
[image: image210.png]

coordinated Highways Action Response Team

state highway administration

[image: image211.wmf]
CHART R3B2 Detailed Design Revision 2

Contract SHA-06-CHART

· Document # WO11-DS-001R1
· Work Order 11, Deliverable 4

· June 6, 2008

· By

· Computer Sciences Corporation
[image: image212.png]

	Revision
	Description
	Pages Affected
	Date

	0
	Initial Release
	All
	02/13/2008

	1
	Revision 1
	2-1, 2-3, 2-4, 2-8, 3-2, 3-3, 3-7, 4-9, 5-4, 5-17, 5-20, 5-208, 6-1, 6-2, 6-22, 6-23, 6-44, 7-1
	03/07/2008

	
	Revision 2 – External Interface
	1-1, 1-2, 2-1, 2-3, 2-7, 2-8, 3-4-3-8, 4-20-4-28, 5-32-5-34, 5-268-5-293, 6-7, 6-10, 6-11, 6-14, 6-22, 6-23, 6-33, 6-37-6-40, 6-44-6-50
	6/06/08

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

1-11
Introduction

1.1
Purpose
1-1
1.2
Objectives
1-2
1.3
Scope
1-2
1.4
Design Process
1-2
1.5
Design Tools
1-2
1.6
Work Products
1-2
2
Architecture
2-1
2.1
Network/Hardware
2-1
2.2
Software
2-1
2.2.1
COTS Products
2-1
2.2.2
Deployment /Interface Compatibility
2-3
2.3
Security
2-8
2.4
Data
2-9
2.4.1
Data Storage
2-9
2.4.2
Database Design
2-12
3
Key Design Concepts
3-1
3.1
Pending Traffic Events
3-1
3.2
Event Scheduler
3-1
3.3
Notification Services
3-2
3.4
Device Plans, Advanced Sort and Searching
3-3
3.5
Enhanced Communications/Event Log
3-4
3.6
External Interface to RITIS
3-4
3.7
Error Processing
3-6
3.8
Packaging
3-7
3.9
Assumptions and Constraints
3-9
4
Use Cases
4-1
4.1
High Level
4-1
4.1.1
High Level Use Cases for CHART R3B2 (Use Case Diagram)
4-1
4.2
Alerts
4-4
4.2.1
R3B2_ManageAlerts (Use Case Diagram)
4-4
4.3
Comm Log Improvements
4-8
4.3.1
R3B2_ManageCommLog (Use Case Diagram)
4-8
4.4
Notification
4-9
4.4.1
ManageNotifications (Use Case Diagram)
4-9
4.5
Plans
4-13
4.5.1
R3B2_ManagePlans (Use Case Diagram)
4-13
4.6
Schedules
4-15
4.6.1
ManageSchedules (Use Case Diagram)
4-15
4.7
Traffic Events
4-20
4.7.1
R3B2_ManageTrafficEvents (Use Case Diagram)
4-20
4.8
External Interface
4-27
4.8.1
ExternalInterface (Use Case Diagram)
4-27
5
Detailed Design
5-1
5.1
Human-Machine Interface
5-1
5.1.1
Pending Traffic Events
5-1
5.1.2
Scheduler
5-8
5.1.3
Notification
5-17
5.1.4
Device Plan Searching and Sorting
5-24
5.1.5
Enhanced Communications and Event History Logs
5-29
5.1.6
External Events
5-32
5.2
Action Utility
5-34
5.2.1
Classes
5-34
5.2.2
Sequence Diagrams
5-38
5.3
Alert Module
5-41
5.3.1
Class Diagram
5-41
5.4
Comm Log Module
5-56
5.4.1
Classes
5-56
5.4.2
Sequence Diagrams
5-62
5.5
Common
5-64
5.5.1
Class Diagrams
5-64
5.6
Data Model
5-69
5.6.1
Class Diagram
5-69
5.7
GUI chartlite.data
5-73
5.7.1
Classes
5-73
5.8
GUI chartlite.data.alerts-data
5-75
5.8.1
Classes
5-75
5.9
GUI chartlite.data.notification-data
5-78
5.9.1
Classes
5-78
5.9.2
Sequence diagrams
5-80
5.10
GUI chartlite.data.plans-data
5-83
5.10.1
Classes
5-83
5.10.2
Sequence Diagrams
5-85
5.11
GUI chartlite.data.schedule-data
5-89
5.11.1
Classes
5-89
5.11.2
Sequence diagrams
5-93
5.12
GUI chartlite.data.trafficevents-data
5-96
5.12.1
Classes
5-96
5.13
GUI chartlite.servlet
5-103
5.13.1
Classes
5-103
5.13.2
Sequence Diagrams
5-106
5.14
GUI chartlite.servlet.alerts
5-107
5.14.1
Classes
5-107
5.14.2
Sequence diagrams
5-108
5.15
GUI chartlite.servlet.commlog
5-116
5.15.1
Classes
5-116
5.15.2
Sequence Diagrams
5-118
5.16
GUI chartlite.servlet.notification
5-125
5.16.1
Classes
5-125
5.16.2
Sequence Diagrams
5-127
5.17
GUI chartlite.servlet.planmgmt
5-137
5.17.1
Classes
5-137
5.17.2
Sequence Diagrams
5-138
5.18
GUI chartlite.servlet.schedules
5-147
5.18.1
Classes
5-147
5.18.2
Sequence Diagrams
5-153
5.19
GUI chartlite.servlet.servlet-dynlist
5-177
5.19.1
Classes
5-177
5.19.2
Sequence Diagrams
5-179
5.20
GUI chartlite.servlet.trafficevents
5-181
5.20.1
Classes
5-181
5.20.2
Sequence Diagrams
5-185
5.21
GUI chartlite.util
5-201
5.21.1
Classes
5-201
5.22
GUI chartlite.util.dynlist
5-202
5.22.1
Classes
5-202
5.23
Notification Module
5-205
5.23.1
Classes
5-205
5.23.2
Sequence Diagrams
5-211
5.24
Plan Module
5-217
5.24.1
Classes
5-217
5.24.2
Sequence Diagrams
5-223
5.25
Schedule Module
5-226
5.25.1
Classes
5-226
5.25.2
Sequence Diagrams
5-233
5.26
Traffic event Module
5-253
5.26.1
Classes
5-253
5.26.2
Sequence Diagrams
5-265
5.27
External Interface Module
5-270
5.27.1
Classes
5-270
5.27.2
Sequence Diagrams
5-280
6
Mapping To Requirements
6-1
7
Acronyms/Glossary
7-1

Table of Figures

2-4Figure 2‑1 CHART and External Interfaces

Figure 2‑2 CHART Internal Interfaces (GUI Deployment)
2-6
Figure 2‑3 CHART Internal Interfaces (Server Deployment)
2-7
Figure 4‑1 High Level Use Cases for R3B2 (Use Case Diagram)
4-1
Figure 4‑2. R3B2_ManageAlerts (Use Case Diagram
4-4
Figure 4‑3. R3B2_ManageCommLog (Use Case Diagram)
4-8
Figure 4‑4. ManageNotifications (Use Case Diagram)
4-9
Figure 4‑5. R3B2_ManagePlans (Use Case Diagram)
4-13
Figure 4‑6. ManageSchedules (Use Case Diagram)
4-15
Figure 4‑7. R3B2_ManageTrafficEvents (Use Case Diagram)
4-20
Figure 4‑8. ExternalInterface (Use Case Diagram)
4-27
Figure 5‑1 View Pending Events menu item
5-1
Figure 5‑2 View Pending Events page
5-2
Figure 5‑3 Create Pending Event link
5-3
Figure 5‑4 Create Pending Event page
5-4
Figure 5‑5 Pending Event Details page
5-5
Figure 5‑6 Schedule Pending Event - Specific Dates and Times
5-7
Figure 5‑7 Schedule Pending Event - Recurring Schedule
5-8
Figure 5‑8 Schedules link
5-9
Figure 5‑9 View Schedules page
5-9
Figure 5‑10 Create Schedule
5-11
Figure 5‑11 Add Open Event Action
5-12
Figure 5‑12 Add Schedule - Actions List
5-12
Figure 5‑13 Edit Schedule
5-13
Figure 5‑14 Remove Schedule
5-14
Figure 5‑15 Execute Schedule Actions
5-14
Figure 5‑16 Execute Schedule Actions Status
5-15
Figure 5‑17 Execute Scheduled Actions Alert
5-15
Figure 5‑18 Resolve Execute Schedule Actions Alert - multiple actions
5-16
Figure 5‑19 Send Notification from Traffic Event
5-18
Figure 5‑20 Select Individuals for Notification
5-19
Figure 5‑21 Notifications in Traffic Event
5-21
Figure 5‑22 Notification Details
5-21
Figure 5‑23 Notification Link On Home Page
5-22
Figure 5‑24 Notification Status
5-22
Figure 5‑25 Send Notification Outside Traffic Event
5-23
Figure 5‑26 Add Device Plan
5-25
Figure 5‑27 Existing Add DMS Plan Item Form
5-26
Figure 5‑28 Manage Plans
5-27
Figure 5‑29 Add Plan to Traffic Event
5-28
Figure 5‑30 Communications Log
5-29
Figure 5‑31 Search Communications Log
5-30
Figure 5‑32 Traffic Event History Log
5-31
Figure 5‑33 Search Event History
5-31
Figure 5‑34 External Event Summary Page Link
5-32
Figure 5‑35 External Event Summary
5-32
Figure 5‑36 External Event Details Page
5-33
Figure 5‑37 Interesting External Events on Home Page
5-34
Figure 5‑38 External System Connection Status
5-34
Figure 5‑39. ActionExecutionClasses (Class Diagram)
5-35
Figure 5‑40. ActionExecutionGroup:constructor (Sequence Diagram)
5-38
Figure 5‑41. ActionExecutionGroup:executeSequentially (Sequence Diagram)
5-39
Figure 5‑42. OpenEventActionExecuter:execute (Sequence Diagram)
5-41
Figure 5‑43. AlertManagement (Class Diagram)
5-42
Figure 5‑44. AlertModule (Class Diagram)
5-46
Figure 5‑45. ProxyAlertClasses (Class Diagram)
5-52
Figure 5‑46. LogCommon (Class Diagram)
5-56
Figure 5‑47. CommLogModuleClassDiagram (Class Diagram)
5-58
Figure 5‑48. CommLogModule:addEntries (Sequence Diagram)
5-62
Figure 5‑49. CommLogModule:getEntries (Sequence Diagram)
5-63
Figure 5‑50. ActionManagement (Class Diagram)
5-64
Figure 5‑51. Common (Class Diagram)
5-65
Figure 5‑52. DataModelClasses (Class Diagram)
5-69
Figure 5‑53. MiscDataClasses (Class Diagram)
5-73
Figure 5‑54. data.alerts.classes (Class Diagram)
5-75
Figure 5‑55. chartlite.data.notification_classes (Class Diagram)
5-78
Figure 5‑56. chartlite.data.notification:discoverNotificationClasses (Sequence Diagram)
5-81
Figure 5‑57. chartlite.data.notification:updateNotificationRecords (Sequence Diagram)
5-82
Figure 5‑58. plans_data_classes (Class Diagram)
5-83
Figure 5‑59. chartlite.data.plans-data.PlanAttributeDatafilter:matchesFilter (Sequence Diagram)
5-85
Figure 5‑60. chartlite.data.plans-data.PlanAttributeDataFilter:matchesKeywordFilter (Sequence Diagram)
5-86
Figure 5‑61. chartlite.data.plans-data.WebPlan:getFilterableAttributes (Sequence Diagram)
5-87
Figure 5‑62. chartlite.data.plans-data.WebPlanItem:getFilterableAttributes (Sequence Diagram)
5-88
Figure 5‑63. GUIScheduleClasses (Class Diagram)
5-89
Figure 5‑64. chartlite.data.schedule:ScheduleDiscovery (Sequence Diagram)
5-94
Figure 5‑65. chartlite.data.schedule:WebScheduleConstructor (Sequence Diagram)
5-95
Figure 5‑66. chartlite.data.trafficevents.TrafficEventDynListClasses (Class Diagram)
5-96
Figure 5‑67. chartlite.data.trafficevents_classes (Class Diagram)
5-97
Figure 5‑68. chartlite.data.trafficevents_event_type_classes (Class Diagram)
5-99
Figure 5‑69. chartlite.data.trafficevents_misc_classes (Class Diagram)
5-101
Figure 5‑70. ServletBaseClasses (Class Diagram)
5-103
Figure 5‑71. ServletMiscClasses (Class Diagram)
5-105
Figure 5‑72. chartlite.servlet.UserLoginSessionImpl:getMRUTrafficEventNotificationGroups(Sequence Diagram)
5-106
Figure 5‑73. AlertsClasses (Class Diagram)
5-107
Figure 5‑74. chartlite.servlet.alerts:AlertReqHdlr.getAlertSound (Sequence Diagram)
5-109
Figure 5‑75. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlex (Sequence Diagram)
5-111
Figure 5‑76. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexReminder (Sequence Diagram)
5-112
Figure 5‑77. chartlite.servlet.alerts:resolveAlert (Sequence Diagram)
5-114
Figure 5‑78. chartlite.servlet.alerts:viewAlertDetailsFlex (Sequence Diagram)
5-115
Figure 5‑79. GUICommLogServletClasses (Class Diagram)
5-116
Figure 5‑80. chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:createDynList (Sequence Diagram)
5-118
Figure 5‑81. chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:getDynListSubjects (Sequence Diagram)
5-119
Figure 5‑82. chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:getDynListSubjects (Sequence Diagram)
5-120
Figure 5‑83. chartlite.servlet.CommLogReqHdlr:searchCommLog (Sequence Diagram)
5-121
Figure 5‑84. chartlite.servlet.CommLogReqHdlr:viewCommLog (Sequence Diagram)
5-122
Figure 5‑85. chartlite.servlet.CommLogReqHdlr:viewCommLogPage (Sequence Diagram)
5-123
Figure 5‑86. chartlite.servlet.CommLogReqHdlr: ViewCommLogFirstRequest (Sequence Diagram)
5-124
Figure 5‑87. chartlite.servlet.notification_classes (Class Diagram)
5-125
Figure 5‑88. chartlite.servlet.notification.dynlist.NotificationRecordDynListSupporter:createDynList (Sequence Diagram)
5-128
Figure 5‑89. chartlite.servlet.notification.dynlist.NotificationRecordDynListSupporter:getDynListSubjects (Sequence Diagram)
5-129
Figure 5‑90. NotificationReqHdlr:getIndividualsJSON (Sequence Diagram)
5-130
Figure 5‑91. NotificationReqHdlr:getSearchNotificationHistoryForm (Sequence Diagram)
5-131
Figure 5‑92. NotificationReqHdlr:getSendNotificationForm (Sequence Diagram)
5-132
Figure 5‑93. NotificationReqHdlr:searchNotificationHistory (Sequence Diagram)
5-133
Figure 5‑94. NotificationReqHdlr:sendNotification (Sequence Diagram)
5-134
Figure 5‑95. NotificationReqHdlr:viewNotificationDetails (Sequence Diagram)
5-135
Figure 5‑96. NotificationReqHdlr:viewNotificationHistory (Sequence Diagram)
5-136
Figure 5‑97. Chartlite.servlet.planmgmt.PlanReqHdlr (Class Diagram)
5-137
Figure 5‑98. charlite.servlet.PlanReqHdlr:processAddEditPlanReq (Sequence Diagram)
5-138
Figure 5‑99. chartlite.servlet.PlanReqHdlr:processAddDMSPlanItemsReq (Sequence Diagram)
5-139
Figure 5‑100. chartlite.servlet.PlanReqHdlr:processAddHARPlanItemsReq (Sequence Diagram)
5-140
Figure 5‑101. chartlite.servlet.PlanReqHdlr:processEditPlanPropertiesFormReq (Sequence Diagram)
5-141
Figure 5‑102. chartlite.servlet.PlanReqHdlr:processGetFilteredPlansJSON (Sequence Diagram)
5-142
Figure 5‑103. chartlite.servlet.PlanReqHdlr:processGetPlanItemsJSON (Sequence Diagram)
5-143
Figure 5‑104. chartlite.servlet.PlanReqHdlr:processSearchForPlanItemTargetsReq (Sequence Diagram)
5-144
Figure 5‑105. chartlite.servlet.PlanReqHdlr:processViewPlanDetailsReq (Sequence Diagram)
5-145
Figure 5‑106. chartlite.servlet.PlanReqHdlr:processViewPlanListReq (Sequence Diagram)
5-146
Figure 5‑107. GUIScheduleServletClasses (Class Diagram)
5-147
Figure 5‑108. servlet.schedules.ScheduleDynListSupporter:createDynList (Sequence Diagram)
5-154
Figure 5‑109. servlet.schedules.ScheduleDynListSupporter:getDynListSubjects (Sequence Diagram)
5-155
Figure 5‑110. servlet.schedules.ScheduleReqHdlr:getAddEditScheduleForm (Sequence Diagram)
5-157
Figure 5‑111. servlet.schedules:AddEditOpenEventAction (Sequence Diagram)
5-158
Figure 5‑112. servlet.schedules:AddEditSchedule (Sequence Diagram)
5-160
Figure 5‑113. servlet.schedules:CopySchedule (Sequence Diagram)
5-161
Figure 5‑114. servlet.schedules:ExecuteScheduledActions (Sequence Diagram)
5-163
Figure 5‑115. servlet.schedules:getAddEditOpenEventActionForm (Sequence Diagram)
5-165
Figure 5‑116. servlet.schedules:getExecuteScheduleActionsForm (Sequence Diagram)
5-167
Figure 5‑117. servlet.schedules:RemoveSchedule (Sequence Diagram)
5-168
Figure 5‑118. servlet.schedules:RemoveScheduleAction (Sequence Diagram)
5-169
Figure 5‑119. servlet.schedules:ScheduleTrafficEvent (Sequence Diagram)
5-171
Figure 5‑120. servlet.schedules:SpecifyScheduleAttributes (Sequence Diagram)
5-173
Figure 5‑121. servlet.schedules:ViewSchedule (Sequence Diagram)
5-174
Figure 5‑122. servlet.schedules:ViewSchedules (Sequence Diagram)
5-176
Figure 5‑123. ServletDynListClasses (Class Diagram)
5-177
Figure 5‑124. chartlite.servlet.dynlist.NavigatableDynList:getEntriesOnPage (Sequence Diagram)
5-179
Figure 5‑125. chartlite.servlet.dynlist.NavigatableDynListReqHdlrDelegate:viewDynListPage (Sequence Diagram)
5-180
Figure 5‑126. chartlite.servlet.trafficevents_add_copy_event_classes (Class Diagram)
5-181
Figure 5‑127. chartlite.servlet.trafficevents_classes (Class Diagram)
5-183
Figure 5‑128. AddTrafficEventReqHdlr:addTrafficEventXML2 (Sequence Diagram)
5-185
Figure 5‑129. AddTrafficEventReqHdlr:copyEventWithoutForm (Sequence Diagram)
5-186
Figure 5‑130. AddTrafficEventReqHdlr:createEventFromForm (Sequence Diagram)
5-187
Figure 5‑131. AddTrafficEventReqHdlr:createEventPrivate (Sequence Diagram)
5-189
Figure 5‑132. AddTrafficEventReqHdlr:submitCopyEventForm (Sequence Diagram)
5-190
Figure 5‑133. TrafficEventReqHdlr:deletePendingEvent (Sequence Diagram)
5-191
Figure 5‑134. TrafficEventReqHdlr:openPendingEvent (Sequence Diagram)
5-192
Figure 5‑135. TrafficEventReqHdlr:viewEventDetails (Sequence Diagram)
5-194
Figure 5‑136. TrafficEventUtility:closeAlertIfSpecified (Sequence Diagram)
5-195
Figure 5‑137. TrafficEventUtility:reportScheduleExecutionIfSpecified (Sequence Diagram)
5-196
Figure 5‑138. chartlite.servlet.trafficevents.ResponsePlanReqHdlr:selectPlanForResponseForm (Sequence Diagram)
5-197
Figure 5‑139. chartlite.servlet.trafficevents.TrafficEventReqHdlr:searchEventHistory (Sequence Diagram)
5-198
Figure 5‑140. chartlite.servlet.trafficevents.TrafficEventReqHdlr:viewEventHistory (Sequence Diagram)
5-199
Figure 5‑141. chartlite.servlet.trafficevents.TrafficEventReqHdlr:viewEventHistoryPage (Sequence Diagram)
5-200
Figure 5‑142. chartlite.util_classes (Class Diagram)
5-201
Figure 5‑143. DynamicListClasses (Class Diagram)
5-202
Figure 5‑144. NotificationManagement (Class Diagram)
5-205
Figure 5‑145. NotificationModule (Class Diagram)
5-208
Figure 5‑146. NotificationImpl:getGroups (Sequence Diagram)
5-211
Figure 5‑147. NotificationImpl:getNotificationHistroy (Sequence Diagram)
5-213
Figure 5‑148. NotificationImpl:sendNotificationMessage (Sequence Diagram)
5-214
Figure 5‑149. NotificationImpl:takeOffline (Sequence Diagram)
5-215
Figure 5‑150. NotificationModule:setNotificationOffline (Sequence Diagram)
5-216
Figure 5‑151. PlanManagement (Class Diagram)
5-217
Figure 5‑152. PlanModuleClasses (Class Diagram)
5-220
Figure 5‑153. PlanModule:AddPlan (Sequence Diagram)
5-223
Figure 5‑154. PlanModule:GetPlanFilterAttributes (Sequence Diagram)
5-224
Figure 5‑155. PlanModule:SetPlanFilterAttributes (Sequence Diagram)
5-225
Figure 5‑156. ScheduleManagement (Class Diagram)
5-226
Figure 5‑157. ScheduleModuleClasses (Class Diagram)
5-229
Figure 5‑158. ScheduleDB:insertSchedule (Sequence Diagram)
5-233
Figure 5‑159. ScheduleDB:setSchedule (Sequence Diagram)
5-234
Figure 5‑160. ScheduleDB:updateSchedule (Sequence Diagram)
5-235
Figure 5‑161. ScheduleFactoryImpl:activateTimedOutSchedules (Sequence Diagram)
5-236
Figure 5‑162. ScheduleFactoryImpl:createSchedule (Sequence Diagram)
5-238
Figure 5‑163. ScheduleFactoryImpl:removeSchedule (Sequence Diagram)
5-239
Figure 5‑164. ScheduleFactoryImpl:removeTimedOutSchedules (Sequence Diagram)
5-240
Figure 5‑165. ScheduleFactoryImpl:ScheduleFactoryImpl (Sequence Diagram)
5-242
Figure 5‑166. ScheduleModule:activateIfNecessary (Sequence Diagram)
5-243
Figure 5‑167. ScheduleModule:activateSchedule (Sequence Diagram)
5-244
Figure 5‑168. ScheduleModule:getNextRecurringActivationTime (Sequence Diagram)
5-246
Figure 5‑169. ScheduleModule:initialize (Sequence Diagram)
5-247
Figure 5‑170. ScheduleModule:initializeDepersistedSchedule (Sequence Diagram)
5-248
Figure 5‑171. ScheduleModule:removeIfNecessary (Sequence Diagram)
5-249
Figure 5‑172. ScheduleModule:removeSchedule (Sequence Diagram)
5-250
Figure 5‑173. ScheduleModule:scheduleExecuted (Sequence Diagram)
5-251
Figure 5‑174. ScheduleModule:scheduleImpl (Sequence Diagram)
5-252
Figure 5‑175. TrafficEventManagement (Class Diagram)
5-254
Figure 5‑176. TrafficEventManagement2 (Class Diagram)
5-260
Figure 5‑177. TrafficEventModule:CreateTrafficEventR3B2 (Sequence Diagram)
5-266
Figure 5‑178. TrafficEventModule:DeletePending (Sequence Diagram)
5-267
Figure 5‑180 TrafficEventModule:MonitorDuplicateEvents (Sequence Diagram)
5-268
Figure 5‑181. TrafficEventModule:OpenPending (Sequence Diagram)
5-269
Figure 5‑182. EventImportModuleClasses (Class Diagram)
5-270
Figure 5‑183. EventAtisImportAcquire (Class Diagram)
5-273
Figure 5‑184. EventAtisImportChartClasses (Class Diagram)
5-276
Figure 5‑185. EventAtisImportTranslationClasses (Class Diagram)
5-279
Figure 5‑186. EventImportAcquireTask:execute (Sequence Diagram)
5-281
Figure 5‑187. EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)
5-282
Figure 5‑188. EventImportRitisAcquire:connectIfNecessary (Sequence Diagram)
5-283
Figure 5‑189. EventImportRitisAcquirer:initialize (Sequence Diagram)
5-284
Figure 5‑190. EventImportRitisAcquirer:OnMessage (Sequence Diagram)
5-285
Figure 5‑191. ExternalInterfaceModule:createEventImportTask (Sequence Diagram)
5-286
Figure 5‑192. ExternalInterfaceModule:eventTranslationStep1Translate (Sequence Diagram)
5-287
Figure 5‑193. ExternalInterfaceModule:handleEITranslationTask (Sequence Diagram)
5-288
Figure 5‑194. ExternalInterfaceModule:handleExternalImport (Sequence Diagram)
5-289
Figure 5‑195. ExternalInterfaceModule:initializeEventImportModule (Sequence Diagram)
5-290
Figure 5‑196. ExternalInterfaceModule:restartEventImportModule (Sequence Diagram)
5-291
Figure 5‑197. ExternalInterfaceModule:shutdownEventImportModule (Sequence Diagram)
5-292
Figure 5‑198. ExternalIterfaceModule:fullRefresh (Sequence Diagram)
5-293

1 Introduction

1.1 Purpose

This document describes the design of the software for Release 3, Build 2 of the CHART system. This build provides:

· Pending Traffic Events. As a building block for the scheduler, R3B2 will introduce the concept of pending traffic events, which can be scheduled and can be opened without being scheduled.

