAlertData(data : UnhandledResourcesAlertData) : void

+isDuplicateOf(other : ProxyUnhandledResourcesAlert) :boolean

ProxyUnhandedResourcesAlert

«datatype»

UnhandledResourcesAlertData

1

1

1

1

1 1

1 1

1

1

1 1

1

1

* 1

Figure 5‑3. ProxyAlertClasses (Class Diagram)

5.2.1.3.1 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.2.1.3.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.2.1.3.3 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.2.1.3.4 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.2.1.3.5 Duplicatable (Class)

This Java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.2.1.3.6 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.2.1.3.7 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.2.1.3.8 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.2.1.3.9 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including the local service). The complete set of data for each alert is stored in the ProxyAlert, along with its ID and a reference to the Alert object it represents. These proxy alerts allow every alert module service in the system to have some knowledge of every alert in the entire system, for the quickly determining whether a proposed new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert class is the super class for derived classes for each specialized type of alert in the system, so that type specific data can be stored and accessed for each alert type, and can be queried for comparison for the Duplicatable isDuplicateOf() method.

5.2.1.3.10 ProxyDeviceFailureAlert (Class)

his subclass of ProxyAlert is used to cache DeviceFailureAlert types of alerts. It holds and provides access to data specific to the DeviceFailureAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.3.11 ProxyDuplicateEventAlert (Class)

This subclass of ProxyAlert is used to cache DuplicateEventAlert types of alerts. It holds and provides access to data specific to the DuplicateEventAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.3.12 ProxyEventStillOpenAlert (Class)

This subclass of ProxyAlert is used to cache EventStillOpenAlert types of alerts. It holds and provides access to data specific to the EventStillOpenAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.3.13 ProxyGenericAlert (Class)

his subclass of ProxyAlert is used to cache GenericAlert types of alerts. It holds and provides access to data specific to the GenericAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.3.14 ProxyUnhandedResourcesAlert (Class)

This subclass of ProxyAlert is used to cache UnhandledResourcesAlert types of alerts. It holds and provides access to data specific to the UnhandledResourcesAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.3.15 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.2.2 Sequence Diagrams

5.2.2.1 AlertModule:acceptWithDetails (Sequence Diagram)

This sequence diagram depicts the IDL method acceptWithDetails(). If the alert is not in the NEW or DELAYED state, an InvalidState exception is thrown. If the user does not have functional rights to perform the action and AccessDenied exception is thrown. The Alert's state is changed to ACCEPTED. The Alert's nextActionTimeMsec is set to specified value or system wide default. An Alert History Record is added for this operation. The responsibleUser and responsibleOpCenterId is set to the opCenterId and user for this type of state change. The alert is then persisted and an AlertChanged event is pushed.

[image: image66.emf]ObjectCache

ProxySimpleOpCenter

opCenterInfo :

OpCenterInfo

getObject(opCenterId) and cast to ProxySimpleOpCenter

Object or null

[ProxySimpleOpCenter returned]

opCtrName = ""

[else null returned]

opCtrName = getOpCenterName()

create(opCenterId, opCenterName)

m_alertData.responsibleUser = user

m_alertData.responsibleOpCenterId =

opCenterInfo

AlertImpl acceptWithDetails(token

reminderTime, comment)

[state != NEW || DELAYED]

InvalidState exception

m_alertData.nextActionTimeMsec =

now.getTime() +

(defReminderMins * 60000)

create()

[reminderTime == 0]

Add History Record to

Alert for an Accept. No

AMG List is specified in

this case.

[else reminderTime != 0]

void

TokenManipulator hasRights:Boolean = checkRights(token, MANAGE_ALERTS)

AlertModuleProperties defReminderMins:int =

getDefaultAcceptTimeoutMins(m_alertData.type)

Push alert changed event.

m_alertData.nextActionTimeMsec =

reminderTime

persistAndPushAlert()

changeState(

AlertState.ALERT_STATE_ACCEPTED)

The IDL method accept(Token) fronts

a call to this method.

user:String = getUserName(token)

[!hasRights]

AccessDenied exception

opCenterId:Identifier = getOpCenterId(token)

addHistoryRecord(

AlertAction.ALERT_ACTION_ACCEPT,

opCenterId, user, comment, AMG[0])

now:java.util.Date

Figure 5‑4. AlertModule:acceptWithDetails (Sequence Diagram)

5.2.2.2 AlertModule:alertDBSetAlert (Sequence Diagram)

This diagram depicts the updating of Alert information in the CHART database. The information will be updated if the alert information was previously added and inserted otherwise.

[image: image67.emf]Statement new executeQuery(SELECT count(*) FROM AlertHistory WHERE AlertID=AlertData.alertId) [* for startRecord to

alertData.alertHistory.size()]executeQuery(INSERT * INTO ALERTHISTORY)

executeQuery(UPDATE ALERT SET ... WHERE AlertID = AlertData.alertId)

[Any DB errors]

executeQuery(BEGIN TRANSACTION) executeQuery(ROLLBACK TRANSACTION)

Alerts always haveat least 1 history record

[count == 0]

executeQuery(INSERT * INTO ALERT)

startRecord = count +1

startRecord = 0

[no DB errors]

executeQuery(COMMIT TRANSACTION)

AlertDB [count > 0]

DBConnectionManager [any DB error]

CHART 2 Exception

AlertModulesetAlert(conn:DBConnectionManager,alertData:AlertData, alertPrivateData:AlertPrivateData)getConnection() void

releaseConnection()

[no connection]CHART2Exception

Figure 5‑5. AlertModule:alertDBSetAlert (Sequence Diagram)

5.2.2.3 AlertModule:archiveTimedOutAlerts (Sequence Diagram)

This diagram depicts the AlertFactoryImpl.archivedTimedoutAlerts() method. This method is a worker method that is called from the ArchiveTimerTask when its Timer calls its run() method. The method iterates through the current AlertImpls calling the markOfflineIfNecessary() method for each. The markOfflineIfNecessary() method will mark the alert offline in the DB if the alert is closed and the nextActionTimeMsec has passed. If the alert has been mark offline, the alert corba object is deactivated in the POA, deleted from cache in the Factory, and an alert deleted event is pushed.

[image: image68.emf]deactivate_object(alertId) deleteAlertFromCache(alertId) This method sets DB arcvhive flag for alertImp. [hasBeenMarkedOffline] pushAlertDeleted(alertId) POA void ArchiveTimerTaskAlertFactoryImplhasBeenMarkedOffline:Boolean = markOfflineIfNecessary() run()iter:java.util.Iterator getAlertIterator() TimerGet an iterator for the current list of Alerts for this factory. AlertImpl voidarchiveTimedOutAlerts() [iter.hasNext()]

Figure 5‑6. AlertModule:archiveTimedOutAlerts (Sequence Diagram)

5.2.2.4 AlertModule:checkAlertManageability (Sequence Diagram)

This sequence diagram shows how the AlertImpl checks to see if there is any user logged into an alert's current visibility with rights to manage alerts of that type. The ObjectCache is consulted for each op center in the alert's current visibility, checking to see if any user is logged in with the right to manage that alert's type. As soon as such an operator is found, true is returned, otherwise false is returned at the end of the loop.

[image: image69.emf][*for each operations center in visibility] [true]true

AlertImplObjectCacheProxySimpleOpCenter getObject(opCtrId) cast to ProxySimpleOpCenter boolean [through loop with none found]

false

AlertFactoryImpl Object checkAlertManageability(alertType,visibility)Object isUserLoggedInWithRight(right to manage alertType)

Figure 5‑7. AlertModule:checkAlertManageability (Sequence Diagram)

5.2.2.5 AlertModule:closeAlert (Sequence Diagram)

This sequence diagram depicts the IDL close() for the AlertImpl object. If the alert is already in the CLOSED state, an InvalidState exception is thrown. If the user does not have functional rights to perform the action and AccessDenied exception is thrown. The Alert's state is changed to CLOSED. The Alert's nextActionTimeMsec is set using the configured archival timeout. An Alert History Record is added for this operation. The alert is then persisted and an AlertChanged event is pushed.

[image: image70.emf]AlertImplPush alert changed event.

[!hasRights]AccessDenied exceptionarchivalTimeoutMins:int = getArchivalTimeoutMins() AlertModuleProperties now:java.util.Date persistAndPushAlert()

void

[state == CLOSE]InvalidState exceptionopCenterId:Identifier = getOpCenterId(token) close(token, comment)TokenManipulator m_alertData.nextActionTimeMsec =now.getTime() + (archivalTimeoutMins * 60000)Add History Record to Alert for an Accept. No AMG List is specified in this case. create() user:String = getUserName(token) changeState(AlertState.ALERT_STATE_CLOSE)hasRights:Boolean = checkRights(token, MANAGE_ALERTS) addHistoryRecord(AlertAction.ALERT_ACTION_CLOSE,opCenterId, user, comment, null)

Figure 5‑8. AlertModule:closeAlert (Sequence Diagram)

5.2.2.6 AlertModule:createEventStillOpenAlert (Sequence Diagram)

This diagram shows how a new alert is created. As diagramed, it is an EventStillOpenAlert being created. Others are similar and are not diagramed. The AlertFactoryImpl is called to create the new alert. After checking the user's rights, it creates the AlertData for new alert containing the base alert data. At this point a check is preformed to see if the alert type has been disabled in the system profile. Given that it has not been disabled, the EventStillOpenAlertData is created containing the alert type specific data, in this case the EventStillOpenAlert type. Next a proxy alert is created. The isDulicated() method is called to verify the alert being created does not already exist in the system. Given a negative result to this test the EventStillOpenAlertImpl is created. A handle to the POA is ascertained and the alert object is activated. An AlertAdded event is pushed to notify of the alert's creation. And lastly an AlertCreationResult is returned as processing finishes.

[image: image71.emf]Server-side clients may ignore this exception. GUI clients may wish to display this to the user.ORBAlertFactoryImplIf an alert for the exact same condition already exists in the system,return cleanly with no errorreported. The situtation is as the caller requested --there is an alert for thereported condition.TokenManipulatorThis diagram is intended to be a representative example of how to implement the alert creation module for each of the alerts currently supported in Chart. The designs for the createUnhandledResourceAlert(), createDeviceFailureAlert(), createDuplicateEventAlert(), and createGenericAlert() will all closely follow this design. AlertModuleAlertModulePropertiesactivate_object(alertId)POAbaseAlertData :AlertDataPushEventSuppliertempAlertDataEventStillOpenAlertDataCreate using null for theAlert reference, as wedo not know if it willbecome an activatedobject yet.OperationsLogAlertDBObjectCachetempProxy :ProxyEventStillOpenAlertcreate(new ID, desc, AlertType.ALERT_TYPE_EVENT_STILL_OPEN, System.currentTimeMillis(),AlertState.ALERT_STATE_NEW, "", {Null Identifer, ""}, new AMG[0], initialVisibility, 0, new AlertHistory[0])create(baseAlertData, eventId)create(null, tempAlertData)isDuplicated(ProxyEventStillOpenAlert.class, tempProxy)getPOA()EventStillOpenAlertImplcheckAccess[no rights]opLog("Invalid Access Attempt")pushEvent(AlertAdded)getEventSupplier()[alertDisabled]AlertTypeDisabledException[no rights]AccessDeniedcreateEventStillOpenAlert(token : AccessToken, eventId : Identifier, desc string, initialVisibility : AlertManagementGroup[])AlertCreationResultcreate()alertDisabled:Boolean isAlertDisabledForType(m_alertData.type)persistAlert()[database error]CHART2Exception

Figure 5‑9. AlertModule:createEventStillOpenAlert (Sequence Diagram)

5.2.2.7 AlertModule:escalateIfNecessary (Sequence Diagram)

This diagram depicts the escalateIfNecessary() method. This method is called from the AlertFactoryImpl.escalateTimedOutAlerts() method (Timer). It is called to escalate the alert if the alert is in the NEW state and automatic escalation is enabled for this type. If those two conditions are true, performEscalation() is called if no one logged into the current visibility can handle the alert or the timeout since the last escalation has passed.

[image: image72.emf]timeoutMins:int = getEscalationTimeoutMins(m_alertData.type) Escalation if past due for escalation OR no one in the current visibility can handle the alert.If not in NEW state ORautomatic escalation isdisabled, do nothing.AlertFactoryImplAlertFactoryImpl alertCanBeManaged:Boolean = checkManagability(m_alertData.type, m_alertData.currentVisibility) AlertImplnext:java.util.Date now:java.util.Date escalateIfNecessary()create() create(m_alertPrivateData.prevEscalationResetTimeMsecs + (timeoutMins * 60000)) [m_alertData.state == NEW || automaticEscalationEnabled] performEscalation("", nullId, "Alert Manager")void [pastDue || alertCanBeManaged == FALSE] pastDue:Boolean = after(next) AlertModuleProperties automaticEscalationEnabled:Boolean isEscalationEnabledForType(m_alertData.type)

Figure 5‑10. AlertModule:escalateIfNecessary (Sequence Diagram)

5.2.2.8 AlertModule:escalateTimedOutAlerts (Sequence Diagram)

This diagram depicts the AlertFactoryImpl.escalateTimedoutAlerts() method. This method is a worker method that is called from the EscalateTimerTask when its Timer calls its run() method. The method iterates through the current AlertImpls calling the escalateIfNecessary() method for each. That method will determine if escalation is needed. The reNewTimedoutAlerts() method is similar.

[image: image73.emf]TimerEscalateTimerTaskrun()escalateTimedOutAlerts() iter:java.util.Iterator getAlertIterator() [iter.hasNext()] Get an iterator for the current list of Alerts for this factory. escalateIfNecessary()

void

AlertImpl AlertFactoryImpl

Figure 5‑11. AlertModule:escalateTimedOutAlerts (Sequence Diagram)

5.2.2.9 AlertModule:getBackupAMGsFor (Sequence Diagram)

This sequence diagram shows how an AlertImpl determines the new visibility for an alert that is undergoing an escalation step. The list of backup operations centers is acquired from the ObjectCache for each operations center in the current visibility, and all operations centers are accumulated in a set (which quietly does not allow duplicates). In the end, the set of current visibility coming into the method is subtracted out of the result set (via set arithmetic), and the final result set is converted to an array and returned.

[image: image74.emf]contains(tempAMG) AlertImplObjectCache initialSet : HashSet<AlertManagementGroup This checks to make sure we don't include any AMGs in the returned array that were in the currentVis passed in. AlertFactoryImplObject resultSet : HashSet<AlertManagementGroup> tempAMG : AlertManagementGroup getBackupAMGsFor(currentVis)ObjectgetBackupOpCenters()add(tempAMG) [intialSet does not contain tempAMG] add(tempAMG) [*for eachIdentifierreturned]toArray() create with current op centerProxySimpleOpCenter tempAMG : AlertManagementGroup Identifier getObject(opCtrId)cast to ProxySimpleOpCentercreate with current op centerIdentifiersresult : AMGList [*for eachop center incurrentVis]resultcreate empty hashsets

Figure 5‑12. AlertModule:getBackupAMGsFor (Sequence Diagram)

5.2.2.10 AlertModule:initAlert (Sequence Diagram)

This sequence diagram depicts the helper method used to transition alert into the NEW state. This transition happens during creation and user/timer initiated unaccept/undelay actions. If the alert is not in the NEW state, an InvalidState exception is thrown. The Alert's state is changed to NEW. The Alert's nextActionTimeMsec is set to the next time escalation is required or zero if auto escalation is disabled for this alert type. An Alert History Record is added for this operation recorded with the AlertAction passed in. The alert is then persisted. Next, either an AlertChanged or AlertAdded event is pushed based on the action passed in (CREATE = AlertAdded, UNDELAY/UNACCEPT = AlertChanged). Then the alert's escalateIfNecessary() method is called.

[image: image75.emf]else

If action is CREATE, push

AlertAdded event. If action is

UNDELAY/UNACCEPT push

AlertChanged event.

AlertModuleProperties m_alertData.responsibleOpCenterId =

nullIdentifier

create()

[m_alertData.state ==

AlertState.ALERT_STATE_NEW]

InvalidState exception

escalateIfNecessary()

void

persistAndPushAlert(action)

AlertImpl now:java.util.Date

changeState(

AlertState.ALERT_STATE_NEW)

escalationTimeOut:int =

getEscalationTimeoutMins(m_alertData.type)

addHistoryRecord(

action,

opCenterId, user, comment, null)

m_alertDate.responsibleUser = ""

m_alertData.nextActionTimeMsec =

now.getTime() + (escalationTimeOut * 60000)

init(opCenterId:Identifier, comment:String, user:String, action:AlertAction)

autoEscalate:Boolean =

isAutoEscalationEnabledForType(m_alertData.type)

[autoEscalate == FALSE]

Add History Record to Alert for

specified action. No AMG List

is specified in this case. Note:

in addHistoryRecord() method,

if action = CREATE, use

alert create time in History record,

else use current time.

If auto escalation is disabled

for this alerts type, set the

next action time to 0. Else,

set it accordingly based on

the defined escalation time

m_alertData.nextActionTimeMsec = 0

Figure 5‑13. AlertModule:initAlert (Sequence Diagram)

5.2.2.11 AlertModule:initialize (Sequence Diagram)

This diagram shows what happens when the AlertModule is initialized. The ServiceApplication calls the AlertModule to initialize, which reads in the properties from a file, overriding the default properties. It creates an event channel for alerts and publishes the channel in the trading service so that other applications can see it. It adds the appropriate discovery commands to the DiscoveryDriver, so that remote objects will be found and updated in the ObjectCache. It creates an AlertDB object to handle all of the database calls, and an AlertFactoryImpl object to manage the alerts. The AlertFactoryImpl loads alerts from the AlertDB database and then activates the Alert objects from the database. Next, a timer is created by the AlertModule. This timer will be used by the AlertImpls [not depicted on this diagram] to monitor and control alert escalation times, alert accept/delay times, and alert archive times. After creating the timer, three tasks are created and initialized to implement this functionality. Following creation of these tasks, the AlertFactory is exported to the trading service and the AlertModule initialize method returns.
[image: image76.emf]drmCmd : DiscoverResourceMgmtOpCtrClassesCommand getArchiveTimerInterval()

getAcceptDelayTimerInterval()

true means run as daemon create(true) getEscalateTimerStartupDelay() create() create()

ArchiveTimerTask

DiscoveryDriver This starts discovery of Alert Event Channels and alerts from other Alert Modules. See DiscoverAlertClassesCommand:run for details. getDiscoveryDriver() add(daCmd) create()

scheduleAtFixedRate(escalateTask, startTime, interval) Timer AcceptDelayTimerTask

add(drmCmd) This starts discovery of Resource Event Channels and Op Center updates from all Resource Management Modules. See DiscoverResourceMgmtClassesCommand:run for details. activate_object(Alert) ServiceApplicationAlertModule DefaultServiceApplication AlertModuleProperties This event channel is used to push Alert state changes. getDefaultProperties()create()create create() export(Alert Factory)

getEscalateTimerInterval()create() create PushEventSupplier AlertFactoryImpl POA AlertDB CosTrading.Register EscalateTimerTask getAcceptDelayTimerStartupDelay()

getAlerts() export(Event Channel) initialize scheduleAtFixedRate(acceptDelayTask, startTime, interval)

registerEventChannel() getTradingRegister() scheduleAtFixedRate(archiveTask, startTime, interval)

daCmd : DiscoverAlertClassesCommand create() getEventChannelFactory() getDBConnectionManager() getProperties()

Figure 5‑14. AlertModule:initialize (Sequence Diagram)

5.2.2.12 AlertModule:initUnhandledResourcesAlert (Sequence Diagram)

This sequence diagram depicts the helper method used to transition UnhandledResourcesAlertImpls into the NEW state. This is an override to the AlertImpl.init() method. This transition happens during creation and user/timer initiated unaccept/undelay actions. The base class version of the initialization method is called. This method will throw InvalidState exceptions from the base class version of the init() method. The only additional functionality added is that the performEscalation() is called directly if automatic escalation is disabled for alerts of type UnhandledResource. This basically does the escalation that would not have been done in the base class initialization's escalateIfNecessary() call if auto escalation was disabled.

[image: image77.emf]UnhandledResourcesAlertImplautoEscalateEnabled:Boolean = isAutoEscalationEnabledForType(m_alertData.type) [autoEscalationEnabled == FALSE]

performEscalation(comment,

opCenterId, user)

AlertModuleProperties init(opCenterId:Identifier,comment:String,user:String, action:AlertAction)super.init(opCenterId, comment, user, action void

Figure 5‑15. AlertModule:initUnhandledResourcesAlert (Sequence Diagram)

5.2.2.13 AlertModule:performEscalation (Sequence Diagram)

This diagram depicts processing done when performing an escalation. The AlertImpl.performEscalation() method is called from IDL and package methods. The method represents an attempt at an escalation cycle for an alert. The main while loop represents the escalation step in that cycle. If an attempt at escalation is made when the alert is already at maximum visibility, an AlreadyAtMaxVisibility exception is thrown. Each escalation step will widen the visibility for the alert based on the backup AMG List hierarchy defined in the system. The steps will continue until either a logged in user in the list of AMGs added during this escalation cycle can handle the alert is found, or max visibility is reached. The m_alertData is updated accordingly and the alert is persisted and pushed.

[image: image78.emf]m_alertPrivateData.prevEscalationTimeoutMsec

= now.getTime()

If next visibility is empty, set

nextActionTimeMsecs to 0.

Else, it should be

now + escalation timeout.

else

m_alertData.nextActionTimeMsec = 0

setNextVisibility(new AMG[0])

persistAndPushAlert()

[m_alertData.nextVis.length != 0 ||

m_alertData.nextActionTimeMsec != 0]

now:java.util.Date

escTimeoutMins:int =

getEscalationTimeoutMins(m_alertData.type)

Update private time stamp

noting when last escalation

attempt happened.

m_alertData.nextActionTimeMsec = 0

This condition means the alert was

already at max vis when escalation

was attempted. Make sure

nextVisibility is empty and

nextActionTime == 0. Push and

persist if changes are made.

Throw exception.

Max

Visibility

reached.

endEscalation = true

alertCanBeManaged = checkAlertManageability(alertType, addedAMGs)

endEscalation = true

create()

[nextVisibility.length == 0]

m_alertData.nextActionTimeMsec =

now.getTime + (escTimeoutMins * 60000)

[stepCount == 0]

Initialize aMGsAddedThisStep to

Backup AMGs for the current vis for the

first escalation step. For subsequent

steps, its set to backup AMGs for

the AMGs added the last step..

aMGsAddedThisStep = getBackupAMGsFor(aMGsAddedThisStep)

setNextVisibility(nextVisibility)

[stepCount != 0]

nextVisibility:AMG[] = getBackupAMGsFor(stepAddedAMGs)

create

addAll(aMGsAddedThisStep)

Determine if alert

can be managed

by any user at

any AMG added

so far during

this escalation.

Keep track of

AMGs add during

the escalation

cycle.

AlertImpl Push alert changed event.

performEscalation(comment, opCenterId, user)

addedAMGs:

java.util.ArrayList

stepCount:int = 0

[stepCount == 0]

AlreadyAtMaxVisibilityException

[alertCanBeManaged]

[aMGsAddedThisStep.length != 0]

endEscalation:Boolean = false

When called from an IDL method, opCenterId and user are retrieve from user Token. Otherwise, opCenterID = null identifier, user = string

describing the caller.

[endEscalation == false]

addHistoryRecord(

AlertAction.ALERT_ACTION_ESCALATE

opCenterId, user, comment, addedAMGs)

AlertFactoryImpl [aMGsAddedThisStep.length == 0]

stepCount += 1

AlertModuleProperties void

[m_alertData.state !=

AlertState.ALERT_STATE_NEW]

InvalidState exception

This method returns

AlertManagementGroup[]

Note: It should only return

AMGs that are not in the

list of AMGspased in.

aMGsAddedThisStep:AMG[] = getBackupAMGsFor(m_alertData.currentVisibility)

Add History Record to

Alert for an escalation. Note:

the added AMGs should have

no duplicates..

persistAndPushAlert()

Escalation Step

Loop

Figure 5‑16. AlertModule:performEscalation (Sequence Diagram)

5.2.2.14 AlertModule:reNewIfNecessary (Sequence Diagram)

This diagram depicts the reNewIfNecessary() method. This method is called from the AlertFactoryImpl.reNewTimedOutAlerts() method via timer task. It is called to "reNew" the alert if the nextActionTime has passed. This method will call the AlertImp.init() method to transition the alert back to the NEW state.

[image: image79.emf]AlertFactoryImpl AcceptDelayTimerTaskrun()

reNetTimedOutAlerts()

void

init(nullIdentifier, "", "",

AlertAction.UNDELAYED)

[m_alertData.state == ACCEPTED]

[m_alertData.state == DELAYED]

Timer

reNewIfNecessary()

create()

create(m_alertData.nextActionTimeMsecs)

void

reNew:Boolean = after(next)

init(nullIdentifier, "", "",

AlertAction.UNACCEPT)

AlertImpl next:java.util.Date

[m_alertData.state == ACCEPTED ||

m_alertData.state == DELAYED]

 [reNew]

now:java.util.Date

void

Figure 5‑17. AlertModule:reNewIfNecessary (Sequence Diagram)

5.2.2.15 AlertModule:setAcceptTimeout (Sequence Diagram)

This sequence diagram depicts the setAcceptTimeout() IDL method of the alertImpl. If the alert is not currently in the ACCEPTED state, the InvalidState exception is thrown. If the user has insufficient privileges, the AccessDenied exception is thrown. The m_alertData.nextActionTimeMsec is set based on a system-wide accept timeout. An alert history record is then added. An AlertChanged event is pushed and the alert is persisted.

[image: image80.emf]opCenterId:Identifier = getOpCenterId(token)

now:java.util.Date

m_alertData.nextActionTimeMsec =

reminderTime

[!hasRights]

AccessDenied exception

create()

user:String = getUserName(token)

[reminderTime == 0]

[reminderTime != 0]

hasRights:Boolean = checkRights(token, MANAGE_ALERTS)

void

AlertImpl TokenManipulator

Push alert changed event.

Add History Record to

Alert for an ACTION_EDIT. No

AMG List is specified in

this case.

AlertModuleProperties

m_alertData.nextActionTimeMsec =

now.getTime() +

(defReminderMins * 60000)

addHistoryRecord(

AlertAction.ALERT_ACTION_EDIT,

opCenterId, user, comment, null)

setAcceptTimeout(token

reminderTime, comment)

defReminderMins:int =

getDefaultAcceptTimeoutMins(m_alertData.type)

persistAndPushAlert()

[state != ACCEPTED]

InvalidState exception

Figure 5‑18. AlertModule:setAcceptTimeout (Sequence Diagram)

5.2.2.16 AlertModule:unaccept (Sequence Diagram)

This sequence diagram depicts the main method used when an alert is unaccepted. The unacceptImpl() is a private method called from other public (IDL) and protected methods in the AlertImpl. If the alert is not in the ACCEPTED state, an InvalidState exception is thrown. The AlertImpl.init() method is then called to transition the alert back to the NEW state and do appropriate processing for this transition. In that method an AlertHistory record will be added with an AlertAction.ALERT_ACTION_UNACCEPT. Undelay() is very similar.

[image: image81.emf]init(opCenterId, comment, user,

AlertAction.ALERT_ACTION_UNACCEPT

[m_alertData.state !=

AlertState.ALERT_STATE_ACCEPTED]

InvalidState

AlertImpl

unacceptImpl(comment,

opCenterId, user)

When called from an IDL method, opCenterId and user

are retrieved from user Token.

Otherwise, opCenterID =

null identifier, user = string

describing the caller (e.g.,

"Alert Manager".

void

Figure 5‑19. AlertModule:unaccept (Sequence Diagram)

5.2.2.17 AlertPushConsumer:push (Sequence Diagram)

This sequence diagram shows the processing that occurs when an event is received from an Alerts CORBA Event Channel. The event is received via the push() call as defined in the PushConsumer CORBA interface. The push() call creates a PushHelper object to store the event and put it on a queue to be processed in a separate thread, allowing control to return to the event channel. When the PushHandler reaches the top of the queue, its execute method is called, which calls processPush() on the AlertPushConsumer.

The AlertEventHelper is used to extract the untyped data (an Any) into an AlertEvent object, and the AlertEvent discriminator method is called to determine the type of event. Different processing is then done based on the type of event that was received. If the event is an AlertAdded event, the alert object is narrowed to its derived type and a method is called to get the data that is specific to the alert type. The data model is called to retrieve the alert, just in case it was already discovered before receiving the event. If not already known (the usual case) a new ProxyAlert derived object is created with the type specific alert data and the ProxyAlert is added to the data model. In the unusual case where the alert is already known, its type specific data is simply updated.

When an AlertChanged event is received, the type specific alert data is extracted from the event data using the discriminator of the union containing the data. The existing alert is found in the data model and cast to the appropriate subclass. The data from the event is then used to update the data stored in the ProxyAlert.

When an AlertDeleted event is received, the data model is called to remove the alert based on its ID.

[image: image82.emf]A QueueableCommand

Alert Event Channel

AlertPushConsumerAlertPushConsumer.PushHandler

CommandQueue The processing that follows is done if the AlertEventType is AlertAdded.

The alert changed

info contains the

data specific to the

type of alert. It will

be extracted from

the union using the

discriminator, and

the ProxyAlert will

be cast to the

appropriate subclass.

DataModel The following processing is done if the AlertEventType is AlertChanged.

The following processing is done if the AlertEventType is AlertDeleted.

A ProxyAlert derived

object will be created

based on the alert type.

Identifier

proxy :

ProxyAlert

proxy :

ProxyAlert

ProxyAlert

ProxyAlert or null

AlertAddedInfo

AlertEvent

AlertEventType

byte[]

AlertChangedInfo

push(any)

create(

any)

addCommand()

[command at top

of queue]

execute()

processPush(any)

extract(any)

discriminator()

[AlertAdded]

addData()

get type specific alert data

getObject(alertId)

[alert not in data model]

create(reference, data)

[alert not in data model]

objectAdded(id, proxy)

[AlertChanged]

changedData()

getObject(id) and cast to ProxyAlert

setExtendedAlertData(data)

objectUpdated(id)

If not found, create

proxy, and add as

in Add case above.

If a ProxyAlert is found

already in the DataModel,

update the data as in

the AlertChanged case.

AlertAddedInfo

AlertEventHelper AlertEvent alertID()

create

objectRemoved(id)

Figure 5‑20. AlertPushConsumer:push (Sequence Diagram)

5.2.2.18 DiscoverAlertClassesCommand:execute (Sequence Diagram)

This sequence shows processing in the ServiceApplication used to discover Alert classes that exist in the system. This processing is invoked by the DiscoveryDriver when the service is started and periodically throughout the lifetime of the service. A call is made to the TraderGroup to have it discover all alert management CORBA event channels in the system. This call performs all actions required to attach the AlertPushConsumer to all channels and to maintain the connection to the event channel. Next, the TraderGroup is used to find all AlertFactory objects in the system. For each factory found, the getAlerts() method is called to retrieve the alerts managed by the factory. Each alert is processed slightly differently depending on its type. The processing shown in the diagram is specific to a DeviceFailureAlert, however the processing is nearly identical for the other alert types. The alert object is narrowed to its derived type and the type specific data for the alert is retrieved. A call to DataModel is used to retrieve the derived ProxyAlert object if it has already been discovered. If not found, a new ProxyAlert derived object is created. The type specific alert data retrieved from the server is then stored in the ProxyAlert derived object. If the alert did not already exist in the data model, it is added.

[image: image83.emf]TraderGroup AlertFactory DeviceFailureAlert

DiscoveryDriverDiscoverAlertClassesCommandm_apc : AlertPushConsumerThe processing below occurs if the AlertInfo indicates the alert is a DeviceFailureAlert.

Similar processing is done for the other alert types, with the processing specific to their type.

Processing for all types is not shown here.

DataModel ProxyAlert or null

DeviceFailureAlert

DeviceFailureAlertData

AlertInfo[] CORBA.Object[]AlertFactory ProxyDeviceFailureAlert

[*for each

factory

returned by

the trader

query]

AlertFactoryHelper [*for each

alert info

returned by

the factory

query]

execute()discoverEventChannelsOfName(EVENT_CHANNEL_ALERT_MANAGMENT.value(), pushConsumer)findAllObjectsOfType(SERVICE_TYPE_ALERT_FACTORY.value())getAlerts() getDeviceFailureAlertData()

[alert not in cache]

objectAdded(ProxyAlert)

narrow() narrow(AlertInfo[x].theAlert)

getObject(id)

[alert not in cache]

create(DeviceFailureAlert ref,

DeviceFailureAlertData data)

Types vary per

AlertType being

processed.

getPushConsumer()DeviceFailureAlertHelper pushConsumer cosEventComm.PushConsmer

Figure 5‑21. DiscoverAlertClassesCommand:execute (Sequence Diagram)

5.2.2.19 ProxyAlert:isDuplicateOf (Sequence Diagram)

This sequence diagram shows two virtually identical methods: isDuplicated() and getDuplicates(). The first is shown in full detail, and the second highlights only the difference. In case of isDuplicated(), this is used to determine if a duplicate alert already exists in the CHART alert system (considering the full breadth of alerts across all AlertFactory alert managers statewide). This makes use of the Duplicatable interface, and can be used on any Duplicatable class. In this case, it is ProxyAlert (and its subclasses). An alert cannot be a duplicate of itself -- there must be two distinct UniquelyIdentifiable alerts to qualify as an event duplication.

[image: image84.emf]This sequence diagram shows two similar methods. isDuplicated() is above. It returns a boolean if there is at least one duplicate,

so it exits as soon as one duplicate is found. getDuplicates() is below. It returns a list of all duplicates, so it always completes the full loop.

An alert that is closed is not considered for duplication. So if either alert is closed, we

do not have a duplicate.

ProxyEventStillOpenAlert caller

[other alert is closed] false allObjectsOfMatchingTypecallerProcessing for getDuplicates is similar to

isDuplicated() above, except vector of

Duplicatable is accummulated and returned

(as an array of Duplicatable).

IdentifierGenerator [this alertId matches other alertId] false result result

isDuplicated(type, other)Method is called on a Duplicatable, which is actually a ProxyAlert, because the parameter "type" specifies that only ProxyAlert instances of Duplicatable are considered. These are the same object. In this case, the Duplicable on the left is an EventStillOpenProxyAlert. It could be any type of ProxyAlert. Processing is similar for all alert types. Method call is shown to both, but return goes straight through the Duplicatable to the caller. [result is true]true[*for all

objects

returned]

isDuplicateOf(other)[through loop]

false

getObjectsOfType(type)isDuplicateOf(other) areIdentifiersEqual(this.eventId, other.eventId) [AlertData.type values are not of same AlertType]false ObjectCache[current obj is Duplicatable]cast to Duplicatable[this alert is closed] false result By definition, Alerts which are truly equal (same ID) are not "duplicates". All this means is we have found the object we're checking for in the DataModel. An alert cannot be a duplicate of itself. DataModel AlertType-specific processing. In this case, for EventStillOpen, there is one ID to compare. Processing for other alert types will be similar. ProxyEventStillOpenAlert

[*for allobjectsreturnedor untila duplicateis found][result true]

vector.add(current object)

Duplicatable areIdentifiersEqual(this.alertId, other.alertId) getDuplicates(type, other)

vector.toArray()

Figure 5‑22. ProxyAlert:isDuplicateOf (Sequence Diagram)

5.3 Chart2Service

5.3.1 Class Diagram
5.3.1.1 CHART2ServiceClasses (Class Diagram)

The diagram shows classes of an application which helps in installation and termination of the modules related to CHART system.

[image: image85.emf]Service «interface» ServiceApplication«interface»DefaultServiceApplicationServiceApplicationModule «interface» CHART2Service 1 11 * start(args : string[]) : booleanshutdown() : booleangetORB() : ORBgetPOA(string poaName) : POAgetTradingRegister() : CosTrading.RegistergetTradingLookup() : CosTrading.LookupgetEventChannelFactory() : EventChannelFactorygetDBConnectionManager() : DBConnectionManagergetOperationsLog() : OperationsLoggetProperties() : java.util.PropertiesgetDefaultProperties() : java.util.PropertiesregisterObject(obj, id, name, type, publish) : voidregisterEventChannel(EventChannel, name) : voidwithdrawObject(id) : voidgetIDGenerator() : IdentifierGeneratorDefaultServiceApplication(String propertiesFilename) : ctor

+start(args : string[]) : boolean

+shutdown() : boolean

+resolveTraders(token : AccessToken) : void

+getDataModel() : DataModel

+getDiscoverDriver() : DiscoverDriver

+withdrawStaleOffers()

-writeOffersToFile(String moduleName, int[] offerIDs):boolean

-removeOffersFromFile(String moduleName):boolean

m_props : ServiceApplicationPropertiesm_opLog : OperationsLogm_orb : ORBm_poa : POAm_tradingRegister : Registerm_localTradingLookup : Lookupm_tradingRepos : ServiceTypeRepositorym_traderGroup : TraderGroupm_dbConnectionMgr : DBConnectionManagerm_opLog : OperationsLogm_cmdQueue : CommandQueuem_discoveryMgr : DiscoveryManagerping():void getName():string; getVersion():ApplicationVersion getNetConnectionSite():string; oneway shutdown(AccessToken token):void main(string[] args):void initialize(ServiceApplication app):boolean getVersion() : ComponentVersion traderGroupUpdated() : void shutdown(ServiceApplication app):boolean ServiceApplication m_svcApp; SwitchControlDB m_db; SwitchControlModuleProperties m_props;

Figure 5‑23. CHART2ServiceClasses (Class Diagram)

5.3.1.1.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules in CHART system.

5.3.1.1.2 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed a properties file during construction. This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available, provide database connectivity, etc. The properties file also contains the class names of service modules that should be served by the service application. During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service. Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization. The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is expected to remove its offers from the trader during a shutdown. If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start. This keeps multiple offers for the same object from being placed in the trader.

The DefaultServiceApplication also starts a DiscoveryManager. (If no modules add discovery QueueableCommand objects to the DiscoveryManager's DiscoveryDriver, discovery runs, but does nothing, so incurs virtually no cost.)

5.3.1.1.3 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown externally. All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

5.3.1.1.4 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a Chart2service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.3.1.1.5 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.3.2 Sequence Diagram

5.3.2.1 CHART2Service:Startup (Sequence Diagram)

This sequence diagram shows startup of CHART2Service. This service creates and starts a DefaultServiceApplication object and the modules that are served by the CHART system. Refer to DefaultServiceApplication's Start sequence diagram in Utility package for details. The CHART2Service is activated using the POA and the CHART2Service activates the POAManager to enter the event loop and start serving the CORBA requests.

[image: image86.emf]DefaultServiceApplicationPOA The default service application will find all installed ServiceApplicationModules and will call initialize on each of them. Operating SystemCHART2Service [start failed] exit main activate_object() registerObject(service) ORB

Program exit.

run()

start() creategetPOA() This is the main run

loop for the application.

This call blocks until

the application is shut

down.

getORB()

Figure 5‑24. CHART2Service:Startup (Sequence Diagram)

5.4 DMS Control Module
5.4.1 Classes

5.4.1.1 DMSControlClassDiagram (Class Diagram)

This Class Diagram shows the classes of the DMS Control Module. The DMS Control Module is an installable module that serves the DMS objects and DMSFactory to the rest of the CHART system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions.

[image: image87.emf]«interface»

SharedResourceManager

«interface»

DMSFactory

«interface»

ServiceApplication

java.util.TimerTask

«interface»

Chart2DMSFactory

Chart2DMSFactoryImpl m_factory

run()

PollDMSTask

Thread m_asyncFMSStatusThread;

Collection m_dmsList;

DMSFactoryImpl(ServiceApplication,

 DMSControlDB,PushEventSupplier,

 SharedResourceMonitoringInterval)

checkDMSRecovery(): void

getDMSOfferIDs():int[]

shutdown():boolean

removeDMS(DMSImpl dms)

checkCommLoss():void

checkForAbandonedDMS():void

checkDMSRecovery(int):void

pollDMSObjects():void

Chart2DMSFactoryImpl

Chart2DMSFactoryImpl m_factory

run()

CheckCommLossTask

java.util.Timer

PushEventSupplier

Chart2DMSFactoryImpl m_factory

run()

CheckForAbandonedDMSTask

«interface»

ServiceApplicationModule

Chart2DMSFactoryImpl m_factory

getTimeDown()

run()

RecoveryTimerTask

DBConnectionManager

DBConnectionManager m_db;

DMSControlDatabase(DBConnectionManager db)

getDMSList() : Chart2DMSImpl[]

insertDMS(Identifer dms, Chart2DMSConfiguration config) :

 Chart2DMSImpl

deleteDMS(Identifier id) : void

getConfiguration(Identifier id) : Chart2DMSConfiguration

getStatus(Identifer dmsID) : Chart2DMSStatus

setConfiguration(Identifer dmsID,

 Chart2DMSConfiguration config) : void

setStatus(Identifer dms, Chart2DMSStatus status,

 Chart2DMSData) :void

addTrafficEventID(Identifier dmsID, Identifer tfcEvtID) : void

removeTrafficEventID(Identifer dmsID, Identifer tfcEvtID) : void

DMSControlDB

int m_lastAttemptedPollTime

int m_lastContactTime

String m_lastStatusLogDate

boolean m_shouldBeReevaluated

Chart2DMSData

DMSControlModuleProperties(Properties props,

 Properties defaults)

getCommLossTimerDelaySecs() : int

getFactoryID() : byte[]

getPollPortWaitTimeSecs() : int

getPollTimerDelaySecs() : int

getRecoveryTimerIntSecs() : int

getSharedResourceMonInt() : int

DMSControlModuleProperties

int m_factoryOfferID;

DMSFactoryImpl m_factory;

DMSControlModule

DictionaryWrapper

«interface»

CommEnabled

Identifer] m_idObj;

Chart2DMSConfiguration m_config;

Chart2DMSStatus m_status;

int m_lastSuccessfulPollTime;

boolean m_pollInProgress;

boolean m_pollNeeded;

byte m_dmsMessageBeacon;

CosTrading.Register m_tradingRegister;

ArbQueueEntry[] m_activeArbQueueEntries;

SetDMSMessageFromQueueCmd m_lastQueuedSetMsgCmd;

DMSImpl(Configuration, DMSFactory,

 PushEventSupplier, Dictionary,

 ServiceApplication, DMSControlDB)

setMessageImpl(AccessToken, string, boolean, commandStatus)

setMessageFromQueue(AccessToken, DMSMessage,

 CommandStatus, int)

setMessageFromQueueImpl(AccessToken, DMSMessage,

 CommandStatus, int)

blankSignImpl(AccessToken, CommandStatus):void

blankSignFromQueueImpl(AccessToken, CommandStatus):void

blankSignNow(AccessToken, CommandStatus):void

resetControllerImpl(AccessToken, CommandStatus):void

takeOfflineImpl(AccessToken, CommandStatus):void

putInMaintModeImpl(AccessToken, CommandStatus):void

putOnlineImpl(AccessToken, CommandStatus):void

pollNowImpl(AccessToken, CommandStatus):void

pollIfNecessary(AccessToken, CommandStatus):void

shutdown():void

equals(Object obj):boolean

checkRecoveryTime(int timeDown): boolean

checkCommLoss():void

-checkResourceConflict(AccessToken, CommandStatus):void

handleOpStatus(OperationalStatus, CommandStatus):void

report(string, boolean, boolean, CommandStatus, ArbQueuEntry[])

evaluateQueue(boolean):void

fmsGetConnectedPort(CommandStatus, boolean):void

fmsReleasePort(Port)

requestFailed(ArbQueueEntry[]):void

requestSuccessful(ArbQueueEntry[], boolean):void

Chart2DMSImpl

Chart2DMSStatus

«interface»

GeoLocatable

FP9500DMSStatus

«interface»

UniquelyIdentifiable

java.util.Properties

«interface»

DMS

Chart2DMSConfiguration

«interface»

Chart2DMS

«interface»

HARMessageNotifier

«interface»

SharedResource

FP9500DMSConfiguration

«interface»

ArbitrationQueue

MessageQueue

«type»

ArbQueueEntry

ModemPortLocator

m_cameraIdentifiers : Hashtable

m_commands : List

m_comport : CameraControlComPort

m_comportName : String

m_enableDeviceLogging : boolean

m_lock : Object

m_responseLock : Object

m_responses : Hashtable

m_simulated : boolean

m_stopThread : boolean

+addCommand(CommandTransaction)

+dequeue()

+executeCommand()

+receive(Identifier)

+receiveResponse(byte[])

+run()

+sendCommandToComPort(CameraCommand)

+stopThread()

CommandQueue

AlertFactoryReferenceData m_alertFactoryRefData[]

AlertFactoryWrapper()

get() : AlertFactoryReferenceData

createAlertFactoryReferenceData(AlertFactoryReferenceData[]):Set

createDeviceFailureAlert(token : AccessToken, deviceId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createDuplicateEventAlert(token : AccessToken, olderEventId : Identifier, newerEventId : Identifier,

 desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createEventStillOpenAlert(token : AccessToken, eventId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createGenericAlert(token : AccessToken, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createUnhandledResourceAlert(token : AccessToken, deviceId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

AlertFactoryWrapper

«interface»

FP9500DMS

«interface»

QueueableCommand

SetDMSMessageFromQueueCmd

FP9500DMSImpl

1

1

*

1

1

*

1

1

1

1

*

1

1

1

1

1

1 1

*

1

1 1

1 1

1

1

* 1

1

*

1

*

1

1

11

1 1

1

1

1

1

1

1

1

1

1

1 *

1

1

1

1 1

* 1

Figure 5‑25. DMSControlClassDiagram (Class Diagram)

5.4.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic location of an Alert Factory and automatic re-discovery should the Alert Factory reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" Alert Factory without the user of this class being aware that this being done. In addition, this class defers the discovery of the Alert Factory until its first use, thus eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently known good reference to an AlertFactory. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Alert Factory objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances, not at all.

5.4.1.1.2 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put online.

5.4.1.1.3 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

5.4.1.1.4 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to be used in manipulating the CHART-specific DMS objects within CHART. It provides an interface for traffic events to provide input as to what each traffic event desires to be on the sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic message. CHART business rules include concepts such as shared resources, arbitration queues, and linking device usage to traffic events. These concepts go beyond industry-standard DMS control.

5.4.1.1.5 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the DMSConfiguration class to provide configuration information specific to CHART processing. Such information includes how to contact the sign under CHART software control, the default SHAZAM message for using the sign as a HAR Notifier, and the owning organization. Such data extends beyond what would be industry-standard configuration information for a DMS.

5.4.1.1.6 Chart2DMSData (Class)

This class is used to store data associated with a DMS such as last contact time, etc.
5.4.1.1.7 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional CHART specific capability. This factory creates Chart2DMS objects (extensions of DMS objects). It implements the SharedResourceManager capability to control DMS objects as shared resources.

5.4.1.1.8 Chart2DMSFactoryImpl (Class)

The Chart2DMSFactoryImpl class provides an implementation of the Chart2DMSFactory interface (and its DMSFactory and SharedResourceManager interfaces) as specified in the IDL. The Chart2DMSFactoryImpl maintains a list of Chart2DMSImpl objects and is responsible for publishing DMS objects in the Trader on startup and as new DMS objects are created. Whenever a DMS is created or removed, that information is persisted to the database. This class is also responsible for performing the checks requested by the timer tasks: to poll the DMS devices, to look for DMS devices with timeout exceeded, to look for DMS devices with no one logged in at the controlling operations center, and to initiate recovery processing as needed.

5.4.1.1.9 Chart2DMSImpl (Class)

The Chart2DMSImpl class provides an implementation of the Chart2DMS interface, and by extension the DMS, SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable, ArbitrationQueue and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long running operations (field communications to the device) in a thread separate from the CORBA request threads, thus allowing quick initial responses. The Chart2DMSImpl also contains a MessageQueue, which is used by the ArbitrationQueue interface methods to handle requests from TrafficEvents to display or remove messages from the signs in online mode. When the Chart2DMSImpl evaluates its messages in the MessageQueue, it combines the highest priority messages into a single message which is placed into an appropriate QueueableCommand object (subclass of QueueableCommand) and added to the CommandQueue.

Also contained in this class are Chart2DMSConfiguration and Chart2DMSStatus objects (used to store the configuration and status of the sign), and a Chart2DMSData object (used to store internal status information which is persisted but not pushed out to clients), a list of ArbQueueEntry objects from the MessageQueue that are currently active on the sign, and a copy of the last QueueableCommand to put a message on the sign.

The Chart2DMSImpl contains *Impl methods that map to methods specified in the IDL, including requests to put a message on the sign or remove a message (in maintenance mode only), put the sign online, put the sign offline, put the sign in maintenance mode, or to change (set) the configuration of the sign. All of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate Chart2DMSImpl method as the command is executed by the CommandQueue in its thread of execution.

The Chart2DMSImpl also contains methods called by the Chart2DMSFactory to support the timer tasks of the DMS Service: to poll the DMS devices, to look for DMS devices with communications timeout exceeded, to look for maintenance mode DMS devices with no one logged in at the controlling operations center, and to initiate recovery processing if needed.

5.4.1.1.10 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to provide status information specific to CHART processing, such as information on the controlling operations center for the sign. This data extends beyond what would be industry-standard status information for a DMS.

5.4.1.1.11 CheckCommLossTask (Class)

The CheckCommLossTask class is responsible for determining when communications to a DMS device have been down long enough to decide that the sign is or should be blank or considered to be blank. The anticipated time interval for making such a determination is on the order of ten minutes (however, this task is called much more frequently than that, so that the timeout can be detected soon after it has expired). This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects each time this task is called.

5.4.1.1.12 CheckForAbandonedDMSTask (Class)

The CheckForAbandonedDMSTask class is responsible for detecting any DMS device in maintenance mode with a message on it which has no one logged it at the controlling operations center. This would only occur as a result of an anomaly, such as a reboot of a user's machine, because during a normal CHART logout attempt, the logout is prohibited by the CHART system if the user is the last user on his/her operations center and that operations center is controlling a sign. However, because anomalies happen, this task runs periodically to look for abandoned DMS devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects and controlling operations centers of each DMS every time this task is called.

5.4.1.1.13 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.4.1.1.14 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

5.4.1.1.15 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.4.1.1.16 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

5.4.1.1.17 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign (DMS) objects within CHART. It specifies methods for setting messages and clearing messages from a sign (in maintenance mode), polling a sign, changing the configuration of a sign, and resetting a sign. (Setting messages on a sign in online mode are not accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic events, which use an ArbitrationQueue interface or by manipulating HARs, which use a HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS, which defines interactions with signs under CHART business rules.)

5.4.1.1.18 DMSControlDB (Class)

The DMSControlDB class provides an interface between the DMS service and the database used to persist the DMS objects and their configuration and status in the database. It contains a collection of methods that perform database operations on tables pertinent to DMS Control. The class is constructed with a DBConnectionManager object, which manages database connections. Methods exist to insert and delete DMS objects from the database, and to get and set their configuration and status information. All information about a sign is persisted, including its current displayed message, communications status, and time of last contact, so that a momentary glitch or restart of the software will not interrupt messages on signs.

5.4.1.1.19 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS factory. It implements the ServiceApplicationModule interface. It creates and serves a single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects. It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and PushEventSupplier and NotificationChannel objects.

5.4.1.1.20 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the DMS Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the DMS Control Module.

5.4.1.1.21 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the CHART system. It also provides a method to get a list of DMS devices currently in the system.

5.4.1.1.22 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of potentially a whole suite of subclasses specific to a specific brand and model of sign for manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest method, which knows how to invoke and interpret a pixel test as supported by the FP9500 model DMS.

5.4.1.1.23 FP9500DMSConfiguration (Class)

This class is used to provide configuration information specific to CHART processing that is unique to a FP9500 model of sign.

5.4.1.1.24 FP9500DMSImpl (Class)

The FP9500DMSImpl class provides a specific implementation to implement the FP9500DMS interface, providing any specific functionality unique to this brand and model of sign. This class is exemplary of a whole suite of implementation classes which may be created, on a case-by-case basis, to support specific capabilities of specific brands and models of signs.

5.4.1.1.25 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus subclasses specific to a specific brand and model of sign.

5.4.1.1.26 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.4.1.1.27 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message.

5.4.1.1.28 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.4.1.1.29 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.4.1.1.30 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.4.1.1.31 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.

5.4.1.1.32 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur.

5.4.1.1.33 PollDMSTask (Class)

The PollDMSTask class is responsible for polling all the DMS devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the Chart2DMSFactoryImpl, which is called upon to request each DMS to poll itself (its poll interval has expired) each time this task is called.

5.4.1.1.34 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.4.1.1.35 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.4.1.1.36 RecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process. During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called. This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the DMSService last went down, an essential piece of information for recovery during DMSService startup. When the DMSService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkDMSRecovery) which requests all DMS objects to check and see if their recovery period has expired. (The recovery period is defined to be their poll interval times a system-wide multiplier (expected to be 2), or, if the DMS has no poll interval, a system-wide constant (on the order of 10-15 minutes.) Each DMS, therefore, terminates its recovery period independently of the others. (When all DMSs have terminated their recovery period, checkDMSRecovery is no longer called.)

When each DMS checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its MessageQueue to take one last try at resolving traffic events on its queue, then the DMS makes final a determination as to what message (or blank) belongs on the sign, and it requests the DMS to set the sign appropriately.

5.4.1.1.37 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.4.1.1.38 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.4.1.1.39 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign during normal operations (online mode). It is created by the Chart2DMSImpl during successful processing of its setMessageFromQueue and evaluateQueue methods. When the CommandQueue invokes the execute method of this class, it merely calls the setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with the data stored within this class.

5.4.1.1.40 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

5.4.1.1.41 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

5.4.1.1.42 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.4.2 Sequence Diagrams

5.4.2.1 DMSControlModule:HandleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl handles the task of detecting and responding to changes in its operational status (whether it is in "OK", "COMM_FAILURE" or "HARDWARE_FAILURE" status). A DMS is normally "OK", but falls into "COMM_FAILURE" when FMS reports that it cannot communicate with the device, and into "HARDWARE_FAILURE" when the FMS can communicate with the device but the device or FMS is detecting some sort of hardware problem with the device itself. At this point, HARDWARE_FAILURE and COMM_FAILURE are treated virtually identically. This method is called, with the status reported back from FMS, after every attempt to communicate with the device, and processing falls into one of three cases, depending on the status reported (although the two failure cases are nearly identical).

If the device now being reported OK and it was already OK, there is no change in status, and all that is necessary is to update the m_lastContactTime of the device. (This variable is used to determine when to poll [see runPollDMSTask] and when to declare that a "Communications Timeout" has occurred [see runCheckCommLossTask].) If the status has just become OK, this fact is logged, and the new DMSStatus is persisted and pushed out into the event channel. The DMS is polled to determine its current status. If the device is online, and m_needsReevaluation is true, this means an earlier attempt to set the device to the correct condition (new message, default message) has failed since the device went COMM_FAILED, so evaluateQueue is called to ensure that the correct message is put on the DMS.

If the device is now being reported with a failure and the device was already in that failure condition, there is no change in status, and nothing is done. If the status is just now changing, this is logged, the DMSStatus is persisted and pushed out into the event channel, and a device failure alert is created. Note that if the device has gone into COMM_FAILURE, and it remains in this condition for the timeout period, the CheckCommLossTask's run method will detect and handle it (see runCheckCommLossTask). Until the timeout period expires, it is assumed that the message is still on the sign, so no further action is taken now. If the device has gone into HARDWARE_FAILURE, FMS is still in contact with it, and changes in status (e.g., loss of a message) can be detected by other means, for instance, by polling (see runPollDMSTask)

A DeviceFailure Alert is only created when the DMS transitions into HARDWARE_FAILURE. Any future transitions into another state have no effect on the alert.

[image: image88.emf]New for R3B1.

AlertFactoryWrapper

createDeviceFailureAlert(token, deviceId, "DMS <name> is in hardware failure.", owningCenter)

update("DMS just reported HW failure")

[m_status.m_opStatus == OK]

m_lastContactTime = now

log("DMS has just gone into HW failure")

log("DMS has just lost comms")

log("DMS now operational")

push(CurrentDMSStatus)

handleOpStatus(opStatus, cmdStatus)

CommandQueue

m_status: DMSStatus

If opStatus == OK

Chart2DMSImpl

Chart2DMSImpl

DMSControlDB

cmdStatus:

CommandStatus

Bad status has been handled previously.

No need to do anything more.

If opStatus == COMM_FAILURE

Poll device ASAP to make sure we have its complete status and config.

If the message doesn't match, poll will catch it and inform Arb Queue.

(For instance, if we have blanked due to commLossTimeout, but the sign

still displays a message, that will be caught and corrected by the poll.)

OperationsLog

Normal case,

opStatus OK and unchanged

PushEventSupplier

NOTE: if we remain in HW_FAILURE for

the commLossTimeout period, the

CheckCommLossTask will detect it and

handle that situation.

Bad status has been handled previously.

No need to do anything more.

If opStatus == HW_FAILURE

NOTE: if we remain in COMM_FAILURE

for the commLossTimeout period, the

CheckCommLossTask will detect it and

handle that situation.

setOpStatus(HW_FAILURE)

[m_status.m_opStatus == HW_FAILURE]

setStatusChangeTime(now)

push(CurrentDMSStatus)

setOpStatus(COMM_FAILURE)

[m_status.m_opStatus == COMM_FAILURE]

addCommandOnTop(PollDMSNowCmd)

push(CurrentDMSStatus)

updateStatus(m_id, m_status)

updateStatus(m_id, m_status)

update("DMS just CommFailed")

update("DMS now OK")

setStatusChangeTime(now)

setOpStatus(OK)

updateStatus(m_id, m_status)

setStatusChangeTime(now)

[m_needsEvaluation and online]

evaluateQueue(false)

Figure 5‑26. DMSControlModule:HandleOpStatus (Sequence Diagram)

5.4.2.2 DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)

This sequence diagram shows how the CheckForAbandonedDMSTask object executes its task when directed to run by the Java Timer object. Chart2DMSFactoryImpl's checkForAbandonedDMS method is called, which gets the controlling op center of each DMS and builds a list of OperationsCenter objects with control of one or more signs. Each OperationsCenter is then queried for the number of users logged in. If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledResourcesAlert is created via the AlertFactoryWrapper.

[image: image89.emf]New for R3B1. Call to AlertManagerFactoryWrapper replaces push of UnhandledControlledResources event.AlertFactoryWrapper getNumLoggedInUsers

[*for each DMS] getControllingOpCentergetObject(id) checkForAbandonedDMS() [no users]

createUnhandledResourcesAlert(m_systemToken,

op ctr ID, "<op ctr name> has ctrld resource(s) w no one logged in", AMG for op ctr ID)

run()CheckForAbandonedDMSTaskObjectCache CosTrading.Lookup DMSImpl Chart2DMSFactoryImpl java.util.Timer[*for each op ctr which controls

at least

one DMS]

Object ProxySimpleOpCenter cast to ProxySimpleOpCenter

Figure 5‑27. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)

5.5 Data Model
5.5.1 Class Diagram
5.5.1.1 DataModelClasses (Class Diagram)

The data model classes represent a collection of objects which, when altered via the DataModel, will notify observers that they have been modified. The notification will be delivered in the form of a call to the observer's update() method and will include a collection of changes that have occurred in the system in the preceding interval. Each change is either an object added change, an object removed change, or an object updated change. If the change is an object updated change it may include hints which help an observer determine if it needs to take any action based on the change.

[image: image90.emf]m_table : Hashtable<Object>

+DataModel() : ctor

+getObject(key : Object) : Object

+getObjectsOfType(classCheck : Class) : Object[]

+getAllObjects() : Object[]

+attachObserver(modelObserver, priority) : boolean

+detachObserver(modelObserver) : void

+objectAdded(key : Object, value : Object) :Object

+objectUpdated(key : Object) :void

+objectUpdated(key : Object, hint : UpdateHint) :void

+objectUpdated(key : Object, hints : UpdateHint[]) :void

+objectRemoved(key : Object) : Object

+setUpdateInterval(priorityLevel : int, updateInterval : int) : boolean

+getUpdateInterval(priorityLevel : int) : int

DataModel

m_id

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

Identifier

This class is

used as the key to

store and look up

all Identifiable objects

m_delay

m_priority

run()

getPriority()

isAttached(observer)

attach(observer)

detach(observer)

getUpdateInterval()

objectAdded(keyObject, object)

objectUpdated(keyObject, updateHint)

objectRemoved(keyObject)

setUpdateInterval()

-getChangeCollection(Class checkClass)

-getChangesAndReset()

-getObservers()

-updateObservers()

UpdatePriorityLevel

java.util.Hashtable

ObjectAdded

m_object

getObject()

ObjectChange

m_class

getChanges()

getChangeClass()

addChange(keyObject, objectChange)

isForClass(Class checkClass)

ChangeCollection

addHint()

getHints()

numHints()

ObjectUpdated

update(ModelChanges changes)

«interface»

ModelObserver

«interface»

java.lang.Runnable

isEqual(rhs)

«interface»

UpdateHint

ObjectRemoved

«interface»

GUIModelObserver

run()

GUIUpdater

getChanges()

getChanges(Class checkClass)

getClasses()

addChanges(checkClass, changes)

hasChanges()

ModelChange

This diagram is unchanged for R3B1.

It is included in the R3B1 design for

reference only, as these classes

have not been used on the server

side since the fat GUI was

decommisioned.

*

1

1

1

1 1

*

1

*

1

1

1

* 1

*

1

*

1

1

1

*

1

Figure 5‑28. DataModelClasses (Class Diagram)

5.5.1.1.1 ChangeCollection (Class)

This class represents a collection of object changes. All object changes in the collection must be for objects of the same type. Object type is determined by making the Java call getClass(). This allows an observer to look at one object in the collection and determine if it is interested in changes to this type of object. If the observer is not, it may ignore the entire collection.

5.5.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.5.1.1.3 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the data model. Observers of this type will be notified of changes on the GUI event dispatch thread.

5.5.1.1.4 GUIUpdater (Class)

This class is used to send all changes to GUIModelObservers in the GUI event dispatch thread. It does this by storing the changes until the dispatch thread calls the run() method.

5.5.1.1.5 Identifier (Class)

Wrapper class for a CHART identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

5.5.1.1.6 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

5.5.1.1.7 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

5.5.1.1.8 ModelChange (Class)

This class is used to convey changes to observers of the DataModel. It contains all ObjectChanges for a particular update priority level for a particular period of time.

5.5.1.1.9 ModelObserver (Class)

This interface must be implemented by any object which would like to attach to the DataModel as an observer and get updated as system objects are added, deleted or changed.

5.5.1.1.10 ObjectAdded (Class)

This class is used to indicate that the object it represents was added to the DataModel.

5.5.1.1.11 ObjectChange (Class)

This class represents the changes to a particular object stored in the DataModel for a particular period. The change may be that this object was added to the model, removed from the model, or updated during this period.

5.5.1.1.12 ObjectRemoved (Class)

This class is used to indicate that the object it represents was removed from the DataModel.

5.5.1.1.13 ObjectUpdated (Class)

This class indicates that an object which was already in the model has been updated. The update may be specific to certain parts of the object, and the UpdateHint objects are used to specify which data members within the object were changed. If there are no hints in the ObjectUpdated, it signifies that the entire object has been changed so the observer must query the object for any data members that it is displaying.

5.5.1.1.14 UpdateHint (Class)

This interface must be implemented by all objects which are to be used as update hints. An update hint is a concept that is negotiated between a (subject) object and observers which are interested in that object. The data model makes no assumptions about how the hints will be used. The data model will invoke the isEqual method of the update hint to ask it to determine if it is equivalent to another hint. This allows the model to perform update optimizations by not sending notification to observers of two updates with equivalent hints in the same period. An example of how an update hint would be used follows: A DMS object has state variables that track the current message being displayed and the current latitude and longitude location of the sign controller. Because the system map requires significant processing load to redraw and needs only be notified if the latitude or longitude of the DMS changes the DMS and map view use a DMSMapChange hint. When the DMS object has a state change to the latitude or longitude property to report, that change is reported by calling objectUpdated and passing a DMSMapChange hint. When it has other changes which are not state changes to the latitude or longitude properties, it reports those changes to the DataModel by calling objectUpdated passing a DMSNonMapChange update hint. The map view will only redraw the DMS if the ObjectUpdate contains a DMSMapChange hint.

5.5.1.1.15 UpdatePriorityLevel (Class)

This class represents a particular priority update level. When an observer attaches to the data model an update priority level is specified. The system currently supports five levels of priority ranging from real time updates for animated displays to delayed updates for windows which can tolerate not being notified for a significant period of time when a change occurs to the system data model. Each time an object is modified it is added to the ChangeCollection for all priority levels. The notification of observers simply happens at longer and longer intervals as the priority level decreases. Thus, an observer of the data model connected at real time may be updated three times in one second while a lower priority observer may only be updated once at the end of the second. However, both observers will be told about the exact same changes that occurred during the second.

5.6 Dictionary Module
5.6.1 Classes
5.6.1.1 DictionaryClassDiagram (Class Diagram)

This class diagram depicts the CORBA IDL interface defined for dictionary management in the CHART system. Dictionary management includes management of approved and banned words for DMS and HAR devices, and management of Text To Speech pronunciations. Pronunciations overcomes shortcomings of text to speech translation by provide a substitution of phonetically spelled words for correctly spelled words prior to converting the text to speech. In this way, users of text to speech can spell words correctly, which would otherwise be mispronounced without the Pronunciation substitution capability.

[image: image91.emf]getID()

getName()

«interface»

UniquelyIdentifiable

supportsVerboseDevices()

checkForBannedWords(String words, String delimiter, type)

addBannedWords(sequence<Word>, wordList)

addApprovedWords(sequence<Word>, wordList)

removeBannedWords()

removeApprovedWords()

getBannedWords()

getApprovedWords()

performApprovedWordsCheck(String words, String delimiters, type)

addPronunciations(token:AccessToken, pronunciations:PronunciationData)void()

getPronunciations(token:AccessToken):PronunciationData

removePronunciations(token:AccessToken, pronunciations:PronunciationData)void()

substitutePronunciations(token:AccessToken, message:String,

 delimiters:String, type:WordType):String

Dictionary

TTSConverter

sequence m_wordlist

String m_misspelledword

DictionarySuggestion

setMessage(token, TrafficEvent, MessageContent)

blank(token, TrafficEvent)

getArbitrationQueue

()getSHAZAMMessage

()setSHAZAMMessage

()createDMSStoredMsgItem()

Chart2DMS

validateMessageContent()

remove()

persist()

«type»

Message

String m_text

bitmask m_type

DictionaryWord

addMsgNotifier

()removeMsgNotifier

()createPlanItem

()updateDateTimeField

()setMessage(TrafficEvent, MessageData)

getMonitoredAudio(int numSecs)

-activateMsgNotifiers

()-deactivateMsgNotifiers

()-setControllingOpCenter

()-setupHAR()

Chart2HAR

Identifier dictionaryID

PronunciationDataList listOfPronunciations

PronunciationEventInfo

*

1

*

1

1

*

1

*

1 *

1 *

Figure 5‑29. DictionaryClassDiagram (Class Diagram)

5.6.1.1.1 Chart2DMS (Class)

This class represents a CHART Dynamic Message Sign (DMS). It is derived from the generic DMS and encapsulates the CHART business process that provides the rules for control and usage of a DMS device.

5.6.1.1.2 Chart2HAR (Class)

The Chart2HAR class is an extension of the HAR that is aware of CHART business rules, such as arbitration queues, linking device usage to traffic events, and the concept of a shared resource.

5.6.1.1.3 Dictionary (Class)

This class is used to check for banned words in a message that may be displayed on a DMS or Broadcast from a HAR. This class is also used to spellcheck messages before display or broadcast. In addition to methods for checking the words, it has methods to allow the contents of the dictionary to be changed.

5.6.1.1.4 DictionarySuggestion (Class)

This class is used to return a list of words that may be used to replace a misspelled word returned from the Dictionary's performApprovedWordsCheck.

5.6.1.1.5 DictionaryWord (Class)

This class contains each individual word in a dictionary. Each word is banned or approved for the devices represented in the bitmask.

5.6.1.1.6 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

5.6.1.1.7 PronunciationEventInfo (Class)

This interface encapsulates the data that is passed with a dictionary pronunciation CORBA event. It contains information identifying the dictionary, and the list of pronunciations affected by the event.

5.6.1.1.8 TTSConverter (Class)

This class implements the TTSConverter interfaces. It uses the dictionary to substitute pronunciations in messages before converting them to speech.

5.6.1.1.9 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

5.6.1.2 DictionaryModClassDiagram (Class Diagram)

The DictionaryModule is a Service Application module that creates and serves the Dictionary implementation to the rest of the CHART system.

[image: image92.emf]«interface»

ServiceApplication

«interface»

ServiceApplicationModule

PushEventSupplier

m_dictionaryImplList

m_evtChannelNameList

DictionaryModule

OperationsLog

DBConnectionManager m_db

DictionaryDB(DBConnectionManager db)

insertBannedWords()

deleteBannedWords()

getBannedWords()

checkBannedWords()

insertApprovedWords()

deleteApprovedWords()

getApprovedWords()

checkApprovedWords()

insertPronunciations()

getPronunciations()

deletePronunciations()

DictionaryDB

m_ID

m_bannedWordList

m_approvedWordList

DictionaryImpl(DictionaryDB, ServiceApplication,

 PushEventSupplier)

DictionaryImpl

string m_word

long m_wordTypeBitmask

getWord():string

setApplicabilityToType(DictionaryWordType wordType,

 boolean isApplicable):void

isWordApplicableToType(DictionaryWordType wordType):boolean

factory create(string word, WordTypeList wordType):DictionaryWord

«interface»

DictionaryWord

getBannedWords(AccessToken):WordList

removeBannedWordList(AccessToken,WordList):void

addBannedWordList(AccessToken,WordList):void

checkForBannedWords(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):WordList

getApprovedWords(AccessToken):WordList

addApprovedWordList(AccessToken, WordList):void

removeApprovedWordList(AccessToken, WordList):void

performApprovedWordsCheck(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):SuggestionList

getPronunciations([in] token:AccessToken):PronunciationDataList

addPronunciations([in]token:AccessToken,

 [in]pronunciations:PronunciationDataList):void

removePronunciations([in]token:AccessToken,

 [in]pronunciations:PronunciationDataList):void

substitutePronunciations([in] messageToCheck:string,

 [in]delimiters:string,

 [in]wordType:DictionaryWordType):string

«interface»

Dictionary

word:String

pronunciation:String

«datatype»

PronunciationData

DictionaryWord m_unapprovedWord

StringList m_replacements

getUnapprovedWord():string

getReplacements():StringList

factory create(string unapprovedWord,

 StringList replacements):DictionarySuggestion

«interface»

DictionarySuggestion

1

1 *

1

1

1

*

1

1

*

1 1

1

1

1

1

1

1

Figure 5‑30. DictionaryModClassDiagram (Class Diagram)

5.6.1.2.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in CHART messaging devices such as HARs and DMSs. It also provides functionality to manage pronunciations.

5.6.1.2.2 DictionaryDB (Class)

This class provides API calls to add, remove and retrieve banned words, approved words and pronunciations from the database. The connection to the database is acquired from the Database object which manages all the database connections.

5.6.1.2.3 DictionaryImpl (Class)

This class implements the Dictionary as specified by the IDL. It provides functionality to add, delete and check for words that are banned or approved from being used in a DMS or HAR message. It also provides functionality for managing pronunciations.

5.6.1.2.4 DictionaryModule (Class)

This class implements the Service Application module interface. It publishes the dictionary implementation.