· Event Scheduler. As a part of CHART R3B2 a generic scheduler will be implemented, which will provide the ability to schedule traffic events. The scheduling system will be built around a generic concept of “schedulable actions” so that additional types of schedulable actions can be included in future releases (possible future schedulable actions could include: putting a camera on a monitor, starting a tour on a monitor, blanking a monitor, moving a camera to a preset, etc.) The scheduling system will be flexible to allow a single schedulable action or multiple actions to be scheduled.

· Notification services. Provide paging/notification of other parties within the CHART application. This requirement is designed to meet the immediate need of reducing the number of systems that CHART operations need to use for notification. The use of the notification system will enable CHART operations to generate a notification from within an event or standalone.

· Device Plans advanced sort and searching. CHART R3B1 currently has over 300 plans but they are not arranged optimally. The naming conventions (usually TOC name, then location/roadway/condition) helps but the list is still too long to navigate quickly, there are numerous exceptions to the naming conventions, and sometimes the user at a TOC needs a SOC-based plan. This release will provide a sort and search capability, which will take into account the operating center, with an "all" selection for plans such as amber alerts, safety alerts, etc., classification by event type (e.g., "congestion"), and event location alias or county/region. The new sorting and searching capabilities include the ability to locate data based on:

· Filter attributes contained within the plan

· Creation time

· Enhanced Communications Log. Provide views into the communications/event history logs that filter in/out system generated messages, device messages (e.g., when did messages go up on DMSs or HARs), and operator generated messages.

· External Interface. This release imports traffic events from RITIS and creates a foundation for future interfaces to other systems. The primary purpose of this feature is to expose users to external events and get their feedback on future directions for closer integration with external incident management systems. The ability to view and sort external events is provided as well as an ability to associate external events with internal CHART events. An admistrative ability to close orphaned external events is provided. External events of particular interest can be marked so they appear on user’s home pages. A flexible connection status utility is being created so users can monitor this and future external connections. External events will not be sent to the public web site, cannot be merged with internal CHART events, and will not be flagged as duplicates of internal CHART events.
1.2 Objectives

The main objective of this detailed design document is to provide software developers with a framework in which to implement the requirements identified in the CHART R3B2 Requirements document. A matrix mapping requirements to the design is presented in Section 6.

1.3 Scope

This design is limited to Release 3, Build 2 (R3B2) of the CHART System. It addresses both the design of the server components of CHART and the Graphical User Interface (GUI) components of CHART. Since the CHART GUI is browser based, the GUI refers to both the user interface and the components actually executing on the web server. This design does not include designs for components implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams. Class diagrams were generated showing the high level objects that address the Use Cases. Sequence diagrams were generated to show how each piece of major functionality will be achieved. This process was iterative in nature – the creation of sequence diagrams sometimes caused re-engineering of the class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling Language (UML) Suite design tool. Within this tool, the design will be contained in the CHART project, CHART R3B2, Analysis phase and System Design phase.

1.6 Work Products

The final R3B2 design will consist of the following work products:

· Use Case diagrams that capture the requirements of the system

· UML Class diagrams, showing the software objects which allow the system to accommodate the uses of the system described in the Use Case diagrams

· UML Sequence diagrams showing how the classes interact to accomplish major functions of the system

2 Architecture

The sections below discuss specific elements of the architecture and software components that are created, changed, or used in R3B2.

2.1 Network/Hardware

CHART R3B2 will introduce a new interface for CHART – the Attention! NS COTS Notification tool. CHART will communicate via http with two servers hosting Attention! NS at the SOC and at one other additional CHART site. One Attention! NS server will be designated as prime and the other as backup. In general, only the prime server will be in used as long as it is functioning properly. Attention! NS itself will interface with an SMTP gateway that will be used for sending notifications for page and e-mail.

2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base architecture, with custom built software objects made available on the network to allow their data to be accessed via well defined CORBA interfaces. Communications to remote devices use the Field Management Server (FMS) architecture. This architecture will continue forward for Release R3B2. There will be no major changes to the CHART software architecture infrastructure.

2.2.1 COTS Products

CHART uses numerous COTS products for both run-time and development.

	Product Name
	Description

	Apache ActiveMQ
	CHART uses this to connect to RITIS JMS queues

	Apache Jakarta Ant
	CHART uses Apache Jakarta Ant 1.6.5 to build CHART applications and deployment jars.

	Apache Tomcat
	CHART uses Apache Tomcat 5.5.9 as the GUI web server.

	Attention! CC
	CHART uses Attention! CC Version 2.1 to provide notification services.

	Attention! CC API
	CHART uses Attention! CC API Version 2.1 to interface with Attention! CC.

	Attention! NS
	CHART uses Attention! NS Version 6.1 to provide notification services.

	Bison/Flex
	CHART uses Bison and Flex as part of the process of compiling binary macro files used for performing camera menu operations on Vicon Surveyor VFT cameras.

	CoreTec Decoder Control
	CHART uses a CoreTec supplied decoder control API for commanding CoreTec decoders.

	Dialogic API
	CHART uses the Dialogic API for sending and receiving Dual Tone Multi Frequency (DTMF) tones for HAR communications.

	Flex2 SDK
	The CHART GUI uses the Flex2 SDK, version 2.0.1, provides the Flex compiler, the standard Flex libraries, and examples for building Flex applications.

	GIF89 Encoder
	Utility classes that can create .gif files with optional animation. This utility is used for the creation of DMS True Display windows.

	JDOM
	CHART uses JDOM b7 (beta-7) dated 2001-07-07. JDOM provides a way to represent an XML document for easy and efficient reading, manipulation, and writing.

	JacORB
	CHART uses a compiled, patched version of JacORB 2.2.4. The JacORB source code, including the patched code, is kept in the CHART source repository.

	Java Run-Time (JRE)
	CHART uses Java 1.5.0_09.

	JavaService
	CHART uses JavaService to install the server side Java software components as Windows services.

	JAXEN
	CHART uses JAXEN 1.0-beta-8 dated 2002-01-09. The Jaxen project is a Java XPath Engine. Jaxen is a universal object model walker, capable of evaluating XPath expressions across multiple models.

	JoeSNMP
	CHART uses JoeSNMP version 0.2.6 dated 2001-11-11. JoeSNMP is a Java based implementation of the SNMP protocol. CHART uses for commanding iMPath MPEG-2 decoders and for communications with NTCIP DMSs.

	NSIS
	CHART uses the Nullsoft Scriptable Installation System (NSIS), version 2.20, as the server side installation package.

	Nuance Text To Speech
	For text-to-speech (TTS) conversion CHART uses a TTS engine that integrates with Microsoft Speech Application Programming Interface (MSSAPI), version 5.1. CHART uses Nuance Vocalizer 4.0 with Nuance SAPI 5.1 Integration for Nuance Vocalizer 4.0.

	Oracle
	CHART uses Oracle 10.1.0.5 as its database and uses the Oracle 10G JDBC libraries (ojdbc1.4.jar) for all database transactions.

	O’Reilly Servlet
	Provides classes that allow the CHART GUI to handle file uploads via multi-part form submission.

	Prototype Javascript Library
	The CHART GUI uses the Prototype Javascript library, version 1.5.1, a cross-browser compatible Javascript library provides many features (including easy Ajax support).

	SAXPath
	CHART uses SAXPath 1.0-beta-6 dated 2001-09-27. SAXPath is an event-based API for XPath parsers, that is, for parsers which parse XPath expressions.

	Velocity Template Engine
	Provides classes that CHART GUI uses in order to create dynamic web pages using velocity templates.

	Vicon V1500 API
	CHART uses a Vicon supplied API for commanding the ViconV1500 CPU to switch video on the Vicon V1500 switch

2.2.2 Deployment /Interface Compatibility

2.2.2.1 External Interfaces

The diagram below presents an overall view of CHART within the context of other external systems. The green boundaries represent devices that the CHART software communicates with directly. The major external interfaces include:

1. CHART Web Server – Receives information from the CHART system for publishing on the Web. This information includes incident reports, lane closure data, speed sensor data, DMS messages, and camera video.

2. CHART Map – The CHART Web Event Listener is used to receive CORBA Events from CHART relating to roadway conditions for display with the CHART Mapping application. The data includes incident reports, lane closure data, DMS messages, and speed sensor data. CHART also queries the mapping database to get counties, roads, and road intersection data.

3. Emergency Operations Reporting System (EORS) – Legacy system providing information on road closures and road status.

4. Media – Commercial and public broadcasters.

5. SCAN – SHA legacy system supplying weather sensor data.

6. CHART Reporting Tool – Generates reports from data on CHART databases.

7. University of Maryland Center for Advanced Transportation Technology (CATT) Lab as Regional Integrated Transportation Information System (RITIS) - Receives CORBA Events from CHART and provides SAE J2354 standard regional traffic events via a java messaging service connection.

8. Notification Recipients – Receive notification from CHART about significant events via e-mail or page/text.
[image: image1.jpg]Statewide HAR

SARHS) & DMS Network

Broadcast
Television

Speed Data

Baltimore Media
Washington Media

Reports from:

4 CHART & SHA Units
MSP and Local Police
Other Agencies
Travelers

Regional Web
Services:
Traffic Land Video

Input from:
EOC and SHA

Shop and District
personnel

CHART
Reporting
Tool

RWIS:

Weather Data

Snapshot Cameras Email Notifcations
Traffc Cameras

Roadway Surface Data Shapshot Camersi Text Notfications

DMS Messages
Interactive Mapping
Incident Reports
Lane Closures

Speed Sensor Data
Weather Station Data
Weather Service Data

Figure 2‑1 CHART and External Interfaces

2.2.2.2 Internal Interfaces

The architecture for the CHART system distributes complete system functionality to a number of districts throughout the State of Maryland. Each of these complete systems can provide full functionality for the devices connected to the system and objects created within that system (such as traffic events), and provides functionality for other district's systems that are available. Thus the absence of one district's server does not affect the ability of another district to use their own system or other systems that are available. Although the server deployment is spread across multiple sites, the user sees one large system, as CORBA is used to pull together objects served from the many deployment sites.

The CHART GUI is able to locate the software objects at all deployment sites through the use of the CORBA Trading Service. A CORBA Trading Service runs at each deployment site. Each CHART service that publishes CORBA objects offers the objects through its local CORBA Trading Service. The GUI provides a unified view of the system, even though the system is actually distributed over multiple deployment sites.

In addition to showing the software objects throughout the system on a single interface, it is also necessary to reflect the current state of the software objects as they are changed during real time operations. The CORBA Event Service is used to allow objects to push changes in their state to the GUI, other back end CHART services, the CHART Event Listener, or any other interested CORBA clients. Each deployment site has an instance of a CORBA Event Channel Factory, which is an extension of the CORBA Event Service that allows multiple event channels. Each CHART service whose objects are subject to real time changes will create one or more Event Channels in its local Event Channel Factory. Each event channel is earmarked for a specific class of events (such as DMS events). Each service that creates channels in the CORBA Event Channel Factory publishes the event channel in the CORBA Trading Service and then uses the channel to push events relating to object state, configuration updates, etc.

An interface that wishes to listen for events at a system wide level discovers all of the event channels via the CORBA Trading Service and registers itself as a consumer on each of the event channels. Using this scheme, an interface uses the Trading Service to discover all software objects and Event Channels regardless of their deployment site. The interface may then provide the user with a unified view of the system, both in the objects presented and the ability to show near real time updates of these objects. Since the nature of the system is dynamic, processes periodically rediscover new objects and event channels from known districts via the Trading Service.

Most CHART background services which communicate with physical devices deployed along Maryland highways do so via FMS servers. One or more CHART Communications Services run on each FMS in the system. The CHART background services requiring FMS services for this purpose are the DMS Service, HAR Service (which also serves SHAZAMs), and the TSS Service. The communications between these three services and the Communications Services are IIOP, over TCP/IP. Communications from the Communications Services out to the physical devices are accomplished by telephone (via either POTS or ISDN modems, or via Telephony DTMF communications) or by direct serial connection. Telephone service is usually provided via landline, although cellular service occasionally needs to be utilized.

The remaining CHART background service controlling physical field devices is the Video Service. Video communication is accomplished via TCP/IP. Communication to CoreTec decoders is accomplished via proprietary CoreTec protocol over TCP/IP. Communication to iMPath decoders is accomplished via SNMP over TCP/IP, with published MIBs. CHART does not directly command either the iMPath or the CoreTec encoders; they are used only as a pass-through to pass camera control commands and responses to/from the attached cameras. CHART’s communication with the encoders, then, is via TCP/IP with no proprietary protocol involved. Communications to the Vicon V1500 NTSC video switch is accomplished via a proprietary Vicon protocol over TCP/IP. Once video connections are thus established, video flows directly from encoder to decoder via MPEG2 or MPEG4 over TCP/IP, and/or through a V1500 analog video switch.

The following deployment diagrams show the deployment of CHART at a single district within the larger CHART system. The diagrams depict the various computers that are deployed at the site. Each computer shows the processes that are installed and running on it. The lines between the computers show the protocols that are used for communication between the various processes involved. The GUI deployment diagram shows that the web browser (Internet Explorer) on the operator workstation can send requests to the GUI web server machine using the standard HTTP or HTTPS protocols. These requests are handled by the Microsoft IIS web server process which uses the requested URL to determine that the request is intended for the CHART GUI servlet application. IIS forwards requests for CHART to the installed Apache Tomcat application which passes the request to the CHART GUI Servlet for processing. This servlet communicates with the processes on the CHART Server machine via the standard CORBA IIOP protocol which utilizes the TCP/IP protocol. Additionally this servlet communicates with the CHART Database server via the JDBC API which utilizes the TCP/IP protocol.
[image: image2.emf]HTTPS-JSON

CHART Application Server

See Server Deployment Diagram

for more details.

IIOP

Audio Recording Applet

GUI Flex2 Application

TCPIP-JDBC

TCPIP-JDBC

Microsoft IIS

CHART Application Server

HTTPS

HTTPS-XML

IIOP

Operator Workstation

Internet Explorer

Adobe Flash Player 9

Java 5 Plug In

Oracle RDBMS Service

CORBA Trading Service

TCPIP - JDBC

TCPIP-JDBC

CHART Services

CHART Database Server

Apache Tomcat

CORBA Event Service

CHART GUI Servlet

GUI Web Server

HTTPS-HTML

Figure 2‑2 CHART Internal Interfaces (GUI Deployment)

The server deployment diagram shows the services running on the CHART application server in more detail. New for R3B2 are the Notification Service and the Schedule Service. The CHART application server uses the standard CORBA IIOP protocol to communicate to the GUI web server to handle user requests and to update system state, and to the field management (FMS) server to communicate to DMS, HAR, SHAZAM, and TSS field devices. It also uses TCP/IP to control camera and monitor video devices. Finally, the CHART application server communicates with the CHART Mapping database to obtain roadway location information via the JDBC API which utilizes the TCP/IP protocol.
[image: image3.emf]TCPIP-JMSEventImportModuleTCPIP-JDBCIIOPSee GUI Deployment Diagramfor details.CORBA Trading ServiceUser Manager ServiceAlert ServiceMessage Utility ServiceSchedule ServiceSchedule ModuleDMS ServiceScheduleFactoryHAR ServiceScheduleTSS ServiceVideo ServiceWeb ServerTraffic Event ServiceEORS ServiceNew for R3B2..Location ServiceCORBA Event ServicesField Management ServerCommunications ServiceVideo Device[Cameras Monitors]EORS ServerEORS DBNotification ServiceCHART Mapping ServerMapping DBField Devices[DMSs HARs SHAZAMs TSSs]IIOPNotifcation ModuleCHART Mapping ServerOracle RDBMS ServiceNotification ManagerCHART Listener ServiceNotificationExternal Interface ServerFirewall

New for R3B2.TCPIPHTTPISDN POTSTelephonyvia SMTP gatewayIIOPIIOPHTTPIIOPIIOPvia SMTP gatewayvia Listener databaseTCPIP-JDBCExternal Interface ServiceNotification ServerCOTS Notification ToolEmail-Fax-Page ProvidersTCPIPRITISISDN POTSTelephony

Figure 2‑3 CHART Internal Interfaces (Server Deployment)

2.3 Security

The CHART System itself runs entirely behind the MDOT firewall. CHART R3B2 requires a new interface to the Attention! NS COTS Notification tool which will also reside behind the MDOT firewall. The Attention! NS Notification tool will in turn, be used to send e-mails to one of MDOT’s SMTP gateways.
CHART R3B2 introduces a new connection to the RITIS system developed by the University of Maryland. This connection requires the opening of a few specific ports in the MDOT firewall. This is permitted because the connection is initiated from within the MDOT network.

Since the CHART System runs entirely behind the MDOT firewall, user access to the CHART system via the GUI from the outside world must be specifically enabled for users to connect from specific external locations. Control of video cameras is ostensibly limited to users which can see camera images on a local monitor, which are limited in number and restricted to controlled locations within designated facilities.

The CHART browser interface can be configured to run with HTTP or HTTPS (Secure HTTP). The fielded production system is always configured to run with HTTPS. HTTPS provides an additional SSL or TLS encryption/authentication layer between HTTP and TCP, which protects data in transit between the client machine web browser and the web server machine. Additionally, the system runs with Microsoft’s Internet Information Services (IIS).

All users connecting to CHART are required to provide a user name and password before any CHART information is provided or any actions can be attempted. Invalid login attempts are logged to the CHART Operations Log (database table), a permanently archived log of system activity. Users with appropriate rights can see all users logged into the system and can force users off the system at any time, directly from the CHART GUI. Before editing the CHART dictionary, a particularly sensitive area, a logged on user is reauthenticated on the spot by requiring the user to provide a user name and password again.

When a legitimate CHART user logs in, he or she is granted certain functional rights, based on the user ID. These rights typically include, for instance, the ability to create, edit and close traffic events and create and execute response plan items in response to traffic events. Other rights allow direct interaction with CHART devices, such as the ability to put them offline, online, or into maintenance mode, and to issue maintenance mode commands. Video rights are very granular, so camera control rights can be issued with a very fine grain. Users cannot perform actions for which they do not have rights. Typically rather than graying out buttons, prohibited actions do not even appear on the user’s browser, so in most cases users may not even know what they are missing. There is a special “view-only” user configured which can see CHART status within the system but cannot perform any actions which would change system status in any way.

Rights can be assigned to users on an organization-by-organization level. For instance, a user may be able to issue maintenance commands on one organization’s DMSs, but not others. The rights are stored in an opaque access control token obtained during the login transaction. Users cannot see or modify this token, and generally are not aware of its existence. It is held by the web service on behalf of the user and is passed from the web service to the background services on all but the most benign service requests.
2.4 Data

CHART R3B2 will be tested with the Oracle database patches that are available and will be deployed in the field at the time of CHART R3B2 deployment. The database patches may possibly be applied in the field before CHART R3B2 deployment.

2.4.1 Data Storage

The CHART System stores most of its data in an Oracle database. However, some data is stored in flat files on the CHART servers. This section describes the various types of flat files used for CHART data storage and configuration information.

2.4.1.1 Service Registration Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB Event Service directories has a set of files used to install and uninstall the particular service into the Windows services list. When the service is thus installed it can be controlled through the Windows Services Applet. The files to install and uninstall are *ServiceReg.cmd and *RemoveService.cmd, where “*” is the name of the service, for instance, HAR or DMS, or HAREvent or DMSEvent (for JacORB event services running for specific CHART services) or Event (for the generic event service used by the GUI and FMS processes) or Trading for the JacOrb Trader. These are created at installation time. The registration file is run at installation time, and then these files are not used again. They are merely stored in the unlikely event that they may be needed to re-register the service.

2.4.1.2 Service Property Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB Event Service directories has one properties file used to set runtime parameters used to control execution of the service. These parameters may include location of other services, the database, timeout parameters, retry parameters, etc. These file is named *.props, where “*” is the full name of the service, for instance, HARService, or HAREventService or TradingService. These are created at installation time with default values appropriate for most installations. Installation procedures may call for the person performing the installation to edit some files to make specific updates immediately following installation. These are user-editable ASCII files and parameters are stored in a Module.ParameterName=value format, with thorough in-line documentation of each parameter, including defaults and reasonable acceptable ranges and meanings where necessary. Typically only software engineers may occasionally change certain runtime parameters to fine tune performance characteristics.

2.4.1.3 GUI Property Files

The CHART GUI has two properties files used to specify runtime parameters. These parameters include location of other services, the database, timeout parameters, retry parameters, etc. The primarily file is named MainServlet.props. Additional parameters are stored in a velocity.props file. These files are stored in the chartlite directory under the WebApps directory in the Apache Tomcat installation area. These are created at installation time with default values appropriate for most installations. Installation procedures typically call for the person performing the installation to edit some files to make specific updates immediately following installation. These are user-editable ASCII files and parameters are stored in a Module.ParameterName=value format, with thorough in-line documentation of each parameter, including defaults and reasonable acceptable ranges and meanings where necessary. Typically only software engineers may occasionally change certain runtime parameters to fine tune performance characteristics.

2.4.1.4 Arbitration Queue Storage Files

Each CHART DMS and HAR contains an Arbitration Queue which is used to store and manage the messages requested to be on the online device as part of a response to ongoing traffic events. This data is stored in a file in a directory called MessageQueuePersist/, which is a subdirectory of the DMSService and HARService directories. These are binary files, and are not user-editable or user-viewable from Windows. The files are named by the 32-digit hexadecimal CHART ID plus the extension “.per”. Arbitration Queues are not generally maintained from one version of CHART to the next. Whenever the Java version changes, they cannot be maintained, as the old files will not be readable using the new version of Java.