5.6.1.2.5 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used to substitute a word that could not be found in the approved words dictionary database.

5.6.1.2.6 DictionaryWord (Class)

A DictionaryWord represents a word in the CHART dictionary. It contains information that qualifies the type of devices to which the word applies.

5.6.1.2.7 OperationsLog (Class)

This class provides the functionality to add a log entry to the CHART operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.

5.6.1.2.8 PronunciationData (Class)

This class is an IDL defined structure used to store data related to a pronunciation stored in the Dictionary.

5.6.1.2.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.6.1.2.10 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.6.1.2.11 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.6.2 Sequence Diagrams

5.6.2.1 DictionaryImpl:addApprovedWordList (Sequence Diagram)

The given list of words is added to the approved words dictionary database. The newly added words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image93.emf]PushEventSupplier DictionaryDB TokenManipulator DictionaryImpl OperationsLog

Operator

db Error

[no access]

log

success

[db error]

CHART2Exception

log

push(ApprovedWordsAdded)

insertApprovedWords

addApprovedWordList

[no access]

AccessDenied

checkAccess

Figure 5‑31. DictionaryImpl:addApprovedWordList (Sequence Diagram)

5.6.2.2 DictionaryImpl:addBannedWordList (Sequence Diagram)

The given list of words is added to the banned words dictionary database and the copy of the dictionary in memory is also updated. The newly added banned words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image94.emf]PushEventSupplier DictionaryDB TokenManipulator DictionaryImpl OperationsLog

Operator

db Error

[no access]

log

success

[db error]

CHART2Exception

log

push(BannedWordsAdded)

insertBannedWords

addBannedWordList

[no access]

AccessDenied

checkAccess

Figure 5‑32. DictionaryImpl:addBannedWordList (Sequence Diagram)

5.6.2.3 DictionaryImpl:addPronunciationList (Sequence Diagram)

The given list of pronunciations is added to the dictionary database. If any words already exist in the dictionary they are updated with the pronunciations. If any words do not exist in the dictionary database they are inserted into the dictionary along with the pronunciations. The newly added pronunciations and words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image95.emf]insertWords()

[word Added] push(ApprovedWordsAdded)

Insert any word not in DB

Modify those already there

DictionaryWordImpl

[for each pronuncation]

create

only change

 pronunciation column

insertPronunciations(pronunciations)

[for each pronunc already in DB]

updateRow()

addPronunciationList(token,

PronunciationData[] pronunciations)

[for each pronunc not in DB]

insertRow()

push(PronunciationsAdded)

checkAccess

Operator

DictionaryImpl TokenManipulator DictionaryDB PushEventSupplier OperationsLog

db Error

[no access]

log

success

[db error]

CHART2Exception

log

[no access]

AccessDenied

Figure 5‑33. DictionaryImpl:addPronunciationList (Sequence Diagram)

5.6.2.4 DictionaryImpl:checkForBannedWords (Sequence Diagram)

The string provided by the operator is scanned for any banned words by looking up the database. Any character from the given set of delimiters is taken to be a valid delimiter of words in the string. The list of banned words present in the string is returned.

[image: image96.emf]The DictionaryDB object

performs a select query

using "where in" clause to

check for the banned words

The given string is parsed into

a list of words. The word delimiters

are specified by the caller.

DictionaryDB DictionaryImpl

Operator

checkBannedWords

List of banned words

"parseString"

checkForBannedWords

[error]

CHART2Exception

Figure 5‑34. DictionaryImpl:checkForBannedWords (Sequence Diagram)

5.6.2.5 DictionaryImpl:getApprovedWords (Sequence Diagram)

The list of approved words in the dictionary is read from the database and returned to the operator. Access is denied to any operator without the "Manage Dictionary" or "View Dictionary"privilege.

[image: image97.emf]DictionaryImpl OperationsLog

Approved Words List

getApprovedWords

[db error]

chart2Exception

DictionaryDB TokenManipulator

Operator

[no access]

AccessDenied

checkAccess

[no access]

log

getApprovedWords

Figure 5‑35. DictionaryImpl:getApprovedWords (Sequence Diagram)

5.6.2.6 DictionaryImpl:getBannedWords (Sequence Diagram)

The list of banned words in the dictionary is read from the database and returned to the operator. Access is denied to any operator without the "Manage Dictionary" or "View Dictionary" privilege.

[image: image98.emf]Banned Words List

getBannedWords

[db error]

chart2Exception

DictionaryImpl

Operator

checkAccess

[no access]

AccessDenied

[no access]

log

getBannedWords

DictionaryDB TokenManipulator OperationsLog

Figure 5‑36. DictionaryImpl:getBannedWords (Sequence Diagram)

5.6.2.7 DictionaryImpl:getPronunciations (Sequence Diagram)

The list of pronunciations in the dictionary is read from the database and returned to the operator. Access is denied to any operator without the "Manage Dictionary" or "View Dictionary" privilege. If a database error occurs a CHART2Execption is thrown.

[image: image99.emf]PronunciationData

getPronunciations()

Operator

TokenManipulator OperationsLog

[no access]

log

checkAccess()

getPronunciations(token)

[for each pronunciation]

pronunciations = create

pronunciations

DictionaryImpl DictionaryDB

[no access]

AccessDenied

[db error]

chart2Exception

PronunciationDataList

Figure 5‑37. DictionaryImpl:getPronunciations (Sequence Diagram)

5.6.2.8 DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)

The string provided by the operator is scanned for any words that are not present in the approved words dictionary database. Any character from the given set of delimiters is taken to be a valid delimiter of words in the string. For each word not present in the approved word list, a list of suggested words is formulated. The suggested words are those in the approved words dictionary that have close lexical match with the disapproved word.

[image: image100.emf]DictionaryImpl

Operator

The given string is parsed into

a list of words. The word delimiters

are specified by the caller.

The DictionaryDB object

performs a select query

using "where in" clause to

check for the approved words.

DictionarySuggestionImpl

DictionaryDB

[db error]

CHART2Exception

[db error]

CHART2Exception

[*for each disapprovedword that has suggestions]

create

[no disapproved words found]

success

[*for each disapproved word]

getSuggestionsForWord

getApprovedWords

checkApprovedWords

"parseString"

DictionarySuggestion List

performApprovedWordsCheck

Figure 5‑38. DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)
5.6.2.9 DictionaryImpl:removeApprovedWordList (Sequence Diagram)

The given list of words is removed from the approved words dictionary database. The removed words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image101.emf]PushEventSupplier DictionaryDB TokenModifier DictionaryImpl Operator OperationsLog checkAccess

removeApprovedWordList

push(ApprovedWordsRemoved)

[db error]

chart2Exception

[no access]

AccessDenied

deleteApprovedWords

log

[no access]

log

Figure 5‑39. DictionaryImpl:removeApprovedWordList (Sequence Diagram)
5.6.2.10 DictionaryImpl:removeBannedWordList (Sequence Diagram)

The given list of words is removed from the banned words dictionary database. The removed words are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image102.emf]PushEventSupplier DictionaryDB TokenModifier DictionaryImpl Operator OperationsLog checkAccess

removeBannedWordList

push(BannedWordsRemoved)

[db error]

chart2Exception

[no access]

AccessDenied

deleteBannedWords

log

[no access]

log

Figure 5‑40. DictionaryImpl:removeBannedWordList (Sequence Diagram)

5.6.2.11 DictionaryImpl:removePronunciationList (Sequence Diagram)

The given list of pronunciations is removed from the dictionary database. The words themselves are not removed. The removed pronunciations are then communicated to the dictionary event consumers by invoking the push operation. Access is denied to any operator without the "Manage Dictionary" privilege.

[image: image103.emf][for each word]

updateRow() remove Pronunciation

[db error]

chart2Exception

removePronunciationListt(PronuncationData[]

pronunciations)

Operator

TokenModifier PushEventSupplier

push(PronunciationsRemoved)

checkAccess

[no access]

log

DictionaryImpl

deletePronunciations(pronunciations)

DictionaryDB OperationsLog

log

[no access]

AccessDenied

Figure 5‑41. DictionaryImpl:removePronunciationList (Sequence Diagram)

5.6.2.12 DictionaryImpl:substitutePronunciations (Sequence Diagram)

The string provided by the TTSConverter is parsed and converted in to a string array. The array is used to select any approved words that have associated pronunciations that are in the dictionary database. If a database exception occurs a CHART2Exception is thrown. If no pronunciations are found in the dictionary an empty string is returned to the TTSConverter. If found the list of pronunciations is returned from the dictionary in the form of an array of PronunciationData. The pronunciation for each word is substituted into the message provided by the TTSConverter. The new converted string message containing the pronunciations is returned to the TTSConverter.

[image: image104.emf]DictionaryDB

substitutePronunciations(String message

String delimiters, DictionaryWordType wordType)

DictionaryImpl

[db error]

CHART2Exception

[for each word with pronunciation]

subsitutePronunciationForWord

"parseString"

return the original message

unchanged if no pronunciations

are found

The DictionaryDB object

performs a select query

using "where in" clause to

check for the approved words with

 pronunciations.

[no pronunciations found]

message

pronunciations[] = getPronunciations()

String convertedMessage

TTSConverter

Figure 5‑42. DictionaryImpl:substitutePronunciations (Sequence Diagram)

5.6.2.13 DictionaryModule:initialize (Sequence Diagram)

When the DMS or HAR service calls the initialize method of Dictionary module, the dictionary objects are created, connected to the ORB, exported to the CORBA trading service. The dictionary objects are now available to serve the consumers.

[image: image105.emf]getTradingRepos

export

create

getEventChannelFactory

getDictionaries

getORB

DictionaryDB Application ServicePushEventSupplier

ServiceApplication getDBConnectionManager

success

connect

create

DictionaryModule CosTrading.Register ORB DictionaryImpl

initialize

Figure 5‑43. DictionaryModule:initialize (Sequence Diagram)

5.6.2.14 DictionaryModule:shutdown (Sequence Diagram)

When the host service application calls shutdown in the Dictionary module, the dictionary object is withdrawn from the CORBA trading service and disconnected from the ORB. The objects are then deleted.

[image: image106.emf]DictionaryModule DictionaryImpl Application ServiceCosTrading.Register withdraw(event channel) delete

ORB disconnect

shutdown withdraw

Figure 5‑44. DictionaryModule:shutdown (Sequence Diagram)

5.7 GUI charlite.Dependencies
5.7.1 Classes
5.7.1.1 ExternalClasses (Class Diagram)

This diagram shows classes that are in external packages that are used within the CHART GUI servlet.

[image: image107.emf]javax.servlet.http.HttpServletResponse«interface» org.apache.velocity.servlet.VelocityServletorg.apache.velocity.context.Context org.apache.velocity.Template javax.servlet.http.HttpServletRequest«interface» javax.servlet.http.HttpSession«interface»getAttribute(attr:String):ObjectgetParameter(param:String):StringgetParameterValues(param:String):StringgetSession(flag:boolean):HttpSessionhandleRequest(req:javax.servlet.http.HttpServletRequest, resp:javax.servlet.http.HttpServletResponse, ctx:org.apache.velocity.context.Context):org.apache.velocity.Templateput(name:String, value:java.lang.Object):void

Figure 5‑45. ExternalClasses (Class Diagram)

5.7.1.1.1 javax.servlet.http.HttpServletRequest (Class)

Provides information about a request made to an HTTP servlet.

5.7.1.1.2 javax.servlet.http.HttpServletResponse (Class)

Provides a way for an HTTP servlet to send a response.

5.7.1.1.3 javax.servlet.http.HttpSession (Class)

Provides a way to identify a user across more than one page request or visit to a web site.

5.7.1.1.4 org.apache.velocity.context.Context (Class)

This class is used to allow an application to provide "named" data to a template so the data can be used when rendering the template.

5.7.1.1.5 org.apache.velocity.servlet.VelocityServlet (Class)

This base class is used to allow the velocity template engine to be used within a servlet. The Velocity template engine allows dynamic content to be merged into a template during runtime.

5.7.1.1.6 org.apache.velocity.Template (Class)

This class is used to control template operations within Velocity, such as merging dynamic data from a context into a template containing velocity macros.

5.8 GUI chartlite.Flex

5.8.1 Classes

5.8.1.1 FlexClasses (Class Diagram)

This diagram shows classes defined in the Flex2 framework that are shown on other diagrams.

[image: image108.emf]HTTPService

send():void

url:String

Figure 5‑46. FlexClasses (Class Diagram)

5.8.1.1.1 HTTPService (Class)

This class is used to asynchronously issue an HTTP request and call a callback function when the request completes (either successfully or due to failure).

5.9 GUI chartlite.Flex.Shared.util-flex

5.9.1 Classes

5.9.1.1 util_classes (Class Diagram)

This diagram contains utility classes used within a Flex application.

[image: image109.emf]TrafficEventUtil suggestEventName(eventTypeDesc:String, locationDesc:String, incidentTypeDesc:String) : String

Figure 5‑47. util_classes (Class Diagram)

5.9.1.1.1 TrafficEventUtil (Class)

This class contains traffic event related utility methods.
5.10 GUI chartlite.Flex.homepage

5.10.1 Classes
5.10.1.1 HomePageClasses (Class Diagram)

This diagram shows classes that are defined within the Flex2 HomePage application.

[image: image110.emf]1 1 HomePage1AlertsView1EventLauncher init():voidhandleAlertsUpdated():voidinit():voidhandleAlertsUpdated():voidaddAlertComment():voidaddManualAlert():voidperformAlertAction():voidaddTrafficEvent(event:Event, eventType:String, eventTypeDisplayName:String) : void addTrafficEventNow(event:Event, eventType:String, eventTypDisplayName:String) : void confirmOverrideLocationHandler(event:CloseEvent) : void handleAddTrafficEventResult(event:ResultEvent) : void updatePotentialDuplicateEvents() : void handleGetPotentialDuplicateEventsResult(event:ResultEvent) : void m_tmpEvent : Event m_tmpEventType : String m_tmpEventTypeDisplayName : String

Figure 5‑48. HomePageClasses (Class Diagram)

5.10.1.1.1 AlertsView (Class)

This class is a panel used to display alerts and allow them to be managed by the user. It contains methods to handle interaction with the CHART GUI servlet.

5.10.1.1.2 EventLauncher (Class)

This class is a panel that allows a user to create a new traffic event.

5.10.1.1.3 HomePage (Class)

This class is a Flex2 application. It contains panels for managing alerts, viewing traffic events, and creating new traffic events.

5.11 GUI chartlite.Flex.homepage.model

5.11.1 Classes

5.11.1.1 FlexModelClasses (Class Diagram)

This diagram shows classes used to help manage the data that is viewed within the Flex HomePage application.

[image: image111.emf]ControllerAppServices HomePage

Timer

1 1 1

11

1 This timer is used to peridocally call the services

to have them refresh their data.

1

1 showErrorMsg():voidshowStatusMsg():voidgetCurrentOpCenterID():StringgetCurrentOpCenterName():StringgetCurrentUserName():StringgetHomePage():HomePage-handleTimer():voidm_sessionID:Stringinit():void getAlertsService():HTTPService setAlertScopeFilter(scope:String):void updateAlerts():void getAlertsReq:HTTPService getCurrentUserInfoXMLReq:HTTPService getOpenTrafficEventsXMLReq:HTTPService addTrafficEventXMLReq:HTTPService getOpCentersXMLReq:HTTPService getAlertCentersReq:HTTPService start():void

init():void

handleAlertsUpdated():void

Figure 5‑49. FlexModelClasses (Class Diagram)

5.11.1.1.1 AppServices (Class)

This class holds HTTPService objects that are used within the Flex application.

5.11.1.1.2 Controller (Class)

This class is used to tie together the data and various panels that exist within the HomePage Flex application.

5.11.1.1.3 HomePage (Class)

This class is a Flex2 application. It contains panels for managing alerts, viewing traffic events, and creating new traffic events.

5.11.1.1.4 Timer (Class)

This class is a timer that calls a callback function on a specified interval.

5.12 GUI chartlite.data

5.12.1 Classes

5.12.1.1 chartlite.data_location_classes (Class Diagram)

This diagram shows classes used by the CHART GUI servlet related to location information that is cached in the data model.

[image: image112.emf]WebAliasLocation WebRouteTypeInfo DiscoverLocationsCommand

WebLocation«interface» WebLocationLookup WebRouteNumberAndName QueueableCommand

«interface»

getStateAbbreviation() : StringgetCountyOrRegionName() : StringgetRouteTypeDesc() : StringgetRouteNumber() : StringgetDirectionName() : StringgetIntersectingFeatureProximityDesc() : StringgetIntersectingFeatureTypeName() : StringgetMilepostStr() : StringgetMilepost() : DoublegetIntersectingRouteNumber() : StringgetIntersectingRouteName() : StringgetLocationAliasInternalName() : StringgetLocationAliasPublicName() : StringgetLocationDesc() : String-WebLocationLookup()

get() : static WebLocationLookup

getStateAbbreviations() : String[]

getCountyAndRegionNames(stateAbbreviation : String) : String[]

getRouteTypes() : RouteType[]

getRouteNumbers(stateAbbreviation:String, countyName:String, routeType:RouteType) : String[]

getIntersectingRoads(stateAbbreviation:String, countyName:String, routeType:RouteType, routeNumber:String) : WebRouteNumberAndName[]

getAliasLocations() : WebAliasLocation[]

getAliasLocation(internalAliasName:String) : WebAliasLocation

updateCachedAliases() : void

m_offerWrapper : FirstAvailableOfferWrapper

m_cachedStateAbbreviations : String[]

m_cachedCountyAndRegionNames : Hashtable<String><String[]>

m_cachedAliasList : WebAliasLocation[]

m_cachedAliasTable : Hashtable<String><WebAliasLocation>

m_cachedInterstateRouteNumbers : Hashtable<String><String[]>

m_cachedUSRouteNumbers : Hashtable<String><String[]>

getRouteTypeFromName(name:String) : RouteType getRouteTypes() : RouteType[] getRouteTypeName(routeType:RouteType) : String getRouteNumber() : String getRouteName() : String m_routeNumber : String m_routeName : String

Figure 5‑50. chartlite.data_location_classes (Class Diagram)

5.12.1.1.1 DiscoverLocationsCommand (Class)

This class will perform discovery processing related to locations.

5.12.1.1.2 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.12.1.1.3 WebAliasLocation (Class)

This class contains any location information supplied for a location alias.

5.12.1.1.4 WebLocation (Class)

This class provides a superset of location data that may be applicable to objects in the GUI. All fields are optional, and are null if not available.

5.12.1.1.5 WebLocationLookup (Class)

This singleton class wraps the location lookup CORBA interface and provides functionality for the GUI. It also caches some data for queries that are expected to have a limited amount of data.

5.12.1.1.6 WebRouteNumberAndName (Class)

This class is used for returning route numbers and names together for a given route.

5.12.1.1.7 WebRouteTypeInfo (Class)

This class provides a way to convert between strings representing route types and the route type IDL enumeration.

5.12.1.2 MiscDataClasses (Class Diagram)

This diagram shows miscellaneous classes used by the CHART GUI servlet related to the data cache.

[image: image113.emf]WebOpCenter Searchable

«interface»

WebAdministered

«interface»

WebUniquelyIdentifiable «interface» WebSharedResource

«interface»

SystemProfilePropertiesget():SystemProfileProperties

getDuplicateEventsCreationTimeThresholdMin() : int

getAlertUnhandledRsrcDefAcceptTimeout():long

getAlertUnhandledRsrcMaxAcceptTimeout():long

getAlertUnhandledRsrcDefDelayTimeout():long

getAlertUnhandledRsrcMaxDelayTimeout():long

getAlertDeviceFailureDefAcceptTimeout():long

getAlertDeviceFailureMaxAcceptTimeout():long

getAlertDeviceFailureDefDelayTimeout():long

getAlertDeviceFailureMaxDelayTimeout():long

getAlertDuplicateEventDefAcceptTimeout():long

getAlertDuplicateEventMaxAcceptTimeout():long

getAlertDuplicateEventDefDelayTimeout():long

getAlertDuplicateEventMaxDelayTimeout():long

getAlertEventStillOpenDefAcceptTimeout():long

getAlertEventStillOpenMaxAcceptTimeout():long

getAlertEventStillOpenDefDelayTimeout():long

getAlertEventStillOpenMaxDelayTimeout():long

getAlertGenericDefAcceptTimeout():long

getAlertGenericMaxAcceptTimeout():long

getAlertGenericDefDelayTimeout():long

getAlertGenericMaxDelayTimeout():long

getAlertUnhandledRsrcEscalateTimeout():long

getAlertDeviceFailureEscalateTimeout():long

getAlertDuplicateEvenEscalateTimeout():long

getAlertEvenStillOpenEscalateTimeout():long

getAlertGenericEscalateTimeout():long

getAlertArchiveTimeout():long

getAlertBackupCenters() : WebOpCenter[] getSupportedAlertTypes() getID() : Identifier

getName() : String

getControllingOpCenterID() : Identifier

getControllingOpCenterName() : String

setControllingOpCenter(byte[] token, WebOpCenter target) : void

getTypeDesc() : String

isTransferrable() : boolean

matchesSearch(String criteria, boolean caseSensitive) : boolean

doPing() : boolean

getDetailsAction() : String

getDetailsPageName() : String

Figure 5‑51. MiscDataClasses (Class Diagram)

5.12.1.2.1 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.12.1.2.2 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is also used to interact with the server to change system profile settings.

5.12.1.2.3 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console pages.

5.12.1.2.4 WebOpCenter (Class)

This class is used to wrap an OperationsCenter object to allow it to be cached in the CHART GUI servlet and to allow the cached data to be accessed within Velocity templates.

5.12.1.2.5 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART shared resources in the system, corresponding to the SharedResource IDL interface.

5.12.1.2.6 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable objects as defined in the IDL.

5.12.2 Sequence Diagrams

5.12.2.1 DiscoverLocationsCommand:execute (Sequence Diagram)

This diagram shows how the cached alias locations are updated periodically. The DiscoverLocationsCommand object (which will be one of the discovery commands) is added to the discovery command queue. The command queue then executes the DiscoverLocationsCommand, which gets the WebLocationLookup object and calls updateCachedAliases(). (Note that the other location info from the MDOT GIS database will not be updated - only aliases). The FirstAvailableOfferWrapper is then used to find the first RoadwayLocation CORBA object that works, and the location information for ALL aliases is retrieved. If successful, the new alias location information will replace any old location information in the cache.

[image: image114.emf]RoadwayLocation Get Alias List [while iterator.hasNext() and not successful and no CHART-level exception caught] [successful] Store Aliases In Cache WebLocationLookup Iterator updateCachedAliases create DiscoverLocationsCommand DiscoveryDriver performDiscovery()Add Discovery Commands To Command Queue DiscoveryTimerTaskThe DiscoverLocationsCommand will be one of these discovery commands, and will be executed asynchronously, as shown below. FirstAvailableOfferWrapper get createIterator Command Queueexecute Resolve Traders run()Timernext Iterator [successful] Clear Cached Aliases

Figure 5‑52. DiscoverLocationsCommand:execute (Sequence Diagram)

5.13 GUI chartlite.data.db

5.13.1 Classes

5.13.1.1 DBClasses (Class Diagram)

This diagram shows classes used by the CHART GUI servlet to access the database. There are no changes to these classes for R3B1.

[image: image115.emf]ShiftHandoffReport DBConnectionManager

* 1 * 1 1

1

FolderData ServletDB addFolder(folderID:Identifier, name:String):voidremoveFolder(folderID:Identifier):voidsetFolderName(folderID:Identifier, newName:String):voidsetFolderObjects(folderID:Identifier, objects:Identifier[]):voidsetFolderOpCenteres(folderID:Identifier, opCenters:Identifier[]):voidgetFolders():FolderData[]getFolder(folderID:Identifier):FolderDatagetShiftHandoffReport(opCenterID:Identifier):ShiftHandoffReportsaveShiftHandoffReport(rpt:ShiftHandoffReport):void+getConnection() : java.sql.Connection

+getCurrentOpenCursors() : int

+releaseConnection() : void

+shutdown() : void

+verifyDBInitialized() : boolean

Figure 5‑53. DBClasses (Class Diagram)

5.13.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.13.1.1.2 FolderData (Class)

This class is used to hold data related to folders that is passed to and from the database.

5.13.1.1.3 ServletDB (Class)

This class is used by the CHART GUI servlet to access CHART GUI specific data that is stored in the database.

5.13.1.1.4 ShiftHandoffReport (Class)

This class is used to store data related to a shift handoff report to allow it to be passed to and from the database.

5.14 GUI chartlite.data.trafficevants-data

5.14.1 Classes

5.14.1.1 chartlite.data.trafficevents_classes (Class Diagram)

This diagram shows the main wrapper class used for storing traffic event related data in the cache.

[image: image116.emf]WebTrafficEvent Searchable

«interface»

WebArbQueueEntryOwner

«interface»

WebSharedResource

«interface»

WebAdministered

«interface»

WebUniquelyIdentifiable

«interface»

NOTE - I stopped entering methods from code

at getName(); may want to continue after that (alphabetically)

addEventAssociation(Identifier eventID) : void

addResponseParticipation(ResponseParticipation p, ResponseParticipationData pd) : void

addResponsePlanItem(WebResponsePlanItem rpi) : void

addResponsePlanItems(byte[] token, ResponsePlanItemData[] rpiData) : void

getAssociatedEventIdentifiers() : Identifier[]

getAssociatedEvents() : WebTrafficEvent[]

getClosedDate() : Date

getClosedTimeDesc() : String

getClosedTimestamp() : int

getConfirmedDate() : Date

getConfirmedTimeDesc() : String

getConfirmedTimestamp() : int

getCountyOrRegion() : String

getDelayClearedDate() : Date

getDelayClearedTimeDesc() : String

getDelayClearedTimestamp() : int

getDMSResponseDevices() : WebDMS[]

getEventSpecificMergeTemplate() : abstract String

getEventStillOpenAlertThresholdTime() : long

getEventTypeDesc() : abstract String

getHARResponseDevices() : WebHAR[]

getEventHistoryEntry(Identifier entryID) : LogEntryWrapper

getID() : Identifier

getImageName() : String

getLaneClosureDesc() : String

getLaneConfigDescription() : String

getLaneDisplayLargeGIFManager() : LaneDisplayGIFManager

getLaneDisplaySmallGIFManager() : LaneDisplayGIFManager

getLatestHIstoryEntries(int num, int[] numPreviousHolder) : LogEntryWrapper[]

getLocationData() : WebTrafficEventLocationData

getLocationDesc() : String

getName() : String

getOpenedTimeDesc() : String

getOpenedTime() : long

getRouteNumber() : String

getRouteTypeDesc() : String

getSourceType() : short

getState() : String

hasAssociations() : boolean

hasExistingLanes() : boolean

hasLaneConfig() : boolean

hasParticipants() : boolean

hasResponsePlan() : boolean

isOpen() : boolean

Figure 5‑54. chartlite.data.trafficevents_classes (Class Diagram)

5.14.1.1.1 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.14.1.1.2 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console pages.

5.14.1.1.3 WebArbQueueEntryOwner (Class)

This interface specifies methods to be implemented by all objects that may place entries on an arbitration queue.

5.14.1.1.4 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART shared resources in the system, corresponding to the SharedResource IDL interface.

5.14.1.1.5 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access. It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.14.1.1.6 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable objects as defined in the IDL.

5.14.1.2 chartlite.data.trafficevents_event_type_classes (Class Diagram)

This diagram shows classes used to cache traffic event related data in the CHART GUI servlet.

[image: image117.emf]WebActionEvent WebTrafficEvent WebPlannedRoadwayClosure

WebCongestionEvent WebSafetyMessageEvent WebDisabledVehicleEvent WebSpecialEvent WebWeatherServiceEvent WebIncident getActionEventData() : ActionEventDatagetActionEventRef() : ActionEventgetOtherDescription() : StringhasDebris() : booleanhasOther() : booleanhasSignal() : booleanhasUtility() : booleangetCongestionEventData() : CongestionEventData getCongestionEventRef() : CongestionEvent isRecurring() : boolean getSpecialEventRef() : SpecialEventgetSafetyMessageEventRef() : SafetyMessageEvent getEORSPermitTrackingNumber() : String

getPlannedRoadwayClosureEventData() : PlannedRoadwayClosureEventData

getPlannedRoadwayClosureRef() : PlannedRoadwayClosure

getIncidentData() : IncidentData getIncidentRef() : Incident getIncidentTypeName() : String getMinNumCars() : int getMinNumCommercialBus() : int getMinNumLoadedCommercialBus() : int getMinNumLoadedSchoolBus() : int getMinNumMotorcycles() : int getMinNumPickupVanSUVs() : int getMinNumSchoolBus() : int getMinNumSingleUnitTrucks() : int getMinNumTractorTrailers() : int getMinNumUnloadedCommericialBus() : int getMinNumUnloadedSchoolBus() : int getMinNumVehicles() : int getNumCarsInvolved() : int getNumCarsOverturned() : boolean getNumLoadedCommercialBusInvolved() : int getNumLoadedCommercialBusOverturned() : int getNumLoadedSchoolBusInvolved() : int getNumLoadedSchoolBusOverturned() : int getNumMotorcyclesInvolved() : int getNumPickupVanSUVsInvolved() : int getNumPickupVanSUVsOverturned() : int getNumSingleUnitTrucksInvolved() : int getNumSingleUnitTrucksLostLoad() : int getNumSingleUnitTrucksOverturned() : int getNumTractorTrailersInvolved() : int getNumTractorTrailersJackKnifed() : int getNumTractorTrailersLostLoad() : int getNumTractorTrailersOverturned() : int getNumUnloadedCommercialBusInvolved() : int getNumUnloadedCommercialBusOverturned() : int getNumUnloadedSchoolBusInvolved() : int getNumUnloadedSchoolBusOverturned() : int getRoadConditionDesc() : String getShortEventTypeDesc() : String getVehiclesInvolvedDesc() : String isHazmat() : boolean abandonedVehicle() : boolean callForService() : boolean directions() : boolean gas() : boolean getDisabledVehicleData() : DisabledVehicleData getDisabledVehicleEventRef() : DisabledVehicleEvent

getOtherDescription() : String

getVehicleMakeColor() : String

getVehicleTagInfo() : String

goneOnArrival() : boolean

hotShot() : boolean

other() : boolean

ownDisposition() : boolean

relayOperator() : boolean

tireChange() : boolean

water() : boolean

getOtherDescription() : String getRoadConditionDesc() : String getWeatherServiceEventData() : WeatherServiceEventData getWeatherServiceEventRef() : WeatherServiceEvent hasActionEventData() : boolean hasRoadConditionsData() : boolean isEvacuationRequired() : boolean isFlood() : boolean

isHighWater() : boolean

isHurricane() : boolean

isLandslide() : boolean

isOther() : boolean

isOzone() : boolean

isRain() : boolean

isReducedVisibility() : boolean

isSevereWind() : boolean

isSnow() : boolean

isStormCleanupRequired() : boolean

isTornado() : boolean

Figure 5‑55. chartlite.data.trafficevents_event_type_classes (Class Diagram)

5.14.1.2.1 WebActionEvent (Class)

This class is a wrapper for a CORBA ActionEvent that allows it to be cached and to be accessed within Velocity templates.

5.14.1.2.2 WebCongestionEvent (Class)

This class is a wrapper for a CORBA CongestionEvent that allows it to be cached and to be accessed from within Velocity templates.

5.14.1.2.3 WebDisabledVehicleEvent (Class)

This class is a wrapper for a CORBA DisabledVehicleEvent that allows it to be cached and to be accessed from within a Velocity template.

5.14.1.2.4 WebIncident (Class)

This class is a wrapper for a CORBA Incident that allows it to be cached and to be accessed from within a Velocity template.

5.14.1.2.5 WebPlannedRoadwayClosure (Class)

This class is a wrapper for a CORBA PlannedRoadwayClosure that allows it to be cached and to be accessed from within a Velocity template.

5.14.1.2.6 WebSafetyMessageEvent (Class)

This class is a wrapper for a CORBA SafetyMessageEvent that allows it to be cached and to be accessed from within a Velocity template.

5.14.1.2.7 WebSpecialEvent (Class)

This class is a wrapper for a CORBA SpecialEvent that allows it to be cached and to be accessed from within a Velocity template.

5.14.1.2.8 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access. It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.14.1.2.9 WebWeatherServiceEvent (Class)

This class is a wrapper for a CORBA WeatherServiceEvent that allows it to be cached and accessed from within a Velocity template.

5.14.1.3 chartlite.data.trafficevents_merge_classes (Class Diagram)

This class diagram shows Classes, IDL valuetypes, and IDL enums related to merging traffic events.

[image: image118.emf]1 *

* *

1

1

Should be idl valuetype

should be idl enum

MergeInfo

MergeSection MergeCompletionValue WebMergeEvent completeSection(completionValue:MergeCompletionValue):boolean

createTempTrafficEvent(): boolean

determineRequiredMergeSections(): boolean

getMergeSectionDataTemplateName(): String

getMergeSectionName(sectionIndex:Integer): String

mergeEventSectionData(): boolean

setTargetAndMergeIDs(targetID:Identifier, mergeID:Identifier):boolean

mergeTrafficEvents(): boolean

-doMergeBasicEventData(event:TrafficEvent):boolean

-doMergeParticipantsData(unionFlag:boolean, event:TrafficEvent):boolean

-doMergeAssociatedEventsData(unionFlag:boolean,event:TrafficEvent):boolean

-doMergeResponsePlanData(unionFlag:boolean,event:TrafficEvent):boolean

-doMergeIncidentTypeData(event:TrafficEvent):boolean

-doMergeIncidentVehiclesInvolvedData(unionFlag:boolean, event:TrafficEvent):boolean

-doMergeDisabledVehiclesdata(unionFlag:boolean, event:TrafficEvent):boolean

-doMergeActionEventData(unionFlag:boolean,event:TrafficEvent):boolean

-doMergeWeatherEventData(unionFlag:boolean,event:TrafficEvent):boolean

-doMergeSafetyEventMessageData(unionFlag:boolean,event:TrafficEvent):boolean

-doMergeCongestionMessageData(event:TrafficEvent):boolean

-doMergePlannedClosureData(event:TrafficEvent):boolean

-getMergeSectionCompletionValue(sectionIndex:Integer):integer

-getMergeEvent():TrafficEvent

-getTargetEvent():TrafficEvent

m_currentSectionIndex:Integerm_targetID:Identifierm_mergeID:Identifierm_event1:TrafficEventm_event2:TrafficEventm_eventData:Classm_responsePlanItems:HashMapm_participants:HashMap

m_associatedEvents:HashMap

m_historyLogEntries:HashMap

m_mergeInfoList:MergeInfoList

BasicEventData RoadConditions EventSpecific VehiclesInvolved AssociatedEventData ParticipationListData RPIData Integer NOT_COMPLETED Integer USE_TARGET Integer USE_MERGE Integer USE_UNION MergeSection section

MergeCompletionvalue value

Figure 5‑56. chartlite.data.trafficevents_merge_classes (Class Diagram)

5.14.1.3.1 MergeCompletionValue (Class)

This IDL enum defines completion values for merge Sections

5.14.1.3.2 MergeInfo (Class)

This valuetype is passed between the CHART GUI and CHART to provide instructions for performing the merge

5.14.1.3.3 MergeSection (Class)

This idl enum defines values for each merge section

5.14.1.3.4 WebMergeEvent (Class)

This class is used for holding data related to a merge action

5.14.1.4 chartlite.data.trafficevents_misc_classes (Class Diagram)

This diagram shows miscellaneous classes related to traffic events.

[image: image119.emf]LaneDisplayGIFManager LaneGIFData LaneGIFLaneData

* 1

WebLaneConfiguration WebLocation «interface» WebTrafficEventLocationData WebLaneConfiguration(config:LaneConfiguration, eventDirection:short)setConfigDirection(config:LaneConfiguration, eventDirection:short) : static voidsetToDefaultStatus(config:LaneConfiguration, eventDirection:short) : static voidcloneConfig(config:LaneConfiguration) : LaneConfigurationgetClonedConfig() : LaneConfigurationcopy(newDir:short) : WebLaneConfigurationcopy() : WebLaneConfigurationgetClosureDesc() : StringgetDescription() : StringgetDirectionName(direction:short) : static StringgetLane(laneIdx : int) : LanegetLaneChangeTimeDesc(laneIdx : int) : StringgetLaneConfiguration() : LaneConfigurationgetUtilLaneConfiguration() : chartlite.util.lane.LaneConfigurationgetLaneInfoString() : StringgetLanes() : LaneWrapper[]getLatestLaneChangedTime() : DategetName() : StringgetNumExistingLanes() : intgetNumLanes() : intgetNumLanesClosed() : intgetPercentageOfLanesClosed() : intgetReferenceDir() : shortgetOppositeReferenceDir() : shortgetReferenceDirName() : StringgetReferenceDirAbbreviation() : StringgetOppositeReferenceDirName() : StringgetOppositeReferenceDirAbbreviation() : StringisConfigEmpty() : booleanisDefaultStateOver(eventDirection:short) : booleansetUnknownLanesOpen(eventDirection:short) : voidupdateForEventDirection(eventDirection:short) : voidupdateLaneDirectionsAndStates(laneDisplayLaneInfoStr:String) : void-m_laneConfig : LaneConfigurationLaneDisplayGIFManager(widthMultiplier:double, heightPixels:int, lineWidth:int, abbreviateDirNames:boolean, filenamePrefix:String, dynImageDir:File)getDynamicImageFilenamesToKeep() : String[]getFilename() : StringgetGIFData(filename: String) : LaneGIFDatagetHeightPixels() : intgetWidthPixels() : intupdateGIF(laneConfig : WebLaneConfiguration) : voidgetStateAbbreviation() : String getCountyOrRegionName() : String getRouteTypeDesc() : String getRouteNumber() : String getDirectionName() : String getIntersectingFeatureProximityDesc() : String getIntersectingFeatureTypeName() : String getMilepostStr() : String getMilepost() : Double getIntersectingRouteNumber() : String getIntersectingRouteName() : String getLocationAliasInternalName() : String getLocationAliasPublicName() : String getLocationDesc() : String LaneGIFData(width:int, height:int, lanes:LaneGIFLaneData[], config:WebLaneConfiguration)

getConfig() : WebLaneConfiguration

getHeight() : int

getLanes() : LaneGIFLaneData[]

getWidth() : int

isLocationOverridden() : boolean LaneGIFLaneData(lane:chartlite.util.lane.Lane, pixelRect:Rectangle)

getLane() : chartlite.util.lane.Lane

getMaxX() : int

getMaxY() : int

getMinX() : int

getMinY() : int

Figure 5‑57. chartlite.data.trafficevents_misc_classes (Class Diagram)

5.14.1.4.1 LaneDisplayGIFManager (Class)

This class manages a GIF file representation of a lane configuration. The configuration may be updated, which would cause a new GIF file to be created.

5.14.1.4.2 LaneGIFData (Class)

This class contains metadata for a single instance of a GIF file, making it easy to create an image map for the file via Velocity.

5.14.1.4.3 LaneGIFLaneData (Class)

This class represents a single lane within a single instance of a GIF file. It is used when building an image map.

5.14.1.4.4 WebLaneConfiguration (Class)

This class wraps a LaneConfiguration structure and provides auxiliary methods for getting and manipulating the data.

5.14.1.4.5 WebLocation (Class)

This class provides a superset of location data that may be applicable to objects in the GUI. All fields are optional, and are null if not available.

5.14.1.4.6 WebTrafficEventLocationData (Class)

This class provides information about the location of a traffic event.

5.14.2 Sequence Diagrams

5.14.2.1 charlite.data.trafficevents:WebMergeEvent.mergeEventSection (Sequence Diagram)

This diagram shows a call from the MergeTrafficEventsReqHdlr to merge the data for the current merge section. This method is called from a submitMergeEventSection action. The mergeEventSection takes a MergeCompletionValue integer parameter. The possible values are USE_TARGET, USE_MERGE, and USE_UNION. Anything else will result in an error. If the value is USE_TARGET the getTargetEvent() method is called and assigned to a method scope TrafficEvent object. If the value is USE_TARGET, the getMergeEvent() method is called and assigned to a method scope TrafficEvent object. If the value is USE_UNION a private Boolean flag, unionFlag is assigned a value of true. The proper merge helper method is then called, based on the WebMergeEvent m_currentSectionIndex value. If an error is encountered this method returns false, otherwise returns true.

[image: image120.emf][VehiclesInvolvedSection]

doMergeVehiclesInvolvedData(boolean unionFlag, TrafficEvent targetEvent)

performs a deep copy of the targetEvent's

data and stores it in m_eventData

[BasicEventSection]

doMergeBasiceventData(TrafficEvent targetEvent)

[AssociatedEventsSection]

doMergeAssociatedEventData(boolean unionFlag, TrafficEvent targetEvent)

[value = USE_UNION]

unionFlag = true

[ParticipantsSection]

doMergeParticipantsData(boolean unionFlag, TrafficEvent targetEvent)

[unknown value]

error

[value = USE_MERGE]

targetEvent = getMergeEvent()

[EventSpecificSection]

doMergeEventSpecificData(boolean unionFlag, TrafficEvent targetEvent)

[RoadWayConditons or LaneClosures]

doMergeRoadWayData(TrafficEvent targetEvent)

MergeTrafficEventsReqHdlr

WebMergeEvent mergeEventSection(MergeCompletionValue value, Integer currSection)

return true

performs a deep copy of targetEvent to m_tempEven if unionFlag

is false, otherwise deep copy both m_targetEvent and m_mergeEvent's

data to m_eventData

[value = USE_TARGET]

targetEvent = getTargetEvent()

[problem in doMerge method]]

return false

[ResponsePlanSection]

doMergeResponsePlanData(boolean unionFlag, TrafficEvent targetEvent)

Figure 5‑58. charlite.data.trafficevents:WebMergeEvent.mergeEventSection (Sequence Diagram)

5.14.2.2 chartlite.data.trafficevents:WebMergeEvent.completeSection (Sequence Diagram)

This method is called from the submitMergeEventSection action. It is responsible for updating the array that contains completed section values. This method takes an integer parameter of MergeCompletionValue. If there is a problem updating the WebMergeEvent object's MergeCompletionValue, the method returns false, otherwise returns true.

[image: image121.emf]MergeTrafficEventsReqHdlr

WebMergeEvent

set m_sections[currentSection].completed to

passed in completionValue

completeSection(int completionValue, int section)

return true

This method is called from the submitMergeEventSection action. It is responsible for updating the array that contains completed section values [problem updating sections array]

return false

completionValue can be

0 NOT_COMPLETED

1 USE_TARGET_DATA

2 USE_MERGE_DATA

3 USE_UNION_DATA

Figure 5‑59. chartlite.data.trafficevents:WebMergeEvent.completeSection (Sequence Diagram)

5.14.2.3 chartlite.data.trafficevents:WebMergeEvent.createTempTrafficEvent (Sequence Diagram)

This diagram shows the process of creating the appropriate event data class required for holding temporary event data built during the merge process. The MergeTrafficEventReqHdlr calls the WebMergeEvent createTempTrafficEvent method when the merge target selection form is submitted. Reflection is used to determine which datafactory and method to call for creating the correct type of event data object. If there is a problem in determining which method to call or creating the event data object, the method returns false, otherwise true.

[image: image122.emf][problem creating event data] false

true

Identifier getMethod("create" + className, Identifier) getClass() returns Class of the generated unique ID returns correct factory create method to call [could not find method] false Method invoke(datafactory, args) RequestHandlerSupporter createUniqueID() returns unique ID for storing this event data object newInstance() returns new instance of corect datafactory returns class instance returns class package returns package class's name returns class associated with this name WebMergeEvent Package Class getClass() MergeTrafficEventsReqHdlrTrafficEvent returns eventData createTempEventData() forName(packageClassName) getPackage()getName()

Figure 5‑60. chartlite.data.trafficevents:WebMergeEvent.createTempTrafficEvent (Sequence Diagram)

5.14.2.4 chartlite.data.trafficevents:WebMergeEvent.determineRequiredMergeSections (Sequence Diagram)

This method is called when the initial request to merge events is made, before the target selection, or the basic merge details page is displayed. This method is responsible for populating the WebMergeEvent object’s m_sections member. Building up of the m_sections array proceeds as follows. If both events are the same type, an event specific section is added. If either event contains data for a section, that section is added to the list of sections. If both events don’t contain items for a particular section, that section is omitted from user’s view of the merge. If both events contain the same data for a particular section, that section is marked as completed via a call to the WebMergeEvent object’s completeSection method. This method returns a Boolean true if no problems occurred, and false if something went wrong.

[image: image123.emf]add(MergeSection.Confirmation)

size()

[both events are Safety Message Events]

add(MergeSection.SafetyEvent)

returns size of vector

[sections vector failed to copy into

WebMergeEvent m_section member]

false

See:chartlite.data.trafficEvents.MergeSection hasResponsePlan()

[either event has a response plan]

add(MergeSection.Response Plan)

[both traffic events are Weather Events]

add(MergeSection.WeatherEvent)

[both events are Special Events]

add(MergeSection.SpecialEvent)

[both traffic events are Planned Roadway Closures]

add(MergeSection.LaneClosures)

[both traffic events are Action Events]

add(MergeSection.ActionEvent)

[both traffic events are Disabled Vehicles]

add(MergeSection.DisabledVehicle)

[both traffic events are Incidents]

add(MergeSection.Vehicles Involved")

getClass()

[both traffic events are Incidents]

add(MergeSection.IncidentData")

[both traffic events are Incidents]

add(MergeSection.RoadwayConditions)

[either event has associations]

add(MergeSection.Associated Events")

true

return boolean

MergeTrafficEventsReqHdlrjava.util.Vector called for event1 and event2

new()<MergeSection> hasParticipants()

[either event has participants]

add(MergeSection.Participants")

hasAssociations()

return boolean

WebMergeEvent TrafficEvent determineRequiredMergeSections() add(MergeSection.BasicDetails)

[both events are Congestion Events]

add(MergeSection.CongestionEvent)

copyInto(m_Sections)

return boolean

[both traffic events are Planned Roadway Closures]

add(MergeSection.PermitInfo)

Figure 5‑61. chartlite.data.trafficevents:WebMergeEvent.determineRequiredMergeSections (Sequence Diagram)

5.14.2.5 chartlite.data.trafficevents:WebMergeEvent.doMergeAssociatedEventsData (Sequence Diagram)

This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsible for copying the associated event information from the merge/target event to the temp event

[image: image124.emf]returns target event associated event identifiers

This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsiblefor copying the associated event information from the merge/target event to the temp eventWebMergeEventWebMergeEvent [for each target event associated identifier]

doMergeAssociateEventData(boolean unionFlag, targetEvent)

[problem copying data]

return false

return true

WebTrafficEvent getAssociatedEventIdentifiers()

getAssociatedEventIdentifiers()

[union flag is false]

HashTable returns merge event associated event identifiers

[for each merge event associated identifier]

put(mergeEventIdentifier, mergeEventIdentifier)

put(targetEventIdentifier, targetEventIdentifier)

getMergeEvent()

Figure 5‑62. chartlite.data.trafficevents:WebMergeEvent.doMergeAssociatedEventsData (Sequence Diagram)

5.14.2.6 chartlite.data.trafficevents:WebMergeEvent.doMergeBasicEventdata (Sequence Diagram)

This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection when the basic event section is completed. The target event’s data is deep copied to the temporary event.

[image: image125.emf]This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection WebMergeEventWebMergeEvent Perform member by member deep copy m_tempEvent.m_eventData.m_name = targetEvent.m_eventData.m_name; m_tempEvent.m_eventData.m_source = targetEvent.m_eventData.m_source; m_tempEvent.m_eventData.m_closedTime = targetEvent.m_eventData.m_closedTime; m_tempEvent.m_eventData.m_confirmedTime = targetEvent.m_eventData.m_closedTime; m_tempEvent.m_eventData.m_controllingOpCenter = targetEvent.m_eventData.m_controllingOpCenter; m_tempEvent.m_eventData.m_countyState = targetEvent.m_eventData.m_countyState;

 m_tempEvent.m_eventData.m_delayClearedTime = targetEvent.m_eventData.m_delayClearedTime;

 m_tempEvent.m_eventData.m_direction = targetEvent.m_eventData.m_direction;

 m_tempEvent.m_eventData.m_isClosed = targetEvent.m_eventData.m_isClosed;

 m_tempEvent.m_eventData.m_isConfirmed = targetEvent.m_eventData.m_isConfirmed;

 m_tempEvent.m_eventData.m_isDelayCleared = targetEvent.m_eventData.m_isDelayCleared;

 m_tempEvent.m_eventData.m_isFalseAlarm = targetEvent.m_eventData.m_isFalseAlarm;

 m_tempEvent.m_eventData.m_isSceneCleared = targetEvent.m_eventData.m_isSceneCleared;

 m_tempEvent.m_eventData.m_locationDesc = targetEvent.m_eventData.m_locationDesc;

 m_tempEvent.getLocationData().setLocationAlias(targetEvent.getLocationData().getLocationAlias());

 m_tempEvent.getLocationData().setLocationDesc(targetEvent.getLocationDesc());

doMergeBasicEventData() return true

[problem copying data] return false

Figure 5‑63. chartlite.data.trafficevents:WebMergeEvent.doMergeBasicEventdata (Sequence Diagram)

5.14.2.7 chartlite.data.trafficevents:WebMergeEvent.doMergeEventSpecificData (Sequence Diagram)

This diagram shows the process of copying event specific data from the target event to the EventData stored in the WebMergeEvent object. Reflection is used to determine the correct getXYZData method to call. Reflection is also used to do a deep copy of data fields from the target event to the EventData in the WebMergeEvent.

[image: image126.emf]getClass()

getMethod("get" + className + "data")

invoke()

returns correct target event data

[success]

true

returns correct mergeEvent data

invoke()

returns correct doMerge event specific method

returns the class name of the target class

getFields()

getMethod("doMerge" + className)

invoke()

deep copy event specific fields from the target

event to the temporary eventData object created

return all data fields

[for each event

specific field]

[unionflag is false]

true

EventData Class

Method This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsible for copying the event specific information from the target event to the temp event WebMergeEvent

WebMergeEvent WebTrafficEvent

doMergeEventSpecificData(boolean unionFlag, TrafficEvent targetevent)

return true

[problem copying data]

return false

getMergeEvent()

doMergeSafetyMessageData()

doMergeCongestionEventData()

doMergeWeatherServiceEventData()

doMergePlannedClosureData()

doMergeIncidentData()

doMergeActionEventData()

doMergeRoadConditionsData()

doMergeDisabledVehicleEventData()

returns correct method to call in order to retrive the event specific data

[failure]

false

Figure 5‑64. chartlite.data.trafficevents:WebMergeEvent.doMergeEventSpecificData (Sequence Diagram)

5.14.2.8 chartlite.data.trafficevents:WebMergeEvent.doMergeParticipantsData (Sequence Diagram)

This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection when the participation section is completed.

[image: image127.emf]WebResponseParticipation

getParticipantName()

returns participant name

getResponseParticipationData()

returns ResponseParticipationData

WebMergeEvent WebTrafficEvent

[for each target event

 response participation]

doMergeParticipantsData(boolean unionFlag, targetEvent)

return true

put(participationID, participationData)

[problem copying data]

return false

getResponseParticipations()

getMergeEvent()

returns merge event response participations

getResponseParticipations()

[union flag is false]

This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsiblefor copying the response participation information from the merge/target event to the temp eventWebMergeEvent

returns target response participations

put(participationID, participationData)

HashMap

[for each merge response participation

Figure 5‑65. chartlite.data.trafficevents:WebMergeEvent.doMergeParticipantsData (Sequence Diagram)

5.14.2.9 chartlite.data.trafficevents:WebMergeEvent.doMergeResponsePlanData (Sequence Diagram)

This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsible for copying the response plan information from the merge/target event to the temp event

[image: image128.emf]This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsiblefor copying the response plan information from the merge/target event to the temp eventWebMergeEventWebMergeEvent WebTrafficEvent [for each target event response plan item]doMergeResponsePlanData(boolean unionFlag, targetEvent)return true

put(deviceID, description) WebResponsePlanItem returns targetID of the response plan device [problem copying data]

return false

returns response plan item description getResponsePlanItems() getMergeEvent() returns merge event response plan items [union flag is false] getTargetID() [for each temp event response plan item] getResponsePlanItems() put(deviceID, description)

getDescription() [for each merge response plan itemHashMap returns target response plan items

Figure 5‑66. chartlite.data.trafficevents:WebMergeEvent.doMergeResponsePlanData (Sequence Diagram)

5.14.2.10 chartlite.data.trafficevents:WebMergeEvent.doMergeVehiclesInvolvedData (Sequence Diagram)

This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsible for copying the vehicles involved information from the merge/target event to the temp event

[image: image129.emf]This method is called from chartlite.data.trafficevents:WebMergeEvent.mergeEventSection and is responsible for copying the vehicles involved information from the merge/target event to the temp event WebMergeEvent

return true

getIncidentData()

returns merge event vehicles involved

getIncidentData()

append values of target event's m_vehicleData

to temp traffic event

returns target event incident data

WebMergeEvent

doMergeVehiclesInvolvedData(boolean unionFlag, targetEvent)

[problem copying data]

return false

getMergeEvent()

[union flag is false]

perform deep copy of m_vehicleData to WebMergeEvent

temp traffic event using merge event

WebIncident

Figure 5‑67. chartlite.data.trafficevents:WebMergeEvent.doMergeVehiclesInvolvedData (Sequence Diagram)

5.14.2.11 chartlite.data.trafficevents:WebMergeEvent.getMergeSectionDataTemplateName (Sequence Diagram)

The user is merging an event and the displayNexMergeSection action is requested. When the merge section template is rendered to interpret its markup, a call is made to the WebMergeEvent object to determine which section template to use. This method uses the value contained in the WebMergeEvent's m_currentSectionIndex member variable to determine which template to display.

[image: image130.emf]The user is merging an event and the displayNexMergeSection is requested. When the merge template is rendered to interpret it's markup, a call is made to the WebMergeEvent object to determine which section template to use based off the WebMergeEvent's m_currentSectionIndex value. [SafetyMessageEventSection]

return mergeSafetyMessageData.vm

[DisabledVehicleSection]

return mergeDisabledVehicleData.vm

[ActionEventSection]

return mergeActionEventData.vm

[WeatherServiceEventSection]

return mergeWeatherEventData.vm

[mergeIncidentTypeSection]

return mergeIncidentTypeData.vm

[VehiclesInvolvedSection]

return mergeIncidentVehiclesInvolved.vm

Velocity Merge Section TemplateWebMergeEvent getMergeSectionDataTemplateName() [BasicEventSection] return mergeBasicEventData.vm

[AssociatedEventSection]

return mergeAssociatedEventData.vm

[ResponsePlanSection]

return mergeResponsePlanData.vm

[RoadConditonsSection]

return mergeRoadConditionsData.vm

[error]

return mergeErrorTemplate.vm

[CongestionEventSection]

return mergeCongestionEventData.vm

[PlannedRoadWayClosureSection]

return mergePlannedRoadWayClosureData.vm

[ParticipantsSection]

return mergeParticipantsData.vm

Figure 5‑68. chartlite.data.trafficevents:WebMergeEvent.getMergeSectionDataTemplateName (Sequence Diagram)

5.14.2.12 chartlite.data.trafficevents:WebMergeEvent.prepopulateMergeEvent (Sequence Diagram)

This diagram shows the processing done by prepopulateMergeEvent. This method prepopulates the webMergeEvent's temporary data object with the target event's data if the data is the same between the 2 events being merged, or if the event being merged with doesn't have any data.

[image: image131.emf]See: chartlite.data.trafficevents.WebMergeEvent.completeSection

This diagram shows the processing done by prepopulateMergeEvent. This method prepopulate's the webMergeEvent's temporary data object with the target event's data if the data is the same between the 2 events being merged, or if the event being merged with doesn't have any data. [mergeEvent has no data for this section] [problem merging data]

error

WebMergeEvent [for each section

in m_mergeInfoList

could be one of the following doMergeBasicEventData() doMergeAssociatedEventData() doMergeParticipantsData() doMergeResponsePlanData() doMergeEventSpecificData() doMergeRoadwayConditionsData() prepopulateMergeEvent() [target and merge event data don't match ||

]

doMergeData()

MergeTrafficEventsReqHdrcompleteSection(USE_TARGET)

Figure 5‑69. chartlite.data.trafficevents:WebMergeEvent.prepopulateMergeEvent (Sequence Diagram)

5.14.2.13 LaneDisplayGIFManager:updateGIF (Sequence Diagram)

This shows how the lane configuration graphic is updated. The system calls updateGIF() to create a new GIF file to show the lane configuration being represented by the LaneDisplayGIFManager. It calls the WebLaneConfiguration to convert the IDL values into a chartlite.lane.util.LaneConfiguration object. The logical width of the configuration is calculated and used to determine the pixel width. A LaneDisplay object is created using the new utility lane configuration, and encodeGIF() is called to write the GIF content to an output stream (a file). Then a LaneGIFData object is created to store the lane rectangles for creating an image map, and this is stored in a hash table for later lookup. The filename is also added to the list of filenames to keep so that the cleanup task will not delete the file. If several older files remain, the oldest one will be removed from the list of filenames to keep and the LaneGIFData will be removed from the lookup table.

[image: image132.emf]Convert IDL structures

to chartlite.util.lane

classes and enumerations

return utilLaneConfig

getLogicalWidth(utilLaneConfig)

Multiply logical width

by m_widthMultiplier

to get pixel width

Create GIF file output stream

create

encodeGIF(laneDisplay, outputStream)

create

Create BufferedImage

paint(image.getGraphics())

encode(outputStream)

ServletLaneDisplayGIFManager This is called

for a traffic event

when the event's

direction or lane

configuration changes.

It is also called to render

a standard lane config.

WebLaneConfiguration updateGIF(webLaneConfig)

getUtilLaneConfig()

create

Add DirectGif89Frame

containing buffered image

The LaneGIFData can be

retrieved later by a

Velocity template to assist

in building an image map.

[filnames to keep > 3]

Remove Oldest Filename

And LaneGIFData

Put LaneGIFData In Hashtable

using filename as the key

Add filename to list of

filenames to keep

return from encodeGIF()

LaneGIFLaneData

LaneGIFData

create

create

[* for each lane]

getLaneRects()

Rectangle[]

chartlite.util.lane. LaneConfigurationutilLaneConfig:chartlite.util.lane.LaneConfiguration

LaneDisplaynewLaneDisplay:LaneDisplay

Gif89Encoder

Figure 5‑70. LaneDisplayGIFManager:updateGIF (Sequence Diagram)
5.15 GUI chartlite.data.alerts-data

5.15.1 Classes

5.15.1.1 data.alerts.classes (Class Diagram)

This diagram shows classes related to alerts that are used to store alerts in the data model.

[image: image133.emf]1 1 1 Alert «interface» UnhandledResourcesAlertData «datatype» EventStillOpenAlertData «datatype» 1 11 DuplicateEventAlertData «datatype» DeviceFailureAlertData«datatype» 1 1 1 AlertData «datatype» 1 WebEventStillOpenAlert WebUnhandledResourcesAlert WebDeviceFailureAlertWebDuplicateEventAlert WebGenericAlert * 1 1 1 WebAlert WebAlertHistory getID():Identifier getAlertRef():Alert getDescription():String isAccepted() : boolean isClosed() : boolean isDelayed() : boolean isNew() : boolean getCreationTime() : long getClosedTime() : long getNextActionTime():long getResponsibleUser():String getResponsibleCenter():WebOpCenter getOpCenterVisibility():WebOpCenter[] getNextOpCenterVisibility():WebOpCenter[] getDetailsPage() : String getAlertHistory() : WebAlertHistory[] getDetailsPage():StringisDMS():booleanisTSS():booleangetDevice():WebDevicegetDMS():WebDMSgetTSS():WebTSSgetDetailsPage():String getNewerEvent():WebTrafficEvent getOlderEvent():WebTrafficEvent WebAlertHistory(hist:AlertHistory) getTimestamp() : long getOpCenterName() : String getOperatorName() : String getDescriptiveText():String m_descriptiveText:String m_timestamp:long m_operatorName:String m_opCenterName:String getDetailsPage():String getDetailsPage():String getOpCenter():WebOpCenter getDetailsPage():String getEvent():WebTrafficEvent

Figure 5‑71. data.alerts.classes (Class Diagram)

5.15.1.1.1 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.15.1.1.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.15.1.1.3 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.15.1.1.4 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.15.1.1.5 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.15.1.1.6 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.15.1.1.7 WebAlert (Class)

This class is used to wrap a CORBA Alert object so that its data may be cached in the CHART GUI servlet and to allow its data to be accessed from within a Velocity template.

5.15.1.1.8 WebAlertHistory (Class)

This class is used to wrap AlertHistory data to allow it to be accessed from within a Velocity template.

5.15.1.1.9 WebDeviceFailureAlert (Class)

This class is used to wrap a DeviceFailureAlert CORBA object and provide access to data that is specific to this type of alert.

5.15.1.1.10 WebDuplicateEventAlert (Class)

This class is used to wrap a DuplicatEventAlert and provide access to its type specific data.

5.15.1.1.11 WebEventStillOpenAlert (Class)

This class is used to wrap an EventStillOpenAlert and provide access to its type specific data.

5.15.1.1.12 WebGenericAlert (Class)

This class is used to wrap a GenericAlert (manual alert).

5.15.1.1.13 WebUnhandledResourcesAlert (Class)

This class is used to wrap an UnhandledResourcesAlert and provide access to its type specific data.

5.15.1.2 data.alerts.DiscoveryAndEventHandlingClasses (Class Diagram)

This diagram shows classes related to the caching of alert data and its maintenance within the CHART GUI servlet.

[image: image134.emf]DiscoverAlertClassesCommand

1

1

DiscoveryDriverClass

1

1

TraderGroupEventConsumerGroup 11

11

QueableCommand

«interface»

1

PushConsumerPOA AlertPushConsumer

DataModel

CommandQueue

QueableCommand

«interface»

AlertPushConsumer.PushHandler

1

1

1

1

1 1

1

Any

1

1

DiscoverAlertClassesCommand(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataModel : DataModel, ecg : EventConsumerGroup,

 discoveryToken : AccessToken,

 contextProvider : SystemContextProvider) : ctor

-discoverAlertChannels() : void

-discoverAlerttClasses() : void

m_poa : POA

m_traderGroup : TraderGroup

m_dataModel : DataModel

m_discoveryToken : AccessToken

m_apc : AlertPushConsumer

m_sysContextProvider : SystemContextProvidersetPushConsumer(pc:PushConsumer):void

getPushConsumer():PushConsumer

disconnect_push_consumer():void

push(data:Any):void

processPush(data:Any):void

processAlertAdded(data:AlertAddedInfo):void

processAlertRemoved(id:Identifier):void

processAlertChanged(data:AlertChangedInfo):void

m_pushConsumer CosEvent.PushConsumer

m_dataModel : DataModel

m_sysContextProvider : SystemContextProvider

m_processingQueue : CommandQueue

execute():void

interrupted():void

Figure 5‑72. data.alerts.DiscoveryAndEventHandlingClasses (Class Diagram)

5.15.1.2.1 AlertPushConsumer (Class)

This class is a CORBA object that handles events pushed by the server on an Alert event channel. Updates received in events received via the push() method of the PushConsumer interface are updated in the DataModel.

5.15.1.2.2 AlertPushConsumer.PushHandler (Class)

This class is a QueueableCommand that is used by the AlertPushConsumer to process events in a thread of execution separate from the CORBA thread on which the event is pushed.

5.15.1.2.3 Any (Class)

A CORBA defined object that holds data for an object of any type.

5.15.1.2.4 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.15.1.2.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.15.1.2.6 DiscoverAlertClassesCommand (Class)

This class is a QueueableCommand that is used by the DiscoveryDriver to maintain local copies of alert objects in the object cache. This class contains a PushConsumer that is used to keep Alert data in the object cache up-to-date by handling CORBA events related to Alerts.

5.15.1.2.7 DiscoveryDriverClass (Class)

The object that is used to control the discovery process within the CHART GUI servlet. The discovery process is used to find new CORBA objects in the system and add them to the DataModel, or to update the information for already known objects. Data for known objects is updated via CORBA event processing, however the discovery process provides assurance that the data remains up to date even if a CORBA event were to be lost.

5.15.1.2.8 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

5.15.1.2.9 PushConsumerPOA (Class)

The CORBA base class for a push consumer, generated from IDL.

5.15.1.2.10 QueableCommand (Class)

This interface is implemented by objects that can be placed on a command queue.

5.15.1.2.11 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.15.2 Sequence Diagrams

5.15.2.1 data.alerts:AlertDiscovery (Sequence Diagram)

This sequence shows processing in the servlet used to discover Alert classes that exist in the system. This processing is invoked by the CHART GUI DiscoveryDriver when it is started and periodically throughout the lifetime of the servlet. A call is made to the TraderGroup to have it discover all alert management CORBA event channels in the system. This call performs all actions required to attach the AlertPushConsumer to all channels and to maintain the connection to the event channel. Next, the TraderGroup is used to find all AlertFactory objects in the system. For each factory found, the getAlerts() method is called to retrieve the alerts managed by the factory. Each alert is processed slightly differently depending on its type. The processing shown in the diagram is specific to a DeviceFailureAlert, however the processing is nearly identical for the other alert types. The alert object is narrowed to its derived type and the type specific data for the alert is retrieved. A call to DataModel is used to retrieve the derived WebAlert object if it has already been discovered. If not found, a new WebAlert derived object is created. The type specific alert data retrieved from the server is then stored in the WebAlert derived object. If the alert did not already exist in the data model, it is added.

[image: image135.emf]WebAlert or null

[alert not in cache]

objectAdded(WebAlert)

DeviceFailureAlertHelper

DeviceFailureAlert

WebDeviceFailureAlert

AlertInfo[]

narrow()

DeviceFailureAlert

getDeviceFailureAlertData()

DeviceFailureAlertData

[alert not in cache]

new

getAlerts()

AlertFactoryHelper

AlertFactory

findAllObjectsOfType(SERVICE_TYPE_ALERT_FACTORY.value())

CORBA.Object

narrow()

AlertFactory

The processing below occurs if the AlertInfo indicates the alert is a DeviceFailureAlert.

Similar processing is done for the other alert types, with the processing specific to their type. Processing for all types is not shown here.

for each object

returned by

the factory query

for each

alert info.

processing

will vary

by alert type

Name is EVENT_CHANNEL_ALERT_MANAGMENT

discoverEventChannelsOfName()

DataModel

getObject(id)

DiscoveryDriverClass

DiscoverAlertClassesCommand TraderGroup

setAlertData()

execute()

Figure 5‑73. data.alerts:AlertDiscovery (Sequence Diagram)

5.15.2.2 data.alerts:AlertEventHandling (Sequence Diagram)

This sequence diagram shows the processing that occurs when an event is received from an Alerts CORBA Event Channel. The event is received via the push() call as defined in the PushConsumer CORBA interface. The push() call creates a PushHelper object to store the event and put it on a queue to be processed in a separate thread, allowing control to return to the event channel. When the PushHelper reaches the top of the queue, its execute method is called.

The AlertEventHelper is used to extract the untyped data (Any) into an AlertEvent object, and the AlertEvent discriminator method is called to determine the type of event. Different processing is then done based on the type of event that was received. If the event is an AlertAdded event, the alert object is narrowed to its derived type and a method is called to get the data that is specific to the alert type. The data model is called to retrieve the alert, just in case it was already discovered before receiving the event. If not already known (the usual case) a new WebAlert derived object is created with the type specific alert data and the WebAlert is added to the data model. In the unusual case where the alert is already known, its type specific data is simply updated.

When an AlertChanged event is received, the type specific alert data is extracted from the event data using the discriminator of the union containing the data. The existing alert is found in the data model and cast to the appropriate subclass. The data from the event is then used to update the data stored in the WebAlert.

When an AlertDeleted event is received, the data model is called to remove the alert based on its ID.

[image: image136.emf]alertID()

The Alert will be narrowed to its derived type

and the actual call made will depend

on the Alert type.

get type specific alert data

getObject(id)

WebAlert or null

The processing that follows is done if the AlertEventType is AlertAdded

[AlertAdded]

addData()

AlertAddedInfo

AlertEventHelper AlertEvent extract(Any)

AlertEvent

discriminator()

AlertEventType

CommandQueue AlertPushConsumer.PushHandler

new

addCommand()

[command at top

of queue]

execute()

processPush(Any)

Alert Event Channel

AlertPushConsumer push(Any)

The alert changed info contains

the data specific to the type of

alert. It will be extracted from the

union using the discriminator,

and the WebAlert will be cast to

the appropriate subclass.

Identifier

byte[]

objectRemoved(id)

WebAlert

AlertChangedInfo

getObject(id)

setAlertStatus()

[alert not in data model]

objectAdded()

WebAlert

A WebAlert derived object will

be created based on the alert type.

[alert not in data model]

new

set type specific data

Alert DataModel [AlertChanged]

changedData()

WebAlert

The following processing is done if the AlertEventType is AlertDeleted

new

The following processing is done if the AlertEventType is AlertChanged

Figure 5‑74. data.alerts:AlertEventHandling (Sequence Diagram)

5.16 GUI chartlite.data.arbqueue-data

5.16.1 Classes

5.16.1.1 chartlite.data.arbqueue_classes (Class Diagram)

This diagram shows classes related to the arbitration queue.

[image: image137.emf]WebArbQueueEntryOwner

«interface»

getID() : Identifier

getName() : String

getControllingOpCenterID() : Identifier

getControllingOpCenterName() : String

Figure 5‑75. chartlite.data.arbqueue_classes (Class Diagram)

5.16.1.1.1 WebArbQueueEntryOwner (Class)

This interface specifies methods to be implemented by all objects that may place entries on an arbitration queue.

5.17 GUI chartlite.servlet

5.17.1 Classes

5.17.1.1 ServletMiscClasses (Class Diagram)

This diagram shows miscellaneous classes used within the servlet.

[image: image138.emf]UserFormDataRequestParameterSupplier«interface»HttpServletRequestParameterSupplier addParamValue(name:String, value:String) : voidaddParamValuesFromRequest(req:HttpServletRequest) : voidappendErrorMessage(errMsg:String) : voidclearAllParameters() : voidclearAutoErrorMsg() : voidclearParamValues(name:String) : voidcontainsValue(name:String, value:String) : booleangetAutoErrorMsg() : StringgetBooleanParm(name:String, displayName:String, required:boolean) : booleangetDateParm(name:String, displayName:String, required:boolean) : DategetDoubleParm(name:String, displayName:String, required:boolean) : doublegetErrorMessage() : StringgetID() : String

getIdentifierParm(name:String, displayName:String, required:boolean) : Identifier

getIdentifierParms(name:String, displayName:String, required:boolean) : ArrayList<Identifier>

getIntegerParm(name:String, displayName:String, required:boolean) : Integer

getIntParm(name:String, displayName:String, required:boolean) : int

getRequiredValue(name:String) : String

getStringParm(name:String, displayName:String, required:boolean) : String

getTotalErrorLength() : int

getValue(name:String) : String

getValue(name:String, trim:boolean) : String

getValues(name:String) : String[]

hasAutoErrorMsg() : boolean

hasError() : boolean

isParmPresent(name:String) : boolean

populateFromRequest(req : HttpServletRequest) : void

prefixErrorMessage(str : String) : void

setErrorMessage(str : String) : void

setID(id:String) : void

setParameterValue(name:String, value:String) : void

setParameterValues(name:String, values : ArrayList<String>) : void

setParameterValues(name:String, values : String[]) : void

getParameter(name:String) : Stringm_req : HttpServletRequest

Figure 5‑76. ServletMiscClasses (Class Diagram)

5.17.1.1.1 HttpServletRequestParameterSupplier (Class)

This class implements the RequestParameterSupplier interface to provide parameters from the HttpsServletRequest.