2.4.1.5 Device Logs

DMSs, TSSs, and HARs have a capability to store communications transactions between CHART software and the physical devices over the telephone lines. This data can be used for debugging communications issues or for validating successful communications operations. The device logs can be toggled on or off by editing device properties from the appropriate device details screens. Typically all device communications logging is enabled for all devices. These logs are automatically deleted by the system after a set period of time, so they do not accumulate infinitely. They are stored in the DeviceLogs/ or DebugLogs/ subdirectories within the service install directory, and are named by device name and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel.

2.4.1.6 Traffic Sensor Raw Data Logs

TSSs are polled periodically (typically every five minutes) for traffic volume, speed, and occupancy data. The statistics gathered are stored in data files in the TSSService/RawData/ directory. From here these files are permanently archived for historical purposes. These files are stored in a human-readable, comma-delimited, ASCII format, although they are not designed for convenient routine interpretation directly by users.

2.4.1.7 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity undertaken by the services. These logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the service’s properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel.

2.4.1.8 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by the services. Most messages, including most errors, are captured by the CHART software and written to the process logs, but certain messages (typically produced by the Java Virtual Machine itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad installation; once the system is up and running, errors rarely appear in these error logs. Debugging information from the JacORB COTS, which is not usually indicative of errors, can routinely be found in these error logs, as well. These log files can be reviewed by software engineering personnel to diagnose an installation problem or other type of problem. These logs are automatically deleted by the system after a set period of time defined by the service's properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus an ".err" extension. These logs are typically read only by software engineering personnel.

2.4.1.9 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file, used to provide a historical record of activity undertaken by the process. These GUI process logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the GUI service’s properties file, so they do not accumulate infinitely. These files are stored in the chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat installation area. They are named by the service name (“chartlite”) and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel. Additional log files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache Tomcat installation area.

2.4.1.10 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named PortConfig.xml, upon startup, which indicates which ports are to be used by the service and how they are to be initialized. A Port Configuration Utility is provided which allows for addition, removal of ports and editing of initialization parameters. As indicated by the extension, these files are in XML format. This means these files are hand-editable, although the Port Configuration Utility allows for safer, more controlled editing. The Port Configuration files are typically modified only by software engineers or telecommunications engineers.

2.4.2 Database Design

The CHART database design is described below. The design is based on the CHART Business Area Architecture, and the CHART System Requirements.

The database design consists of these major areas:

· User/system management

· Device configuration

· Device status

· Traffic event response planning

· Events and logging

· Alerts
· Notification

· Schedules
· System parameters

· Replication

· Archiving

All device configuration data is maintained by the CHART database and is supplied to the FMS as part of a service request. However, configuration data for devices related to video distribution is not supplied to the FMS, since CCTV camera communications do not use the FMS.

2.4.2.1 User/System Management

The user/system management entities consist of the complete suite of information to tie together the users, roles, organizations, and functional rights with the center's identification. The user/system management entities are considered static data in the sense that the majority of the data will be pre-loaded either through a GUI or via SQL loads.

2.4.2.2 Device Configuration

The DMS, HAR, SHAZAM, TSS, Camera, Monitor, and other CCTV video entities include data that define the configuration of the resources for devices. Each device or detector is associated with an organization via a foreign key. The organization is responsible for all devices and for each model type to which it is related.

All of the configuration data is considered static data. It is generally changeable, but changes infrequently.

2.4.2.3 Device Status

The DMS, HAR, SHAZAM, TSS, Camera, and Monitor entities include data that define the status or state of the devices. Some status information (e.g. last poll time, last polled detector speed data) changes very frequently. Other status information (e.g., the message on a DMS) changes less frequently.

2.4.2.4 Traffic Event Response Planning

The planning entity consists of all of the data necessary for an operator to execute a response plan from within an open traffic event. Response plans include preselected HAR and DMS devices with messages related to a well known event such as recurring congestion at a particular location.

This data is considered to be fairly static, although libraries and plans are easily updated. These data set up the plan scenario for a given event. It is used manually by operators to refine the plan or create their own.

The dictionary entity data assists the operator by checking spelling and checking for banned words when creating messages for the message library, for DMS messages, and for HAR text message clips, and by doing pronunciation substitution prior to text to speech for HAR text message clips.
2.4.2.4.1 Events and Logging

The events entity includes all informational data related to traffic incidents. It also includes any devices that are part of the response to an event, such as DMSs and HARs. Also included are various log data that are described in more detail below.

The logs that are maintained are listed below:

· Communications Log

· Event Log

· Operations Log

The Communications Log entity documents operator communications, and may or may not be tied to a specific traffic event. The event log contains operator and system generated entries specific to actions associated with a particular traffic event. The Operations Log entity stores all system generated events, including device usage and component failures.

2.4.2.5 Alerts

The alerts entity includes all informational data related to alerts. Alerts are dynamic data. Most alerts are created by the system automatically, although manually generated generic alerts are also supported. Alert status and history data can be updated frequently. All alert data is archived.

2.4.2.6 Notification

The notification entity includes all informational data related to notifications. Notifications are dynamic data. Notification status data are updated frequently.

2.4.2.7 Schedules

The schedules entity includes all informational data related to schedules. Schedules are fixed data. Users add schedules to the system and delete them when they are done. Schedules do not have dynamic status or history data.

2.4.2.8 System Parameters

The System Profile parameters are used for general CHART system operations. Examples of system parameters include:

· Days to purge operation log

· Which event types may be combined

· Which event types are comparable for event location duplication

· HAR date stamp format

· Alert system configuration parameters

· General GUI parameters

2.4.2.9 Replication

The database will provide replication of all entities required for a CHART server site to run independent of any other CHART server site, as might occur with a network outage between sites. This includes data related to CHART GUI (profile, folders), user management, and dictionary data. The data related to logging and resources is replicated as well.

Device configuration data is not replicated since each device is homed to only one server. Other CHART servers access that device configuration through the appropriate CORBA Trading Service. Similarly, traffic event information, alerts information, notification information, and schedule information are homed to only one server and therefore not replicated.

2.4.2.10 Archiving

The CHART Archive database stores data from the CHART operational system as part of a permanent archive. The CHART Archive database design is a copy of the CHART operational system for those tables containing system, alert, and event log information. In addition, the CHART Archive database stores detector data. This data is stored as time annotated averages at selected frequencies. For R3B2, archiving will be updated to include notification data.
3 Key Design Concepts

3.1 Pending Traffic Events

As a building block for the scheduler, R3B2 introduces the concept of pending traffic events, which can be scheduled and can be opened directly, without being scheduled. Pending Traffic Events are not “real” in the sense that they are not “open” or “closed”, they will not be flagged as duplicates of “real” open events, they are never archived, and they will not show up on the CHARTWeb mapping application or on the public web site. Pending Traffic Events can be opened, in which case they become “real”, or they can be copied and opening, thus allowing the pending event to be retained in the system as a template for future instantiations of the same sort of event.
3.2 Event Scheduler

CHART R3B2 will provide administrators with the capability to create and manage schedules. A schedule is a group of zero or more “actions” which can be scheduled to be activated at some time(s) in the future. The following are key terms used throughout the design.

Action – A schedulable task which can be put on a schedule. In R3B2 the only type of action which can be scheduled is an “Open Event” action.

Activation – A schedule is activated when its next scheduled activation time arrives. For R3B2, Activation of a schedule causes an Execute Scheduled Actions Alert to be sent to the operations center configured in the schedule. See Execute Schedule Alerts Alert to see resolution details for that alert.

Activation time – The times that a schedule will activate. Activation times can be specified by listing specific dates and times (such as for an Orioles schedule) or by recurring days of the week within a time period (such as for planned roadwork), possibly of undefined length (such as for recurring congestion).

Execution (of scheduled actions) – This refers to execution of actions defined in a schedule. Users can perform execution of schedule actions via two paths: 1) by responding to an alert (or alerts) generated by a schedule as the schedule activates (i.e., when the scheduled time for the schedule arrives); or 2) by selecting a schedule and choosing to run it immediately (instead of or in addition to its next scheduled activation time). In this latter case, the schedule actions can be executed without the schedule activating. See Execute Scheduled Actions Alert. At the time of execution the user has the option of suppressing the next scheduled activation of the schedule if an activation is scheduled to occur within N minutes of the execution where N = configurable system wide activation suppression time.

Execute Scheduled Actions Alert – An alert which contains all actions associated with a particular schedule. This may be zero, one, or more scheduled actions. If the schedule contains more than one action, the Resolve function for this type of alert takes the user to an Execute Schedule Actions page where the user can select/deselect actions to be performed and then execute them en masse. If the schedule contains one action, the Resolve function will take the user directly to a page more closely associated with the action. (For R3B2, this will always be a pending event details page.) If the schedule contains zero actions, the Resolve function will take the user to the alert details page, from which the explanatory schedule description text can be read and the alert can be closed.

At startup the Scheduler will take into account scheduled activations that were missed while the system was down. A configurable system wide parameter will control how far back the system will look for missed activations. Any missed activations for a schedule will cause the schedule to be activated at startup.

The system will automatically remove schedules that have not been used in the past N days where N = configurable system wide schedule removal time. The term “used” means that the schedule has been activated, executed or modified.

Functional rights associated with schedules will include:

· Manage Schedule (creating, editing, deleting schedules)

· View Schedules

· Execute Schedules
3.3 Notification Services

The CHART R3B2 notification service provides three major functions: send notification, view notification history and manage contact groups/individuals. CHART will provide the send and view notification history functionality. Management of contact groups/individuals will be done using the Attention! NS COTS notification tool.

Send Notification:

CHART R3B2 provides users with the capability to issue (send) notifications. A notification is important information sent to an individual person or a group of people. Users with the appropriate rights can send notifications using the GUI. These notifications can be created in stand alone mode or as part of a traffic event. When creating the notification the user provides a text message, possibly using the available shortcuts, and selects recipients. The recipients consist of individuals and/or groups that have been retrieved from Attention! NS and cached by the GUI.
The CHART R3B2 notification service will take the notification requests from the CHART GUI and send them to Attention! NS, using the Attention!CC API, where delivery will be processed. For R3B2, Attention! NS will be configured to send all notifications via email – either directed to a text message processing device (pager or phone), or an actual email account.

Periodically the notification service will poll Attention! NS to get the status of all active notifications. The result of this poll will be stored in the notification history table in the CHART database. Updates for each notification will be sent to the GUI until all recipients have received the notification, Attention! NS is no longer providing updates, or until a configured timeout is reached.
View Notification History:
CHART users will have the ability to view notification histories for all online notifications. The users will be able to browse notification statuses either page by page or with direct page access. Status information will include the user receipt status to whatever degree is reasonably available through the Attention! NS tool.
The CHART notification service will continually poll Attention! NS in order to get the status of individual recipients. As the status of individuals change (to indicate whether the message was received), the GUI will be updated to reflect that change.
Notifications that have been active longer than a system prescribed time will be taken offline. Those notifications that are too old are marked as offline and will no longer be visible in the CHART system.

Manage Contract Groups and Individuals
CHART R3B2 will provide administrators the ability to manage groups and individual contacts entirely through the Attention! CC user interface. Individuals can be members of zero or more groups. Each individual will have a profile which has information about how notifications will be routed to that individual.

Functional rights associated with notifications will include:

· Send Notification

· View Notifications
3.4 Device Plans, Advanced Sort and Searching

CHART R3B1 will provide improvements regarding the management and use of device plans. CHART currently has over 300 plans but they are not arranged optimally. There is a naming convention (usually TOC name, then location/roadway/condition), but it is not used consistently. The list is still too long to navigate quickly, and sometimes a user at one operating center needs a plan named with a different operating center's name.

CHART R3B2 will enhance the user's ability to manage and select plans, by providing "filter attributes" by which plans can be classified. These filter attributes will include: event type, operating center, county or region, location aliases, plus any other user-defined keywords.

Any or all of these attributes can be used to help classify a plan. The event type attribute means if the user is selecting a plan for, say, a congestion event, only plans tagged as congestion event plans will appear in their selection list (by default -- users can always choose to ignore any or all filter attributes, to widen the list of plans they have to select from).

Multiple values of a given filter attribute may be specified. If multiple operating centers may occasionally use a plan, all those operating centers can be specified as filter attributes for that plan, so that users at any of those operating centers will see those plans in their selection lists (provided all other relevant filter attributes also match), and users at all the other operating centers will NOT see those plans (unless they choose to ignore the operating center filter attribute).
The keyword attribute allows for specification of user-defined attributes, for instance, "summer" for special event plans which take place in the summer, or "winter" for weather events specifically relating to winter weather, even though the words "summer" or "winter" might not appear elsewhere in the plan name or message text. Textual searches beyond keywords will also be supported. Users can search for text in the plan name, in the message text going to the devices, or in the device names themselves.

Filter attributes can be left unspecified. For instance, if a particular plan, such as a weather related plan, may be used for traffic events for any county or region in the state, no county/region filter needs to be specified for that plan (specifying no county/region attributes means the same as specifying ALL counties and regions).

When R3B2 is initially deployed, no filter attributes will be specified for any plans, so the system will initially operate the same as in R3B1 (with respect to the number of plans presented in selection lists). Senior staff can then begin classifying the plans in order to gradually pare down the lists as desired in orderly fashion.
3.5 Enhanced Communications/Event Log

CHART R3B2 will provide views into the communications/event history logs that filter in/out system generated messages, and operator generated messages. The event history log messages may also filter in/out device messages (e.g., when did messages go up on DMSs or HARs).
The new log viewing capabilities include the ability to display data based on:

· The new Filter attributes: operator generated messages, user generated messages, and device generated messages. These attributes will automatically be applied by the system when the messages are generated in CHART. The messages will be stored with their attributes on the CHART database.
· A new capability to jump to a specific page and to control the number of entries per page.
· The search capability will be extended to also include the message filter attributes.

3.6 External Interface to RITIS
For CHART R3B2, an external interface to RITIS is introduced. The transport layer is RITIS-specific using Apache’s ActiveMQ implementation of the Java Messaging Service (JMS). The data layer implements the J2354 standard with a few RITIS extensions to the standard.
Views
Users have three views of external events for R3B2:

1. View External Events Page: All open external events will show on a new page similar to the current "View Open Events" page except it will also have an 'interesting' column indicating if it should appear in the new External Event tab on the Home Page of all users. It will also have a column that shows the originating agency for the event. Users have the option of setting or clearing the 'interesting' marker, and choosing to view closed external events.
2. Home Page: A new tab will be created on the Home Page to hold external events identified as 'interesting.' The fields for this tab are event type, name, location, county/state, and a lane closure graphic (if applicable).
3. External Event Details: From either of the previous views, a user can bring up an external event details page which is similar to that of a normal CHART event. The primary differences are an indication that the event is external and therefore cannot be modified, and if the event has been marked as 'interesting.' Sections that do not apply to an external event, such as the response plan and participants are not shown.
Connection Status
The status of the RITIS connection will display on the View External Events Page. By default, the status will only be shown when the connection is known to be failed, and the list of external events will be cleared if the connection is failed for a specified period of time. An administrator will be able to control this behavior, and has the option of making the status display at all times (instead of just when failed) and can control when the event list is cleared (if at all) in the case of a failed connection.

The connection status is also shown on the event details page for an external event if the connection which supplied the event is failed. This display can also be made to display at all times, even when a failure does not exist.

Operation Centers
A new OpCenter will be created in R3B2 to be the default controlling OpCenter for all external events. External events never generate Unhandled Resource Alerts so there is no problem if no one is logged into this new OpCenter. Future releases may provide for OpCenters to automatically be created as new agencies are found in the external data stream however this is not recommended until the data stream can be analyzed.
Modification
Instead of being able to modify external events created by other agencies, CHART users will only be able to associate CHART events to external events.
The only control CHART administrators have over an external event is the ability to close it (for example if it is stale because the RITIS connection was lost). See External Event Closure below.
Persistence
To ensure continuity between CHART restarts, the list of external events is persisted in the CHART database. After restart, the external events list will be refreshed once the RITIS connection is regained, possibly closing some of the persisted external events.
Filtering
Because users have not had a chance to analyze the external events, the initial filtering of external events is limited to rejecting badly formed external traffic events, rejecting external traffic events that have no meaning in CHART (e.g. parking events), and ensuring CHART does not receive its own events back.

External Event Closure
There are two ways external events are closed in the CHART system. The normal way is for the external owning agency to close the event; however this assumes the external event listener, RITIS, and the external agency are all functioning normally. When this is not the case and an external event is orphaned, CHART administrators will be able to close them manually.

CHART does not have control over how external agencies manage their traffic events so, unlike a CHART event; it is possible for a closed external event to be re-opened. In this case, if the closed external event has not yet been archived, it will be re-opened within CHART. If the closed external event has already been archived out of CHART, a new external event will be created with no releationship to the previous external event.

Closed external events are aged out of the system and archived just like normal internal events. In this context, ‘closed’ only means from the CHART perspective – the external event may or may not still exist from the perspective of other agencies.

Archiving of External Events
External events will be archived for offline analysis along with internal CHART events, and will be permanently flagged as external events in the archive.

3.7 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are trapped by the GUI are reported immediately back to the user. The GUI will also report communications problems with the server back to the user. The server may also trap user errors and those messages will be written to a server log file and returned back to the GUI for display to the user. Additionally, server errors due to network errors or internal server problems will be written to log files and returned back to the GUI.

3.8 Packaging

This software design is broken into packages of related classes. The table below shows each of the CHART packages along with a description of each. There is a new Scheduler Module and a new Notification Module as part of CHART R3B2.
Table 1 Package Descriptions

	Package Name
	Package Description

	ActionUtility
	This package contains code used by the GUI to invoke actions from alerts generated by the Schedule Module. This package is separate from the Schedule Module itself because it will be used by the GUI in R3B2, but may be used by the Schedule Module itself in future releases. This is new for R3B2.

	AlertModule
	This package contains an installable service application module that is responsible for handling Alerts in CHART. This module will change for R3B2.

	AudioClipModule
	This package contains classes used during the creation and storage of HAR audio clips.

	AudioCommon
	This contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART AudioClipModule and other applications such as the CHART GUI.

	Camera Control Module
	This package contains an installable service application module that serves the Camera Factory, Camera and related objects as specified in the system interfaces.

	chartlite
	This package contains all of the classes that comprise the CHART GUI.

	CHART2Service
	This package contains a class that serves as a generic service application.

	CommandProcessorModule
	This package contains an installable service application module that serves the CommandProcessorFactory, CommandProcessor and related objects as specified in the system interfaces.

	CommLogModule
	This package contains classes that are used to write the CommunicationsLog.

	CORBAUtilities
	This package contains classes included in the third party ORB product used for implementation.

	DataModel
	This package contains classes and methods that allow for storage, efficient lookup, and updating of object data.

	DeviceManagement
	This package contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART ArbitrationQueue and other applications such as the CHART GUI.

	DeviceUtility
	This package contains various utility classes used by CHART devices.

	DictionaryManagement
	This package contains the CORBA interfaces, structs, enums, and constants used to define the interface between the CHART Dictionary and other applications such as the CHART GUI.

	DictionaryModule
	This package contains an installable service application module that serves Dictionary and related objects as specified in the system interfaces. This will change for R3B2.

	DMSControl
	This package serves the DMS Configuration and Status Factory, DMS Configuration and Status and related objects as specified in the system interfaces.

	DMSControlModule
	This package contains an installable service application module that serves the DMS Factory, DMS and related objects as specified in the system interfaces.

	DMSProtocols
	This package contains classes that encapsulate the functionality used to communicate with the various models of DMSs

	DMSUtility
	This package contains DMS related utility classes used by the server.

	ExternalInterfaceModule
	This package implements connections to external systems, initially RITIS.

	EORS
	This package contains classes related to EORS.

	EORSModule
	This package contains an installable service application module that serves EORS and related objects as specified in the system interfaces.

	FieldCommunicationsModule
	This package contains an installable service application module that serves Port manager and related objects used to provide access to communications ports on the machine where this module is run.

	HAR Control
	This package contains HAR utility and other HAR related classes.

	HARControlModule
	This package contains an installable service application module that serves the HAR Factory, HAR and related objects as specified in the system interfaces.

	HARProtocols
	This package contains classes that encapsulate the functionality used to communicate with the various models of HARs.

	LogCommon
	This package contains objects related to the commLog.

	MessageLibaryModule
	This package contains an installable service application module that serves the MessageLibrary Factory, MessageLibrary and related objects as specified in the system interfaces.

	MonitorControlModule
	This package contains an installable service application module that serves the Monitor Factory, Monitor and related objects as specified in the system interfaces.

	NativeUtility
	This package contains utility classes used for calling C++ code.

	Notification Module
	This package contains an installable service application module that provides notification services for CHART. This is new for R3B2.

	PlanModule
	This package contains an installable service application module that serves the Plan Factory, Plan and related objects as specified in the system interfaces.

	ResourcesModule
	This package contains an installable service application module that serves the OperationsCenter Factory, OperationsCenter and related objects as specified in the system interfaces.

	RoadwayLocationLookupModule
	This package contains an installable service application module that provides interfaces for querying the location data contained on the CHART Mapping database.

	RouterControlModule
	This package contains an installable service application module that serves the Router Factory, Router and related objects as specified in the system interfaces.

	ScheduleModule
	This package contains an installable service application module that serves the Schedule Factory and Schedule objects as specified in the system interfaces. This is new for R3B2.

	SHAZAMControlModule
	This package contains an installable service application module that serves the SHAZAM Factory, SHAZAM and related objects as specified in the system interfaces.

	SHAZAMProtocols
	This package contains classes needed for communication to a specific model SHAZAM.

	SHAZAMUtility
	This package contains SHAZAM related utility.

	TrafficEventMangement
	This package contains classes related to TrafficEvent objects.

	TrafficEventModule
	This package contains an installable service application module that serves the TrafficEvent Factory, TrafficEvent and related objects as specified in the system interfaces. This module will change for R3B2.

	TSSMangementModule
	This package contains an installable service application module that serves the RTMS Factory, RTMS and related objects as specified in the system interfaces.

	TSSUtility
	This package contains TSS related utility classes.

	TTSControlModule
	This package contains an installable service application module that is used to run the TTS server.

	Utility
	This package contains various utility classes used throughout CHART.

	VideoSwitchControlModule
	This package contains an installable service application module that serves the VideoSwitch Factory, VideoSwitch and related objects as specified in the system interfaces.

	VideoUtility
	This package contains Video related utility classes.

3.9 Assumptions and Constraints

1. Notifications will be sent through the Attention! NS COTS tool. All notifications will be made by e-mail, thereby limiting the type of recipient response data that will be available to CHART. The exact details of what type of response data can be received are not known at this time.
2. Notifications will not be sent via fax in R3B2.
3. Old (Pre-R3B2) Comm Log data, and traffic event log data will not be filterable via the GUI. It will not be possible to programmatically attach the correct attributes (i.e., Device, User, System) to the existing data.
4 Use Cases

The use case diagrams depict new functionality for new CHART R3B2 features.