5.17.1.1.2 RequestParameterSupplier (Class)

This interface allows parameter values to be queried. It is used to provide a common interface for getting parameters from the HttpServletRequest or from the UserFormData.

5.17.1.1.3 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex form, and provides convenience methods for parsing the values from the request.

5.17.2 Sequence Diagrams

5.17.2.1 chartlite.servlet.MainServlet:handleRequest (Sequence Diagram)

This diagram shows the processing that occurs when a request is received by the servlet. The action to be performed is retrieved either from the servlet path, or from a request parameter named "action". A check is made to determine if the user is logged in. If the user is not logged in, a "logged out" policy is retrieved based on the requested action to determine how to reply to the request. Either the login page is shown, an HTTP "no content" response code is passed to the browser, the logged out error page is shown, or an error is returned in an XML document. If the user is logged in, the request handler for the requested action is found and the request is dispatched to the request handler. The request handler returns the name of the velocity template to load (or null if there was a redirect). Several commonly used objects are added to the velocity context, and the template (if any) is loaded. When the template is loaded, the Velocity tool merges the dynamic content from the Context object into the template, dynamically creating an HTML page to return to the browser.[image: image139.emf]A number of objects that will be needed by almost every page are put into the context at this point. put RequestHandlerMapping RequestActionHttpServletResponse ServletPropertiesContextRequestHandler [user not logged in] getRequestHandlerMapping [user not logged in] getRequestAction [user not logged in] getUserLoggedOutPolicy [user not logged in && policy == no content] [user not logged in && policy == no content] setStatus [user not logged in && policy == display login form] action == getLoginForm [user not logged in && policy == XMLError] getXMLGeneralResultTemplate [user not logged in && policy == XMLError] put("success", false) [user not logged in && policy == XMLError] put("errMsg", "User is not logged in") [user not logged in && policy == XMLError] put("userLoggedIn", false) [user not logged in && policy == XMLError] loadTemplate [user not logged in && policy == XMLError] getRequestHandler getRequestHandlerMapping processRequest loadTemplate return template Determine the requested action. This could be passed as part of the servlet path as in charlite/app/action.chart or could be specified as a request parameter with name "action". getServletPath [action not found on servlet path] getParameter("action") MainServlet HttpServletRequest HttpSession handleRequest getSession getAttribute(SESSION_ATTR_LOGIN_SESSION)

Figure 5‑77. chartlite.servlet.MainServlet:handleRequest (Sequence Diagram)

5.18 GUI chartlite.servlet.trafficevents

5.18.1 Classes

5.18.1.1 chartlite.servlet.trafficevents_add_copy_event_classes (Class Diagram)

This diagram shows classes in the servlet used to handle requests related to adding and copying traffic events.

[image: image140.emf]AddTrafficEventReqHdlr UserFormDataCopyEventFormData

RequestHandler «interface» init(supporter:RequestHandlerSupporter) : voidgetActions() : ArrayList<RequestAction>processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):Stringshutdown(supporter:RequestHandlerSupporter) : voidaddTrafficEventXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateActionEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateCongestionEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateDisabledVehicleEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateEvent(req:HttpServletRequest, supporter:RequestHandlerSupporter, eventDataClass:Class, eventType:short, copyEventData:CopyEventFormData):TrafficEventCreationResultcreateEventData(eventDataClass:Class, eventID:byte[]) : BasicEventDatacreateIncident(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreatePlannedRoadwayClosureEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateSafetyMessageEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateSpecialEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateWeatherServiceEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringparseBasicEventDataFormParameters(eventData:BasicEventData, req:RequestParameterSupplier) : voidparseDisabledVehicleEventDataFormParameters(eventData:DisabledVehicleEventData, req:HttpServletRequest) : voidparseIncidentDataFormParameters(eventData:IncidentData, req:HttpServletRequest) : voidcopyTrafficEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringdisplayCopyEventForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringsubmitCopyEventBasicEventDataForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetBasicEventDataInitialFormDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringCopyEventFormData(req:HttpServletRequest, newType:short, newEventDataClass:Class, originalEvent:WebTrafficEvent)

getNewEventType() : short

getNewEventDataClass() : Class

getOriginalEvent() : WebTrafficEvent

m_newType : short

m_newEventDataClass : Class

m_originalEvent : WebTrafficEvent

Figure 5‑78. chartlite.servlet.trafficevents_add_copy_event_classes (Class Diagram)

5.18.1.1.1 AddTrafficEventReqHdlr (Class)

This class is used to handle requests related to adding a traffic event to the system.

5.18.1.1.2 CopyEventFormData (Class)

This class is used to hold data related to copying a traffic event. The user can specify information pertaining to the copy over several different web pages, and this object is used to allow their data to persist over multiple requests.

5.18.1.1.3 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.18.1.1.4 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex form, and provides convenience methods for parsing the values from the request.

5.18.1.2 chartlite.servlet.trafficevents_classes (Class Diagram)

This diagram shows the various classes that are used to handle requests related to traffic events.

[image: image141.emf]TrafficEventXMLReqHdlr

RequestHandler«interface»AddTrafficEventReqHdlr

TrafficEventReqHdlr MergeEventReqHdlr

LaneConfigReqHdlr

ResponsePlanReqHdlrgetPotentialDuplicateEventsXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringdisplayEditLaneConfigurationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

displayEditLaneStateChangedTimeForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

submitLaneConfiguration(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

submitLaneStateChangedTimeForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

submitLaneDirAndStateInfo(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

updateEditLaneConfigurationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

Figure 5‑79. chartlite.servlet.trafficevents_classes (Class Diagram)

5.18.1.2.1 AddTrafficEventReqHdlr (Class)

This class is used to handle requests related to adding a traffic event to the system.

5.18.1.2.2 LaneConfigReqHdlr (Class)

This class handles any requests related to the traffic event lane configuration.

5.18.1.2.3 MergeEventReqHdlr (Class)

This class handles all requests related to merging traffic events.

5.18.1.2.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.18.1.2.5 ResponsePlanReqHdlr (Class)

This class handles requests related to traffic event response plans.

5.18.1.2.6 TrafficEventReqHdlr (Class)

This class handles requests related to traffic events that are not handled by one of the other specific traffic event request handlers.

5.18.1.2.7 TrafficEventXMLReqHdlr (Class)

This class handles requests related to traffic events that return XML for the Flex2 application.

5.18.2 Sequence Diagrams

5.18.2.1 AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

This diagram shows the portion of the processing to create a new traffic event that resides in the Flex application. The Flex home page contains an area that allows the user to create a new event. This area contains fields that allow the user to specify the location of the event, the source type, source name, incident type, vehicle color/make, and vehicle tag information. The area also contains "add" buttons, one for each event type, that when clicked cause a new event of the specified type to be created using the data the user entered. Note that the incident type field is ignored if the user does not choose to create an incident. Likewise, the vehicle color/make and tag information is ignored if the user does not choose to create a disabled vehicle event.

When the user clicks on one of the Add buttons, the EventLauncher is called. If the user has overridden the location description, it saves the event type information and displays an Alert dialog for confirmation. If the user clicks OK on the dialog, or if the location is not overridden, addTrafficEventNow() is called. This gets the field values from the form, calculates the suggested traffic event name, sends the addTrafficEventXML.chart request, and clears the form fields. When the servlet returns the result, the handleAddTrafficEventResult() callback will be called. It either shows an error message (if error) or invokes a request to update the traffic event list for the operations center. Then it calls the HomePage object to make a call to Javascript to display the URL of the new traffic event details page in the working window.

[image: image142.emf]This makes an external call to Javascript

to set the URL of the working window

to display the details page for the new

traffic event.

getHomePage()

displayEventDetails(eventID)

[error]

showErrorMsg()

openURL()

getOpenTrafficEventsXMLReq:HTTPService

At this point a HTTP post is sent to

the web server with a URL of the form

http://<server>/charlite/getOpenTrafficEventsXML.chart?opCenterID=<opCtrID>

When it returns it will cause the event list to be updated, as the EventsView

registered its handleTrafficEventListUpdated() method to listen for responses.

send(params)

At this point a HTTP post is sent to

the web server with a URL of the form

http://<server>/charlite/addTrafficEventXML.chart?<paramList>

addTrafficEventXMLReq:HTTPService

Clear Controls

User

Alert

The following parameters may be

set:

eventType

eventName

location

sourceType

sourceDesc

direction

countyState

state

alias

routeType

routeNumber

locationOverridden

intersectingFeatureTypeName

 ("RouteByName"

 "RouteByNumber"

 "StateMilepost"

 "CountyMilepost")

milepost

intersectingRoad

intersectingFeatureProximityDesc

 ("AT", "PAST", "PRIOR")

incidentType

vehicleMakeColor

vehicleTagInfo

Set parameter values

[user clicked on

button to create event'

addTrafficEvent

[location override text

specified]

show("Are you sure you want to override?")

create

params:Object

Get Op Center ID

create

Set opCenterID

Controller AppServices

HomePage

get

getServices

get

getServices

Get Last Result

[error]

updateTrafficEvents()

Flex

The request is processed by the servlet - see the

AddTrafficEventReqHdlr.addTrafficEventXML2

diagram for details.

The callback handleAddTrafficEventResult was

added to the addTrafficEventXMLReq HTTPService object

in the EventLauncher's init() method.

handleAddTrafficEventResult

This is a Flex Alert.

The handler for the alert,

confirmOverrideLocationHandler(),

will call addTrafficEventNow()

using the stored parameters

when the user clicks OK.

EventLauncher TrafficEventUtil

params:Object

suggestEventName(eventTypeDisplayName, location, incidentType)

[location override

text specified]

Store event, eventType,

and eventTypeDisplayName

for later use

[location override text

specified]

return

addTrafficEventNow

send(params)

Figure 5‑80. AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

5.18.2.2 AddTrafficEventReqHdlr:addTrafficEventXML2 (Sequence Diagram)

This shows the processing of the request to add a traffic event. The AddTrafficEventReqHdlr class is called to handle the request. After checking the user's rights, it gets the event type from the request, and uses the event type (e.g., "action") to call a type-specific method createActionEvent(). This in turn calls the generic createEvent() method, passing the ActionEventData class and the event type. (See the createEvent diagram for details). If the event is successfully created, a new WebActionEvent wrapper object is created and added to the object cache for future lookups. Then, the event is added to the Velocity context and the addTrafficEventXML.vm template is returned. Velocity uses the template to create the XML response, using data from the WebTrafficEvent. If an error occurred, the GeneralResultXML.vm template will be used to convey an error message to the user.

[image: image143.emf]ObjectCache

See the createEvent Sequence Diagram

for more details.

getDataModel()

createEvent(req, supporter,

ActionEventData.class,

TrafficEventTypeValues.TYPE_ACTION, null)

HttpServletRequest

getParameter("eventType")

objectAdded(webTrafficEvent.getID(), webTrafficEvent)

addTrafficEventXML

User

(via Flex)

addTrafficEventXML.chart

DataModel

[no rights]

return GeneralResultXML.vm

RequestHandlerSupporter

Other types of events would

call their own type-specific

methods, but those are not shown here.

Check Manage Traffic Events Rights

[eventType.equals("action")]

createActionEvent

return TrafficEventCreationResult if successful;

otherwise, CHARTLiteException thrown.

getObjectCache()

The CHARTLiteException from createEvent()

will not be caught in createActionEvent() etc,

but will be caught in addTrafficEventXML().

AddTrafficEventReqHdlr

WebActionEvent

Context

Narrow the returned TrafficEvent

CORBA reference to an ActionEvent

reference

create(actionEvent, actionEventData,

supporter.getSystemContextProvider())

Return WebActionEvent

from createActionEvent(); otherwise

throw CHARTLiteException

[error or event not created]

return GeneralResultXML.vm

put("event", webEvent)

[success]

return addTrafficEventResultXML.vm

Figure 5‑81. AddTrafficEventReqHdlr:addTrafficEventXML2 (Sequence Diagram)

5.18.2.3 AddTrafficEventReqHdlr:copyTrafficEvent (Sequence Diagram)

This diagram shows the processing that occurs when the user submits the Copy Event form. After checking rights, the CopyEventFormData object is retrieved from the temporary object cache, using the "formDataID" request parameter. The request parameters for copying log entries, participations, and response plan items are also parsed and stored in the CopyEventFormData object for later use. Then createEvent() is called, which calls the server to create the new TrafficEvent (see the createEvent diagram for details). If the new event type supports response participations, the participation data is copied and given new IDs, and the new TrafficEvent is called to add them. If the new event type supports response plan items, those are copied also. Then the correct type of WebTrafficEvent wrapper object is created, and it pulls the current response participations and response plan items. The log history entries are also queried. Finally the new WebTrafficEvent is added to the cache for later use, and the response is redirected to show the Event Details page for the new traffic event.
[image: image144.emf]getObject(formDataIDStr)

[not found]

return Error Page

Create And Assign New ID To

ResponseParticipationData

WebResponsePlanItem[]

[* for each

Response

Participation]

TrafficEvent

Create New

ResponseParticipationData

With Same Type As Old

create

getOriginalEvent()

The following event

types support partcipations:

Action Event

Disabled Vehicle

Incident

Special Event

Weather Service Event

WebResponseParticipation[]

[error]

Redirect To Copy

Event Page

createEvent(req,

supporter,

formData.getNewEventDataClass(),

formData.getNewEventType(),

formData)

ServletUtil isCheckBoxChecked(req, "copyParticipations")

CopyUserFormData isCheckboxChecked(req, "copyLogEntries")

isCheckBoxChecked(req, "copyResponsePlanItems")

setParameterValue("copyParticipations", copyParticipations)

TempObjectStore [not specified]

return Error Page

User

RequestHandlerSupporter copyTrafficEvent

[no rights]

return Error Page

getParameter("formDataID")

[* for each RPI]addResponseItem(token, rpis[i].getItemData())

[copyResponsePlanItems && new event NOT Disabled Vehicle]

getResponsePlanItems()

addResponseParticipation(token, responseParticipationData)

This involves creating a new

ResourceDeploymentDataDefaultFactory or

OrganizationParticipationDataDefaultFactory and

calling it to create a new

ResourceDeploymentData or OrganizationParticipationData

setParameterValue("copyLogEntries", copyLogEntries)

setParameterValue("copyResponsePlanItems", copyResponsePlanItems)

CopyEventFormData or null

return Error Msg

or null

ObjectCache DataModel updateEventHistory()

getObjectCache

getDataModel()

objectAdded(webTrafficEvent.getID(), webTrafficEvent)

redirectToEventDetails(req, resp, webTrafficEvent)

WebTrafficEvent

Create the appropriate type-specific wrapper class

corresponding to the new event type. The constructor will query

the TrafficEvent for its response participations and

response plan items, but not its history log entries.

create

All event types support

response plan items

except for Disabled Vehicles.

The ResponseParticipationData objects must be copied,

rather than passing the originals, because they contain

a participation ID that must not be a duplicate of the

original ID.

Check User

Rights For

Manage Traffic Events

Copy Participation Fields

Except For Participation ID

WebTrafficEvent [copyParticipations && new event type supports part's]

getResponseParticipations()

WebTrafficEvent

[error]

setErrorMessage()

Returns TrafficEventCreationResult if successful;

otherwise, CHARTLiteException thrown

See the createEvent diagram

for details.

AddTrafficEventReqHdlr

Figure 5‑82. AddTrafficEventReqHdlr:copyTrafficEvent (Sequence Diagram)

5.18.2.4 AddTrafficEventReqHdlr:createEvent (Sequence Diagram)

This shows the processing that is performed when a new or copied traffic event is being added and createEvent() is called. The event data class is used to create the correct type of BasicEventData. If the passed in CopyEventFormData is not null then it's a copy operation, and parseBasicEventDataFormParameters() is called to parse its data and populate the fields of the event data. If "copyLogEntries" was also specified, the log entries from the original traffic event are copied. If the CopyEventFormData was null, then this is a request from the EventLauncher, and the basic event data parameters are parsed. The disabled vehicle and incident parameters are also parsed, as there are fields specific to those types of events on the EventLauncher form. The TrafficEventFactory objects are called until one of them can create the traffic event. If successful, the most recently use county list is updated for later use, and the TrafficEventCreationResult is returned. If an error occurred, a CHARTLiteException will be thrown.

[image: image145.emf][copyEventFormData != null && copyLogEntries]

getOriginalEvent()

TrafficEventCreationResult

The Traffic Event

Service will create

the appropriate type of

TrafficEvent - ActionEvent

in this example.

[copyEventFormData != null]

getBooleanParameter("copyLogEntries", "Copy Log Entries", false)

[copyEventFormData == null && is DVE]

parseDisabledVehicleEventDataFormParameters

create

createEvent(req,

supporter,

evtDataClass,

evtType,

copyEventFormData)

Return ActionEventData

from createEventData()

TrafficEventCreationResult

createIterator()

createUniqueID()

create

create(eventID)

createTrafficEvent(token, eventType, eventData, initialLogEntries)

[* for each

TrafficEventFactory

until a TrafficEvent

is created

successfully]

createEventData(eventDataClass, eventID)

This could be

invoked when

copying an event

or creating a new

event.

If it is a copy, the

CopyEventFormData

parameter will be

passed, as the Copy

form is complex.

For a new event,

the parameters will

be coming directly

from the request.

Call userLoginSession.getUserProfile().updateCountyMRUList().

Classes not shown here to save space.

[no factories could

create event]

throw CHARTLiteException

ActionEventData

Iterator

createActionEventData(eventID)

TBD - The TrafficEventService

may be changed to ignore the

eventID passed in by the client,

and just create a new BasicEventData

with a server-generated ID, that

would be returned (as the BasicEvenData

is already) in the TrafficEventCreationResult.

This would allow the GUI to avoid

creating a new ID and re-parsing the

form data for each attempted call to a

TrafficEventFactory, and would avoid

the duplicate IDs also.

If this happens, the loop on the left side

of the diagram would tighten around the

call to

TrafficEventFactory.createTrafficEvent()

[error parsing data

for new or copied event]

throw CHARTLiteException

Update State And County

MRU List From County

In BasicEventData

[copyEventFormData != null]

parseBasicEventDataFormParameters(eventData, copyEventFormData)

AddTrafficEventReqHdlr

AddTrafficEventReqHdlr HttpServletRequest RequestHandlerSupporter m_eventFactoryWrapper: FirstAvailableOfferWrapper The class name is used to

instantiate the correct type

of default factory and call

the createActionEventData()

method generically. The

createEventData() method

is used by all event types.

A new ID is created for each attempt to

avoid events with duplicate IDs being

created if the call to the TrafficEventFactory

times out, but the factory creates the

event successfully. The event ID is

created by the client, unlike all

other types of CHART objects, for

historical reasons.

If duplicate events are created (with

different IDs), the new duplicate event

detection functionality in R3B1

should catch it.

TrafficEventFactory It is a new event (not a copy), the basic event data fields

and location information will be coming directly from the request

sent by the Flex EventLauncher view. See addTrafficEventFlex

for a list of parameters.

The EventLauncher form contains type-specific fields for

Disabled Vehicle Event and Incident types (ONLY).

CopyEventData ActionEventDataDefaultFactory

ActionEventData

ActionEvent

[copyEventFormData!=null && copyLogEntries]

getLatestHistoryEntries(10000, numAvailHolder)

WebTrafficEvent [copyEventFormData == null]

parseBasicEventDataFormParameters(eventData,

new HttpServletRequestParameterSupplier(req))

[copyEventFormData == null && is Incident]

parseIncidentDataFormParameters(eventData, req)

Figure 5‑83. AddTrafficEventReqHdlr:createEvent (Sequence Diagram)

5.18.2.5 AddTrafficEventReqHdlr:displayCopyEventForm (Sequence Diagram)

This diagram shows the processing for displaying all 3 forms related to Copy Event: CopyEventForm.vm, EditEventLocationDataForm.vm (for copy), and BasicEventDataForm.vm (for copy). After checking the user's ManageTrafficEvent rights, the template name and the "isPopup" parameters are parsed, which tells which of the 3 pages to display. The formDataID parameter, if specified, is used to retrieve the CopyEventFormData from the temporary object store. If the form data ID was not specified or the specified form data was not found (e.g., if it expired), a new CopyEventFormData object is created using the original event ID and the specified event type, and the object is added to the TempObjectStore for later use. Finally the form data is placed into the Velocity context so that the page can access it. The specified template name is also placed into the context, and the popup or enclosing template is displayed as requested.

[image: image146.emf]getTempObjectStore()

[formDataID specified in request]

getObject(formDataIDStr)

CopyUserFormData, or null if expired

[formData == null]

create(req, type, basicEventDataClass, originalEvent)

[formDataID specified in request]

setErrorMessage()

lookupRequestedEvent(req, supporter)

getParameter("eventType")

[original event not found ||

eventType not specified ||

unknown type]

return Error

WebTrafficEvent or null if not found

getEventTypeFromDesc(eventTypeStr)

touchObject(formData.getID())

Return (isPopup ?

"PopupTemplate.vm" :

"EnclosingTemplate.vm")

getParameter("isPopup")

Request Parameters:

eventID (required)

eventType (required)

templateName (required)

isPopup (required)

formDataID (optional)

getParameter("templateName")

[not found]

return error

FormUtil Context

The parameters will be

named as expected by

AddTrafficEventReqHdlr.

parseBasicEventDataFormParameters()

as that is where they will be parsed.

User

AddTrafficEventReqHdlr

displayCopyEventForm

Check For Manage Traffic Events Right

[no rights]

return error

putFormDataInTempObjStore(formData, supporter)

put("formData", formData)

put("pageContent", templateName)

[formData found]

RequestHandlerSupporter HttpServletRequest TempObjectStoreCopyUserFormData

The formDataID parameter

will be specified if the form is

being redisplayed. This is

expected after the user

submits the form after editing the

event general information or

location data. It could also

happen if there is an error

during the processing of the

form submission.

Set the error message

so that we can display

a message indicating that the

existing form data may

have timed out.

TrafficEventUtilty

This uses the

"eventID" request

parameter

WebTrafficEvent

getParameter("formDataID")

Populate Form Data

From Original Event

Figure 5‑84. AddTrafficEventReqHdlr:displayCopyEventForm (Sequence Diagram)

5.18.2.6 AddTrafficEventReqHdlr:getBasicEventDataInitialFormDataXML (Sequence Diagram)

This diagram shows how the initial form data is gathered for populating the Event Launcher Flex form, and this will also be used for the Edit Location form. The route types, directions, source types, and incident types are defined in the IDL and helper classes are used to get the hard-coded names that are used to represent these values in the GUI. The state name abbreviations, the location alias names, and the Maryland county names are retrieved via the WebLocationLookup object. These values may have already been cached in the WebLocationLookup object from a previous query, and if so the values are returned immediately. If not, a CORBA call to the roadway location lookup interface will be made to query the values. The values, once retrieved from the server, will be cached for later use, as none of these values are expected to take up significant memory. All of the lists of values are put into the Velocity context and the XML template is returned, so that the XML can be built and returned to Flex.

[image: image147.emf]UserLoginSessionImpl [counties returned]

getUserProfile()

If any errors occur when querying the

server, some of the lists will be empty but the

user can still enter events by overriding

the location. An error message will be added

to the XML in this case and displayed on the form.

SourceInfo WebIncident getSourceIDs()

getTrafficEventSourceName(sourceID)

[* for each

source ID]

getIncidentTypeValues()

getIncidentTypeName(typeValue)

[* for each

incident type]

[not already cached]

Retrieve From Server,

Sort, And Store In Memory

[not already cached]

Retrieve From Server,

Sort, And Store In Memory

DirectionInfo put("mdCountiesAndRegions", mdCountiesAndRegions)

WebLocationLookup get

getStateAbbreviations()

getRouteTypeNames()

BasicEventDataInitialFormDataXML.vm

Counties (other than MD), Routes, Intersecting Routes, and Alias location

information will be retrieved dynamically, so this is not included

in the initial data.

getCountyAndRegionNames("MD")

String[]

put("states", stateAbbreviations)

put("routeTypes", routeTypeNames)

put("directions", directionNames)

put("aliases", webLocationAliases)

put("sourceTypes", eventSourceTypeNames)

put("incidentTypes", incidentTypeNames)

[counties returned]

getCountyMRUList("MD")

AddTrafficEventReqHdlr getBasicEventDataInitialFormDataXML

getDirectionName(directionID)

[not already cached]

Retrieve From Server,

Sort, And Store In Memory

Note that the direction names are not managed by the

WebLocationLookup because the directions needed are specific

to traffic events and include pseudo directions such as North/South.

The list of directions will be:

None

North

South

East

West

Inner Loop

Outer Loop

South/North

East/West

Inner Loop / Outer Loop

[* for each

direction ID]

getLocationAliasNames()

WebLocationAliasNames[]

getDirectionIDs()

WebRouteTypeInfo String[]

getRouteTypes()

getRouteTypeName(routeType)

[* for each

route type]

User (via Flex) Context UserProfileProperties

String[]

This may be called to populate

the add event form or the edit

location form (both Flex).

The state "MD" will be selected

by default in these forms.

put("mdMRUCounties", mruCounties)

Figure 5‑85. AddTrafficEventReqHdlr:getBasicEventDataInitialFormDataXML (Sequence Diagram)

5.18.2.7 AddTrafficEventReqHdlr:submitCopyEventBasicEventDataForm (Sequence Diagram)

This request shows the processing that happens when the user submits either of the forms for editing the Copy Event data (the basic data form, or the location data form). In either case the request will contain a subset of the BasicEventData parameters. The form data ID is used to retrieve the CopyEventFormData object, and this is called to add (or store) all of the parameters specified in the request. The target URL is put into the Velocity context and the PopupSubmissionCloser template is returned, so that the popup window will tell the parent (working) window to redisplay the main Copy Event Form, after which the popup window will close itself. The redisplayed Copy Event Form will pull the data out of the CopyEventFormData to show the updated information.

[image: image148.emf]CopyEventFormData or null

[not found]

return error

addParamValuesFromRequest(req)

put("targetURL", resp.encodeURL(url))

return PopupSubmissionCloser.vm

Context This URL will be:

"app?action=displayCopyEventForm

&eventID=" + formData.getOriginalEvent().getID().toString() +

"&eventType=" + formData.getOriginalEvent().getEventTypeDesc() +

"&templateName=CopyEventForm.vm" +

"&isPopup=false" +

"&formDataID=" + getID()

This adds or sets any parameters specified in the request

into the form data. They will then be displayed on the main

Copy Event Form and will be available when that form is submitted.

The names of these parameters need to be recognized by

AddTrafficEventReqHdlr.parseBasicEventDataFormParameters(),

as that is where they will ultimately be interpreted.

User

AddTrafficEventReqHdlr HttpServletRequest RequestHandlerSupporterTempObjectStoreCopyEventFormData submitCopyEventBasicDataForm

getParameter("formDataID")

[not specified]

return error

getTempObjsectStore()

getObject(formDataIDStr)

Figure 5‑86. AddTrafficEventReqHdlr:submitCopyEventBasicEventDataForm (Sequence Diagram)

5.18.2.8 chartlite.servlet.trafficevents:MergeEvents (Sequence Diagram)

This sequence shows the high level calls made to the Merge Events Request Handler. When a user chooses to merge two events, they are shown a target selection form if they have rights to merge events. The user selects a target event and clicks next. The user is then displayed a merge form for each section where the events contain conflicting data. Once all sections are completed by the user, a request is made to confirm and actually perform the event merge.

[image: image149.emf]User

See chartlite.servlet.trafficevents:MergeEventReqHdlr:submitMergeEvents

This diagram shows how Traffic Events are merged at a higher level MergeEventReqHdlr

See:chartlite.servlet.trafficevents:MergeEventReqHdlr.submitMergeEventSelectTarget

See chartlite.servlet.trafficevents:MergeEventReqHdlr.submitMergeEventSection

submitMergeEventSelectTargetForm()

submitMergeEventNextSection()

See:chartlite.servlet.trafficevents:MergeEventReqHdlr.displayMergeEventSelectTargetForm

See chartlite.servlet.trafficevents:MergeEventReqHdlr.displayMergeEventNextSectionForm

displayMergeEventSelectTargetForm()

displayMergeEventNextSection()

[while all required

sections not complete]

submitMergeEvents()

Figure 5‑87. chartlite.servlet.trafficevents:MergeEvents (Sequence Diagram)

5.18.2.9 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.displayMergeEventNextSection (Sequence Diagram)

This sequence diagram shows the processing performed by the merge event request handler when it receives a request to merge two events. After selection of the target event for the merge, this sequence is performed once for every required section including the display of the merge event details confirmation page. The user is shown the next required merge section web form, based on the state of the WebMergeEvent object in the temporary object store.

[image: image150.emf] The user is now shown a form displaying the next merge section requiring input

User

MergeTrafficEventsReqHdlr NavLinkRights HttpServletRequest

See: chartlite.data.trafficevents.WebMergeEvent.getMergeSectionTemplateName()

Context TempObjectStore WebMergeEvent

getMergeSectionTemplateName() getMergeSectionTemplateName()

displayMergeEventNextSection() displayMergeEventNextSection()

[no webMergeEventID]

error

[no webMergeEventID]

error

getObject(webMergeID) getObject(webMergeID)

returns WebMergeEvent object returns WebMergeEvent object

[not permitted to merge events]

error

[not permitted to merge events]

error

[problem retreiving WebMergeEvent object]

Error

[problem retreiving WebMergeEvent object]

Error

canUserMergeEvents() canUserMergeEvents()

getParameter("webMergeEventID") getParameter("webMergeEventID")

put("webMergeEvent", webMergeEvent) put("webMergeEvent", webMergeEvent)

returns template name of the next section returns template name of the next section

returns template of next section returns template of next section

returns WebMergeEvent object returns WebMergeEvent object

returns boolean returns boolean

Figure 5‑88 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.displayMergeEventNextSection (Sequence Diagram)
5.18.2.10 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.displayMergeEventSelectTargetForm (Sequence Diagram)

This sequence diagram shows the processing to display the target event selection merge form. If a user doesn't have permissions to merge events, they are shown an HTML error page. The event1ID, event2ID, and mergeOnly parameters are retrieved from the Servlet Request. The Request Handler Supporter is used to resolve the references to the 2 passed in event ID's. If either of the traffic events is not found in the object cache, an error message regarding events not found is returned. A call is made to the Request Handler Supporter to create a new Identifier for storing a WebMergeEvent object in the temporary object store. A new WebMergeEvent object is then instantiated. The.determineRequiredMergeSections method is called on the WebMergeEvent object to build an array of sections which require user input. If mergeOnly is true, setTargetAndMergeIDs is called on the WebMergeEvent object, passing event1ID as the target event, and event2ID as the merge event. The WebMergeEvent object is placed in the context and added to the temporary object store. If mergeOnly is true, the user is redirected to the DisplayMergeEventNextSection action, passing in the webMergeID on the URL. If mergeOnly isn't true, the DisplayMergeEventSelectTargetForm.vm template is sent to the Velocity Engine. The template makes calls to the WebMergeEvent object's getSectionName and isSectionCompleted methods in order to render the required section tabs and their completion status. If a section is completed the tab is green with a checkbox, otherwise it's red with an x. The WebTrafficEvent object is queried to return data to use for comparing the 2 events. The 2 events are laid out side by side. Each event has links for choosing it as the target event, closing the event as a false alarm, or associating the event as primary with the other event.

[image: image151.emf]User clicks resolve for a duplicate

event alert, or chooses to merge with

another event from the details page.

User

MergeTrafficEventsReqHdlr NavLinkRights

Pass &webMergeID= webMergeID on the URL

HttpServletRequest

See chartlite.data.trafficevents.WebMergeEvent.determineRequiredMergeSections

Context

See: chartlite.data.trafficevents.WebMergeEvent.setTargetAndMergeIDs

RequestHandlerSupporer TempObjectStore

WebMergeEvent

getCachedObject(event2Identifier) getCachedObject(event2Identifier)

returns event1ID parameter returns event1ID parameter

returns boolean returns boolean

returns mergeOnly parameter returns mergeOnly parameter

[user not permitted to merge events]

error

[user not permitted to merge events]

error

[traffic events not found]

error

[traffic events not found]

error

determineRequiredMergeSections() determineRequiredMergeSections()

canUserMergeEvents() canUserMergeEvents()

[mergeOnly == true]

redirect to DisplayMergeEventNextSection

[mergeOnly == true]

redirect to DisplayMergeEventNextSection

getParameter("event2ID") getParameter("event2ID")

add(webMergeEventID, webMergeEvent) add(webMergeEventID, webMergeEvent)

getParameter("event1ID") getParameter("event1ID")

getParameter("mergeOnly") getParameter("mergeOnly")

put("webMergeEvent", webMergeEvent) put("webMergeEvent", webMergeEvent)

createUniqueID() createUniqueID()

getCachedObject(event1Identifier) getCachedObject(event1Identifier)

[mergeOnly == true]

setTargetAndMergeIDs(event1ID, event2ID)

[mergeOnly == true]

setTargetAndMergeIDs(event1ID, event2ID)

[error setting IDs]

error

[error setting IDs]

error

new (mergeEvent1, mergeEvent2, webMergeEventID) new (mergeEvent1, mergeEvent2, webMergeEventID)

return template

DisplayMergeEventSelectTargetForm

return template

DisplayMergeEventSelectTargetForm

[error determining required sections] [error determining required sections]

returns boolean returns boolean

returns event2ID parameter returns event2ID parameter

returns event1 TrafficEvent object returns event1 TrafficEvent object

returns unique identifier for creating the WebMergeEvent object returns unique identifier for creating the WebMergeEvent object

returns event2 TrafficEvent object returns event2 TrafficEvent object

return boolean return boolean

displayMergeEventSelectTargetForm() displayMergeEventSelectTargetForm()

Figure 5‑89 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.displayMergeEventSelectTargetForm (Sequence Diagram)

5.18.2.11 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEvents (Sequence Diagram)

This sequence shows the processing for submitting an action to Merge Events. This sequence is executed upon clicking the submit button on the merge event confirmation page. If the user lacks the right to merge events, an HTML error message is returned. If no webMergeID parameter is specified, an HTML error message is returned. The Web Merge Event object is retrieved from the Request Handler Supporter's temporary object store. If the Web Merge Object isn't found, an HTML error message is returned. The Web Merge Event object's mergeTrafficEvents method is called, which in turn makes the server-side call to targetTrafficEvent.mergeTrafficEvents, passing the mergeEventID, and an array containing each section and corresponding merge action. If during the merge, the server encounters an error such as one of the events no longer existing, the user will be directed to an HTML error page. If the server indicates the merge completed successfully, a redirect is issued to the viewEventDetails page of the resulting merged event.

[image: image152.emf]TrafficEventMerged Event pushed

TrafficEventPushConsumer

WebTrafficEvent

update()

[merge failed at the server]

error

returns WebMergeID object

[user lacks rights]

error

returns boolean

User is shown a merge confirmation form at this point.

The user clicks the submit button to tell the server to

merge the target event and close the other event

User

MergeTrafficEventsReqHdlr NavLinkRightsHTTPServletRequestWebMergeEvent

The user is shown the details page of the merged event

If the user takes

too long to perform the

merge, the webMergeEvent

object may no longer exist in the

temp store

TrafficEvent

 SectionActions will be a new valuetype

array in the idl. We need new defines for each section,

and the 3 possible integer values mentioned above

This call should also perform closing of the duplicate event, and

appending the event's history. We could also pass an array

of mergeSections.

See:chartlite.data.trafficevents_merge_classes

redirect to viewEventDetails&

eventID=WebMergeEvent.targetID

[WebMergeEvent not found]

error

canUserMergeEvents()

returns boolean

submitMergeEventConfirmation()

getParameter("webMergeID")

mergeTrafficEvents()

mergeTrafficEvents(mergeEventID, sectionActions)

[merge failed at the server]

error

getObject(webMergeID)

TempObjectStore

returns webMergeID parameter

[webMergeID parameter missing]

error

Figure 5‑90. chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEvents (Sequence Diagram)

5.18.2.12 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEventSection (Sequence Diagram)

This sequence shows the processing that occurs when a merge event section form is submitted. A check is made to make sure the user has the right to merge events, and if they don't an error is returned in an HTML document. The webMergeID parameter is retrieved, and if empty, an error is returned in the HTML. The target parameter is retrieved. If the target parameter is null, the user is redirected to the next section template requiring action. The WebMergeEvent object is retrieved from the RequestHandlerSupporter’s temporary object store. If the object isn’t found, an error is returned in an HTML document. The WebMergeObject’s mergeEventSection method is called, passing in the target parameter. The current section’s data is merged, and the current section is marked as merged in the WebMergeEvent object. The WebMergeEvent object’s getNextMergeSection is called to retrieve the template name, section action, and index of the next section requiring action. The browser is redirected to the next section’s action, passing in URL parameters webMergeID, and nextSection.index.

[image: image153.emf]User

User has selected a radio button on the form to determine which event's data to

use in the merged event, or in some cases combine the data. After selecting a radio button,

 the user clicks next to submit the data and move to the next section requiring user input.

MergeTrafficEventsReqHdlr NavLinkRights HTTPServletRequest

See: chartlite.data.trafficevents.WebMergeEvent.mergeEventSection

See: chartlite.data.trafficevents.WebMergeEvent.completeSection

TempObjectStore WebMergeEvent

returns boolean returns boolean

returns target parameter returns target parameter

canUserMergeEvents() canUserMergeEvents()

mergeEventSection(target) mergeEventSection(target)

[object not found]

error

[object not found]

error

[no webMergeID parameter]

error

[no webMergeID parameter]

error

[error merging section]

error

[error merging section]

error

submitMergeEventSection() submitMergeEventSection()

returns WebMergeEvent object returns WebMergeEvent object

getParameter("webMergeID") getParameter("webMergeID")

[insufficient rights]

error

[insufficient rights]

error

[error marking section as complete]

error

[error marking section as complete]

error

returns boolean returns boolean

returns boolean returns boolean

redirect to displayMergeEventNextSection&webMergeID=webMergeID redirect to displayMergeEventNextSection&webMergeID=webMergeID

completeSection(target) completeSection(target)

getParameter("target") getParameter("target")

getObject(webMergeID) getObject(webMergeID)

returns webMergeID parameter returns webMergeID parameter

Figure 5‑91 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEventSection (Sequence Diagram)

5.18.2.13 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEventSelectTarget (Sequence Diagram)

This sequence shows the processing that occurs when a merge event target selection form is submitted. A check is made to make sure the user has the right to merge events, and if they don't an error is returned in an HTML document. The targeted, mergeID, and webMergeID parameters are retrieved from the Servlet Request. If one of the parameters isn’t found, an error is returned in an HTML document. The WebMergeEvent object is retrieved from the Request Handler Supporter’s temporary object store. If the object isn’t found, an error is returned in an HTML document. WebMergeEvent.setMergeEventIDs is called, passing in the target and merge event IDs. This method sets the target and merge event IDs in the stored WebMergeEvent object. If false is returned from the WebMergeEvent object from setMergeEventIDs, an error is returned in an HTML document. The Web Merge Event’s completeSection is called, passing in the definition for the target section. This marks the target selection section as completed in the stored WebMergeEvent object. If completeSection returns false, an error is returned in an HTML document. If completeSection returns true, the user is redirected to the displayMergeEventNextSection action, with the webMergeEventID parameter on the URL.

[image: image154.emf]User is shown a merge target selection form.

The user selects the merge into this event link of the desired

target event for the merge and is redirected to the next section

requiring action..

User

MainServlet MergeTrafficEventsReqHdlr NavLinkRights

takes the following parameter

 "&webMergeID=" + webMergeIDStr

HTTPServletRequest TempObjectStore

See: chartlite.data.trafficevents.WebMergeEvent.prepopulateMergeEvent

See: chartlite.data.trafficevents.WebMergeEvent.createTempTrafficEvent

WebMergeEvent

See: chartlite.data.trafficevents.WebMergeEvent.completeSection

See: chartlite.data.trafficevents.WebMergeEvent.setMergeEventIDs(targetID, mergeID)

[problem prepopulating temp event]

error

[problem prepopulating temp event]

error

createTempTrafficEvent(supporter) createTempTrafficEvent(supporter)

returns boolean returns boolean

[problem creating temp event of correct type]

error

[problem creating temp event of correct type]

error

returns boolean returns boolean

[problem setting targetmerge id's in the WebMergeEvent]

error

[problem setting targetmerge id's in the WebMergeEvent]

error

returns mergeID parameter returns mergeID parameter

[user lacks rights to merge events]

error

[user lacks rights to merge events]

error

returns boolean returns boolean

[problem marking section as complete]

error

[problem marking section as complete]

error

returns boolean returns boolean

returns targetID parameter returns targetID parameter

returns webMergeID parameter returns webMergeID parameter

completeSection(WebMergeEvent.TARGET_SECTION) completeSection(WebMergeEvent.TARGET_SECTION)

getObject(webMergeID) getObject(webMergeID)

getParameter("mergeID") getParameter("mergeID")

submitMergeEventSelectTarget() submitMergeEventSelectTarget()

getParameter("targetID") getParameter("targetID")

returns WebMergeEvent object returns WebMergeEvent object

[WebMergeEvent object not found]

error

[WebMergeEvent object not found]

error

getParameter("webMergeID") getParameter("webMergeID")

prepopulateMergeEvent() prepopulateMergeEvent()

[parameter not found]

error

[parameter not found]

error

redirects to displayMergeEventNextSection redirects to displayMergeEventNextSection

canUserMergeEvents() canUserMergeEvents()

setMergeEventIDs(targetID, mergeID) setMergeEventIDs(targetID, mergeID)

Figure 5‑92 chartlite.servlet.trafficevents:MergeTrafficEventsReqHdlr.submitMergeEventSelectTarget (Sequence Diagram)

5.18.2.14 LaneConfigReqHdlr:submitLaneDirAndStateInfo (Sequence Diagram)

This diagram shows how lane direction and state are set. The submitLaneDirAndStateInfo request is invoked, and after checking rights the WebTrafficEvent is retrieved from the cache. Its WebLaneConfiguration object is copied, and a check is done to determine whether the configuration is still in the default state for the current lane direction. (The default state is all lanes set to unknown in the direction of the traffic event). Then the copied configuration is updated with the "laneInfo" parameter, which contains the new direction and state information for the lanes. Another check is done to determine whether the configuration is still in the default state. If the default state just ended, a call is made to the configuration to set all unknown lanes to open in the direction of the traffic event. A call is made to the TrafficEvent in the Traffic Event Service to set the configuration. The TrafficEvent is then called again to query the configuration again, in case the lane state changed timestamps were affected. Finally the WebTrafficEvent is updated with the official configuration and the response is redirected to the Event Details page.

[image: image155.emf]WebLaneConfigurationcopy:WebLaneConfiguration

copy()

create

TrafficEventUtility WebTrafficEvent WebTrafficEvent or null

getParameter("laneInfo")

[not specified]

return error

[config not found]

return error

Check For Manage

Traffic Events Rights

[no rights]

return error

[event not found]

return error

getLaneConfiguration()

WebLaneConfiguration or null

User

isDefaultStateOver(eventDir)

This is called for setting the direction and/or

state of one or more lanes.

The "laneInfo" parameter specifies any

changes in traffic direction or state of the lanes.

See the class diagram for chartlite.util.lane for

details about the contents or format of this string.

This will parse the laneInfo string and

update the current traffic direction

and lane state within the copied lane

configuration.

The URL will be of the form:

app?action=submitLaneDirAndStateInfo

&eventID=<eventID>

&laneInfo=<laneInfoStr>

&anchor=roadway_conditions

RoadwayEvent Query the Traffic Event Service

to get the official lane configuration,

as the server will update the lane

state changed time at least.

getTrafficEventRef()

TrafficEvent

Narrow To

RoadwayEvent

setLaneConfiguration(token, laneConfig)

getLaneConfiguration()

LaneConfiguration

getLaneConfiguration()

updateLaneConfig(officialConfig)

return null

[default state just ended]

setUnknownLanesOpen(eventDir)

HttpServletRequest lookupRequestedEvent(req, supporter)

isDefaultStateOver(eventDir)

redirectToEventDetails(eventID, req, resp)

copied WebLaneConfiguration

updateLaneDirectionsAndStates(laneInfoStr)

LaneConfigReqHdlr submitLaneDirAndStateInfo

Figure 5‑93. LaneConfigReqHdlr:submitLaneDirAndStateInfo (Sequence Diagram)

5.18.2.15 TrafficEventReqHdlr:getPotentialDuplicateEventsXML (Sequence Diagram)

This diagram shows how the list of potential duplicate events is obtained. The state, county, route type, and route parameters are parsed from the request, and the duplicate events creation time threshold is retrieved from the system profile. If no parameters are specified in the request, an empty list is returned. Otherwise, the WebTrafficEvent objects are queried from the ObjectCache. Any that are still open, are not older than the threshold, and that match all of the requested fields will be added to the list of potential duplicates. The list is then sorted and put into the context, and the XML template is returned so Velocity can build the XML to return.

[image: image156.emf]return PotentialDuplicateEventsXML.vm

Context put("potentialDuplicateEvents", list)

A match will be found if: - the event is open and - opened timestamp is >= now - duplicateEventCreationThreshold and - ALL of the fields specified in the request match the corresponding fields from the WebTrafficEvent This logic is not shown because it would clutter the diagram. During implementation steps may be skipped if it is determined that the WebTrafficEvent is not a match. [match found]Add To Potential Duplicate List[* for each WebTrafficEvent]Sort List By Opened TimestampisOpen() getState() getCountyOrRegion() getRouteType() getRouteNumber()SystemProfileProperties ObjectCacheWebTrafficEvent getSysProfileProps() getDuplicateEventsCreationTimeThresholdMin() getObjectCache() getCachedObjectsOfType(WebTrafficEvent.class) WebTrafficEvent[] getOpenedTimestamp() User(via Flex)TrafficEventReqHdlrHttpServletRequestRequestHandlerSupporter [no fieldsspecified]getPotentialDuplicateEventsXMLgetParameter("state")getParameter("countyOrRegion")getParameter("routeNumber")getParameter("routeType")

Figure 5‑94. TrafficEventReqHdlr:getPotentialDuplicateEventsXML (Sequence Diagram)

5.18.2.16 TrafficEventReqHdlr:submitOpenEventRemindTime (Sequence Diagram)

This shows the processing that occurs when the user sets the open event remind time (i.e., the time after which an alert may be generated). After checking rights the eventID parameter is used to look up the requested WebTrafficEvent from the cache. The date is then parsed from the request parameters using a new utility method in DateTimeUIUtil. The TrafficEvent CORBA object reference is called to set the time (method name TBD) and then the cached BasicEventData stored within the WebTrafficEvent is also updated to have the correct timestamp. The PopupSubmissionCloser form is used to close the popup window and update the Traffic Event Details page.

[image: image157.emf]DateTimeUIUtil This method uses the following request parameters: <prefix>DurationType ("relative" or "absolute") <prefix>DurationMinutes (if relative) <prefix>Hour (if absolute) <prefix>Minute (if absolute) <prefix>AMPM (if absolute) <prefix>EndDate (if absolute) lookupRequestedEvent(req, supporter)TrafficEventReqHdlrUpdate TimestampIn Basic Event DataTrafficEvent Context createEventDetailsURL(trafficEvent.getID()< req, resp)put("targetURL", eventDetailsURL) getRawBasicEventData() Gets the current BasicEventData object that is cached for the given traffic event and used for display in the GUI. Set Open Event Remind Time (token, DateTimeUtil.dateToTimestamp(date))PopupSubmissionCloser.vmBasicEventData WebTrafficEvent getTrafficEventRef() parseDateFromRelativeOrAbsoluteDurationFormSubmission(req, "", null, true)UserHttpServletRequest TrafficEventUtility submitOpenEventRemindTimegetParameter("eventID") WebTrafficEvent or nullCheck User's Manage TrafficEvent RightsLook Up WebTrafficEvent [not found]return error[no right]return errorDate

Figure 5‑95. TrafficEventReqHdlr:submitOpenEventRemindTime (Sequence Diagram)

5.18.2.17 TrafficEventReqHdlr:viewPotentialDuplicateEventsFlex (Sequence Diagram)

This diagram shows the processing in Flex to update the duplicate events list. When one of the applicable location fields changes (state, county/region, route type, or route number), updatePotentialDuplicateEvents() will be called. If no fields are set, the duplicate events list will be cleared; otherwise, the parameters will be used in a request to the servlet to get the potential duplicate events. The request is processed asynchronously, and an event handler callback is invoked when the request completes. The traffic events are retrieved from the last request result, and are added to the duplicate events list in Flex to display to the user.

[image: image158.emf]The request executes asynchronously.

The response causes the handleGetPotentialDuplicateEventsResult() method

to be called, as it will be registered as an event handler in the EventLauncher.init()

method()

[state selected] Set "state" [county or region selected] Set "countyOrRegion" [route type selected] Set "routeType" [route number selected] Set "routeNumber" createsend(params)

[state, countyOrRegion, routeType and routeNumber fields not set] Clear Duplicate Events List [fields not set]handleGetPotentialDuplicateEventsResult(evt)

Get lastResult

Clear Duplicate Events List

[* for each potential

duplicate returned]

Add To Duplicate Events List

getPotentialDuplicateEventsXML:HTTPService params:Object UserEventLauncher [state, county or region,route type, route changed]updatePotentialDuplicateEvents()

Figure 5‑96. TrafficEventReqHdlr:viewPotentialDuplicateEventsFlex (Sequence Diagram)

5.18.2.18 TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

This diagram shows the processing that takes place to populate the list of traffic events shown on the user's home page. This processing is invoked by the home page Flex2 application when the home page is first loaded, and periodically to refresh the traffic event information. The Flex2 application uses the XML returned from this request to display the traffic events for which the operation center is responsible. This is done on a tab control, with the events filtered onto different tabs based on the event type. Each tab shows the number of events of that type that appear on the tab, allowing the user to know the number of open events of each type even for tabs that are not the currently displayed tab.

For each event that appears on a tab, the following information will be shown: - The event name, which is also a link that when clicked shows the event details page in the user's working window - The event location - The county/state (if specified in the traffic event)

Lane closure information will be shown for Incidents, planned closures, and special events if lane closure data has been specified in the event.

If the event is an incident, the tab will also show the vehicles involvedinformation if this data has been specified for the traffic event.

If the event is a congestion event, the tab will show the "recurring" indicator if the event has been flagged as recurring congestion.

If the event is a disabled vehicle event, the tab will contain the color/make and/or tag information if that data has been entered into the traffic event.

If the event is a weather service event, road condition data will be shown if it has been specified in the event.

[image: image159.emf][traffic eventis closed]getControllingOpCenterID() Identifier

[op center parameternot null and notequal to event controllingop center]

add(event)

RequestHandlerSupporter ArrayList getCachedObjectsOfType(WebTrafficEvent.class) WebTrafficEvent[] new [for eachevent type]UserTrafficEventXMLReqHdlrUser has loaded the home page, or the timeron the home page fires to refresh the trafficevent data. In either case, the flex applicationon the home page makes this call.HttpServletRequestParameter is optional. If present, only traffic events for which the specified op center is responsible are returned. Otherwise, all open events are returned. getOpenTrafficEventsXML()getParameter("opCenterID") TrafficEventsXML.vm

Context Sort each array list using Collections.sort()

using an event comparator that sorts by

time opened and severity. Put sorted array list

in Context using name of xyzEvents where

xyz is the event type.

sort()

[for each

traffic event

type]

put("xyzEvents", ArrayList)

[for each

event]

WebTrafficEvent Traffic event is added to the appropriate array list

based on it's type.

isClosed()

Figure 5‑97. TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

5.19 GUI chartlite.servlet.alerts

5.19.1 Classes

5.19.1.1 AlertsClasses (Class Diagram)

This diagram shows CHART GUI servlet classes related to alerts.

[image: image160.emf]11 FirstAvailableOfferWrapper

1

Used to locate AlertFactory where

a manual alert will be added.

1

RequestHandlerSupporter «interface» AlertReqHdlr RequestHandler«interface»acceptAlert(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringviewAlerts(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

+FirstAvailableOfferWrapper(ORB, TraderGroup, className : string,

 serviceType : string, constraint : string,

 minDiscoveryIntervalSeconds : int,

 maxRemoteServiceUseMins : int) : ctor

+createIterator() : Iterator

Figure 5‑98. AlertsClasses (Class Diagram)

5.19.1.1.1 AlertReqHdlr (Class)

This class is a request handler used to process requests related to alerts.

5.19.1.1.2 FirstAvailableOfferWrapper (Class)

This class is a generic wrapper that provides the ability to find the first available reference to a service that may have multiple instances within the system.

5.19.1.1.3 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.19.1.1.4 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods that are helpful to request handlers.

5.19.2 Sequence Diagrams

5.19.2.1 chartlite.servlet.alerts:addManualAlert (Sequence Diagram)

This sequence shows the processing that occurs when the Manual Alert form within the Flex HomePage application is submitted. A check is made to make sure the user has the right to add a manual alert to the system, and if they don't an error is returned in an XML document. The alertText parameter is retrieved, and if empty, and error is returned in the XML. The opCenterID parameter is then retrieved. Unlike a traditional HTML multi-select list which sends multiple parameters with the same name that can be retrieved from the request as an array, Flex sends the selected items in a list as comma delimited values in a single parameter. A utility method in ServletUtil is used to parse the comma delimited strings and return an array of Identifier objects. If the array of Identifier objects is empty, and error is returned in XML.

The WebOpCenter object is retrieved from the object cache for each selected operations center. A WebManualAlert object is then created with the alert text, user/center that created the alert, and the list of target operations centers. The FirstAvailableOfferWrapper, created previously as part of request handler initialization, is then used to retrieve an Iterator that provides references to AlertFactory objects that exist in the system.

Starting with the first AlertFactory (a CORBA object resident on a CHART server), the request handler attempts to create a generic alert. If the call fails for any reason, the request handler retrieves the next available AlertFactory from the iterator and tries again. This continues until the alert is created successfully, or there are all AlertFactory objects have been tried without success.

If the alert could not be added to any AlertFactory, an error message is returned in the result XML. Otherwise, the WebManualAlert is added to the object cache so that it will appear in the list of alerts that exist in the system. The server will eventually send a CORBA event that indicates this alert was added, and the data from the server will replace the data added by this method, however we add the object to the data cache here to make sure the new alert appears in the user's browser right away, even if the server has a slight delay in generating the CORBA event.

If the server was successful in adding the alert, an indicator of success is returned to the HTTPService in an XML document.

[image: image161.emf][failure]

log message

FirstAvailableOfferWrapper Constructed during request

handler initialization.

Configured for

SERVICE_TYPE_ALERT_FACTORY

Iterator

getIterator()

Iterator

hasNext()

AlertFactory

[no op center selected]

Error in

GeneralResultXML.vm

addCachedObject(WebManualAlert)

getParameter("opCenterID")

[has next is true]

createGenericAlert(token, alertText, targetOpCenter[])

RequestHandlerSupporter

new

WebOpCenter

for each

identifier

Success in

GeneralResultXML.vm

[couldn't create in any factory]

Error in

GeneralResultXML.vm

new

[for each string]

idFromString()

[has next is true]

next()

Flex Application

HTTPService

[failure adding to

factory]

addManualAlert.chart

[no rights]

Error In

GeneralResultXML.vm

[alertText not present]

Error in

GeneralResultXML.vm

WebManualAlert

AlertFactory getCachedObject(opCenterID)

store WebOpCenter

in ArrayList

String split(",")

ServletUtil NavLinkRights getCommaDelimitedIDParams("opCenterID")

String[]

Identifier[]

AlertReqHdlr HttpServletRequest canAddManualAlert()

getParameter("alertText")

Figure 5‑99. chartlite.servlet.alerts:addManualAlert (Sequence Diagram)

5.19.2.2 chartlite.servlet.alerts:addManualAlertFlex (Sequence Diagram)

This sequence shows the processing that takes place when the user clicks the Add Manual Alert button on the Manual Alert form. A new Object is created to be used for passing parameters to the servlet. The alert text is stored in this object, as well as an array of selected operation center IDs. The HTTPService that is configured to invoke the addManualAlert.chart request is called and passed the object containing the parameters for the request. The HTTPService asynchronously sends the request to the servlet and waits for a response. The AlertsView then calls its refreshOpCenterList() method, which uses another HTTPService to asynchronously retrieve the list of operations centers, which may have new "recently used centers" based on the centers the user selected for the manual alert. Note that the details of retrieving the op center list are not shown on the diagram - they can be seen on the getOpCenterListFlex diagram.

After the servlet has added the manual alert to the system (see the addManualAlert sequence for details), it returns the result of the operation in an XML document. When the HTTPService receives the XML, it calls the handleAddManualAlertResult() method in the AlertsView, which is set to be the result handler for the HTTPRequest. The XML contains a result tag, which is checked for success or failure. If it indicates a failure, the error message is retrieved from the XML and shown to the user. If successful, the AlertsView makes a call to initiate the update of the alerts list. The details of updating the alerts list are shown on the viewAlertsPeriodicUpdate diagram. The manual alert form is then cleared of the user's data, and the tab control is changed to show the tab that contains new alerts, where the alert just added should appear.

[image: image162.emf]updateAlertList()

[failure]

show error message

User

User clicks the

add alert button,

whose click action

is set to this method.

ActionScript.Array

AlertReqHdlrSee the addManualAlert

sequence diagram for details.

new

new

for each

selected

op center

send(ActionScript.Object)

refreshOpCenterList()

handleAddManualAlertResult()

addManualAlert.chart

GeneralResultXML

See viewAlertsPeriodicUpdate sequence.

The processing is the same, except it is not

fired by a timer, it is invoked manually.

The end result is the alert data on the tab

control is updated.

clear the manual

alert form

select the tab that

shows new alerts

AlertsView ActionScript.Object

HTTPService This is done so centers just used will be most recently

used next time a manual alert is sent. For details, see

the getOpCenterListFlex sequence diagram.

addManualAlert()

alertText = newAlertText.text

array[index] = opCenterID

opCenterID = array

Figure 5‑100. chartlite.servlet.alerts:addManualAlertFlex (Sequence Diagram)

5.19.2.3 chartlite.servlet.alerts:AlertReqHdlr.filterAlerts (Sequence Diagram)

This sequence shows how the alert request handler filters events that are shown to the user. It first makes an array list for each state an alert may be in (open, accepted, delayed, and closed). It then loops through all of the alerts from the object cache. For each alert, the following is performed:

The alert type is determined by using the instanceof operator. The user's rights are checked to make sure they are authorized to view this alert. If not, the loop continues with the next alert. The alert is then placed in the appropriate array list (if any) based on the state of the alert, the scope the user last selected on the GUI, and the responsible op centers or responsible user of the alert. After the alerts have been filtered into their appropriate array lists, the lists are sorted. The sort is done by alert creation time, unless the alert is delayed, in which case the sort is done using the wake time.

[image: image163.emf]getStateChangeCenter()

Sort by creation time unless delayed,

in which case sorted by time when delay

expires. sort()

sort()

[conditions match]

add()

[conditions match]

add()

conditions: alert is in the new state AND one of the following:

- The scope is user or op center and the user's op center is in

the list of responsible centers.

- The scope is set to ALL.

conditions: alert is in the accepted state AND one of the following:

- The scope is user, and the user is user that changed state to accepted.

- The scope is op center, and the user's op center changed state to accepted.

- The scope is ALL.

getState()

getResponsibleOpCenters()

[conditions match]

add()

[conditions match]

add()

getStateChangeUser()

check for appropriate

user right based on

alert type

[no rights]

filterAlerts()

WebAlert

[for each WebAlert

in the object cache]

use instanceOf to determine type of alert

AlertReqHdlr

ArrayList

ArrayList

ArrayList

ArrayList

For Open Alerts

For Accepted Alerts

For Delayed Alerts

For Closed Alerts

sort()

sort()

new

new

new

new

AlertReqHdlr

conditions: alert is closed AND one of the following:

- The scope is user and alert was closed by the user.

- The scope is op center and user's op center is in the

list of responsible op centers.

- The scope is ALL.

Alert request handler hasretreived all alerts from

object cache and needs to

filter them.

conditions: alert is in the delayed state AND on of the following:

- The scope is user and the user changed the state to delayed.

- The scope is op center and the user's op center changed the state to delayed.

- The scope is ALL.

Figure 5‑101. chartlite.servlet.alerts:AlertReqHdlr.filterAlerts (Sequence Diagram)

5.19.2.4 chartlite.servlet.alerts:AlertReqHdlr.getAlertSound (Sequence Diagram)

This sequence diagram shows the processing that occurs when a Sound object in the Flex HomePage application loads the sound associated with a specific alert type. The load method of the sound is called using a URL that points to this request in the Alert request handler, and it expects MP3 data in return. The request handler uses a parameter to determine the sound to be returned. The request handler translates the request parameter into the name of a CHART system property, and calls the SystemProfileProperties object to retrieve the audio data. The SystemProfileProperties object either returns the data from its cache or it calls the CHART UserManager (via the UserManagerWrapper) to retrieve the audio data that was previously stored via a system configuration request. This data is then returned to the browser via the HttpServletResponse object's OutputStream as MIME type audio/mpeg. The output stream is flushed and closed and the request handler method returns null to its caller.

[image: image164.emf]HttpServletResponse

getBinaryProperty(propName)

flush()

close()

ServletOutputStream

write(audio data)

SystemProfileProperties

[sound type not valid or missing]

HTTP Status 404 (not found)

flash.media.Sound

AlertReqHdlr

sound is loaded using URLRequest that points to chartlite

servlet.

HttpServletRequest

getAlertSound

getParameter("soundType")

new string that contains

name of system profile

property that contains

audio data for the specified

sound type.

getOutputStream()

setContentType("audio mpeg")

[property not found]

HTTP Status 404 (not found)

If binary property is in cache, returns it,

otherwise, use user manager wrapper

to find a UserManager and call the

appropriate method.

byte[]

String

new

Figure 5‑102. chartlite.servlet.alerts:AlertReqHdlr.getAlertSound (Sequence Diagram)

5.19.2.5 chartlite.servlet.alerts:AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

This diagram shows the processing pertinent to viewing events that takes place when the home page is first loaded. The Flex application contains a HomePage object, and when the application has finished being created, its init method calls the HomePage init method to initialize the page. The HomePage object calls the init method of the AlertsView object, which then calls the getAlertsReq service to cause it to make a request to the servlet to retrieve the alert data. This call is done asynchronously, so the init method is free to return. The servlet gets all active alerts from the object cache, and then filters them into buckets based on their status. It further filters the alerts to include only those within the given scope (user, op center, or all), and also filters the alerts to include only those alerts for which the user has rights to view. These buckets are placed in the velocity Context, and the ViewAlertsXML.vm template is returned. This template contains XML, with velocity tags that cause the actual event data to be included within the XML document. This XML document is returned to the caller, which is the getAlertsReq service in the Flex application. The service calls the handleAlertsUpdated method of the AlertsView when the request is complete, and this method handles updating the number of alerts shown in the tab headings of the alerts tab control. Also, by virtue of the getAlertsReq last results being used as the dataProvider of the grid controls that appear on the alerts tab control, the data shown on the alert tabs is automatically updated using the XML data returned from the servlet. This is a feature of Flex, which allows binding of XML to GUI controls.

[image: image165.emf][all requested and no rights]

GeneralResultXML.vm

getCachedObjectsOfType(WebAlert)

HomePage HomePage object initialized after creation of flex app is complete. AlertsView Controller AppServices HTTPService AlertReqHdlr init() init() getServices() getAlertsService() addEventListener(RESULT, this.handleAlertsUpdated) send() handleAlertsUpdated

By virtue of the data grids on each alert tab having their dataProvider

set to the getAlertsReq HTTPService last result, the grids are automatically updated

to show the current alert data. This is a feature of Flex.

The grid controls on the Alert tabson the home page will be updatedwith data after the results from the asynchronous send() request arereturned from the servlet.update the Tab headings to

show current number

of alerts on each tab

AlertsListXML.vm

put("openAlerts",ArrayList)

put("acceptedAlerts",ArrayList)

put("delayedAlerts",ArrayList)

pus("closedAlerts",ArrayList)

Context Filter Web Alerts into 4 ArrayLists.

see the filterAlerts sequence

for details.

HttpServletRequestRequestHandlerSupporter getAlerts.chartgetParameter("scope") [scope == all] check rights to view all alerts

Figure 5‑103. chartlite.servlet.alerts:AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

5.19.2.6 chartlite.servlet.alerts:AlertReqHdlr.viewAlertsPeriodicUpdate (Sequence Diagram)

This diagram shows how the GUI keeps the alert information current. During initialization, the AppServices object creates a timer that will fire periodically. The timer period is set to the frequent page refresh rate as set in the CHART system properties. When the timer fires, the AppServices object is notified, and it makes a call to the HTTPService that was previously set up to retrieve alerts from the servlet. When the updated alert data is received from the servlet, the AlertsView is notified, and it updates the number of alerts shown on the alerts tabs. The alert data shown on the tabs is automatically updated because the HTTPService is used as the data provider for the grid controls that appear on the tabs.

[image: image166.emf]See viewAlertsInitialView

for details of how alerts

are collected and put into

XML document.

AlertsView By virtue of the grid controls on the

alerts tabs having their dataProvider

set to the lastResult of the getAlertsReq

HTTPService, the grid controls are automatically

updated to show the alert data just retrieved

from the server.

getAlerts.chart

XML

send()

Timer Timer created with interval set to system setting for frequent page refresh. Timer fires on the period defined during

construction.

init()get() setServices() init() new addEventListener(TimerEvent.Timer, this.handleFrequentTimer) start() handleFrequentTimer()

HomePageAppServices Controller AlertReqHdlr handleAlertsUpdated

update tabs to show

number of alerts

in each state

HTTPService

Figure 5‑104. chartlite.servlet.alerts:AlertReqHdlr.viewAlertsPeriodicUpdate (Sequence Diagram)

5.19.2.7 chartlite.servlet.alerts:commentOnAlert (Sequence Diagram)

This diagram shows the processing that occurs when the request handler receives a request to add a comment to an alert. The alertID and comment parameters are retrieved, along with an optional "returnXML" parameter. This optional parameter is used to control the return processing, allowing this request to be called from the alert details page which uses HTML, or from a Flex application, which requires XML returns. If any of the required parameters are missing, an error is returned, either as an HTML error page, or via the GeneralResultXML (with success set to false, and errorMsg indicating a missing parameter). The WebAlert with the specified ID is retrieved from the object cache. If it is not present, an error is returned. A check is made to see if the logged in user has the right to manage the alert (based on its type and the user's rights), and if not, an error is returned. The CORBA object reference for the Alert is retrieved from the WebAlert, and the Alert's addComment method is called. If this method throws an exception, an error is returned. If the call is successful, the remaining processing depends on the returnXML parameter. If the parameter is set to true, the context is loaded with a variable of "success" set to true, and the GeneralResultXML template is returned. If the returnXML parameter is null or not true, the request is redirected to the alert details page for the alert.

[image: image167.emf]AlertReqHdlr getParameter("alertID") WebAlert or null

canManageAlert(webAlert)

UsergetParameter("comment") [returnXML null or false]

redirect to alert details page

Alert CORBA object

true or false

User submits formwith alert commentRequestHandlerSupporter WebAlert Alert NavLinkRights optional - passed when this is called from flex application. [parameter missing]Error.vm or GeneralResultXML

HttpServletRequest [returnXML == true]

put("success",true)

[server error]

Error.vm or GeneralResultXML

getAlertRef()

addComment(token, comment)

getParameter("returnXML") [returnXML == true]

GeneralResultXML

[alert not found in cache]

Error.vm or GeneralResultXML

Context getCachedObject(alertID)

addAlertComment()[no rights]

Error.vm or GeneralResultXML

Figure 5‑105. chartlite.servlet.alerts:commentOnAlert (Sequence Diagram)

5.19.2.8 chartlite.servlet.alerts:commentOnAlertFlex (Sequence Diagram)

When the user clicks the "add comment" icon for an alert displayed within the Flex application, a form appears to allow them to enter the comment text. This diagram shows the processing that occurs when the user submits the form. A dynamic actionscript object is created to hold parameters that will be passed to the servlet. The alertID and comment text are loaded into this object as member variables. Additionally, the returnXML parameter is set to true to cause the servlet to return the results of the request as XML that can be interpreted by the Flex application. An HTTPService within the Flex application is used to invoke the request on the servlet, passing the previously constructed parameters object. The request is processed asynchronously, allowing control to return to the user as soon as the request has been submitted. The servlet processes the request (see the commentOnAlert diagram for details) and returns the result as XML. If an error is returned, it is shown to the user. Otherwise, the Add Alert Comment form is cleared.

[image: image168.emf]User

User clicks the

submit button on the alert

comment popup form,

whose click action

is set to this method.

AlertsView

ActionScript.Object

HTTPService AlertReqHdlr

See the commentOnAlert

sequence diagram for details.

addAlertComment.chart

GeneralResultXML

handleAddManualAlertResult()

clear the alert

comment form

[failure]

show error message

comment = commentText.text

addAlertComment()

new

send(ActionScript.Object)

This service is setup to send the addAlertComment request.

Note: Alert history is not shown

in the flex app, so no need to

refresh alert list.

returnXML = true

alertID = alertID.text

Figure 5‑106. chartlite.servlet.alerts:commentOnAlertFlex (Sequence Diagram)

5.19.2.9 chartlite.servlet.alerts:filterAlertsChangeFilter (Sequence Diagram)

This sequence diagram shows the processing that occurs when the user changes the filter radio button that appears on the Alerts tab control. The viewAlerts HTTPService is used to asynchronously request an update of the alerts data shown to the user. The HTTPService invokes the viewAlerts.chart request on the servlet, and it retrieves the alerts using the currently selected filter. The filtered data is passed back to the HTTPService as XML, and the update listener for the service (handleAlertsUpdated) is called to update the number of alerts shown on the tabs, etc. The data shown in the dataGrid controls on each tab is automatically updated because their dataProviders are set to the HTTPService's lastResult.

[image: image169.emf]The alert scope filter is the value for

the scope parameter to be used by AppServices

when it requests data from the servlet. It needs to

be set so it will be used on subsequent updates to

the data.

AlertsView User clicks on of the filter buttons

to view their alerts, center's alerts,

or all alerts (if allowed).

Radio button click param is set

to filterSelected() method.

filterSelected()

At this point, the data shown on each alert tab is automatically updated

due to the dataProvider setting for each gridControl being set to the

HTTPService lastResults.

XML

send()

handleAlertsUpdated()

update number of alerts

on each tab.

getAlerts.chart

Alerts are retrieved

and filtered. See

viewAlertsInitialView for details.

AppServices Controller HTTPService AlertReqHdlr get()

getServices()

updateAlerts()

setAlertScopeFilter(

alertScopeRBG.selected.toString())

User

Figure 5‑107. chartlite.servlet.alerts:filterAlertsChangeFilter (Sequence Diagram)

5.19.2.10 chartlite.servlet.alerts:getOpCenterList (Sequence Diagram)

This sequence shows the processing that occurs when a request is made to retrieve the list of op centers used for sending a manual alert. The list contains the most recent centers the user has alerted, followed by either all centers in the system, or all centers in the system with logged in users. This behavior is controlled by a request parameter ("showAllCenters").

The list is obtained by first retrieving the most recently alerted centers from the user's login session object. These centers are added to the beginning of the list. These centers are also added to a Hashtable that will be used to make sure the most recently used centers are not duplicated in the list. The list of all op centers is retrieved from the servlet's object cache, and the list is sorted by op center name. Each op center is then processed as follows:

If the op center already exists in the hashtable, it is skipped. If the showAllCenters flag is true, the center is added to the ArrayList and the Hashtable. Otherwise, the number of login sessions for the op center is checked - if there is at least one login session for the center, it is added to the ArrayList and Hashtable, otherwise the center is not included in the list.