4.1 High Level

4.1.1 High Level Use Cases for CHART R3B2 (Use Case Diagram)

This diagram shows the high level uses of the system that are new for R3B2 or will be modified for R3B2. The new functionality depicted includes Manage Notifications, Manage Schedules, Search/Filter CommLog, and the three new administrative functions relating to schedules that are shown.
[image: image4.emf]Manage Traffic Events

Operator

Manage Notifications

View Comm Log

Manage Alerts

Manage Plans

Administrator

Filter Comm Log

Manage Schedules

Search Comm Log

View Op Center Report

Administer System

Configure Relative

Schedule Removal Time

Configure Schedule

Activation Suppression

Time

Configure Schedule

Missed Activation

Grace Period.

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

Figure 4‑1 High Level Use Cases for R3B2 (Use Case Diagram)
4.1.1.1 Administer System (Use Case)

An administrator (operator with the correct functional rights) may perform administrative functions including configuring devices, configuring alerts, and managing dictionaries.

4.1.1.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.1.1.3 Configure Relative Schedule Removal Time (Use Case)

For R3B2 an administrator will be able to configure a system-wide relative schedule removal time used to control the automatic removal of obsolete schedules.

4.1.1.4 Configure Schedule Activation Suppression Time (Use Case)

For R3B2 an administrator will be able to configure a system-wide Schedule Activation Suppression Time parameter. At execution time, the user executing the schedule may suppress the next scheduled activation of the schedule if it occurs within a specified time window after the execution. This parameter defines that time window in minutes.

4.1.1.5 Configure Schedule Missed Activation Grace Period. (Use Case)

For R3B2 an administrator will be able to configure a system-wide Schedule Missed Activation Grace Period parameter. This parameter is the time in minutes that the system will look back at startup to look for any activations that were missed while the system was down. The system will activate these schedules when the system starts up.

4.1.1.6 Filter Comm Log (Use Case)

While viewing the comm log, a user can apply filters to show or hide user generated and/or system generated entries. This is a new feature for R3B2.

4.1.1.7 Manage Alerts (Use Case)

A user with proper functional rights can view and respond to alerts generated by the system. Details are shown in the Manage Alerts use case diagram.

4.1.1.8 Manage Notifications (Use Case)

An operator with the correct functional rights can manage notifications. This is new for R3B2. Details are shown on the Manage Notifications use case diagram.

4.1.1.9 Manage Plans (Use Case)

An operator with the correct functional rights may manage plans.

4.1.1.10 Manage Schedules (Use Case)

An operator with correct functional rights can manage schedules. This is a new feature for R3B2. Details can be found on the Manage Schedules use case diagram.

4.1.1.11 Manage Traffic Events (Use Case)

This diagram models the actions that an operator may take that relate to traffic events. This includes responding to traffic events using field devices.

4.1.1.12 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.1.1.13 Search Comm Log (Use Case)

The user will be able to search the Comm Log. The existing functionality will be enhanced in R3B2 to allow the user to include user messages and/or system-generated messages.

4.1.1.14 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.1.1.15 View Comm Log (Use Case)

A user with the correct functional rights can view the communications log. R3B2 includes changes to enhance the usability of this feature. This includes better navigation options and the ability for the user to control the number of log entries shown on a viewable page.

4.1.1.16 View Op Center Report (Use Case)

The user will be able to view the Operations Center Report. For R3B2 a section will be added to the report to show scheduled traffic events for which the user's center will be alerted in the next 8 hour (configurable) period.

4.2 Alerts

4.2.1 R3B2_ManageAlerts (Use Case Diagram)

A user with sufficient privileges may manage alerts including controlling and viewing alerts.

[image: image5.emf]ViewExecute Scheduled ActionsAlert DetailsConfirm Unique Alert View AlertsView Alert DetailsOperatorAccept AlertEach of the bubbles on this diagram will need to support one new alert type: - Execute Scheduled Actions Alert Unaccept AlertDelay AlertComment On Alert

Undelay AlertClose AlertManually Escalate AlertResolve AlertCreate Execute Scheduled Actions Alert Create Alert Escalate Alert System «extend»«extend» «include» «include»

Figure 4‑2. R3B2_ManageAlerts (Use Case Diagram
4.2.1.1 Accept Alert (Use Case)

A user with sufficient privileges may accept an alert. Accepting an alert implies the user's AMG will handle the alert to closure. Accepting an alert stops any Escalation or Delay Timer, if running. To ensure alerts do not get accepted and forgotten, Accepting an alert starts the Accept timer for when the system should automatically revert the alert to the New state (See Configure Alert Timeouts). A typical duration of the Accept timer is expected to be less than a typical duration of the Delay timer.

4.2.1.2 Close Alert (Use Case)

A user with sufficient privileges may close an alert in the New, Accepted, or Delayed states. Closing an alert stops any Escalation, Delay, or Accept Timer and starts an Archive Timer. The alert remains visible to privileged viewers for the duration of the Archive Timer. After the Archive Timer expires the alert is removed from being seen by operators and only exists in the database archives.

4.2.1.3 Comment On Alert (Use Case)

A user with proper functional rights can add a comment to an alert. Previous comments cannot be changed or removed, nor can the text used to create the alert be changed, but any appropriate comment can be attached to the alert. The comment will be time stamped, attributed to the user, stored in the Alert History in chronological order with other history entries.

4.2.1.4 Confirm Unique Alert (Use Case)

The system ensures duplicate non-closed alerts are not seen by the users. A duplicate alert is defined as two alerts with the same alert type and the same discriminator based on the alert type. For R3B1 the alert discriminators are as follows: EventStillOpenAlert: same event DuplicateEventAlert: same event UnhandledResourceAlert: same resource ManualAlert: same alert description DeviceFailureAlert: same device

4.2.1.5 Create Alert (Use Case)

The system will create an alert when necessary. For R3B2, support will be added for the Open Scheduled Event and Execute Scheduled Actions alert types.

4.2.1.6 Create Execute Scheduled Actions Alert (Use Case)

The system will create an Execute Scheduled Actions alert when a schedule activates. The alert will contain execution information for actions associated with the schedule (if any) along with the schedule name, description and reference.

4.2.1.7 Delay Alert (Use Case)

A user with sufficient privileges may Delay an alert. The implication is that the AMG is not going to handle the alert any time soon but still wants to take responsibility for handling the alert to closure. Delaying an alert stops any Escalation or Accept Timer, if running. To ensure alerts do not get delayed and forgotten, delaying an alert starts the Delay Timer for when the system should automatically revert the alert to the New state (See Configure Alert Timeouts). A typical duration of the Delay timer is expected to be more than the typical duration of the Accept timer.

4.2.1.8 Escalate Alert (Use Case)

A user with sufficient privileges may manually escalate an alert. Manually escalating an alert provides the user with the ability to potentially increase the number of AMGs in the alert's AMG set and therefore show up as a new alert to potentially more users (see "Perform Escalation Cycle" use-case for details).

4.2.1.9 Manually Escalate Alert (Use Case)

A user with proper functional rights can force escalation of an alert. This performs an escalation cycle, which, if possible, adds additional operations centers (or in a future release, Areas of Responsibility) to the visibility of the alert.

4.2.1.10 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.2.1.11 Resolve Alert (Use Case)

A user with sufficient privileges may resolve alerts. Resolving an alert brings the user to a page where this type of alert can be addressed. The following resolve pages are envisioned for the R3B2 alerts: DeviceFailure: Device Details page to allow the device to be taken offline or put into maintenance mode, if appropriate (R3B1) UnhandledResource: Transfer Shareable Resource page (R3B1) EventStillOpenAlert: Event Details page (R3B1) DuplicateEventAlert: Merge Events page (R3B1) ManualAlert: Close the Alert (R3B1) ExecuteScheduledActionsAlert: (R3B2) For schedules containing one action, an action specific page will be displayed to the user. For R3B2, resolving an OpenEventAction will display the Pending Event's page. For multiple scheduled actions the execute scheduled action page for the schedule will be displayed. For a schedule with no actions the ExecuteScheduledActionsAlert's details page will be displayed.

4.2.1.12 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.2.1.13 Unaccept Alert (Use Case)

A user with sufficient privileges may unaccept an alert in the Accepted state. Unaccepting an alert stops the Accept Timer, puts the alert in the New state, and begins the Escalation Timer. Unaccepting an alert implies that the user's AMG has changed their mind and no longer wishes to handle the alert.

4.2.1.14 Undelay Alert (Use Case)

A user with sufficient privileges may undelay an alert in the Delayed state. Undelaying an alert stops the Delay Timer, puts the alert in the New state, and begins the Escalation Timer. Undelaying an alert implies that the user's AMG has changed their mind and no longer wishes to handle the alert.

4.2.1.15 View Alert Details (Use Case)

A user with sufficient privileges may view alert details including the alert type, alert description, create time, next escalation time (if New), Unaccept time (if Accepted), Undelay time (if Delayed), closed time (if Closed), the current set of AMGs, the predicted set of AMGs at next escalation, and a history of all modifications to the alert each with a comment.

4.2.1.16 View Alerts (Use Case)

A user with sufficient privileges may view alerts. Viewing an alert includes the ability to see the alert type, the alert description, and the alert creation time. Alerts are organized by their state including an indication of the number of alerts in each state. A visual and auditory cue is given when the user is a member of an AMG listed in at least one New alert and the user has the rights to control the alert. The ability to view alerts does not imply the ability to control alerts. Closed alerts may be viewed only if they have not yet been archived.

4.2.1.17 View Execute Scheduled Actions Alert Details (Use Case)

The user can view the details of an Execute Scheduled Actions alert. The details page will show a list of each action that is scheduled to be executed. The user will be able to see a read only version of the traffic event details page for the traffic event associated with any Open Event action shown on the alert's details page.

4.3 Comm Log Improvements

4.3.1 R3B2_ManageCommLog (Use Case Diagram)

This diagram shows uses of the system related to the communications log.

[image: image6.emf]View Comm Log

Filter Comm Log Search Comm Log

Operator

«include» «include»

Figure 4‑3. R3B2_ManageCommLog (Use Case Diagram)
4.3.1.1 Filter Comm Log (Use Case)

While viewing the comm log, a user can apply filters to show or hide user generated and/or system generated entries. This is a new feature for R3B2.

4.3.1.2 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.3.1.3 Search Comm Log (Use Case)

The user will be able to search the Comm Log. The existing functionality will be enhanced in R3B2 to allow the user to include user messages and/or system-generated messages.

4.3.1.4 View Comm Log (Use Case)

A user with the correct functional rights can view the communications log. R3B2 includes changes to enhance the usability of this feature. This includes better navigation options and the ability for the user to control the number of log entries shown on a viewable page.

4.4 Notification
This diagram shows uses of the system related to notifications of groups.

4.4.1 ManageNotifications (Use Case Diagram)

[image: image7.emf]Operator

Search Notification History

View Notification History

Send Notification

View Notification Details

Send Notification From

Open Event

Specify Notification Recipients

Administrator

Send Notification From

Outside Traffic Event

Specify Notification Message

Manage Notification Groups

Manage Notification Individuals

View Notification Group Members

«include» «include»

«include» «include»

«extend» «extend»

«include» «include»

«include» «include»

«extend» «extend»

«include» «include»

«include» «include»

Figure 4‑4. ManageNotifications (Use Case Diagram)

4.4.1.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.4.1.2 Manage Notification Groups (Use Case)

The user will be able to add, modify, and delete notification groups. The user will be able to specify which individuals are members of the group. This will be accomplished using the Attention! NS COTS tool user interface. An external link to this tool will be added to the CHART GUI, provided the tool has a web-based interface.

4.4.1.3 Manage Notification Individuals (Use Case)

The user will be able to add, modify, and delete notification individuals and manage their contact information. This will be accomplished using the Attention! NS COTS tool user interface. An external link to this tool will be added to the CHART GUI, provided the tool has a web-based interface.
4.4.1.4 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.4.1.5 Search Notification History (Use Case)

The user will be able to search the notification history. The search criteria will include a traffic event indicator (None, Any, Specified Event), author, operations center, time sent, recipients, and message text.

4.4.1.6 Send Notification (Use Case)

The user will be able to send a notification after specifying the message and recipients. See the Specify Notification Recipients and Specify Notification Message use cases for details. All notifications will be recorded in the operations log.

4.4.1.7 Send Notification From Open Event (Use Case)
The user will be able to send notifications from the context of a traffic event. This extension of the Send Notification use case adds some functionality specific to traffic event. If a notification was previously sent from the traffic event, the recipients specified in the prior notification will be populated in the selected recipients list. Typing shortcuts will be added to assist the user in entering a notification message, in addition to the basic message shortcuts described in the Send Notification use case. The additional shortcuts include: Prior Message (the previously sent message from the event); HAZMAT (if the incident is marked as HAZMAT); Location (similar to the full location description, but with abbreviations for alias, county, direction); Incident type code (e.g., 10-50, "VEHICLE FIRE"); Vehicles (vehicles involved description, possibly abbreviated); Lane Status (similar to the lane status tooltip on the Home Page event list, but a shorter version); All Lanes Open, All Lanes Closed, Scene Cleared. Sending a notification from a traffic event will cause an entry to be added to the Event History log, including the message text.

4.4.1.8 Send Notification From Outside Traffic Event (Use Case)

The user will be able to send notifications outside the context of a traffic event. In addition to the base functionality (see Send Notification), the user will be able to populate the recipient list with the recipients from his/her most recent standalone notification. The user will also be able to view the names of the notification group members.

4.4.1.9 Specify Notification Message (Use Case)

The user will be able to specify the notification message text. The user can invoke typing shortcuts to append the message text. There will be a Prior Message shortcut, which will append the user's last message if outside the context of a traffic event, or the event's last message if in the context of a traffic event. There will be an Update shortcut, which will prepend text indicating that the new message is an update to a previous condition. The user can select from a list of SHA 10-codes to append the 10-code (e.g. "10-50" for a generic accident), and the list of 10-codes will be configurable by an administrator. There will also be a list of other miscellaneous typing shortcuts, as configured by an administrator, and "one click" shortcuts for more frequently used shortcuts. (Other shortcuts related to traffic events are listed in the Send Notification From Open Traffic Event use case). For the 10-codes, miscellaneous shortcuts, and one-click shortcuts, the administrator will be able to configure whether they are applicable in the context of a traffic event and/or in a standalone notification. A warning will be displayed if the message exceeds a warning length (default: 140 characters) and the message will not be sent if it exceeds a configurable error length (default: not specified).

4.4.1.10 Specify Notification Recipients (Use Case)

The user will be able to specify notification recipients, including groups and individuals. The available recipients (groups and individuals) will be maintained in an external tool, and will be queried by CHART for display in the GUI. The user can select one or more groups or individuals and add them to the Selected Recipients list. The user can also select one or more recipients from this list and remove them. After selecting the type of available recipients to choose from (either groups or individuals), the user can specify search text to narrow the list of groups or individuals. By default the available recipients starting with the search text will be shown, but the user will be able to change the search to match available recipients containing the search text anywhere in the name. The user's most recently used (MRU) group (or individuals) used in the same context (either traffic event or standalone) will be displayed at the top of the list of groups / individuals.

4.4.1.11 View Notification Details (Use Case)

The user will be able to view the details for a standalone notification and for a notification sent from the context of a traffic event. The details include the author, op center, message, time sent, traffic event (if applicable), and the notification status for each of the recipients. The level of status that is available in CHART will be based on what the COTS toll provides.

4.4.1.12 View Notification Group Members (Use Case)

When sending a notification, the user will be able to see the individual members of groups that are available for selection as a recipient of the notification.
4.4.1.13 View Notification History (Use Case)

The user will be able to view the notification history, which shows all notifications sent recently. The time sent, author, op center, message, status, and traffic event (if applicable) will be displayed. The user will be able to specify whether to show all notifications or only those notifications not sent from traffic events. The user will be able to navigate through the pages of the notification history (i.e., view the next/previous page), and will be able to specify how many notifications to display per page. The history will include standalone notifications sent within a configurable duration before the current time, and all notifications sent for all online traffic events. Older standalone notifications and notifications for offline traffic events will be archived and will not be available for viewing.

4.5 Plans

This diagram shows uses of the system related to device plans.
4.5.1 R3B2_ManagePlans (Use Case Diagram)

[image: image8.emf]Operator

View Plans

Create Plan

Edit Plan

View Plan

Filter Plans

Specify Plan Attributes

Sort Plans

Add DMS Plan Items

Add HAR Plan Items

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

Figure 4‑5. R3B2_ManagePlans (Use Case Diagram)

4.5.1.1 Add DMS Plan Items (Use Case)

The user will be able to add DMS plan items to a plan. In R3B2 the user will be able to select a single library message and multiple DMSs, and a plan item will be added for each selected DMS.

4.5.1.2 Add HAR Plan Items (Use Case)

The user will be able to add HAR plan items to a plan. In R3B2 the user will be able to select a single library message and multiple HARs, and a plan item will be added for each selected HAR.

4.5.1.3 Create Plan (Use Case)

The user will be able to create a plan. For R3B2 this will include the ability to specify filter attributes, as defined in the Specify Plan Attributes use case.

4.5.1.4 Edit Plan (Use Case)

A user with sufficient rights will be able to modify a plan. For R3B2, the user will be able to specify filtering attributes for the plan. The user will also be able to add multiple DMS plan items (or HAR plan items) at one time.

4.5.1.5 Filter Plans (Use Case)

The user will be able to filter plans using several types of filters. A text search filter can be applied to any of: the plan name, keywords associated with the plan, the plan item message text, and the device name. An Event Type filter allows one or more event types to be specified to match event type(s) associated with the plan. A Location Alias filter allows one or more event types to be specified to match location alias(es) associated with the plan. A County/Region filter allows one or more event types to be specified to match counties or regions associated with the plan. Filters of the same type use "OR" logic, while filter types can be combined using Any, All, or None logic (applied per filter type). The user will be able to clear all filters (i.e., Show All).

4.5.1.6 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.5.1.7 Sort Plans (Use Case)

The user can sort the displayed list of plans by name, event type attribute, or last time used.
4.5.1.8 Specify Plan Attributes (Use Case)

The user will be able to specify the attributes for a plan. For R3B2 the ability to add filtering attributes will be added. Filtering attributes are used to find plans matching filtering criteria. The following filtering attribute types can be added: Event Type, Op Center, Keywords, County/Region, and Location Alias. Multiple values can be specified for each type of filtering attribute.

4.5.1.9 View Plan (Use Case)

The user will be able to view the plan details. For R3B2 the details will include any filtering attributes assigned to the plan.

4.5.1.10 View Plans (Use Case)

The user will be able to view the list of plans in the system. For R3B2 the existing functionality will be changed to show the last used time, to help indicate the plans that are no longer needed. The plan list will also show the name, and the event type(s) for which the plan is applicable. The plan list will be sortable by name, event type, and last used time. The plan list is also being enhanced to support filters, to show only plans of interest. In addition to the filters described in the Filter Plans use case, a Connection Site filter will allow the plans to be filtered on the server from which they are being served.

4.6 Schedules

This diagram shows uses of the system related to schedules.
4.6.1 ManageSchedules (Use Case Diagram)

[image: image9.emf]View Schedules

Operator

Schedule Traffic Event

Create Schedule

Specify Schedule Attributes

Edit Schedule

Execute Schedule Actions

Delete Schedule

Specify Schedule Data

Copy Schedule

Resolve Alert

Specify Recurring

Timing Pattern

Add Open Event Action

Specify Discrete

Timing Pattern

Suppress Next

Activation

Edit Open Event Action

Remove Schedule Action

Activate Schedule

Specify

Open Event Action

Attributes

Create

Execute Scheduled Actions

 Alert

System

Maintain Schedule

Last Used Time

«extend» «extend»

«include» «include»

«extend» «extend»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«extend» «extend»

«extend» «extend»

«extend» «extend»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

Figure 4‑6. ManageSchedules (Use Case Diagram)

4.6.1.1 Activate Schedule (Use Case)

The system will activate the schedule when one of its activation times occurs if the schedule is not disabled. Note: the activation could be suppressed based on the last execution, the system will issue an Execute Scheduled Actions Alert when the schedule activates. The operations center assigned to the schedule will receive the alert. At activation, the last used time for the schedule will be updated unless the schedule is disabled.

4.6.1.2 Add Open Event Action (Use Case)

The user will be able to add a new Open Event action to a schedule, which will remind the user to open a copy of a specified pending event via an alert.

4.6.1.3 Copy Schedule (Use Case)

The user will be able to copy an existing schedule.

4.6.1.4 Create Execute Scheduled Actions Alert (Use Case)

The system will create an Execute Scheduled Actions alert when a schedule activates. The alert will contain execution information for actions associated with the schedule (if any) along with the schedule name, description and reference.

4.6.1.5 Create Schedule (Use Case)

The user will be able to create a new schedule, after specifying the schedule attributes and any actions to perform. An empty schedule can also be used to generate an alert with no actions. See the Specify Schedule Data use case for more details.

4.6.1.6 Delete Schedule (Use Case)

A suitably privileged user will be able to delete a schedule from the system (confirmation required). The system will also delete schedules automatically when it has no future activations scheduled and the schedule’s last used time plus the system-wide relative schedule removal time expires. .

4.6.1.7 Edit Open Event Action (Use Case)

The user will be able to edit an existing Open Event schedule action. See the Specify Open Event Action Attributes use case for details.

4.6.1.8 Edit Schedule (Use Case)

The user will be able to edit the schedule data for an existing schedule. See the Specify Schedule Data use case for details.

4.6.1.9 Execute Schedule Actions (Use Case)

The user will be able to execute some or all of the actions defined in a schedule. The user may do this to resolve an Execute Scheduled Actions Alert, or may explicitly invoke the command for a schedule (whether it has any scheduled times or not). The user will be presented with a list of schedule actions that may be executed. The actions will be selected by default, but the user will be able deselect any actions before executing. Only the actions for which the operator has rights to execute will be selectable (and selected by default). The user will be able to view the details of each action listed. The details of an open event action will show a read-only version of the details of the traffic event that will be opened if the action is executed; changes to the traffic event will not be possible from this view. The user will be able to cancel their action of choosing to execute schedule actions (or their choice to resolve an Execute Scheduled Actions alert) without executing any actions. If they choose to execute the actions they have selected, the system will attempt to execute each one, and the failure of one action will not prevent the system from attempting to execute other selected actions. Execution of an Open Event action will cause a copy of the associated traffic event to be made and placed in the "open" state (rather than "pending"). After submitting the selected actions to execute, the user will be shown the execution status of the actions. The status for an Open Event action will provide a link to the pending traffic event if the execution of the action is in progress or failed, and will provide a link to the newly opened traffic event if the action succeeded.

4.6.1.10 Maintain Schedule Last Used Time (Use Case)

The system will maintain each schedule’s last used time (best effort). The Last Used time is defined as the last time a schedule was updated, activated or any of its actions was executed.

4.6.1.11 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.6.1.12 Remove Schedule Action (Use Case)

The user will be able to remove a schedule action from the schedule. The system will require confirmation before removing the action.

4.6.1.13 Resolve Alert (Use Case)

A user with sufficient privileges may resolve alerts. Resolving an alert brings the user to a page where this type of alert can be addressed. The following resolve pages are envisioned for the R3B2 alerts: DeviceFailure: Device Details page to allow the device to be taken offline or put into maintenance mode, if appropriate (R3B1) UnhandledResource: Transfer Shareable Resource page (R3B1) EventStillOpenAlert: Event Details page (R3B1) DuplicateEventAlert: Merge Events page (R3B1) ManualAlert: Close the Alert (R3B1) ExecuteScheduledActionsAlert: (R3B2) For schedules containing one action, an action specific page will be displayed to the user. For R3B2, resolving an OpenEventAction will display the Pending Event's page. For multiple scheduled actions the execute scheduled action page for the schedule will be displayed. For a schedule with no actions the ExecuteScheduledActionsAlert's details page will be displayed.