After the list is created and populated, it is placed in the Velocity context, and the opCentersXML template is returned. At this point, Velocity merges the data from the context into the template, and the resultant XML is returned to the Flex application.

[image: image170.emf]opCentersXML.vm

Context put("opCenters")

getCachedObjectsOfType(WebOpCenter)

get()

[showAllCenters == true OR num login sessions > 0]

add()

[showAllCenters == true OR num login sessions > 0]

put()

for each op center

op ctr found

in hash tbl

add()

for each recently

alerted center

put()

Flex ApplicationHTTPServiceAlertReqHdlr HttpServletRequestArrayList Hashtable UserLoginSessionImpl getAlertCenters.chartgetParameter("showAllCenters") new new getRecentAlertedCenters() RequestHandlerSupporter sort op center list

Figure 5‑108. chartlite.servlet.alerts:getOpCenterList (Sequence Diagram)

5.19.2.11 chartlite.servlet.alerts:getOpCenterListFlex (Sequence Diagram)

This sequence diagram shows the processing performed within the Flex application used to retrieve the list of operations centers that appears on the Create Manual Alert form. The processing that takes place within the servlet is shown on a separate diagram.

When the Flex application is initialized, the AlertsView calls the send method of the HTTPService that is used to issue the getAlertCenters.chart request. The HTTPService asynchronously issues the request to the servlet, and the servlet replies with an XML document containing the centers that are available for user selection, with the most recently used op centers appearing first, followed by op centers with users logged in. When the XML is received, the List control that appears on the manual alert form is automatically updated with the new op center list because the HTTPService is used as a data provider for the list control.

Note that after the list is initialized, it is also updated periodically by a timer, and also when the user submits a manual alert. To update the list, the HTTPService send method is called, and all further processing remains the same.

[image: image171.emf]AppServices User views home page, causing flex application to load.

AlertReqHdlr [creationComplete]

init()

init()

get()

getServices()

getAlertsReq send()

By virtue of the op center list

on the manual alert form using

the HTTPService.lastResult as its

data provider, the list will be updated

with the most recent select list,

which has the most recently used

op centers at the top, followed by

op centers with users logged in.

getAlertCenters.chart

XML

User

HomePage AlertsView HTTPService Controller

Figure 5‑109. chartlite.servlet.alerts:getOpCenterListFlex (Sequence Diagram)

5.19.2.12 chartlite.servlet.alerts:HomePage.openURL (Sequence Diagram)

This diagram shows the processing done by the HomePage.openURL ActionScript function. This function allows other ActionScript code in the Flex application to cause the GUI's working window to load a specific URL. This function is used for many actions within the HomePage application and its associated panels (such as AlertsView). When this function is called, it checks to see if the ActionScript ExternalInterface is available. This is a special ActionScript object that provides access to JavaScript defined on the page that contains the Flex application. If the user's browser does not support JavaScript, the ExternalInterface will not be available. If not available, the user will be shown an error message. If the ExternalInterface is available, its call() method will be used to call the jsOpenURL Javascript function defined on the HomePage template. The jsOpenURL function then calls the displayURLInWorkingWindow Javascript function that's defined in the HomePageEnclosingTemplate. (Note that the method is defined in the enclosing template because other links on the home page (outside of the HomePage Flex application) also have the need to open URLs in the working window). The displayURLInWorkingWindow function checks to see if a working window is already open, and if so, it simply sets the href of the working window to the desired URL. If a working window is not already open, one is opened using the desired URL. The net result is that the results of the URL are displayed in the working window.

[image: image172.emf]At this point, the browser showing the working window will asynchronously load the desired URL. Home Page Window[working window exists] href = url jsOpenURL(url) ActionScript CodeActionScript code inFlex application wantsto show a URL in theworking window.Working Window This is a javascript function defined on the home page enclosing template. This is a javascript function defined on the home page template.displayURLInWorkingWindow(url) HomePage ExternalInterface openURL(url)boolean call("jsOpenURL", url) [ExternalInterface not available]show user an error messageThis may occur if web page that includes flexapplication doesn't have parm to enable, or ifuser has disabled javascript, etc.available() [no working window] create with url

Figure 5‑110. chartlite.servlet.alerts:HomePage.openURL (Sequence Diagram)

5.19.2.13 chartlite.servlet.alerts:NotifyUserOfNewAlertsFlex (Sequence Diagram)

This sequence shows the processing performed to provide an audio notification of new alerts. (Visual notification of new alerts is shown in the viewNewAlerts sequence diagram.) Prior to this processing taking place, initialization will be performed to load sounds from the server and setup some member variables. See the NotifyUserOfNewAlertsFlexInit diagram for details. The member variables we make use of in this diagram are as follows: A member variable of type "Sound" for each alert type; A Sound for the reminder sound; An array used to store a list of new alerts we already know about (from a prior call to this processing); An array of Sounds that need to be played.

When alert data is received from the servlet, either due to the initial load of data, or via periodic updates or user actions, the AlertView's handleAlertsUpdated method will be called. The timer used to play the "reminder" sound is stopped, and the list of "sounds to be played" is cleared. A new Array is created, and each alert in the "new" state is processed. Each alert is placed in this new Array as a record of "knowing" about the alert for the next time this processing is called. For each new alert, a search is done through the list of known new alerts (populated from a prior call to this processing). If the alert is found, that means we already processed it in the previous call to this processing and no further action is needed. If the alert is not found, it is an alert the user has not seen yet, and thus notification is needed. The sound associated with the alert type is determined, and a check is made to see if the sound already exists in the array of sounds to be played. If not, it is added.

After all alerts in the "new" state are processed, the new Array of these alerts is stored in the member variable of "new alerts we already know about", replacing the existing array. This will be used the next time this processing is called to determine which alerts require user notification, as discussed above. Next, if there are no sounds to play and alerts exist in the "new" state, the timer used to play the "reminder" sound is restarted. Note that "start" is used and not "reset". This causes the timer to pick up where it left off when it was stopped at the beginning of this processing, leaving its repeat interval unchanged. If there are sounds to be played, the first one is played, and an event listener is registered to be called when the sound finishes playing. When the sound eventually finishes playing, a check is made to see if there are more sounds to be played. If so, the next sound is played and an event listener is again registered. This continues until all sounds have been played, at which point the reminder timer is reset. This causes the reminder sound to play only after a full reminder interval has elapsed from the time the last sound was played.

[image: image173.emf]pop()

control returns to the HTTPService. The sound will finish playing at a later time.

Above soundCompleteHandler logic will get repeated until there are no more sounds to play

soundCompleteHandler()

pop()

Sound or null

[no sound to play AND

open alerts exist]

reset()

[sound to play] play()

[sound to play] addEventListener(SOUND_COMPLETE, soundCompleteHandler)

[no sound to play]

[no sound to play AND

open alerts exist]

start()

play()

SoundChannel

addEventListener(SOUND_COMPLETE, soundCompleteHandler)

Sound

SoundChannel

The array on the left

is stored in member

variable to replace

existing array.

replace existing

array of known

open alerts with

new array of

open alerts

Sound or null

search for alert by id

indexOf(sound)

until array

is empty

HTTPService

[sound not already in array]

push(sound)

determine sound

member variable

to use based

on alert type

index or -1 if sound not in array

alert or null

for each open alert

in lastResult

[alert found in

known alerts

array]

AlertsView Timer Array Array

Array

Timer used to play reminder sound.

Array of open alerts we already know about.

Array of sounds that need to be played

handleAlertsUpdated()

get lastResult.openAlerts.alert

Array

stop()

new

push()

pop()

Figure 5‑111. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlex (Sequence Diagram)

5.19.2.14 chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexInit (Sequence Diagram)

This sequence diagram shows the processing related to alert notification that is performed when the Flex HomePage application is initialized. An array is created that will be used to keep track of known new events. This array will be used when new alert data is loaded to check to see if there are any new alerts we don't already know about. A second array is created that will be used as a queue for sounds to be played. If there are multiple new alerts that need to have a sound played, we will need to play them in succession, therefore a queue will be used so that one sound can be played when another ends. A timer is created - it will be used to play the new alert reminder sound periodically after the initial alert notification sounds are played. Lastly, the sounds are loaded from the servlet. The "getAlertSound" request will be used, with a parameter to specify which alert sound to retrieve. The servlet will return the sound as MIME type audio/mpeg (mp3).

[image: image174.emf]See AlertReqHdlr. getAlertSound diagram for details. AlertReqHdlr getAlertSound audio (mp3)

flash.netURLRequest Note: Other initialization can occur here, including the initialization of the HTTPService used to retrieve Alerts. new(servlet url with action to retrieve specific alert sound) [for each alerttype andfor reminder]flash.media.Sound new Timer used to play reminder sound when needed. Interval set based on system setting. addEventListener(TimerEvent.TIMER, handleAlertReminder) UserHomePageAlertsView User loads the home page, whichcontains the FlexHomePage application.Array Note: Do this processing prior to initializing the HTTPService used to retrieve Alerts. load(urlRequest)member variable to track existing new alerts. Array member variable that is queue of sounds that need to be played. flash.utils.Timer [creationComplete]init()init()newnewnew

Figure 5‑112. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexInit (Sequence Diagram)

5.19.2.15 chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexReminder (Sequence Diagram)

This sequence shows the processing used to play a reminder sound to the user periodically after the initial sound(s) for new alerts have been played and the alerts remain in the "new" state. (Note that the processing to provide a visual cue is shown in the viewNewAlerts sequence diagram).

A Timer is used to periodically fire an event when the reminder duration as specified in the system properties elapses. The management of the timer is shown in the NotifyUserOfNewAlerts diagram. It is only active when there are alerts in the "new" state AND an initial notification sound has been played for each alert in the "new" state.

When the timer fires, checks are made to make sure that there are still alerts in the "new" state, and that the queue of alert specific sounds to be played is empty. These are precautionary checks to make sure the reminder sound isn't played at inappropriate times, and by design, the checks should always yield a false result. After it has been determined that the reminder sound should be played, the Sound member variable that holds the reminder sound is played. The timer will continue to fire, until the time when the list of alerts is refreshed from the servlet and the situation is re-evaluated (as shown in NotifyUserOfNewAlerts).

[image: image175.emf]AlertsView Sound HTTPService Reminder sound. lastResult.openAlerts.alert.length [no new alerts]

handleAlertReminder() TimerTimer Reminder timer. [number of sounds queued > 0]

stop()

[number of sounds queued > 0]

play()

Array of sounds to be played. Following is a precaution to make sure the reminder doesn't play when

there are alert specific sounds to play. By design, the timer will only

be activated when there are no alert specific sounds to be played,

so this next call should always return zero.

number of "new" alerts

length

Array Timer fires on the reminder interval as specified in the system properties. Timer is only active when no alert type specific sounds are queued for playing. number of sounds queued for playing

Figure 5‑113. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexReminder (Sequence Diagram)

5.19.2.16 chartlite.servlet.alerts:performAlertAction (Sequence Diagram)

This sequence diagram shows the processing performed in the servlet when the user performs an action on an alert. This one request is used to process actions performed within the Flex application as well as actions performed from the Alert Details Page. Within the Flex application, the user clicks an action button and the action is performed without the user entering a comment or specifying a reminder time. The Flex application always specifies the returnXML parameter to cause the request to return the result in an XML document. If an action is being performed from the Alert Details page, the request may optionally include a user comment or a reminder time (if applicable to the action) if the user chose a "... with details" link.

The servlet reads the parameters. The alertID and alertAction are required. The userComment and remindTime are always optional. If the userComment is not present, and empty string is used. If the remindTime is not specified, zero is used, causing the server to use the default remind time for the alert type if remind time is applicable to the action being performed.

The request handler retrieves the WebAlert from the object cache using the alertID parameter. The CORBA object reference for the Alert is obtained, and the appropriate call is made on the Alert based on the alertAction parameter value. If the call to the Alert is successful, the WebAlert is called to update its cached information to ensure the updated information will appear to the user, even if there is a delay in receiving the updated information via a CORBA event.

[image: image176.emf][alertAction == unaccept]

unaccept(token, userComment)

User clicked button in Flex App

OR clicked link or button on

Alert details page.

getCurrentUserToken()

WebAlert Alert

getAlertRef()

Alert CORBA Object

Error returns use Error.vm

unless returnXML is true,

in which case error is

returned in GeneralResultXML

canManageAlert(WebAlert)

boolean

[no rights]

Error

RequestHandlerSupporterclassNavLinkRights

getCachedObject(alertID)

WebAlert or null

[alertAction == undelay]

undelay(token, userComment)

[alertAction == delay]

delayWithDetails(token, userComment, remindTime)

[WebAlert not found]

Error

getParameter("returnXML")

Flex HTTPService

OR HTML Link or Form

AlertReqHdlr HttpServletRequest

Optional. If not present

and needed, the default

setting is used.

Optional. If not present and

needed, empty string is used.

performAlertAction()

getParameter("alertID")

getParameter("userComment")

getParameter("reminderTime")

getParameter("alertAction")

[returnXML == true]

GeneralResultXML succes = true

[returnXML null or not true]

redirect to alert details page

Web alert updates its state, remind time,

and history list as appropriate. This is to

have the new info appear right away

prior to the server dispatching an event.

[error from server]

Error

[alertAction == close]

close(token, userComment)

[alertAction == escalate]

escalate(token, userComment)

[success]

alertActionPerformed(alertAction, userComment, remindTime)

Optional. If present, XML is returned.

Otherwise, errors are returned as HTML page, and

when processing is finished, a redirect is performed.

[alertAction == accept]

acceptWithDetails(token, userComment, remindTime)

ServletUtil

Figure 5‑114. chartlite.servlet.alerts:performAlertAction (Sequence Diagram)
5.19.2.17 chartlite.servlet.alerts:performAlertActionFlex (Sequence Diagram)

This diagram shows the processing that is performed within the Flex application when the user clicks a button to perform an action on an alert. Note that these "one click" actions will result in using default reminder times (if accepting or delaying an alert) and will not contain a user comment. A parameter associated with each button is passed to specify the action to be performed. This parameter is passed with the URL request made by the HTTPService, which issues the request to the servlet. The returnXML parameter is passed to cause the servlet to return its result as XML, rather than performing its default action of redirecting to the Alert Details Page. The servlet processes the action, and returns the results in an XML document. This causes the HTTPService to call the registered result handler (handlePerformAlertActionResult). If the result indicates success, the HTTPService used to update the alert lists is called. If the request to perform an action failed, an error message is displayed to the user.

[image: image177.emf][result.success == false]Error messageThis causes the alerts list to be updated, and the alert on which an action was performed will have the results of the action. see viewAlertsPeriodicUpdate.see performAlertAction diagram for details. [result.success == true] send() set returnXMLservice for sending performAlertAction.chart service for sending getAlerts.chart AlertReqHdlr HTTPService performAlertAction.chart XMLResult send(params:Object) UserAlertsView User clicks a button to change alert state or to escalate. TheperformSimpleAlertAction functionis set as the click handler for oneclick actions in the alert list:accept, unaccept, delay, undelay,escalate, and close.HTTPService ActionScript.Object performAlertAction(alertID, alertAction)newset alertID set alertAction handlePerformAlertActionResult()

Figure 5‑115. chartlite.servlet.alerts:performAlertActionFlex (Sequence Diagram)

5.19.2.18 chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

This diagram shows the processing that is done when the servlet receives a request to resolve an alert. This request is issued when the user clicks the resolve button for an alert on the home page, or the user clicks the resolve link on an alert details page. The user's rights are checked, and if they don't have the right required to manage alerts, an error page is returned. The alertID parameter is retrieved from the request, and this is used to find the WebAlert in the servlet's object cache. If the parameter is missing or the alert cannot be found in the object cache, an error page is returned. The getResolutionAction() method is called on the WebAlert. The default implementation of this method will return a URL that can be used to close the alert. Alert type specific subclasses of WebAlert may override this method to provide a URL used to point the user to right page where they can resolve the alert. After the resolution URL is retrieved from WebAlert (or a subclass), a redirect to that URL is performed. Following are the URLs that each subclass will use:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events in the alert as the event1 and event2 parameters of the request.

WebManualAlert: use default (close alert)

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert as the eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

[image: image178.emf]getResolutionAction()

User

resolveAlert request received by servlet due to user clicking resolve button for alert on home page, or user clicking

resolve link on alert

details page.

WebAlert RequestHandlerSupporter

Identifier

new

getCachedObject()

WebAlert or null

[alert not found in cache]

Error.vm

HttpServletRequest NavLinkRights

canManageAlerts()

boolean

[no rights]

Error.vm

getParameter("alertID")

[missing parameter]

Error.vm

The default implementation of this method returns a URL that will close the

alert. Classes derived from WebAlert override this method to provide a URL

 that is specific to the alert type. Following are the type specific URLs:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events

in the alert as the event1 and event2 parameters of the request.

WebManualAlert: use default (close alert)

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert

as the eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

redirect to URL provided by

getResolutionAction()

AlertReqHdlr

resolveAlert()

Figure 5‑116. chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

5.19.2.19 chartlite.servlet.alerts:resolveAlertFlex (Sequence Diagram)

This diagram shows the processing performed in the HomePage application when the user clicks the "resolve" button for an alert. The resolveAlert() method in the AlertsView is called because it is set as the click handler for the button. The AlertsView calls the HomePage openURL() method. The details for the openURL method can be found in the HomePage.openURL diagram. The net result of the call is that the working window's location.href is set to the URL for the resolveAlert request. The working window then asynchronously issues the request and displays the results. Details about the processing done within the servlet to handle the resolveAlert request can be found in the resolveAlert sequence diagram.

[image: image179.emf]Working Window AlertReqHdlr href of ww is set resolveAlert See HomePage.openURL diagram for details. The net result is the desired URL is loaded into the working window, causing it to issue the request. HomePage openURL("action=resolveAlert.chart &alertID=id) AlertsView resolveAlert(event, alertID)Controller getHomePage() User clicks resolve button.Click handler is set to beAlertsView.resolveAlertsee the resolveAlert diagram for details.

Figure 5‑117. chartlite.servlet.alerts:resolveAlertFlex (Sequence Diagram)

5.19.2.20 chartlite.servlet.alerts:SpecifyAlertTimeout (Sequence Diagram)

This diagram shows the processing that takes place when the user chooses to set the time an alert in the accepted or delayed state will move back to the "new" state, if not already closed. The user is shown a form on the alert details page that allows them to enter a relative time (x minutes from now) or an absolute time (specific date and time). The user can optionally enter a comment to explain why they are changing this timeout. When the user submits the form, the setAlertTimeout request is sent to the servlet with the form data, and the processing shown on this diagram is performed. The parameters retrieved from the request depend on the how the user chose to enter the time. If they chose to use a relative time, then the number of minutes from now are retrieved. If they specified an absolute time, the date, hour of day, minute of day, and am/pm indicator are retrieved. If any required parameters are not included in the request, an error message is returned. The alertID is used to retrieve the WebAlert for the alert whose timeout is to be changed. If the WebAlert is not found, an error is returned. A check is made to see if the user has rights to manage the alert, based on the alert type and the user's rights. If the user doesn't have rights, an error message is shown. The CORBA object reference for the alert is retrieved from the WebAlert object. The time value specified by the user is converted into a specific reminder time in milliseconds from the epoch. For a relative time, this is computed by simply adding the current time (in milliseconds) to the number of minutes specified by the user converted to milliseconds. If the user specified an absolute time, a GregorianCalendar is created, and its date and time are set using the date, hour, minute, and am/pm indicator specified by the user. The time in milliseconds from the epoch is then retrieved from the GregorianCalendar (via a Date object). The appropriate call is made to the Alert CORBA object, based on the timeoutType parameter (delay or accept timeout). If the server returns an error, the user is shown an error message. Otherwise, the request is redirected to the alert details page, where the new reminder time will appear.

[image: image180.emf][success] setReminderTime(timeoutType, reminderTime)

[error from server]

Error.vm

[success]

redirect to viewAlertDetails

[timeoutType == delay]

setDelayTimeout(token, remindTime, comment)

comment is optional

[timeoutType == accept]

setAcceptTimeout(token, reminderTime, comment)

getParameter("comment")

Alert

GregorianCalendar

must adjust timeoutHour to handle midnight

and noon. Noon (12pm) and Midnight (12am)

are both represented with hour set to zero.

must convert timeoutAMPM parameter to

Calendar.AM or Calendar.PM before call.

[durationType == relative]

getParameter("durationMinutes")

Date

The creation of

GregorianCalendar

and all manipulation

of it only occurs if

the duration type is

absolute. The net result

is the computation

of the absolute reminder

time.

[durationType == relative]

compute reminderTime as

now + (durationMinutes * 60000)

[durationType == absolute]

new

setTime(timeoutDate)

set(Calendar.HOUR, timeoutHour)

set(Calendar.MINUTE, timeoutMinute)

set(Calendar.AMPM, timeoutAMPM)

set(Calendar.SECOND, 0)

set(Calendar.MILLISECOND, 0)

getTime()

Date

getTime()

milliseconds

[durationType == absolute]

getParameter("timeoutHour")

WebAlert NavLinkRights

canManageAlert(webAlert)

[no rights to manage alert]

Error.vm

RequestHandlerSupporter

[durationType == absolute]

getParameter("timeoutDate")

[durationType == absolute]

getParameter("timeoutMinute")

[required parameter missing]

Error.vm

WebAlert or null

getAlertRef()

Alert CORBA object

[durationType == absolute]

getParameter("timeoutAMPM")

getCachedObject(alertID)

User

AlertReqHdlr

User chooses to set the accept timeout for an alert in the accepted state,or the delay timeout for an alert in the delayed state. In either case, the userfills in a form with a relative timeout (x minutes from now) or an absolute

timeout (specific date and time). The form is submitted using the setAlertTimeout request.

HttpServletRequest

values will be "accept" or "delay"

values will be "relative" or "absolute"

setAlertTimeout()

getParameter("timeoutType")

getParameter("alertID")

getParameter("durationType")

true or false

[WebAlert not found]

Error.vm

Figure 5‑118. chartlite.servlet.alerts:SpecifyAlertTimeout (Sequence Diagram)

5.19.2.21 chartlite.servlet.alerts:viewAlertDetails (Sequence Diagram)

This sequence diagram shows the processing performed by the alert request handler when it receives a request to view the alert details. It retrieves the ID of the alert whose details are to be viewed from a request parameter. The alert is found in the object cache and a check is made to see if the logged in user has rights to view the alert. If a parameter is missing, the alert is not found, or the user doesn't have rights to view the alert, an error is returned. Otherwise, the WebAlert getDetailsPage() method is called to get the name of the template used to view the details for the specific type of alert. This method is implemented by each WebAlert derived class to return the template name specific to the alert type. The web alert and the name of the details page template are placed in the context, and the EnclosingTemplate is returned, with its content area filled with the content of the alert details.

[image: image181.emf]RequestHandlerSupporter NavLinkRights getCachedObject(alertID) [alert not found] Error.vm templateName for specific alert type subclass true or false [parameter missing] Error.vm put("pageContent", templateName)

WebAlert Context WebAlert or null getDetailsPage() canViewAlert(WebAlert) [no rights to view alert] Error.vm AlertReqHdlr put("alert", webAlert)

EnclosingTemplate.vm

Working WindowHttpServletRequest viewAlertDetails getParameter("alertID")

Figure 5‑119. chartlite.servlet.alerts:viewAlertDetails (Sequence Diagram)

5.19.2.22 chartlite.servlet.alerts:viewAlertDetailsFlex (Sequence Diagram)

This sequence diagram shows processing that occurs within the Flex HomePage application and web browser when the user chooses to view the details for an alert. The processing that takes place within the servlet is shown on a separate diagram.

When the view details button is clicked, the button calls the viewAlertDetails method of the AlertsView. The AlertsView gets the HomePage and calls its openURL method. The details of the openURL method are not shown on this diagram - see HomePage.openURL for details. The net result of the call is that the Working window's href gets set to the URL that invokes the viewAlertDetails request in the servlet. The working window will open the URL and display the resultant HTML. For details about the servlet processing related to this request, see the viewAlertDetails sequence diagram.

[image: image182.emf]href gets set See HomePage.openURL diagram for details. The net result of this function is that the href in the working window gets set to the desired URL. It is shown conceptually here. Working Window shows

HTML that results from

viewAlertDetails request.

AlertsView viewAlertDetails get() [click] viewAlertDetails (event, alert id) user clicks details buttonUserSee viewAlertDetails sequence diagram to see processing done by request handler. HTML

AlertReqHdlr Working Window openURL("action=eventDetails&eventid=id") Controller HomePage getHomePage() Button

Figure 5‑120. chartlite.servlet.alerts:viewAlertDetailsFlex (Sequence Diagram)

5.19.2.23 chartlite.servlet.alerts:viewNewAlerts (Sequence Diagram)

This sequence diagram shows the processing used to provide a visual cue to users when there are alerts in the "new" state. Both the HomePage and AlertsView Flex objects contain callback methods that are called when the alerts data is retrieved from the server. In this diagram, the data is retrieved as a result of a timer firing, however the alert data is also retrieved when the HomePage application is initialized and when the user performs certain actions on an alert. In any case, the processing performed by the system after the data is retrieved will be as shown.

The handleAlertsUpdated method of the AlertsPanel is called by the HTTPService to allow the AlertsPanel to update the tabs on its tab control to show the current number of events in each state. The AlertsPanel also sets its panel border to be thick red when there are alerts in the "new" state, or sets the border to zero (invisible) if there aren't any alerts in the "new" state.

The handleAlertsUpdated method of the HomePage object is called by the HTTPService to allow the HomePage to update controls that are outside the AlertsPanel. Namely, this is the panel on an accordion control that contains both the alerts panel and traffic events panel. The HomePage updates the title of this panel to show the number of alerts in the "new"state so that if the user has the panel compressed (not visible), they can still have a visual cue to show them that there are "new" alerts.

[image: image183.emf]TimerAlertsView HomePage AppServices has a timerthat periodically updatesalert data. This is shown on the viewAlertsInitialView diagram.Also, alert data is refreshed any time a user performs an action on an alert, such as changing its state.AppServices HTTPService AlertReqHdlr see viewAlertsInitialView for details. Both the HomePage and

AlertsView handleAlertsUpdated()

methods are set as listeners of the

HTTPService during initialization.

handleFrequentTimer() updateAlerts() send() getAlerts.chart XML handleAlertsUpdated()

set tabs to show

current number of

events in each state

handleAlertsUpdated()

set the acordion

panel that contains

alerts and traffic events

to show the number of

new alerts

[new alerts exist]

set panel border to

thick red

[no new alerts]

set panel border

to zero

Figure 5‑121. chartlite.servlet.alerts:viewNewAlerts (Sequence Diagram)

5.20 GUI chartlite.servlet.dictionaries

5.20.1 Classes

5.20.1.1 GUIDictionaryClasses (Class Diagram)

This diagram shows CHART GUI servlet classes related to dictionary management.

[image: image184.emf]PronunciationData

«datatype»

1 1

PronunciationUI

DictionaryReqHdlraddTTSPronunciation():String

removeTTSPronunciation():String

modifyTTSPronunciation():String

viewTTSPronunciations():String

PronunciationUI(pronunciation:PronunciationData)

getWord():String

getPronunciation():String

Figure 5‑122. GUIDictionaryClasses (Class Diagram)

5.20.1.1.1 DictionaryReqHdlr (Class)

This class is a request handler that processes requests related to dictionary management.

5.20.1.1.2 PronunciationData (Class)

This class is an IDL defined structure used to store data related to a pronunciation stored in the Dictionary.

5.20.1.1.3 PronunciationUI (Class)

This class is used as a wrapper for the Pronunciation class generated by the IDL compiler. It provides methods that allow the member variables of the Pronunciation class to be accessed within a Velocity template.

5.20.2 Sequence Diagrams

5.20.2.1 chartlite.servlet.dictionaries:previewTTSPronunciation (Sequence Diagram)

This sequence diagram shows processing that occurs when a user wants to preview a pronunciation. After the user clicks the preview button, a pop-up window is used to send the pronunciation text as a parameter to an existing request to hear the spoken text as converted by the text to speech engine. Prior to calling this request, Javascript is used to take the pronunciation text as entered by the user and repeat the text several times, separated each time by a comma. This will cause the text to speech engine to pronounce the text several times in a row with a small pause in between, allowing the user to hear the pronunciation several times.

[image: image185.emf]HarReqHdlr

Existing code, no changes in R3B1

User clicks preview link, causing a popup window to appear which sends the playText request to the servlet with the pronunciation text as the" text" parameter. The pronunciation text will be repeated several times, with a comma between each repetition of the pronunciation text to allow the user to hear the pronunciation several times. User's browser audio player

plays the audio"

playText(text)

audio

User

Figure 5‑123. chartlite.servlet.dictionaries:previewTTSPronunciation (Sequence Diagram)

5.20.2.2 DictionaryReqHdlr:AddTTSPronunciation (Sequence Diagram)

This sequence diagram shows processing that occurs when the user want to add a pronunciation. If the user doesn't have the proper rights, an error message is shown. The word and its pronunciation are passed as parameters in the HTML request. They are used to construct a PronunciationData object (which is defined in IDL). The PronunciationData object is placed in an array so that it may be passed to the addPronunciationList method of the DictionaryWrapper. The DictionaryWrapper (existing prior to R3B1) finds a Dictionary object that exists in the system, and will call the Dictionary's addPronunciationList method to add the new pronunciation to the system. The user request will then be redirected to the request passed in the nextPage parameter. Additional parameters that were passed in the request will be passed along to the redirected request, allowing the requestor to control the parameters passed through this request and onto the redirected request.

[image: image186.emf]store PronunciationData in arrayPronunciationData new(word,pronunciaion) DictionaryReqHdlrHttpRequestHandler DictionaryWrapper getParameter("nextPage")addPronunciationList(token, array) [no rights to manage dictionary]Error.vm[error adding pronunciation to server]Error.vmgetParameter("word") getPassThruParmList(req,word,pronunciation,nextPage) "Pass thru Parameters' [parameter missing]Error.vmredirect to nextPage

UserNavLinkRights ServletUtil Wrapper finds working Dictionary object and makes addPronunciationList() call on it. getCurrentUserToken() canUserManageDictionaries()success\failure addTTSPronunciation()getParameter("pronunciation") [include all 'pass thru parameters' in the

redirect request]

Figure 5‑124. DictionaryReqHdlr:AddTTSPronunciation (Sequence Diagram)

5.20.2.3 DictionaryReqHdlr:modifyTTSPronunciation.getAddModifyTTSPronunciationFormReq (Sequence Diagram)

This diagram shows the processing that will be performed if the user chooses to add a pronunciation to the dictionary, or to modify an existing pronunciation. If the user doesn't have rights to manage the dictionary, an error message is shown. Otherwise, the parameters are retrieved from the request. The parameters will only be present if performing a modify operation. Any parameters that are present are loaded into the context, and the AddModifyPronunciationForm.vm template is returned. The user will then edit the word and pronunciation fields, and the addPronunciation request will be submitted when the user submits the form.

[image: image187.emf]getParameter("pronunciation")

[word parameter not null]

put("word", word)

put("pageTitle", "Add or Modify TTS Pronunciation")

AddModifyPronunciationForm.vm

UserDictionaryReqHdlr NavLinkRights HttpRequestHandler Context canUserManageDictionaries()

[no rights to manage dictionary]

Error.vm

getAddEditPronunciationForm()

[letterFilter parameter not null]

put("letterFilter", letterFilter)

[pronunciation parameter not null]

put("pronunciation", pronunciation)

getParameter("letterFilter")

getParameter("word")

Figure 5‑125. DictionaryReqHdlr:modifyTTSPronunciation.getAddModifyTTSPronunciationFormReq (Sequence Diagram)

5.20.2.4 DictionaryReqHdlr:RemoveTTSPronunciation.processRemoveTTSPronunciationReq (Sequence Diagram)

This sequence diagram shows the processing that occurs when the user wants to remove a pronunciation from the system. Prior to this request being submitted from the browser, the user must confirm their intention to remove the word by responding to a Javascript confirmation popup. If the user chooses "yes" to the confirmation message, this request is submitted and the processing shown on this diagram is performed. If the user doesn't have the rights to manage the dictionary, an error message is shown. A PronunciationData object is constructed and the word whose pronunciation is to be removed (as passed in the word parameter) is set in the object. This object is then stored in an array, and the DictionaryWrapper's removePronunciationList method is called. The DictionaryWrapper finds a working Dictionary object and calls its removePronunciationList method to remove the pronunciation from the dictionary. The request is then redirected to the viewPronunciationList request, which displays the current list of pronunciations, with the removed pronunciation no longer appearing.

[image: image188.emf]PronunciationData [set pronunciation==empty] new(token,word, pronunciation) redirect to viewPronunciationList

getParameter("word") UserDictionaryReqHdlrNavLinkRightsHttpRequestHandler ServletUtil DictionaryWrapperWrapper finds working Dictionary

object and makes removePronunciationList()

call on it to remove the pronunciation

from the system.

getCurrentUserToken() removePronunciationList(token, array)

canUserManageDictionaries()[no rights to manage dictionary]Error.vmsuccess\failure

[error removing pronunciation from server]

Error.vm

removeTTSPronunciation()store PronunciationData

in array

Figure 5‑126. DictionaryReqHdlr:RemoveTTSPronunciation.processRemoveTTSPronunciationReq (Sequence Diagram)

5.20.2.5 DictionaryReqHdlr:ViewDefinedPronunciation.processViewTTSPronunciationListReq (Sequence Diagram)

This sequence diagram shows processing that occurs when the user wants to view the pronunciations in the system. If the user doesn't have rights to manage the dictionary, an error message is shown. The request handler uses the DictionaryWrapper to find a Dictionary object and call the getPronunciations() method. This returns all pronunciations defined in the system. The request handler then creates an ArrayList that it will use to filter the pronunciations by first letter of the word, and to wrap the PronunciationData objects returned from the server in objects that are accessible within the dynamic web page (velocity template). It is also possible to apply no filter, in which case all pronunciations are returned. The ArrayList is then sorted by pronunciation word, and the velocity context is loaded so the list of pronunciations can be accessed within the returned web page template.

[image: image189.emf]Use static method to sort array list using natural ordering of PronunciationUI, which is by word

sort(arrayList)

Arrays

getParameter("letterFilter")

getPronunciations(token)

getCurrentUserToken()

new

[pronunciation word starts with letterFilter OR no letterFilter]

add(PronunciationUI)

for each pronunciation

from server

put("pageTitle", "Manage TTS Pronunciations")

UserDictionaryReqHdlr NavLinkRightsHttpRequestHandler ServletUtil DictionaryWrapperWrapper finds working Dictionary

object and makes getPronuciations()

call on it.

Context ArrayList

PronunciationUI

canUserViewDictionaries() [no rights to manage dictionary]

Error.vm

PronunciationData[]

[error getting pronunciations

from server]

Error.vm

[pronunciation word starts with letterFilter OR no letterFilter]

new

put("pronunciationList", ArrayList)

put("letterFilter", letterFilter)

ViewPronunciationList.vm

viewPronunciationList()

Figure 5‑127. DictionaryReqHdlr:ViewDefinedPronunciation.processViewTTSPronunciationListReq (Sequence Diagram)

5.21 GUI chartlite.servlet.dms

5.21.1 Classes

5.21.1.1 chartlite.servlet.dms_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to dynamic message signs.

[image: image190.emf]RequestHandler «interface» DMSReqHdlr init(supporter:RequestHandlerSupporter) : voidgetActions() : ArrayList<RequestAction>processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):Stringshutdown(supporter:RequestHandlerSupporter) : voidsetDMSConfigBasicSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

Figure 5‑128. chartlite.servlet.dms_classes (Class Diagram)

5.21.1.1.1 DMSReqHdlr (Class)

This class is a request handler used to process requests related to dynamic message signs (DMS).

5.21.1.1.2 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.21.2 Sequence Diagrams

5.21.2.1 chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)

This diagram shows the processing done by the DMSReqHdlr to parse the parameters passed from the DMS basic configuration data form. This existing method is being modified for R3B1 to allow the responsible operations center to be set. This optional field will be used to specify which operations center should receive a device failure alert for a DMS. When not set, device failure alerts for the DMS are disabled.

[image: image191.emf]The alertOpCenterID parameter is new for R3B1, and is not required. getParameter("hasBeacons") getParameter("deviceLoggingEnabled") getParameter("alertOpCenterID") return Error Message ForValues That Can Be Correctedby the User[required params missing]throw CHARTLiteExceptionSet Chart2DMSConfiguration Fields For Parameters With Valid Values [any invalid values that are not correctable by the user]throw CHARTLiteExceptionDMSReqHdlrDMSReqHdlrHttpServletRequest parseBasicConfigSettingsgetParameter("dmsName") getParameter("locationDesc") getParameter("direction") getParameter("signType") getParameter("owningOrgID") getParameter("signModel") getParameter("communityString") getParameter("dmsCharRows") getParameter("dmsCharCols") getParameter("maxPages") getParameter("charSizePixels") getParameter("defaultLineJustification") getParameter("defaultPageOnTimeTenths") getParameter("defaultPageOffTimeTenths")

Figure 5‑129. chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)

5.21.2.2 chartlite.servlet.dms:setDMSConfigBasicSettings (Sequence Diagram)

This diagram shows the processing that occurs when the user submits the basic settings form for a DMS. The "action" parameter of "setDMSConfigBasicSettings" is mapped to the DMSReqHdlr class via a request action mapping, so its processRequest() is called. It calls setDMSConfigBasicSettings(), which uses the "dmsID" request parameter to look up the WebDMS wrapper object from the cache. The user's login session object is checked to make sure the user has configuration rights. Then a call is made to the DMS CORBA object in the DMS Service to get a snapshot/copy of its current configuration. The request parameters are parsed and used to update the copy of the configuration data, and the DMS object is called again to set the modified configuration data. The PopupSumissionCloser template is used to close the popup window and display the single command status page, with a "backURL" to allow the user to return to the DMS Details page if they click the Back button from the command status page.

This functionality existed prior to R3B1, but is shown to give context for the parseBasicConfigSettings() diagram, which does contain changes.

[image: image192.emf]Updates the Chart2DMSConfiguration

using parameters parsed from the request.

See the parseBasicConfigSettings sequence

diagram for more details.

WebDMS DMS Makes a call to the remote DMS

object in the DMS Service to get

a snapshot of the latest configuration.

getDMSRef()

DMS

getConfiguration(token)

getParameter("action") The logic for this diagram is unchanged for R3B1,

and is only shown here to provide context for

the parseBasicConfigSettings diagram, which will be

changing for R3B1.

RequestHandlerSupporterCommandStatusMgrCommandStatusImpl

Context

The URL will be:

app&action=viewOneCommandStatus&cmdStatusID=<csID>

&backAction=viewDMSProps&dmsID=<dmsID>

getCommandStatusMgr()

createCommandStatusImpl()

create

setConfiguration(token, config, cmdStatusImpl.getRef())

put("targetURL", resp.encodeURL(url))

return "PopupSubmissionCloser.vm"

canConfigureDMS(webDMS)

Chart2DMSConfiguration

ServletUtil UserLoginSessionImpl getObjectFromIDString(dataModel, dmsIDStr)

parseBasicConfigSettings(req, config, false, supporter, dms.getID())

HttpSession NavLinkRights WebDMS or null

getSession()

getAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION)

NavLinkRights

DMSReqHdlr processRequest

[dmsID not specified]

Return Error Page

[not found]

Return Error Page

HttpSession

[parseBasicConfigSettings() returned error message]

Redisplay Edit Basic Settings Form

[parseBasicConfigSettings

threw Exception]

Return Error Page

[user-correctable error]

return "PopupTemplate.vm"

UserLoginSessionImpl

getNavLinkRights()

User

HttpServletRequest getParameter("dmsID")

[action.equalsIgnoreCase("setDMSConfigBasicSettings")]

setDMSConfigBasicSettings

[no rights]

Return Error Page

Figure 5‑130. chartlite.servlet.dms:setDMSConfigBasicSettings (Sequence Diagram)

5.22 GUI chartlite.servlet.tss

5.22.1 Classes

5.22.1.1 chartlite.servlet.tss_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to traffic sensor signs.

[image: image193.emf]RequestHandler «interface» TSSReqHdlr init(supporter:RequestHandlerSupporter) : voidgetActions() : ArrayList<RequestAction>processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):Stringshutdown(supporter:RequestHandlerSupporter) : voidsetTSSConfigBasicSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

Figure 5‑131. chartlite.servlet.tss_classes (Class Diagram)

5.22.1.1.1 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.22.1.1.2 TSSReqHdlr (Class)

This class handles requests related to traffic sensor systems such as RTMS.

5.22.2 Sequence Diagrams

5.22.2.1 chartlite.servlet.tss:parseBasicConfigSettings (Sequence Diagram)

This diagram shows the processing done by the TSSReqHdlr to parse the parameters passed from the TSS basic configuration data form. This existing method is being modified for R3B1 to allow the responsible operations center to be set. This optional field will be used to specify which operations center should receive a device failure alert for a TSS. When not set, device failure alerts for the TSS are disabled.

[image: image194.emf]The alertOpCenterID parameter is new for R3B1.

getParameter("alertOpCenterID")

return Error Message For

Values That Can Be Corrected

by the User

[required params missing]

throw CHARTLiteException

Set TSSConfiguration Fields

For Parameters With Valid Values

[any invalid values that

are not correctable by the user]

throw CHARTLiteException

parseBasicConfigSettings()

getParameter("tssName")

getParameter("locationDesc")

getParameter("owningOrgID")

getParameter("pollIntervalHours")

getParameter("pollIntervalMinutes")

getParameter("pollIntervalSeconds")

TSSReqHdlrTSSReqHdlr HttpServletRequest

Figure 5‑132. chartlite.servlet.tss:parseBasicConfigSettings (Sequence Diagram)

5.22.2.2 chartlite.servlet.tss:setTSSConfigBasicSettings (Sequence Diagram)

"setTSSConfigBasicSettings" is mapped to the TSSReqHdlr class via a request action mapping, so its processRequest() is called. It calls setTSSConfigBasicSettings(), which uses the "tssID" request parameter to look up the WebTSS wrapper object from the cache. The user's login session object is checked to make sure the user has configuration rights. Then a call is made to the TSS CORBA object in the TSS Service to get a snapshot/copy of its current configuration. The request parameters are parsed and used to update the copy of the configuration data, and the TSS object is called again to set the modified configuration data.

[image: image195.emf]update the cached copy of the config

updateConfig(config)

getID()

TSSConfiguration

token

getAccessToken()

setConfiguration(token, config)

put("targetURL", resp.encodeURL(url))

return

 "PopupSubmissionCloser.vm"

UserTSSReqHdlr HttpServletRequest ServletUtil HttpSession UserLoginSessionImpl The logic for this diagram is unchanged for R3B1, and is only shown here to provide context for the parseBasicConfigSettings diagram, which will be changing for R3B1.

NavLinkRights WebTSS Updates the TSSConfiguration

using parameters parsed from the request.

See the parseBasicConfigSettings sequence

diagram for more details.

Context Makes a call to the remote TSS

object in the TSS Service to get

a snapshot of the latest configuration.

The URL will be:

app&action=viewTSSProps&tssID=tssID

[parseBasicConfigSettings

threw Exception]

Return Error Page

[user-correctable error]

return "PopupTemplate.vm"

[parseBasicConfigSettings() returned error message]

Redisplay Edit Basic Settings Form

NavLinkRights

canConfigureTSS(webTSS)

config

getObjectFromIDString(dataModel, tssIDStr)

[not found]

Return Error Page

HttpSession

UserLoginSessionImpl

getNavLinkRights()

[no rights]

Return Error Page

getParameter("tssID") getTSSRef().getConfiguration(token)

[no error message]

parseBasicConfigSettings(req, config,supporter, tssID)

WebTSS or null

getSession()

setTSSConfigBasicSettings()getAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION)

[tssID not specified]

Return Error Page

tssID

Figure 5‑133. chartlite.servlet.tss:setTSSConfigBasicSettings (Sequence Diagram)

5.23 GUI chartlite.servlet.usermgmt

5.23.1 Classes

5.23.1.1 chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to the system profile.

[image: image196.emf]RequestHandler «interface» SystemProfileReqHdlr

init(supporter:RequestHandlerSupporter) : void getActions() : ArrayList<RequestAction> processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

shutdown(supporter:RequestHandlerSupporter) : void

processConfigAlertTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getConfigAlertTimeOutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

processConfigAlertEscalateTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

processConfigAlertArchiveTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getConfigAlertEscalateArchiveTimeOutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

Figure 5‑134. chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)

5.23.1.1.1 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.23.1.1.2 SystemProfileReqHdlr (Class)

This class is a request handler that processes requests related to the system profile.

5.23.1.2 chartlite.servlet.usermgmt_classes (Class Diagram)

This diagram shows classes used within the CHART GUI servlet related to user management.

[image: image197.emf]* * OpCenterAlertTypeData LogoutReqHdlrLoginReqHdlr RequestHandler«interface»OpCenterAlertData «datatype» createPreLoginNavLinkRights(usrMgrWrapper:UserManagerWrapper, username:String, viewOnlyRights:FunctionalRightType[]) : NavLinkRightsinitHomeMonitorID(req:HttpServletRequest, loginSession:UserLoginSessionImpl) : voidinitLocalMonitorGroupID(req:HttpServletRequest, loginSession:UserLoginSessionImpl) : voidlocateOpCenter(supporter:RequestHandlerSupporter, opCtrID:String, rights:NavLinkRights) : WebOpCenterprocessChangeUser(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessGetChangeUserForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessGetHomePage(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessLaunchAppWindow(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessLogin(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringredirToInitialLoggedInPage(loginSession:UserLoginSessionImpl, supporter:RequestHandlerSupporter, req:HttpServletRequest, resp:HttpServletResponse) : booleanshowLoginError(supporter:RequestHandlerSupporter, ctx:Context, errMsg:String, userName:String, opCtrID:String) : StringshowLoginForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringsetInitialWorkingPageShownXML((req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringCOOKIE_NAME_HOME_MONITOR_ID : StringCOOKIE_NAME_LOCAL_MONITOR_ID : StringCOOKIE_NAME_OP_CTR_ID : StringalertTypeData:OpCenterAlertTypeData[] processLogout(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringAlertType:type backupList:Identifier[] forCenterFlag:boolean escalationFlag:boolean ignorePolicy: boolean

Figure 5‑135. chartlite.servlet.usermgmt_classes (Class Diagram)

5.23.1.2.1 LoginReqHdlr (Class)

This request handler handles functionality related to Login and Change User.

5.23.1.2.2 LogoutReqHdlr (Class)

This request handler handles functionality related to Logout.

5.23.1.2.3 OpCenterAlertData (Class)

This corba datatype sequence contains alert related configuration data for an operations center

5.23.1.2.4 OpCenterAlertTypeData (Class)

This datatype holds operations center alert configuration data for a specific alert type.

5.23.1.2.5 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.23.2 Sequence Diagrams

5.23.2.1 AppLauncher.vm:onLoad (Sequence Diagram)

This shows the window management that occurs after the user logs in. The AppLauncher page is returned in the initial browser window, and when it is loaded it opens a popup window to display the Home Page. The initial window then attempts to close itself, which requires confirmation from the operator as in R2B3. If, when the Home Page is requested, the working page had not been shown (as indicated by the "initial working page shown" flag in the login session) then it will open the working window with the user's initial working page URL. If the working page had not been previously shown when the working page was built, then when it is loaded it will issue an Ajax request to set the flag in the user login session. This will prevent the Home Page from opening another working page automatically if it is refreshed.

[image: image198.emf][not shown] Open Window With Initial Working Page URL BrowserAppLauncher.vm HomePageEnclosingTemplate.vm This page will be loaded in the initial browser window after the user successfully logs in. UserLoginSessionImpl This is a Java call via Velocity and is done in the servlet while the page is being built. EnclosingTemplate.vm a.k.a. Working Page LoginReqHdlr Invoke an Ajax request to set the state. This is

done by the browser (rather than in the request

handler to return the initial page template) to confirm

that the page was actually displayed in the browser.

The flag is used to prevent the Home Page from

automatically opening the initial working page

more than once. This could otherwise happen

if, for example, the Home Page is refreshed manually.

This will cause a confirmation dialog to be displayed to the user, as it did in R2B3. onLoad() Open Window With URL "app?action=homePage" window.close()create onLoad() initialWorkingPageShown() onLoad()

initialWorkingPageShown()

setInitialWorkingPageShown(true)

[not shown]

Invoke Ajax request:

"app?action=setInitialWorkingPageShownXML"

create See LoginReqHdlr. processGetHomePage for details [not shown] getInitialWorkingPageURL()

Figure 5‑136. AppLauncher.vm:onLoad (Sequence Diagram)

5.23.2.2 chartlite.servlet.usermgmt:ConfigureAlertAudioCue (Sequence Diagram)

This diagram shows the processing that occurs when the user chooses to set the audio cue for an alert type, or set the reminder audio cue. The form used to submit the data will have its encoding set to multipart/form-data. The user will select a file on their local machine and press the submit button. A MultipartRequest object is used to read the parameters from the request, as well as to read the audio data. If a parameter is missing or an mp3 file was not uploaded, an error is shown. Otherwise, the audio data is stored in the system profile using the key appropriate for the alert type (or reminder) whose audio cue is being set.

[image: image199.emf]SystemProfileProperties object uses

its user manager to store the audio

data in the server AND caches the

audio data.

[not mp3 file]

Error.vm

SystemProfileProperties get property key name

based on the alert type

or "reminder"

FileInputStream

new(File)

read(byte[])

complete data from file

[error]

Error.vm

setBinaryProperty(propertyName, byte[])

[success]

Results.vm

inspect beginning of audio

data and confirm file is mp3

File

getFile("selectedFile")

File

exists()

length()

[file not uploaded]

Error.vm

[file empty]

Error.vm

AdministratorSystemProfileReqHdlr NavLinkRights MultipartRequest

setAlertAudioCue()

canConfigureAlerts()

[no rights]

Error.vm

new(httpRequest, audioDirName, maxSize)

getParameter("cueType")

an alert type or reminder

[parameter missing]

Error.vm

Figure 5‑137. chartlite.servlet.usermgmt:ConfigureAlertAudioCue (Sequence Diagram)

5.23.2.3 chartlite.servlet.usermgmt:ConfigureBackupCenters (Sequence Diagram)

The administrator is adding, configuring, or removing an operation center. There is a grid of checkboxes for each alert type and a corresponding cell for each alert type. This cell contains a combo box for selecting backup op centers, and a select box containing the selected backup centers. The user will be able to remove op centers by selecting a center from the select list and clicking on a remove selected backup center button. When the user adds the op center or updates the configuration, the new backup center data will be sent via a sequence of OpCenterBackupList objects each containing an alert type member and an array of backup op center identifiers.

[image: image200.emf]The action is not

a remove action

canManageOpCenters()

[access denied]

error

display op center list page

[users logged in]

error

[Exception]

error

HTTPServletRequest

See:chartlite.servlet.usermgmt.usermgmt_classes

for OpCenterBackupList definition

[for each alert type]

display op center details page

[!remove action]

remove()

returns op center id

add, configure, or remove op center

getParameterValues("alertTypeBackupCenters")

updateOpCenterBackupCenters(OpCenterBackupList backupList)

OpCenterReqMgmtHdlr OperationsCenter

objectRemoved(op center id)

DataModel

getParameter("opCtrID")

Administrator

The administrator is adding, configuring, or removing an operation center. There is a grid of checkboxes for each alert type and a corresponding cell fo each alert type. This cell contains a combo box for selecting backup op centers, and a select box containing the selected backup centers. THe user will be able to remove op centers by selecting a center from the select list and clicking on a remove selected backup center button. When the user adds the op center or updates

 the configuration, the new backup center data will be sent via a sequence of OpCenterBackupList objects each containing an alert type member and

an array of backup op center identifiers.

return array of backupCenter ID's

Figure 5‑138. chartlite.servlet.usermgmt:ConfigureBackupCenters (Sequence Diagram)

5.23.2.4 chartlite.servlet.usermgmt:OpCenterMgmtReqHdlr.viewOpCenterDetails (Sequence Diagram)

This shows processing performed when the user chooses to view the details of an op center. This is existing code that is being modified in R3B1 to show the types of alerts the center may receive

[image: image201.emf]New For R3B1

op center details page

getAlertTypesForCenter()

put("alertTypes", alert types)

getResponseParticipantsAvailableForAdd(ResponseParticipantType.TYPE_CHART_UNIT)

put("chartunits",chart units)

return resources

getResponseParticipantsAvailableForAdd(ResponseParticipantType.SPECIAL_NEEDS)

put("specialneeds", special needs)

put("ChartUnitTypeId",ResponseParticipantType._TYPE_CHART_UNIT)

put("specialNeedsID", ResponseParticipantType._TYPE_SPECIAL_NEEDS)

getAllSystemResponseParticipants()

[op center not found]

error

WebOpCenter

returns WebOpCenter

put("pageContent", "resourcemgmt\OpCenterDetails.vm")

return alert types

put("opCenter", WebOpCenter)

return chart units

getResponseParticipantsAvailableForAdd(ResponseParticipantType.TYPE_RESOURCE)

put("resources", resources)

return special needs

RequestHandlerSupporter

getParameter("opCtrID")

returns op center id

put("resourceTypeID", ResponseParticipantType._TYPE_RESOURCE)

getAllSystemResponseAlertTypes()

getResponseParticipantsAvailableForAdd(ResponseParticipantType.TYPE_AGENCY)

put("agencies", agencies)

canManageOpCenter()

Administrator

viewOpCenterDetails

[access denied]

error

OpCenterMgmtReqHdlr

put("agencyTypeId", esponseParticipantType._TYPE_AGENCY)

returns array of all WebResponseParticipants available for adding to this op center

HTTPServletRequest

getCachedObject(opcenterID)

Context

returns array of all WebAlert types available for adding to this op center

return agencies

Figure 5‑139. chartlite.servlet.usermgmt:OpCenterMgmtReqHdlr.viewOpCenterDetails (Sequence Diagram)

5.23.2.5 chartlite.servlet.usermgmt:SpecifyAlertTypesForCenter (Sequence Diagram)

This diagram shows a user updating alert types an operations center may receive. The user is shown the operations center details page. The user checks/unchecks zero or more alert type(s) to update and clicks on an ‘Add Alert Type’ button. The user is redirected to the operations center details page.

[image: image202.emf]getParameter("ckDeviceFailureAlert") return device failure alert check value getParameter("ckDuplicateEventAlert") return duplicate event alert check value getParameter("ckEventStillOpenAlert") return event still open check value getParameter("ckGenericAlert") return generic alert check value The user has selected an existing operations center or is adding a new one. The user selects one or more alert types that this center should receive via check boxes. If the value found in the op center config for any alert type is different than the value passed in, the op center configuration is updated. AdministratorOpCenterReqMgmtHdlrHTTPServletRequest WebOpCenter updateOpCenterReceiveAlertTypes(OpCenterAlertData data) viewOpCenterDetails[no rights]errorcanManageAlerts()add or configure Op Center ActionOpcenter return unhandled resource alert check value getParameter("ckUnhandledResourceAlert") see chartlite.servlet.usermgmt_classes for OpCenterAlertData updateOpCenterReceiveAlertTypes(OpCenterAlertData data)

Figure 5‑140. chartlite.servlet.usermgmt:SpecifyAlertTypesForCenter (Sequence Diagram)

5.23.2.6 chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureAlertPolicy (Sequence Diagram)

The user has chosen to configure the Alerts Module via System Profile. A link to a new section for configuring alert types is present in the main profile form. The alert types section form contains the same controls for each alert type. The form contains a checkboxes for specifying whether to ignore an alert type or if the alert type is allowed to escalate. Each checkbox contains the idl value of the corresponding alert type.

When the form is submitted, and action is requested that calls the processConfigureAlertTypesPolicy method. If the user doesn't have rights to change the system profile an error is returned. The request's getParameterValues method is called twice to get both the alert escalation policy and the alert ignore policy. Each call should return an array of string values that contain the alert type values for which to allow escalation or to ignore. If parameters are missing, an error is returned, otherwise a new Properties object is instantiated. The process goes into a loop for every alert type. If the alert escalation policy array contains the current iteration alert type, the escalation policy property is set to true, otherwise false. The same processing occurs for the alert ignore policy. After all properties are set in the new Properties object, the SystemProfileProperties method, setProps is called, passing in the populated properties object. If there is a problem setting the system profile, an error is returned. The context is then filled with the approprite heading, button name, and page content to show the results.

[image: image203.emf]Property names will be defined in IDL.

[alerttype not in alertIgnorezPolicy]

setProperty("xyzAlertIgnorePolicy", false)

[problem setting system profile]

Error.vm

setProps(token, properties)

getAccessToken()

Properties

new

[alertIgnorePolicy contains alerttype]

setProperty("XYZalertIgnorePolicy", true)

SystemProfileReqHdlr HTTPSession

processConfigureAlertTypesPolicy()

getAttrribute(MainSevlet.SESSION

ATTR_LOGIN_SESSION)

[no right to change profile]

Error.vm

return array of strings containing escalation policy alert types

getParameterValues("alertIgnorePolicy")

Results.vm

Context

NavLinkRights

getSession()

canChangeSysProfile()

getParameterValues("alertEscalationPolicy")

[parameters missing]

Error.vm

SystemProfileProperties

[alertType not in alertEscalationPolicy]

setProperty("XYZalertEscalationPolicty", false)

put("buttonName", "Back To System Profile Alert Type Policy")

put("heading", "System Profile Alerty Type Policy Updated")

[for each

alerttype]

return array of strings containing ignore policy alert types

The user has chosen to configure the Alerts Module via System Profile A link to a new section for configuring alert types is present in the main profile form. The alert types section form contains the same controls for each alert type. The form contains a checkboxes for specifying whether to ignore an alert type or if the alert type is allowed to escalate. Each checkbox contains the idl value of the corresponding alert type. When the form is submitted, and action is requested that calls the processConfigureAlertTypesPolicy method. If the user doesn't

have rights to change the system profile an error is returned. The request's getParameterValues method is called twice to get both

the alert escalation policy and the alert ignore policy. Each call should return an array of string values that contain the alert type

values for which to allow escalation or to ignore. If parameters are missing, an error is returned, otherwise a new Properties object

is instantiated. The process goes into a loop for every alert type. If the alert escalation policy array contains the current iteration alert type,

the escalation policy property is set to true, otherwise false. The same processing occurs for the alert ignore policy. After all properties

are set in the new Properties object, the SystemProfileProperties method, setProps is called, passing in the populated properties object.

If there is a problem setting the system profile, an error is returned. The context is then filled with the approprite heading, button name, and page

content to show the results.

Administrator

HTTPServletRequest

put("pageContent","results.vm")

UserLoginSessionImpl

[alertEscalationPolicy contains alerttype]

setProperty("XYZalertEscalationPolicy", true)

Figure 5‑141. chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureAlertPolicy (Sequence Diagram)

5.23.2.7 chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureDuplicateEventsMatrix (Sequence Diagram)

The Administrator has chosen to configure the Duplicate Events Matrix via the System Profile. There is a Configure Duplicate Events Matrix link on the main page of the system profile. On this page there is a table with rows/columns for each type of event with a checkbox in each cell to allow the Administrator to configure which events can be duplicates of each other. The values of each checkbox on the form correspond to the correct event type.

When the form is submitted, the processConfigureDuplicateEventsMatrix action is executed in the SystemProfileReqHandler. If the Administrator doesn't have the right to change the system profile an error message is returned. For each type of event, getParameterValues is called on the Request for each event type. The return value is an array of strings containing the event type values which are allowed to be duplicates for the current event type. If parameters are missing an error message is returned, otherwise a new Properties object is instantiated. Next the duplicate policy array for each event type is processed. If the array contains an event type, the setProperty method for the two events is passed a value of true, otherwise false. Once all duplicate policy arrays are processed, A call to setProps is made on the SystemProfileProperties object, passing in the updated properties. If there is a problem setting the system profile, an error message is returned. The appropriate heading, button name, and page content values are stored in the context and the Results.vm template is returned.

[image: image204.emf]The Administrator has chosen to configure the Duplicate Events Matrix via the System Profile. There is a Configure Duplicate Events Matrix link on the main page of the system profile.

On this page there is a table with rows/columns for each type of event with a checkbox in each cell to allow the Administrator to configure which events can be duplicates of each other.

The values of each checkbox on the form correspond to the correct event type.

When the form is submitted, the processConfigureDuplicateEventsMatrix action is executed in the SystemProfileReqHandler. If the Administrator doesn't have the right to change the system

profile an error message is returned. For each type of event, getParameterValues is called on the Request for each event type. The return value is an array of strings containing the event type

values which are allowed to be duplicates for the current event type. If parameters are missing an error message is returned, otherwise a new Properties object is instantiated. Next the duplicate policy

 array for each event type is processed. If the array contains an event type, the setProperty method for the 2 events is passed a value of true, otherwise false. Once all duplicate policy arrays are

processed, A call to setProps is made on the SystemProfileProperties object, passing in the updated properties. If there is a problem seting the system profile, an error message is returned. The

 appropriate heading, button name, and page content values are stored in the context and the Results.vm template is returned.

Administrator

SystemProfileReqHdlr HTTPServletRequest HTTPSession UserLoginSessionImpl NavLinkRights

Properties

Property names will be defined in IDL

SystemProfileProperties Context

getParameterValues("duplicatePolicyForXYZEvent") getParameterValues("duplicatePolicyForXYZEvent")

return array of values for duplicate policy return array of values for duplicate policy

[for each

event type]

[for each

event type]

[array contains event2 type]

setProperty("duplicateEventType1_EventType2", true)

[array contains event2 type]

setProperty("duplicateEventType1_EventType2", true)

put("pageContent","results.vm") put("pageContent","results.vm")

Results.vm Results.vm

[problem setting system profile]

Error.vm

[problem setting system profile]

Error.vm

[for each

event type

duplicate

policy array]

[for each

event type

duplicate

policy array]

getAccessToken() getAccessToken()

[for each element in

 event type duplicate

 policy array]

[for each element in

 event type duplicate

 policy array]

processConfigureDuplicateEventsMatrix() processConfigureDuplicateEventsMatrix()

put("buttonName", "Back To Duplicate Events Matrix System Profile") put("buttonName", "Back To Duplicate Events Matrix System Profile")

put("heading", "Duplicate Events Matrix System Profile Updated") put("heading", "Duplicate Events Matrix System Profile Updated")

setProps(token, properties) setProps(token, properties)

new new

getSession() getSession()

getAttrribute(MainSevlet.SESSION

ATTR_LOGIN_SESSION)

getAttrribute(MainSevlet.SESSION

ATTR_LOGIN_SESSION)

canChangeSysProfile() canChangeSysProfile()

[no right to change profile]

Error.vm

[no right to change profile]

Error.vm

[parameters missing]

Error.vm

[parameters missing]

Error.vm

[for each

event type]

[for each

event type]

setProperty("duplicateEventType1_EventTYpe2", false) setProperty("duplicateEventType1_EventTYpe2", false)

Figure 5‑142 chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureDuplicateEventsMatrix (Sequence Diagram)

5.23.2.8 chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureTrafficEventStillOpen (Sequence Diagram)

The Administrator has chosen to configure the traffic event still open alert reminder time. There is a Configure Event Still Open Alert Reminder Time link under the alerts section on the main page of the system profile. On this page there is a table with a row for each event type. Each row contains fields for days, hours, and minutes a specific type of event may remain open before an event still open alert is generated.

When the form is submitted, the processConfigureTrafficEventStillOpen method is executed in the SystemProfileReqHandler. If the Administrator doesn't have the right to change the system profile an error message is returned. A new Hashmap is created for storing the reminder value in milliseconds .For each type of event, getParameterValue is called to get the days, hours, and minutes reminder. These three values are passed into getMillisFromDaysHoursMinutes, which is a DateTimeUiUtil class utility method. The return value in millis is placed in a Hashmap, keyed by event type and property name. If parameters are missing an error message is returned, otherwise a new Properties object is instantiated. For each hash key in the map call the Properties object's setProperty method, passing the keyname and keyvalue as parameters. Next call the SystemProfileProperties setProps method, passing in the populated Properties object. If there is a problem setting the system profile, return an error message. Lastly set the heading, button name, and pageContent in the context.

[image: image205.emf]The Administrator has chosen to configure the traffic event still open alert reminder time. There is a Configure Event Still Open Alert Reminder Time section under the alerts section on the main page

of the system profile. On this page there is a table with a row for each event type. Each row contains fields for days, hours, and minutes a specific type of event may remain open before an

event still open alert is generated.

When the form is submitted, the processConfigureTrafficEventStillOpen method is executed in the SystemProfileReqHandler. If the Administrator doesn't have the right to change the system

profile an error message is returned. A new Hashmap is created for storing the reminder value in millis .For each type of event, getParameterValue is called to get the days,hours,minutes reminder.

These three values are passed into getMillisFromDaysHoursMinutes, which is a DateTimeUiUtil class utility method. The return value in millis is placed in a Hashmap, keyed by event type and

property name. If parameters are missing an error message is returned, otherwise a new Properties object is instantiated. For each hash key in the map call the Properties object's setProperty

method, passing the keyname and keyvalue as parameters. Next call the SystemProfileProperties setProps method, passing in the populated Properties object. If there is a problem setting the

system profile, return an error message. Lastly set the heading, button name, and pageContent in the context.

Administrator

SystemProfileReqHdlr NavLinkRights HTTPSession

contains days, hours, minutes

HTTPServletRequest

chartlite.util.DateTimeUIUtil

UserLoginSessionImpl

Properties

Property names will be defined in IDL

SystemProfileProperties Context

getMillisFromDaysHoursMinutes(String daysHoursMinutes) getMillisFromDaysHoursMinutes(String daysHoursMinutes)

return millis return millis

getParameterValues("XYZEventStillOpenTimeout") getParameterValues("XYZEventStillOpenTimeout")

[for each

event type]

[for each

event type]

setProperty(keyname, keyValue) setProperty(keyname, keyValue)

put("pageContent","SystemProfileEventStillOpenAlertReminderTImes.vm") put("pageContent","SystemProfileEventStillOpenAlertReminderTImes.vm")

Results.vm Results.vm

[problem setting system profile]

Error.vm

[problem setting system profile]

Error.vm

getAccessToken() getAccessToken()

processConfigureTrafficEventStillOpen() processConfigureTrafficEventStillOpen()

put("buttonName", "Back To System Profile - Event Still Open Alert ReminderTimes"") put("buttonName", "Back To System Profile - Event Still Open Alert ReminderTimes"")

put("heading", "System Profile - Event Still Open Alert Reminder Times Updated") put("heading", "System Profile - Event Still Open Alert Reminder Times Updated")

setProps(token, properties) setProps(token, properties)

getSession() getSession()

getAttrribute(MainSevlet.SESSION

ATTR_LOGIN_SESSION)

getAttrribute(MainSevlet.SESSION

ATTR_LOGIN_SESSION)

canChangeSysProfile() canChangeSysProfile()

[parameters missing]

Error.vm

[parameters missing]

Error.vm

[no right to change profile]

Error.vm

[no right to change profile]

Error.vm

new new

Figure 5‑143 chartlite.servlet.usermgmt:SystemProfileReqHdlr.processConfigureTrafficEventStillOpen (Sequence Diagram)

5.23.2.9 LoginReqHdlr:processGetHomePage (Sequence Diagram)

This diagram shows the processing when the Home Page is requested to be displayed. The UserLoginSessionImpl object is retrieved from the session. The login session is put into the Velocity context, and the Home Page template name is put into the Velocity context, to be included from the Home Page's enclosing template. The home page contains navigation links to allow the user to access other areas of the system for which they have rights to view. All links on the home page that cause another page to be shown (with a few exceptions noted below) use a second window known as the working window as the target for the link, causing the working window to show the new page without changing the content of the home page. If a working window is already opened, its content is replaced with the content from the link's URL. If a working window is not already opened, a new working window will be created. The working window contains an asterisk in its title to allow the user to distinguish it from the home page window and any other browser windows the user may have opened. The following links on the home page will not target the working window, but instead open in their own, separate window: links across top: ‘Communications Log’, ‘Instant Messaging’, ‘Paging’, ‘Map’, links on left frame: ‘CHART on the Web’, ‘EORS’, ‘SHADE System’, ‘Paging System’, and ‘CHART Map’.

The home page and working window each contain navigation links to allow the user to quickly navigate to traffic events they have viewed recently. Each time the user views a traffic event, the traffic event will be placed in the recently viewed list. This number of events that may appear in this list is limited by a system profile value set by the administrator. If the user views a traffic event and the list is full, the least recently viewed event is removed from the list to make room for the most recently viewed event. If the user clicks on an event in the most recently viewed event list, the details page for that event will be shown in the working window, replacing any current content of the working window. In addition to providing navigation links, the home page also provides areas to allow users to create new traffic events (if the user has the required permission), view and manage alerts, and to view traffic events for which their center is responsible.

The home page window does not allow the user to close the window unless they first logoff.

[image: image206.emf]Get User Login Session [not found] return error UserLoginReqHdlr Context processGetHomePage put("loginSession", loginSession) put("pageContent", "HomePage.vm")

return "HomePageEnclosingTemplate.vm"

Figure 5‑144. LoginReqHdlr:processGetHomePage (Sequence Diagram)

5.23.2.10 LoginReqHdlr:processLogin (Sequence Diagram)

This shows the processing performed when a user logs in. After checking the protocol and making sure the user is not already logged in, the login credential parameters are retrieved from the request in addition to the operations center and home monitor IDs. The operations center is found, taking into account whether the user has only view only rights (in which case the View Only op center is used). A UserLoginSessionImpl object is created and activated in the POA, and the OperationsCenter is called to log in the user. If successful, the login session is set into the HttpSession as an attribute. The cookies for local monitor group ID and home monitor group ID are retrieved from the request (if the cookies exist) and these values are set into the login session. The operations center from the request is used to set a cookie in the response. The home monitor ID, if specified in the request and if it is different than the monitor ID specified in the cookie, is set into the login session and a cookie is added for the new monitor ID. This allows the login page to pre-select the same home monitor the next time the user logs in with that workstation. Finally the user is redirected to view the AppLauncher.vm page after logging in, which will automatically launch the Home Page via Javascript and then attempt to close itself. If the user has selected a home monitor, it will appear on the user's Home Page as an easy to access link to that monitor's details page.

[image: image207.emf]getProperties

requireHttps

sendRedirect(resp.encodeRedirectURL("app?action=launchAppWindow"))

redirToInitialLoggedInPage

HttpServletResponse

addCookie(new Cookie(COOKIE_NAME_OP_CENTER_ID, opCtrID))

addCookie(new Cookie(COOKIE_NAME_HOME_MONITOR_ID))

[home monitor

not specified in request,

or is specified

but unchanged]

setHomeMonitorID(monitorID)

WebOpCtr OperationsCenter SystemProfileProperties

getSession

getAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION)

UserLoginSession or null

[login session

already exists]

redirToInitialLoggedInPage()

[login session

exists]

return

getParameter("username")

getParameter("password")

getParameter("opCtrID")

getParameter("homeMonitorID")

[username or

password or

op center

not specified]

return error

getSysProfileProps()

getAllowableViewOnlyRights()

FunctionalRightType[]

createPreLoginNavLinkRights(userMgrWrapper, username, viewOnlyRights)

getUserManagerWrapper()

These will get the cookies from the HttpRequest

and if the corresponding cookie is found,

it will call the UserLoginSessionImpl to set the

local monitor group or home monitor ID.

getOpCenterRef()

loginUser(loginSession, username, pw, hostname)

Initialize

[not successful]

return error

setAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION, userLoginSessionImpl)

setMaxInactiveInterval(interval)

initLocalMonitorGroupID(req, loginSession)

initHomeMonitorID(req, loginSession)

User

LoginReqHdlr RequestHandlerSupporter HttpServletRequest ServletProperties HttpSession

processLogin

loginUser(poa, cmdStatusMgr, userMgrWrapper, viewOnlyRights)

activate(poa)

UserLoginSessionImpl

create

Returns a WebOpCenter corresponding

to the requested ID unless the user has only

a subset of View Only rights, in which case the

View Only op center will be returned.