4.6.1.14 Schedule Traffic Event (Use Case)

The user will be able to schedule a traffic event. This shortcut allows the user to create a schedule with a single Open Event action, by specifying the schedule attributes and the Open Event action attributes on the same form. The schedule's name defaults to the name of the event. The description defaults for "Open" plus the name of the event. If the form is invoked from a pending traffic event, the traffic event selection is already known and the user will not need to choose a pending event. If it is invoked from outside a traffic event, the user will have to choose a pending event.

4.6.1.15 Specify Discrete Timing Pattern (Use Case)

A user will be able to specify a discrete timing pattern for a schedule by choosing specific date/times at which the schedule will activate.

4.6.1.16 Specify Open Event Action Attributes (Use Case)

The user will be able to specify the Open Event schedule action attributes when creating or editing an Open Event schedule action. The attributes include the pending traffic event to use.

4.6.1.17 Specify Recurring Timing Pattern (Use Case)

A user will be able to specify a recurring timing pattern for schedules by choosing days of the week and times of day at which the schedule will activate. The times will apply to every selected day. The recurring schedule can end on a specific date or can be configured to not end.

4.6.1.18 Specify Schedule Attributes (Use Case)

The user will be able to specify the schedule attributes when creating or editing a schedule. These attributes include name (unique), description, operations center to alert (required only if future activations are scheduled), and timing pattern. The timing pattern can be specific dates and times, or recurring on specified days of the week at specified times. The user can specify whether the schedule is disabled, to temporarily prevent it from activating.

4.6.1.19 Specify Schedule Data (Use Case)

The user will be able to specify the schedule data when creating or editing a schedule, including the schedule attributes and zero, one or more actions. For R3B2 only one type of schedule action is supported: Open Event. This action type will alert users to open a copy of a specified pending event, when the schedule fires. (Note that the Open Event action does NOT create a traffic event automatically; it requires the user responding to the alert to open it.) See the following use cases for more details: Specify Schedule Attributes, Add Open Event Action, Edit Open Event Action, Remove Schedule Action.

4.6.1.20 Suppress Next Activation (Use Case)

The system will, at execution time, present the user with an option to suppress the next scheduled activation for the schedule if that time is within the system-wide activation suppression time parameter.

4.6.1.21 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

4.6.1.22 View Schedules (Use Case)

The user will be able to view the list of schedules. The name, description, op center to alert, schedule type, action summary, and next activation will be displayed. The list will support sorting and filtering.

4.7 Traffic Events

This diagram shows uses of the system related to traffic events.
4.7.1 R3B2_ManageTrafficEvents (Use Case Diagram)

[image: image10.emf]Create Traffic Event

View Pending Events

Specify Location

Create Pending Event

Operator

Specify Event Attributes

Edit Pending Event

Respond To Open Event

Specify Lane Closures

View Interesting

External Events

Specify Participants

Send Notification

From Open Event

View External

Event Details

View External

Event Summary

Specify Response Plan Items

View Event Details

Open Pending Event

Edit External

Event

View External

System Connection

Status

Copy Event

Schedule Pending Event

View Event History

Delete Pending Event

Filter Plans

Add Plan Items To Response

Change Event

Associations

Open Copy of

Pending Event

Change

Interesting

State

Copy Open Event As Pending

Copy Pending Event

Close External

Event

Search Event History

Archive

Traffic

Event

System

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

«extend» «extend»

«include» «include»

«extend» «extend»

«include» «include»

«extend» «extend»

«include» «include»

«include» «include»

«include» «include»

«include» «include»

Figure 4‑7. R3B2_ManageTrafficEvents (Use Case Diagram)

4.7.1.1 Add Plan Items To Response (Use Case)

The user will be able to add plans and plan items to the response plan of a pending or open traffic event. For R3B2 the selection of plans and plan items will be based on filters, rather than the folder-based filtering that was used in prior releases. Some filters will be pre-populated based on these attributes of the traffic event, when applicable: Event Type and either Location Alias or County/Region. (See the Filter Plans use case for more details on filtering.) The user will be able to invoke a Show All command to show all plans (clearing all filters). Once the filtered list of plans is displayed, the user can select entire plans or individual plan items. The default method of selection will be to select entire plans, and when individual plan item selection is chosen, the default selection will include all items.

4.7.1.2 Archive Traffic Event (Use Case)

The system archives closed traffic events to persistent storage for future reference and analysis. Because traffic events are always persisted anyway, the act of archiving may just involve removing the traffic event from active use by the users. Both internal and external traffic events are archived and contain an 'external' flag to distinguish between them.

4.7.1.3 Change Event Associations (Use Case)

The user will be able to associate/disassociate external events with native events. This association only goes one-way to avoid presenting the user with a huge list of external events to choose from.

4.7.1.4 Change Interesting State (Use Case)

The user will be able to mark external events as "interesting" or "no longer interesting." Interesting events appear in the user's home page making it easier for users to monitor their status.

4.7.1.5 Close External Event (Use Case)

The user will be able to close external events. Closing an external event from CHART should only be necessary if the close event update was not received by CHART thus orphaning the external event. Because the CHART user does not really own the external event, it is possible the external event source may send a subsequent update to re-open the event.

4.7.1.6 Copy Event (Use Case)

The user will be able to copy a traffic event. For R3B2, the existing functionality which allows an open event to be copied as a different type will be enhanced to allow a pending event to be created using the Copy Event form. The user will also have the ability to copy a pending event to another pending event, and to create an open event which is a copy of the pending event. See the specific use cases for more details.

4.7.1.7 Copy Open Event As Pending (Use Case)

The user will be able to copy an open event as a new pending event. This will copy the event attributes, participations, and response plan items if requested. The open event reminder time will be initialized to a relative value based on the event type. The event history will not be copied. The event name will not be prefixed with "Copy of".

4.7.1.8 Copy Pending Event (Use Case)

The user will be able to copy a pending event to another pending event. The purpose of this is to be able to have a template traffic event from which variations are derived, without requiring them to be opened. This will automatically copy the event attributes, participations, and response plan items. The event history will not be copied. The event name will be prefixed with "Copy of". The user will not be asked for confirmation.

4.7.1.9 Create Pending Event (Use Case)

The user will be able to create a traffic event in a new state called "Pending". The user will be able to specify the traffic event location and event type before opening the pending event. The “pending” designation will allow these events to be treated differently in CHART. For instance, the CHART Web Listener will be modified to ignore such events. Likewise CHART will not evaluate “pending” events as part of event duplication prevention.
4.7.1.10 Create Traffic Event (Use Case)

The user with the correct functional rights may add a new traffic event. When creating a traffic event, the system will show the user a list of existing traffic events that may be duplicates of the new event being created based on the user’s selections for the new event’s location. This existing feature is being changed in R3B2 to ensure external and pending events do not appear as possible duplicate events.

4.7.1.11 Delete Pending Event (Use Case)

The user will be able to delete a pending event. The user will be asked for confirmation before deleting the event. If the pending event is used by schedules, the user will be asked for confirmation to remove the event from the schedules referencing it.

4.7.1.12 Edit External Event (Use Case)

The user will have limited ability to edit external events compared to native CHART events. The only abilities provided are closing an external event, set the "interesting" flag, and associating external events to native events.

4.7.1.13 Edit Pending Event (Use Case)

The user will be able to edit a traffic event in the "pending" state. The editable data includes the event attributes (see Specify Event Attributes), Lane Closures, Participants, and Response. The participants will be allowed to be added and removed from the event, but not marked as notified, arrived/responded, or departed. Response plan items can be added, edited, and removed, but not executed. A pending event will not be allowed to be associated with another event.

4.7.1.14 Filter Plans (Use Case)

The user will be able to filter plans using several types of filters. A text search filter can be applied to any of: the plan name, keywords associated with the plan, the plan item message text, and the device name. An Event Type filter allows one or more event types to be specified to match event type(s) associated with the plan. A Location Alias filter allows one or more event types to be specified to match location alias(es) associated with the plan. A County/Region filter allows one or more event types to be specified to match counties or regions associated with the plan. Filters of the same type use "OR" logic, while filter types can be combined using Any, All, or None logic (applied per filter type). The user will be able to clear all filters (i.e., Show All).

4.7.1.15 Open Copy of Pending Event (Use Case)

The user will be able to open a copy of a pending event. This will automatically copy the event attributes, participations, and response plan items. The open event reminder time will be set using the relative value from the pending event. The event history from the pending event will not be copied. The event name will NOT be prefixed with "Copy of". The controlling operations center will be the operations center of the user who opens the event. The pending event will be updated to record the usage time when the open copy operation was invoked. If the user chooses to open a copy of a pending event while resolving an Execute Scheduled Actions alert that contains only a single Open Event action and there are no schedules that reference the event OR any schedules referencing the event have no future activations scheduled, the system will warn the user that they may want to Open the pending event instead of opening a copy.

4.7.1.16 Open Pending Event (Use Case)

The user will be able to open a pending traffic event. A confirmation message will be displayed to the user, indicating that the pending event will no longer exist. If the pending event is referenced by schedules, a confirmation message will be displayed to the user indicating that the event will be removed from any schedules. If the user doesn't have rights to modify schedules, the user will not be permitted to open a pending event referenced by schedules. Opening a pending event will change the state to Open, initialize the Open Event Remind Time based on the relative time that existed in the pending event, change the Opened Time, and remove any history entries. The event will be removed from any schedules that were using it. The Web Alert flag will take effect (whereas it would be ignored for pending events).

4.7.1.17 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.7.1.18 Respond To Open Event (Use Case)

The user will be able manage the response plan for an open traffic event. For R3B2 the plan filtering will be enhanced.

4.7.1.19 Schedule Pending Event (Use Case)

The user will be able to schedule a pending event. This action will create a new schedule and add a single Open Event action to it. If invoked from the context of a traffic event, the event will be pre-selected and the user will only need to fill in the schedule information. If it is not invoked from the context of a traffic event, the user will also have to select the pending event to be scheduled.

4.7.1.20 Search Event History (Use Case)

The user will be able to search the event history. For R3B2, the existing search functionality will be enhanced to add search criteria for showing user messages, device messages, and other system messages.

4.7.1.21 Send Notification From Open Event (Use Case)

The user will be able to send notifications from the context of a traffic event. This extension of the Send Notification use case adds some functionality specific to traffic event. If a notification was previously sent from the traffic event, the recipients specified in the prior notification will be populated in the selected recipients list. Typing shortcuts will be added to assist the user in entering a notification message, in addition to the basic message shortcuts described in the Send Notification use case. The additional shortcuts include: Prior Message (the previously sent message from the event); HAZMAT (if the incident is marked as HAZMAT); Location (similar to the full location description, but with abbreviations for alias, county, direction); Incident type code (e.g., 10-50, "VEHICLE FIRE"); Vehicles (vehicles involved description, possibly abbreviated); Lane Status (similar to the lane status tooltip on the Home Page event list, but a shorter version); All Lanes Open, All Lanes Closed, Scene Cleared. Sending a notification from a traffic event will cause an entry to be added to the Event History log, including the message text.

4.7.1.22 Specify Event Attributes (Use Case)

The user will be able to specify the attributes of a traffic event, including for a pending event. (The attributes include any data under the following sections of the Event Details page: General Event Information, Location Information, Action Event Information, Recurring Congestion, Disabled Vehicle Information, Incident Information, Road Surface Condition, Permit Info, and Weather Information.) For R3B2, all attribute data can be edited after the pending event is created, but only a subset of this can be specified when creating a pending event (see Create Pending Event for details). Pending events will have a relative Open Event Remind time (as opposed to open events which have an absolute Open Event Remind Time). A pending event will also have a Creation Time instead of an Opened Time.

4.7.1.23 Specify Lane Closures (Use Case)

The user will be able to specify lane closure information for a traffic event. For R3B2 the user will also be able to specify lane closures for a pending traffic event.

4.7.1.24 Specify Location (Use Case)

The user will be able to specify the location data for a traffic event. For R3B2, the location can be specified when creating or editing a pending event.

4.7.1.25 Specify Participants (Use Case)

The user will be able to add and remove participants from a traffic event. For an open event the user will be able to mark the participants as notified, arrived/responded, and departed, and modify the timestamps for each state. In R3B2 the user will be able to add and remove participants for a pending event, but will not be able to change the states or times.

4.7.1.26 Specify Response Plan Items (Use Case)

The user will be able to add, edit, and remove DMS and HAR response plan items for an open or pending traffic event. R3B2 adds this capability for pending events, and the method of selecting plans and plan items using plan filters will also be enhanced.

4.7.1.27 View Event Details (Use Case)

The user will be able to view the event details. For R3B2 the user will be able to view the notifications sent from an event that is in the open or closed state (but not pending, as notifications will not be allowed for a pending event). It will show the Time Sent, Author, Op Center, Recipients (may be truncated), Status, and Message. For a pending event, the event details will be similar to the Event Details page for an open event except that the following sections will not be present, as the functionality is not applicable: Notifications, Associated Events, and Merge. For a pending event, the Creation Time will be displayed instead of the Opened Time, and the Open Event Remind Time will be relative. For a pending event, if schedules are referencing the event, the names of the schedules will be displayed on the event details page, and the user will be able to navigate to view the schedule. If an open event was created using a schedule, the name of the originating schedule will be displayed, if the schedule still exists and is available.

4.7.1.28 View Event History (Use Case)

The user will be able to view the event history log. For R3B2, the log will support filtering to show user messages, device messages (i.e., messages actually displayed on devices), and other system messages. The log browsing functionality will be improved and the user will be able to change the number of log entries per page.
4.7.1.29 View External Event Details (Use Case)

The user will be able to view the details of external events subject to the ability to map the external fields to CHART fields.

4.7.1.30 View External Event Summary (Use Case)

The user will be able to view all external events. Each event includes basic event information including the event type, external event name, location, county/state, event type, direction, lanes affected, vehicles involved, originating agency, and whether the external event has been marked as ‘interesting.’ The summary page will allow the user to sort the list on any of these fields and filter on all fields except name and location.. By default, only open external events will be shown, but the user can choose to display just the closed external events or both opened and closed external events.
The summary page will hide the list of external events if the external system connection(s) supplying those events are in a failed state and have been in a failed state for an administrator specified length of time.

4.7.1.31 View External System Connection Status (Use Case)

The system will show an indication to the user that the connection to an external system is down when viewing the external events summary page or the external event details page.

4.7.1.32 View Interesting External Events (Use Case)

The user will be able to view "interesting" external events on the user's Home Page in an external events tab. This provides a convenient method for users to monitor a few external events once they have identified them instead of having to continually sift through all external events. The external events shown on this tab will contain a column that identifies the type of each event.
4.7.1.33 View Pending Events (Use Case)

The user will be able to view the list of pending events in the system. The list will include the following: event name, location description, direction, event type, county/state, lane closures, schedule usage indicator, and next scheduled time. The user will be able to sort the list by each displayed attribute. The user will be able to filter the list by event type, direction, county/state, lane closures, and schedule usage indicator. Pending events will not be displayed in the event lists that existed in previous releases.

4.8 External Interface

This diagram shows use-cases of the system related to external traffic events.
4.8.1 ExternalInterface (Use Case Diagram)

[image: image11.emf]Maintain RITIS

Event Connection

System

Monitor RITIS

Event Connection

Import

Traffic

Event

Translate ATIS

Event

Remotely Open

External Event

Remotely Update

External Event

Remotely Close

External Event

Create Traffic

Event

Modify Traffic

Event

includes includes

includes includes

includes includes

extends extends

extends extends

includes includes

extends extends

Figure 4‑8. ExternalInterface (Use Case Diagram)

4.8.1.1 Create Traffic Event (Use Case)

The user with the correct functional rights may add a new traffic event.

4.8.1.2 Import Traffic Event (Use Case)

RITIS is able to open, update, and close external events within the CHART system.

4.8.1.3 Maintain RITIS Event Connection (Use Case)

The system establishes and maintains a connection to RITIS. This includes re-establishing the connection when it is is lost or has been unused for an extended period of time.

4.8.1.4 Modify Traffic Event (Use Case)

An operator with the proper functional rights may edit traffic event information after the event has been created. This includes responding to the event, editing lane status, editing location, associating with another event, and specifying other event attributes.

4.8.1.5 Monitor RITIS Event Connection (Use Case)

The system monitors the RITIS event connection and reports its status to users.

4.8.1.6 Remotely Close External Event (Use Case)

Remote systems are able to close External events within the CHART system. This use-case extends the more generic Modify Traffic Event use case by allowing a non-user to close an event.

4.8.1.7 Remotely Open External Event (Use Case)

Remote systems are able to open External events within the CHART system. This use-case extends the more generic Create Traffic Event use case by adding the ability to mark an event as External and by including the external source of the event.

4.8.1.8 Remotely Update External Event (Use Case)

Remote systems are able to update External events within the CHART system. This use-case extends the more generic Modify Traffic Event use-case by limiting remote traffic event changes to only what can be reasonably mapped from the external event source to internal CHART event data. It also provides for the ability to re-open closed External events. Specifically excluded from the Modify Traffic Events use-case is the ability to change the event type of an external event.

4.8.1.9 Translate ATIS Event (Use Case)

This use-case provides for the translation from the SAE J2354 ATIS standard to internal CHART traffic event data fields.

5 Detailed Design

5.1 Human-Machine Interface

R3B2 builds on the existing web based user interface that has been used for the CHART system for past releases. A usable prototype of the proposed interface changes has been created in order to allow the user to preview the changes and to better facilitate a common understanding of the requirements. The prototype focuses on those changes that will be used by operators on a daily basis or those where the development team felt that we could benefit from letting users see it early. These changes fall into the areas of Pending Traffic Events, Scheduler, Notification services, Device Plan sorting and searching, and Enhanced Communications Log.

5.1.1 Pending Traffic Events

A pending event is a traffic event that can be created in advance of the time(s) when it needs to actually be opened. This allows for advanced preparation in cases such as construction that will be set up later in the day or for events that routinely occur (e.g., congestion). By using a pending event, a user can have most of the work required to create a traffic event done in advance, such as specifying the location, lane closures, participants, and/or the device response plan. Pending events can be created for a single use (e.g., a special event later tonight) or can be kept in the system as a “template” that can be copied and opened many times.

5.1.1.1 Viewing Pending Events

A new menu item will appear within the existing home page navigation area to allow users to view existing pending events.

[image: image12.png]Traffic Events
View Open Events
View Open/Closed Events

New menu
View Pending Events

item
~ Select County -

Device Management

Figure 5‑1 View Pending Events menu item

Upon clicking the View Pending Events menu item, a page will be shown in the “working window” listing all pending events that exist in the system (see below).

[image: image13.png]* CHART - Windows Internet Explorer,

= Comm Source

I I

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaging | Home Page | Paging | Map | Traffic Events | Help

Pending Traffic Events (Add)
Sorted by [EvenType ¥

Schedules| | |Direction| coniTypen County / State

-
Event Description / Location Scheduled [“Any-]| [~Any-

Congestion Event

Pending Congestion Event @ 1-695 12:00 AM
1695 12/31/2008

planned Closure @ [-97 NORTH AT 1-695
(RTE 97 AND 605 EXCHANGE 12:00 AM
1-67 NORTH AT 1695 (RTE 97 AND 695 12/31/2008 LEQZEIEIE R SIEE Gy

EXCHANGE)

Add Pending Event

Top | Back | Forward | Refresh | Center Rpt | Communications Log | Instant Messaging | Home Page | Paging | Map | Traffic Events | Help | Save Window Position
PROTOTYPE 11/

T

Figure 5‑2 View Pending Events page

This page shows the following information for each event:

· Event description and location

· An indication of whether or not the event is referenced by any schedules

· The next time the event is scheduled to be opened (if any)

· The direction of the roadway affected by the traffic event (if specified in the event)

· The event type

· The county and state where the event is located (if specified in the event)

· Lane configuration and status for the event (if specified in the event)

Each event name is a link that when clicked causes the details page for that event to be shown. See section 5.1.1.3 below for more information.

Each column heading is a link that when clicked causes the list to be sorted on that column. After the list is sorted on a column, the user may click the column heading link again to toggle between an ascending and descending sort.

Five of the seven columns provide the ability to filter the list based on values in the column as follows:

· The Schedules Using column provides the ability to filter the list to show only events being used by one or more schedules, or those not being used by any schedules

· The Direction column provides the ability to filter the list to show only traffic events with a specific direction

· The Event Type column allows the list to be filtered to show only traffic events of a certain type

· The County / State column allows the list to be filtered to show only traffic events in a specific County / State

· The Lane Closures column allows the list to be filtered to show only traffic events with a specific number of lane closures: All lanes open, one or more lanes closed, 2 or more lanes closed, and 3 or more lanes closed

5.1.1.2 Create Pending Traffic Event

A pending traffic event can be created using one of the Add links on the pending events page, as shown below. A link to add a pending event exists at the top and bottom of the page (the link at the top of the page is shown).

[image: image14.png]efresh | Center Rpt | Communications Log | Instant b=

Pending Traffic Events (A

Link to create
new pending event

Figure 5‑3 Create Pending Event link

After clicking one of the links to add a new pending event, a page is shown to allow the user to provide information about the event and enter the event into the system.

[image: image15.png]& * New Event - CHART - Windows Intemet Explorer B - (=R)

T e ocoone 809 chrti spgractiondlolenvenFormipendingbvertre =

Other (noinfo) — ~ 20 I ED e g
T

Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaging | Home Page | Paging |
Map | Traffic Events | Help

New Pending Traffic Event

A Source Type: v
Stater [MD. v Sourcs tame:
County: Incident Type: [Other v
orRegion:

Route Type: 1 (Interstate) v Creste et
[— 1] S S]

L showtiame.

Direction: | Nome v

Proximity: AT v

Featurs Type: v

Location Dasc: | MD. -

[Overrids Location Desc.

Done @ intemet | Protected Mod: On Ra00%_

Figure 5‑4 Create Pending Event page

This page is very similar to the Create Traffic Event pane on the home page. Users can enter information about the event location, source, and incident type, and then click one of the event type buttons to create a pending event of the given type. After creating a pending event, its details page is shown.

5.1.1.3 Event Details for Pending Traffic Event

The event details page for a pending traffic event is shown immediately after creating a pending event, and when the event name link for a pending event is clicked. (Links with a pending event name appear in a variety of places within the application, such as the pending events list).

[image: image16.png]-l comm

Toggle Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaging |
Home Page | Paging | Map | Iraffic Events | Help

Planned Closure @ I-97 NORTH AT I-695 (RTE 97
AND 695 EXCHANGE)

EVENT PENDING - NOT OPENED

General Info Permit Info Lane Closures Response Event Histon

General Event Information (Edit) Location Information (Edit)

Planned Closure @ 1-97 Location Description 522 NORTH AT 15685 (RTE 97
Event Name NORTH AT 1-695 (RTE 97 e
AND 695 EXCHANGE) County Anne Arundel County

Source * Region

Max Queue Length (mi) 0.0 State Maryland
Created 11:49 AM Route Type Interstate
Confirmed No Route 197
Delay Cleared No irection North

Scene Cleared No Point Along AT 1-695 (BALTO BELTWAY)
al . Roadway

Open Event Remind
Time 01/30/08 11:49 M
Web Alert NOT ENABLED
Web Alert Text

Actions specific t
Referring Schedule(s) P;::?"g e

Schedule ABC

@] [(OpenEvent] [[Schedus | [DeleteEvent] | Cupyh@

-
G ocaiirare: o -

Figure 5‑5 Pending Event Details page

 The pending event details page is similar to the details page that exists for open events, with the following differences:

· The Open Event Remind Time is specified as a relative time from when the pending event is opened, not an absolute date/time

· A section exists to show any schedules that reference the pending event

· The Notification, Associated Events, and Merge sections present for open traffic events will not be present for pending events

· Participants can be included, but not marked as notified, arrived, or departed

· The response plan can be created, but not activated

· The actions that can be performed on the event differ than those of an open event (see below)

Actions can be performed on the pending event using buttons that appear at the bottom of the first section of data on the pending event details page. (See circled area on the screen shot above). Following is a description of each action that can be performed:

Open Copy: Makes a copy of the pending event and changes it from “pending” to “opened”. Once opened it will appear on the home page and the operations center of the user that opened the copy will be responsible for the event.

Open Event: Changes the pending event into an “opened” event. If there are any schedules referencing the event, the user will be warned that the schedules will be modified to remove the actions that refer to this event (if the user has permissions to manage schedules). If the user doesn’t have permission to manage schedules, the user will not be able to open a pending event that has schedules that reference it. As stated above, the operations center of the user that opens the event will become responsible for the event.

Schedule: Opens a form that allows the event to be scheduled to be copied and opened at a later time. More information on scheduling a pending event can be found in the section that follows.

Delete Event: Removes the pending event from the system. A warning will appear to prevent accidental deletion. As with the Open Event action, appropriate warnings and permission checks are done if the event is referenced by one or more schedules.

Copy As Pending: Makes a copy of the pending event, and leaves the copy in the pending state.

5.1.1.4 Schedule Pending Event

A pending event can be scheduled to be copied and opened at a later time. The schedule can be specified as a list of one or more specific dates and times, or on a recurring basis. When a scheduled date/time arrives, an alert will be created to remind the center to copy and open the event, and the resolution action for the alert allows the user to easily perform that operation. More information on schedules can be found in section 5.1.2 below. The following screen shot shows the page used to schedule a pending event to be copied and opened at one or more dates and times.

[image: image17.png]Schedule Traffic Event - CHART, - Windows Internet Explorer

=4 CHART

Schedule Traffic Event : Planned Closure @ I-
97 NORTH AT I-695 (RTE 97 AND 695
EXCHANGE)

Schedule Name: [Planned Closure @ 97 NORTH AT 695 (RTE 97 AND 695 EXC|

Op Center To Alert: [RAVENSTOC v

Schedule:
® specific Date(s) and Time(s)
ORecurring

Date / Time To Add: Activation Dates/Times

Add Date/Time >>

[Ipisable schedule activations

Figure 5‑6 Schedule Pending Event - Specific Dates and Times

The form allows the user to provide a name for the schedule, a description, and to select the operations center to be alerted when the schedule “fires”. The user can then enter a date and time and use the Add Date/Time button to add the date and time into the list of activation times for the schedule. The Remove and Remove All buttons can be used to remove dates and times that have already been added to the list of activation times. The Disable schedule activations checkbox can be used to stop all future activations without losing the currently entered activation times. When the form is submitted, a schedule is created and will appear in the system’s list of schedules. More information on schedules can be found in section 5.1.2 below.

If the user wishes to specify a recurring schedule, they can click the “recurring” radio button, and the form will change to appear as shown below:

[image: image18.png]Schedule Traffic Event - CHART, - Windows Internet Explorer

=4 CHART

Schedule Traffic Event : Planned Closure @ I-97
NORTH AT I-695 (RTE 97 AND 695 EXCHANGE)

Schedule Name: [Planned Closure @ 97 NORTH AT 695 (RTE 97 AND 695 EXC|

Op Center To Alert: [RAVENSTOC v

Schedule:
O Specific Date(s) and Time(s)

@ Recurring

[—

endpate: |

ONever

Days: [MMon [MTue Mwed MThu [OFi Csat Csun

Time(s): : Activation Times

‘Add Time >>

Remove All

[Ipisable schedule activations

Figure 5‑7 Schedule Pending Event - Recurring Schedule

When entering a recurring schedule, the user chooses a start and end date (or indicates the schedule never ends), selects the days of the week that apply, and adds one or more times to the activation times list. The schedule will “fire” at the specified times on each selected week day from the begin date through the end date.

5.1.2 Scheduler

The system includes a scheduler that can be used to schedule actions that are to be performed at specific dates and times, or on a recurring basis. The scheduler supports multiple schedules and each schedule can have zero or more actions in it. Each schedule can be set to be activated on zero or more specific dates/times, or on a recurring basis. Section 5.1.1.4 above discusses a special shortcut feature that allows a schedule containing a single “open event” action to be created via a single simple form. This section provides a more complete discussion of the scheduler user interface, including viewing, creating, managing, and executing schedules. This section also discusses how alerts are used in conjunction with schedules.

5.1.2.1 Viewing Schedules

A new menu item will appear within the existing home page navigation area to allow users to view existing schedules.

[image: image19.png]General
Notification
Schedules

Change User
View Command Status

Transfer Resources
Change Password

new menu
item

Figure 5‑8 Schedules link

When the schedules link is clicked, the schedule list page is shown. This page allows the user to manage existing schedules or to create new schedules.

[image: image20.png]* CHART - Windows Internet Explorer,

g

comm S

(L2 Ot (noinfo) v

urce

Text
I T E

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messagin

Traffic Events
View Open Events

View Open/Closed Events
View Pending Events

- Select County v

Device Management
Operations Centers

Folders
General

Notification

Schedules

Change User

View Command Status

Transfer Resources

Change Password

| Home Page | Paaing | Map | Traffic Events | Help

Schedules

Add Schedule

Description

r | Schedule Type

This is a schedule.
description which
could be fairly long,
50 this is just to
show the effects of
the length.

RAVENSTOC

Multiple Dates

Open Event(1)

11/10/07 12:00pm

11/11/07 12:00pm

Edit Copy Remove
Execute Action:

Ravens
Post-Game

This is a schedule.
description which
could be fairly long,
50 this is just to
show the effects of
the length.

RAVENSTOC

Multiple Dates

Open Event (1)

11/05/07 7:00pm

11/11/07 7:00pm

Edit Copy Remove
Execute Action:

Some
Festival

This is a schedule.
description which
could be fairly long,
50 this is just to
show the effects of
the length.

Single Date

Open Event (1)

11/07/07 9:00am

11/14/07 9:00am

Edit Copy Remove
Execute Action:

This is a schedule.

description which
ronld he fairly lona

Edit Copy Remove

Wiiries

oo -

Figure 5‑9 View Schedules page

This page shows the following information for each schedule:

· The name of the schedule

· A description of the schedule

· The operations center that will be alerted when the schedule is activated

· The type of schedule (Single Date, Multiple Dates, or Recurring)

· A summary of the actions contained in the schedule. (R2B3 only supports the “Open Event” action)

· The last time the schedule was activated (if any)

· The next time the schedule will be activated (if any)

Each column heading is a link that can be used to sort the list using values from the column. Once sorted, the user can click the link again to toggle the sort direction (ascending or descending).

The Op Center, Schedule Type, Actions, and Next Activation columns also provide a drop down list that can be used to filter the list based on values contained in the column as follows:

· The op center column allows the list to be filtered to show only schedules for a specific operations center

· The Schedule Type column allows the list to be filtered to show only schedules of a specific type

· The Actions column allows the list to be filtered to show only schedules that contain a specific type of action

· The Next Activation column allows the list to be filtered to show only schedules that will be activated within a certain time period, such as today, tomorrow, next 7 days, next 14 days, etc.

Each schedule in the list contains several links that allow actions to be performed on the schedule. The actions available are edit, copy, remove, and execute actions. There are also links at the top and bottom of the page that allow new schedules to be created. These actions are discussed in more detail in the sections that follow.

5.1.2.2 Create Schedule

The system provides links on the Schedules page that allow a new schedule to be created. Generic links allow a schedule to be created and actions added to the schedule manually. These links are ideal for creating a schedule that will have multiple actions. Another link is provided that allows a pending traffic event to be scheduled using a single form that results in a new schedule with a single “open event’ action in it. This form is discussed above in section 5.1.1.4 and is not discussed further here. The form below is shown when the user clicks one of the generic “Add Schedule” links.

[image: image21.png]“ CHART - Windows Internet Explorer.

Text

" T I I O

Add Schedule

‘Schedule Name:
Descriptior

OpCirToAlert: | RAVENSTOC

Activation Schedule:
©Specific Datels) and Timels)

ORecuring

Date / Time To Add: Activation Dates/Times.

“AddDaRIT
e
(o) Actions to be
included in the
schedule

[Cloisable schedule actvations

‘Action Type| Action Description’

~ SelectActon ToAdd~ v

®

Figure 5‑10 Create Schedule

The add schedule form is much like the form used to schedule a single pending event as discussed in section 5.1.1.4, with the difference being that one or more actions to be contained in the schedule may be specified (see circled portion in the screen shot above). The user may choose to create a schedule with no actions, in which case the schedule can act as a reminder.

To add an action to the schedule, the user selects the type of action from the “Select Action To Add” list, and a form will pop-up to allow the user to specify data relative to the type of action selected. Only the “Open Event” action type is supported in R3B2, and its form is shown below.

[image: image22.png]Add Open Event Action

Pending |- Sici - B

Traffic
Croate Now Ponding Evert

Event:

Figure 5‑11 Add Open Event Action

When adding an open event action to a schedule, the user need only select the pending event they wish to schedule. A button exists to allow the user to create a new pending event if they don’t find one in the list they want to schedule. The form shown when this “Create New Pending Event” button is clicked is the same as the form discussed in section 5.1.1.2 above.

After an action is added to the schedule, it will appear in the Actions section of the Add Schedule form, as shown below:

[image: image23.png]Action Type.

Action Description

Open Event

Planned Closure 1:270 prior MD-28

2t remove

Figure 5‑12 Add Schedule - Actions List

The user can edit the action, in which case the form used to add the action will be shown and the user can make a new selection, or they can remove the action.

When the user has finished entering data for the schedule and submits the Add Schedule form, the newly created schedule appears in the schedule list, and the system will create an alert at each activation date/time specified. More information on the alert can be found in section 5.1.2.6 below.

Edit Schedule

The user may edit an existing schedule using the Edit link that appears for the schedule in the schedule list. The form used to edit a schedule is the same as the form used to add a schedule, except the form is prepopulated with the data for the schedule being edited. When the user submits the form, the data for the schedule is updated.

[image: image24.png]* CHART - Windows Iternet Explorer.

ol Comm Souce Text

" T E— I O

Toqgl Meny | Recent Events | Back | Forward | Refresh | Canter Rot | Communications Log | nstant Messaaing |
Home Page | Paaina | Man | rafic Events | Helo

Edit Schedule

‘Schedule Name: [Roadwork 270 @02
Description: (ongoing zeaduork on 270 sach wesknight for 2 veeks. =

OpCirToMlert: | RAVENSTOC v

Activation Schedule:
Ospeciic Datels) and Timels)

©Recurring

Beoin Oate: 07142008
End oater (01252008 Olnever

oays: @von @ue Pwed By Bri Dsat Dsen
Time(s): Time To Add: Activation Times

Ciisable schedule activations

Actions: Action Type. ‘Action Description
Open Event | Planed Closure @ 1:270 rior M0-28 dt_remove
‘SelectActon To Add — ¥,

9

Figure 5‑13 Edit Schedule

5.1.2.3 Remove Schedule

The user can remove a schedule from the system using the remove link that appears for the schedule in the schedule list. A warning message is used to prevent schedules from being accidentally deleted.

[image: image25.png]it Con R

Execute Action:

Figure 5‑14 Remove Schedule

5.1.2.4 Execute Schedule Actions

The user can choose to execute actions contained in the schedule without having to wait for the next scheduled activation time to arrive. Upon clicking the Execute Actions… link, a form such as the one shown below will be shown.

[image: image26.png]* CHART - Windows Internet Explorer,

h Comm irc Tt
A I I T

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaaing | Home
Page | Paging | Map [Traffic Events | Help

Execute Schedule Actions - TEST SCHEDULE

Schedule Description: This is a description of the schedule.

Execute | Action Type Action Description

OpenEvent | Planned Closure @ 1-270 Prior MD 28 | show details

OpenEvent | Planned Closure @ 1-270 AT 1-370 show details

[Cancel Next Schedule Activation (14:30 1/31/2008)

Execute Selected Actions | [Cancel |

Top | Back | Forward | Refresh | Center Rt | Communications Log | Instant Messading | Home Page | Paging | Map | Traffic
Events | Help | Save Window Position

All ights

TR e st o

Figure 5‑15 Execute Schedule Actions

Initially, all actions for which the user has rights to execute are selected for execution. If the user doesn’t have rights to execute a certain action, it will not be selected and selection will be disabled. The user can deselect the actions they do not wish to execute, and optionally cancel the next schedule activation. The ability to cancel the next activation is useful if the user is manually executing a schedule close to but prior to its normally scheduled time. The details for any action can be viewed, but no changes can be made to the actions from this form. Once the user has completed the form, clicking the Execute Selected Actions button causes the selected actions to be executed by the system. The user will be shown a status page such as the one shown below to allow them to see the results of the execution.

[image: image27.png]CHART - Windows Internet Explorer,

-l Comm

Log

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaaing | Home
Page | Paging | Map [Traffic Events | Help

Execute Schedule Actions Status - TEST SCHEDULE

Schedule Description: This is a description of the schedule.

Action Description

Planned Closure @ 1-270 Prior MD | Opened Event
OpenEvent |59 Details

pending Event
OpenEvent | Planned Closure @1-270 AT1-370 | E22

Top | Back | Forward | Refresh | Center Rt | Communications Log | Instant Messading | Home Page | Paging | Map | Traffic
Events | Help | Save Window Position

Al rights

Wiiries T

Figure 5‑16 Execute Schedule Actions Status

For Open Event actions, the user will be provided links to the traffic event that was opened, or was “to be opened” in the case of a failure. The same information provided on the Execute Schedule Actions Status page will be available from the existing “View Command Status” page in case the user navigates away from the page and then wants to view the results.

5.1.2.5 Execute Scheduled Actions Alert

When it comes time for a schedule to be activated (based on the recurring or multiple date/time schedule specified), the system will create an Execute Scheduled Actions alert for the operations center specified in the schedule.

[image: image28.png](Q Crenconsestiontenc@ ess Created: 01/07/08 9:04 AM Vvzz= X
escalates: PED

Figure 5‑17 Execute Scheduled Actions Alert

This alert notifies the center that it is time to execute actions in a schedule, but does not actually execute them without the user providing confirmation by choosing to resolve the alert. The user could also close the alert, delay the alert, or mark it accepted, just like any other alert. An example of when such an alert should be delayed is if a congestion event is scheduled to be opened at a certain time of the morning, but when the alert arrives the roadway conditions are not congested. The user could delay the alert so that they will be reminded again to check the roadway conditions and open the event if needed.

If the user chooses to resolve an Execute Schedule Actions alert by clicking the resolve [image: image29.bmp] link, the page the user will see in their working window will depend on the number of actions in the schedule as follows.

Resolve Execute Scheduled Actions Alert, Single Open Event Action

Clicking the resolve link for an Execute Scheduled Actions alert when the schedule contains a single Open Event action will take the user to the details page for the pending event that is scheduled to be opened. From the details page, the user can choose to open a copy of the event, or directly open the pending event, or they can choose do simply view the details of the event and decide not to open it. If the user chooses to open the event (a copy or directly), they will have the option to close the alert during the process.

Resolve Execute Scheduled Actions Alert, Multiple Actions

Clicking the resolve link for an Execute Scheduled Actions alert when the schedule contains multiple actions causes a form to be shown to allow the user to choose the actions they want to execute.

[image: image30.png]CHART - Windows Internet Explorer,

-l comm

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log
[Instant Messaging | Home Page | Paging | Map | Traffic Events | Help

Execute Schedule Actions - TEST
SCHEDULE

Schedule Description: This is a description of the schedule.

Action Description

Planned Closure @ 1-270
Prior MD 28

Planned Closure @ 1-270
AT1-370

Execute Selected Actions | [Cancel |

Top | Back | Forward | Refresh | Center Rt | Communications Log | Instant Messaing |
Home Page | Paging | Map | Traffic Events | Help | Save Window Position

o

Figure 5‑18 Resolve Execute Schedule Actions Alert - multiple actions

This form is very similar to the form shown when a schedule is manually executed via the Execute Schedule Actions link for a schedule (see 5.1.2.5 above). The only difference is that instead of having the option to skip the next schedule activation, the user will have the option to close the alert when they execute the actions. When the user chooses to execute the actions, a status page is shown, exactly as described in 5.1.2.5 above.

Resolve Execute Scheduled Actions Alert, No Actions

It is possible for a user to create a schedule without any actions in it. This is useful to schedule reminders. When the user chooses to resolve an alert that results from such as schedule, there is no action to perform, so the user will be shown the alert details page for the alert.

5.1.3 Notification

The system provides features that allow users to notify others of important information via page, and e-mail. Notifications can be sent from within the traffic event details page, in which case the history of notifications will appear on the page, and some user efficiencies will be available due to the fact that the system knows information about the traffic event for which a notification is being sent. Users can also sent notifications that are not related to a traffic event, and view the history of all notifications that exist in the system (have not been moved offline).

5.1.3.1 Send Notification Associated with a Traffic Event

A button exists in a new “Notification” section of the traffic event details page to allow the user to send a notification related to the traffic event to groups and/or individuals. When the user chooses to send a notification, they will see a form such as the one shown below.

[image: image31.png]Send Event Notification - CHART - Windows Internet Explorer,

=4 CHART

Send Notification For: Incident @ I-97 EAST PAST US-50 [Other]

Available Groups. .
Show Individuals Selected Recipients.

[02 Trucks Buses Major
04 Baltimore City
06, Harford Co

01 CHART Major
102 Trucks Buses Major

103. Balt /North Major (Ba. Hr)
104 Batimore City sRemove
05.Baltimore Co

06, Harford Co

107.DC Major (Mo. PG. south AR)
08 Montgomery Co.

09_Prince Georges Co

10. Anne Arundel Co

11. Cenral Major (Ho. Ca. north AR)

Quickeing:| | Bsanswin

Update Prior Message 10-50 HAZMAT |~ SHA 10-code ~

Location Vehicles [~ Other Shortcuts

Lane Status All Lanes Open All Lanes Closed Scene Cleared

Figure 5‑19 Send Notification from Traffic Event

The top portion of the form is used to select the groups or individuals that are to receive the notification. If any user has previously sent a notification for the same traffic event, the Selected Recipients list will be pre-populated with the same recipient list used for the last notification sent. The user can set the recipient list by selecting groups from the left hand list and clicking the Add button to move the groups to the recipient list. Likewise, the user can select one or more recipients in the recipient list and remove them from the list. The Quick Find box is used to quickly filter the group list to allow the user to more easily find a group they are looking for. The user can type text (either a group number or part of a group name) to search for the group. If the Starts With box is checked, the search will be done from the beginning of the group number/name, otherwise the text typed by the user can appear anywhere in the group number/name. The most recently selected groups the user has sent a notification to will appear at the top of the group list for easier selection in the future.

If the user wishes to select individuals to add to the recipient list, they can click the Show Individuals link above the group list. This changes the form slightly as shown below, but retains the current recipient list the user is working on.

[image: image32.png]Send Event Notification - CHART - Windows Internet Explorer,

=4 CHART

Send Notification For: Incident @ I-97 EAST PAST US-50 [Other]

Available Individuals

(Show Groups) Selected Recipients

<<Remove

quickeng:| |

Enter the first letter of a person’s last name to display the list. Show All

Update Prior Message 10-50 HAZMAT |~ SHA 10-code ~

Location Vehicles [~ Other Shortcuts

Lane Status All Lanes Open All Lanes Closed Scene Cleared

[

Figure 5‑20 Select Individuals for Notification

 When the user chooses to select individuals, the list of individuals to choose from initially appears empty. This is because the list of individuals can be very large, and it is likely that the user will at least know the first letter of the person’s last name to allow the list of selections to be significantly reduced in size. The user can use the Show All link to see a list with every individual known to the system. The Quick Find box works the same way as it does for the group list, except that there are no numbers assigned to individuals as there can be with groups. The user simply narrows the list of individuals by typing one or more letters of the last name they are searching for, selects one or more individuals, and clicks the Add button to add the individuals to the recipient list.

The bottom portion of the Send Notification form is used to specify the message to be sent to the recipients. The Message text area allows the user to type the message they wish to send. The length of the message will be shown below the text area when the user begins typing. If the user’s message length exceeds a system defined warning threshold, a warning indicator will appear next to the length. The warning threshold is used to identify the maximum length message supported by all pager models used in the system. If a message exceeds the warning threshold, the notification may result in multiple notifications being sent so that the entire message can be delivered.

Below the Message text area will appear a number of typing shortcuts. Most can be configured via the system profile, and others appear automatically to allow data from the traffic event to be inserted into the message. The shortcuts configurable in the system profile are “10” codes, Other Shortcuts, and One Click shortcuts. The user can specify the text to appear for user selection, and the text that will be appended to the message if the user selects that typing shortcut. The “10” codes and Other Shortcuts will be drop down lists, while One Click shortcuts will appear as links. The shortcuts related to traffic events will appear as applicable based on the data currently entered into the traffic event. The possible links are as follows:

· Update – prepends the word UPDATE: to the message. Using this in conjunction with Prior Message is a convenient way for a user to provide an update to a previously sent notification.

· Prior Message – appends the prior notification message sent from this traffic event. Useful when only a portion of the message needs to be changed for an update. Only appears if at least one notification has been sent from the traffic event.

· Location – appends the traffic event location for this traffic event. Only appears if a user has entered a location for the event.

· HAZMAT – inserts the word “HAZMAT”. Only appears if the traffic event is an incident and its Hazmat indicator has been selected.

· Lane Status – inserts the current lane status. Only appears if the lane status has been set in this traffic event.

· Vehicles – inserts the number of vehicles involved in this traffic event. Only appears if the traffic event is an incident and the vehicles involved fields have been specified.

· All Lanes Open, All Lanes Closed, and Scene Cleared are shortcuts that will always appear when sending a notification from a traffic event. They result in ALO, ALC, and SCENE CLEARED being appended to the message, respectively.

The Initials entry field that appears below the typing shortcuts is an optional field that lets the user enter initials to be automatically appended to the message when it is sent. If the user enters initials in this field, the system will remember their entry and automatically populate the field the next time they send a notification. The length of the initials field will be factored into the total message length and the associated warning indicator.

5.1.3.2 View Notifications Associated with a Traffic Event

The traffic event details page contains a section where alerts previously sent from the traffic event are shown, and where new notifications can be sent. Other buttons that apply such as False Alarm or Close Event will also appear in this section, as they do in other sections.

[image: image33.png]Notification

Time Sent Recipients Status Message Actions
12:30PM | CHART Major 12/15 Sent | 10-50 LEFT LANE BLOCKED W/B MD 450 @ OLD SOLOMONS ISLAND | (ori

RD. TRASH TRUCK INVOLVED AA Co

‘Send Noiication False Alam

Figure 5‑21 Notifications in Traffic Event

A row will appear in the table for each notification sent. The time the notification was sent, the recipients to which the notification was sent, the current status, and the message sent are shown. The Status is a summary that shows the number of recipients to which the notification was sent without error, and the total number of recipients that were specified to receive the notification. The details link provides access to a page that provides more detailed status, such as the status of the notification for each recipient.

[image: image34.png]R

CHART

Main Window Help

Notification Details

Time Sent: 11/01/07 11:46 AM
10-50 LEFT LANE BLOCKED W/B MD 450 @ OLD
Message: 'SOLOMONS ISLAND RD. TRASH TRUCK INVOLVED AA
Co
Traffic Event:
Recipient Status
Doe, John Sent 11/01/07 11:46:34 AM

Doe, Jane

Sent 11/01/07 11:46:34 AM

Figure 5‑22 Notification Details

5.1.3.3 View Notification Status

A new menu item will appear within the existing home page navigation area to allow users with appropriate rights to view the status of notifications sent from the system.