Creates an object for accessing user rights, or a

default View Only user rights object if no roles are

assigned to the user.

locateOpCenter(supporter, opCtrID, navLinkRights)

getScheme

[https required

and scheme

is not https]

return error

Figure 5‑145. LoginReqHdlr:processLogin (Sequence Diagram)

5.23.2.11 SystemProfileReqHdlr:configAlertTimeout.getConfigAlertTimeoutForm (Sequence Diagram)

This sequence diagram shows the form where user can configure alert time out. There are 5 alert types. For each alert type, there are four values related to state reminder timeouts that a privileged user can set: two for accepted alerts and two for delayed alerts which are default and maximum. The method get SystemProfileProperties object, put it in the context. Then make calls from the template to the 20 new methods to get the various timeouts.

[image: image208.emf]UserSystemProfileReqHdlr HttpServletRequest HttpSession UserLoginSessionImplNavLinkRights Supporter Context SystemProfileProperties

getConfigAlertTimeoutForm()getSession() getAttribute(MainServlet.SESSION_ ATTR_LOGIN_SESSION) [error getting SystemProfileProperties]

Error.vm

put("pageTitle", "Configure Alert Timeout")

getSysProfileProps()

getNavLinkRights()

[no right to change system profile]

Error.vm

put("sysProfileProps", SystemProfileProperties)

ConfigAlertTimeoutForm.vm

canChangeSysProfile()

Figure 5‑146. SystemProfileReqHdlr:configAlertTimeout.getConfigAlertTimeoutForm (Sequence Diagram)

5.23.2.12 SystemProfileReqHdlr:configAlertTimeout.processConfigAlertTimeout (Sequence Diagram)

This sequence diagram shows processing when user want to configure alert time out. There are 5 alert types. For each alert type, there are four values related to state reminder timeouts that a privileged user can set: two for accepted alerts and two for delayed alerts which are default and maximum. The user gets times as days, hours, minutes from the form (total is 60 fields). Then convert to milliseconds to store to the system.

[image: image209.emf]UserSystemProfileReqHdlr HttpServletRequestHttpSessionUserLoginSessionImplNavLinkRights time =days+hours+mins

convert to milliseconds

SystemProfileProperties the parameters in SystemProfileProperties:(change "alertTimeoutName" to each of them)

UNHANDLED_RESOURCE_ALERT_DEF_ACCEPT_TIME_MILLIS

UNHANDLED_RESOURCE_ALERT_MAX_ACCEPT_TIME_MILLIS

UNHANDLED_RESOURCE_ALERT_DEF_DELAY_TIME_MILLIS

UNHANDLED_RESOURCE_ALERT_MAX_DELAY_TIME_MILLIS

DEVICE_FAILURE_ALERT_DEF_ACCEPT_TIME_MILLIS

DEVICE_FAILURE_ALERT_MAX_ACCEPT_TIME_MILLIS

DEVICE_FAILURE_ALERT_DEF_DELAY_TIME_MILLIS

DEVICE_FAILUREE_ALERT_MAX_DELAY_TIME_MILLIS

DUPLICATE_EVENT_ALERT_ACCEPT_TIME_MILLIS

DUPLICATE_EVENT_ALERT_MAX_ACCEPT_TIME_MILLIS

DUPLICATE_EVENT_ALERT_DEF_DELAY_TIME_MILLIS

DUPLICATE_EVENT_ALERT_MAX_DELAY_TIME_MILLIS

EVENT_STILL_OPEN_ALERT_ACCEPT_TIME_MILLIS

EVENT_STILL_OPEN_ALERT_MAX_ACCEPT_TIME_MILLIS

EVENT_STILL_OPEN_ALERT_DEF_DELAY_TIME_MILLIS

EVENT_STILL_OPEN_ALERT_MAX_DELAY_TIME_MILLIS

GENERIC_ALERT_ACCEPT_TIME_MILLIS

GENERIC_ALERT_MAX_ACCEPT_TIME_MILLIS

GENERIC_ALERT_DEF_DELAY_TIME_MILLIS

GENERIC_ALERT_MAX_DELAY_TIME_MILLIS

the parameters need to get: (change "alertTimeout" to each of them) unhandledRsrcDefAcceptDays unhandledRsrcDefAcceptHours

unhandledRsrcDefAcceptMins

unhandledRsrcMaxAcceptDays

unhandledRsrcMaxAcceptHours

unhandledRsrcMaxAcceptMins

unhandledRsrcDefDelayDays

unhandledRsrcDefDelayHours

unhandledRsrcDefDelayMins

unhandledRsrcMaxDelayDays

unhandledRsrcMaxDelayHours

unhandledRsrcMaxDelayMins

deviceFailureDefAcceptDays

deviceFailureDefAcceptHours

deviceFailureDefAcceptMins

deviceFailureMaxAcceptDays

deviceFailureMaxAcceptHours

deviceFailureMaxAcceptMins

deviceFailureDefDelayDays

deviceFailureDefDelayHours

deviceFailureDefDelayMins

deviceFailureMaxDelayDays

deviceFailureMaxDelayHours

deviceFailureMaxDelayMins

duplicateEvenDefAcceptDays

duplicateEvenDefAcceptHours

duplicateEvenDefAcceptMins

duplicateEvenMaxAcceptDays

duplicateEvenMaxAcceptHours

duplicateEvenMaxAcceptMins

duplicateEvenDefDelayDays

duplicateEvenDefDelayHours

duplicateEvenDefDelayMins

duplicateEvenMaxDelayDays

duplicateEvenMaxDelayHours

duplicateEvenMaxDelayMins

eventStillOpenDefAcceptDays

eventStillOpenDefAcceptHours

eventStillOpenDefAcceptMins

eventStillOpenMaxAcceptDays

eventStillOpenMaxAcceptHours

eventStillOpenMaxAcceptMins

eventStillOpenDefDelayDays

eventStillOpenDefDelayHours

eventStillOpenDefDelayMins

eventStillOpenMaxDelayDays

eventStillOpenMaxHours

eventStillOpenMaxMins

genericDefAcceptDays

genericDefAcceptHours

genericDefAcceptMins

genericMaxAcceptDays

genericMaxAcceptHours

genericMaxAcceptMins

genericDefDelayDays

genericDefDelayHours

genericDefDelayMins

genericMaxDelayDays

genericMaxDelayHours

genericMaxDelayMins

Properties

Context setProperty("alertTimeoutName","time")

getAccessToken()

processSetConfigAlertTimeout()getSession() getAttribute(MainServlet.SESSION_ ATTR_LOGIN_SESSION)

getNavLinkRights()

canChangeSysProfile()

[no right to change system profile]

Error.vm

put("pageContent", "Results.vm")

getParameter("alertTimeout")

[parameters missing]

Error.vm

put("heading", "Set Configure Alert Timeout")

put("buttonAction", "getEditSystemProfileForm")

setProps(token, properties)

put("buttonName", "Back to System Profile")

[for each property]

new

Results.vm

put("success", "true")

[error in setting parameters

 to systemProfile]

Error.vm

token

Figure 5‑147. SystemProfileReqHdlr:configAlertTimeout.processConfigAlertTimeout (Sequence Diagram)

5.23.2.13 SystemProfileReqHdlr:getConfigEscalateAndArchiveTimeoutsForm (Sequence Diagram)

This sequence diagram shows processing when user configure alert escalation timeout and Archive timeout. The method get SystemProfileProperties object, put it in the context and get the form. The form allows the user to set the Escalation timeout per alert type, and a single archive timeout to be used for all closed alerts.

[image: image210.emf]put("sysProfileProps", SystemProfileProperties)

[error getting SystemProfileProperties]

Error.vm

UserHttpServletRequest UserLoginSessionImpl Supporter SystemProfileProperties

getSession() getNavLinkRights()

[no right to change system profile]

Error.vm

put("pageTitle", "Configure Alert Escalae and Archive Timeouts")

SystemProfileReqHdlr HttpSession NavLinkRights Context getConfigEscalateAndArchiveTimeoutsForm()getAttribute(MainServlet.SESSION_

ATTR_LOGIN_SESSION)

canChangeSysProfile()

getSysProfileProps()

ConfigAlertEscalateAndArchiveTimeoutsForm.vm

Figure 5‑148. SystemProfileReqHdlr:getConfigEscalateAndArchiveTimeoutsForm (Sequence Diagram)

5.23.2.14 SystemProfileReqHdlr:setAlertEscalateAndArchiveTimeouts (Sequence Diagram)

This sequence diagram shows processing when user wants to configure the alert escalation time out and Archive time out. There are 5 alert types: Unhandled Resource Alert, Device Failure Alert, Duplicate Event Alert, Event Still Open Alert, Generic Alert. The user gets time as days, hours, minutes from the form. Then convert to milliseconds to store to the system.

[image: image211.emf][for each property]

SetConfigEscalateAndArchiveTimeout() canChangeSysProfile()

HttpSession getAttribute(MainServlet.SESSION_

ATTR_LOGIN_SESSION)

put("pageContent", "Results.vm")

[parameters missing]

Error.vm

put("heading", "Set Alert Escalate and Archive Timeouts")

put("buttonAction", "getEditSystemProfileForm")

new

token

SystemProfileReqHdlr NavLinkRights the parameters need to get:

(change "EAndATimeout" to each of them)

unhandledRsrcEscalateDays

unhandledRsrcEscalateHours

unhandledRsrcEscalateMins

deviceFailureEscalateDays

deviceFailureEscalateHours

deviceFailureEscalateMins

duplicateEventEscalateDays

duplicateEventEscalateHours

duplicateEventEscalateMins

eventStillOpenEscalateDays

eventStillOpenEscalateHours

eventStillOpenEscalateMins

genericEscalatetDays

genericEscalateHours

genericEscalateMins

alertArchiveDays

alertArchiveHours

alertArchiveMins

Properties

getAccessToken()

getSession()getNavLinkRights()

[no right to change system profile]

Error.vm getParameter("EAndATimeout")

Results.vm

put("success", "true")

setProps(token, properties)

[error in setting parameters

 to systemProfile]

Error.vm

put("buttonName", "Back to System Profile")

User HttpServletRequest UserLoginSessionImpl SystemProfileProperties the parameters in SystemProfileProperties:(change "EAndATimeoutTime" to each of them)

UNHANDLED_RESOURCE_ALERT_ESCALATE_TIME_MILLIS

DEVICE_FAILURE_ALERT_ESCALATE_TIME_MILLIS

DUPLICATE_EVENT_ALERT_ESCALATE_MILLIS

EVENT_STILL_OPEN_ALERT_ESCALATE_TIME_MILLIS

GENERIC_ALERT_ESCALATE_TIME_MILLIS

ALERT_ARCHIVE_TIME_MILLIS

Context setProperty("EAndATimeoutTime","time")

time =days+hours+mins

convert to milliseconds

Figure 5‑149. SystemProfileReqHdlr:setAlertEscalateAndArchiveTimeouts (Sequence Diagram)

5.24 GUI chartlite.servlet.location

5.24.1 Classes

5.24.1.1 chartlite.servlet.location_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to locations.

[image: image212.emf]LocationReqHdlr RequestHandler «interface» getCountyAndRegionNamesXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetRouteNumbersXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetIntersectingRoadsXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetAliasLocationInfoXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

Figure 5‑150. chartlite.servlet.location_classes (Class Diagram)

5.24.1.1.1 LocationReqHdlr (Class)

This class will handle generic location-related requests.

5.24.1.1.2 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.24.2 Sequence Diagrams

5.24.2.1 LocationReqHdlr:getAliasLocationInfoXML (Sequence Diagram)

This diagram shows how the alias information is retrieved for a given alias name. The alias name specified in the request is used to query the location data from the WebLocationLookup alias cache (which is updated during discovery). The location data (and error message, if applicable) are added to the Velocity context and the appropriate template is returned for building the XML response using Velocity.

[image: image213.emf]User

(via Flex)

LocationReqHdlr HttpServletRequest WebLocationLookup

getAliasLocationInfoXML

getParameter("aliasName")

get()

getAliasLocationInfo(aliasName)

AliasLocationInfoXML.vm

put("aliasLocationInfo", aliasLocation)

Context

[error occurred]

put("errMsg", errMsg)

WebAliasLocation

Retrieve Alias Location

From Cache

The alias locations

cache will be updated

during discovery.

Figure 5‑151. LocationReqHdlr:getAliasLocationInfoXML (Sequence Diagram)

5.24.2.2 LocationReqHdlr:getCountyAndRegionNamesXML (Sequence Diagram)

This diagram shows how the servlet processes the request to get the counties and regions for a given state. The state abbreviation parameter is used to retrieve the county and region names from the WebLocationLookup class. If the information is not cached, a call is made to the first available RoadwayLocation server-side object to get them. They are then sorted and stored in the cache for faster lookup next time. If any counties were found, the most recently used (MRU) county/region list is retrieved from the user profile for the given state. The MRU list and the full list of counties are put into the Velocity context so that they can be included in the XML response. If an error occurred, that too is included so that it can be displayed to the user.

[image: image214.emf]HttpServletRequest This will use a FirstAvailableOfferWrapper to find the first RoadwayLocation CORBA object that works. See the getIntersectingRoadsXML diagram for a more detailed example of this technique. LocationReqHdlr RoadwayLocation getParameter("stateAbbrev") [not cached] Get Counties And Regions By State Context UserProfileProperties [counties or regions returned] getCountyMRUList(stateAbbrev) [mru counties returned] put("mruCounties", mruCounties) [not cached] Store Counties And Regions In Cache [not cached] Sort Counties And Regions CountyAndRegionNamesXML.vmUserLoginSessionImpl put("countiesAndRegions", countiesAndRegions) [counties or regions returned] getUserProfile()String[] [mru counties returned] put("defaultCountyName", mruCounties[0]) String[] getCountyAndRegionNames(stateAbbrev)[error occurred] put("errMsg", errMsg) WebLocationLookup getCountyAndRegionNamesXMLUser(via Flex)

Figure 5‑152. LocationReqHdlr:getCountyAndRegionNamesXML (Sequence Diagram)

5.24.2.3 LocationReqHdlr:getIntersectingRoadsXML (Sequence Diagram)

This shows the processing when the intersecting route numbers and names are requested. The state, county, route type, and route parameters are retrieved from the request and used to query the intersecting route numbers from the WebLocationLookup object. The intersecting route numbers will be requested from the server using a FirstAvailableOfferWrapper to find a RoadwayLocation interface that works. The returned route numbers and names are split into two arrays (one for route numbers and one for names), sorted, and put into the Velocity context and the template is returned so that the intersecting routes XML response can be built using Velocity.

[image: image215.emf]put("routeNames", routeNames)

[error occurred]

put("errMsg", errMsg)

IntersectingRoadsXML.vm

FirstAvailableOfferWrapperIterator

RoadwayLocationWebRouteNumberAndName

[* for each route]

Context createIterator

create

Iterator

next

Get Intersecting Route Names

[while

iterator.hasNext()

and

call not yet successful

and no CHART-level

exception thrown]

WebRouteNumberAndName[]

Create 2 String lists (one

for route numbers and one

for names) and sort them

array of structures

containing route number and name

create

User(via Flex)LocationReqHandler HttpRequest WebLocationLookup getIntersectingRoadsXML

getParameter("stateAbbrev")

getParameter("countyName")

getParameter("routeType")

getParameter("routeNumber")

getIntersectingRoads(stateAbbrev, county, routeType, route)

put("routeNumbers", routeNumbers)

Figure 5‑153. LocationReqHdlr:getIntersectingRoadsXML (Sequence Diagram)

5.24.2.4 LocationReqHdlr:getRouteNumbersXML (Sequence Diagram)

This shows the processing when the route numbers are requested. The state, county, and route type parameters are retrieved from the request and used to query the route numbers from the WebLocationLookup object. For interstates and US routes, the routes may be cached in WebLocationLookup and will be returned if they are cached. Otherwise, the route numbers will be requested from the server using a FirstAvailableOfferWrapper to find a RoadwayLocation interface that works. The returned route numbers (if any) are sorted and if they are interstates or US routes, they are stored in the cache for later use. The route numbers are then put into the Velocity context and the template is returned so that the route numbers XML response can be built using Velocity.

[image: image216.emf]RouteNumbersXML.vm

This will use a

FirstAvailableOfferWrapper

to find the first RoadwayLocation

CORBA object that works.

See the getIntersectingRoadsXML

diagram for a more detailed

example of this technique.

Only Interstate and US

route types are cached

because there are

relatively few of these

routes and they will be

used more often.

[error occurred]

put("errMsg", errMsg)

Context

[interstate or US route type]

Sort and Store in Cache

[not interstate or US route type]

Sort Route Numbers

String[]

put("routeNumbers", routeNumbers)

User

(via Flex)

LocationReqHdlr HttpServletRequest WebLocationLookup RoadwayLocation

getParameter("stateAbbrev")

getParameter("routeType")

getRouteNumbers(stateAbbrev, countyName, routeType)

getRouteNumbersXML

getParameter("countyName")

get()

[not cached]

Get Route Numbers

String[]

Figure 5‑154. LocationReqHdlr:getRouteNumbersXML (Sequence Diagram)

5.25 GUI chartlite.util

5.25.1 Classes

5.25.1.1 chartlite.util_classes (Class Diagram)

This diagram shows utility classes used in the CHART GUI servlet.

[image: image217.emf]ServletUtil getObjectFromIDString(dataModel:DataModel, idStr:String) : Object

getCurrentUserToken(req:HttpServletRequest):byte[]

Figure 5‑155. chartlite.util_classes (Class Diagram)

5.25.1.1.1 ServletUtil (Class)

This class provides static utility methods useful to request handlers in the servlet.

5.26 GUI chartlite.util.lane

5.26.1 Classes

5.26.1.1 chartlite.util.lane_classes (Class Diagram)

This diagram shows classes related to lane configurations and lane status.

[image: image218.emf]chartlite.util.lane.LaneType

«enumeration»chartlite.util.lane.Lane chartlite.util.lane.LaneConfigReferenceDir «enumeration» chartlite.util.lane.LaneTrafficFlowDirection

«enumeration»

These classes represent most of the lane configuration and state of the LaneConfiguration IDL struct, while remaining

independent of the IDL classes. While independence from the IDL was originally needed for the old lane applet, it continues to be

useful for prototyping, or in case an applet is ever used again. Therefore the LaneDisplay will use these classes.

The "lane info string" is text that represents the lane configuration and state represented by these classes.

The string will be manipulated by Javascript on the web pages and will be used to submit changes in lane state

and lane direction.

The string will consist of 1 character for the lane configuration reference direction (as defined in LaneConfigReferenceDir),

followed by 6 characters for each lane. Each lane will be encoded as having a leading underscore('_'), followed by 5 characters:

- 1 character lane orientation, as defined in the LaneOrientation enumeration

- 2 character lane type, as defined in the LaneType enumeration

- 1 character traffic direction, as defined in the TrafficDir enumeration

- 1 character lane state, as defined in the LaneState enumeration

For example, the following represents a N/S roadway, 2 lanes each direction with shoulders and median,

with northbound traffic lanes closed:

N_0SHPO_0TRPO_0TRPO_0SHPO_1MNNO_1SHPO_1TRPC_1TRPC_1SHPO

chartlite.util.lane.LaneConfiguration chartlite.util.lane.LaneOrientation

«enumeration»

chartlite.util.lane.LaneState

«enumeration»

*1 -LaneType(code:String)

getCode() : String

fromCode(code:String): static LaneType

toString() : String

Shoulder["SH"]

TrafficLane["TR"]

CollectorDistributorLane["CD"]

TunnelLane["TU"]

TollLane["TO"]

CenterTurnLane["CT"]

RightOnRamp["RN"]

RightOffRamp["RF"]

RightMergeLane["RM"]

RightAccelerationLane["RA"]

RightTurnLane["RT"]

RightDecelerationLane["RD"]

LeftOnRamp["LN"]

LeftOffRamp["LF"]

LeftMergeLane["LM"]

LeftAccelerationLane["LA"]

LeftTurnLane["LT"]

LeftDecelerationLane["LD"]

DoubleYellowLine["DY"]

Median["MN"]

m_code : String

LaneConfiguration(referenceDir : LaneConfigReferenceDir, lanes : Lane[]) create(laneInfo : String) : static LaneConfiguration getLaneInfoStr() : String getLanes() : Lane[] m_referenceDir : chartlite.util.lane.LaneConfigReferenceDir m_lanes : chartlite.util.lane.Lane[] Lane(orientation:LaneOrientation, type:LaneType, trafficDir:LaneTrafficFlowDirection, state:LaneState)

orientation() : chartlite.util.lane.LaneOrientation

type() : chartlite.util.lane.LaneType

trafficDir() : chartlite.util.lane.LaneTrafficFlowDirection

state() : chartlite.util.lane.LaneState

m_orientation : chartlite.util.lane.LaneOrientation

m_type : chartlite.util.lane.LaneType

m_trafficDir : chartlite.util.lane.LaneTrafficFlowDirection

m_state : chartlite.util.lane.LaneState

-LaneOrientation(code:char)

getCode() : char

fromCode(code:char) : static LaneOrientation

SameAsLaneConfig['1']

OppositeLaneConfig['0']

m_code : char

-LaneConfigReferenceDir(code:char) getCode() : char fromCode(code:char) : static LaneConfigReferenceDir toString() : String North['N'] East['E'] OuterLoop['O'] m_code : char -LaneTrafficFlowDirection(code:char)

getCode() : char

fromCode(code:char) : static TrafficDir

Primary['P']

Opposite['O']

Bidirectional['B']

None['N']

m_code : char

-LaneState(code:char)

getCode() : char

fromCode(code : char) : static LaneState

Open['O']

Closed['C']

Unknown['U']

NonExistent['N']

m_code : char

Figure 5‑156. chartlite.util.lane_classes (Class Diagram)

5.26.1.1.1 chartlite.util.lane.Lane (Class)

This class represents a lane as defined in the Lane IDL structure, but is independent from it and may not contain all fields.

5.26.1.1.2 chartlite.util.lane.LaneConfigReferenceDir (Class)

This enumerates the allowed lane configuration reference directions, as defined in the LaneConfigReferenceDirection IDL enumeration.

5.26.1.1.3 chartlite.util.lane.LaneConfiguration (Class)

This class represents a lane configuration as defined in the LaneConfiguration IDL structure, but is independent from it and may not contain all fields.

5.26.1.1.4 chartlite.util.lane.LaneOrientation (Class)

This enumerates the allowed lane orientations relative to the lane configuration reference direction, as defined by a flag in the LaneConfiguration IDL structure.

5.26.1.1.5 chartlite.util.lane.LaneState (Class)

This enumerates the allowed lane states, as defined in the LaneState IDL enumeration.

5.26.1.1.6 chartlite.util.lane.LaneTrafficFlowDirection (Class)

This enumerates the allowed lane traffic directions, as defined in the LaneTrafficFlowDirection IDL enumeration. The "Primary" direction is the default traffic flow direction for most lanes (except for center turn lanes, which are bidirectional by default).

5.26.1.1.7 chartlite.util.lane.LaneType (Class)

This enumerates the lane types that will be supported by the lane display and the GUI. It corresponds to the LaneType enumeration in the IDL, but is independent of it.

5.27 GUI chartlite.lanedisplay

5.27.1 Classes

5.27.1.1 chartlite.lanedisplay_classes (Class Diagram)

This diagram shows classes related to the lane display graphic.

[image: image219.emf]LaneLogicalBounds LaneDisplay LaneDisplay(width:int, height:int, laneConfig:chartlite.util.lane.LaneConfiguration, roadLineWidthPixels:int, abbreviateDirNames:boolean, displayLaneConfigRefDirUp:boolean)getLogicalWidth(laneConfig:chartlite.util.lane.Lane[]) : static intgetWidth() : intgetHeight() : intgetLanePixelRects() : Rectangle[]paint(graphics:Graphics) : void-getLaneLogicalBounds(lanes:chartlite.util.lane.Lane[], isLaneConfigRefDirUp:boolean) : LaneLogicalBounds[]-isLaneOrientationUp(lane:chartlite.util.lane.Lane, isLaneConfigRefDirUp:boolean) : static boolean-isLaneOrentationUp(lane:chartlite.util.lane.Lane) : boolean-isLaneOrientationDown(lane:chartlite.util.lane.Lane) : boolean-isLaneTrafficDirUpOrBidirectional(lane:chartlite.util.lane.Lane) : boolean-isLaneTrafficDirDownOrBidirectional(lane:chartlite.util.lane.Lane) : boolean-drawStraightTravelLane(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawTollGate(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawDoubleYellowLine(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawMedian(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawTunnelBore(g:Graphics2D, firstBoreLane:chartlite.util.lane.Lane, lastBoreLane:chartlite.util.lane.Lane) : void-drawExitOrEntranceArrows(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawCenterTurnLaneArrows(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawExitOrEntranceArrow(g:Graphics2D, lane:chartlite.util.lane.Lane, arrowRect:Rectangle) : void-getExitOrEntranceArrowPolygon(arrowRect:Rectangle, up:boolean, right:boolean) : Polygon-getLanePixelRect(lane:chartlite.util.lane.Lane) : Rectangle-drawRamp(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawRampAngle(g:Graphics2D, quadrant:int, rect:Rectangle, state:LaneState) : void-drawDirectionLabels(g:Graphics2D) : void-hasLanesOrientedUp() : boolean-hasLanesOrientedDown() : boolean-drawLabel(g:Graphics2D, font:Font, x:int, y:int, str:String, color:Color) : void-drawNonExistentLaneForeground(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-getTrafficDirectionArrowWidth() : int-getTrafficDirectionArrowHeight() : int-drawLaneTrafficDirectionArrow(g:Graphics2D, lane:chartlite.util.lane.Lane) : void-drawLaneSeparatorLine(g:Graphics2D, solid:boolean, x:int, color:Color) : void-setLaneColor(g:Graphics2D, state:LaneState) : void-getUnknownLaneTextureImage() : BufferedImagem_roadLineWidthPixels : intm_logicalWidth : doublem_logicalHeight : doublem_font : Fontm_laneConfigRefDirUp : booleanm_lanes : chartlite.util.lane.Lane[]m_upDirName : Stringm_downDirName : Stringm_graphicWidthPixels : intm_graphicHeightPixels : intm_unknownLaneTextureImage : BufferedImagem_rampPavementPixelWidth : intm_lanePixelRects : Rectangle[]minX : double minY : double maxX : double maxY : double

Figure 5‑157. chartlite.lanedisplay_classes (Class Diagram)

5.27.1.1.1 LaneDisplay (Class)

This class paints the lane display graphic using a supplied Java Graphics object. It will support drawing all lane types defined in charlite.util.lane.LaneType. An instance of this class is intended to draw a single instance of a lane configuration - the number of lanes, lane types, and lane orientations are not allowed to change once a LaneDisplay is created.

Traffic direction arrows are drawn to indicate the current traffic flow direction for each lane. By default the lanes default to the "primary" direction, which is the same direction as the specified by the lane orientation. Thus the default lane direction for each lane is shown when the lane configuration is first selected, and is shown until the lane traffic direction is changed.

5.27.1.1.2 LaneLogicalBounds (Class)

This class is used internally for calculating the logical bounds of the rectangles containing the lanes, and is used before the lane rectangles are calculated in pixel coordinates.

5.28 HAR Control Module
5.28.1 Classes

5.28.1.1 HARControlModule (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR) devices in the CHART system. Details are only shown for classes that exist specifically for HAR control. Auxiliary classes used from other various utility or system interface packages are shown by name only. This diagram has not changed for R3B1. It is provided for context.

[image: image220.emf]«interface»

UniquelyIdentifiable

«interface»

CommandStatus

«interface»

CommEnabled

ArbitrationQueueEnabled

ReadWriteLock m_rwLock

POA m_poa

SyncCommandStatus

«interface»

GeoLocatable

«interface»

HAR

String reason

«exception»

NoSpaceAvailableException

«interface»

SharedResource

m_activeEntries:ArbQueueEntry[]

m_recoveryMode:boolean

:boolean

m_updateDateTimeFailed

m_lastQueuedSetMsgCmd:QueueableCommand

blankImpl(AccessToken, boolean mode, CommandStatus) : void

checkDateTimeFields() : void

checkRecoveryTime(int timeDown): boolean

monitorSlotImpl(AccessToken, long seconds, long slot,

 AudioPushConsumer, CommandStatus): void

putInMaintModeImpl(AccessToken, CommandStatus) : void

putInMaintModeWithSHAZAMsImpl(AccessToken, CommandStatus,

 HARMessageNotifierList): void

putOfflineImpl(AccessToken, CommandStatus) : void

setConfigurationImpl(AccessToken, HARConfiguration,

 CommandStatus) : void

setMessageImpl(AccessToken, HARMessage, boolean mode,

 CommandStatus, HARMessageNotifierList,

 ArbQueueEntryList, HARSetMsgCmd) : void

setOneUpNum(long oneUpNumber): void

setTransmitterState(desiredState:boolean, forceFlag:boolean): void

takeOfflineImpl(AccessToken, CommandStatus) : void

-activateNotifiersMaint(HARMessageNotifierIDList): void

-activateNotifiersOnline(NotifierTfcEvtList[]): void

-deactivateNotifiersMaint(HARMessageNotifierIDList): void

-deactivateNotifiersOnline(NotifierTfcEvtList[]): void

-doChildStatusUpdate(): void

-evaluateQueue(): void

-fmsGetConnectedPort(boolean pgm, CommandStatus): ConnectedPortInfo

-fmsReleasePort(ConnectedPortInfo, boolean pgm): void

-handleMaintNotifierActivation(MsgNotifier[]): void

-handleMaintNotifierDeactivation(MsgNotifier[]): void

-handleOnlineNotifierActivation(MsgNotifier[], TfcEvt[]):void

-handleOnlineNotifierDeactivation(MsgNotifier[], TfcEvt[]):void

-handleOpStatus(OperationalStatus, CommandStatus,

 boolean complete): boolean

-modifyNotifiers(NotifierTfcEvList[]): void

-persistAndPushHARConfig():void

-persistAndPushHARStatus():void

-removalCleanupImpl(): void

-requestFailed(ArbQueueEntry[] newEntries, boolean oldMsgStillUp): void

-requestSucceeded(ArbQueueEntry[] newEntries): void

-setupHAR(Port, CommandStatus) : boolean

-verifyNoResourceConflict(AccessToken, CommandStatus): void

HARImpl

MuxWaitSem

«typedef»

HARDeviceConfig

HARImpl may be ISSAP55HARImpl,

HISDR1500HARImpl, or SyncHARImpl.

HARProtocolHdlr may be

ISSAP55HARProtocolHdlr or

HISDR1500HARProtocolHdlr (or none).

HARDeviceConfiguration is a union which

may be ISSAP55HARConfig,

HISDR1500HARConfig, or SyncHARConfig.

HARSlotManager present only for

ISSAP55HARImpl and HISDR1500HARImpl.

See HARControlModule2 class diagram.

PushEventSupplier

«interface»

ServiceApplication

java.util.TimerTask

HARMsgNotifierWrapper

HARFactoryImpl m_factory

RefreshDateStampsTask

«interface»

HARMessageNotifier

1 or 2 cmd queues -

May be 1 just for

MonitorBraodcast,

depending on HAR model

java.util.Timer

HARFactoryImpl m_factory

getTimeDown()

HARRecoveryTimerTask

long m_interMessageSpacing

boolean m_shouldBeReevaluated

HARMessageNotifierIDList m_NotifiersCurrentlyActive

ArbQueueEntry[] m_activeEntries

long m_lastDateStampUpdateTime

«type»

HARData

CommandQueue

HARFactoryImpl m_factory

CheckForAbandonedHARTask

Identifier m_notifierID

ArbQueueEntryIndicator m_primeEntry

HashSet m_tfcEvts

«typedef»

NotifierTfcEvtList

«interface»

QueueableCommand

«interface»

ServiceApplicationModule

This diagram is

UNCHANGED for

R3B1. It was

New'ed by mistake.

HARSlotData slotData

AudioDataClip audio

boolean alreadyStored

String errorText

SlotClipAudioData

«typedef»

HARStatus

MessageQueue

«interface»

VoicePort

«interface»

SharedResourceManager

VoicePortLocator

java.lang.Vector m_harList;

checkForAbandonedHAR(): void

removeHAR(Identifier id):void

shutdown():void

checkForAbandonedResources():void

checkDateTimeFieldUpdates():void

checkHARRecovery(): void

getFirstImmediateSlotNumber(): int

getHARRuntimeSafetyMarginSecs():int

getMaxMsgRunTimeSecs(): int

getPollPortWaitTimeSecs(): int

getRecoveryPeriodMins(): int

getSHAZAMActivateTimeoutSecs():int

getSHAZAMDeactivateTimeoutSecs():int

getSHAZAMOfflineTimeoutSecs(): int

getSHAZAMOnlineTimeoutSecs(): int

getSHAZAMMaintTimeoutSecs(): int

getTotalCombinedMsgRunTime(): int

HARFactoryImpl

«interface»

AudioClipManager

getDictionary():Dictionary

-registerTraderTypes():void

HARControlModule

«type»

ArbQueueEntry

«interface»

HARFactory

HARProtocolHdlr

HAR holds

VoicePort

temporarily

while

communicating

with device.

changeDescriptionOfSlotData(oldClip:HARMessageClip,

 newClip:HARMessageClip):void

storeClip(ConnectedPortInfo, desc, SlotClipAudioData, cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer):void

storeClips(ConnectedPortInfo, desc, SlotClipAudioData[], cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer):void

storeMsg(ConnectedPortInfo, SlotClipAudioData[], desc, cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer):void

remove(ConnectedPortInfo, desc, slot:int,cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer, lockSlots):void

reserveStatusFailedReset(SlotClipAudioData[],index):void

restoreAll(ConnectedPortInfo, desc, SlotClipAudioData[], cmdStat,

 erase:boolean, completeOnFailure:boolean, warnTxt:StringBuffer) :void

-clipInSlot(HARMessageClip):int

-clonePrivateSlotData(HARSlotData[]):HARSlotData[]

-collectAudioData(SlotClipAudioData[],desc,cmdStat,complete:boolean):void

-deregisterNewlyRegisteredClips():void

-findClip(HARMessageClip, clipPos:string):int

-firstAvailImmedSlot(prevAvail:int,cmdStat):int

-fmsDownloadClip(ConnectedPortInfo, desc, slot, AudioDataClip,

 cmdStat, completeOnFailure:boolean):void

-fmsRemoveClip(ConnectedPortInfo, desc, slot:int, cmdStat,

 completeOnFailure:boolean):void

-initPOA(desc, cmdStat,complete:boolean):void

-initPrivateSlotData():void

getClipInSlot(slotNumber,desc,CommandStatus):HARMessageClip

getMillisAvailMsg():int

getMillisAvailSlot(slotNumber):int

hasDataReserved():boolean

isUsingClip(Identifier audioClipID)(): boolean

deregisterAllClips(): void

-precheckSpaceAvail(SlotClipAudioData[], desc, cmdStat,

 complete:boolean, precheckType:int):void

prepareAudioDataForAll(desc,cmdStat,complete:boolean):SlotClipAudioData

prepareAudioDataForBlankMsg():SlotClipAudioData

prepareAudioDataForClip(slotData:HARSlotData,desc,cmdStat,

 precheckType:int):SlotClipAudioData

prepareAudioDataForClips(HARSlotData[],desc,cmdStat):SlotClipAudioData[]

prepareAudioDataForDefaultClips(desc,HARDeviceConfig,cmdStat,

 complete:boolean):SlotClipAudioData

prepareAudioDataForMsg(HARMesage, cmdStat):SlotClipAudioData[]

-prepareClipForSlot(HARMessageClip, clipPos:string, prevImmedSlotUsed:int,

 cmdStat):SlotClipAudioData

rebuildPlayListForMsg(HARMessage):int[]

-slotToBeReused(slotNumber, SlotClipAudioData):boolean

-updateHARsSlotData(desc, warnTxt:StringBuffer):void

HARSlotManager

1 or 2 locators -

Maybe 1 for monitor

port, depending on HAR

type.

«interface»

AudioPushConsumer

HARMessageClip m_clip

SlotClipAudioData m_data

byte[] m_collectedData

AudioDataCollector(HARMessageClip clip,

 ReadWriteLock rwLock)

collectData(): void

AudioDataCollector

getDateStampRefreshTimeOfDay():string

getFirstImmediateSlotNumber(): int

getHARRuntimeSafetyMarginSecs():int

getMaxMsgRunTimeSecs(): int

getPollPortWaitTimeSecs(): int

getPollTimerDelaySecs(): int

getRecoveryPeriodMins(): int

getRecoveryTimerDelaySecs(): int

getSharedResMonIntSecs():int

getSHAZAMActivateTimeoutSecs():int

getSHAZAMDeactivateTimeoutSecs():int

getSHAZAMOfflineTimeoutSecs(): int

getSHAZAMOnlineTimeoutSecs(): int

getSHAZAMMaintTimeoutSecs(): int

getTotalCombinedMsgRunTime(): int

getHARFactoryID():Identifier

HARControlModuleProperties

DBConnectionMgr m_db

HARControlDB(db)

getObjects():HARImpl[]

getConfiguration(AccessToken):Chart2HARConfiguration

getStatus(Identifier):Chart2HARStatus

insertHAR(Chart2HARConfiguration):void

removeHAR(harID):void

setConfiguration(Identifier, Chart2HARConfiguration):void

setStatus(Identifier, Chart2HARStatus):void

HARControlDB

DBConnectionManager

1

*

*

1

1

1

1 1

1 *

*

1

1

1

1

1

0..1

0..1 0..2

1

1

1

1

*

1

1

0..1

1

1

1

*

1

1

1

0..1

0..1

* 1

0..1 waits for SHAZAM and

constituent HAR cmds to

complete using

1

1

1

1

1

1

*

1

*

1

*

1

1

marks SHAZAM

and constituent

HAR cmds

complete with

1

*

1

1

1

*

*

1

1 1

1

1

1

*

1

1

1

1

1

*

1

1

0..1

1

Figure 5‑158. HARControlModule (Class Diagram)

5.28.1.1.1 ArbitrationQueueEnabled (Class)

This interface is implemented by classes which are to have arbitration queues.
5.28.1.1.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the ArbQueueEntryIndicator for the entry.)

5.28.1.1.3 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their "interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

5.28.1.1.4 AudioDataCollector (Class)

This object is used to stream a HARMessageClip and write the streamed audio .wav data to a .wav file. It is used as a utility by the HARSlotManager to prepare HARMessageClips for download into the HAR (which is accomplished via the ISSAP55HARProtocolHdlr by passing the file name of the .wav file into it).

5.28.1.1.5 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

5.28.1.1.6 CheckForAbandonedHARTask (Class)

This class is a timer task that is executed periodically by a timer. When the run method in this class is called, it calls the HARFactoryImpl's checkForAbandonedResources() method, which causes the factory to evaluate each HAR in the factory and issue an abandoned resource event for any HARs which have a controlling op center with no users logged in.

5.28.1.1.7 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.28.1.1.8 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

5.28.1.1.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

5.28.1.1.10 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.28.1.1.11 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.28.1.1.12 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler. This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

5.28.1.1.13 HARControlDB (Class)

This class contains all the database interaction for the HARControlModule. This class provides the ability to retrieve all HAR information on initialization, update of the configuration and status information, and insert or remove a HAR device from the system.

5.28.1.1.14 HARControlModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for publishing HAR objects and the HARFactory object within a service application. This class is the controlling class for the HAR module, providing for the initialization and overall operation of the module. This class creates and starts the timer tasks necessary for refreshing datestamps on the HAR, checking for abandoned shared resources, and recovery processing.

5.28.1.1.15 HARControlModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by objects within the HARControlModule for the current instance of the application. These settings are read during the module initialization. The module must be restarted to apply any changes made to the properties file.

5.28.1.1.16 HARData (Class)

This class is used to store and persist data pertaining to a HAR which is not part of the HARStatus (i.e., not transmitted to clients in status updates or at any other time).

5.28.1.1.17 HARDeviceConfig (Class)

HARDeviceConfig is a union which can contain the configuration for a ISS AP55 HAR, a HIS DR1500 HAR, or a Synchronizable HAR (a "virtual" HAR representing a collection of synchronized HARs). In R2B3 only DR1500 HARs are synchronizable.

5.28.1.1.18 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR objects under the domain of the specific HARFactory object.

5.28.1.1.19 HARFactoryImpl (Class)

This class implements the HARFactory interface as defined by the IDL specified in the System Interfaces section. This class maintains the HAR objects served by this HAR service.

5.28.1.1.20 HARImpl (Class)

This class implements HAR as defined by IDL specified in the System Interfaces section. Since there is only one model of HAR currently envisioned for CHART, this HARImpl class is implementing the ISS AP55 HAR specifically.

5.28.1.1.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message.

5.28.1.1.22 HARMsgNotifierWrapper (Class)

This wrapper class is used to wrap HAR message notifiers associated with a HAR. This class handles finding the reference of the notifier object given only the object's ID. The object discovery is done at the point of first use or if a currently held reference produces a CORBA failure when used.

5.28.1.1.23 HARProtocolHdlr (Class)

This class contains implements the protocol to communicate with a HAR.
5.28.1.1.24 HARRecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process. During normal operations, this task's sole purpose is to write a timestamp to a file each time it is called. This timestamp file serves to provide, to an approximation as accurate as its frequency of invocation, when the HARService last went down, an essential piece of information for recovery during HARService startup. When the HARService has recently started up, this Task, in addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory (checkHARRecovery) which requests all HAR objects to check and see if their recovery period has expired. (The recovery period is a system-wide constant, on the order of 10-15 minutes.) Each HAR terminates its recovery period as soon as all its TrafficEvents are resolved, or when the message queue is modified through an addEntry or changePriority call, or, if neither of those cases happens, at the end of the recovery period timer. (When all HARs have terminated their recovery period, checkHARRecovery is no longer called.)

When each HAR checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its MessageQueue to take one last try at resolving traffic events on its queue, then the HAR makes final a determination as to what message (or blank) belongs on the sign, and it requests the HAR to set its message appropriately (either to the message(s) at the top of the queue, or to the default message, if no messages are queued.

5.28.1.1.25 HARSlotManager (Class)

This class manages the slot usage for the HARImpl. When a clip is to be stored in the HAR controller, this class is called instead of calling the ISSAP55HARProtocolHdlr directly. This class ensures the reserved slot numbers (default header, default trailer, default message, immediate message slots) are not overlaid with other clips stored in the controller. When clips are stored in slots in the controller, this class keeps track of the run time for each and the total run time for the device and provides an error when the storage of a clip exceeds the configured available run time of the device.

This class also manages the condition when multiple slots are needed for the current (immediate) message. This will be true any time multiple messages are combined into one message on the HAR (up to the maximum play time for a combined message). A HAR has many immediate slots available for cases such as this.

5.28.1.1.26 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains other private status data elements which are not elements of this class.)

5.28.1.1.27 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.28.1.1.28 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.28.1.1.29 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in a prioritized list.

5.28.1.1.30 MuxWaitSem (Class)

This object is used block execution of a thread while it is running multiple long running commands which need to be waited on. This class watches the SyncCommandStatus of each command and releases control back to the main thread when all "child" long-running processes have completed their respective CommandStatus object.

5.28.1.1.31 NoSpaceAvailableException (Class)

This exception is thrown by the HARSlotManager when there is not enough room in the HAR to store the desired message as requested. This exception is local to the HAR service only. If the exception needs to propagate out to a user (GUI), it is converted to a CHART2Exception first. The distinction is required within the HAR service since a NoSpaceAvailableException is not to be considered a failure of the device or the communications.

5.28.1.1.32 NotifierTfcEvtList (Class)

This class is used to keep track of the relationships between HAR notifiers, and the traffic events which are requesting that they be activated. One traffic event is chosen to be the primary one, and is used as part of the ArbQueueEntryIndicator stored within this class. The m_primeEntry and m_tfcEvents are used as parameters to activate and/or modify the HAR notice on the notifier.

5.28.1.1.33 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.28.1.1.34 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.28.1.1.35 RefreshDateStampsTask (Class)

This class is a timer task that is executed periodically by a timer. When executed, the run method of this class calls the HARFactoryImpl's checkDateTimeFieldUpdates(), which in turn calls each HAR in the factory to have it determine if it needs to update any field messages that use datestamp fields. These messages are reconverted to voice, and the datestamp tag, in the format "<DATESTAMP>" is replaced by text words for the day of week, month, and day of month (e.g. "Wednesday, July 14"). The reconverted messages are then queued to be resent to the HAR.

5.28.1.1.36 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.28.1.1.37 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.28.1.1.38 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

5.28.1.1.39 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

5.28.1.1.40 SlotClipAudioData (Class)

This class is used to help keep track of and pass around slot data. This class associates a clip with a particular slot and usage, and with a file name which contains its audio (wav) data. The fileName is passed to the ISSAP55ProtocolHdlr to store the wav data in the slot.

5.28.1.1.41 SyncCommandStatus (Class)

A SyncCommandStatus implements the CommandStatus interface and performs a notification when it is completed. It is used by the HAR service to track the activity of HARMessageNotifiers, which may operate asynchronously and provide status later via a CommandStatus.

5.28.1.1.42 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.28.1.1.43 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform send and receive operations while connected that result in DTMF or voice being sent across the telephone connection to or from the device.

5.28.1.1.44 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

5.28.2 Sequence Diagrams

5.28.2.1 HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)

This sequence diagram shows how the CheckForAbandonedHARTask object executes its task when directed to run by the Java Timer object. The run() method of CheckForAbandonedHARTask gets the controlling op center of each HAR and builds a list of OperationsCenter objects with control one or more HARs. Each OperationsCenter is then queried for the number of users logged in. If the number of users at an OperationsCenter is zero, this fact is logged and an UnhandledResourcesAlert is created using the AlertFactoryWrapper.

[image: image221.emf]New for R3B1. Call to AlertManagerFactoryWrapper replaces push of UnhandledControlledResources event. AlertFactoryWrapper OperationsCenter CosTrading.Lookup HARImpl HARFactoryImpl java.util.TimerOperationsLog CheckForAbandonedHARTaskPushEventSupplier checkForAbandonedHAR()
 [no users] createUnhandledResourcesAlert(m_systemToken, op ctr ID, "<op ctr name> has ctrld resource(s) w no one logged in", AMG for op ctr ID) run()[*for each op ctr which controls at least one HAR] getNumLoggedInUsers [*for each HAR] getControllingOpCenter [*for each unique op ctr ID] query(op center where ID = op center IDs) [no users] log

Figure 5‑159. HARControlModule:runCheckForAbandonedHARTask (Sequence Diagram)

5.29 Resources Module
5.29.1 Classes

5.29.1.1 ResourceManagementClassDiagram (Class Diagram)

This class diagram depicts the CORBA IDL interface defined for working with Alerts in the CHART system. The classes defined in this diagram make up the ResourceManagement package. These classes are coded into the ResourceManagement IDL file.

[image: image222.emf]New for R3B1:

getStatus()

isUserLoggedInWithRight()

isAnyUserLoggedInWithAnyRights()

isAnyOneUserLoggedInWithAllRights()

forceLogout() : void

getOpCenter() : OperationsCenter

getUsername() : string

ping() : boolean

sendMessage() : void

UserLoginSession

createOperationCenter() : void

getOperationCenterList() : OperationsCenter[]

«interface»

OperationsCenterFactory

changeUser() : AccessToken

forceLogout() : void

getControlledResources() : SharedResource[]

getLoginSession() : UserLoginSession

getLoginSessions() : UserLoginSession[]

getNumLoggedInUsers() : long

isUserLoggedIn() : boolean

isUserLoggedInWithRight(right : FunctionalRight) : boolean

isAnyUserLoggedInWithAnyRights(rights : FunctionalRight[]) : boolean

isAnyOneUserLoggedInWithAllRights(rights : FunctionalRight[]) : boolean

loginUser() : AccessToken

logoutUser() : void

transferSharedResources() : void

verifyUserPassword() : boolean

getStatus() : OpCenterStatus

getConfiguration() : OpCenterConfiguration

setConfiguration() : void

getBackupOpCenters() : Identifier[]

getAllSystemResponseParticipants() : ResponseParticipant[]

getEligibleResponseParticipants() : ResponseParticipant[]

addEligibleResponseParticipant() :void

removeEligibleResponseParticipant() :void

remove() :void

«interface»

OperationsCenter

backupOpCenters new

for R3B1. List of operations

centers to which to escalate

this center's unaccepted alerts.

getID()

getName()

«interface»

UniquelyIdentifiable

name : string

defaultMonitorGroupID : Identifier

backupOpCenters : Identifier[]

«datatype»

OpCenterConfiguration

«interface»

Organization

numLoggedInUsers : int

allUsersRightsUnion : FunctionalRight[]

«datatype»

OpCenterStatus

getResources():SharedResource[]

getControlledResources(OpCenterID):SharedResource[]

hasControlledResources(OpCenterID):boolean

«interface»

SharedResourceManager

New class for R3B1.

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

«interface»

SharedResource

setControllingOpCenter(token,opCtrInfo:OpCenterInfo)

«interface»

TransferableSharedResource

1

1

1

1

*

1

* 0..1

owns

1 Is owned

by

*

*

1

1 *

Figure 5‑160. ResourceManagementClassDiagram (Class Diagram)

5.29.1.1.1 OpCenterConfiguration (Class)

This structure contains the configuration data for an operations center. It is used to transmit configuration of operations centers from the Resource Manger serving it to other interested parties.

5.29.1.1.2 OpCenterStatus (Class)

This class contains the status of an operations center. This class was introduced for R3B1 to transmit status of operations centers from the Resource Manger serving it to other interested parties. The data stored in the OpCenterStatus includes the number of users currently logged into the center and the union of all functional rights held by all users currently logged into that center.

5.29.1.1.3 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used to log users into the system. If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user. This token is then used to call privileged methods within the system. Shared resources in the system are either available or under the control of an OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control. This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

5.29.1.1.4 OperationsCenterFactory (Class)

The OperationCenterFactory provides a means to create new OperationsCenter objects and add them to the system.

5.29.1.1.5 Organization (Class)

An organization is any agency or entity that participates in the CHART system.

5.29.1.1.6 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

5.29.1.1.7 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

5.29.1.1.8 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use but may also be allowed to transfer control of that resource to another operations center.

5.29.1.1.9 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

5.29.1.1.10 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system. This object is served from the GUI and provides a means for the servers to call back into the GUI process.

5.29.1.2 ResourceClasses (Class Diagram)

This diagram shows the classes in the ResourcesModule, an installable service module that serves objects that implement the Organization and OperationsCenter interfaces.

[image: image223.emf]m_id : Identifier

m_opCenter : OperationsCenter

m_opCenterConfig : OpCenterConfig

m_opCenterStatus : OpCenterStatus

+ProxySimpleOpCenter(id : Identifier, ref : OperationCenter, cfg : OpCenterConfig,

 stat : OpCenterStatus) : ctor

+getBackupOpCenters() : Identifier[]

getName() : string

getNumLoggedInUsers() : int

isUserLoggedIn() : boolean

isUserLoggedInWithRight(right : FunctionalRight) : boolean

isAnyUserLoggedInWithAnyRights(rights : FunctionalRight[]) : boolean

setConfig(config : OpCenterConfiguration) : void

setStatus(status : OpCenterStatus) : void

ProxySimpleOpCenter

OperationsCenterFactory

-storeOpCenter(OperationsCenterImpl)

shutdown():boolean

removeOperationsCenter(

OperationsCenterImpl opCenter);()

OperationsCenterFactoryImpl

«interface»

Organization

New for R3B1.

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

«interface»

OperationsCenter

OrganizationImpl

New for R3B1.

Actual name:

OpCenterStatus

numLoggedInUsers : int

allUsersRightsUnion : FunctionalRight[]

«datatype»

OpCenterStatus2

OperationsCenterImpl(ORB orb, Database db,

 CosTrading.Lookup traderLookup) : ctor

-lookupLoginSession()

-removeLoginSession()

-addLoginSession()

-checkForUserLogins() : boolean

+shutdown()

-rename(string opCenterName) : boolean

OperationsCenterImpl

m_application

ResourcesModule()

ResourcesModule

string m_opCtrName

defaultMonitorGroup : Identifier

backupOpCenters : Identifier[]

«datatype»

OpCenterConfiguration

start(args : string[]) : boolean

shutdown() : boolean

getORB() : ORB

getPOA(string poaName) : POA

getTradingRegister() : CosTrading.Register

getTradingLookup() : CosTrading.Lookup

getEventChannelFactory() : EventChannelFactory

getDBConnectionManager() : DBConnectionManager

getOperationsLog() : OperationsLog

getProperties() : java.util.Properties

getDefaultProperties() : java.util.Properties

registerObject(obj, id, name, type, publish) : void

registerEventChannel(EventChannel, name) : void

withdrawObject(id) : void

getIDGenerator() : IdentifierGenerator

«interface»

ServiceApplication

Added for R3B1:

backupOpCenters

DBConnectionManager m_db

OperationsCenterDB(DBConnectionManager db)

getOperationsCenters()

getOrganizations()

storeLoginSessions()

getLoginSessions()

getUserFunctionalRights()

insertOperationsCenter()

deleteOperationsCenter()

setOperationsCenterName()

ResourcesDB

getOpCenter():OperationsCenter

getUsername():UserName

ping():boolean

void forceLogout(AccessToken token)

«interface»

UserLoginSession

query()

«interface»

CosTrading.Lookup

DBConnectionManager m_db;

getUsers()

getRoles()

getUser()

getUserRoles()

getUserPassword()

setUserPassword()

createRole()

deleteRole()

setRoleFunctionalRights()

getRoleFunctionalRights()

createUser()

deleteUser()

grantRole()

revokeRole()

setUserPassword()

setUserRoles()

getUserProfile()

deleteUserProfile()

getUserProfileProperties()

setUserProfileProperties()

deleteProfileProperty()

getSystemProfile()

getSystemProfileProperties()

setSystemProfileProperties()

UserManagementDB

init()

resolve_initial_references()

string_to_object()

object_to_string()

run()

«interface»

ORB

1 1

1

1

*

1

*

1

1

1

1

1

1

1

1

1

1

1

1

1

* 1

1

*

* 1

1

1

Figure 5‑161. ResourceClasses (Class Diagram)

5.29.1.2.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published.

5.29.1.2.2 OpCenterConfiguration (Class)

This structure contains the configuration data for an operations center.

5.29.1.2.3 OpCenterStatus2 (Class)

The actual name of this class is OpCenterStatus. It represents the status of an operations center. This class was introduced for R3B1 to transmit status of operations centers from the Resource Manger serving it to other interested parties. The data stored in the OpCenterStatus includes the number of users currently logged into the center and the union of all functional rights held by all users currently logged into that center.

5.29.1.2.4 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used to log users into the system. If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user. This token is then used to call privileged methods within the system. Shared resources in the system are either available or under the control of an OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control. This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

5.29.1.2.5 OperationsCenterFactory (Class)

This class is used to create new operations centers and maintain them in a collection.

5.29.1.2.6 OperationsCenterFactoryImpl (Class)

This class provides implementation of OperationsCenterFactory interface to manage OperationCenter objects in the system.

5.29.1.2.7 OperationsCenterImpl (Class)

This class provides the implementation of the OperationsCenter interface for this module. It, therefore, provides a concrete implementation of each of the methods in the interface. It also contains a collection of UserLoginSession objects, one for each user who is currently logged in.

5.29.1.2.8 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

5.29.1.2.9 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an organization, that is an administrative body which can control or own resources.

5.29.1.2.10 OrganizationImpl (Class)

This class provides the implementation of the Organization interface for this module. Thus, it provides a concrete implementation of each of the methods in the interface.

5.29.1.2.11 ProxySimpleOpCenter (Class)

This class is used as a proxy for operations centers existing in all user management services (including the local service). The proxy operations centers cached are not complete copies of the operations centers, because the full range of data is not needed. The ProxySimpleOpCenter data consists of the OpCenterConfiguration and the OpCenterStatus, but not the center's participant data. (This is why the names of this object contains the word "Simple".) These proxy operations centers allow every alert module service in the system to have some knowledge of every operations center in the entire system, for the quickly determining rights of the users at those operations centers.

5.29.1.2.12 ResourcesDB (Class)

This class provides a set of API calls to access the Operations Center data from the database. The API's provide functionality to add, remove and retrieve Operation Center data from the database. The connection to the database is acquired from the Database object which manages all the database connections.

5.29.1.2.13 ResourcesModule (Class)

This module creates, publishes and destroys all objects related to resource management that are used by the User Management service application.

5.29.1.2.14 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.29.1.2.15 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.29.1.2.16 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system. This object is served from the GUI and provides a means for the servers to call back into the GUI process.

5.29.1.2.17 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Managment data in the database. This class uses a Database object to retrieve a connection to the database for its exclusive use during a method call.

5.29.2 Sequence Diagrams

5.29.2.1 ResourcesModule:ChangeUser (Sequence Diagram)

A client with the correct functional rights may select to relinquish his/her workstation to another operator. This typically will happen at shift change. This sequence logs the new operator in before logging the old operator out, thereby guaranteeing that the shared resources controlled by the operations center have a responsible operator during the transition. If this method throws any type of exception, the old user is still logged in and the new user is not. If this method returns a token, the old user is logged out and the new user is logged in. The final updated OpCenterStatus is pushed in both events.

[image: image224.emf]synchronizedon m_status[*for each functional right of new logged in user]union right into allUsersRightsUnion OperationsCenterDB Remove the oldLoginSession andstore the new one.TokenManipulator OperationsCenterOperationsLog [logout failure]removeLoginSession[LoginFailure]log creategetUserPasswordlog deleteaddLoginSessionNew for R3B1. Update for R3B1: these events now include

OpCenterStatus struct in addition to LoginSession data..

Push in reverse order, LoggedIn first, then LoggedOut.

Both contain the same rights union, showing its final state.

push UserLoggedIn (with final allUserRightsUnion) m_status : OpCenterStatus PushEventSupplier compute new union of all users' rights(not counting new user) push UserLoggedOut (with final allUserRIghtsUnion) Remove the new login session because the old one could not be logged off.If the login sessionspecified is not a validlogin session for a loggedin user.ORBUserManagementDBLogoutFailureLoginFailureToken

changeUserremoveLoginSessiongetUserFunctionalRights[*for each functional right of new logged in user]add

Figure 5‑162. ResourcesModule:ChangeUser (Sequence Diagram)

5.29.2.2 ResourcesModule:ForceLogout (Sequence Diagram)

A client with the correct functional rights may force a particular user to be logged out of the CHART system. This is accomplished in two steps. The client would first needs to acquire a UserLoginSession object before calling this method (please refer to the sequence diagram for the getUserLoginSessions method for details). Once the client has acquired a UserLoginSession the user may contact the Operations Center where that UserLoginSession is being tracked and inform it that the user should be forcibly logged out. The OperationsCenter will call the forceLogout method on the specified UserLoginSession after removing the login session from its internal collection of login sessions. The final updated OpCenterStatus is pushed in the UserLoggedOutEvent. Note that it is possible for the user to call the forceLogout method directly on the UserLoginSession without informing the OperationsCenter. This method of forcing a user to logout is not good, because if this path is taken, the operations center will contain a reference to a UserLoginSession which is no longer valid, and will have an OpCenterStatus which will have the wrong number of logged in users and may have the wrong union of all user rights for a time. This situation is eventually corrected by pinging the UserLoginSession objects each time the getNumLoggedInUsers() method is called. (Please refer to that sequence diagram for details.)

[image: image225.emf]synchronizedon m_statusTokenManipulator ORBTokenManipulator forceLogout [AccessDenied] log create [LogoutFailure]LogoutFailurelog lookupLoginSessionAccessDenied checkAccess removeLoginSession forceLogoutAccessDeniedcheckAccess [access denied]AccessDenied[access denied] log decrement numUsersLoggedIn m_status : OpCenterStatusPushEventSupplier New for R3B1. recompute union of all remaining users' rights push UserLoggedOut event OperationsCenterImpl OperationsLog UserLoginSession Thrown if an erroroccurs forcing theuser login session tologoutUpdate for R3B1: UserLoggedOut event now includes an OpCenterStatus struct in addition to LoginSession data.

Figure 5‑163. ResourcesModule:ForceLogout (Sequence Diagram)

5.29.2.3 ResourcesModule:LoginUser (Sequence Diagram)

An client may login to the system. The system will verify that the user has specified the correct password by looking in the user database. If the user has specified the correct password, the system will create a token which contains the user's functional rights and will return it to the invoking client. The login session will be stored internally in the operations center in order to allow the center to respond to calls regarding shared resource control. A UserLoggedIn event is pushed which contains the new UserLoginSession and the updated OpCenterStatus.

[image: image226.emf]Update for R3B1: UserLoggedIn event now includes an OpCenterStatus struct in addition to LoginSession data. synchronizedon m_statusUpdated for R3B1. [*for eachfunctional right]PushEventSupplier union into allUsersRightsUnionTokenManipulator ORBOperationsCenterImplUserManagementDBOperationsLog addLoginSessiongetUserFunctionalRightsaddloginUsergetUserPassword[wrong password]LoginFailure[wrong password]logTokenlogcreateTokenNew for R3B1. m_status OpCenterStatus increment numLoggedInUserspush UserLoggedIn event

Figure 5‑164. ResourcesModule:LoginUser (Sequence Diagram)

5.29.2.4 ResourcesModule:LogoutUser (Sequence Diagram)

A user may log out of the system. When an operator does this, the system will ping each user login session it is tracking to verify the actual number of users who are currently logged in. If the current number of valid login sessions for this operations center is one, then this user cannot be allowed to logout if this operations center is currently controlling shared resources. In order to determine if the operations center has controlled resources, the system will contact all of the shared resource managers. If the operations center has controlled resources an exception will be thrown, otherwise the user will be logged out. The UserLoginSession for the departing user and an updated OpCenterStatus is pushed in the UserLoggedOut event.

[image: image227.emf]synchronized onm_statusUpdate for R3B1: UserLoggedOut event now includes an OpCenterStatus struct in addition to LoginSession data. m_status OpCenterStatus decrement numLoggedInUsers push UserLoggedOut event UserLoginSession count the numberof login sessionswhich are successfullypingedFind all shared resource managers CosTrading.LookupSharedResourceManager ORBNew for R3B1. OperationsCenterImplOperationsLog removeLoginSession [* for each login session] ping [Invalid login sessionor couldn't be pinged]LogoutFailure[if login session count == 1] query [* for each SharedResourceManager] hasControlledResources [last user && has Controlled Resources]HasControlledResourceslogoutUserlog PushEventSuplier recompute new union of all remaining users' rights

Figure 5‑165. ResourcesModule:LogoutUser (Sequence Diagram)

5.30 Roadway Location Module
5.30.1 Classes

5.30.1.1 RoadwayLocation (Class Diagram)

This class diagram depicts the CORBA IDL interface defined for roadway location lookup. There is only a single interface defined in this package: the RoadwayLocation interface itself.

[image: image228.emf]RoadwayLocation +getCountiesByState(state) : String []

+getAliasNames() : String []

+getRouteTypes() : String []

+getRoutesByRouteType(String state, String county,

 String routePrefix) : RoadwayLocationRoute []

+getIntersectingRoutes(String state, String county,

 String routePrefix, double routeNumber,

 String routeSuffix) : RoadwayLocationRoute []

+getMilepostRange(String state, String county,

 String routePrefix, double routeNumber,

 String routeSuffix) :int []

+getLocationDesc() : String

Figure 5‑166. RoadwayLocation (Class Diagram)

5.30.1.1.1 RoadwayLocation (Class)

The RoadwayLocation interface is implemented by objects that will access the GIS mapping database. Its primary role will be to retrieve data that will be used by the CHART GUI to populate data for any kind of roadway location, such as for a traffic event.

5.30.1.2 RoadwayLocationModule (Class Diagram)

[image: image229.emf]«interface»

ServiceApplication

«interface»

ServiceApplicationModule

getID()

getName()

«interface»

UniquelyIdentifiable

+initialize(ServiceApplication) : boolean

+shutdown(ServiceApplication) : boolean

-createEventChannel(String) : PushEventSupplier

-createEventLocation(int) : boolean

-addEventLocationTypeToTrader() : void

+getVersion() : ComponentVersion

RoadwayLocationModule

+getCountiesByState(state) : String []

+getAliasNames() : String []

+getRouteTypes() : String []

+getRoutesByRouteType(String state, String county,

 String routePrefix) : RoadwayLocationRoute []

+getIntersectingRoutes(String state, String county,

 String routePrefix, double routeNumber,

 String routeSuffix) : RoadwayLocationRoute []

+getMilepostRange(String state, String county,

 String routePrefix, double routeNumber,

 String routeSuffix) :int []

+getLocationDesc() : String

«interface»

RoadwayLocation

Properties m_props;

ServiceApplication m_serviceApp;

RoadwayLocationModuleProperties

+getID() : Identifier

+getName() : String

getLogFlags() : boolean[]

getHostName() : String

getProperties() : RoadwayLocationModuleProperties

-log(String, String, String)

-opLog(token,String,int,String,String)

RoadwayLocationImpl

Route appears to be taken

so, I'm pre-pending the name

RoadwayLocation to it.

m_state : String

m_county : String

m_roadName : String

m_routePrefix : String

m_routeNumber : double

m_routeSuffix : String

RoadwayLocationRoute

PushEventSupplier

getRoutesList(String state, String county,

 String routePrefix) : RoadwayLocationRoute []

getIntersectingRoutesList(String state, String county,

 String routePrefix, double routeNumber,

 String routeSuffix) : RoadwayLocationRoute []

getMilepostRangeList(String state, String county,

 String routePrefix, double routeNumber,

 String routeSuffix) : int []

RoadwayLocationDB

+getConnection() : java.sql.Connection

+getCurrentOpenCursors() : int

+releaseConnection() : void

+shutdown() : void

+verifyDBInitialized() : boolean

DBConnectionManager

1

1

1

1

1 1 1 1

1

1

1

1

Figure 5‑167. RoadwayLocationModule (Class Diagram)

5.30.1.2.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.30.1.2.2 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.30.1.2.3 RoadwayLocation (Class)

The RoadwayLocation interface is implemented by objects that will access the GIS mapping database. Its primary role will be to retrieve data that will be used by the CHART GUI to populate data for any kind of event locations such as a traffic event.

5.30.1.2.4 RoadwayLocationDB (Class)

The RoadwayLocationDB class provides an interface between the RoadwayLocation service and the GIS database. It contains a collection of methods that perform database operations on tables pertinent to RoadwayLocation. The class is constructed with a DBConnectionManager object, which manages database connections.

5.30.1.2.5 RoadwayLocationImpl (Class)

The RoadwayLocationImpl class provides an implementation of the RoadwayLocation interface.

The RoadwayLocationImpl contains *Impl methods that map to methods specified in the IDL In release R3B1, the methods are an interface to the GIS mapping database that will be used primarily by the CHART GUI to get Roadway Location information.

5.30.1.2.6 RoadwayLocationModule (Class)

The RoadwayLocationModule class is the service module for Roadway Location. It implements the ServiceApplicationModule interface. It creates and serves a single RoadwayLocationImpl object. It also creates RoadwayLocationDB, RoadwayLocationModuleProperties, and PushEventSupplier objects.

5.30.1.2.7 RoadwayLocationModuleProperties (Class)

The RoadwayLocationModuleProperties class is used to provide access to properties used by the Roadway Location Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Roadway Location Module.

5.30.1.2.8 RoadwayLocationRoute (Class)

The RoadwayLocationRoute class is a data structure that will hold the information about the roadway location, such as state, county, road name, route number, etc.

5.30.1.2.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.30.1.2.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.30.1.2.11 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.30.2 Sequence Diagrams

5.30.2.1 RoadwayLocation:ProvideCountyData (Sequence Diagram)

This sequence diagram describes how the system will get the data from the GIS mapping database.

[image: image230.emf]SystemRoadwayLocationImpl RoadwayLocationDB getCountiesByState()

getCountiesByStateList()

Figure 5‑168. RoadwayLocation:ProvideCountyData (Sequence Diagram)

5.30.2.2 RoadwayLocationModule:Initialize (Sequence Diagram)

This sequence diagram shows the initialization of the RoadwayLocationModule on Service startup.

[image: image231.emf]RoadwayLocationProperties RoadwayLocationImpl

RoadwayLocationDB

create

create

getEventChannel()

getDBConnectionManager()

create

register_object(RoadwayLocation)

initialize getDefaultProperties() getProperties()create PushEventSupplier

getEventChannelFactory()

registerEventChannel()

getOpLog()

activate_object(RoadwayLocation)

ServiceApplicationPOA

RoadwayLocationModule ServiceApplication

Figure 5‑169. RoadwayLocationModule:Initialize (Sequence Diagram)

5.30.2.3 RoadwayLocationModule:Shutdown (Sequence Diagram)

This sequence diagram shows the processing when the ServiceApplication which contains the RoadwayLocationModule is shut down. The RoadwayLocationModule disconnects the RoadwayLocationImpl from the ORB and then tells it to shut down.