[image: image35.png]Notification

Schedules

Change User
View Command Status

Transfer Resources

Figure 5‑23 Notification Link On Home Page

Clicking the notification link causes the notification status page to be shown. This page will include notifications associated with traffic events as well as those sent from outside traffic events. The system will automatically take notification history offline after a certain (configurable) period of time; only those that are online will be viewable on the notification history page.

[image: image36.png]* CHART - Windows Internet Explorer,

tor IS I)

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaqing | Home Page | Pading | Map | Traffic
Events | Help.

Notification Status

Show Traffic Event Notifications Send Nofification

Traffic Event Status | Actions

10-50 LEFT LANE BLOCKED W/B MD 450 @ OLD | Incident @ MD 450 WEST AT OLD Details
RAVENSTOC 12/15Sent |R2tale

12:30PM | SOLOMONS ISLAND RD. TRASH TRUCK INVOLVED AA | SOLOMONS ISLAND RD [Collision,
Co Property Damage] Recipients
Details

INWS HAS ISSUED A SEVERE THUNDER STORM
WARNING FOR MONTGOMERY COUNTY UNTIL 1830 RAVENSTOC 15/15sent |pEAEE

HOURS

Time Sent

Wiiries o -

Figure 5‑24 Notification Status

This page shows the time each notification was sent, the notification message, the associated traffic event (if any), the Operations Center that sent the notification, the user that sent it, and the status summary. The Traffic Event (when shown) is a link to the details page for that traffic event. The Details link in the Actions column shows the details of the notification, as described in 5.1.3.2 above. The Recipients link in the Actions column will show a popup on the page that lists the recipients, without showing a new page.

The Notification Status page allows the user to control the number of entries shown on each page. They can use links above and below the currently shown entries to see the next page of newer entries, or older entries, and can jump directly to a page by clicking a page number. The number of entries per page selected by the user will be stored on their machine under their Windows username and will be used the next time they view this page.

5.1.3.4 Send Notification Not Associated with a Traffic Event

The Notification Status page contains a Send Notification button to allow users to send notifications that are not associated with traffic events. When this button is pressed a form appears to allow the user to specify the recipients and the notification message.

[image: image37.png]Send Notification - CHART - Windows Internet Explorer

=4 CHART

Send Notification

Available Groups.

‘Show Individuals Selected Recipients

[02 Trucks Buses Major
04 Baltimore City
06, Harford Co

102 Trucks Buses Major

103. Balt/North Major (Ba. Hr)

04 Baltimore City

05, Balimore Co.

106 Harford Co

107.DC Major (Mo. PG. south AR)
108 Montgomery Co.

03, Prince Georges Co.

10 Anne Arundel Co

1. Cential Major (Ho. Ca. north AA)
12 Howard Co

Quickeine:|]

Update Prior Message |~ SHA 10-code ~

Figure 5‑25 Send Notification Outside Traffic Event

The form for sending a notification not associated operates in the same manner as when sending a notification from the traffic event details page (see 5.1.3.1 above), with the following exceptions:

· The recipient list is never prepopulated

· The most recently used groups and individuals that appear in the group and individuals selection lists will be the most recently used for notification outside a traffic event (recipients used within a traffic event will not affect these)

· The Prior Message link will cause the prior notification message sent from the logged in user outside of a traffic event to be appended to the Message text area. Once the user logs out their “prior message” will be lost – prior message only pertains to messages sent within the same login session

· The shortcuts that depend on data pertaining to a traffic event, such as Lane Status, etc. will not appear

· Only one click typing short cuts, SHA 10 codes, and Other shortcuts that are configured to pertain to notifications sent outside of traffic events will appear

5.1.4 Device Plan Searching and Sorting

Enhancements to device plans are included to allow them to be more easily managed and more easily used in traffic events. When adding or editing a device plan, the use can specify attributes that apply to the plan, and these attributes can later be used to filter plan lists to allow the user to more easily find the plan they are looking for. Another enhancement will provide a shortcut for the administrator to add multiple plan items to a plan that use the same library message.

5.1.4.1 Specify Filter Attributes

When adding or editing a device plan, the user will be able to specify attributes that apply to the plan. The use can add new filters to the plan by selecting any of the filters shown in the drop down lists on the bottom left portion of the form. They can remove existing filters by selecting them in the list on the right and clicking the remove button. Or they can remove all filters by clicking the Clear button. Changes are not saved until the user submits the form using the OK button.

[image: image38.png]* Add Plan - CHART - Windows Internet Explorer

==l comm Sourc

i T)

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Lo
Instant Messading | Home Page | Paaing | Map | Traffic Events | Help

Add New Plan

Plan Name:

Filtering Attributes (optional)
Use the following fields to set the filter attributes this plan will match.

Event Type: —Select ToAdd — v

|Alias: ANY
Op Center: —SelectToAdd— v 85&;’;%::: ANY
Keyword(e): I)
(comma-delimited)
County/Region: | Sclect To Add— 2
Location Alias: —Select To Add — v

Selected Filter Attributes

Figure 5‑26 Add Device Plan

The following filter types are available; the user can select multiple filters from each category and is not required to select any filters from any category – all filters are optional.

· Event Type: Contains a list of the traffic event types available in the system (such as incident and disabled vehicle)

· Op Center: Contains a list of the Operations Centers currently defined in the system

· Keyword(s): Allows one or more keywords to be associated with the plan. This provides a way to classify plans in any way the organization sees fit. Example keywords are “holiday” and “orioles”.

· County/Region: Contains a list of counties and regions defined in the system

· Location Alias: Contains a list of location aliases that matches the list that appears in the Alias field of the existing “Create Traffic Event” form on the home page

After configuring the filters for the plan, the data is saved when the user submits the form using the OK button.

5.1.4.2 Create Multiple Plan Items

The current forms used to add DMS or HAR plan items to a device plan is being enhanced to allow the user to add multiple plan items that utilize the same library message with a single form. In R3B1 and prior, the user had to enter the items individually, even if they used the same library message. This feature has not been prototyped; the current form for adding a DMS plan item is shown below, with the area that will be changed to allow multiple device selection highlighted.

[image: image39.png]/* Add DMS Plan ltem - CHART - Windows Internet Explorer

== Ccomm

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant
Messaaing | Home Page | Paging | Map | Traffic Events | Help.

Add DMS to Plan: my plan 3

No DMS Selected

To select a DM use the Select or Search buttons below. This section of.
the form will
be changed to

Il tipl
Library: My Library 1 v device seloction

Messages in Selected rary: My rary 1

Description Category Message Minimum Columns
@ sign Under Test ‘SIGN UNDER TEST

‘Add1o Plan

Top | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaging | Home Page |

T G iocarirare: oo

Figure 5‑27 Existing Add DMS Plan Item Form
5.1.4.3 Manage Plans

The existing Manage Plans page is being enhanced to allow the user to filter the list of plans using filter attributes previously assigned to the plans.

[image: image40.png]*Plan List - CHART - Windows Internet Explorer

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaging | Home Page | Paging |
Map | Traffic Events | Help

Plans @

‘Show All

Event Type | Used |Actions

11/01/07 | Remove

11/01/07 | Remove

Add plan

Wiiias TR

Figure 5‑28 Manage Plans

In the production system, there can be hundreds of plans, making the list of Plans unmanageable. The enhancements to this page provide filtering fields on the left side that allow the user to narrow the list of plans that are shown based on filter attributes assigned to each plan via the Add or Edit process (see 5.1.4.1 above).

The Filters label on the top left shows the current filter in place. The user can remove all filters by clicking the Show All link. The Match radio buttons allow the user to choose how the attributes should be required to match the selected filters to be displayed (instead of filtered out). Any signifies that all plans that contain at least one of the filter attributes specified by the current filter are to be shown. All signifies that plans must contain all of the filter attributes specified by the current filter to be shown. None signifies that only plans that don’t have any of the attributes specified by the selected filter are shown.

The Contains Text section of the form allows the user to type free form text to create a filter that will match only plan items that contain the specified text in the specified data fields. The data fields supported are the plan name, the keyword attributes specified via the Add or Edit operation, in the text of a message in a plan item contained in the plan, or in the device name of a plan item contained in the plan.

The Other Filters section is used to specify filters from various categories that are used to match the criteria assigned to a plan to decide if the plan should be displayed. If two or more filters are selected from the same category, they will be included in the filter in an “OR” relationship, regardless of whether the Match is set to any, all, or none. For example, if the user selects Montgomery County for the filter, and then selects Prince Georges County, the filter will be “Montgomery County OR Prince Georges County”.

The Connection Site category of filters is used to filter the list based on where the data for a plan is hosted (which server). This is useful for administrators to make sure that plans created for specific centers reside on the server local to that center in case inter-center communications should become lost.

5.1.4.4 Select Plan for Use In Traffic Event

The form used to select a plan or plan items for use in a traffic event response plan is enhanced to allow the user to more easily choose a plan applicable to the traffic event. This form contains a filtering mechanism on the left that operates identically to the one described in the section above, except that it does not include a Connection Site filter. In the center it lists the plans that meet the current filters, and on the right it shows the plan items contained in the selected plan.

[image: image41.png]Add Plan to Response Plan - CHART - Windows Internet Explorer

Add Plan Items to Response Plan: Incident @ MD 100 EAST
PAST MD 170 (RTE 100 AND 170 EXCHANGE) [Other]

Filters: Incidant

Match:
Oany @Al ONone

Contains Text:

&1 Plan Name
[@1n Keywords
Oin Message Text
[Cin Device Name

Other Filters:

— Event Type — v
— County/Region — v

—Op Center— v

CHART

Plans _show All

My Plan Name 3

Mi Plan Name 1 which could be iami \ani

Plan Ttems [Select All

Figure 5‑29 Add Plan to Traffic Event

When the form is first displayed, the system automatically includes a filter. The filter will always include the type of traffic event where the plan (or plan items) will be added. If the traffic event has a location alias specified, the matching location alias filter will also be included in the initial filter. If no location alias is specified by a County or Region is specified, the County or Region will be included in the initial filter. The form will initially display with only the Plans that meet this initial filter. If the initial filters leave a long list of plans, the user can apply additional filters as needed. If the initial list of plans doesn’t contain the plan the user is looking for, they can use the Show All link to remove all filters and view all the plans in the system.

When the user selects a plan, all of its plan items are shown and they are also selected, indicating the entire plan (all items) will be added to the traffic event’s response plan. The user can uncheck the Select All box if they wish to deselect items to exclude them from being added to the response plan. The user can also select individual items rather than deselect those that are already selected.

After the user has selected the plan or individual items they wish to be added to the response plan, they can click the Add Selected Plan (or Add Selected Items) button to submit the form, and the items will appear in the response plan section of the traffic event details page.

5.1.5 Enhanced Communications and Event History Logs

Both the communications log and the event history logs are enhanced to provide filtering capability and better browsing capabilities. On the communications log page, the user can filter to show only user generated messages, only system generated messages, or both.

[image: image42.png]Communications Log - CHART - Windaws Internet Explorer

== CHART

Main W

Communications Log

Source
[other [
Add Log Entry

[AddLogEnty][InSenice][OutOfService |

New Filters ,*w ([CreaetvemwiEmies / dipe

Newer 34567 1112 13 14 15 16 17 18 19 20 21 22 23 Older

Operations
Text Center

testlog entry 2 admin Other RAVENSTOC

testlog entry 1 admin Other RAVENSTOC

Newer 34567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Older

New entries per
Enriesperpage: 10 V] < Mor SOt

Figure 5‑30 Communications Log

The communications log page is also enhanced to allow the user to control the number of entries shown per page, and to navigate directly to a page number instead of having to view pages sequentially. The system will remember the user’s setting for number of entries per page and will use their last selected value the next time the communications log is viewed. The user can change the entry at any time while viewing the communications log.

The Search Communications Log form is also enhanced to allow users to choose if the search is to return user generated messages, system generated messages, or both.

[image: image43.png]Search Comm Log - CHART - Windows Internet Explorer

=4 CHART

Search Communications Log
Enter search criteria, then press the "Search” button.

User Messages:
System Messages:

Seard

Author:

Source Type: Unspecified v

Start Date:

Operations Centertame: ||

End Date:
Case Sensitive:

Figure 5‑31 Search Communications Log

Similar changes are included for the event history log, accessible from each traffic event. Users can filter a traffic event log to show only user generated messages, system generated messages that relate to a message being placed on a device, all messages, or some combination of the above.

[image: image44.png]History - CHART, - Windows Internet Explorer

g

Event History: Incident @ MD 100 EAST PAST MD 170 (RTE 100 AND 170 EXCHANGE) [Other]

Add Log Entry

New Filters
cer Elevice Hessages [0mer Searn |
o1z

213 14 15 16 17 18 19 20 21 22 23 Older

Operations
Center

“Field Unit’ participation added RAVENSTOC 01/02/08 2:02 PM

County Mapping Code: " to ‘2. County FIPS code: " to '003".
County name: " to 'Anne Arundel County . Location text: " to
‘MD 100 EAST PAST MD 170 (RTE 100 AND 170 EXCHANGE)'.
USPS State code: " to 'MD'. State FIPS cod:

to 'Maryland’. Route specification typ

type: 'UNKNOWN' to 'STATE'. Route prefix: " to 'MD'. Route,
number: " . Roadway Location
Alias, public niame: " to Rte 100 and 170 Exchange’. Roadway RAVENSTOC 01/02/08 2:02 PM
Location Alias, internal name: " to '100_170". Intersecting
feature type: * to 'ROAD'. Intersecting feature proximit

to 'PAST. Intersecting feature proximity distance

Intersecting route specification typs

Intersecting route type: 'UNKNOWN' to 'STATE' Intersecting
road name: " to TELEGRAPH RD'. Intersecting route prefix: " to
"MD'. Intersecting route number: " to ‘170’

Time

Trafic vent Tnddent @ MD 100 EAST PAST MO 170 (RTE 100y navensToc | oi/02/08 2:02pu

Newer 345678

wiz
- N ntri
New diect _—TF s per g [10¥] e enes

page access

Figure 5‑32 Traffic Event History Log

In addition to filtering, the event history log is also enhanced to allow the user to control the number of entries shown per page, and to provide direct page access instead of requiring sequential browsing. The system will remember the user’s choice for number of entries per page and continue to use their last selected value each time this page is used.

The event history log search form is also enhanced to allow the user to specify search criteria to include user messages, system messages related to the change of a device message, and/or other system messages.

[image: image45.png]Search History - CHART - Windows Internet Explorer.

CHART

Search Event History
Incident @ MD 100 EAST PAST MD 170 (RTE
100 AND 170 EXCHANGE) [Other]

Enter search criteria, then press the "Search” button.

User Messages:
Device Messages:

Other (System) Messages:
Search Textr

Operations Center Name:
Author:

Source Type:

Start Date:

End Date:

Case Sensitive: o

[(searcn] [__Backto EventHistory

Figure 5‑33 Search Event History

5.1.6 External Events

The system allows users with the appropriate rights to view traffic events imported from the RITIS system. The user will be able to view a summary list of all external events (open, closed, or both), and to view the details of each event. The user will also be able to mark an external event as “interesting” and to filter based on that field. All external events marked interesting will also appear on every user’s home page in a special tab in the event list.

5.1.6.1 External Event Summary

The external event summary page is accessed using a new link in the “General” section of the home page navigation links.

[image: image46.png]

Figure 5‑34 External Event Summary Page Link

The event summary page shows the event description and location, direction, event type, originating agency, county/state, a lane closure graphic (if applicable), and a description of the vehicles involved (if applicable). It also contains a column that shows if an external event has been marked as “interesting” by a user, and allows users to toggle this setting. The user can sort the list by any of these columns, and can filter the list by any column except the event name/location. By default, only external events that are open are shown, however the user may choose to view the closed external events (that have not yet been archived) or to view both the opened and closed external events.
[image: image47.png]External Traffic Events

Sorted by [EveniType v
Event Description / Location EventTypes Agency — County/State 2nedlosures yepges
oy ¥ [y [o] [-ny- 8] [y ¥ oy = [y
Ioidank @ Us:1 SOUTH AT OF 26 (Other]
& B St wokexne) 0abor basware
... Cangestion E1ent © 1-495 NORTH AT VA 193
P S e Neth Compesontven voor aaxva
Disabled Vehice Event © 166 EASTATVA 123 sabled Vehica
B LG ESTATvA 125 00 g st DbledVehde oor pimagua
Planned Closuce © 50 WESTATVA 29
kv N o Wex Pbmedcoswe \oT Fafaxva III .i
S Fasgh e tussan Pavkon 2 Bt SpecalEent wor Far
o Nssan Favion Eancer aitax, VA
Action Event © 1303 NORTH AT GW PARKVAY
N N0 e Neh AmmEex wor adngtonva

View Closed External Events _Yiew All External Ev

Figure 5‑35 External Event Summary
5.1.6.2 External Event Details

A user may click on the event name link to view the details for an external event. The details page for an external event is read-only, except that users with appropriate rights can toggle the “interesting” indicator for the event, close the event, or associate the event with an existing internal CHART event. Only sections of the details page that apply to external events are shown. An external event’s details page will not contain the Notification, Participants, Response Plan, or Merge sections, even if they would otherwise be applicable to a CHART internal event of the same type. Only data that can be effectively mapped from fields in the external system to fields in the CHART system will be shown.
[image: image48.png]Incident @ US-1 SOUTH AT DE 26 [Other]
(External Event, Open; Controlled By RITIS)

Initiated from extemal system : TESTEXT, agency: DelDOT , event: 1234567890abedef

Generalinfo InddentInfo Roadway Condiions Event History Associated Events

General Event Information

Event Name

Event Description
Interesting Flag:
Source

Max Queve Length (mi)
Opened

Confirmed

Delay Cleared

Scene Cleared

Open Event Remind
Time

Web Alert

Web Alert Text

Location Information

Incident © US-1 SOUTHAT Location Description US-1 SOUTH AT DE 26

DE 26 [Other]

VES (changs)

00
04/15/08 13:03
o
no
o

04/16/08 11:51
NOT ENABLED

County.
Region

State Delaware
Route Type Us Route
Route us1
Direction South
Point Along Roadway AT DE 26
Lat/Long Not defined

Figure 5‑36 External Event Details Page

5.1.6.3 Interesting External Events

Users with appropriate rights can toggle a flag to indicate an external event is “interesting”, meaning it is of interest to users of CHART. Users can also remove the flag if already set. All open external events that are marked as “interesting” are shown on a special tab on the CHART home page.
[image: image49.png]bl o B 9 A - |-

Type

P4
fez

Name County /state

Incident @ US-1 SOUTH AT DE 26 [Other] Delavare

Location: US-1 SOUTH AT DE 26

Congestion Event @ 1-405 NORTH ATVA 193 Fairfax, VA
Location: 1-495 NORTH AT VA 153

Lane Closures

X
X

New Tab

For Interesting
External Events

Figure 5‑37 Interesting External Events on Home Page

The right hand column on the interesting external events tab allows a user with appropriate rights to remove the “interesting” flag from an external event and effectively remove an external event from this tab. Even if removed from this tab, the event will still be viewable on the external events summary page.
5.1.6.4 External Interface Connection Status

 The system will contain a feature that shows the external system (RITIS) connection status on the external event summary page and the external event details page. By default, the connection status will only be shown if the connection is failed. A system setting will allow an administrator to change this default setting and cause the connection status to always be shown. The system will also provide a feature that causes the external events on the external event summary page to be hidden if the external system connection has been failed for a specified amount of time. An administrator will be able to set the amount of time the connection must remain failed before the system hides the list. An administrator can also disable the feature, or set the amount of time such that the list of external events is never hidden.
[image: image50.png]External System Connections

System Status Status Time Failed Since
RS ok aa NA

Figure 5‑38 External System Connection Status

5.2 Action Utility
5.2.1 Classes

5.2.1.1 ActionExecutionClasses (Class Diagram)

This diagram shows classes and interfaces used to provide generic capability for executing Actions in the system. The GUI can use this framework for allowing users to manually execute a group of actions, such as those in a schedule. In the future, this framework could be used by the server to execute actions without user interaction.

[image: image51.emf]getTrafficEventFactoryOfferIterator():Iterator

getTrafficEventDataProvider(Identifier:id):TrafficEventDataProvider

createCommandStatus(cmdDesc:String):CommandStatus

«interface»

ActionExecutionSupporter

m_id:Identifier

m_haltOnFailure:boolean

ActionExecutionGroup(actions:ActionData[])

getActions():ActionExecuter[]

excludeAction(index:int):void

executeSequentially(token:byte[],supporter:ActionExecutionSupporter, haltOnFailure:boolean):void

getNumActions():int

getNumActionsExcluded():int

getNumActionsPending():int

getNumActionsInProgress():int

getNumActionsCompleted():int

getNumActionsSucceeded():int

getNumActionsFailed():int

getNumActionsWarning():int

getOverallStatusSummary():String

ActionExecutionGroup

OfferWrapper

TraderGroup

createCommandStatus not needed for R3B2, but may

be needed by future ActionExecuters. Don't implement.

getTrafficEventType():short

getBasicEventData():BasicEventData

getResponsePlanItemData():ResponsePlanItemData[]

getResponseParticipationData():ResponseParticipationData[]

«interface»

TrafficEventDataProvider

execute(token:byte[],supporter:ActionExecuterSupporter):ExecutionStatus

cancel(supporter:ActionExecuterSupporter):void

getStatus():ExecutionStatus

getActionDescription():String

setExcluded(exclude:boolean):void

«interface»

ActionExecuter

EXCLUDED

PENDING

IN_PROGRESS

COMPLETED

«enumeration»

ExecutionState

getTrafficEventID():Identifier

OpenEventActionExecuter

NOT_EXECUTED

CANCELED

OK

WARNING

FAILURE

«enumeration»

ExecutionResult

m_state:ExecutionState

m_result:ExecutionResult

m_msg:String

getState():ExecutionState

getResult():ExecutionResult

getStatusMsg():String

setState(state:ExecutionState):void

setResult(result:ExecutionResult):void

setStatusMsg(msg:String):void

setCompleted(rslt:ExecutionResult, msg:String):void

ExecutionStatus

«struct»

OpenEventActionData

OfferWrapper

«interface»

TrafficEventFactory

finds traffic event

factory using

1 1

finds traffic event

factory using

1

1

1

1

uses

1 1

uses

1

1

1

1

creates new event using

1 1

creates new event using

1

1

1 1

1

*

gets event data

to be copied using

1

1

gets event data

to be copied using

Figure 5‑39. ActionExecutionClasses (Class Diagram)
5.2.1.1.1 ActionExecuter (Class)

This interface is implemented by classes that can be used to execute an Action, such as opening a traffic event.

5.2.1.1.2 ActionExecutionGroup (Class)

An ActionExecutionGroup is a group of related actions that are to be executed. The group is constructed using an array of ActionData objects. An ActionExecutor for each type of action will be created, with the actions beginning in the "Pending" state. The group of actions can then be executed using a variety of methods. For R3B2, only sequential execution will be supported. It is anticipated that in the future parallel execution would be supported, or other types of execution patterns. For R3B2, sequential execution supports a flag that indicates if execution on the group should stop if an error is encountered. When this feature is enabled, all actions net yet executed when the failure occurs will be canceled, and they will end up in the COMPLETED state, with a status of CANCELED. It is anticipated that the haltOnFailure flag will always be set to "false" for R3B2. In addition to providing the capability to execute a group of actions, this class provides the ability to retrieve status regarding execution of the group, such as the number of actions in certain states, and an overall status summary. The entire list of ActionExecuter objects can also be retrieved from this object to obtain a detailed status of each.