[image: image232.emf]ServiceApplicationRoadwayLocationModule RoadwayLocationImpl POA shutdown deactivate_object(RoadwayLocation)

shutdown()

delete

delete

Figure 5‑170. RoadwayLocationModule:Shutdown (Sequence Diagram)

5.31 SHAZAM Control Module
5.31.1 Classes

5.31.1.1 SHAZAMControl (Class Diagram)

The SHAZAMControlModule serves a SHAZAMFactory object and SHAZAM objects. The class diagram below shows the classes used to implement these system interfaces. This diagram has not changed for R3B1 and is provided fro context only.
[image: image233.emf]getSHAZAMRefreshTimerMins():long

getSharedResMonIntSecs():long

getSHAZAMFactoryID():byte[]

SHAZAMControlModuleProperties

java.util.Timer

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

java.util.TimerTask

SHAZAMFactoryImpl m_factory

run()

RefreshSHAZAMTimerTask

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

«interface»

HARMessageNotifier

SHAZAMControlModule

SHAZAMFactoryImpl m_factory

run()

CheckForAbandonedSHAZAMTask

getResources() : SharedResourceList

getControlledResources(Identifier opCtrID) : SharedResourceList

hasControlledResources(Identifier opCtrID) : boolean

«interface»

SharedResourceManager

«interface»

ServiceApplication

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

«interface»

CommEnabled

createSHAZAM(AccessToken,

 SHAZAMConfiguration) : SHAZAM

getSHAZAMList():SHAZAMList

«interface»

SHAZAMFactory

DBConnectionManager m_db

SHAZAMControlDB(DBConnectionManager)

deleteSHAZAM(Identifier):void

getSHAZAMList():SHAZAMImpl[]

insertSHAZAM(Identifer,

 SHAZAMConfiguration):

 SHAZAMImpl[]

setStatus(Identifer, SHAZAMStatus,

 SHAZAMData):void

setConfiguration(Identifer,

 SHAZAMConfiguration):void

SHAZAMControlDB

«interface»

UniquelyIdentifiable

java.lang.Vector m_SHAZAMList

SHAZAMFactoryImpl(byte[] id,

 ServiceApplication serviceApp,

 SHAZAMControlDB db,

 PushEventSupplier evtRes,

 PushEventSupplier evtSHAZAM,

 RecurringTimer timer,

 long resMonIntSecs)

removeSHAZAM():void

checkForAbandonedShazams():void

refreshShazams():void

shutdown():boolean

SHAZAMFactoryImpl

setBeaconsOn(AccessToken, CommandStatus):void

setBeaconsOff(AccessToken, CommandStatus):void

refresh(AccessToken, CommandStatus):void

setConfiguration(AccessToken, SHAZAMConfiguration, CommandStatus)

getConfiguration(AccessToken) : OnOffDeviceConfiguration

getStatus() : SHAZAMStatus

remove(AccessToken):void

«interface»

SHAZAM

boolean m_maintMode

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

TrafficEvent m_trafficEvent

SHAZAMActivateCmd

«interface»

SharedResource

PushEventSupplier

ACTIVATE

DEACTIVATE

«enumeration»

SHAZAMStateAction

boolean m_maintMode

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMDeactivateCmd

«interface»

GeoLocatable

long m_lastRefreshTime

TrafficEvent[] m_activeTrafficEvents

SHAZAMImpl(SHAZAMFactoryImpl, SHAZAMControlDB, PushEventSupplier)

refreshSHAZAMState():void

setBeaconsState(SHAZAMStateAction, CommandStatus, boolean):boolean

handleOpStatus(OperationalStatus, CommandStatus, boolean):boolean

activateImpl(AccessToken, CommandStatus):void

deactivateImpl(AccessToken, CommandStatus):void

checkResourceConflict(AccessToken, CommandStatus):void

putInMaintenanceModeImpl(AccessToken, CommandStatus):void

putOnlineImpl(AccessToken, CommandStatus):void

refreshImpl(AccessToken, CommandStatus):void

setConfigurationImpl(AccessToken, Chart2DMSConfiguration,

 CommandStatus):void

shutdown():boolean

takeOfflineImpl(AccessToken, CommandStatus):void

SHAZAMImpl

TokenManipulator

«typedef»

SHAZAMConfiguration

«typedef»

SHAZAMStatus

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMPutOnlineCmd

«interface»

HAR

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMPutInMaintModeCmd

VikingRC2AProtocolHdlr

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMTakeOfflineCmd

CommandQueue

«interface»

TrafficEvent

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMConfiguration m_config

SHAZAMSetConfigurationCmd

byte[] token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMRefreshCmd

«interface»

QueueableCommand

*

1

1

1

*

1

is

using

is in

use by

* *

1

1

1

1

*

1 1

1

1

1

1

1

*

1

*

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1 1

1

1 1

Figure 5‑171. SHAZAMControl (Class Diagram)

5.31.1.1.1 CheckForAbandonedSHAZAMTask (Class)

The CheckForAbandonedSHAZAMTask class is responsible for detecting any SHAZAM device in maintenance mode with a message on it which has no one logged on at the controlling operations center. This would only occur as a result of an anomaly, such as a reboot of a user's machine, because during a normal CHART logout attempt, the logout is prohibited by CHART system if the user is the last user on his/her operations center and that operations center is controlling a maintenance mode sign. However, because anomalies happen, this task runs periodically to look for abandoned SHAZAM devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is called upon to actually check the SHAZAM objects and controlling operations centers of each SHAZAM every time this task is called.

5.31.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.31.1.1.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

5.31.1.1.4 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.31.1.1.5 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler. This interface contains methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating and monitoring the HAR in maintenance and online modes.

5.31.1.1.6 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a SHAZAM-like message.

5.31.1.1.7 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.31.1.1.8 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.31.1.1.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.31.1.1.10 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.31.1.1.11 RefreshSHAZAMTimerTask (Class)

The RefreshSHAZAMTimerTask class is responsible for refreshing all of the SHAZAM devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is called upon to request each SHAZAM to refresh itself (command the device to its last known status) if its refresh interval has expired, each time this task is called.

5.31.1.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.31.1.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.31.1.1.14 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition of the resource while the resource is in use.

5.31.1.1.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

5.31.1.1.16 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to interface with a SHAZAM field device. It specifies methods for activating and deactivating the SHAZAM in maintenance mode, refreshing the SHAZAM (commanding the device to its last known status), changing the configuration of the SHAZAM, and removing the SHAZAM. This interface is implemented by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command and control.

5.31.1.1.17 SHAZAMActivateCmd (Class)

This class contains data needed to activate a SHAZAM asynchronously via the CommandQueue. A flag is used to determine if the activation is being performed directly on the device while it is in maintenance mode or if the activation is being processed as an extension of setting a HAR message in response to a traffic event.

5.31.1.1.18 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to communicate configuration information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the configuration of an existing SHAZAM.

5.31.1.1.19 SHAZAMControlDB (Class)

This class provides access to database functionality needed to support the SHAZAM and SHAZAMFactory classes. This class provides a high level interface to allow for persistence and depersistence of SHAZAM and SHAZAMFactory objects.

5.31.1.1.20 SHAZAMControlModule (Class)

This class is a service module that provides control of SHAZAM devices. Upon initialization the module initializes a SHAZAMFactory which contains SHAZAM objects that have been previously added to the system. These objects are accessed via the CORBA ORB and manipulated directly from client applications. The module also creates support objects that are used by the SHAZAM (and SHAZAMFactory) objects to perform their processing, such as a database connection, event channels, and a periodic timer used to allow the objects to perform timer based processing.

5.31.1.1.21 SHAZAMControlModuleProperties (Class)

This class is used to provide access to properties used by the SHAZAM Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the SHAZAM Control Module.

5.31.1.1.22 SHAZAMDeactivateCmd (Class)

This class contains data needed to deactivate a SHAZAM asynchronously via the CommandQueue. A flag is used to determine if the deactivation is being performed directly on the device while it is in maintenance mode or if the deactivation is being processed as an extension of setting a HAR message in response to a traffic event.

5.31.1.1.23 SHAZAMFactory (Class)

The SHAZAMFactory class specifies the interface to be used to create SHAZAM objects within the CHART system. It also provides a method to get a list of SHAZAM devices currently in the system.

5.31.1.1.24 SHAZAMFactoryImpl (Class)

This class provides the ability to add new SHAZAM objects to the system. When SHAZAMs are added, they are persisted to the database so this object can depersist them upon startup. This class also provides a removeSHAZAM method that allows a SHAZAM to remove itself from the system when directed. This class is also responsible for performing the checks requested by the timer tasks: to refresh the SHAZAM devices and to look for SHAZAM devices with no one logged in at the controlling operations center.

5.31.1.1.25 SHAZAMImpl (Class)

The SHAZAMImpl class provides an implementation of the SHAZAM interface and by extension the SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable, and UniquelyIdentifiable interfaces as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long running operations (field communications to the device) in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are SHAZAMConfiguration and SHAZAMStatus objects (used to store the configuration and status of the sign), a lastRefreshTime value used for refreshing (commanding the device to its last known status), and a list of TrafficEvent objects that are currently active on the SHAZAM.

The SHAZAMImpl contains *Impl methods that map to methods specified in the IDL, including requests to activate and deactivate the SHAZAM, put the SHAZAM online, put the SHAZAM offline, put the SHAZAM in maintenance mode, or to change (set) the configuration of the SHAZAM. All of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate SHAZAMImpl method as the command is executed by the CommandQueue in its thread of execution.

The SHAZAMImpl also contains methods called by the SHAZAMFactory to support the timer tasks of the SHAZAM Service: to refresh the SHAZAM devices and to look for maintenance mode SHAZAM devices with no one logged in at the controlling operations center.

5.31.1.1.26 SHAZAMPutInMaintModeCmd (Class)

This command contains data needed to put a SHAZAM device in maintenance mode (from either offline or online mode) asynchronously via the CommandQueue. When executed this class calls back into the SHAZAMImpl object to execute the putInMaintenanceModeImpl method.

5.31.1.1.27 SHAZAMPutOnlineCmd (Class)

This command contains data needed to put a SHAZAM device online (from maintenance or offline mode) asynchronously via the CommandQueue. When executed this class calls back into the SHAZAMImpl object to execute its putOnLineImpl method.

5.31.1.1.28 SHAZAMRefreshCmd (Class)

This class is a command object used to invoke the SHAZAM refresh processing (commanding the device to its last known status) asynchronously from the command queue. When executed, this class calls back into the SHAZAMImpl object to execute the refreshImpl method.

5.31.1.1.29 SHAZAMSetConfigurationCmd (Class)

This command contains data needed to set the SHAZAM configuration asynchronously via the CommandQueue. When executed, this class calls back into the SHAZAMImpl object to execute its setConfigurationImpl method. The SHAZAM device model currently in use does not contain any configuration settings, however this command is still processed asynchronously for consistency.

5.31.1.1.30 SHAZAMStateAction (Class)

The SHAZAMStateAction class enumerates the types of actions (commands) that set the state of a SHAZAM: ACTIVATE or DEACTIVATE.

5.31.1.1.31 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

5.31.1.1.32 SHAZAMTakeOfflineCmd (Class)

This command contains data needed to take a SHAZAM device offline (from online or maintenance mode) asynchronously via the CommandQueue. When executed, this class calls back into the SHAZAMImpl object to execute its takeOfflineImpl method.

5.31.1.1.33 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information. Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

5.31.1.1.34 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.31.1.1.35 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.31.1.1.36 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A SHAZAM device.

5.31.2 Sequence Diagrams

5.31.2.1 SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedSHAZAMTask object executes its task when directed to run by the Java Timer object. The SHAZAMFactoryImpl gets the controlling op center of each SHAZAM (only SHAZAMs in maintenance mode will have controlling op centers) and builds a list of OperationsCenter objects that control one or more SHAZAMs. Each OperationsCenter is then queried for the number of users logged in. If the number of users logged in is zero, this fact is logged and an UnhandledResourcesAlert is created via the AlertFactoryWrapper.

[image: image234.emf]CheckForAbandonedSHAZAMTaskAlertFactoryWrapper java.util.TimerSHAZAMFactoryImpl SHAZAMImpl [*for each

op ctr

which

controls

at least

one SHAZAM]

run()[no users]

createUnhandledResourcesAlert(m_systemToken,

op ctr ID, "<op ctr name> has ctrld resource(s) w no one logged in",

AMG for op ctr ID)

checkForAbandonedSHAZAM()[*for each SHAZAM] getControllingOpCenter getNumLoggedInUsers

ObjectCache Object cast to ProxySimpleOpCenter getObject(id) ProxySimpleOpCenter

New for R3B1.

Call to AlertManagerFactoryWrapper replaces

push of UnhandledControlledResources event.

Figure 5‑172. SHAZAMControlModule:runCheckForAbandonedSHAZAMTask (Sequence Diagram)

5.32 TSS Control Module
5.32.1 Classes

5.32.1.1 TSSManagementModulePkg (Class Diagram)

This package manages all server activities related to Traffic Sensor Systems. Currently only Remote Traffic Microwave Sensor (RTMS) type devices are supported however it is designed to handle other TSS devices types. Devices are periodically polled (responding to a device-created event is not supported) and results are reported on CORBA event channels.

[image: image235.emf]TSSPollingTask

run()

java.util.TimerTask

getStatus():TSSStatus

getConfiguration(byte[] token):TSSConfiguration

setConfiguration(byte[] token, TSSConfiguration):void

remove(byte[] token);()

«interface»

TransportationSensorSystem

schedule() : void

cancel() : void

java.util.Timer

byte[] m_id;

ZoneGroupTrafficParms[] m_zoneGrpTrafficParms

CommunicationMode m_mode;

OperationalStatus m_opStatus;

long m_trafficParameterTimestamp;

«typedef»

TSSStatus

«typedef»

TSSEvent

ModemPortLocator

byte[] m_id

String m_name

String m_location

Identifier m_ownerOrg

int m_dropAddress

ZoneGroup[] m_zoneGroups

int m_pollIntervalSecs

CommPortConfig m_commPortCfg

PortLocationData m_portLocData

boolean m_debugComms

«typedef»

TSSConfiguration

2 event channels, one

for status change,

one for traffic parameter data

TSSImpl(TSSConfiguration, TSSStatus, TSSManagementDB,

 TransportationSensorSystemFactoryl,

 PushEventSupplier, PortLocator)

abstract poll(DataPort):TSSPollResults

pollDevice():void

getStatus(boolean resetAvg):void

PolledTSSImpl

PushEventSupplier

createRTMS(byte[] token, TSSConfiguration):RTMS

«interface»

RTMSFactory

LogFile

TrafficParameters[] m_trafficParms

byte m_healthStatus

byte m_msgNum

toString()

RTMSDeviceStatus

DBConnectionManager dbConnMgr

addCommFailureLogEntry(CommFailureData):void

CommFailureDB

TrafficParameters[] m_trafficParms

OperationalStatus m_opStatus

TSSPollResults

AlertFactoryWrapper

Raw Data Log

New for R3B1.

LogFile

Stores list of

RTMS objects

Used to log

debugging

information only.

java.util.Vector

byte m_sensorID;

LogFile m_debugLog;

getStatus():RTMSDeviceStatus

RTMSProtocolHdlr

RTMSImpl

«interface»

RTMS

RTMSFactoryImpl(ServiceApplication,

 TSSManagementProperties,

 TSSManagementDB,

 LogFile, PushEventSupplier,

 PushEventSupplier)

remove(byte[] token, byte[] idl):void

RTMSFactoryImpl

DBConnectionManager m_dbConn

getList(int TSSType):TSSDBData[]

add(byte[] id, int TSSType, TSSConfiguration):void

remove(byte[] id):void

updateConfig(byte[] id, TSSConfiguration):void

updateCommMode(byte[] id, int mode):void

updateOpStatus(byte[] id, int opStatus):void

TSSManagementDB

TSSConfiguration m_config

CommunicationMode m_mode

OperationalStatus m_opStatus

TSSDBData

TSSManagementModulePkg

start(args : string[]) : boolean

shutdown() : boolean

getORB() : ORB

getPOA(string poaName) : POA

getTradingRegister() : CosTrading.Register

getTradingLookup() : CosTrading.Lookup

getEventChannelFactory() : EventChannelFactory

getDBConnectionManager() : DBConnectionManager

getOperationsLog() : OperationsLog

getProperties() : java.util.Properties

getDefaultProperties() : java.util.Properties

registerObject(obj, id, name, type, publish) : void

registerEventChannel(EventChannel, name) : void

withdrawObject(id) : void

getIDGenerator() : IdentifierGenerator

«interface»

ServiceApplication

getRawDataFileName():String

getDebugFileDir():String

getAutoStatusPushSecs():int

TSSManagementProperties

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

java.util.Timer

run()

TSSCurrentStatusPushTask

11

1

*

1

*

1

1

1

1

1

1

*

1

1

1

returns status info

using

1 1

1

1

pushes event data in

1

1

1

1

1

1

1

1

1

1

1

1

1

1

pushes

event

data in

1

1

1

1

1

1

1

1

1

1

returns persisted

TSS data in

1

1

1

1

1

1

1 1

*

1

1

1

1

1

1

1

1

1

1

*

*

1

1

*

Figure 5‑173. TSSManagementModulePkg (Class Diagram)

5.32.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic location of an Alert Factory and automatic re-discovery should the Alert Factory reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" Alert Factory without the user of this class being aware that this being done. In addition, this class defers the discovery of the Alert Factory until its first use, thus eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently known good reference to an AlertFactory. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Alert Factory objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances, not at all.

5.32.1.1.2 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about any comm failure that occurs in the system.

5.32.1.1.3 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.32.1.1.4 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.32.1.1.5 java.util.Vector (Class)

A Vector is a growable array of objects.

5.32.1.1.6 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

5.32.1.1.7 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table relating to connection problems that may occur.

5.32.1.1.8 PolledTSSImpl (Class)

This object implements the Transportation Sensor System interface as defined in IDL. This implementation provides the base functionality required for Transportation Sensor Systems that are polled periodically to retrieve traffic parameters. The only requirement for derived classes is to provide an implementation of the abstract poll method, which communicates over a previously connected Port to obtain the traffic parameters from a TSS.

This implementation periodically polls the field device using the derived class implementation of the poll method. This implementation provides services such as raw data logging, averaging/summation of data into configured zone groups, asynchronous notification of configuration changes, and persistence/depersistence.

A DeviceFailure alert is created each time the device transitions into HARDWARE_FAILURE. Devices that cycle in and out of HARDWARE_FAILURE will send multiple DeviceFailure alerts so it is up to the AlertModule to prevent duplicate open DeviceFailure alerts for the same device.

5.32.1.1.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.32.1.1.10 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc. capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a roadway at a single location. This interface serves to identify TransportationSensorSystem objects as being of the type RTMS. It also provides a place holder for future operations that may not apply to TSS objects in general and are instead RTMS specific.

5.32.1.1.11 RTMSDeviceStatus (Class)

This class is used to pass raw data retrieved from the RTMS to the caller of the RTMSProtocolHdlr getStatus() method.

m_trafficParameters - the traffic parameters sensed by the device, such as volume, speed, and occupancy.

m_healthStatus - The health status byte reported from the RTMS. A value other than 10, 20, 30, 40, 50, 60, or 70 indicates a hardware problem.

m_msgNum - The message number reported by the RTMS. This number is incremented sequentially when the RTMS dumps averaged data to a retrieval area at the end of a message period. It can be used to determine if the device is being polled too frequently or infrequently.

5.32.1.1.12 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

5.32.1.1.13 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all RTMSImpl objects that have been created within an instance of the RTMSManagementModule and allows for the addition and removal of RTMS objects. It also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to collect the current status of each RTMSImpl and push the collective status in a single CORBA event.

5.32.1.1.14 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the current traffic parameters from an RTMS device. It makes use of an RTMSProtocolHandler to perform the device specific protocol to obtain the traffic parameters. It moves the data from the device specific format to the generic TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone group configuration, perform raw data logging, and other services that are common to Transportation Sensor System objects.

5.32.1.1.15 RTMSProtocolHdlr (Class)

This class is a utility that encapsulates the communication protocol of the RTMS device. It provides a high level method to get the status as an object. It formats a command and sends it to the device and receives and interprets the response from the device, passing the data back to the caller in the form of an RTMSDeviceStatus object.

5.32.1.1.16 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.32.1.1.17 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.32.1.1.18 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of technology used for detection within the transportation industry. Examples of TSS devices range from the advanced devices, such as RTMS, to basic devices, such as single loop detectors.

This software interface is implemented by objects that provide access to the traffic parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are capable of providing detection for one or more detection zones. A single loop detector would have one detection zone, while an RTMS would have 8 detection zones.

5.32.1.1.19 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this TSS. When enabled, command and response packets exchanged with the device are logged to a debugging log file.

5.32.1.1.20 TSSCurrentStatusPushTask (Class)

This class is a timer task that is executed on a regular interval. When this task is run, it calls into the RTMSFactoryImpl object to have it collect the status for all RTMSImpl objects and to push a CurrentStatus event with the collected data.

5.32.1.1.21 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation Sensor System object that existed in the system during a prior run of the software.

5.32.1.1.22 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo object.

5.32.1.1.23 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database data pertaining to Transportation Sensor Systems. Because this class is designed to be generic and work for RTMS as well as other TSS derived objects, the add method requires a model id to be passed. This allows data for a specific model to be retrieved by model specific factories during system initialization.

5.32.1.1.24 TSSManagementModulePkg (Class)

This class is a ServiceApplicationModule used to serve an RTMSFactory object. The RTMSFactory serves zero or more RTMS objects. By providing an implementation of the ServiceApplicationModule interface, this class can be included in the CHART2 service application framework, which provides common services needed to serve CORBA objects within the CHART 2 system.

5.32.1.1.25 TSSManagementProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to the properties specific to the TSSManagementModule. These properties include the name of the file where raw traffic parameter data is to be logged, the directory where debug log files are to be kept, and the interval at which the status of all TSS objects is to be collected and pushed in a CORBA event.

5.32.1.1.26 TSSPollingTask (Class)

This class is a TimerTask that is used by an RTMS to schedule its asynchronous polling with a Timer object.

5.32.1.1.27 TSSPollResults (Class)

This class is a data holder used to pass the results of device polling from the PolledTSSImpl derived class back to the base class for processing. The traffic parameter data passed is lane (detection zone) level. The operational status is the status as determined by the derived class.

m_trafficParms - An array of traffic parameters for the current poll cycle, with one array entry for each detection zone of the device.

m_opStatus - The operational status as determined by the derived class.

5.32.1.1.28 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data was collected from the device.

5.32.2 Sequence Diagrams

5.32.2.1 RTMSImpl:poll (Sequence Diagram)

The poll method of the RTMSImpl is called from its base class when it is time to poll the RTMS device. At the point when this method is called, the base class has already established a connection with the device. The RTMSImpl uses the RTMSProtocolHandler to send a data request to the device and parse the device response. Any communication failure, such as a non-responsive device, causes the base class to be notified that a communication failure occurred. If a communication failure did not occur, the RTMS health status is checked for an indication of a hardware failure. If no hardware failure exists, the lane level data is passed back to the base class to process the data.

A DeviceFailureAlert is created only when the RTMS transitions from another state into HARDWARE_FAILURE. Any future transitions into another state have no effect on the alert. A device that cycles in and out of a hardware failure causes this class to generate many DeviceFailure alerts however it is left to the AlertModule to not create duplicate open alerts.

[image: image236.emf]New for R3B1.

[HARDWARE_FAILURE]

TSSPollResults

RTMSProtocolHdlr virtual call to derivedclass impl.RTMSImplPolledTSSImplThe remainder of this sequence is only carried out if a valid response was received from the RTMS device.

RTMSDeviceStatus

LogFile (Debugging) TSSPollResults

DataPort [debug mode]

log (RTMSDeviceStatus.toString())

TSSPollResults

m_trafficParms[i] =

RTMSDeviceStatus.m_trafficParms[i]

[*for each TrafficParameters

object in RTMSDeviceStatus]

RTMSDeviceStatus

[debug mode]

log (packet received)

[CommFailure]

TSSPollResults

create

byte{}

send(RTMS Data Request)

[RTMSDeviceStatus.m_healthStatus

!= 10, 20, 30, 40, 50, 60, or 70]

m_opStatus = HARDWARE_FAILURE

create

[debug mode]

log (packet being sent)

[CommFailure]

m_opStatus = COMM_FAILURE

[no response, checksum error, or

invalid packet]

CommFailure

receive

getStatus

AlertFactoryWrapper [newly transitioned to HARDWARE_FAILURE]

createDeviceFailureAlert(token, deviceid, "TSS <name> is in Hardware Failure", owningCenter)

poll

Figure 5‑174. RTMSImpl:poll (Sequence Diagram)
5.33 TTS Control Module
5.33.1 Classes

5.33.1.1 TTSControlModuleClasses (Class Diagram)

The TTSControlModule serves an instance of the TTSConverter interface, which provides functionality to convert text messages into speech for the CHART system. This diagram shows how the implementation of a TTSConverter CORBA interface relies on other supporting classes to perform its functions. This has not changed for R3B1 and is provided only for context.
[image: image237.emf]ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

«interface»

ServiceApplication

TTSControlModule()

getProperties():TTSControlModuleProperties

TTSControlModule

TTSControlModuleProperties(Properties props)

getAudioFileDirLocation()

getAudioFileMaxCacheSize()

getAudioPushThreadPoolSize()

TTSControlModuleProperties

«interface»

UniquelyIdentifiable

getSupportedFormats(void):AudioDataFormatList;

convertTextToSpeech(string text,

 AudioDataFormat format,

 long maxChunkSize,

 TTSPriority priority,

 AudioPushConsumer consumer)

pushVoiceLength(string text,

 AudioDataFormat format,

 AudioPushConsumer consumer)

getVoiceLength(string text, AudioDataFormat format):

 long

«interface»

TTSConverter

m_supportedAudioDataFormatList

TTSServer()

Initialize(int voiceType,

 AudioDataFormatList formats,

 string fileDirLocation)

GetSupportedAudioFormats()

ConvertTextToSpeech(string text,

 string filename,

 AudioDataFormat format)

Shutdown()

TTSServer

m_maxCacheSize

m_currentCacheSize

m_lastUsedFileCacheList

FileCacheManager(TTSControlDB db,

 long maxCacheSize)

getFileCacheInfo(String text,

 AudioDataFormat format)

 :FileCacheInfo

createFileCacheInfo(String fileName)

 :FileCacheInfo

-cleanupCachedFiles()

shutdown()

FileCacheManager

Initialize()

Stop()

Say()

ConfigIndex()

ConfigTotal()

ConfigFormat()

«interface»

LHTTSEngine

m_id

m_name

TTSConverterImpl(TTSServer server,

 TTSControlDB db,

 long maxCacheSize,

 long numPushThreads)

shutdown()

TTSConverterImpl

run()

«interface»

java.lang.Runnable

put(Object key, Object value)

get(Object key):value

java.util.TreeMap

FileCacheCleaner

static int CONVERT_TTS_CMD = 0

static int GET_VOICE_LENGTH_CMD = 1

m_systemMessageList

m_userMessageList

TTSMessageQueue(TTSServer server,

 FileCacheManager mgr,

 long numPushThreads)

addMessage(TTSTextMessageInfo msgInfo,

 TTSPriority priority)

shutdown()

-pushAudioClipInfo(FileCacheInfo fileInfo,

 int cmd,

 AudioPushConsumer consumer)

TTSMessageQueue

AudioEncoding m_encoding;

float m_sampleRate;

long m_sampleSizeInBits;

long m_channels;

long m_frameSize;

float m_frameRate;

boolean m_bigEndian;

«typedef»

AudioDataFormat

string m_text

AudioDataFormat m_format

string m_filename

long m_fileSize

long m_lastUsedTimeStamp

long m_voiceSeconds

«typedef»

FileCacheInfo

PCM_SIGNED

PCM_UNSIGNED

A_LAW

U_LAW

«enumeration»

AudioEncoding

java.io.File

string text

AudioDataFormat format

long chunkSize

AudioPushConsumer obj

int cmd

«typedef»

TTSTextMessageInfo

m_freeThreads

m_inUseThreads

AudioPushThreadManager(int numPushThreads)

pushAudio(AudioPushConsumer consumer,

 InputStream stream,

 AudioDataFormat format,

 long chunkSize)

releaseAudioPushThread()

-getAudioPushThread()

AudioPushThreadManager

pushAudio(AudioData data):boolean

pushAudioProperties(AudioDataFormat format,

 long seconds,

 long size):void

pushFailure(string errMsg):void

pushCompleted()

«interface»

AudioPushConsumer

1

1

1

1

1

1

1

1

*

1

*

1

1

1

1

1

11

1

1

*

1

* 1

1

1

1 *

1

1

1

1

1 *

1 1

Figure 5‑175. TTSControlModuleClasses (Class Diagram)

5.33.1.1.1 AudioDataFormat (Class)

This struct specifies the format of audio data.

5.33.1.1.2 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

5.33.1.1.3 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion, or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean "continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

5.33.1.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to push audio clip information back to the client. It provides the functionality to manage access to the AudioPushThreads.

5.33.1.1.5 FileCacheCleaner (Class)

This class represents an instance of a thread which is created to delete the audio clips that have not been used recently when the cache size used by the audio clips exceeds the maximum limit assigned.

5.33.1.1.6 FileCacheInfo (Class)

This structure specifies the information about an audio clip file, which has been converted from a text message to voice and cached for future use.

5.33.1.1.7 FileCacheManager (Class)

This class maintains a mapping between text messages and the corresponding audio clip file information. This is accomplished by maintaining a list of TreeMaps (one for each audio format supported) with text as key and audio clip information as the value. This class also helps manage the amount of hard drive space consumed by the audio clips by deleting the old clip files when the maximum cache size limit is reached. The maximum cache size limit can be set by the administrator using the system properties.

5.33.1.1.8 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

5.33.1.1.9 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

5.33.1.1.10 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the map will be in ascending key order, sorted according to the natural order for the key's class, or by the comparator provided at creation time, depending on which constructor is used.

5.33.1.1.11 LHTTSEngine (Class)

This interface represents the L&H RealSpeak Server TTS engine used to convert text messages to speech.

5.33.1.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.33.1.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.33.1.1.14 TTSControlModule (Class)

This class implements the Service Application module interface. It publishes the TTSConverterImpl object, which provides the functionality to convert text messages to speech for the CHART system. It also creates the TTSServer object, which provides the functionality to access the LHTTSEngine and the TTSControlModuleDB object, which provides access to the database.

5.33.1.1.15 TTSControlModuleProperties (Class)

This class represents the system properties specific to the TTS Control Module.

5.33.1.1.16 TTSConverter (Class)

This interface represents the Text to Speech converter object which allows text to be passed in and speech to be returned.

5.33.1.1.17 TTSConverterImpl (Class)

This is the implementation of the TTSConverter interface, which provides the functionality to convert text to speech for the CHART system.

5.33.1.1.18 TTSMessageQueue (Class)

This class provides the functionality to retrieve messages from the queue and process them by either retrieving the audio clip data using the FileCacheManager object if available or by converting the text messages to speech using the TTSServer object. For text messages not already converted and available in the cache, this class maintains two queues of messages to be converted into speech, one for message requests from the system and another for the users. The messages in system message queue get a higher priority over messages in user message queue. All the messages of a particular queue are processed in a First In First Out fashion. The audio data produced from conversion or retrieved from the cache is passed back to the client via the AudioPushConsumer object using the AudioPushThreadManager object.

5.33.1.1.19 TTSServer (Class)

This class provides the functionality to access and control the TTS Engine from the CHART system. It provides the functionality to start, stop and change the configuration of the TTS Engine. It also provides a method to convert a text message to speech.

5.33.1.1.20 TTSTextMessageInfo (Class)

This struct specifies the text message information required to process text to speech converter request, the call back object to pass the results back and the type of command requested.

5.33.1.1.21 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.33.2 Sequence Diagrams

5.33.2.1 TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

This sequence diagram shows how a convert text to speech request is processed. The message is checked for pronunciations by calling substitutePronunciations() on the DictionaryImpl. The DictionaryImpl returns the original string if no pronunciations are found or a converted string if they are found. If a converted string is returned it is set as the text message. If not no change is made to the text message. The text message is then added to the TTSMessageQueue and audio clip information will be pushed back using the AudioPushComsumer object passed through this call. See ProcessQueuedMessages and HARUtility.PushAudio sequence diagrams for details about how the messages are processed and the data is pushed back.

[image: image238.emf]msgInfo.text = text

ORB TTSMessageQueue if no pronunciations found return original text. [db error] CHART2Exception substitutePronunciations(text) Message queue processes the request and returns the audio dataasynchronously. See AddMessageToQueue andProcessQueuedMessages sequence diagram for details about the order in which the messages

are converted.

convertTextToSpeech(String text ,AudioDataFormat format, int maxChunkSize, TTSPriority priority, AudioPushConsumer consumer)TTSConverterImpltext = convertedMessage

addMessage(msgInfo)

DictionaryImpl

Figure 5‑176. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

5.34 Traffic Event Module
5.34.1 Classes
5.34.1.1 EventData (Class Diagram)

[image: image239.emf]To be defined in

Common.idl

m_state : String

m_county : String

m_roadName : String

m_routePrefix : String

m_routeNumber : double

m_routeSuffix : String

m_direction : Direction

m_locationDesc : String

m_milePost : double

m_milePostType : MilepostType

«datatype»

RoadwayLocationData

MD 355 Rockville Pike

m_routePrefix = "MD"

m_routeNumber = "355"

m_routeSuffix = "" (empty string)

m_roadName = "Rockville Pike"

<powertype> means

valuetype.

-m_id : Identifier

+m_name : string

+m_location : RoadwayLocationData

+m_source : Source

+m_isSceneCleared : boolean

+m_sceneClearedTime : Timestamp

+m_isDelayCleared : boolean

+m_delayClearedTime : Timestamp

+m_isConfirmed : boolean

+m_confirmedTime : Timestamp

+m_openedTime : Timestamp

+m_isFalseAlarm : boolean

+m_isClosed : boolean

+m_closedTime : Timestamp

+m_eventStillOpenReminderTime : Timestamp

+m_openedTime : Timestamp

+m_maxQueueLength : long

+m_controllingOpCenter : OpCenterInfo

+m_primary : boolean

+m_displayWebSiteTrafficAlert : boolean

+m_webSiteTrafficAlertText : string

+m_netConnectionSite : string

getID() : Identifer

«powertype»

BasicEventData

Added to BasicEventData for R3B1:

m_location

m_openedTime

m_netConnectionSite

m_displayWebSiteTrafficAlert

m_webSiteTrafficAlertText

Removed from BasicEventData for R3B1:

m_locationDesc (moved to RoadwayLocationData)

m_direction (moved to RoadwayLocationData)

m_countyState (now two fields in RoadwayLocationData

m_wet

m_rain

m_fog

m_iceOrSnow

RoadConditionsData

m_numCarsInvolved

m_numCarsOverturned

m_numPickupsVansSuvsInvolved

m_numPickupsVansSuvsOverturned

m_numPickupsVansSuvsLostLoad

m_numSingleUnitTrucksInvolved

m_numSingleUnitTrucksOverturned

m_numSingleUnitTrucksLostLoad

m_numTractorTrailersInvolved

m_numTractorTrailersOverturned

m_numTractorTrailersLostLoad

m_numTractorTrailersJackKnifed

m_numMotorcyclesInvolved

IncidentVehicleData

m_participantName

m_notified

m_notifiedSystemTime

m_notifiedUserTime;

ResponseParticipationData

m_incidentType

IncidentData

m_resourceType

m_arrived

m_arrivedSystemTime

m_arrivedUserTime

m_departed

m_departedSystemTime

ResourceParticipationData

m_signal

m_debris

m_utility

m_other

ActionEventData

m_responded

m_respondedSystemTime

m_respondedUserTime

OrganizationParticipationData

m_tagsState

m_tagsNumber

m_tireChange

m_hotShot

m_water

m_gas

m_directions

m_ownDisposition

m_callForService

m_goneOnArrival

m_abandonedVehicle

m_relayOperator

m_other

DisabledVehicleData

1 1

1

1

Figure 5‑177. EventData (Class Diagram)

5.34.1.1.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

5.34.1.1.2 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will inherit all data shown in this class.

5.34.1.1.3 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

5.34.1.1.4 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

5.34.1.1.5 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the exchange of data between GUI and server.

5.34.1.1.6 OrganizationParticipationData (Class)

This class represents the data required to describe an organization's participation in the response to a traffic event.

5.34.1.1.7 ResourceParticipationData (Class)

This class represents the data required to describe a resource's participation in the response to a traffic event.

5.34.1.1.8 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

5.34.1.1.9 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a traffic event.

5.34.1.1.10 RoadwayLocationData (Class)

This class represents the data necessary to describe the location of a of a traffic event.

5.34.1.2 EventManagementClassDiagram (Class Diagram)

[image: image240.emf]section : MergeSection

action : MergeAction

MergeInfo

«interface»

TransferableSharedResource

«interface»

GeoLocatable

New for R3B1.

getType() : TrafficEventType

addLogEntry() :void

addLogEntryWithStats() : void

addResponseItem() : void

addResponseParticipation() :vod

associateEvent() :void

removeEventAssociation() : void

close() : void

isClosed() : boolean

overrideClosureTime() : void

executeResponse() : void

getAssociatedEvents() : Identifier[]

getHistory(filter : LogFilter, maxCount) : LogQueryResults

getRoadwayLocation() : RoadwayLocation

isPrimary() : boolean

setPrimary() : void

setSecondary() : void

getResponseParticipations() : ResponseParticipant[]

getBasicEventData() : BasicEventData

getResponsePlanItems() : ResponsePlanItem[]

setName() : void

setSource() : void

setDirection() : void

setDelayCleared() : void

setFalseAlarm() : void

setRoadwayLocation(token : AccessToken,

 location : RoadwayLocation) : void

setSceneCleared() : void

setConfirmed() : void

setMaxQueueLength() :void

overrideSceneClearedTime() : void

overrideDelayClearedTime() : void

overrideConfirmedTime() : void

overrideLogEntryTime() : void

revokeExecution() : void

mergeEvent(token : AccessToken, srcEventID : Identifier,

 mergeInfoList : MergeInfoList,

 commandStatus : CommandStatus) : void

TrafficEvent

MERGE_USE_TARGET_DATA

MERGE_USE_SOURCE_DATA

MERGE_USE_UNION_OF_DATA

«enumeration»

MergeAction

«interface»

UniquelyIdentifiable

MERGE_DATA_BASIC_EVENT

MERGE_DATA_ROAD_CONDITION

MERGE_DATA_VEHICLE

MERGE_DATA_EVENT_SPECIFIC

MERGE_DATA_ASSOCIATED_EVENTS

MERGE_DATA_PARTICIPATION_LIST

MERGE_DATA_RESPONSE_PLAN_ITEMS

«enumeration»

MergeSection

Modified for R3B1.

Added:

mergeEvent()

getRoadwayLocation()

setRoadwayLocation()

Removed:

setLocationDescription()

setCountyState()

Note: Keeping setDirection().

(Direction can also be set

via setRoadwayLocation().)

m_textDescription

getDesc()

Location

getParticipantName()

getParticipantType()

ResponseParticipation

m_organizationName

m_notified

m_timeNotified

m_responded

m_timeResponded

setParticipationData()

getParticipationData()

-remove()

OrganizationParticipation

New for R3B1.

PRIMARY

OPPOSITE

BIDIRECTIONAL

NONE

«enumeration»

LaneTrafficFlowDirection

addEntry(logEntry)

addEntry(logEntry, eventID)

getEntries(maxCount)

getEntries(filter, maxCount)

DatabaseLogger

getLanes()

setLaneState(offsetFromLeft, direction, state)

RoadwayEvent

m_resourceName

m_resourceType

m_notified

m_timeNotified

m_arrived

m_timeArrived

m_departed

m_timeDeparted

getDeploymentData()

setDeploymentData()

-remove()

ResourceDeployment

m_currentState LaneState

m_timeStateChanged : Timestamp

m_orientedSameAsConfigRefDir : boolean

m_trafficDir : LaneTrafficFlowDirection

m_offsetFromLeft : int

m_type : LaneType

m_description : string

setOpenState()

isOpen()

overrideStateChangeTime()

getStateChangeTime()

Lane

SHOULDER

TRAFFIC_LANE

COLLECTOR_DISTRIBUTOR

TUNNEL_LANE

TOLL_LANE

CENTER_TURN_LANE

RIGHT_ON_RAMP

RIGHT_OFF_RAMP

RIGHT_MERGE_LANE

RIGHT_ACCELERATION_LANE

RIGHT_TURN_LANE

RIGHT_DECELERATION_LANE

LEFT_ON_RAMP

LEFT_OFF_RAMP

LEFT_ACCELERATION_LANE

LEFT_MERGE_LANE

LEFT_TURN_LANE

LEFT_DECELERATION_LANE

DOUBLE_YELLOW_LINE

MEDIA

«enumeration»

LaneType

m_locationDesc

m_source

m_county

m_description

m_sceneCleared

m_sceneClearedTime

m_delayCleared

m_delayClearedTime

m_isFalseAlarm

m_falseAlarmTime

m_isConfirmed

m_confirmedTime

m_openedTime

m_closedTime

getCurrentEvent()

addLogEntry()

addResponseItem(ResponsePlanItemData)

removeResponseDevice()

executeResponse(items)

getAssociatedEvents()

getBasicEventData()

setBasicEventData()

addResponseParticipation(type, name)

removeResponseParticipation()

getResponseParticipations()

close()

isClosed()

getClosureTime()

associateEvent()

changeEventType()

takeOffline()

getHistory(maxCount)

getHistory(filter, maxCount)

TrafficEventGroup

getIncidentData()

setIncidentData()

getIncidentVehicleData()

setIncidentVehicleData()

getRoadConditionsData()

setRoadConditionsData()

Incident

m_configurationName : string

m_configurationDescription : string

m_referenceDir : LaneConfigReferenceDirection

m_lanes : Lane[]

«powertype»

LaneConfiguration

getRoadConditionsData()

setRoadConditionsData()

WeatherSensorEvent

getRoadConditionsData()

setRoadConditionsData()

WeatherServiceEvent

Note:

TrafficEventGroup

is not an IDL construct.

getDisabledVehicleData()

setDisabledVehicleData()

DisabledVehicleEvent

New for R3B1.

NORTH

EAST

OUTER_LOOP

«enumeration»

LaneConfigReferenceDirection

Modified for R3B1.

Many new types added.

«interface»

SharedResourceManager

m_descriptionTypeSpecialEventCode

getSpecialEventType()

setSpecialEventType()

setDetailedDescription()

getDetailedDescription()

SpecialEvent

getActionEventData()

setActionEventData()

ActionEvent

createEvent(typeCode)

TrafficEventFactory

PlannedRoadwayClosure

«interface»

CommandStatus

setItemData()

getItemData()

execute(trafficEvent)

remove()

getResponseDevice()

hasBeenExecuted()

setActive()

setInactive()

getDescription()

setDescription()

eventTypeChanged(trafficEvent)

eventTransferred(trafficEvent)

ResponsePlanItem

m_recurring

isRecurring()

setRecurring()

CongestionEvent

setDetailedDescription()

getDetailedDescription()

SafetyMessageEvent

-m_responseDeviceID

execute(responsePlanItem, trafficEvent)

revokeExecution()

eventTypeChanged()

eventTransferred()

getResponseDeviceID()

ResponsePlanItemData

DMSRPIData HARRPIData

1 1

1

*

1 1

1

1

1

1

1

1

1 1

*1

*

1

1

1

1 1

*

1

* 1

0..1

1

Figure 5‑178. EventManagementClassDiagram (Class Diagram)

5.34.1.2.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not fit well into the other event categories. An example of this type of event would be debris in the roadway.

5.34.1.2.2 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

5.34.1.2.3 CongestionEvent (Class)

This class models roadway congestion which may be tagged as recurring or non-recurring through the use of an attribute.

5.34.1.2.4 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet specific criteria.

5.34.1.2.5 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

5.34.1.2.6 DMSRPIData (Class)

This interface is supported by objects that can put a message on a DMS in response to a traffic event.

5.34.1.2.7 GeoLocatable (Class)

This interface must be supported by any system objects that can be located by a geographical reference.

5.34.1.2.8 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds the message to the arbitration queue of the specified HAR. When the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR's arbitration queue to remove the message.

5.34.1.2.9 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves one or more vehicles and roadway lane closures.

5.34.1.2.10 Lane (Class)

This object represents a single traffic lane, shoulder or ramp.

5.34.1.2.11 LaneConfigReferenceDirection (Class)

This enumeration restricts the possible reference directions for a lane configuration, which is necessary because the lane offsets are defined relative to the "left" side, which is an ambiguous term. For example, if the direction is North then "left" to the West, but if the direction is South (also valid on a North-South roadway) then "left" could be considered (if not for this enumeration) to East. Thus if the direction of the lane config were to change from North to South, the lanes would "flip" unintentionally. This enumeration holds the reference direction for a North-South roadway to always be to the West (regardless of whether the direction of the event is North or South), and holds similarly for East-West roadways and beltways (Inner-Outer loops).

5.34.1.2.12 LaneConfiguration (Class)

This class represents the lane configuration at the scene of a RoadwayEvent.

5.34.1.2.13 LaneTrafficFlowDirection (Class)

This class defines the possible directions of traffic flow, relative to the lane orientation.

5.34.1.2.14 LaneType (Class)

This enumeration lists the types of lanes (including pseudo-lanes (separators) median and double-yellow line).

5.34.1.2.15 Location (Class)

This class is used to store location information for a class. It will be expanded in future releases to contain geographic information.

5.34.1.2.16 MergeAction (Class)

This enumeration specifies how to merge a section of data during a traffic event merge operation.

5.34.1.2.17 MergeInfo (Class)

This structure is used to specify a section of the traffic event data to be merged and how to merge it.

5.34.1.2.18 MergeSection (Class)

This enumeration lists the sections to be merged while merging two traffic events.

5.34.1.2.19 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

5.34.1.2.20 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will be expanded in future releases to include interfacing with the EORS legacy system. The EORS system is used by Maryland to manage planned roadway closures.

5.34.1.2.21 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

5.34.1.2.22 ResponseParticipation (Class)

This class contains methods that are common to all types of response participants.

5.34.1.2.23 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

5.34.1.2.24 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

5.34.1.2.25 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the hierarchy provides a break off point for traffic event types that pertain to other modals.

5.34.1.2.26 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety message to a device.

5.34.1.2.27 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

5.34.1.2.28 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or professional sporting event.

5.34.1.2.29 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.34.1.2.30 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

5.34.1.2.31 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working. A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident. The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

5.34.1.2.32 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use but may also be allowed to transfer control of that resource to another operations center.

5.34.1.2.33 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system. It provides access to the unique ID, and the name (which does not have to be unique).

5.34.1.2.34 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the system's weather monitoring devices. Operators will need to manually enter the information in these events for this release. In future releases, these events will be automatically generated by the system.

5.34.1.2.35 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by an operator in response to receiving an alert from the national weather service.

5.34.1.3 TrafficEventHierarchy (Class Diagram)

This diagram depicts the relationships between Traffic event related interfaces and their implementing classes. It does not show all possible traffic event types. Instead it shows a few of the many possible types for illustrative purposes. The main point of the diagram is to show that each TrafficEvent implementation object implements the corresponding CORBA interface and derives from the implementation object that implements its corresponding interface's parent interface.

[image: image241.emf]m_locationDesc

m_source

m_county

m_description

m_sceneCleared

m_sceneClearedTime

m_delayCleared

m_delayClearedTime

m_isFalseAlarm

m_falseAlarmTime

m_isConfirmed

m_isClosed

m_confirmedTime

m_openedTime

m_closedTime

m_controllingOpCenterID

m_controllingOpCenterName

m_maxQueueLength

TrafficEventModule m_module

m_plannedOpenDuration

TrafficEventGroup(TrafficEventModule, DatabaseLogger)

getCurrentEvent()

addLogEntry()

addResponsePlanItem(ResponsePlanItemData)

removeResponsePlanItem(ResponsePlanItemImpl)

executeResponse(items)

getAssociatedEvents()

getBasicEventData()

addResponseParticipation(type, name)

removeResponseParticipation()

getResponseParticipations()

close()

isClosed()

getClosureTime()

associateEvent(token, trafficEvent, isPrimary)

changeEventType()

takeOffline()

getHistory(maxCount)

getHistory(filter, maxCount)

getCurrentTrafficEvent():TrafficEventImpl

getModule():TrafficEventModule

getParticipationObjects():ResourceParticipation[]

getResponsePlanItems():ResponsePlanItem[]

initialize(ServiceApplication, DatabaseLogger, TrafficEventDB, logEntries)

createTrafficEvent(typeCode)

isPrimary():boolean

setPrimary(boolean isPrimary)

createTrafficEventImpl(typeCode):TrafficEventImpl

getTrafficEventImpl(typeCode):TrafficEventImpl

monitorResponses()

responsePlanItemChanged(itemID)

getControllingOpCenter():identifier

setControllingOpCenter(opCenterID, opCenterName)

-sendResponseStatusUpdate()

-associationRemoved()

mergeEvent(srcEvtID, mergeInfoList):void

isOpenTooLong():boolean

TrafficEventGroup

string m_configurationName

string m_configurationDescription

Lane[] m_lanes

LaneConfigReferenceDirection m_referenceDir

getLanes():Lane[]

LaneConfiguration

string m_vehicleTagInfo

string m_vehicleMakeColor

boolean m_tireChange

boolean m_hotShot

boolean m_water

boolean m_gas

boolean m_directions

boolean m_ownDisposition

boolean m_callForService

boolean m_goneOnArrival

boolean m_abandonedVehicle

boolean m_relayOperator

boolean m_other

string m_otherDescription

DisabledVehicleData

LaneState m_currentState

LaneTrafficFlowDirection m_directionOfTravel

TimeStamp m_timeStateChanged

LaneType m_type

string m_description

boolean m_orientedSameAsConfigReferenceDir

Lane

m_type

TrafficEventImpl(TrafficEventGroup, TrafficEventDB)

getEventGroup():TrafficEventGroup

initializeFromImpl(TrafficEventImpl)

getType():TrafficEventTypeValues

getDB():TrafficEventDB

mergeEvent()

TrafficEventImpl

setLaneConfigurationInMemory(LaneConfiguration)

RoadwayEventImpl

DisabledVehicleImpl()

DisabledVehicleImpl

SafetyMessageEventImpl()

SafetyMessageEventImpl

m_recurring

CongestionEventImpl()

CongestionEventImpl

PlannedRoadwayClosureEventImpl()

PlannedRoadwayClosureEventImpl

SpecialEventImpl()

SpecialEventImpl

WeatherServiceEventImpl()

WeatherServiceEventImpl

m_incidentType

IncidentImpl()

IncidentImpl

boolean wet

boolean rain

boolean fog

boolean iceOrSnow

«enumeration»

RoadConditionsData

WeatherSensorEventImpl()

WeatherSensorEventImpl

ActionEventImpl()

ActionEventImpl

long numCarsInvolved

long numCarsOverturned

long numPickupVanSuvsInvolved

long numPickupVanSuvsOverturned

long numSingleUnitTrucksInvolved

long numSingleUnitTrucksOverturned

long numSingleUnitTrucksLostLoad

long numTractorTrailersInvolved

long numTractorTrailersOverturned

long numTractorTrailersLostLoad

long numTractorTrailersJackKnifed

long numMotorcyclesInvolved

long numLoadedCommercialBusInvolved

long numLoadedCommercialBusOverturned

long numUnloadedCommercialBusInvolved

long numUnloadedCommercialBusOverturned

long numLoadedSchoolBusInvolved

long numLoadedSchoolBusOverturned

long numUnloadedSchoolBusInvolved

long numUnloadedSchoolBusOverturned

«typedef»

IncidentVehicleData

boolean m_signal

boolean m_debris

boolean m_utility

boolean m_other

string m_otherDescription

ActionEventData

* 1

0..1

1

1 1

1

1

1 1

1

1

1

1

Figure 5‑179. TrafficEventHierarchy (Class Diagram)

5.34.1.3.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

5.34.1.3.2 ActionEventImpl (Class)

This class provides an implementation of the ActionEvent interface. Each ActionEventImpl contains a reference to a ActionEventData describing the event.

5.34.1.3.3 CongestionEventImpl (Class)

This class provides an implementation of the CongestionEvent interface. This contains the state variable to indicate if the event is a recurring event.

5.34.1.3.4 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

5.34.1.3.5 DisabledVehicleImpl (Class)

This class provides an implementation of the DisabledVehicleEvent interface. Each DisableVehicleEventImpl contains a reference to DisabledVehicleData that describes the disabled vehicle details at the scene.

5.34.1.3.6 IncidentImpl (Class)

This class provides an implementation of the Incident interface. It contains state variables and processing that are unique to incident type traffic events.

5.34.1.3.7 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the exchange of data between GUI and server.

5.34.1.3.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

5.34.1.3.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

5.34.1.3.10 PlannedRoadwayClosureEventImpl (Class)

This class provides an implementation of the PlannedRoadwayClosureEvent interface.

5.34.1.3.11 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a traffic event.

5.34.1.3.12 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at the scene of the event.

5.34.1.3.13 SafetyMessageEventImpl (Class)

This class provides an implementation of the SafetyMessageEvent interface.

5.34.1.3.14 SpecialEventImpl (Class)

This class provides an implementation of the SpecialEvent interface.

5.34.1.3.15 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working. A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident. The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

5.34.1.3.16 TrafficEventImpl (Class)

This class provides an implementation of the TrafficEvent interface. It contains state variables and processing that common to all traffic events.

5.34.1.3.17 WeatherSensorEventImpl (Class)

This class provides an implementation of the WeatherSensorEvent interface.

5.34.1.3.18 WeatherServiceEventImpl (Class)

This class provides an implementation of the WeatherServiceEvent interface.

5.34.1.4 TrafficEventModuleClasses (Class Diagram)

This diagram shows traffic event related classes and interfaces.

[image: image242.emf]m_factoryImpl : TrafficEventFactoryImpl

RPIStatusTimerTask(factoryImpl)

shutdown()

RPIStatusTimerTask

java.util.Timer

m_factoryImpl : TrafficEventFactoryImpl

InitializeRPIsTimerTask(factoryImpl)

shutdown()

InitializeRPIsTimerTask

java.util.TimerTask

java.util.Timer

m_factoryImpl : TrafficEventFactoryImpl

DuplicateEventTimerTask(factoryImpl)

shutdown()

DuplicateEventMonitorTimerTask

m_factoryImpl : TrafficEventFactoryImpl

EORSPermitLookupTimerTask(factoryImpl)

shutdown()

EORSPermitLookupTimerTask

m_factoryImpl : TrafficEventFactoryImpl

ResponseMonitorTimerTask(factoryImpl)

shutdown()

ResponseMonitorTimerTask

m_factoryImpl : TrafficEventFactoryImpl

EventStillOpenMonitorTimerTask(factoryImpl)

shutdown()

EventStillOpenMonitorTimerTask

New for R3B1.

m_factoryImpl : TrafficEventFactoryImpl

ResourceMonitorThread(factoryImpl)

shutdown()

ResourceMonitorTimerTask

getName() : string

createTrafficEvent(AccessToken token,

 TrafficEventType type,

 BasicEventData eventData,

 LogEntry[] initialEntries):

 TrafficEventCreationResult

getTrafficEvents():TrafficEventList

getStandardLaneConfigurations():LaneConfigurationList

getEORSPermits():PermitList

«interface»

TrafficEventFactory

«interface»

SharedResourceManager

New for R3B1.

AlertFactoryWrapper

«interface»

Duplicatable

New for

R3B1

TrafficEventModule m_module;

trafficEventFactoryImpl(TrafficEventModule,

 offlineThresholdHours)

+shutdown()

+monitorResources() : void

+takeEventsOffline()

+monitorResponses() : void

+monitorEventStillOpen() : void

+monitorDuplicateEvents() : void

-getControllingOpCenters():Identifier[]

-getOpCenterRef(opCenterID):OperationsCenter

TrafficEventFactoryImpl

m_trafficEvent : TrafficEvent

m_basicEventData : BasicEventData

m_associatedEventsHash : Hashtable

m_associatedEvents : Identifier[]

+getID() : Identifier

+getTrafficEvent() : TrafficEvent

+getBasicEventData() : BasicEventData

+setBasicEventData(data : BasicEventData

+addEventAssociation(

 associatedEventId :Identifier) :void

+getOpenedTime() : long

+removeEventAssociation(

 associatedEventId :Identifier) :void

+updateAssocatedEvents() : void

+isAssociatedWith(EventId : Identifier) : boolean

+isClosed() : boolean

getEventTypeString() : string

ProxyBasicTrafficEvent

ObjectCache

«interface»

ServiceApplication

DataModel

«interface»

ServiceApplicationModule

m_locationDesc

m_source

m_county

m_description

m_sceneCleared

m_sceneClearedTime

m_delayCleared

m_delayClearedTime

m_isFalseAlarm

m_falseAlarmTime

m_isConfirmed

m_isClosed

m_confirmedTime

m_openedTime

m_closedTime

m_controllingOpCenterID

m_controllingOpCenterName

m_maxQueueLength

TrafficEventModule m_module

m_plannedOpenDuration

TrafficEventGroup(TrafficEventModule, DatabaseLogger)

getCurrentEvent()

addLogEntry()

addResponsePlanItem(ResponsePlanItemData)

removeResponsePlanItem(ResponsePlanItemImpl)

executeResponse(items)

getAssociatedEvents()

getBasicEventData()

addResponseParticipation(type, name)

removeResponseParticipation()

getResponseParticipations()

close()

isClosed()

getClosureTime()

associateEvent(token, trafficEvent, isPrimary)

changeEventType()

takeOffline()

getHistory(maxCount)

getHistory(filter, maxCount)

getCurrentTrafficEvent():TrafficEventImpl

getModule():TrafficEventModule

getParticipationObjects():ResourceParticipation[]

getResponsePlanItems():ResponsePlanItem[]

initialize(ServiceApplication, DatabaseLogger, TrafficEventDB, logEntries)

createTrafficEvent(typeCode)

isPrimary():boolean

setPrimary(boolean isPrimary)

createTrafficEventImpl(typeCode):TrafficEventImpl

getTrafficEventImpl(typeCode):TrafficEventImpl

monitorResponses()

responsePlanItemChanged(itemID)

getControllingOpCenter():identifier

setControllingOpCenter(opCenterID, opCenterName)

-sendResponseStatusUpdate()

-associationRemoved()

mergeEvent(srcEvtID, mergeInfoList):void

isOpenTooLong():boolean

TrafficEventGroup

getServiceApp():ServiceApplication

getEventSupplierl():PushEventSupplier

getDB():TrafficEventDB

getProperties():TrafficEventModuleProperties

getPOA():POA

getORB():ORB

getTradingRegister():CosTrading.Register

getTradingLookup():CosTrading.Lookup

addCommLogEntry(token, text, eventID)

-addCommLogs(CommLog[])

-storeLogData(LogData)

-getLogData():LogData

TrafficEventModule

Reference to the remote

TrafficEvent served by

another TrafficEventModule

(or perhaps by this

TrafficEventModule, all local

and remote traffic events

are cached here without

prejudice.

PushEventSupplier

getOfflineThresholdHours():int

getSharedResourceMonitorIntevalSeconds():int

getTrafficEventResponseMonitorIntervalSeconds():int

TrafficEventModuleProperties

«interface»

TrafficEvent

«interface»

CommLog

DatabaseLogger(tableName)

addEntry(logEntry) : void

checlExpiredEntries() : void

getEntries(filter, maxCount) : LogIterator

shutdown() : void

DatabaseLogger

String entryText

Identifier trafficEventID

Source entrySource

«typedef»

LogEntryData

DBConnectionManager m_db

TrafficEventDB(DBConnectionManager)

getTrafficEvents():TrafficEventGroup[]

addResponsePlanItem(trafficEventID, ResponsePlanItemImpl)

updateResponsePlanItem(trafficEventID, ResponsePlanItemImpl)

addEventAssociation(trafficEventID, associatedEventID)

getAssociatedEvents(trafficEventID):Identifier[]

removeEventAssociation(trafficEventID, assoicatedEventID)

updateEventState(BasicEventData)

addTrafficEventToGroup(trafficEventID, trafficEventImpl)

markItemForRemoval(trafficEventID, planItemID)

setItemActive(trafficEventID, planItemID, isActive)

removeResponsePlanItem(trafficEventID, planItemID)

updateResponsePlanItemState(planItemID, hasExecuted, isActive)

setLaneConfiguration(trafficEventID, LaneConfiguration)

recordLaneStateChange(trafficEventID, laneOffset, newState)

overrideLaneStateChangeTime(trafficEventID, laneOffset, userTime)

setEventPrimary(trafficEventID, isPrimary)

addOrgParticipant(trafficEventID, orgParticipationData)

removeOrgParticipant(trafficEventID, participantID)

addResourceDeployment(trafficEventID, resourceDeploymentData)

removeResourceDeployment(trafficEventID, deploymentID)

takeEventOffline(trafficEventID);

()getStandardLaneConfigurations():LaneConfiguration[]

TrafficEventDB

«interface»

TrafficEvent

«interface»

RoadwayEvent

getParticipationData() : ResponseParticipationData

setNotified(AccessToken token,

 boolean hasBeenNotified) : void

overrideNotificationTime(AccessToken token ,

 TimeStamp notificationTime) : void

remove(AccessToken token) : void

«interface»

ResponseParticipation

string m_configurationName

string m_configurationDescription

Lane[] m_lanes

LaneConfigReferenceDirection m_referenceDir

getLanes():Lane[]

LaneConfiguration

«interface»

Incident

RoadwayEventImpl

«interface»

ResponsePlanItem

m_incidentType

IncidentImpl()

IncidentImpl

m_resourceName

m_resourceType

m_notified

m_timeNotified

m_arrived

m_timeArrived

m_departed

m_timeDeparted

ResourceDeploymentImpl(TrafficEventGroup,

 ResourceDeploymentData)

ResourceDeploymentImpl

m_isActive

m_hasExecuted

m_lastKnownState

m_removed

ResponsePlanItemImpl(TrafficEventGroup, ResponsePlanItemData)

getLastKnownState():String

-setExecuted(boolean)

-cleanup():void

ResponsePlanItemImpl

«interface»

ResourceDeployment

«interface»

OrganizationParticipation

m_organizationName

m_notified

m_timeNotified

m_responded

m_timeResponded

OrganizationParticipationImpl(TrafficEventGroup,

 OrganizationParticipationData)

OrganizationParticipationImpl

ResponsePlanItemData

1

1

1 1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

stores event

history in

1

1

1

1

1

*

1

1

0..1

1

* 1

* 1

1 1

1

1

* 1

*

1

*

1

1

1

1

1

1

1

* 1

1 1

1 1

1

1

* 1

Figure 5‑180. TrafficEventModuleClasses (Class Diagram)

5.34.1.4.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic location of an Alert Factory and automatic re-discovery should the Alert Factory reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" Alert Factory without the user of this class being aware that this being done. In addition, this class defers the discovery of the Alert Factory until its first use, thus eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently known good reference to an AlertFactory. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Alert Factory objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances, not at all.

5.34.1.4.2 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or specific log entries for a specific Traffic Event. This class is the primary interface for the CommLog service. It is used to persist log entries in the CHART system and retrieve them for review. Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events.

5.34.1.4.3 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet specific criteria.

5.34.1.4.4 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.34.1.4.5 Duplicatable (Class)

This Java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.34.1.4.6 DuplicateEventMonitorTimerTask (Class)

This task periodically wakes up and calls TrafficEventFactoryImpl.monitorDuplicateEvents() which searches the list of open events and creates DuplicateEvent alerts for any pair of Traffic Events that meet the duplicate event criteria. Currently the duplicate event criteria are that the types of the two open events must be in the comparable event types list (see system profile) and they must both have the same location. This task will attempt to create new alerts every time this timer fires however it is up the AlertModule to ensure only one open alert exists for any pair of duplicate open events.

5.34.1.4.7 EORSPermitLookupTimerTask (Class)

This task periodically wakes up and checks for new EORS permits.

5.34.1.4.8 EventStillOpenMonitorTimerTask (Class)

This task periodically wakes up and calls TrafficEventFactoryImpl.monitorEventStillOpen() which creates EventStillOpen alerts for Traffic Events that have been open for longer than planned. This task will attempt to create a new alert every time this timer fires however it is up the AlertModule to ensure duplicate open alerts for this event do not exist.

5.34.1.4.9 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves one or more vehicles and roadway lane closures.

5.34.1.4.10 IncidentImpl (Class)

This class provides an implementation of the Incident interface. It contains state variables and processing that are unique to incident type traffic events.

5.34.1.4.11 InitializeRPIsTimerTask (Class)

This task periodically wakes up and refreshes and new RPI data.

5.34.1.4.12 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.34.1.4.13 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.34.1.4.14 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

5.34.1.4.15 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate.

5.34.1.4.16 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.34.1.4.17 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

5.34.1.4.18 OrganizationParticipationImpl (Class)

This class provides an implementation of the OrganizationParticipation interface. Each instance represents a particular organization’s participation activities in response to a particular traffic event.

5.34.1.4.19 ProxyBasicTrafficEvent (Class)

This class is used as a proxy for traffic events existing in all traffic event services (including the local service). The proxy traffic events cached are not complete copies of the traffic events, because the full range of data is not needed. The ProxyBasicTrafficEvent data consists of BasicEventData and associated events only (this is why the names of these objects contain the word "Basic", e.g., DiscoverBasicTrafficEventClassesCommand. These proxy traffic events allow every traffic event service in the system to have some knowledge of every traffic event in the entire system, for the purpose of detecting duplicate traffic events.

5.34.1.4.20 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.34.1.4.21 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

5.34.1.4.22 ResourceDeploymentImpl (Class)

This class provides an implementation of the ResourceDeployment interface. Each instance represents a resource that has been deployed to the scene of a traffic event. This class contains the state data that describes the resource's involvement in the traffic event.

5.34.1.4.23 ResourceMonitorTimerTask (Class)

This thread will periodically call the traffic event factory implementation object and force it to monitor its shared resources.

5.34.1.4.24 ResponseMonitorTimerTask (Class)

This thread will periodically call the traffic event factory implementation object and force it to notify each traffic event to monitor its response plan items for status changes.

5.34.1.4.25 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in response to a particular traffic event.

5.34.1.4.26 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

5.34.1.4.27 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

5.34.1.4.28 ResponsePlanItemImpl (Class)

This class provides an implementation of the ResponsePlanItem interface. Each instance represents one particular part of a response plan that can be in an executed, active or inactive state. This class also provides an implementation of the CommandStatus interface. This implies that devices that are activated on behalf of this traffic event can hold a copy of this object and call its update() method to provide a running status of the plan item as it changes.

5.34.1.4.29 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the hierarchy provides a break off point for traffic event types that pertain to other modals.

5.34.1.4.30 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at the scene of the event.

5.34.1.4.31 RPIStatusTimerTask (Class)

This task periodically wakes up and updates the RPI status.

5.34.1.4.32 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.34.1.4.33 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.34.1.4.34 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center. The shared resource manager is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push an event on the ResourceManagement event channel to notify others of this condition.

5.34.1.4.35 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.34.1.4.36 TrafficEventDB (Class)

This class provides an interface for the traffic event module to utilize the database. The interface provides methods needed to store and retrieve TrafficEvent related information.

5.34.1.4.37 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

5.34.1.4.38 TrafficEventFactoryImpl (Class)

This class is capable of creating a new TrafficEvent object in the system. Additionally, it acts as a manager of existing traffic event objects by performing calls on all traffic event objects such as shared resource or response plan monitoring.

5.34.1.4.39 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working. A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident. The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

5.34.1.4.40 TrafficEventModule (Class)

This class provides the resources and support functionality necessary to serve traffic event related objects in a service application. It implements the ServiceApplicationModule interface which allows it to be served from any ServiceApplication.

5.34.1.4.41 TrafficEventModuleProperties (Class)

This class provides operations for getting values in the service's Java properties file.

5.34.2 Sequence Diagrams

5.34.2.1 BasicTrafficEventPushConsumer:push (Sequence Diagram)

This sequence diagram shows the processing that occurs when an event is received from a TrafficEvents CORBA Event Channel. The event is received via the push() call as defined in the PushConsumer CORBA interface. The push() call creates a PushHelper object to store the event and put it on a queue to be processed in a separate thread, allowing control to return to the event channel. When the PushHandler reaches the top of the queue, its execute method is called, which calls processPush() on the TrafficEventPushConsumer.

The TrafficEventEventHelper is used to extract the untyped data (known as an ‘Any’) into an TrafficEventEvents object, and the TrafficEventEvents discriminator method is called to determine the type of event. Different processing is then done based on the type of CORBA event that was received. If the event is any of those referring to the various types of TrafficEvent being created, e.g., ActionEventAdded, CongestionEventAdded, IncidentAdded, etc., the DataModel is called to retrieve the traffic event, just in case it was already discovered before receiving the event. If not already known (the usual case) a new ProxyBasicTrafficEvent derived object is created with the type specific TrafficEventData and the ProxyBasicTrafficEvent is added to the DataModel. In the unusual case where the traffic event is already known, its data is simply updated.

When an TrafficEventStateChanged event is received, the type specific BasicEventData is extracted from the event data using the discriminator of the union containing the data. The existing traffic event is found in the DataModel and cast to the appropriate subclass. The data from the event is then used to update the data stored in the ProxyBasicTrafficEvent.

If a TrafficEventAssociated or TrafficEventAssociationRemoved is received, the two affected events are found in the DataModel, and both are updated to add or remove the association as appropriate.

When a TrafficEventClosed or TrafficEventDeleted event is received, the DataModel is called to remove the traffic event based on its ID. (This is because currently on the CHART Server side, there is no need to cache traffic events once the events are closed. (To be careful, also attempt to remove from the cache on TrafficEventDeleted, just in case we missed the TrafficEventClosed event.)

[image: image243.emf]If found, updateas in the statechange cases.If not found, queryTrafficEvent for BasicEventData andadd to DataModel asin add case above.A QueueableCommandproxy :ProxyBasicTrafficEventProxyBasicTrafficEventTrafficEventAddedInfoTrafficEventEventTypeTrafficEventStateChangedInfocreate(any)[command at topof queue]execute()extract(any)[ActionEventAdded or CongestionEventAdded or ...]basicData()getObject(id)[TrafficEventStateChanged]eventStateChangedData()create

setBasicEventData(eventData)Note: the name of theclass is plural, however,this refers to a single instance.Currently on the CHART Server side,

there is no need to cache traffic

events once the events are closed.

So we remove the object from the

cache on TrafficEventClosed. This

could be changed in the future, so

users of the ObjectCache/DataModel

should not depend on closed events

not being in the cache. (To be careful,

also attempt to remove from the cache

on TrafficEventDeleted, just in case we

missed the TrafficEventClosed event.)

TrafficEventAddedInfoTrafficEventEventseventData :BasicEventDatatheTrafficEvent :TrafficEventThe following processing is done if the TrafficEventEventType is TrafficEventAssociated.TrafficEventAssocatedInfoproxy1 :ProxyBasicTrafficEventgetID()idgetAssociatedEvents()objectChanged()[TrafficEventAssociated]eventAssociatedDataTrafficEventAssociatedInfogetObject(eventId1)ProxyBasicTrafficEventaddEventAssocation(eventId2)proxy2 :

ProxyBasicTrafficEvent

Processing if the TrafficEventEventType is TrafficEventAssociationRemoved is analogous to the TrafficEventAssociated case above, except we are removing one association.

Replace TrafficEventAssociatedInfo with TrafficEventAssociationRemovedInfo; replace addEventAssociation() with removeEventAssociation(), etc.

getObject(eventId2)

addEventAssociation(eventId1)

objectChanged()

addCommand()processPush(any)discriminator()getID()ProxyBasicTrafficEvent

Proxy is created withBasicEventDatafrom here.trafficEventData :BasicEventDataidTraffic Event Event ChannelBasicTraffiEventtPushConsumerBasicTrafficEventPushConsumer.PushHandlerCommandQueueThe processing that follows is done if the TrafficEventEventType is any of theevent types referring to the various types of TrafficEvent being created, e.g.,ActionEventAdded, CongestionEventAdded, IncidentAdded, etc.Proxy isupdated withBasicEventDatafrom here.There are numerous other cases for TrafficEventEventType that we don't care about, since we are caching only the basic information about traffic events.

All of these other types are listed in the case statement, but are ignored (with no error logging). These leaves only the truly unknown CORBA event types

to be logged as an unknown CORBA event type in the "default" case.

DataModelThe following processing is done if the TrafficEventEventType is TrafficEventStateChanged.The following processing is done if the TrafficEventEventType is TrafficEventClosed or TrafficEventDeleted.

Identifier

proxy :ProxyBasicTrafficEventProxyBasicTrafficEvent or nullTrafficEventEventsbyte[]

push(any)If event isalready inthe data model, update it as instate changedcase justbelow.[event not in data model]create(reference, trafficEventData)[event not in data model]objectAdded(proxy)objectRemoved(id)

alertID()

getObject(id)TrafficEventEventsHelperTrafficEventStateChangedInfo

Figure 5‑181. BasicTrafficEventPushConsumer:push (Sequence Diagram)

5.34.2.2 DiscoverBasicTrafficEventClassesCommand:execute (Sequence Diagram)

This sequence shows processing in the ServiceApplication used to discover TrafficEvent classes that exist in the system. This processing is invoked by the DiscoveryDriver when the service is started and periodically throughout the lifetime of the service. A call is made to the TraderGroup to have it discover all traffic event management CORBA event channels in the system. This call performs all actions required to attach the BasicTrafficEventPushConsumer to all channels and to maintain the connection to the event channel. Next, the TraderGroup is used to find all TrafficEvent objects in the system. Although traffic events are typically modeled as one Java class per event type, the ProxyBasicTrafficEvent does not store enough data to need to disambiguate. The BasicEventData object is retrieved. A call to DataModel is used to retrieve the derived ProxyBasicTrafficEvent object if it has already been discovered. If not found, a new ProxyBasicTrafficEvent derived object is created. The BasicEventData retrieved from the event is then stored in the ProxyBasicTrafficEvent derived object. If the event did not already exist in the DataModel, it is added.

[image: image244.emf]DiscoverBasicTrafficEventClassesCommandDataModel TrafficEvent TraderGroup TrafficEvent CORBA.Object[] execute()discoverEventChannelsOfName(EVENT_CHANNEL_TRAFFIC_EVENT.value(), pushConsumer) getObject(id) [event not in cache]

objectAdded(ProxyBasicTrafficEvent)

getPushConsumer()getAssociatedEvents()

pushConsumer : CosEventComm.PushConsumer DiscoveryDriverProxyBasicTrafficEvent m_btepc : BasicTrafficEventPushConsumerTrafficEventHelper ProxyBasicTrafficEvent or null BasicEventData for each TrafficEventobjectreturned bythe trader query

findAllObjectsOfType(SERVICE_TYPE_TRAFFIC_EVENT.value())narrow() getBasicEventData() [event not in cache] create(TrafficEvent ref,

BasicTrafficEvent data)

Figure 5‑182. DiscoverBasicTrafficEventClassesCommand:execute (Sequence Diagram)

5.34.2.3 ProxyBasicTrafficEvent:isDuplicateOf (Sequence Diagram)

This sequence diagram shows two virtually identical methods: isDuplicated() and getDuplicates(). The first is shown in full detail, and the second highlights only the difference. In case of isDuplicated(), this is used to determine if a duplicate traffic event already exists in the CHART traffic event system (considering the full breadth of events across all traffic event managers statewide). This makes use of the Duplicatable interface, and can be used on any Duplicatable class. In this case, it is ProxyBasicTrafficEvent. A traffic event cannot be a duplicate of itself -- there must be two distinct UniquelyIdentifiable events to be a duplication. Next we check comparability of the two types, as configured in the system profile properties. If they are comparable, the event location fields of the two events are checked.
[image: image245.emf]other :DuplicatableCheck to see if this event is comparable to the other.

If not, these cannot be duplicate events.

propName1 += getEventTypeString()

propName2 += getEventTypeString()

This sequence diagram shows two similar methods. isDuplicated() is above. It returns a boolean if there is at least one duplicate,

so it exits as soon as one duplicate is found. getDuplicates() is below. It returns a list of all duplicates, so it always completes the full loop.

[events associated]

false

callerObjectCacheMethod is called on a Duplicatable, which is actually a ProxyBasicTrafficEvent, because the parameter "type" specifies that only ProxyBasicTrafficEvent instances of Duplicatable are considered. These are the same object.These are the current object drawn from the ObjectCacheon each iteration of the loop. "other" is the one to compare.Method call is shown to both, but returns are showngoing straight through the Duplicatable to the caller.result

DataModelBy definition, events which are truly equal (same ID) are not "duplicates". All this means is we have found the object we're checking for in the DataModel. An event cannot be a duplicate of itself.DuplicatableProxyBasicTrafficEventProcessing for getDuplicates is similar to

isDuplicated() above, except vector of

Duplicatable is accummulated and returned

(as an array of Duplicatable).

IdentifierGeneratorother :ProxyBasicTrafficEventProxyEventStillOpenAlert

An event that is closed is not

considered for duplication.

So if either event is closed, we

do not have a duplicate.

[*for all

objects

returned

or until

a duplicate

is found]

result

[result true]

vector.add(current object)

getObjectsOfType(type)[current obj is Duplicatable]cast to DuplicatableisDuplicateOf(other)isAssocatedWith(other.getID())

[this eventId matches other evnttId]

false

areIdentifiersEqual(this.getID(), otherId)

[false]

false

[result is true]

true

[other event is closed]

false

getDuplicates(type, other)

[*for all

objects

returned]

vector.toArray()

isDuplicated(type, other)allObjectsOfMatchingTypeisDuplicateOf(other)[this event is closed]

false

[got a value and it is false]

false

propName2 += otherEventTypeString

[got no value]

false

Check to see if the other event is comparable to this one.

(System Profile Property names are configured only one way.)

If not, these cannot be duplicate events.

If we got no response for the property structured in either

order, assume events are not comparable.

propName1 += otherEventTypeString

otherId = getID()

getProperty(propName1)

propName2 = EVENT_COMPARISON_PREFIX

test this and other both have

state

specified and they match

test this and other both have

county or region

specified and they match

[false]

false

test this and other both have

primary route

specified and they match

[false]

false

test this and other both have

intersecting feature

specified and they match

[through loop]

false

m_sysProfileProps :SystemProfilePropertiescaller

propName1 = EVENT_COMPARISON_PREFIX

propName1 += EVENT_COMPARISON_SEPARATOR

cast to ProxySimpleTrafficEventotherEventTypeString = getEventTypeString()

propName2 += EVENT_COMPARISON_SEPARATOR

getProperty(propName2)

[got a value and it is false]

false

Figure 5‑183. ProxyBasicTrafficEvent:isDuplicateOf (Sequence Diagram)

5.34.2.4 TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

This diagram shows how a new traffic event is created. The TrafficEventFactoryImpl is called to create the new traffic event. After checking the user's rights, it creates a new TrafficEventGroup and calls it to create the appropriate type of TrafficEventImpl, based on the type of BasicTrafficEventData that is passed in. Then the factory calls the TrafficEventGroup to initialize. This adds any initial entries to the traffic event's history log, activates the TrafficEvent object, and publishes it in the trading service. It also adds entries to the communications log and the operations log, and pushes a CORBA event through the event service to inform the GUIs of the creation of the new event. Finally, the traffic event is checked to see if it an alert needs to be created for the traffic event being at the same location as any other traffic event in the system.
[image: image246.emf][* for each

duplicate

found]

[typeCode ==

WeatherSensorAlert]

create

[no rights] log "invalid access attempt" [typeCode == SpecialEvent]

create

[typeCode == SafetyMessage]

create

[typeCode == Congestion ||

typecode == RecurringCongestion]

create

[typeCode == ActionEvent]

create

[typeCode ==

WeatherServiceAlertImpl]

create

activate_object(TrafficEvent)

getPOA

initialize

addCommLogEntry "New Event Opened"

push "traffic event added"

getEventSupplier

addLogEntry

[*for each

log entry]

addGroupToDatabase

addLogEntry(eventOpened)

[database error]

CHART2Exception

IdentifierGenerator basicEventData.id = createIdentifier() New for R3B1. currentEvent :

ProxyTrafficEvent

ObjectCache AlertFactoryWrapper duplicateEvent :

ProxyTrafficEvent

create with new event data

getDuplicates(currentEvent)

duplicates

Issue alert only if my

event is newer than

any duplicate found.

Surely the other event is

older, but check just to

be sure.

dupOpenTime = getOpenedTime()

dupEventId = getID()

[current event open time (now) >= dupOpenTime]

createDuplicateEventAlert(m_systemToken, eventId, dupEventId,

 "Duplicate Event: <name> duplicates <otherName>", AMG for currentEvent op center)

[error other than

AlertTypeDisabledException]

log(error)

Processing for

checking for

duplicate events

and creating

alert added for

R3B1.

SpecialEventImpl

SafetyMessageEventImpl

CongestionEventImpl

ActionEventImpl

WeatherServiceAlertImpl

WeatherSensorAlertImpl

DisabledVehicleImpl

PlannedRoadwayClosureImpl

IncidentImpl TrafficEventGroup TokenManipulator TrafficEventFactoryImplORBCosTrading. Register POA TrafficEventModule PushEventSupplierOperationsLog This will store the TrafficEventGroup and

the TrafficEvent data in the database.

TrafficEventDB addGroup

[typeCode ==

DisabledVehicle]

create

[typeCode == PlannedRoadwayClosure] create

[UnknownTrafficEventType]UnknownTrafficEventType[unknown traffic event type]UnknownTrafficEventType[typeCode == Incident] create createTrafficEvent create [no rights]AccessDeniedcheckAccesscreateTrafficEventexport(TrafficEvent)

getTradingRegister

log "New event created"

Figure 5‑184. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

5.34.2.5 TrafficEventModule:Initialize (Sequence Diagram)

This diagram shows what happens when the TrafficEventModule is initialized. The ServiceApplication calls the TrafficEventModule to initialize, which reads in the properties from a file, overriding the default properties. It creates an event channel for traffic events and publishes the channel in the trading service so that other applications can see it. It creates a TrafficEventDB object to handle all of the database calls, and a TrafficEventFactoryImpl object to manage the traffic events. The TrafficEventFactoryImpl creates a DatabaseLogger for logging the traffic event's history log, then calls the TrafficEventDB to load the TrafficEventGroup objects from the database. Then for each group it will activate the current TrafficEvent, the ResponseParticipation objects, and the ResponsePlanItem objects. The TrafficEvent is exported to the trading service. The response plan items are then initialized for resolving the device being used and to get the status of any response plan items that were queued for execution (See IntializeResponsePlanItems sequence diagram for details). The resource monitor thread and the response monitor thread are created, and the TrafficEventFactory is exported to the trading service.

[image: image247.emf]DiscoveryManager DiscoverBasicTrafficEventClassesComamnd getDiscoveryManager add(DiscoverBasicTrafficEventClassesCommand) create TrafficEventGroup POA DatabaseLogger ResponseMonitorThread

ResourceMonitorThread See InitializeResponsePlanItems sequence diagram for details AudioClip ManagerWrapper TrafficEventModule ServiceApplicationThis event channel is used to push TrafficEvent state changes. PushEventSupplier TrafficEventModuleProperties CosTrading.Register TrafficEventFactoryImpl TrafficEventDB ServiceApplication activate_object (ResponsePlanItem) [*for each response participation object] activate_object (ResponseParticipation) create initialize create start

start setDaemon

setDaemonexport(TrafficEvent) registerObject(TrafficEvent) getTrafficEvents InitializeResponse PlanItems export(Event Channel) [* for each ResponsePlanItem] getDefaultProperties initializeget create

initialize create getEventChannelFactory create getProperties registerEventChannel getTradingRegister export(Traffic Event Factory)

create create [* for each traffic event group] getDBConnectionManager activate_object (TrafficEvent)

Figure 5‑185. TrafficEventModule:Initialize (Sequence Diagram)

5.34.2.6 TrafficEventModule:MergetoIncident2 (Sequence Diagram)

This operation is called when the user tries to merge two traffic events. The user selects the data that should be merged into the event and passes it to the server. This method merges the basic data, RPI, road conditions etc. from the source event to the target event's database and false alarms the source event. If the two events are of different types, then the event specific data is not merged.

[image: image248.emf]restoreData()

IncidentImpl TrafficEventImpl

This part is

skipped if

source is not incident.

TrafficEventGroup TrafficEventDB DatabaseLogger srcTrafficEventCommandStatus

ResponsePlanItem

Makes multiple calls to get the

srcTrafficEvent data not shown here.

getType()

cmdSuccess()

*for all RPI

* for all RPIs

removeUnwantedRPI()

falseAlarm()

execute()

[if required - this could be done in

another thread]

new

initialize()

mergeLaneConfiguration()

verifyAccess()

[TrafficEvent

Merged(id)]

mergeAssociatedEvents()

mergeEvent()

isClosed()

mergeEventData(...)

InvalidState

[target event closed already]

AccessDenied

mergeEventData(...)

mergeResponseParticipationList()

mergeHistoricalLogEntries()

mergeIncidentData()

mergeBasicEventData()

mergeIncidentEvent()

isClosed()

getSrcMergeData()

lockEvent()

opLog("incident xxxid merged")

CHART2

Exception

[DBError]

cmdFailure()

storeData()

synchronize(m_lock)

If DB Error

only

addCommLogEntry ()

DBError

Figure 5‑186. TrafficEventModule:MergetoIncident2 (Sequence Diagram)

5.34.2.7 TrafficEventModule:MonitorControlledResources (Sequence Diagram)

This diagram shows the periodic maintenance of the traffic events - the monitoring of the controlling operations center, and the removal of the traffic events from the system. When the ResourceMonitorThread calls the factory to monitor the resources, the factory first gets all of the controlling operations centers for all traffic events. It uses the cached ProxySimpleOpCenter objects from the ObjectCache find out how many users are logged in at each OperationsCenter. If no users are logged in, it creates an UnhandledResourcesAlert indicating that shared resources need to be transferred to another operations center. The ResourceMonitorThread will also call the factory to check if events need to be removed from the system. The factory asks each closed traffic event for its closure time and determines whether it has been closed long enough to remove it from the system. If a traffic event is removed, the database is updated, the offer is withdrawn from the trading service, the CORBA object is deactivated, and a CORBA event is pushed on the event channel indicating that the traffic event was just deleted.

[image: image249.emf]ProxySimpleOpCenter TrafficEventDB AlertFactoryWrapper getObject(id) and cast result to ProxySimpleOpCenter New for R3B1. Call to AlertManagerFactoryWrapper replaces push of UnhandledControlledResources event. CosTrading.Lookup TrafficEventModule TrafficEventFactoryImpl ResourceMonitorTimerTaskTrafficEventGroup CosTrading.RegisterPOA "Store op center refs" getOpCenterRefgetPushEventSuppliergetNumLoggedInUsers [op center ref not found] query "all op center objects" getTradingLookup [* for each controlling op center] getControllingOpCenters addLogEntry [* for each ResponseParticipation] deactivate_object (ResponseParticipation) isClosed [curent time - closure time >= takeOfflineThreshold] takeOffline monitorResources [numLoggedInUsers <= 0] createUnhandledResourcesAlert(m_systemToken, op ctr ID, "<op ctr name> has ctrld resource(s) w no one logged in", AMG for op ctr ID) getClosureTime takeEventsOffline push (TrafficEventDeleted) deactivate_object (TrafficEvent) getPOA withdraw getTradingRegister [* for each trafficEvent] takeEventOffline getDB ObjectCache

Figure 5‑187. TrafficEventModule:MonitorControlledResources (Sequence Diagram)

5.34.2.8 TrafficEventModule:MonitorDuplicateEvents (Sequence Diagram)

This sequence diagram shows the processing executed periodically by the duplicate event monitoring TimerTask to detect duplicate traffic events. The ProxyBasicTrafficEvent method from the Duplicatable interface to detect duplicates is employed to check for duplicates (in the full ObjectCache of all local and remote traffic events) of every currently open traffic event in the local service. This task is anticipated to run every 5-10 minutes (configurable in .props file).

[image: image250.emf]amg : AlertManagementGroup create from owning op center of currentEventcurrentEvent : ProxyBasicTrafficEvent getDuplicates(currentEvent) and cast to ProxyBasicTrafficEventcreateduplicate events Issue alert only if my event (currentEvent) is newer than any duplicate found. dupOpenTime = getOpenedTime() dupEventId = getID() [*for eachduplicateevent found]duplicateEvent : ProxyBasicTrafficEvent currentEventOpenTime = getOpenedTime()[currentEventOpenTime >= dupOpenTime] createDuplicateEventAlert(m_systemToken, eventId, dupEventId, "Duplicate Event: <name> duplicates <otherName>", amg) DuplicateEventMonitorTimerTaskmonitorDuplicateEvents()[* for each open traffic event]getBasicEventData()AlertFactoryWrapper TrafficEventGroup TrafficEventFactoryImplObjectCache [error other thanAlertTypeDisabledException]log(error)

Figure 5‑188. TrafficEventModule:MonitorDuplicateEvents (Sequence Diagram)

5.34.2.9 TrafficEventModule:MonitorEventStillOpen (Sequence Diagram)

This method looks through all open Traffic Events and creates an EventStillOpenAlert for any that have been open too long. "Too long" means longer than the planned reminder time optionally specified by the operator. It will be called periodically so duplicate alerts for the same open traffic event are expected and will be rejected by the AlertFactory.

[image: image251.emf]GUI optionally sets m_reminderTime, 0 indicates no reminder m_reminderTime > Now EventStillOpenMonitorTimerTaskTrafficEventFactoryImpl TrafficEventGroup AlertFactoryWrapper monitorEventStillOpen() [* for each open traffic event][isOpenTooLong()] CreateEventStillOpenAlert()

Figure 5‑189. TrafficEventModule:MonitorEventStillOpen (Sequence Diagram)

5.34.2.10 TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

This diagram shows what happens when a traffic event association is removed. One of the TrafficEventImpl objects is called to remove the association. It checks the user's rights and removes the association from its TrafficEventGroup and from the database and pushes an event. It also calls the associated event to remove its association from the first. The associated event does the same thing, but when it calls back to the first TrafficEvent, the association has already been removed so it returns an exception to the second TrafficEvent and the association removal is complete. After both association removals, the current traffic event is checked to see if it an alert needs to be created for the traffic event now being at the same location as the traffic event from which it was just unassociated.

[image: image252.emf]This is the first eventbeing unassociated from the second.This is the second event being unassociated from the first Second event New for R3B1.

New for R3B1.

[error other than

AlertTypeDisabled]

log error

[error other than

AlertTypeDisabled]

log error

thisEventProxy :

ProxyBasicTrafficEvent

otherEventProxy :

ProxyBasicTrafficEvent

thisEventProxy : ProxyBasicTrafficEvent otherEventProxy :

ProxyBasicTrafficEvent

if a duplicate

create using data for

this event

create using data for newly unassociated event

isDuplicateOf(otherEventProxy)

create using data for this traffic event create using data for newly unassociated event

isDuplicateOf(otherEventProxy)

boolean

dupOpenTime = getOpenedTime()

AlertFactoryWrapper At most only one of these will occur.

The difference in comparators (>= vs >)

ensures we get only one alert even if

the times are exactly the same.

if a duplicate

[current event open time (now) > dupOpenTime]

createDuplicateEventAlert(m_systemToken, eventId, dupEventId,

 "Duplicate Event: <name> duplicates <otherName>", AMG for this event's op center)

boolean

dupOpenTime = getOpenedTime()

[current event open time (now) >= dupOpenTime]

createDuplicateEventAlert(m_systemToken, eventId, dupEventId,

 "Duplicate Event: <name> duplicates <otherName>", AMG for this event's op center)

TrafficEventGroup PushEvent Supplier OperationsLog TrafficEventImpl ORBTrafficEvent TrafficEventDB TrafficEventGroup TrafficEventModule [no rights]AccessDeniedremoveEventAssociation[event closed]CHART2ExceptiongetDB removeEventAssociation [no rights] log "Invalid access attempt" [event not associated] SpecifiedObjectNotFound [event not associated] SpecifiedObjectNotFound removeEventAssociation SpecifiedObjectNotFound

associationRemoved removeEventAssociation

[event not associated]SpecifiedObjectNotFoundremoveEventAssociation getDB removeEventAssociation [event not associated] SpecifiedObjectNotFound removeEventAssociation [event not associated]associationRemovedpush (TrafficEventAssociationRemoved) push (TrafficEventAssociationRemoved) log "association removed" addLogEntry log "association removed" addLogEntry First event.

Figure 5‑190. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

5.34.2.11 TrafficEventModule:SetRoadwayLocation (Sequence Diagram)

This sequence diagram shows the processing involved in setting the location for a traffic event. After the new location is set, the traffic event is checked to see if an alert needs to be created for the traffic event now being at the same location as any other traffic event in the system.

[image: image253.emf]amg : AlertManagementGroup create using op center for current event setRoadwayLocation(token,roadwayLocation)[current event open time (now) >= dupOpenTime] createDuplicateEventAlert(m_systemToken, eventId, dupEventId,

 "Duplicate Event: <name> duplicates <otherName>", amg)

[error other than

AlertTypeDisabledException]

log(error)

[* for each

duplicate found]

ORBTrafficEventTokenManipulator OperationsLog checkAccess [no rights]AccessDenied[no rights] log("access denied") Issue alert only if my

event is newer than

any duplicate found.

currentEventProxy : ProxyBasicTrafficEventObjectCacheduplicateEventProxy : ProxyBasicTrafficEvent AlertFactoryWrapper create with new event data and location getDuplicates(currentEventProxy) duplicates dupOpenTime = getOpenedTime() dupEventId = getID()

Figure 5‑191. TrafficEventModule:SetRoadwayLocation (Sequence Diagram)

5.35 User Mangement Module
5.35.1 Classes

5.35.1.1 UserManagementClassDiagram (Class Diagram)

This class diagram depicts the CORBA IDL interface defined for user management in the CHART system. User management includes adding and deleting users from the system, modifying their roles, managing capabilities of roles, and management of system and user profile properties. The UserManager interface is largely an interface to the User Management database tables.

[image: image254.emf]createUser() : void

deleteUser() : void

getusers() : User[]

createRole() : void

getRoles() : Role[]

grantRole() : void

revokeRole() : void

deleteRole() : void

getRoleFunctionalRights() : FunctionalRight[]

setRoleFunctionalRights() : void

getUserRoles() : Role[]

setUserRoles() : void

changePassword() : void

setUserPassword() : void

setUserProfileProperties() : void

deleteUserProfileProperties() : void

getUserProfileProperties() : ProfileProperty[]

setSystemProfileProperties() : void

deleteSystemProfileProperties() : void

getSystemProfileProperties() : void

setSystemProfileBinaryProperties(token, ProfileBinaryProperty[]) : void

deleteSystemProfileBinaryProperties(token, propertyKeys : string[]) : void

getSystemProfileBinaryProperties(token) : ProfileBinaryProperty[]

getSystemProfileBinaryPropsByKey(token, propertyKeys : string[]):

 ProfileBinaryProperty[]

«interface»

UserManager

Last four methods

new for R3B1.

m_key : string

m_value : byte[]

«datatype»

ProfileBinaryProperty

m_key : string

m_value : string

«datatype»

ProfileProperty

m_username

m_password

«datatype»

User

New for R3B1.

m_name

m_description

«datatype»

Role

m_id

m_orgFilter

«datatype»

FunctionalRight

*

1

* 1

* 1

* *

* *

*

1

Figure 5‑192. UserManagementClassDiagram (Class Diagram)

5.35.1.1.1 FunctionalRight (Class)

The FunctionalRights class represents the right to perform an action or set of actions. The functional right can be limited to apply to a single organization's shared resources. If the filter is not used, the functional right applies to all organization's shared resources.

5.35.1.1.2 ProfileBinaryProperty (Class)

This class represents a key value pair that can be used to store system properties in the system database. The key is a string and the value is binary data. One known use will be to store audio cue data to be played by the browser as part of the Alert Management capability introduced in R3B1.

5.35.1.1.3 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the system database. The key and the value are both strings.

5.35.1.1.4 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting the user all functional rights contained within the role.

5.35.1.1.5 User (Class)

The User class represents a CHART system user. In order to log into the CHART system, a user must be defined in the user database.

5.35.1.1.6 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users, roles, and functional rights. The UserManager is largely an interface to the User Management database tables.

5.35.1.2 UserManagementModuleClasses (Class Diagram)

This class diagram shows classes that support user management in the CHART system. The purpose of this module is to serve the object implementing the UserManager interface and to serve the objects implementing the Profile interface.

[image: image255.emf]ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

createUser(AccessToken,UserName,Password):void

deleteUser(AccessToken,UserName):void

getUsers(AccessToken):UserList

getRoles(AccessToken):RoleList

getUserRoles(AccessToken,UserName):RoleList

getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList

setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void

createRole(AccessToken, Role):void

deleteRole(AccessToken,RoleName):void

changeUserPassword(AccessToken, UserName,Password,Password):void

setUserRoles(AccessToken, UserName, RoleList):void

grantRole(AccessToken, UserName,RoleName):void

revokeRole(AccessToken,UserName,RoleName):void

setUserPassword(AccessToken, UserName,Password):void

ping():void

setUserProfileProperties(AccessToken, ProfilePorpertyList):void

deleteUserProfileProperties(AccessToken, ProfilePropertyKeyList):void

setSystemProfileProperties(AccesssToken, ProfilePropertyList):void

deleteSystemProfileProperties(AccessToken, ProfilePropertyKeyList):void

getSystemProfileProperties(AccessToken):ProfilePropertyList

getUserProfileProperties(AccessToken):ProfilePropertyList

«interface»

UserManager

m_application

UserManagementModule()

UserManagementModule

start(args : string[]) : boolean

shutdown() : boolean

getORB() : ORB

getPOA(string poaName) : POA

getTradingRegister() : CosTrading.Register

getTradingLookup() : CosTrading.Lookup

getEventChannelFactory() : EventChannelFactory

getDBConnectionManager() : DBConnectionManager

getOperationsLog() : OperationsLog

getProperties() : java.util.Properties

getDefaultProperties() : java.util.Properties

registerObject(obj, id, name, type, publish) : void

registerEventChannel(EventChannel, name) : void

withdrawObject(id) : void

getIDGenerator() : IdentifierGenerator

«interface»

ServiceApplication

m_database

UserManagerImpl(UserManagementDatabase db, CosTrading.Register traderReg, CosTrading.Lookup traderLookup)

UserManagerImpl

DBConnectionManager m_db;

getUsers()

getRoles()

getUser()

getUserRoles()

getUserPassword()

setUserPassword()

createRole()

deleteRole()

setRoleFunctionalRights()

getRoleFunctionalRights()

createUser()

deleteUser()

grantRole()

revokeRole()

setUserPassword()

setUserRoles()

getUserProfile()

deleteUserProfile()

getUserProfileProperties()

setUserProfileProperties()

deleteProfileProperty()

getSystemProfile()

getSystemProfileProperties()

setSystemProfileProperties()

UserManagementDB

setProfileProperties(AccessToken, ProfilePropertyList):void

deleteProfileProperty(AccessToken,ProfileProperties):void

getProfileProperties():ProfilePropertyList

«interface»

Profile

«interface»

CosTrading.Lookup

«interface»

CosTrading.Register

destroy()

ProfileImpl

1

1

1

1

1

1

* 1 1 1

1

1

Figure 5‑193. UserManagementModuleClasses (Class Diagram)

5.35.1.2.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published.

5.35.1.2.2 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover.

5.35.1.2.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to configure how the CHART system behaves or presents information to a user.

5.35.1.2.4 ProfileImpl (Class)

This class is the specific implementation of a Profile interface which will be served by the User Management Service. As such, it contains the profile properties and provides methods to get, add and delete the properties..

5.35.1.2.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.35.1.2.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.35.1.2.7 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User Management data in the database. This class uses a Database object to retrieve a connection to the database for its exclusive use during a method call.

5.35.1.2.8 UserManagementModule (Class)

This module creates, publishes and deletes the object that implements the UserManager interface for user configuration and manipulation.

5.35.1.2.9 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users, roles, and functional rights. The UserManager is largely an interface to the User Management database tables.

5.35.1.2.10 UserManagerImpl (Class)

This class is the specific implementation of a UserManager interface which will be served by the User Management Service. As such, it provides implementations of each of the methods in the UserManger interface.

5.36 Utility Package
5.36.1 Classes

5.36.1.1 UtilityClasses (Class Diagram)

This Class Diagram shows various utility classes that are used by various applications.

[image: image256.emf]+getConnection() : java.sql.Connection

+getCurrentOpenCursors() : int

+releaseConnection() : void

+shutdown() : void

+verifyDBInitialized() : boolean

DBConnectionManager

getProperty()

setProperty()

java.util.Properties

createIdentifier()

areIdentifiersEqual()

IdentifierGenerator

activate_object(Servant obj)

deactivate_object(object_id)

deactivate()

the_POAManager() : POAManager

create_POA() : POA

«interface»

POA

m_id

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

Identifier

ServiceApplicationProperties(

String propertiesFilename)

getProperties()

getDefaultProperties()

getThreadModel():int

getThreadPoolSize():int

getDatabaseConnectString():String

getDatabaseUserName():String

getDatabasePassword():String

getModuleNames():String[]

getNetConnectionSite():String

ServiceApplicationProperties

put(Identifiable)

find(identifier)

remove(identifier)

elements()

size()

IdentifiableLookupTable

execute()

interrupted()

«interface»

QueueableCommand

start(args : string[]) : boolean

shutdown() : boolean

getORB() : ORB

getPOA(string poaName) : POA

getTradingRegister() : CosTrading.Register

getTradingLookup() : CosTrading.Lookup

getEventChannelFactory() : EventChannelFactory

getDBConnectionManager() : DBConnectionManager

getOperationsLog() : OperationsLog

getProperties() : java.util.Properties

getDefaultProperties() : java.util.Properties

registerObject(obj, id, name, type, publish) : void

registerEventChannel(EventChannel, name) : void

withdrawObject(id) : void

getIDGenerator() : IdentifierGenerator

«interface»

ServiceApplication

getID()

getName()

«interface»

UniquelyIdentifiable

getSystemProfileProperties() : SystemProfileProperties

getRootDeploymentPath() : string

getDynamicImagePath() : string

getDataModel() : DataModel

getProcessingQueue() : CommandQueue

«interface»

SystemContextProvider

childDeviceID:Identifier

childDeviceName:string

latestStatusText:string

completed:boolean

success:boolean

«datatype»

ChildCommandStatusData

m_table : Hashtable<Object>

+DataModel() : ctor

+getObject(key : Object) : Object

+getObjectsOfType(classCheck : Class) : Object[]

+getAllObjects() : Object[]

+attachObserver(modelObserver, priority) : boolean

+detachObserver(modelObserver) : void

+objectAdded(key : Object, value : Object) :Object

+objectUpdated(key : Object) :void

+objectUpdated(key : Object, hint : UpdateHint) :void

+objectUpdated(key : Object, hints : UpdateHint[]) :void

+objectRemoved(key : Object) : Object

+setUpdateInterval(priorityLevel : int, updateInterval : int) : boolean

+getUpdateInterval(priorityLevel : int) : int

DataModel

m_cameraIdentifiers : Hashtable

m_commands : List

m_comport : CameraControlComPort

m_comportName : String

m_enableDeviceLogging : boolean

m_lock : Object

m_responseLock : Object

m_responses : Hashtable

m_simulated : boolean

m_stopThread : boolean

+addCommand(CommandTransaction)

+dequeue()

+executeCommand()

+receive(Identifier)

+receiveResponse(byte[])

+run()

+sendCommandToComPort(CameraCommand)

+stopThread()

CommandQueue

run()

«interface»

java.lang.Runnable

update(String status):void

completed(boolean commandSuccessful,

 String finalStatus):void

completedSameStatus(boolean commandSuccessful):void

«interface»

CommandStatus

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)

getChannel():EventChannel;

getMaxReconnectInterval(void):int;

setMaxReconnectInterval(int seconds):void;

push(Any data):void;

disconnectPushConsumer(void):void;

PushEventSupplier

m_props : ServiceApplicationProperties

m_opLog : OperationsLog

m_orb : ORB

m_poa : POA

m_tradingRegister : Register

m_localTradingLookup : Lookup

m_tradingRepos : ServiceTypeRepository

m_traderGroup : TraderGroup

m_dbConnectionMgr : DBConnectionManager

m_opLog : OperationsLog

m_cmdQueue : CommandQueue

m_discoveryMgr : DiscoveryManager

DefaultServiceApplication(String propertiesFilename) : ctor

+start(args : string[]) : boolean

+shutdown() : boolean

+resolveTraders(token : AccessToken) : void

+getDataModel() : DataModel

+getDiscoverDriver() : DiscoverDriver

+withdrawStaleOffers()

-writeOffersToFile(String moduleName, int[] offerIDs):boolean

-removeOffersFromFile(String moduleName):boolean

DefaultServiceApplication

ServiceApplication m_svcApp;

SwitchControlDB m_db;

SwitchControlModuleProperties m_props;

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

«interface»

ServiceApplicationModule

m_masterCmdStat:CommandStatus

m_masterExtCmdStat:ExtendedCommandStatus

m_childDeviceID:Identifier

m_childDeviceName:string

m_childCmdStatusData:ChildCommandStatusData

m_childCmdStatusString:string

setBasicCmdStatus(cmdStat:CommandStatus):void

setExtendedCmdStatus(

 xCmdStat:ExtendedCommandStatus):void

setChildDeviceInfo(id:Identifer,name:string):void

SyncCommandStatusImpl

for_consumers()

for_suppliers()

destroy()

«interface»

CosEventChannelAdmin.EventChannel

completedAny(commandSuccessful, finalStatus, detail:any):void

updateAny(status):void

«interface»

ExtendedCommandStatus

m_traderGroup : TraderGroup

m_discoveryDriver : DiscoveryDriver

m_dataModel : DataModel

m_ecg : EventConsumerGroup

m_objectCache : ObjectCacheClass

m_processingQueue : CommandQueue

+getDataModel() : DataModel

+getObjectCache() : ObjectCache

+getDiscoveryDriver() : DiscoveryDriver

DiscoveryManager

m_event_channel : EventChannel

m_pushConsumer : CosEvent.PushConsumer

PushEventConsumer(channel, pushConsumer)

PushEventConsumer

verifyConnection()

connect()

isEqual(consumer)

«interface»

EventConsumer

m_masterCmdStat:CommandStatus

m_masterExtCmdStat:ExtendedCommandStatus

m_childDeviceID:Identifier

m_childDeviceName:String

m_childCmdStatusData:ChildCommandStatusData

m_childCmdStatusString:string

setBasicCmdStatus(cmdStat:CommandStatus):void

setExtendedCmdStatus(

 xCmdStat:ExtendedCommandStatus):void

setChildDeviceInfo(id:Identifer,name:string):void

SyncExtendedCommandStatusImpl

m_orb : ORB

m_poa : POA

m_dataModel : DataModel

m_ecg : EventConsumerGroup

m_traderGroup : TraderGroup

m_discoveryToken : AccessToken

m_sysProfileProps : SystemProfileProperties

m_sysContextProvider : SystemContextProvider

+ObjectCache(orb : ORB, poa : POA, dataModel : DataModel,

 ecg : EventConsumerGroup, contextProvider : SystemContextProvider,

 discoveryDriver : DiscoveryDriverClass, cmds : QueueableCommand[]) : ctor

+getDataModel() : DataModel

+getObject(key : Object) : Object

+getObjectsOfType(classCheck : Class) : Object[]

+getAllObjects() : Object[]

+getNameFilteredObjectsOfType(type : Class, filter : NameFilterClass) : Object[]

+isDuplicated(type : Class, other : Duplicatable) : boolean

+getDuplicates(type : Class, other : Duplicatable) : Duplicatable[]

+search(criteria : string, caseSensitive : boolean,

 fromClasses : Class[]) : Object[]

ObjectCache

TraderGroup

New for R3B1.

See ObjectCache

class diagram for

more details.

m_commandQueue : CommandQueue

m_timer : java.util.Timer

m_commands : QueueableCommand[]

m_traderGroup : TraderGroup

DiscoveryDriver(TraderGroup, numThreads,

 discoveryIntervalSecs) : ctor

add(QueueableCommand cmd) : void

performDiscovery() : void

DiscoveryDriver

nameContains(filterStr : string) : boolean

«interface»

NameFilterable

m_consumers : Vector<EventConsumer>

add(consumer)

setInterval()

remove(consumer)

-hasConsumer(consumer)

-verifyConnections()

EventConsumerGroup

m_fiterOutMatchingObjects : boolean

m_filterString : string

+NameFilter(filterOutMatchingObjects : boolean, filterStr : string) : ctor

+filter(incoming : NameFilterable[]) : NameFilterable[]

+objectPassesFilter(obj : NameFilterableIF) : boolean

+setFilterString(filterStr : string) : void

+getFilterString() : string

+setFiltersOutMatchingObjects(filterOutMatches : boolean) : void

+getFiltersOutMatchingObjects() : boolean

NameFilter

isDuplicateOf(type : Class, other : Duplicatable) : boolean

«interface»

Duplicatable

1

0..1

1

1

1 1

1

1

1

1

1

1

1 *

1

1

1

*

1

1

1

0..1

0..1

1

0..1

1

1

0..1

0..1

1

1

1

1

1

1

1

1

1

1

1

1 1

*

1

*

1

1

*

1

1

* 1

* 1

1*

Figure 5‑194. UtilityClasses (Class Diagram)

5.36.1.1.1 ChildCommandStatusData (Class)

This structure can be sent as the Any in an ExtendedCommandStatus back to clients. It contains information about a particular action which has taken place during processing of a long-running command fired off to one of any number of subsidiary "sub"-objects for completion of the primary task. This structure identifies the specific device for which the action has occurred, together with text and flags indicating the latest state of the command process on that device.

5.36.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.36.1.1.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

5.36.1.1.4 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and consumers of information.

5.36.1.1.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.36.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.36.1.1.7 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed a properties file during construction. This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available, provide database connectivity, etc. The properties file also contains the class names of service modules that should be served by the service application. During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service. Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization. The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is expected to remove its offers from the trader during a shutdown. If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start. This keeps multiple offers for the same object from being placed in the trader.

The DefaultServiceApplication also starts a DiscoveryManager. (If no modules add discovery QueueableCommand objects to the DiscoveryManager's DiscoveryDriver, discovery runs, but does nothing, so incurs virtually no cost.)

5.36.1.1.8 DiscoveryDriver (Class)

This class drives the periodic discovery of objects from other services within the CHART system. Other objects in the system that need access to other service's objects add their own QueuableCommand to the DiscoveryDriver. Each time discovery is performed, the discovery driver uses a command queue to execute all queueable commands that have been added in a separate thread of execution. The commands are added to the command queue immediately upon execution, and then executed in serial fashion via the command queue until all commands have executed. The frequency of discovery is controlled by a property. Discovery occurs more frequently immediately after service startup, to more quickly discover objects from other services which may also be starting up at more or less the same time. The DiscoveryDriver can be configured to have multiple threads to allow concurrent discovery of different objects.

5.36.1.1.9 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class which provides discovery services for CHART services. It is used by both the CHART GUI and the CHART backend services. A class which implements this interface must provide "get" accessor methods for the system profile properties, the data model, and the main processing queue for a service, for instance. It also provides access to the root deployment path and dynamic image path, which is used only by the CHART GUI. For the CHART GUI, this interface is known to be implemented by the MainServlet; for the back end CHART services, this interface is known to be implemented by the Discovery Manager.

5.36.1.1.10 Duplicatable (Class)

This Java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.36.1.1.11 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be managed in an EventConsumerGroup must implement.

5.36.1.1.12 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

5.36.1.1.13 ExtendedCommandStatus (Class)

The ExtendedCommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This interface extends the basic CommandStatus interface by allowing additional information to be passed in a CORBA "Any" object. The "Any" can be configured to hold (as the name would suggest) any type of information. The information defined in the any varies based on the particular command being called. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the ExtendedCommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the ExtendedCommandStatus from the long running operation indicates the success or failure of the command.

5.36.1.1.14 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

5.36.1.1.15 Identifier (Class)

Wrapper class for a CHART identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

5.36.1.1.16 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers which are to be used in Identifiable objects.

5.36.1.1.17 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

5.36.1.1.18 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.36.1.1.19 NameFilter (Class)

This class defines a filter by which a NameFilterable object can be selected from the ObjectCache. It provides a string to search for, and a flag to indicate whether the desired result is those object which match the filter, or those which do not.

5.36.1.1.20 NameFilterable (Class)

This Java interface is implemented by classes which can be filter by name within the ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable objects in the cache.

5.36.1.1.21 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.36.1.1.22 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant objects.

5.36.1.1.23 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

5.36.1.1.24 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.36.1.1.25 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.36.1.1.26 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.36.1.1.27 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.36.1.1.28 ServiceApplicationProperties (Class)

This class provides methods which allow the DefaultServiceApplication to access the necessary properties from the Java properties configuration file. It also provides a default properties file which can be retrieved by anyone holding a ServiceApplication interface reference. This gives each installed service module the opportunity to load default values before retrieving property values from the properties file.

5.36.1.1.29 SyncCommandStatusImpl (Class)

This is an implementation of CommandStatus which can be used by server-side processes which need to kick off and check results of multiple long-running commands. The SyncCommandStatusImpl can notify a MuxWaitSem object when the CommandStatus completed() call is made (meaning the long-running command has completed). (The MuxWaitSem can be waited on until all such SyncCommandStatusImpl objects have completed.) Additionally, new in R2B3, the SyncCommandStatusImpl has the facility to take a "master" CommandStatus or ExtendedCommandStatus (expected to be held by client code) which can receive results from the various "child" CommandStatus objects. If the master is a simple CommandStatus, the results are sent "inline" as additional text messages in update() calls, for unstructured, unsorted display to the user. If the master is an ExtendedCommandStatus, the results are sent in a ChildCommandStatusData object, for more organized display to the user.

5.36.1.1.30 SyncExtendedCommandStatusImpl (Class)

This is an implementation of ExtendedCommandStatus which can be used by server-side processes which need to kick off and check results of multiple long-running commands. The SyncExtendedCommandStatusImpl can notify a MuxWaitSem object when the CommandStatus completed() call is made (meaning the long-running command has completed). (The MuxWaitSem can be waited on until all such SyncExtendedCommandStatusImpl objects have completed.) Additionally, new in R2B3, the SyncExtendedCommandStatusObject has the facility to take a "master" CommandStatus or ExtendedCommandStatus (expected to be held by client code) which can receive results from the various "child" CommandStatus objects. If the master is a simple CommandStatus, the results are sent "inline" as additional text messages in update() calls, for unstructured, unsorted display to the user. If the master is an ExtendedCommandStatus, the results are sent in a ChildCommandStatusData object, for more organized display to the user.

5.36.1.1.31 SystemContextProvider (Class)

This class provides a system context.

5.36.1.1.32 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.36.1.1.33 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.36.1.2 UtilityClasses2 (Class Diagram)

This Class Diagram shows various utility classes related to log entries that are used by GUI and servers.

[image: image257.emf]Source m_source

boolean m_sourceIsUsed

string m_author

TimeStamp m_startDate

TimeStamp m_endDate

Identifier m_eventID

Identifier m_logEntryID

string m_opCenterName

string m_containsText

boolean isCaseSensitive

factory createLogFilter() : LogFilter

«interface»

LogFilter

ValueType

long m_timeOfLastUse

getMoreEntries(long maxCount) : LogEntryList

destroy():void

«interface»

LogIterator

DatabaseLogger(tableName)

addEntry(logEntry) : void

checlExpiredEntries() : void

getEntries(filter, maxCount) : LogIterator

shutdown() : void

DatabaseLogger

escapeSingleQuotes(string):string

executeSQLStatement(conn, query, string, int):void

DBUtility

OperationsLog(DBConnectionManager db)

log()

flushLog

()shutdown()

OperationsLog

m_keys is an ordered array of

slots in the cache for the LogEntries

which match the filter. Each key

is used to extract the appropriate

LogEntry from the LogEntryCache.

m_nextEntry indexes into array

of m_entrySlots, pointing to the

next entry to extract.

ValueType

Object[] m_keys

int m_nextEntry

addEntry(LogEntry entry)

LogIteratorImpl

m_logQueueTime

OpLogQueue()

put()

flush()

getFirstMessage()

removeFirstMessage()

OpLogQueue

multiToPlainText(multi)

plainTextToMulti(text, formatter)

parseMulti(multi, listener)

hardwareMsgToMulti(DMSHardwarePage[] msg):String

MultiConverter

Identifier m_id

TimeStamp m_timestamp

Identifier m_eventID

string m_text

string m_author

string m_opCenterName

string m_hostname

Source m_source

getID():Identifier

matchesFilter(LogFilter filter) : boolean

factory createLogEntry() : LogEntry

«interface»

LogEntry

Constructor sets m_refCount to 1.

Additional references recorded by LogEntryCache

with incdRefCount() and decrRefCount()

LogEntryCache deletes a CachedLogEntry from

hashtable when its refCount hits 0.

String m_actionDesc

String m_actionType

String m_opCenter

Date m_timeStamp

String m_user

OpLogMessage

java.util.Hashtable hashTable

addEntry(LogEntry entry) : Object

getEntry (Object key) : LogEntry

LogEntryCache

findAllObjectsOfType(ORB, lookup, type):Object[]

CorbaUtilities

plainTextToMulti(text)

MultiFormatter

messageTxt(text)

lineJustification(justify)

newLine(pixelSkip)

newPage()

pageDisplayTime(timeOn, timeOff)

unknownTag(tag)

parseComplete()

«interface»

MultiParseListener

char[][] m_pageText

int m_pageOnTime

int m_pageOffTime

DMSHardwarePage

m_logEntry

m_refCount

decrRefCount() : void

equals() : boolean

getEntry() : LogEntry

getRefCount() : int

hashCode() : int

incrRefCount() : void

CachedLogEntry

m_logFileName

m_keepDays

m_logFile

m_creationDate

m_defFileName

m_logLevel

log(Object obj, String message, int level)

logStack(Object obj, String message, int level, Throwable th)

setKeepDays(int days)

setLogFileName(String fileName)

getKeepDays()

getLogFileName()

OpenLogFile()

setLogLevel(int level)

getLogLevel()

deleteLogFiles(Date presentTime)

LogFile

m_comparables

add(comparable)

remove(comparable)

removeAll()

getElements(int)

size()

isEmpty()

BucketSet

m_instance

get():Log;

log()

logStack()

Log

TokenManipulator()

createToken(userName, opCenterID, opCenterName)

optimize(operation, orgFilter)

add(userToken, operation, orgFilter)

add(userToken, operation)

remove(userToken, operation, orgFilter)

remove(userToken, operation)

getOpCenterName(userToken)

getOpCenterID(userToken)

getHostName(userToken)

getUserName(userToken)

checkAccess(userToken, operation, orgFilter)

checkAccess(userToken, operation)

hasRight(userToken, operation, orgFilter)

validateToken(userToken)

calcCheckSum(userToken)

printToken(userToken)

printNybble(nybble)

TokenManipulator

ConfigureDMS

ConfigureSelf

ConfigureUsers

ForceDMSPoll

ManageDeviceComms

ManageDictionary

ManageUserLogins

ModifyMessageLibrary

ModifyPlans

ResetDMSGroup

SetDMSMessage

TransferAnySharedResource

UsePlans

ViewDictionary

ViewUserConfig

ViewUserLogins

description()

enumerate()

fromInt()

name()

value()

FunctionalRightType

1

* *

1

logs message

using

1

1

1

*

11

* 1

1

*

1 *

1 *

* 1

1

1

Figure 5‑195. UtilityClasses2 (Class Diagram)

5.36.1.2.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects added to this collection must be of the same concrete type. Each element in the collection has an associated counter which tracks how many times this element has been added. It is then possible to get only the elements which have been added to the collection n times where n is a positive integer value. This class is very useful for creating GUI menu's for multiple objects as it allows all objects to insert their menu items and then allows the user to get only those items which all objects inserted.

5.36.1.2.2 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient LogEntryCache. The object of this class encapsulates the stored log entry and adds a reference count.

5.36.1.2.3 CorbaUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server and GUI for CORBA Trader service transactions.

5.36.1.2.4 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet specific criteria.

5.36.1.2.5 DBUtility (Class)

This class contains methods that allow interaction with the database.

5.36.1.2.6 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware. A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character. This format maps well to the way DMS protocols return the current message being displayed in a status query. This class can then be passed to a MultiConverter object to convert the message into MULTI format.

5.36.1.2.7 FunctionalRightType (Class)

This class acts as an enumeration that lists the types of functional rights possible in the CHART system. It contains a static member for each possible functional right.

5.36.1.2.8 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for system trace messages.

5.36.1.2.9 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

5.36.1.2.10 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess of the requestor-specified maximum number of entries to return at one time. The LogIterator stores references to the LogEntry objects thus cached, and requests additional objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate copies of LogEntry objects, and it deletes LogEntry objects when they are no longer needed.

5.36.1.2.11 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

5.36.1.2.12 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

5.36.1.2.13 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

5.36.1.2.14 LogIteratorImpl (Class)

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work which clients can request via the LogIterator interface. The LogIteratorImpl stores data relating to cached LogEvents for a single retrieval request, and implements the client request to get additional clumps of data pertaining to that request.

5.36.1.2.15 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text. It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

5.36.1.2.16 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to MULTI formatted messages.

5.36.1.2.17 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs. An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

5.36.1.2.18 OperationsLog (Class)

This class provides the functionality to add a log entry to the CHART operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.

5.36.1.2.19 OpLogMessage (Class)

This class holds data for a message to be stored in the system's Operations Log.

5.36.1.2.20 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system's Operations Log. Messages added to the queue can be removed in FIFO order.

5.36.1.2.21 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information: Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights.

5.36.2 Sequence Diagrams
5.36.2.1 DefaultServiceApplication:Start (Sequence Diagram)

When a CHART service starts the DefaultServiceApplication, the ServiceApplicationProperties object (which encapsulates the operational parameters of the application) is created. The CORBA objects ORB and POA are initialized and their concurrency model and thread pool are configured. The Trader and Event Channel factory are acquired and the database object is created. During the start of a service, all the offers made by the service modules are recorded in a file (as will be seen later). If configured to withdraw and recreate offers, these lingering offers in the trader from the previous run of this service are withdrawn. The Service Application modules to be started by the service are determined from the ServiceApplicationProperties and the corresponding module class objects are instantiated. The modules are then initialized and, if the service is configured to recreate offers, new offers are added to the trader and are recorded in the offers file. A DiscoveryManager is created. (If no modules add discovery QueueableCommand objects to the DiscoveryManager's DiscoveryDriver, discovery runs, but does nothing, so incurs virtually no cost.)

[image: image258.emf]New for R3B1.See DiscoveryManager:startfor details.CHART2Exception(Cannot narrow Event Channel)getThreadModelinitresolve_initial_references("Extended Event Service")create[module Initialize error]CHART2Exceptionconc_modelgetThreadPoolSizem_traderGroup :TraderGroup[withdraw flag set]]create[withdraw flag set][*for each offer in OffersFile]withdraw(offerID)m_discoveryManager :DiscoveryManagerServiceApplicationModulecreate(m_traderGroup)OperationsLogThe offer IDs file is populated as objects are published to thetrader through the registerObject method. The default serviceapp cleans up these offers from the trader when the refresh property is set or the withdraw flag is set.CosTrading.RegisterEventChannelFactoryDatabaseCosTrading.LookupServiceDefaultServiceApplicationServiceApplicationPropertiesORBPOACreate a POA that will be usedto activate persistent CORBAobjects.CHART2Exception(Cannot Resolve Event Service)createcreatesuccessCHART2Exception(Cannot Resolve Trader)startcreateCHART2Exception(Invalid Properties file)getDatabaseUserNamegetDatabasePasswordgetModuleNames[*for each module]create[*for each module]initialize()CHART2Exception(Cannot narrow Trader Object)[refresh_offers flag set][*for each offer in OffersFile]withdraw(offerID)narrow(Event Channel Factory)resolve_initial_references("Trading Service")getDatabaseConnectStringnarrow(Trader Object)

Figure 5‑196. DefaultServiceApplication:Start (Sequence Diagram)

5.36.2.2 DiscoveryManager:start (Sequence Diagram)

The DiscoveryManager manages discovery of objects for storage in the ObjectCache. The only objects which are discovered are those configured to be discovered by adding discovery commands to the DiscoveryDriver. (Examples of these queueable commands are DiscoverAlertClassesCommand, DiscoverBasicTrafficEventClassesCommand, etc.) Each module (such as the AlertModule or TrafficEventModule) adds its own discovery commands during module initialization. All the work that the DiscoveryManager and the DiscoveryDriver do are defined by those commands. Those commands run on a periodic basis as defined by the discovery interval (configurable via .props property). Discovery occurs more frequently immediately after service startup, in case some or many other services are starting at about the same time but have not quite initialized yet.

[image: image259.emf]m_dataModel : DataModel start(traderGroup)create() create(m_orb, m_poa, m_dataModel, m_ecg, m_traderGroup, null, this, m_discoveryDriver) DiscoveryManagerm_ecg : EventConsumerGroup m_objectCache : ObjectCacheClass create(m_traderGroup)create() trueDefaultServiceApplicationm_discoveryDriver : DiscoveryDriver

Figure 5‑197. DiscoveryManager:start (Sequence Diagram)

5.37 Utility Package.Wrappers

5.37.1 Classes

5.37.1.1 WrappersCD (Class Diagram)

This class diagram shows how wrappers work within CHART. Several types of high level object within the CHART system (typically "Factory" or "Manager" objects) exist on many servers. These objects are often referenced by numerous other modules within the system. Some effort is involved in gaining and maintaining references to these objects. All of that logic is hidden behind a "wrapper" class, so that a client can use the wrapper without worrying about gaining and maintaining references to the desired objects. Two types of wrappers are provided: A "primary-first" wrapper, which keeps and returns a reference to a "preferred" instance of the object whenever possible, and a "first-available" wrapper, which returns any instance of the object (but still prefers a local instance of the object whenever available).

[image: image260.emf]m_offers : Vector

m_currentOffer : WrappedOffer

m_cachedOffersLookupTable : Hashtable<WrappedOffer>

m_className : string

m_serviceType : string

m_propertyStrings : string[]

m_constraint : string

m_traderGroup : TraderGroup

m_orb : ORB

m_traderLookupTimes : Hashtable

m_nonLocalUseStartTimeMillis : long

m_maxNonLocalUseTime : long

OfferWrapper(ORB, TraderGroup, className : string,

 serviceType : string, propertyStrings : string[],

 constraint : string, minDiscoveryIntervalSeconds : int,

 maxNonLocalUseTimeMins : int) : ctor

prefersLocalOffers() : boolean

hasLocalOffer() : boolean

offerObjectNotExist(obj : Object) : void

getOffers() : Vector

getOffers(currentOffers : Vector) : Vector<WrappedOffer>

getNewOffers(usedOffers : Vector<WrappedOffer>) : Vector<WrappedOffer>

getNewOffers(usedOffers : Vector<WrappedOffer>,

 offers : Vector<WrappedOffer>) : Vector<WrappedOffer>

setCurrentOffer(offer : WrappedOffer) : void

canQueryTrader(trader : SmartTrader) : boolean

discover() : void

getTraderGroup() : TraderGroup

OfferWrapper

+FirstAvailableOfferWrapper(ORB, TraderGroup, className : string,

 serviceType : string, constraint : string,

 minDiscoveryIntervalSeconds : int,

 maxRemoteServiceUseMins : int) : ctor

+createIterator() : Iterator

FirstAvailableOfferWrapper

getSystemProfileBinaryProperty(token:byte[],name:String):byte[]

setSystemProfileBinaryProperty(token:byte[],name:String,value:byte[]):void

UserManagerWrapper

m_offer : Object

m_key : OfferKey

m_trader : SmartTrader

m_lastFailureTimeMillis : long

+WrappedOffer(offer : object, key : OfferKey,

 properties : Property[], trader : SmartTrader) : ctor

+isForObject(offerObj : Object) : boolean

+getLastFailureTimeMillis() : long

+getTraderIndex() : int

+isLocal() : boolean

+compareTo(obj : Object) : int

WrappedOffer

+PrimaryFirstOfferWrapper(ORB, TraderGroup, className : string,

 serviceType : string, constraint : string,

 minDiscoveryIntervalSeconds : int, primaryKey : string) : ctor

+setMinPrimaryRetryIntervalSeconds(seconds : int) : void

+getMinPrimaryRetryIntervalSeconds() : int

+createIterator(comparator : PrimaryComparator) : Iterator

-canRetryPrimary() : boolean

#setCurrentOffer(currentOffer : WrappedOffer, comparator : PrimaryComparator) : void

#getOffers (comparator : PrimaryComparator) : Vector<WrappedOffer>

#getNewOffers(usedOffers : Vector<WrappedOffer>,

 comparator : PrimaryComparator) : Vector<WrappedOffer>

-getSortedOffers (comparator : PrimaryComparator) : Vector

PrimaryFirstOfferWrapper

-CosTrading.Lookup m_trader

-ORB m_orb

-java.util.Vector m_dictionaries

-java.lang.Object m_lock

long m_lastTraderLookupTimestamp

get():DictionaryWrapper

setWrapperSettings(ORB, CosTrading.Lookup):void

setMinimumRediscoveryPeriod(long seconds):void

getBannedWords(AccessToken):WordList

removeBannedWordList(AccessToken,WordList):void

addBannedWordList(AccessToken,WordList):void

checkForBannedWords(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):WordList

getApprovedWords(AccessToken):WordList

addApprovedWordList(AccessToken, WordList):void

removeApprovedWordList(AccessToken, WordList):void

performApprovedWordsCheck(string messageToCheck,

 string delimiters,

 DictionaryWordType wordType):SuggestionList

-DictionaryWrapper():DictionaryWrapper

-getDictionary():Dictionary

DictionaryWrapper

AlertFactoryReferenceData m_alertFactoryRefData[]

AlertFactoryWrapper()

get() : AlertFactoryReferenceData

createAlertFactoryReferenceData(AlertFactoryReferenceData[]):Set

createDeviceFailureAlert(token : AccessToken, deviceId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createDuplicateEventAlert(token : AccessToken, olderEventId : Identifier, newerEventId : Identifier,

 desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createEventStillOpenAlert(token : AccessToken, eventId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createGenericAlert(token : AccessToken, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

createUnhandledResourceAlert(token : AccessToken, deviceId : Identifier, desc string,

 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

AlertFactoryWrapper

«interface»

Dictionary

New for R3B1.

«interface»

AlertFactory

1

*

discovers and

provides seamless

access to

1 *

1

1

1

1

1

1

discovers and

provides seamless

access to *

1

Figure 5‑198. WrappersCD (Class Diagram)

5.37.1.1.1 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts and storing alert information on the alerts that it created.

5.37.1.1.2 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic location of an Alert Factory and automatic re-discovery should the Alert Factory reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" Alert Factory without the user of this class being aware that this being done. In addition, this class defers the discovery of the Alert Factory until its first use, thus eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently known good reference to an AlertFactory. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Alert Factory objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances, not at all.

5.37.1.1.3 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that are approved or banned from being used in CHART messaging devices such as HARs and DMSs. It also provides functionality to manage pronunciations.

5.37.1.1.4 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic location of the dictionary and automatic re-discovery should the dictionary reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" dictionary without the user of this class being aware that this being done. In addition, this class defers the discovery of the Dictionary until its first use, thus eliminating a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently known good reference to the system dictionary. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Dictionary objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances (other than the first use) the trader will not be queried at all.

5.37.1.1.5 FirstAvailableOfferWrapper (Class)

This class is a generic wrapper that provides the ability to find the first available reference to a service that may have multiple instances within the system.

5.37.1.1.6 OfferWrapper (Class)

An OfferWrapper provides the ability find one instance of a remote service and establish a connection to it. It does this by searching Traders looking for all Offers of a particular service type. Once a connection is established, the connection is reused for subsequent calls. If the connection fails this class begins its search again until it finds a working connection.

5.37.1.1.7 PrimaryFirstOfferWrapper (Class)

This class inherits from OfferWrapper and gives the caller the ability to suggest a preferred service instance whenever service offers are being searched. If that instance is unavailable, the rest of the offers are searched per normal.

5.37.1.1.8 UserManagerWrapper (Class)

The UserManagerWrapper is a singleton class that provides access to a single instance of a remote service type (in this case UserManager) where many instances may exist in the Traders. If the connection to the current instance is lost, it re-establishes the connection, possible with a different instance of the desired service type. This class is new for R3B1 to support storing properties whose values are binary data. This change is coupled with an underlying change in the UserManager.

5.37.1.1.9 WrappedOffer (Class)

A WrappedOffer represents a possible instance of a remote object. The OfferWrapper class holds an array of WrappedOffers and walks the array looking for a valid proxy to use. If the valid proxy subsequently becomes unavailable, OfferWrapper searches its list of WrappedOffers until it finds another valid WrappedOffer. Failing that, OfferWrapper again searches it Trader list so it can re-populate its WrappedOffer list.

5.38 Utility Package.Corba

5.38.1 Classes

5.38.1.1 CorbaClassDiagram (Class Diagram)

This class diagram shows CORBA utility classes used by back end CHART services and the CHART GUI. The two primary classes are the SmartTrader, providing access to a CORBA trader in the system, and the TraderGroup (a collection of SmartTrader objects).

[image: image261.emf]TraderGroup SmartTrader

*

1

uses

+TraderGroup(orb : ORB, maxHops : int) : ctor +TraderGroup(orb : ORB, maxHops : int, orbSpecific : ORBSpecific, traderFailureThresholdMillis : int) : ctor +getTraders() : SmartTrader[] +getPrimaryTrader() : SmartTrader +getTrader(name : string) : SmartTrader +resolveTraders() : int -resolveTradingLookups(orb, ORB, maxHops : int, traderFailureThresholdMillis : int) : int +findAllObjectsOfType(type : string) : org.omg.CORBA.Object[] +findAllObjectsOfType(type : string, properties : string[]) : Offer[] +findObjects(type : string, constraint : string) : org.omg.CORBA.Object[] -performTraderQuery(type : string, constraint : string) : org.omg.CORBA.Object[] +performTraderQuery(type : string, constraint : string, propNames : string[]) : Offer[] +discoverEventChannelsOfName(eventConsumerGroup : EventConsumerGroup, eventChannelName : string, pushConsumer : PushConsumer) : int m_traders : Hashtable<SmartTrader> m_maxHops : int m_followTraderLinks : boolean m_orb : ORB m_orbSpecific : ORBSpecific m_traderFailureThresholdMillis : long +SmartTrader(orb : ORB, traderLookup : Lookup, maxHops : int, index : int, name : string,

 connectStr : string, recentFailThreshold : int) : ctor

+hasFailedTooRecently() : boolean

+isPrimary() : boolean

+compareTo(obj : Object) : int

+findAllObjectsOfType(orb : ORB, lookup : Lookup, type : string) : org.omg.CORBA.Object[]

+findAllObjectsOfType(type : string, properties : string[]) : Offer[]

+getKnownTypes() : string[]

+getCompatibleTypes(type : string) : string[]

+withdrawOffers(serviceType : string, offerIDs : string[]) : string[]

+findObjects(orb : ORB, lookup : Lookup, type : string, constraint : string) : org.omg.CORBA.Object[]

-performTraderQuery(orb : ORB, lookup : Lookup, type : string, constraint : string) : org.omg.CORBA.Object[]

+performTraderQuery(type : string, constraint : string, propNames : string[]) : Offer[]

+performTraderQuery(type : string, constraint : string, propNames : string[],

 followTraderLinks : boolean, maxHopCount : int) : Offer[]

-logTraderQueryTime(queryTimeMillis : long, type : string, constraint : string, propNames : string) : void

m_trader : Lookup

m_orb : ORB

m_lastFailureTimeMillis : long

m_maxHops : int

m_followTraderLinks : boolean

m_index : int

m_name : string

m_connectStr : string

m_repos : ServiceTypeRepository

m_register : Register

m_lastKnownTypes : string[]

m_recentFailThresholdMillis : long

Figure 5‑199. CorbaClassDiagram (Class Diagram)

5.38.1.1.1 SmartTrader (Class)

This class encapsulates the use of the CORBA trading service Lookup interface. It provides simplified methods for trading service queries and tracks query failures so that the application can make intelligent choices about which traders to use.

5.38.1.1.2 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.39 Utility Package.ObjectCache

5.39.1 Classes

5.39.1.1 ObjectCacheClassDiagram (Class Diagram)

This diagram identifies classes used to support an object cache within CHART. The object cache is a collection of discovered objects which exist remotely (or locally) within the CHART system. The cache is used to provide localized access to remote object. It is kept up to date by periodic discovery and by listening to event channels. For the back end CHART services, the objects which can be stored in the cache include alerts, traffic events, and operations centers.

[image: image262.emf]java.util.TimerTask

DiscoveryTimerTask

java.util.Timer

m_commandQueue : CommandQueue

m_timer : java.util.Timer

m_commands : QueueableCommand[]

m_traderGroup : TraderGroup

DiscoveryDriver(TraderGroup, numThreads,

 discoveryIntervalSecs) : ctor

add(QueueableCommand cmd) : void

performDiscovery() : void

DiscoveryDriver

getSystemProfileProperties() : SystemProfileProperties

getRootDeploymentPath() : string

getDynamicImagePath() : string

getDataModel() : DataModel

getProcessingQueue() : CommandQueue

«interface»

SystemContextProvider

isDuplicateOf(type : Class, other : Duplicatable) : boolean

«interface»

Duplicatable

CommandQueue

execute()

interrupted()

«interface»

QueueableCommand

m_traderGroup : TraderGroup

m_discoveryDriver : DiscoveryDriver

m_dataModel : DataModel

m_ecg : EventConsumerGroup

m_objectCache : ObjectCacheClass

m_processingQueue : CommandQueue

+getDataModel() : DataModel

+getObjectCache() : ObjectCache

+getDiscoveryDriver() : DiscoveryDriver

DiscoveryManager

DefaultServiceApplication

nameContains(filterStr : string) : boolean

«interface»

NameFilterable

m_orb : ORB

m_poa : POA

m_dataModel : DataModel

m_ecg : EventConsumerGroup

m_traderGroup : TraderGroup

m_discoveryToken : AccessToken

m_sysProfileProps : SystemProfileProperties

m_sysContextProvider : SystemContextProvider

+ObjectCache(orb : ORB, poa : POA, dataModel : DataModel,

 ecg : EventConsumerGroup, contextProvider : SystemContextProvider,

 discoveryDriver : DiscoveryDriverClass, cmds : QueueableCommand[]) : ctor

+getDataModel() : DataModel

+getObject(key : Object) : Object

+getObjectsOfType(classCheck : Class) : Object[]

+getAllObjects() : Object[]

+getNameFilteredObjectsOfType(type : Class, filter : NameFilterClass) : Object[]

+isDuplicated(type : Class, other : Duplicatable) : boolean

+getDuplicates(type : Class, other : Duplicatable) : Duplicatable[]

+search(criteria : string, caseSensitive : boolean,

 fromClasses : Class[]) : Object[]

ObjectCache

m_fiterOutMatchingObjects : boolean

m_filterString : string

+NameFilter(filterOutMatchingObjects : boolean, filterStr : string) : ctor

+filter(incoming : NameFilterable[]) : NameFilterable[]

+objectPassesFilter(obj : NameFilterableIF) : boolean

+setFilterString(filterStr : string) : void

+getFilterString() : string

+setFiltersOutMatchingObjects(filterOutMatches : boolean) : void

+getFiltersOutMatchingObjects() : boolean

NameFilter

All types of

Discover*Command

below have these

same associations

(not shown for

clarity) to these

same instances of

the above classes.

m_consumers : Vector<EventConsumer>

add(consumer)

setInterval()

remove(consumer)

-hasConsumer(consumer)

-verifyConnections()

EventConsumerGroup

TraderGroup

m_poa : POA

m_traderGroup : TraderGroup

m_dataModel : DataModel

m_discoveryToken : AccessToken

m_apc : AlertPushConsumer

m_sysContextProvider : SystemContextProvider

DiscoverAlertClassesCommand(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataModel : DataModel, ecg : EventConsumerGroup,

 discoveryToken : AccessToken,

 contextProvider : SystemContextProvider) : ctor

-discoverAlertChannels() : void

-discoverAlerttClasses() : void

DiscoverAlertClassesCommand

CommandQueue

m_table : Hashtable<Object>

+DataModel() : ctor

+getObject(key : Object) : Object

+getObjectsOfType(classCheck : Class) : Object[]

+getAllObjects() : Object[]

+attachObserver(modelObserver, priority) : boolean

+detachObserver(modelObserver) : void

+objectAdded(key : Object, value : Object) :Object

+objectUpdated(key : Object) :void

+objectUpdated(key : Object, hint : UpdateHint) :void

+objectUpdated(key : Object, hints : UpdateHint[]) :void

+objectRemoved(key : Object) : Object

+setUpdateInterval(priorityLevel : int, updateInterval : int) : boolean

+getUpdateInterval(priorityLevel : int) : int

DataModel

«interface»

QueueableCommand

m_poa : POA

m_traderGroup : TraderGroup

m_dataModel : DataModel

m_discoveryToken : AccessToken

m_rmpc : ResourceManagementOpCtrPushConsumer

m_sysContextProvider : SystemContextProvider

DiscoverResourceMgmtClassesCommand(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataModel : DataModel, ecg : EventConsumerGroup,

 discoveryToken : AccessToken,

 contextProvider : SystemContextProvider) : ctor

-discoverResourceMgmtChannels() : void

-discoverResourceMgmtClasses() : void

DiscoverResourceMgmtOpCtrClassesCommand

verifyConnection()

connect()

isEqual(consumer)

«interface»

EventConsumer

execute():void

interrupted():void

PushHandler

m_poa : POA

m_traderGroup : TraderGroup

m_dataModel : DataModel

m_discoveryToken : AccessToken

m_tepc : BasicTrafficEventPushConsumer

m_sysContextProvider : SystemContextProvider

DiscoverTrafficEventClassesCommand(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataModel : DataModel, ecg : EventConsumerGroup,

 discoveryToken : AccessToken,

 contextProvider : SystemContextProvider) : ctor

-discoverTrafficEventChannels() : void

-discoverTrafficEventClasses() : void

DiscoverBasicTrafficEventClassesCommand

All types of

*PushConsumer

below have these

same associations

(not shown for

clarity) to these

same instances of

the above classes.

ProxyAlert

m_pushConsumer CosEvent.PushConsumer

m_dataModel : DataModel

m_sysContextProvider : SystemContextProvider

m_processingQueue : CommandQueue

setPushConsumer(pc:PushConsumer):void

getPushConsumer():PushConsumer

disconnect_push_consumer():void

push(data:Any):void

processPush(data:Any):void

processAlertAdded(data:AlertAddedInfo):void

processAlertRemoved(id:Identifier):void

processAlertChanged(data:AlertChangedInfo):void

AlertPushConsumer

ProxySimpleOpCenter

execute():void

interrupted():void

PushHandler

ProxyBasicTrafficEvent

m_event_channel : EventChannel

m_pushConsumer : CosEvent.PushConsumer

PushEventConsumer(channel, pushConsumer)

PushEventConsumer

m_pushConsumer CosEvent.PushConsumer

m_dataModel : DataModel

m_sysContextProvider : SystemContextProvider

m_processingQueue : CommandQueue

+setPushConsumer(pc:PushConsumer):void

+getPushConsumer():PushConsumer

+disconnect_push_consumer():void

+processPush(any : Any) : void

-handleOperationsCenterAdded(evt:ResourceEvent) : void

-handleOperationsCenterRemoved(evt:ResourceEvent) : void

-handleOpCenterConfigChanged(evt:ResourceEvent) : void

-handleOpCenterStatusChanged(evt:ResourceEvent) : void

-handleUserLoggedIn(evt:ResourceEvent) : void

-handleUserLoggedOut(evt:ResourceEvent) : void

ResourceManagementOpCtrPushConsumer

execute():void

interrupted():void

PushHandler

push()

«interface»

CosEvent.PushConsumer

m_pushConsumer CosEvent.PushConsumer

m_dataModel : DataModel

m_sysContextProvider : SystemContextProvider

m_processingQueue : CommandQueue

+TrafficEventPushConsumer(dataModel : DataModel,

 sysContextProvider : SystemContextProvider) : ctor

+setPushConsumer(pc:PushConsumer):void

+getPushConsumer():PushConsumer

+disconnect_push_consumer():void

+processPush(any : Any) : void

-handleTrafficEventAdded(newEventData : TrafficEventAddedInfo) : void

-handleTrafficEventClosed(eventData : BasicEventData) : void

-handleTrafficEventStateChanged(eventChangedInfo : TrafficEventStateChangedInfo) : void

-handleTrafficEventAssociated(associationInfo : TrafficEventAssociationInfo) : void

-handleTrafficEventAssociationRemoved(associationInfo : TrafficEventAssociationRemovedInfo) : void

BasicTrafficEventPushConsumer

*

1

*

1

*

1

1

1

1 1

1

queued on 1

executes

1

1

1 1

1

1

1

*

1

1

1

1

1

1

has

SystemContextProvider

1 1

1 1

1 *

1

1

1

1

1 1

1 1

1

1 schedules

discovery task on

1 1

1

1

1

1

1

1

1

1

1

1

1

1

has SystemContextProvider

1

0..1

1

1

1

1

runs

discovery

on

1 1

1

1

1 1

1

1 executes

queued

on

Figure 5‑200. ObjectCacheClassDiagram (Class Diagram)

5.39.1.1.1 AlertPushConsumer (Class)

This class is a CORBA object that handles events pushed by the server on an Alert event channel. Updates received in events received via the push() method of the PushConsumer interface are updated in the DataModel.

5.39.1.1.2 BasicTrafficEventPushConsumer (Class)

This class handles events pushed by operations center services on a operations center CORBA event channel regarding updates to operations centers. Updates received in events received via the push() method of the PushConsumer interface are updated in proxy operations centers in the DataModel. The proxy operations centers cached are not complete copies of the operations centers, because the full range of data is not needed. The ProxyBasicTrafficEvent data consists of BasicEventData and associated events only (this is why the names of these objects contain the word "Basic", e.g., BasicTrafficEventPushConsumer. This class is adapted from chartlite.data.trafficevents.TrafficEventPushConsumer.

5.39.1.1.3 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.39.1.1.4 CosEvent.PushConsumer (Class)

The PushConsumer interface (actually org.omg.CosEventComm.PushConsumer) is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

5.39.1.1.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.39.1.1.6 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed a properties file during construction. This properties file contains configuration data used by this class to set the ORB concurrency model, determine which ORB services need to available, provide database connectivity, etc. The properties file also contains the class names of service modules that should be served by the service application. During startup, the DefaultServiceApplication instantiates the service application module classes listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading Service. Each module must provide an implementation of the getOfferIDs method and be able to return the offer ids for each object they have exported to the trader during their initialization. The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is expected to remove its offers from the trader during a shutdown. If the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old offers prior to initializing modules during its next start. This keeps multiple offers for the same object from being placed in the trader.

The DefaultServiceApplication also starts a DiscoveryManager. (If no modules add discovery QueueableCommand objects to the DiscoveryManager's DiscoveryDriver, discovery runs, but does nothing, so incurs virtually no cost.)

5.39.1.1.7 DiscoverAlertClassesCommand (Class)

This class is a QueueableCommand that is used by the DiscoveryDriver to maintain local copies of alert objects in the object cache. This class contains a PushConsumer that is used to keep Alert data in the object cache up-to-date by handling CORBA events related to Alerts.

5.39.1.1.8 DiscoverBasicTrafficEventClassesCommand (Class)

This class is a QueueableCommand that is used by the DiscoveryDriver to discover operations centers in the system and maintain proxy operations center objects in the object cache. The DiscoveryDriver kicks off all Discovery queueable commands such as this one on a regular basis to discover new objects and updates for which CORBA events may have been missed. This class contains a related ResourceMgmtOpCtrPushConsumer that is used to keep operations center data in the object cache up to date by handling CORBA events related to operations centers. The proxy operations centers cached are not complete copies of the operations centers, because the full range of data is not needed. The ProxySimpleOpCenter data consists of BasicEventData and associated events only (this is why the names of these objects contain the word "Basic", e.g., DiscoverBasicTrafficEventClassesCommand. This class is adapted from chartlite.data.trafficevents.DiscoverBasicTrafficEventClassesCommand.

5.39.1.1.9 DiscoverResourceMgmtOpCtrClassesCommand (Class)

This class performs discovery of resource management related event channels and class instances when it is run. It is run periodically by the CommandQueue owned by the DiscoveryDriver.

5.39.1.1.10 DiscoveryDriver (Class)

This class drives the periodic discovery of objects from other services within the CHART system. Other objects in the system that need access to other service's objects add their own QueuableCommand to the DiscoveryDriver. Each time discovery is performed, the discovery driver uses a command queue to execute all queueable commands that have been added in a separate thread of execution. The commands are added to the command queue immediately upon execution, and then executed in serial fashion via the command queue until all commands have executed. The frequency of discovery is controlled by a property. Discovery occurs more frequently immediately after service startup, to more quickly discover objects from other services which may also be starting up at more or less the same time. The DiscoveryDriver can be configured to have multiple threads to allow concurrent discovery of different objects.

5.39.1.1.11 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class which provides discovery services for CHART services. It is used by both the CHART GUI and the CHART backend services. A class which implements this interface must provide "get" accessor methods for the system profile properties, the data model, and the main processing queue for a service, for instance. It also provides access to the root deployment path and dynamic image path, which is used only by the CHART GUI. For the CHART GUI, this interface is known to be implemented by the MainServlet; for the back end CHART services, this interface is known to be implemented by the Discovery Manager.

5.39.1.1.12 DiscoveryTimerTask (Class)

This task periodically wakes up and discovers any new objects.

5.39.1.1.13 Duplicatable (Class)

This Java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.39.1.1.14 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be managed in an EventConsumerGroup must implement.

5.39.1.1.15 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

5.39.1.1.16 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.39.1.1.17 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.39.1.1.18 NameFilter (Class)

This class defines a filter by which a NameFilterable object can be selected from the ObjectCache. It provides a string to search for, and a flag to indicate whether the desired result is those object which match the filter, or those which do not.

5.39.1.1.19 NameFilterable (Class)

This Java interface is implemented by classes which can be filter by name within the ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable objects in the cache.

5.39.1.1.20 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.39.1.1.21 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including the local service). The complete set of data for each alert is stored in the ProxyAlert, along with its ID and a reference to the Alert object it represents. These proxy alerts allow every alert module service in the system to have some knowledge of every alert in the entire system, for the quickly determining whether a proposed new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert class is the super class for derived classes for each specialized type of alert in the system, so that type specific data can be stored and accessed for each alert type, and can be queried for comparison for the Duplicatable isDuplicateOf() method.

5.39.1.1.22 ProxyBasicTrafficEvent (Class)

This class is used as a proxy for traffic events existing in all traffic event services (including the local service). The proxy traffic events cached are not complete copies of the traffic events, because the full range of data is not needed. The ProxyBasicTrafficEvent data consists of BasicEventData and associated events only (this is why the names of these objects contain the word "Basic", e.g., DiscoverBasicTrafficEventClassesCommand. These proxy traffic events allow every traffic event service in the system to have some knowledge of every traffic event in the entire system, for the purpose of detecting duplicate traffic events.

5.39.1.1.23 ProxySimpleOpCenter (Class)

This class is used as a proxy for operations centers existing in all user management services (including the local service). The proxy operations centers cached are not complete copies of the operations centers, because the full range of data is not needed. The ProxySimpleOpCenter data consists of the OpCenterConfiguration and the OpCenterStatus, but not the center's participant data. (This is why the names of this object contain the word "Simple".) These proxy operations centers allow every alert module service in the system to have some knowledge of every operations center in the entire system, for the quickly determining rights of the users at those operations centers.

5.39.1.1.24 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

5.39.1.1.25 PushHandler (Class)

This is an inner class, internal to the PushConsumer to which it is associated. It is a QueueableCommand which is queued by the PushConsumer push() method, to avoid excessive processing on the CORBA thread. When executed by the CommandQueue, it calls the processPush() method of the associated PushConsumer class.

5.39.1.1.26 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.39.1.1.27 ResourceManagementOpCtrPushConsumer (Class)

This class is responsible for catching and handling CORBA events from the CHART resource management event channels. When an event is caught, it will locate the appropriate data in the ObjectCache and update it. This class is adapted from chartlite.data.ResourceManagementPushConsumer.

5.39.1.1.28 SystemContextProvider (Class)

This class provides a context for the system.

5.39.1.1.29 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.39.2 Sequence Diagrams

5.39.2.1 DiscoverResourceMgmtOpCtrClassesCommand:execute (Sequence Diagram)

This sequence shows processing in the ServiceApplication used to discover OpCenter Resource Management classes that exist in the system. This processing is invoked by the DiscoveryDriver when the service is started and periodically throughout the lifetime of the service. A call is made to the TraderGroup to have it discover all Resource Management CORBA event channels in the system. This call performs all actions required to attach the PushConsumer for Resource Management o all channels and to maintain the connection to the event channel. Next, the TraderGroup is used to find all OperationsCenterFactory objects in the system. For each factory found, the getOperationsCenters() method is called to retrieve the centers managed by the factory. The configuration and status for the center is retrieved. A call to DataModel is used to retrieve the proxy object if it has already been discovered. If not found, a new ProxySimpleOpCenter object is created. If the center did not already exist in the data model, it is added.

[image: image263.emf]pushConsumer : CosEventComm.PushConsumer OperationsCenter getStatus()

OpCenterStatus

DiscoveryDriverDiscoverResourceMgmtOpCtrClassesCommandTraderGroup m_rmpc : ResourceMgmtOpCtrPushConsumerOperationsFactoryHelper OperationsFactory OperationsCenterHelper DataModel ProxySimpleOpCenter

ProxyAlert or null

OpCenterConfiguration

getPushConsumer()CORBA.Object[] [*for each factory

returned by

the trader

query]

execute()findAllObjectsOfType(SERVICE_TYPE_OPERATIONS_CENTER_FACTORY.value())OperationsCenter[] OperationsCenterFactory [*for each

operations

center

returned by

the factory

query]

discoverEventChannelsOfName(EVENT_CHANNEL_RESOURCE_MANAGMENT.value())narrow() getObject(id)

getOperationsCenters() getConfiguration() [op center not in cache]

objectAdded(ProxyAlert)

[op center not in cache]

create(id, opCenter,

config, status)

Figure 5‑201. DiscoverResourceMgmtOpCtrClassesCommand:execute (Sequence Diagram)

5.39.2.2 ResourceMgmtOpCtrPushConsumer:push (Sequence Diagram)

This sequence diagram shows the processing that occurs when an event is received from a Resource Management CORBA Event Channel. The event is received via the push() call as defined in the PushConsumer CORBA interface. The push() call creates a PushHelper object to store the event and put it on a queue to be processed in a separate thread, allowing control to return to the event channel. When the PushHandler reaches the top of the queue, its execute method is called, which calls processPush() on the ResourceMgmtOpCtrPushConsumer.

The ResourceEventHelper is used to extract the untyped data (an Any) into an ResourceEvent object, and the ResourceEvent discriminator method is called to determine the type of event. Different processing is then done based on the type of event that was received. If the event is an OpCenterAdded event, the data model is called to retrieve the alert, just in case it was already discovered before receiving the event. If not already known (the usual case) a new ProxySimpleOpCenter derived object is created with config and status data contained in the event and the ProxySimpleOpCenter is added to the data model. In the unusual case where the alert is already known, its configuration and status are simply updated.

When an OpCenterConfigChanged event is received, the existing center is found in the data model. The configuration from the event is then used to update the configuration stored in the ProxySimpleOpCenter.

When a UserLoggedIn or UserLoggedOut event is recieved, the existing center is found in the data model. The status from the event is then used to update the status stored in the ProxySimpleOpCenter.

When an OpCenterRemoved event is received, the data model is called to remove the alert based on its ID.

[image: image264.emf]A QueueableComamndOpCenterUserListChangeInfoResource Management Event ChannelResourceMgmtOpCtrPushConsumerResourceMgmtOpCtrPushConsumer.PushHandlerCommandQueue[UserLoggedIn || UserLoggedOut]userListChangeInfo()The processing that follows is done if the ResourceEventType is OpCenterAdded.get OpCenterStatusgetObject(id)DataModelThe following processing is done if the ResourceEventType is OpCenterConfigChanged.The following processing is done if the ResourceEventType is OpCenterRemoved.If not found, get config, createproxy, and add asin Add case above.If not found, get status,create proxy, and add as in Add case above.Identifierproxy :ProxySimpleOpCenterproxy :ProxySimpleOpCenterProxySimpleOpCenterProxySimpleOpCenter or nullOpCenterAddedInfoResourceEventAlertEventTypebyte[]OpCenterConfigInfopush(any)create(any)addCommand()[command at topof queue]execute()processPush(any)extract(any)discriminator()[OpCenterAdded]opCenterAddedInfo()get OpCenterConfiggetObject(id)[center not in data model]create(id, ref, config, status)[center not in data model]objectAdded(id, proxy)[OpCenterConfigChanged]opCenterConfigInfo()objectRemoved(id)createopCenterID()setConfig(config)OpCenterAddedInfoResourceEventget OpCenterConfigIf a ProxySimpleOpCenteris found already in the DataModel, update theconfig and status as inthe next two cases.objectUpdated(id)The following processing is done if the ResourceEventType is UserLoggedIn or UserLoggedOutproxy :ProxySimpleOpCenterOpCenterUserListChangeInfoOpCenterStatusobjectUpdated(id)OpCenterConfigget OpCenterStatusOpCenterStatusResourceEventHelperOpCenterConfigInfoOpCenterConfigPrxoySimpleOpCentersetStatus(status)getObject(id)

Figure 5‑202. ResourceMgmtOpCtrPushConsumer:push (Sequence Diagram)

6 Mapping To Requirements

The following table shows how the requirements in the CHART R3B1 Requirements document map to design elements contained in this design.
	Req No.
	Requirement
	Design Element

	1
	ADMINISTER SYSTEMS AND EQUIPMENT
	N/A

	1.1.
	ADMINISTER CHART ORGANIZATIONS, LOCATIONS, AND USERS
	N/A

	1.1.1.
	MAINTAIN CHART ORGANIZATIONS AND GEOGRAPHIC AREAS OF RESPONSIBILITY
	N/A

	1.1.1.2
	MAINTAIN GEOGRAPHIC AREAS OF RESPONSIBILITY
	N/A

	1.1.1.2.4
	An Area of Responsibility shall have a hierarchical relationship with other Areas of Responsibility for the purpose of establishing a path for alert escalation.
	N/A

	1.1.1.2.4.1
	An Area of Responsibility’s default alert hierarchy shall be defined globally for all alert types.
	N/A

	1.1.1.2.4.2
	An Area of Responsibility can be used as an AMG for alert processing (e.g., an alert can be sent to all logged on users in a specified Area of Responsibility).
	N/A

	1.1.1.4
	Maintain Centers
	N/A

	1.1.1.4.4
	A Center shall have a hierarchical relationship with other Centers for the purpose of establishing a path for alert escalation.
	ConfigureBackupCenters (Use Case)

	1.1.1.4.4.1
	A Center’s default alert hierarchy shall be defined globally for all alert types.
	ConfigureBackupCenters (Use Case)

	1.1.1.4.4.2
	A Center can be used as an AMG for alert processing (e.g., an alert can be sent to all logged on users in a specified Center).
	Definitional

	1.1.1.4.7
	<DELETED>*
	N/A

	1.1.1.4.7.1
	<DELETED>*
	N/A

	1.1.1.4.7.1.1
	<DELETED>*
	N/A

	1.1.1.4.7.1.2
	<DELETED>*
	N/A

	1.1.1.6
	Maintain Alert Management Groups
	

	1.1.1.6.1
	The system shall support an alert capability to display alerts on user workstations logged in at AMGs identified to receive the specified alert type.
	ViewAlerts (Use Case),
viewAlertsInitialView (Sequence Diagram)

	1.1.1.6.2
	Alert escalation shall be defined as the union of an alert’s current AMG list with the currently configured backup AMG(s) for all AMGs on the AMG list. (The term “union” indicates that the alert’s new AMG list will have no AMGs duplicated after escalation occurs.)
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram), AlertImpl (Class)

	1.1.1.6.3
	A suitably privileged user shall be able to configure the escalation tree by which all alerts are escalated.
	ConfigureBackupCenters (Use Case), usermgmt:configureBackupCenters (Sequence Diagram)

	1.1.1.6.3.1
	In configuring an escalation tree, a suitably privileged user shall be able configure a backup AMG list for each AMG in the system separately.
	ConfigureBackupCenters (Use Case), usermgmt:configureBackupCenters (Sequence Diagram)

	1.1.1.6.3.2
	The backup AMG list for a given AMG shall be able to be empty, to indicate that the AMG has no backup AMGs.
	ConfigureBackupCenters (Use Case), usermgmt:configureBackupCenters (Sequence Diagram)

	1.1.1.6.3.3
	The system shall not allow an AMG to be configured in the backup AMG list of itself.
	ConfigureBackupCenters (Use Case), usermgmt:configureBackupCenters (Sequence Diagram)

	1.1.1.6.3.4
	The system shall allow the same AMG to be configured in the backup AMG list of two or more other AMGs. (The alert system will detect when a backup AMG is already on the current AMG list for a given alert, and will not add any AMG to an alert’s AMG list twice.)
	ConfigureBackupCenters (Use Case), usermgmt:configureBackupCenters (Sequence Diagram)

	1.1.1.6.3.5
	The system shall allow “peer” AMGs to be configured as backups of each other. (The alert system will detect when a backup AMG is already on the current AMG list for a given alert, and will not add any AMG to an alert’s AMG list twice.)
	ConfigureBackupCenters (Use Case), usermgmt:configureBackupCenters (Sequence Diagram)

	1.1.1.6.4
	When an AMG is deleted from the system it shall be removed from the configured backup AMG List of any other AMG, wherever it appears, and it will not be used in future alert escalations, however, it will not be removed from the AMG Lists of alerts currently in the system.
	RemoveOperationsCenter (Use Case)

	1.1.1.6.5
	Changes to a backup AMG List for alert escalation shall affect all future escalations of alerts affected by that change, effective immediately.
	ConfigureBackupCenters (Use Case)

	1.2
	MAINTAIN DICTIONARIES AND MESSAGE LIBRARIES
	N/A

	1.2.1
	MAINTAIN DICTIONARIES
	N/A

	1.2.1.7
	The system shall allow a suitably privileged user to enter text-to-speech pronunciations into a dictionary of pronunciations for use in HAR messages.
	DictionaryReqHdlr:AddTTSPronunciation (Sequence Diagram)
DictionaryImpl:addPronunciationList (Sequence Diagram)

	1.2.1.7.1
	Each pronunciation shall include a word or phrase, and a pronunciation for that word or phrase.
	DictionaryModulePkg/DictionaryModClassDiagram (Class Diagram)

	1.2.1.7.2
	The system shall allow the user to preview a pronunciation before they add the pronunciation to the system.
	CHART2HighLevel/ManagePronunciations(Use Case) ViewDefinedPronunciation.processViewTTS​PronunciationListReq (Sequence Diagram)

	1.2.1.7.3
	When a pronunciation for a word or phrase is added to the system, the system shall automatically add the word or phrase to the approved word dictionary for HAR devices if it does not already exist.
	DictionaryImpl:addPronunciationList (Sequence Diagram)

	1.2.1.7.4
	The system shall log a message to the Operation Log for creation, modification, and deletion of TTS pronunciations.
	CHART2HighLevel/ManagePronunciations(Use Case)

	1.2.1.8
	The system shall allow a user to view a list of pronunciations in the system.
	ViewDefinedPronunciation.processViewTTS​PronunciationListReq (Sequence Diagram) DictionaryImpl:getPronunciationList(Sequence Diagram)

	1.2.1.8.1
	The system shall allow the user to preview each pronunciation in the pronunciation list.
	dictionaries:previewTTSPronunciation (Sequence Diagram)

	1.2.1.8.2
	The system shall allow the user to filter the pronunciation list by the starting letter of the word or phrase for which a pronunciation was entered.
	ViewDefinedPronunciation.processViewTTS​PronunciationListReq (Sequence Diagram)

	1.2.1.9
	The preview of a pronunciation shall convert the pronunciation text to speech and play the pronunciation back to the user in a manner that allows the pronunciation to be heard several times.
	dictionaries:previewTTSPronunciation

	1.2.1.10
	The system shall allow a suitably privileged user to delete a pronunciation from the pronunciation dictionary.
	RemoveTTSPronunciation.processRemoveTTS​PronunciationReq(Sequence Diagram) DictionaryImpl:removePronunciationList(Sequence Diagram)

	1.2.1.11
	Prior to converting a textual HAR message to speech, the system shall replace all words and phrases in the HAR message which are found in the pronunciation dictionary with the word’s or phrase’s associated pronunciation.
	DictionaryImpl:substitutePronunciations(Sequence Diagram)

	1.4
	MANAGE CHART CONTROL
	N/A

	1.4.1
	CONTROL LOGIN
	N/A

	1.4.1.9
	The system shall allow a user to select a “home monitor” when they login.
	LoginReqHdlr:processLogin (Sequence Diagram)

	1.4.1.9.1
	The home monitor selected shall appear as an easy to access shortcut that allows the user to easily navigate to the details page for that monitor.
	LoginReqHdlr:processLogin (Sequence Diagram)

	1.4.1.9.2
	If the same user has logged in from the same workstation with a home monitor in the past, the system shall pre-select the same home monitor used by that user at the workstation most recently.
	LoginReqHdlr:processLogin (Sequence Diagram)

	1.4.2
	PERFORM SHIFT HAND-OFF (INCOMING) AND VIEW OPERATIONS CENTER HOME PAGE
	N/A

	1.4.2.3
	The system shall allow the user (once the initial login and shift hand off are complete), to view the Operations Center home page.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.3.1
	The home page shall contain a menu system and/or links to allow the user to access other areas of the user interface for which they have appropriate functional rights.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.3.2
	The system shall utilize a browser window separate from the window displaying the home page to display any new web page that results from the user clicking a link or menu item. (We refer to this window as the “working window”.)
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.3.2.1
	The system shall utilize an existing working window if one exists.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.3.2.2
	The system shall open a new window and use it as the working window if a working window does not already exist.
	LoginReqHdlr.processGetHomePage (Sequence Diagram)

	1.4.2.3.2.3
	The system shall place an indicator in the web page title of the working window to allow the user to differentiate it from the home page or browser windows they have manually opened.
	LoginReqHdlr.processGetHomePage (Sequence Diagram)

	1.4.2.3.2.4
	The following items shall always open in their own window and NOT use the working window: Communications Log, Instant Messaging, Paging, Map, CHART On The WEB, EORS, SHADE SYSTEM, PAGING SYSTEM, and CHART MAP.
	LoginReqHdlr.processGetHomePage (Sequence Diagram)

	1.4.2.3.3
	The home page shall contain an area used to create new traffic events if the user has the appropriate functional right. See section 4.2.1.6 for details.
	LoginReqHdlr.processGetHomePage (Sequence Diagram)

	1.4.2.3.4
	The home page shall contain an area used to view/manage alerts that exist in the system for which the user has the appropriate functional rights to view/manage. See section 3.4 for details.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.3.5
	The home page shall contain an area used to view open events for the user’s Center.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.3.5.1
	The system shall display the number of events of each type that are open and controlled by the logged in user’s Center.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.2
	The event name shall be shown for each event.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.1.1
	The event name shall be a link that when clicked causes the details page for the event to be shown in the user’s working window.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.3
	The event location shall be shown for each event.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.4
	The county and/or state shall be shown for each event if county and/or state has been specified for the event.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.5
	The system shall show information specific to events of type incident.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.5.1
	The system shall show the lane closures for each incident if lane closure information has been specified for the incident.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.5.2
	The system shall show the vehicles involved for each incident if lane closure information has been specified for the incident.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.6
	The system shall show the recurring indicator for each event of type congestion.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.7
	The system shall show the color/make and/or tag information for each event of type disabled vehicle if the color/make and/or tag information has been specified for the disabled vehicle event.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.8
	The system shall show the lane closures for each event of type planned closure if the lane closure information has been specified for the planned closure.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.9
	The system shall show the lane closures for each event of type special event if the lane closure information has been specified for the special event.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.5.10
	The system shall show the road conditions for each event of type weather service event if the road condition has been specified for the weather service event.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.3.6
	The home page shall contain an area used to view open events for the user’s Area of Responsibility.
	N/A

	1.4.2.5
	The system shall display the most recently viewed open events.*
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.5.1
	The system shall display the most recently viewed events on the home page.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.5.2
	When a recently viewed event on the home page is clicked, the system shall display the detailed page for that event in the user’s working window.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.5.3
	The system shall display the most recently viewed events in the working window.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.5.4
	When a recently viewed event shown in the working window is clicked, the system shall display the details page for the event in the working window.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.5.5
	The number of most recently viewed events to appear shall be customizable at a system wide level by an administrator using the system profile.
	LoginReqHdlr:processGetHomePage (Sequence Diagram)

	1.4.2.7
	The system shall allow the user to filter which event types to view on the Operations Center home page.
	TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

	1.4.2.10
	The system shall require the user to logoff if they are logged on and try to close the home page.
	LoginReqHdlr.processGetHomePage (Sequence Diagram)

	1.4.5.
	CONTROL LOGOUT AND TRANSFER CONTROL
	N/A

	1.4.5.3
	The system shall require the user to transfer resources to another center (e.g., at the end of daily operations for Centers that aren't 24x7) before logging out except in the case of an emergency log out.
	Already implemented in R2B3

	1.4.5.3.4.
	The system shall generate an Unhandled Resource Alert if no users are logged in at the Center that is listed as the responsible Center for a shared resource.*
	CreateUnhandledResourceAlert (Use Case), UnhandledResourceAlert (Class), UnhandledResourceAlertData (Class), UnhandledResourceAlertImpl (Class), DiscoverResourceClassesCommand (Class), ResourceManagementPushConsume (Class)

	1.4.5.3.4.1
	The Unhandled Resource Alert will be sent to the Center which has the unhandled resources. (The alert will immediately begin an Escalation Cycle, following the configured escalation path until it reaches an AMG where there is at least one user logged in.)
	CreateUnhandledResourceAlert (Use Case), UnhandledResourceAlert (Class), UnhandledResourceAlertData (Class), UnhandledResourceAlertImpl (Class)

	1.4.6
	MANAGE ALERTS
	Manage Alerts (Use Case Diagram)

	1.4.6.1
	A suitably privileged user shall be able to specify an “ignore” system property for an alert type, which indicates that no user will ever see alerts of this type at any time. This provides a “back-out” capability to completely ignore alerts of this type.
	ConfigureIgnoreAlertPolicy (Use Case)

	1.4.6.2
	A suitably privileged user shall be able to define the default and maximum values for timeouts related to alert processing.
	ConfigureAlerts (Use Case Diagram)

	1.4.6.2.1
	A suitably privileged user shall be able to specify the default Accept timeout for each alert type.
	ConfigureAlertTimeouts (Use Case), SystemProfileReqHdlr.ConfigAlertTimeout.process​ConfigAlertTimeout (Sequence Diagram)

	1.4.6.2.2
	A suitably privileged user shall be able to specify the maximum Accept timeout for each alert type.
	ConfigureAlertTimeouts (Use Case), SystemProfileReqHdlr.ConfigAlertTimeout.process​ConfigAlertTimeout (Sequence Diagram)

	1.4.6.2.3
	A suitably privileged user shall be able to specify the default alert Delay timeout for each alert type.
	ConfigureAlertTimeouts (Use Case), SystemProfileReqHdlr.ConfigAlertTimeout.process​ConfigAlertTimeout (Sequence Diagram)

	1.4.6.2.4
	A suitably privileged user shall be able to specify the maximum Delay timeout for each alert type.
	ConfigureAlertTimeouts (Use Case), SystemProfileReqHdlr.ConfigAlertTimeout.process​ConfigAlertTimeout (Sequence Diagram)

	1.4.6.2.5
	A suitably privileged user shall be able to specify the escalation timeout for each alert type.
	ConfigureAlertTimeouts (Use Case), SystemProfileReqHdlr.ConfigAlertTimeout.process​ConfigAlertTimeout (Sequence Diagram)

	1.4.6.2.6
	A suitably privileged user shall be able to specify the archive timeout for Closed alerts, after which a Closed alert is removed from the active CHART system and is able to be sent to an alert archive.
	ConfigureAlertArchiveTime (Use Case), AlertModule:closeAlert (Sequence Diagram), SystemProfileReqHdlr.SetAlertEscalateAndArchive​Timeouts (Sequence Diagram)

	1.4.6.2.7
	A suitably privileged user shall be able to disable automatic escalation of alerts of a particular alert type for which automatic escalation is currently not desired.
	ConfigureAlertEscalationPolicy (Use Case), SystemProfileReqHdlr.processConfigureAlertPolicy (Sequence Diagram)

	1.5
	INSTALL AND MAINTAIN DEVICES
	N/A

	1.5.2
	PUT EQUIPMENT/ DEVICES ON-LINE
	N/A

	1.5.2.1
	The system shall allow the user with appropriate rights to select (or modify) the equipment device parameters.
	N/A

	1.5.2.1.4
	The system shall support configuration parameters for DMS devices.
	N/A

	1.5.2.1.4.8
	The system shall support setting a responsible Center for a DMS which is to receive the Device Failure Alert when the device goes into hardware failure.
	dms:setDMSConfigBasicSettings (Sequence Diagram)

	1.5.2.1.4.8.1
	The system shall support setting no responsible Center for a DMS meaning a Device Failure Alert will never be generated for that DMS.
	dms:setDMSConfigBasicSettings (Sequence Diagram)

	1.5.2.1.17
	The system shall support configuration parameters for TSS (Traffic Sensor System) devices (detectors).
	N/A

	1.5.2.1.17.8
	The system shall support setting a responsible Center for a TSS which is to receive the Device Failure Alert when the device goes into hardware failure.
	tss:setTSSConfigBasicSettings

	1.5.2.1.4.8.1
	The system shall support setting no responsible Center for a TSS meaning a Device Failure Alert will never be generated for that TSS.
	tss:setTSSConfigBasicSettings

	1.5.4
	RESPOND TO EQUIPMENT/DEVICE OUTAGE
	N/A

	1.5.4.4
	The system shall inform the operators of a detector failure.
	N/A

	1.5.4.4.1
	The system shall issue a Device Failure Alert when the detector reports a hardware failure, if a responsible Center is defined for that detector.
	RTMS:Poll (Sequence), TSS:ManagementModulePkg (Class Diagram), DeviceFailureAlert (Class),
DeviceFailureAlertData (Class), DeviceFailureAlertImpl (Class)

	1.5.4.6
	The system shall inform the operators of a DMS failure.
	CreateDMSFailure Alert (Use Case), DMS:HandleOpStatus (Sequence Diagram), DMSControlModule:AlertFactoryWrapper (Class), DMSControlClassDiagram (Class Diagram)

	1.5.4.6.1
	The system shall issue a Device Failure Alert when the DMS reports a hardware failure, if a responsible Center is defined for that DMS.
	CreateDMSFailure Alert (Use Case), DMS:HandleOpStatus (Sequence Diagram), DMSControlModule:AlertFactoryWrapper (Class), DMSControlClassDiagram (Class Diagram)

	1.5.4.7
	The system shall generate a Device Failure Alert for all devices capable of reporting that they are experiencing a hardware failure.
	CreateDeviceFailureAlert (Use Case), DMS:HandleOpStatus (Sequence Diagram), RTMS:Poll (Sequence Diagram)

	1.5.4.7.1
	A device service shall send a Device Failure Alert only when the device transitions into Hardware Failure.
	CreateDeviceFailureAlert (Use Case), DMS:HandleOpStatus (Sequence Diagram), RTMS:Poll (Sequence Diagram)

	1.5.4.7.2
	Device Failure Alerts shall be sent to the responsible Center as defined in the configuration of the failed device.
	CreateDeviceFailureAlert (Use Case), DMS:HandleOpStatus (Sequence Diagram), RTMS:Poll (Sequence Diagram)

	1.5.4.7.3
	Device Failure Alerts shall be presented to the operator with a reference to the failed device.
	ViewAlerts (Use Case),
ViewNewAlerts (Sequence Diagram)

	1.5.4.7.4
	Device Failure Alerts will be issued only if no Device Failure Alert exists for that device (preventing many alerts when a device transitions in and out of the hardware failure state).
	ProxyAlert:isDuplicateOf (Sequence Diagram), DiscoverAlertClassesCommand:execute (Sequence Diagram)

	3
	MONITOR TRAFFIC AND ROADWAYS
	N/A

	3.3
	ISSUE ALERT OR POST INFORMATION
	N/A

	3.3.1
	The system shall issue an alert to the suitably privileged CHART operators defined by the alert’s current AMG list.*
	AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.3.7
	The system shall display alerts to a user with the appropriate functional rights when that user logs in.*
	AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.3.8
	The system shall manage the escalation of alerts.
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram),
AlertImpl (Class)

	3.3.8.1
	The system shall support the capability to have alert types that do not require escalation.*
	ConfigureAlertEscalationPolicy (Use Case), AlertModule:escalateIfNecessary (Sequence Diagram),
AlertModule:escalateTimedOutAlert (Sequence), AlertModule:performEscalation (Sequence)

	3.3.8.2
	The system shall escalate an alert if no suitably privileged users determined by the alert’s current of AMG list are logged in.*
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram), ResourceManagementPushConsumer (Class), UtilityUserManagerWrapper (Class)

	3.3.8.2.1
	When an alert is chosen for escalation, an Escalation Cycle shall occur, which is defined as one or more Escalation Steps occurring in rapid succession until one of the following happens:
1) At least one user is logged in who has rights to manage the alert and belongs to at least one AMG which has been added to the alert’s AMG list within the current Escalation Cycle;
2) The AMG List doesn’t change after an Escalation Step. (This means the alert has reached maximum exposure.)
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram)

	3.3.8.2.2
	The system shall begin an Escalation Cycle for an alert in the New state if the last user that is a member of an alert’s current AMG list with the right to manage the alert logs out.
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram), ResourceManagementPushConsumer (Class), UtilityUserManagerWrapper (Class)

	3.3.8.3
	The system shall record an alert failure in the operations log if no users with the correct functional rights to manage the alert are logged on.*
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram), ResourceManagementPushConsumer (Class), UtilityUserManagerWrapper (Class)

	3.3.8.3.1
	The system shall not record an alert failure in the operations log for the initial delivery of an Unhandled Resource Alert to the subject Center. (No users will be logged in by definition, so the Operations Log entry would be unnecessary clutter.)
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram), ResourceManagementPushConsumer (Class), UtilityUserManagerWrapper (Class)

	3.3.8.4
	The system shall escalate an alert if the alert is not Accepted or Suppressed within the escalation timeout.*
	UnhandledResourceAlert (Class), UnhandledResourceAlertData (Class), UnhandledResourceAlertImpl (Class)

	3.3.8.5
	<DELETED>*
	N/A

	3.3.8.6
	The system shall log a message to the operations log for escalation of an alert.
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram),

	3.3.8.6.1
	The operations log message for escalation of the alert shall list the new AMG(s) added to the list of AMGs viewing the alert
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram)

	3.3.8.7
	The system shall list the new AMG(s) added to the list of AMGs viewing the alert in the comment stored in the alert history for the escalation action
	PerformEscalationCycle (Use Case), performEscalation (Sequence Diagram)

	3.3.9
	The system shall provide the capability for a user to manually create a Generic Alert.
	GenericAlert (Class), GenericAlertImpl (Class)

	3.3.9.1
	 A user shall be required to provide a free-form text description to identify a Generic Alert.
	commentOnAlert (Sequence Diagram),
GenericAlert (Class), GenericImpl (Class)

	3.3.10
	The system shall prevent duplicate, non-closed alerts from being displayed to users.
	GenericAlertImpl (Class), UnhandledResourceAlertImpl (Class), DeviceFailureAlertImpl (Class), DuplicateEventAlertImpl (Class), EventStillOpenAlertImpl (Class), many others

	3.3.10.1
	Two Generic Alerts shall be considered duplicates when their free-form text descriptions are identical.
	GenericAlertImpl (Class)

	3.3.10.2
	Two Unhandled Resource Alerts shall be considered duplicates when the resource they reference are the same.
	UnhandledResourceAlertImpl (Class)

	3.3.10.3
	Two Device Failure Alerts shall be considered duplicates when the devices they reference are the same device.
	DeviceFailureAlertImpl (Class)

	3.3.10.4
	Two Duplicate Event Alerts shall be considered duplicates when the two events they reference are the same two events.
	DuplicateEventAlertImpl (Class)

	3.3.10.5
	Two Event Still Open Alerts shall be considered duplicates when the event they reference are the same.
	EventStillOpenAlertImpl (Class)

	3.4.
	RECEIVE AND RESPOND TO ALERT
	N/A

	3.4.1.
	A suitably privileged operator shall be able to view alerts.*
	ViewAlerts (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.4.1.1.
	The system shall display alerts at all times on the CHART home page.
	ViewAlerts (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.4.1.1.1
	The system shall organize the displayed alerts based on their current state.
	ViewAlerts (Use Case), ViewNewAlerts (Use Case), ViewAcceptedAlerts (Use Case),
ViewDelayedAlerts (Use Case),
ViewClosedAlerts (Use Case), GUI

	3.4.1.1.2
	The system shall show the number of alerts displayed for each alert state.
	ViewAlerts (Use Case), AlertReqHdlr.
viewAlertsInitialView (Sequence Diagram)

	3.4.1.1.3
	The system shall provide a visual cue to the user when there are alerts in the “New” state.
	ViewNewAlerts (Use Case),
 ViewNewAlerts (Sequence Diagram)

	3.4.1.1.4
	The system shall provide an audio cue to the user when there are alerts in the “New” state.
	ViewNewAlerts (Use Case),
ViewNewAlerts (Sequence Diagram)

	3.4.1.1.4.1
	The system shall allow an administrator to configure the sound that is played as the audio cue, per alert type.
	ConfigureAlertAudioCue (Use Case), usermgmt.configureAlertAudioCue (Sequence Diagram)

	3.4.1.1.4.2
	<DELETED>*
	N/A

	3.4.1.1.4.3
	The systems shall play the corresponding audio cue (by alert type) to the user upon receipt by the user session of the new alert.
	ViewAlerts (Use Case),
NotifyUsersOfNewAlertsFlex (Sequence Diagram)

	3.4.1.1.4.4
	The system shall allow an administrator to configure the sound that is played as a ‘New alert still pending’ audio cue to be played should any alert remain in the New state and not acted upon by the user.
	ConfigureAlertReminderAudioCue (Use Case), usermgmt.configureAlertAudioCue (Sequence Diagram)

	3.4.1.1.4.5
	The system shall allow an administrator to configure the frequency that the ‘New alert still pending’ audio cue will be played should any alert remain in the New state not acted upon by the user.
	ConfigureAlertReminderAudioCueFrequency (Use Case)

	3.4.1.1.4.6
	The system shall play the ‘new alert still pending’ audio cue periodically at the configured frequency while there exists alerts of any type that remain in the New state.
	ConfigureAlertReminderAudioCue (Use Case), ConfigureAlertReminderAudioCueFrequency (Use Case),
ViewNewAlerts (Sequence Diagram)

	3.4.1.1.5
	The system shall allow the displayed alerts to be filtered to show only alerts for which the logged in user is responsible. This will include all new alerts for the user’s center, all alerts the user has placed into the “Accepted” state, and all alerts the user has placed into the “Delayed” state.
	FilterAlerts (Use Case),
AlertReqHdlr.filterAlerts (Sequence Diagram)

	3.4.1.1.6
	The system shall allow the displayed alerts to be filtered to show only alerts for which the logged in user’s center is responsible. This will include all new alerts for the user’s center, all alerts the center’s users have placed into the “Accepted” state, and all alerts the center’s users have placed into the “Delayed” state.
	FilterAlerts (Use Case),
AlertReqHdlr.filterAlerts (Sequence Diagram)

	3.4.1.1.7
	The system shall allow the displayed alerts to be filtered to show all alerts in the system if the user has the appropriate functional rights.
	FilterAlerts (Use Case),
AlertReqHdlr.filterAlerts (Sequence Diagram)

	3.4.1.1.8
	The system shall allow the displayed alerts to be filtered by the alert state.
	FilterAlerts (Use Case),
AlertReqHdlr.filterAlerts (Sequence Diagram)

	3.4.1.1.9
	The system shall show the type of each displayed alert.
	ViewAlerts (Use Case),
ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.4.1.1.10
	The system shall show the description of each displayed alert.
	ViewAlerts (Use Case), ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram),
AlertReqHdlr.viewAlertDetails (Sequence Diagram)

	3.4.1.1.11
	The system shall show the date/time the alert was created if the alert is in the New or Accepted state.
	ViewAlerts (Use Case), ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram),
AlertReqHdlr.viewAlertDetails (Sequence Diagram)

	3.4.1.1.12
	The system shall show the date/time an alert in the Delayed state will revert to the New state.
	ViewAlerts (Use Case), ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertDetails (Sequence Diagram)

	3.4.1.1.13
	The system shall provide a method for actions to be performed on each alert that is displayed, with the specific actions being dependent on the state of the alert and the functional rights of the user. See 3.4.2 for the specific actions available.
	ManageAlert (Use Case),
performAlertAction (Sequence Diagram)

	3.4.1.1.14
	The system shall allow the user to click on an alert to cause the Alert Details Page for the alert to be shown in the user’s working window.
	ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertDetails (Sequence Diagram)

	3.4.1.2.
	A suitably privileged user shall be able to view details of a single alert on an Alert Details Page.
	ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertDetails (Sequence Diagram)

	3.4.1.2.1.
	Details of an alert shall include: alert type, alert description, create time, closed time, AMGs currently viewing the alert, time of next escalation, list of AMGs to be added at the next escalation, and alert history.
	ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertDetails (Sequence Diagram)

	3.4.1.2.1.1
	Alert history shall contain an entry for each action, which includes: action taken, time of action, the user who performed the action, the user’s operations center, and optional comment.
	ManageAlertState (Use Case Diagram), AlertModule:acceptWithDetails (Sequence Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:renewIfNecessary (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), AlertModule:performEscalation (Sequence Diagram)

	3.4.1.2.1.2
	The details page shall provide a method for the user to perform actions on the alert, depending on the alert’s state and the user’s functional rights. See 3.4.2 for specific actions available.
	ViewAlertDetails (Use Case),
performAlertAction (Sequence Diagram)

	3.4.1.2.1.3
	The list of AMGs currently viewing the alert shall be ordered by the time the AMG was added to the alert.
	ViewAlertDetails (Use Case), AlertReqHdlr.viewAlertDetails (Sequence Diagram)

	3.4.1.3
	The system shall allow a suitably privileged user to view closed alerts that remain on the online system (i.e., not yet removed from the online system to be archived).
	ViewClosedAlerts (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.4.1.3.1
	The list of closed alerts shall show at a minimum the alert type, description, created time, closed time, and a link to access the Alert Details Page for the alert.
	ViewClosedAlerts (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.4.2.
	A suitably privileged user shall be able to manage alerts through the following states: New, Accepted, Delayed, and Closed.
	ManageAlertState (Use Case Diagram), AlertModule:acceptWithDetails (Sequence Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:renewIfNecessary (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), AlertModule:performEscalation (Sequence Diagram), performAlertAction (Sequence Diagram)

	3.4.2.1
	A suitably privileged user shall be able to manage alerts in the New state.
	ManageAlertState (Use Case Diagram), AlertModule:acceptWithDetails (Sequence Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:renewIfNecessary (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), AlertModule:performEscalation (Sequence Diagram), performAlertAction (Sequence Diagram)

	3.4.2.1.1
	When an alert transitions into the New state, the escalation timer shall start anew with the current AMG list.
	AlertModule:escalateTimedOutAlert (Sequence Diagram)

	3.4.2.1.2
	When the time that the alert has been in the New state since the last escalation (if any) exceeds the escalation timeout for the alert type, the system shall automatically escalate the alert.
	AlertModule:escalateTimedOutAlert (Sequence)

	3.4.2.1.2.1
	After an alert completes an escalation cycle, the escalation timer shall start anew with the new AMG list.
	AlertModule:escalateTimedOutAlert (Sequence), AlertModule:performEscalation (Sequence)

	3.4.2.1.3
	A suitably privileged user shall be able to perform the following actions on an alert in the New state: Escalate, Accept, Delay, Close, and Comment.
	ManageAlertState (Use Case Diagram), AlertModule:acceptWithDetails (Sequence Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), AlertModule:performEscalation (Sequence Diagram), performAlertAction (Sequence Diagram)

	3.4.2.1.3.1
	Performing an Escalate action on an alert in the New state shall leave the alert in the New state and force an immediate escalation cycle. (See 1.1.1.6.1.1.3, which covers configuration of escalation path.)
	EscalateAlert (Use Case), AlertModule:performEscalation (Sequence Diagram)

	3.4.2.1.3.2
	Performing an Accept action on an alert in the New state shall move the alert to the Accepted state.
	AcceptAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram)

	3.4.2.1.3.2.1
	Upon performing an Accept action, the user shall be allowed to set a reminder time (either as an offset from now or an absolute time in the future) by which time the user expects the alert to be closed.
	AcceptAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram), AlertModule:setAcceptTimeout (Sequence Diagram)

	3.4.2.1.3.2.1.1
	Upon performing an Accept action, if the user does not specify a reminder time, the default accept reminder time for that alert type will be used.
	AcceptAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram), AlertModule:setAcceptTimeout (Sequence Diagram)

	3.4.2.1.3.2.2
	An alert in the Accepted state shall be displayed in the default Accepted view for all users in the Accepting user’s AMG, and not in the default Accepted view of other AMGs listed for the alert.
	ViewAcceptedAlerts (Use Case), AlertReqHdlr.viewAlertsInitialView (Sequence Diagram)

	3.4.2.1.3.3
	Performing a Delay action on an alert in the New state shall move the alert to the Delayed state.
	DelayAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram)

	3.4.2.1.3.3.1
	Upon performing an Delay action, the user shall be allowed to set a reminder time (either as offset from now or absolute time in the future) by which time the user expects the alert to be closed.
	DelayAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram), AlertModule:setAcceptTimeout (Sequence Diagram)

	3.4.2.1.3.3.1.1
	Upon performing an Delay action, if the user does not specify a reminder time, the default delay reminder time for that alert type will be used.
	DelayAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram), AlertModule:setAcceptTimeout (Sequence Diagram)

	3.4.2.1.3.4
	Performing a Close action on an alert in the New state shall move the alert to the Closed state.
	CloseAlert (Use Case),
AlertModule:closeAlert (Sequence Diagram)

	3.4.2.1.3.5
	Performing a Comment action on an alert in the New state shall leave the alert in the New state and add the comment to the alert history.
	CommentOnAlert (Use Case)

	3.4.2.1.3.5.1
	Performing a Comment action on an alert in the New state shall not affect the time of next escalation for the alert.
	CommentOnAlert (Use Case)

	3.4.2.2
	A suitably privileged user shall be able to manage alerts in the Accepted state.
	ManageAlertState (Use Case Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), performAlertAction (Sequence Diagram)

	3.4.2.2.1
	Automatic escalation shall not occur for an alert in the Accepted state. The escalation timer will stop for an Accepted alert.
	AcceptAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram)

	3.4.2.2.2
	The system shall transition an alert in the Accepted state to the New state when the time since the alert was Accepted exceeds the user-specified reminder time.
	ManageAlertState (Use Case Diagram), AlertModule:renewIfNecessary (Sequence Diagram)

	3.4.2.2.3
	When a user Accepts an alert, that action shall not prevent other suitably privileged users from working with the alert. (There is no concept that the Accepting user “owns” the alert, in any sense.)
	ModifyAlert (Use Case),

	3.4.2.2.4
	A suitably privileged user shall be able to perform the following actions on an alert in the Accepted state: Unaccept, Delay, Close, Edit, and Comment.
	ManageAlertState (Use Case Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), performAlertAction (Sequence Diagram)

	3.4.2.2.4.1
	Performing an Unaccept action on an alert in the Accepted state shall move the alert to the New state.
	ManageAlertState (Use Case Diagram), AlertIModule:unaccept (Sequence Diagram),

	3.4.2.2.4.2
	Performing a Delay action on an alert in the Accepted state shall move the alert to the Delayed state.
	ManageAlertState (Use Case Diagram), AlertIModule:acceptWithDetails (Sequence Diagram)

	3.4.2.2.4.2.1
	Upon performing an Delay action, the user shall be allowed to set a reminder time (either as an offset from now or an absolute time in the future) by which time the user expects the alert to be closed.
	DelayAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram), AlertModule:setAcceptTimeout (Sequence Diagram)

	3.4.2.2.4.2.1.1
	Upon performing an Delay action, if the user does not specify a reminder time, the default delay reminder time for that alert type will be used.
	DelayAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram), AlertModule:setAcceptTimeout (Sequence Diagram)

	3.4.2.2.4.3
	Performing a Close action on an alert in the Accepted state shall move the alert to the Closed state.
	GUI, ManageAlertState (Use Case Diagram), AlertModule:closeAlert (Sequence Diagram)

	3.4.2.2.4.4
	Performing an Edit action on an alert in the Accepted state shall allow the user to change the reminder timeout for the alert (either as an offset from now or an absolute time in the future) by which time the user expects the alert to be closed.
	SpecifyAlertAcceptDuration (Use Case), SpecifyAlertTimeout (Sequence Diagram)

	3.4.2.2.4.5
	Performing a Comment action on an alert in the Accepted state shall leave the alert in the Accepted state and add the comment to the alert history.
	CommentOnAlert (Use Case),
commentOnAlert (Sequence Diagram)

	3.4.2.3
	A suitably privileged user shall be able to manage alerts in the Delayed state.
	AcceptAlert (Use Case), UndelayAlert (Use Case), CloseAert (Use Case),
performAlertAction (Sequence Diagram)

	3.4.2.3.1
	Automatic escalation shall not occur for an alert in the Delayed state. The escalation timer will stop for a Delayed alert.
	DelayAlert (Use Case), AlertModule:acceptWithDetails (Sequence Diagram)

	3.4.2.3.2
	The system shall transition an alert in the Delayed state to the New state when the time since the alert was Delayed exceeds the user-specified reminder time.
	ManageAlertState (Use Case Diagram), AlertModule:renewIfNecessary (Sequence Diagram)

	3.4.2.3.3
	When a user Delays an alert, that action shall not prevent other suitably privileged users from working with the alert. (There is no concept that this user “owns” the alert, in any sense.)
	ModifyAlert (Use Case),
performAlertAction (Sequence Diagram)

	3.4.2.3.4
	A suitably privileged user shall be able to perform the following actions on an alert in the Delayed state: Accept, Undelay, Close, Edit, and Comment.
	ManageAlertState (Use Case Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), performAlertAction (Sequence Diagram)

	3.4.2.3.4.1
	Performing an Accept action on an alert in the Delayed state shall move the alert to the Accepted state.
	ManageAlertState (Use Case Diagram), AlertIModule:acceptWithDetails (Sequence Diagram)

	3.4.2.3.4.2
	Performing an Undelay action on an alert in the Delayed state shall move the alert to the New state.
	ManageAlertState (Use Case Diagram), AlertIModule:unaccept (Sequence Diagram)

	3.4.2.3.4.3
	Performing a Close action on an alert in the Delayed state shall move the alert to the Closed state
	GUI, ManageAlertState (Use Case Diagram), AlertModule:closeAlert (Sequence Diagram)

	3.4.2.2.4.4
	Performing an Edit action on an alert in the Delayed state shall allow the user to change the reminder timeout for the alert (either as offset from now or absolute time in the future) by which time the user expects the alert to be closed.
	SpecifyAlertDelayedDuration (Use Case), SpecifyAlertTimeout (Sequence Diagram)

	3.4.2.3.4.5
	Performing a Comment action on an alert in the Delayed state shall leave the alert in the Delayed state and add the comment to the alert history.
	CommentOnAlert (Use Case),
commentOnAlert (Sequence Diagram)

	3.4.2.4
	A suitably privileged user shall be able to manage alerts in the Closed state.
	ManageAlertState (Use Case),
CommentOnAlert (Use Case), GUI

	3.4.2.4.1
	Escalation shall not occur for an alert in the Closed state. The escalation timer will stop for a Closed alert.
	ManageAlertState (Use Case Diagram), AlertModule:closeAlert (Sequence Diagram)

	3.4.2.4.2
	A suitably privileged user shall be able to perform the following actions on an alert in the Closed state: Comment.
	CommentOnAlert (Use Case),
commentOnAlert (Sequence Diagram)

	3.4.2.4.2.1
	Performing a Comment action on an alert in the Closed state shall leave the alert in the Closed state and add the comment to the alert history.
	CommentOnAlert (Use Case),
commentOnAlert (Sequence Diagram)

	3.4.2.5
	In the process of performing any alert action, the user shall optionally be able to add a comment to the alert history.
	AlertModule:acceptWithDetails (Sequence Diagram)

	3.4.2.6.
	A suitably privileged user shall be able to Resolve alerts in the New, Accepted, and Delayed states
	ResolveAlert (Use Case),
ResolveAlert (Sequence Diagram)

	3.4.2.6.1
	Clicking the Resolve link of a Generic Alert shall close the alert.
	ResolveAlert (Use Case),
ResolveAlert (Sequence Diagram)

	3.4.2.6.2
	Clicking the Resolve link of an Unhandled Resource Alert shall take the user to the Transfer Unhandled Resources page.
	ResolveAlert (Use Case),
ResolveAlert (Sequence Diagram)

	3.4.2.6.3
	Clicking the Resolve link of a Device Failure Alert shall take the user to the Details Page for that device.
	ResolveAlert (Use Case),
ResolveAlert (Sequence Diagram)

	3.4.2.6.4
	Clicking the Resolve link of a Duplicate Event Alert shall take the user to the page that shows pertinent data from the two events, where the user can choose to merge the events, delete one of them, or associate them.
	ResolveAlert (Use Case),
ResolveAlert (Sequence Diagram)

	3.4.2.6.5
	Clicking the Resolve link of an Event Still Open Alert shall take the user to the event details page.
	ResolveAlert (Use Case),
ResolveAlert (Sequence Diagram)

	3.4.3.
	<DELETED>*
	

	3.4.6.
	In the process of performing any alert action, the system shall capture the following information in the alert history: action taken, user name (or “System”), Center of the user (if any), date/time of action, optional user comment or system description of action.*
	ManageAlertState (Use Case Diagram), AlertModule:acceptWithDetails (Sequence Diagram), AlertIModule:unaccept (Sequence Diagram), AlertModule:renewIfNecessary (Sequence Diagram), AlertModule:closeAlert (Sequence Diagram), AlertModule:performEscalation (Sequence Diagram)

	4
	MANAGE EVENTS
	N/A

	4.2.
	OPEN EVENT
	N/A

	4.2.1
	The system shall allow a suitably privileged user to create a new event.
	N/A

	4.2.1.6
	The system shall allow the user to create a new event from their home page.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.1
	The system shall allow the user to specify the location of the new event. See 4.2.2.2 for details on specifying an event location.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.2
	The system shall allow the user to specify the source type for the new traffic event.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.3
	The system shall allow the user to specify the source name for the new event.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.4
	The system shall allow the user to select the incident type for the new event.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.4.1
	The system shall disregard the user’s incident type selection if the user chooses to create an event type other than incident.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.5
	The system shall allow the user to specify the vehicle Color/Make for the new event.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.5.1
	The system shall ignore the user’s entry for the vehicle color/make if the user chooses to create an event type other than disabled vehicle.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.6
	The system shall allow the user to specify the vehicle Tag Information for the new event.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.6.1
	The system shall ignore the user’s entry for the vehicle tag information if the user chooses to create an event type other than disabled vehicle.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.7
	The system shall allow the user to specify the type of event to be created.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.8
	The user opening the event shall be able to specify a reminder time for how long an event may remain open before creating an “open event alert.” “Zero” means never issue a reminder.
	AddTrafficEventReqHdlr:submitOpenEventRemind​Time (Sequence Diagram)

	4.2.1.6.8.1
	The system shall allow a suitably privileged user to configure the default reminder time for each event type.
	SystemProfileReqHdlr.processConfigureTrafficEvent​StillOpen

	4.2.1.6.9
	The system shall display the details page for the newly created event in the user’s working window after the event is created.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.1.6.10
	The system shall detect when the location entries made by the user match the location of an existing open event in the system and provide an indication to the user that the event may be a duplicate.
	TrafficEventReqHdlr.viewPotentialDuplicateEvents​Flex (Sequence Diagram)

	4.2.1.6.10.1
	The system shall not consider direction when determining if the location of an existing open event matches the location of the event being entered.
	TrafficEventReqHdlr.viewPotentialDuplicateEvents​Flex (Sequence Diagram)

	4.2.1.6.10.2
	The system shall show the event name, event creation time, and responsible center for all open events shown as possible duplicates.
	TrafficEventReqHdlr.viewPotentialDuplicateEvents​Flex (Sequence Diagram)

	4.2.1.6.10.3
	The system shall filter the list of possible duplicates to only show events that have been created within X minutes, where X is configurable by the system administrator.
	TrafficEventReqHdlr.viewPotentialDuplicateEvents​Flex (Sequence Diagram)

	4.2.1.6.10.4
	The list of possible duplicate open events shall be ordered by event creation time, with the most recently created event first.
	TrafficEventReqHdlr.viewPotentialDuplicateEvents​Flex (Sequence Diagram)

	4.2.2
	RECORD EVENT DETAILS
	N/A

	4.2.2.2.5
	The system shall allow the user to enter the location and direction data using pulldown menus for pre-defined road pick lists.*
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.1
	The system shall allow the user to select the method they wish to use to specify the location of the traffic event.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.1.1
	The system shall allow the user to specify the location of a traffic event by specifying an intersecting route number.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.1.2
	The system shall allow the user to specify the location of a traffic event by specifying an intersecting route name.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.1.3
	The system shall allow the user to specify the location of a traffic event by specifying a state milepost number.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.1.4
	The system shall allow the user to specify the location of a traffic event by specifying a county milepost number.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.1.5
	The system shall allow the user to specify the location of a traffic event manually as freeform text.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.1.5.1
	The system shall warn the user twice prior to allowing them to manually specify the location of a traffic event using free form text.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.2
	The system shall allow the user to select the state where a traffic event is located.
	AddTrafficEventReqHdlr:getBasicEventDataInitial​FormDataXML (Sequence Diagram)

	4.2.2.2.5.2.1
	The system shall default the state selection to MD.
	AddTrafficEventReqHdlr:getBasicEventDataInitial​FormDataXML (Sequence Diagram)

	4.2.2.2.5.3
	The system shall allow the user to select the county where a traffic event is located if a state is not selected or the selected state is MD.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.4
	The system shall allow the user to enter the county where a traffic event is located as free form text if a state is selected other than MD, or if no state is selected.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.5
	The system shall allow the user to specify the type of route where a traffic event is located, such as interstate or state route.
	AddTrafficEventReqHdlr:getBasicEventDataInitial​FormDataXML (Sequence Diagram)

	4.2.2.2.5.6
	The system shall allow the user to specify the route where the traffic event is located.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.6.1
	The system shall provide a list of known routes for user selection if the user has selected a county and route type if known routes exist for the selections made.
	LocationReqHdlr:getRouteNumbersXML (Sequence Diagram)

	4.2.2.2.5.6.2
	The system shall allow the user to specify the route using free form text if the selected state is not MD.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.6.3
	The system shall require the user to select a route from the list of known routes, or select no route, if the selected state is MD.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.7
	The system shall allow the user to select the direction of the route where the traffic event is located.
	AddTrafficEventReqHdlr:getBasicEventDataInitial​FormDataXML (Sequence Diagram)

	4.2.2.2.5.8
	The system shall allow the user to specify the state milepost number if the user has chosen to specify the traffic event location using state milepost.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.9
	The system shall allow the user to specify the county milepost number if the user has chosen to specify the traffic event location using county milepost.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.10
	The system shall allow the user to specify the intersecting route number if the user has chosen to specify the traffic event location using intersecting route number.
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.10.1
	The system shall provide a list of known intersecting route numbers for user selection if the user has selected a known main route.
	LocationReqHdlr:getIntersectingRoadsXML (Sequence Diagram)

	4.2.2.2.5.10.2
	The system shall allow the user to specify the intersecting route number as free form text.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.10.3
	The system shall allow the user to specify the relationship of the traffic event location to the location specified with the main route and intersecting route number. (For example, prior, past, at)
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	
	
	

	4.2.2.2.5.11
	The system shall allow the user to specify the intersecting route name if the user has chosen to specify the traffic event location using intersecting route name.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.11.1
	The system shall provide a list of known intersecting route names for user selection if the user has selected a known main route.
	LocationReqHdlr:getIntersectingRoadsXML (Sequence Diagram)

	4.2.2.2.5.11.2
	The system shall allow the user to specify the intersecting route name as free form text.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.11.3
	The system shall allow the user to specify the relationship of the traffic event location to the location specified with the main route and intersecting route name. (For example, at prior to, past, north of)
	AddTrafficEventReqHdlr:addTrafficEventFlex (Sequence Diagram)

	4.2.2.2.5.11.3.1
	The system shall use a relationship of ‘at’ if the user does not specify a value.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.12
	The system shall allow the user to specify the traffic event location as free form text if the user has chosen to specify the traffic event location manually.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.13
	The system shall allow the user to pre-populate location fields by selecting a named location known as an “alias”.
	LocationReqHdlr:getAliasLocationInfoXML (Sequence Diagram)

	4.2.2.2.5.13.1
	The named locations shall include two names, an operator preferred alias name (that may not be understandable to the public) and a public name. (For example, there could be an alias named “BHT” with a public name of “Baltimore Harbor Tunnel”)
	charlite.data_location_classes (Class Diagram)

	4.2.2.2.5.14
	The system shall show the user a textual version of the traffic event location that is based on the values specified in the location fields.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.1
	If no location information is specified, the textual location shall indicate the location is unknown.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.2
	If a manually entered free form location is entered, the textual location shall be the manually entered free form location, regardless of any other location fields specified.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.3
	If a main route is specified, the textual location shall be the main route, with further identifying information as available.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.3.1
	The textual location based on the main route shall include direction if the user has specified a direction.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.3.2
	The textual location based on the main route shall include state milepost number if the user has specified a state milepost number.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.3.3
	The textual location based on the main route shall include county milepost number if the user has specified a county milepost number.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.3.4
	The textual location based on the main route shall include the intersecting route number and the relationship of the traffic event location to the intersection if the user has specified an intersecting route number.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.3.5
	The textual location based on the main route shall include the intersecting route name and the relationship of the traffic event location to the intersection if the user has specified an intersecting route name.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.3.6
	When the user selects a location using an alias, the system shall append the public name of the alias in parenthesis to the textual location of the traffic event, if the public name is not the empty string.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.4
	If a main route is not specified, the textual location shall include the county if the user has specified a county.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.14.5
	If a main route is not specified, the textual location shall include the state if the user has specified a state.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.15
	The system shall use the traffic event type and textual location as the name of the traffic event.
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.5.16
	The system shall provide a list of direction for an event that shall include None, North, South, East, West, Inner Loop, Outer Loop, South/North, East/West and Inner Loop/Outer Loop.(was 4.2.2.2.5.1)*
	AddTrafficEventReqHdlr:getBasicEventDataInitialFormDataXML (Sequence Diagram)

	4.2.2.2.5.17
	The system shall provide a list to choose from that includes all counties in Maryland, Statewide, Baltimore Region, Washington Region, Western Maryland, Eastern Shore, and Southern Maryland. (was 4.2.2.2.5.2)*
	SpecifyEventLocation (Use Case Diagram)

	4.2.2.2.7
	The system shall display the default traffic flow direction for the event area, facility, or stretch of roadway.
	chartlite.lanedisplay_classes (Class Diagram)

	4.2.2.2.8
	<DELETED>*
	

	4.2.2.2.9
	The system shall allow the user to select or specify the number of roadway lanes affected.
	N/A

	4.2.2.2.9.2
	The system shall provide the capability to display a roadway graphic for an incident event entry.
	N/A

	4.2.2.2.9.2.4
	The roadway graphic shall display the current traffic flow direction for each lane.
	TrafficEventHierarchy class diagram,TrafficEventModuleclasses class diagram,LaneDisplay (Class)

	4.2.2.2.9.2.5
	The roadway graphic shall be capable of displaying travel lanes, shoulders, multi-lane ramps, tunnel bores, toll plazas, left exit ramps, right entrance ramps, left entrance ramps, right entrance ramps, and center turn lanes.
	chartlite.lanedisplay_classes (Class Diagram)

	4.2.2.2.9.2.6
	The system shall provide the capability for the user to click on areas of the roadway graphic in order to change the traffic flow direction for a lane or set the traffic flow for the lane to be multi-directional (when traffic is given alternating use of a single lane during flagging operations, etc.)
	LaneConfigReqHdlr:submitLaneDirAndStateInfo (Sequence Diagram)

	4.2.2.2.9.3
	The system shall allow the user to enter a textual description of the lane closures. (It is anticipated that this will only be used for complex scenarios that cannot be fully described with lane graphics. For example, if an exit lane is closed but traffic is flowing on the shoulder.)
	Already implemented in R2B3.

	4.2.2.2.11
	The system shall allow the user to specify, while editing a traffic event, whether the traffic event warrants display of a traffic alert on the external web site.
	Specify Website Traffic Alert Settings (Use Case)

	4.2.2.2.11.1
	If the user indicates that a traffic alert should be displayed on the external web site, the system shall allow the user to enter the text to be displayed in that traffic event.
	Specify Website Traffic Alert Settings (Use Case)

	4.2.2.6
	CAPTURE RELATED EVENTS
	N/A

	4.2.2.6.1
	The system shall automatically check on a regular basis to see if any two events are similar geographically.*.
	TrafficEventModule:monitorDuplicateEvents (Sequence Diagram)

	4.2.2.6.1.1
	Two events shall be flagged as duplicates when two events have the same location.
	TrafficEventModule:monitorDuplicateEvents (Sequence Diagram)

	4.2.2.6.1.2
	The system shall issue one Duplicate Event Alert for each unique pair of duplicate events detected.
	TrafficEventModule:monitorDuplicateEvents (Sequence Diagram)

	4.2.2.6.1.3
	A suitably privileged operator shall be able to configure what event types will be compared to other event types for the purpose of determining duplicates. (For instance, the user may indicate that incidents, congestion, and disabled vehicle events can be compared to each other, congestion events can also be compared to special events, and safety events - usually at a location of “Maryland (Statewide)” - are never compared to each other or any other type of event.)
	usermgmt:SystemProfileReqHdlr.processConfigureDuplicateEventsMatrix

	4.2.2.6.2
	The system shall display the similar event's title and description, and allow the user to view additional details about it.
	TrafficEventReqHdlr.viewPotentialDuplicateEventsFlex (Sequence Diagram)

	4.2.2.6.3
	The system shall allow the user to close a duplicate event with a designation that it is a false alarm*
	MergeEvent sequence diagram

	4.2.2.6.5
	The system shall allow a suitably privileged user to merge open events.*
	MergeEvent sequence diagram

	4.2.2.6.5.1
	The system shall require the user to choose which event will remain open, and which will be closed with a designation that it is a false alarm.
	chartlite/servlet/MergeEvents

	4.2.2.6.5.1.1
	The system shall add an entry to the event history of the event to be false alarmed during the merge indicating the name of the event into which it has been merged.
	MergeEvent sequence diagram

	4.2.2.6.5.1.2
	The system shall add an entry to the event history of the event remaining open after the merge indicating the name of the event which has been merged into it.
	MergeEvent sequence diagram

	4.2.2.6.5.2
	The system shall allow the user to choose the data from the events to be merged that will be contained in the event that will remain open.
	displayMergeEventNextSection,displayMergeEventSelectTargetForm

	4.2.2.6.5.3
	The system shall allow the user to preview and approve the expected results of the merge prior to committing the changes.
	chartlite/servlet/MergeEvents,submitMergeEventTargetSelection,submitMergeEvents

	4.2.2.6.5.4
	The system shall allow events of different types to be merged.
	MergeEvent sequence diagram

	4.2.2.6.5.4.1
	When events of different types are merged, data from the event that will be closed as a false alarm that does not apply to the target event’s type shall not be merged.
	MergeEvent sequence diagram and MergeEvents usecase diagram

	4.2.2.6.5.5
	The system shall log a message to the Operations log for merging of events.
	MergeEvent sequence diagram and MergeEvents usecase diagram

	4.4.
	CLOSE EVENT
	N/A

	4.4.2.
	DETERMINE EVENT CLOSURE OR TRANSFER
	N/A

	4.4.2.4.
	The system shall prompt the user to close an event (by issuing an Event Still Open Alert) when an event has remained open past a user-specified time limit.*
	CreateEventStillOpenAlert (Use Case), TrafficEventModule:monitorEventStillOpen (Sequence Diagram)

	4.4.2.4.1.
	The reminder Event Still Open Alert for an open event shall be displayed to users logged into the Center that has responsibility for the event.*
	CreateEventStillOpenAlert (Use Case), MonitorEventStillOpen (Sequence Diagram), viewAlertInitialView (Sequence Diagram)

	4.4.2.4.2.
	The system shall provide the user with the capability to change the reminder time limit of an open event.*
	TrafficEventReqHdlr.submitOpenEventReminderTime (Sequence Diagram)

	6
	PROVIDE TRAVELER INFORMATION
	N/A

	6.2
	MAINTAIN [EXTERNAL] WEB SITE INFORMATION
	N/A

	6.2.1
	The web site shall display traffic alerts.
	N/A - Web site requirement

	6.2.1.1
	A traffic alert shall be displayed on the web site if and only if a CHART operator has requested it.
	N/A - Web site requirement

	6.2.1.2
	A traffic alert displayed on the web site shall display the text entered by a CHART operator in the subject traffic event, if provided
	N/A - Web site requirement

	8
	REPORTING REQUIREMENTS
	N/A

	8.1
	The system shall provide the capability to generate reports from online and archived data.
	N/A

	8.1.5
	Closed alerts shall be removed from the online system after an administrator-configurable offline-timeout period (e.g., 12 hours) has elapsed since closure.
	MonitorArchiveTime (Use Case), AlertModule:archiveTimedOutAlerts (Sequence Diagram)

	8.1.5.1
	Alerts removed from the online system shall be moved to an archive on the next scheduled archive operation.
	MonitorArchiveTime (Use Case), AlertModule:archiveTimedOutAlerts (Sequence Diagram)

7 Acronyms/Glossary

	Arbitration Queue
	A prioritized queue containing messages for display or broadcast on a traveler information device.

	CCTV
	Closed Circuit Television

	CHART
	Coordinated Highway Action Response Team

	Constituent HAR
	A HAR that is part of a Synchronize HAR group and may play HAR messages in a synchronized manner.

	CORBA Event
	A CORBA mechanism using which different CHART components exchange information without explicitly knowing about each other.

	DMS
	Dynamic Message Sign

	EORS
	Emergency Operations Reporting System

	FMS
	Field Management Station

	GUI
	Graphical User Interface

	HAR
	Highway Advisory Radio

	HIS
	Highway Information Systems

	IOR
	Interoperable Object Reference

	ISDN
	Integrate Digital Services Network

	ISS
	Information System Specialists

	JRE
	Java Run-time Environment

	MDOT
	Maryland Department of Transportation

	MDSHA
	Maryland State Highway Administration

	MdTA
	Maryland Transportation Authority

	NTCIP
	National Transportation Communications for ITS Protocol

	POTS
	Plain Old Telephone Service

	RTMS
	Remote Traffic Microwave Sensor

	SHA
	State Highway Administration

	SOC
	Statewide Operations Center

	Synchronizable HAR
	A HAR that may play messages in a synchronized manner.

	Synchronized HAR
	A HAR entity that is comprised of one or more HAR transmitters (also known as constituent HARs).

	TSS
	Traffic Sensor System

	TTS
	Text to Speech

� EMBED PBrush ���

CHART R3B1 Detailed Design Document
xii
07/13/2007

_1230309699