5.2.1.1.3 ActionExecutionSupporter (Class)

This interface is implemented by classes that can provide support for ActionExecuter objects in performing the execution of their assigned action. Note that the createCommandStatus method is for future use and is not needed for R3B2. It is shown on this diagram to illustrate support for future actions that execute a long running operation that requires a command status.

5.2.1.1.4 ExecutionResult (Class)

This enumeration is used to indicate the result of executing an ActionExecuter. The NOT_EXECUTED value is a place holder in case the completion result is requested for an ActionExecuter that is not yet finished executing. The CANCELED value indicates execution of the action was canceled prior to it executing, which is usually the result of the ActionExecutionGroup cancelling the execution of actions in the group due to the failure of a previously executed action in the group. OK indicates the action completed OK, FAILURE indicates the action failed, and WARNING indicates completion with a warning, or partial completion.

5.2.1.1.5 ExecutionState (Class)

This enumeration lists the states that an ActionExecuter may be in. EXCLUDED indicates the action executer has been excluded and will not be executed (usually by user request). PENDING indicates it is waiting to be executed. IN_PROGRESS indicates the action is in the process of executing, and COMPLETED indicates that execution of the action is complete.

5.2.1.1.6 ExecutionStatus (Class)

This class is used to hold the status of an ActionExecuter. It holds the state of the executer, the result code (only applicable if state is COMPLETED), and a text status.

5.2.1.1.7 OfferWrapper (Class)

An OfferWrapper provides the ability find one instance of a remote service and establish a connection to it. It does this by searching Traders looking for all Offers of a particular service type. Once a connection is established, the connection is reused for subsequent calls. If the connection fails this class begins its search again until it finds a working connection.

5.2.1.1.8 OpenEventActionData (Class)

This IDL struct represents the data used to describe an open event action in a schedule.

5.2.1.1.9 OpenEventActionExecuter (Class)

This class is an ActionExecuter that performs the "OpenEvent" action. When executed, it makes a copy of a pending traffic event and opens it.

5.2.1.1.10 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.2.1.1.11 TrafficEventDataProvider (Class)

This interface is implemented by classes that can provide data from a traffic event. This interface exists because traffic event data may be accessible in different forms depending on where the ActionExecutionGroup (and related classes) are being used. For example, the data for a traffic event may be accessible via a cache of traffic event data or via a CORBA object reference.

5.2.1.1.12 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

5.2.2 Sequence Diagrams

5.2.2.1 ActionExecutionGroup:constructor (Sequence Diagram)

This diagram shows the processing performed when an ActionExecutionGroup is constructed. The constructor is passed an array of ActionData objects (defined in IDL). It creates an ArrayList that will hold ActionExecutor objects it creates. A loop is performed through the ActionData objects, checking the action type and constructing the appropriate type of class that implements ActionExecuter. For R3B2, only ActionData of type ACTION_TYPE_OPEN_EVENT is supported. In the future, other types of actions could be supported by the constructor. When the action type is ACTION_TYPE_OPEN_EVENT, an OpenEventActionExecuter is created, and it creates an ExecutionStatus object with the current state set to "PENDING". The OpenEventActionExecuter is then added to the ActionExecutionGroup's ArrayList.

[image: image52.emf]add(OpenEventActionExecuter)

ArrayList<ActionExecuter> ExecutionStatus discriminator() createOpenEventActionData [ActionType == ACTION_TYPE_OPEN_EVENT] create(OpenEventActionData) m_state = PENDING [for each ActionData]ObjectActionDataOpenEventActionExecuter createActionType [ActionType == ACTION_TYPE_OPEN_EVENT] openEventActionData() [ActionType != ACTION_TYPE_OPEN_EVENT]Exceptioncreate ActionExecutionGroup

Figure 5‑40. ActionExecutionGroup:constructor (Sequence Diagram)

5.2.2.2 ActionExecutionGroup:executeSequentially (Sequence Diagram)

This diagram shows the processing that takes place when the ActionExecutionGroup executeSequentially method is called. A loop is executed and in each iteration, it determines if the "haltOnFailure" flag is true, and if it is, determines if a prior failure occurred. In the case where the flag is false or a failure has not occurred, the ActionExecuter's execute method is called. For R3B2, only the OpenEventActionExecuter class will implement the ActionExecuter interface; details of it’s execute method can be found on the OpenEventActionExecuter.execute diagram. When the execute method returns, the result code is checked for failure. If the haltOnFailure flag is true AND a prior call to ActionExecuter.execute() resulted in a failure, the processing done in the loop is to call ActionExecuter.cancel() instead of execute() to cancel the remaining actions. When an action is canceled, it simply sets its status to COMPLETED/CANCELED.

[image: image53.emf]SystemActionExecutionGroupActionExecuter For R3B2, the only class that implements ActionExecuter will be the OpenEventActionExecuter. See the OpenEventActionExecuter.execute() diagram for details. ExecutionStatus If the "haltOnFailure" flag is set to false OR no failure has occured, perform the following: executeSequentially()ExecutionStatus COMPLETED or EXCLUDED [for each ActionExecuter]setCompleted(CANCELED)

[COMPLETED]

getResult()

If the "haltOnFailure" flag is set to true AND one of the previous

ActionExecuters returned a result of FAILURE, perform the following:

execute() getState() cancel()

Figure 5‑41. ActionExecutionGroup:executeSequentially (Sequence Diagram)

5.2.2.3 OpenEventActionExecuter:execute (Sequence Diagram)

This diagram shows the processing that takes place when the execute method is called on an OpenEventActionExecution object. The OpenEventActionExecution object is an ActionExecuter whose job is to open a new traffic event that is a copy of an existing traffic event. The OpenEventActionExecution contains the ID of the traffic event to be copied and opened. If the OpenEventActionExecution object is set to be excluded, the execute method returns right away without performing any processing. Otherwise, it calls the ActionExecutionSupporter to obtain a TrafficEventDataProvider for the traffic event with that ID, which is an interface implemented by an object that can provide information about the traffic event. This interface will be implemented in the GUI to obtain the WebTrafficEvent object (which will implement the interface) from the GUI object cache. The data needed to open the new traffic event is obtained from the TrafficEventDataProvider. An Iterator is then obtained from the ActionExecutionSupporter. This iterator allows multiple traffic event factories to be contacted to create the new event in case of failure. In the GUI, this iterator will be provided by a PrimaryFirstOfferWrapper which has logic to prefer the server closest to the GUI where the operation is being processed. The next() method is used to obtain a TrafficEventFactory from the iterator. The factory's createTrafficEvent() method is called to create the new traffic event. If the traffic event cannot be created, the next factory is retrieved from the iterator and another attempt is made to create the traffic event. This loop continues until the traffic event gets created, or all factories in the iterator have been tried. The OpenEventActionExecution object's ExecutionStatus object is updated accordingly, and the execute method returns to the ActionExecutionGroup.

[image: image54.emf]Note: factory will do the user rights check - no additional check here. GUI will automatically exclude actions for which the user doesn't have rights, so user rights failure unlikely. setComplete()

[success]

break loop

createTrafficEvent(type, BasicEventData, ResponseParticipationData[], ResponsePlanItemData[])setState(IN_PROGRESS) TrafficEventFactory If success, then set result to OK, no message.

If couldn't create in any factory, set result to

FAILED, with message stating that fact.

If creation warning message from factory,

set result to WARNING with warning msg.

next() TrafficEventFactory Iterator Implementation of this interface in the GUI will return an Iterator from PrimaryFirstOfferWrapper getTrafficEventFactoryOfferIterator()IteratorgetBasicEventData() BasicEventData getResponseParticipationData() ResponseParticipationData[] getResponsePlanItemData() ResponsePlanItemData[] getTrafficEventType() short ActionExecutionGroupOpenEventActionExecuterActionExecutionSupporter TrafficEventDataProvider Implementation of this interface in the GUI will retrieve the WebTrafficEvent from the GUI Cache. execute()[state == EXCLUDED]returngetEventDataProvider(trafficEventID)TrafficEventDataProviderExecutionStatus TrafficEventCreationResult [while Iterator.hasNext()]

Figure 5‑42. OpenEventActionExecuter:execute (Sequence Diagram)

5.3 Alert Module

5.3.1 Class Diagram

5.3.1.1 AlertManagement (Class Diagram)

This class diagram shows the system interfaces that make the AlertManagement capability of CHART2 system.

[image: image55.emf]AlertFactory«interface»UniquelyIdentifiable«interface»AlertState«enumeration»AlertCreationResult«datatype»AlertTypeDiabledException«exception»11111ActionDetail is a union, withActionType as the discriminator.OpenEventActionData is the onlypossible type for R3B2.ExtendedAlertData«datatype»AlertData«datatype»AlertHistory«datatype»AlertAction«enumeration»GenericAlert«interface»DeviceFailureDeviceType«enumeration»DeviceFailureAlert«interface»DeviceFailureAlertData«datatype»DuplicateEventAlert«interface»DuplicateEventAlertData«datatype»EventStillOpenAlert«interface»EventStillOpenAlertData«datatype»UnhandledResourcesAlert«interface»UnhandledResourcesAlertData«datatype»1111111111*111111111ExecuteScheduledActionsAlert«interface»ExecuteScheduledActionsAlertDataActionData«union»*1Alert«interface»AlertType«enumeration»AlertEventType«enumeration»AlertInfo«datatype»AlreadyAtMaxVisibilityException«exception»1getAlerts() : AlertInfo[]getOpenAlertIds() : Identifier[]createDeviceFailureAlert(token : AccessToken, deviceId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateDuplicateEventAlert(token : AccessToken, olderEventId : Identifier, newerEventId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateEventStillOpenAlert(token : AccessToken, eventId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateGenericAlert(token : AccessToken, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateUnhandledResourceAlert(token : AccessToken, deviceId : Identifier, desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultcreateExecuteScheduledActionsAlert(token : AccessToken, scheduleId:Identifier, execActionDataList:ActionData[] , desc string, initialVisibility : AlertManagementGroup[]) :AlertCreationResultAlertAddedAlertChangedAlertDeletedgetID()getName()alertId : IdentifiertheAlert : Alerttype : AlertTypeextAlertData : ExtendedAlertDatacreationWarningMessage : stringreason : stringALERT_TYPE_GENERIC_ALERTALERT_TYPE_UNHANDLED_RESOURCESALERT_TYPE_DEVICE_FAILUREALERT_TYPE_DUPLICATE_EVENTALERT_TYPE_TRAFFIC_EVENT_STILL_OPENALERT_TYPE_EXECUTE_SCHEDULED_ACTIONSreason : stringgetType(): AlertTypegetData() : AlertDatagetExtendedAlertData() : ExtendedAlertDataaddComment(token : AccessToken, comment : string) : voidescalate(token : AccessToken, comment : string) : voidaccept(token : AccessToken) : voidacceptWithDetails(token : AccessToken, reminderTimeMsec : unslgned long, comment : string) : voidsetAcceptTimeout(AccessToken token, reminderTimeMsec : unslgned long, comment : string) : voidunaccept(token : AccessToken) : voiddelay(token : AccessToken) : voiddelayWithDetails(token : AccessToken, reminderTimeMsec : unslgned long, comment : string) : voidsetDelayTimeout(AccessToken token, reminderTimeMsec : unslgned long, comment : string) : voidundelay(token : AccessToken) : voidclose(token : AccessToken, comment : string) : voidid : Identifiertype : AlertTyperef : AlertALERT_STATE_NEWALERT_STATE_ACCEPTEDALERT_STATE_DELAYEDALERT_STATE_CLOSEDgetFailedDeviceId() : IdentifiergetDeviceType() : DeviceFailureDeviceTypegetDeviceFailureAlertData() : DeviceFailureAlertDatagetNewerEventId() : IdentifiergetOlderEventId() : IdentifiergetDuplicateAlertData() : DuplicateEventAlertDataalertId: Identifierdescription: stringtype: AlertTypedescription: stringstate: AlertStateresponsibleUser: stringresponsibleCenterInfo: OpCenterInfoalertCreationTime: datetimealertCurrentVisibility: AlertManagementGroup[]alertNextVisibility: AlertManagementGroup[]nextActionTimeMsec : unsigned longalertLastStateChangeTime: unsigned longalertHistory : AlertHistory[]getEventId() : IdentifiergetEventStillOpenAlertData() : EventStillOpenAlertDataDEVICE_TYPE_DMSDEVICE_TYPE_TSSgetOpCenterId() : IdentifiergetUnhandledResourcesAlertData() : UnhandledResourcesAlertDatabaseAlertData: AlertDataeventId: IdentifertypeOfFailedDevice: DeviceFailureDeviceTypetimestamp: unsigned longstate: AlertStateaction: AlertActionopCenterId: Identifieruser: stringuserComment: stringnextActionTimeMsec : unsigned longaddedVisibility: AMGListgetExecuteScheduledActionsAlertData() : ExecuteScheduledActionsAlertDatabaseAlertDate: AlertDatanewerEvent: IdentifierolderEvent: IdentifierALERT_ACTION_CREATEALERT_ACTION_ACCEPTALERT_ACTION_UNACCEPTALERT_ACTION_DELAYALERT_ACTION_UNDELAYALERT_ACTION_CLOSEALERT_ACTION_ADD_COMMENTALERT_ACTION_ESCALATEALERT_ACTION_EDITbaseAlertData: AlertDataeventId: Identiferunion on AlertTypecontains appropriate type-specific AlertData structbaseAlertData: AlertDataopCenterId: IdentifierbaseAlertData: AlertDatascheduleId: IdentifierschedActions: ActionData[]discriminator: ActionTypeopenEventActionData: OpenEventActionData

Figure 5‑43. AlertManagement (Class Diagram)

5.3.1.1.1 ActionData (Class)

This IDL union holds the data used to describe a schedule action. It has been designed as a union discriminated by the enumeration ActionType to support schedule actions to be determined in future releases of CHART. Currently the only supported variant is the OpenEventAction.

5.3.1.1.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.3.1.1.3 AlertAction (Class)

This IDL enumeration defines the actions that can be done to an Alert.

5.3.1.1.4 AlertCreationResult (Class)

This IDL struct represents the data that will be returned as a result of an alert creation using the AlertFactory calls. It includes: alert id, alert CORBA reference, alert type, extended alert data, and a warning string used to describe non-fatal conditions when creating the alert.

5.3.1.1.5 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.3.1.1.6 AlertEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the AlertModule. Its primary use is as a discriminator value used when handling AlertEvents. These can either be Alert Added, Changed, or Deleted.

5.3.1.1.7 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts and storing alert information on the alerts that it created.

5.3.1.1.8 AlertHistory (Class)

This IDL struct contains information used to describe an action being done to an alert. A collection of these structs represents the history of the alert from beginning to end.

5.3.1.1.9 AlertInfo (Class)

This IDL struct contains information about an Alert in the system. Its primary use is to be returned as part of a list of AlertInfo objects in response to an AlertFactory's getAlerts() call.

5.3.1.1.10 AlertState (Class)

AlertState is an IDL enumeration of the four defined states for an Alert.

5.3.1.1.11 AlertType (Class)

AlertType is an IDL enumeration of the five Alert types.

5.3.1.1.12 AlertTypeDiabledException (Class)

This exception is thrown by the AlertFactory create operations if the alert type being created is disabled within the system. (Server-side clients can ignore this alert; GUI-side clients may wish to display this to the user.)

5.3.1.1.13 AlreadyAtMaxVisibilityException (Class)

This exception is thrown by the Alert escalate() operation if the alert is already at maximum visibility (no additional AMGs are configured in the backup set(s) of the AMG(s) in the current visibility list). Clients may wish to try escalation after receipt of this exception (or at any time the nextVisibility array is empty), in case an administrator may have modified the backup set of AMGs in the meanwhile.

5.3.1.1.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is implemented by classes representing DeviceFailureAlerts in the Chart2 System.

5.3.1.1.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.3.1.1.16 DeviceFailureDeviceType (Class)

The DeviceFailureDeviceType is an enumeration of the possible device failure types supported in a device failure alert.

5.3.1.1.17 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is implemented by classes representing DuplicateEventAlertsDevice in the Chart2 System.

5.3.1.1.18 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.3.1.1.19 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is implemented by classes representing EventStillOpenAlerts in the Chart2 System.

5.3.1.1.20 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.3.1.1.21 ExecuteScheduledActionsAlert (Class)

This IDL interface contains operations specific to an Execute Scheduled Actions alert. This interface is implemented by classes representing ExecuteScheduledActionsAlert in the Chart2 System.

5.3.1.1.22 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.3.1.1.23 ExtendedAlertData (Class)

ExtendedAlertData is a union of the four type specific alert datatypes: DeviceFailureAlertData, DuplicateEventAlertData, EventStillOpenAlertData, and UnhandledResourceAlertData. Note that the GenericAlert does not include any type specific data. The AlertType enumeration is used as the discriminator over the data in this union.

5.3.1.1.24 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is implemented by classes representing GenericAlerts in the Chart2 System.

5.3.1.1.25 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to an Unhandled Resources alert. This interface is implemented by classes representing UnhandledResourceAlerts in the Chart2 System.

5.3.1.1.26 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.3.1.1.27 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.3.1.2 AlertModule (Class Diagram)

This class diagram defined the classes in the AlertModule package. These classes define the AlertModule server. It utilizes generated IDL classes as wells as other Chart2 utility classes.

[image: image56.emf]New for R3B2 1 1 ExecuteScheduledActionsAlert«interface»NEW FORR3B2.* 1 1 1 AlertModuleProperties DBConnectionManager ServiceApplication «interface» 1 EscalateTimerTask 1 GenericAlert «interface» EventStillOpenAlert «interface» java.util.Properties DataModel 1 1 SeeProxyAlertClasses Class Diagram for details. 1 1 1 1 1 ProxyAlert 1ObjectCache DeviceFailureAlertData «datatype» DuplicateEventAlertData «datatype» EventStillOpenAlertData «datatype» 1 1 1 1 1 * 1 1 1 1 1 1 1 1 1 11 UnhandledResourcesAlertData «datatype» AlertData «datatype» 1 1 UniquelyIdentifiable«interface»1 1 1 1 11 UnhandledResourcesAlertImpl «implementationClass» UnhandledResourcesAlert «interface» GenericAlertImpl «implementationClass» DeviceFailureAlertImpl«implementationClass»DeviceFailureAlert«interface»AlertDB AlertFactoryImpl «implementationClass» AcceptDelayTimerTask 1java.util.Timer 1 11 1 AlertModule «implementationClass» java.util.TimerTask 1 1 ExecuteScheduledActionsAlertData 1AlertPrivateData ServiceApplicationModule «interface» 1 * PushEventConsumer 1 1 DuplicateEventAlert «interface» PushEventSupplier AlertImpl «implementationClass» Alert«interface»1 1 * DuplicateEventAlertImpl «implementationClass» 1 ArchiveTimerTask 1 1 AlertFactory«interface»EventStillOpenAlertImpl «implementationClass» 1 ExecuteScheduledActionsAlertImplalertFactoryImpl(factoryId : Identifier, svcApp : ServiceApplication, db : AlertDB, alertPushEventSupplier : PushEventSupplier, props : AlertModuleProperties) : ctor+checkAlertManageability(type: AlertType, visibiliity : AMG[]) : boolean+discoverOpCenters() : void+discoverRemoteAlerts() : void+escalateTimedOutAlerts() : void+findOpCenterConfig(opCenterId : Identifier) : OpCenterConfiguration+getBackupAMGsFor(currentVis : AlertManagementGroup[]) :AlertManagementGroup[]+getOpCenterConfigsFromTrader() : void+markTimedOutAlertsForArchiving() : void+reNewTimedOutAlerts() :void+shutdown() : void-addAlertTypesToTrader() : void-log(flags : string, method : string, txt : string) : void-logProd(method : string, txt : string) :void-pushAlertAdded(theAlert : Alert, extAlertData : ExtendedAlertData) :boolean-pushAlertDeleted(alertId : Identifier) : void-verifyUnique(extAlertData : ExtendedAlertData) : void-verifyUniqueLocally(extAlertData : ExtendedAlertData) : void-verifyUniqueRemote(extAlertData : ExtendedAlertData) : voidgetEscalateTimerStartupDelay() : int getEscalateTimerInterval() : int getAcceptDelayTimerStartupDelay() : int getAcceptDelayTimerInterval() : int getArchiveTimerInterval() : intPushEventConsumer(channel, pushConsumer) m_event_channel : EventChannel m_pushConsumer : CosEvent.PushConsumer getAlerts() : AlertImpl[] getAlert() : ExtendedAlertData setAlert(connMgr:DBConnectionManager, alert:ExtendedAlertData, privAlertPrivateData) : void setAlertOffline(id : Identifier) : void +getConnection() : java.sql.Connection +getCurrentOpenCursors() : int +releaseConnection() : void +shutdown() : void +verifyDBInitialized() : boolean +AlertImpl(id : Identifier, data : AlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor +equals(AlertImpl other) : boolean #changeState(AlertState newState) : boolean #compare(AlertImpl other) : boolean #escalateIfNecessary() : boolean -escalateIfNecessary(opCtrID:Identifier, comment:String, user:String) #getTypeSpecificData() : ExtendedAlertData #markOfflineIfNecessary() : boolean #persistAndPushAlert() : void #persistAlert() : void #performEscalation() : boolean #pushAlertAdded(theAlert : Alert, extAlertData : ExtendedAlertData) :boolean #reNewIfNecessary() : boolean #log(flags : string, method : string, txt : string) : void #logProd(method : string, txt : string) :void #logLockDone(lock : string) : void #logLockRcvd(lock : string) : void #logLockRqst(lock : string) : void initialize(ServiceApplication app):boolean getVersion() : ComponentVersion traderGroupUpdated() : void shutdown(ServiceApplication app):boolean ServiceApplication m_svcApp; DefaultServiceApplicationProperties m_props; +AlertImpl(id : Identifier, extData : ExtendedAlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor#compare(AlertImpl other) : boolean#getTypeSpecificData() : ExtendedAlertDataschedule() : void cancel() : void AlertModule() : ctor -createEventChannel(name) : PushEventSupplier -createAlertFactory() : boolean - addAlertFactoryTypesToTrader() : void run() +AlertImpl(id : Identifier, extData : ExtendedAlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor#compare(AlertImpl other) : boolean#getTypeSpecificData() : ExtendedAlertData+AlertImpl(id : Identifier, extData : ExtendedAlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor #compare(AlertImpl other) : boolean #getTypeSpecificData() : ExtendedAlertData PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier) getChannel():EventChannel; getMaxReconnectInterval(void):int; setMaxReconnectInterval(int seconds):void; push(Any data):void; disconnectPushConsumer(void):void; +AlertImpl(id : Identifier, extData : ExtendedAlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor #compare(AlertImpl other) : boolean #getTypeSpecificData() : ExtendedAlertData prevEscalationResetTime : Timestamp isOffline : boolean +AlertImpl(id : Identifier, extData : ExtendedAlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor baseAlertData: AlertData scheduleId: Identifier schedActions: ActionData[] +AlertImpl(id : Identifier, extData : ExtendedAlertData, factory : AlertFactoryImpl, pushEventSupplier : PushEventSupplier, svcApp : ServiceApplication, db AlertDB) : ctor#compare(AlertImpl other) : boolean #getTypeSpecificData() : ExtendedAlertDataalertId: Identifier description: string type: AlertType description: string state: AlertState responsibleUser: string responsibleCenterInfo: OpCenterInfo alertCreationTime: datetime alertCurrentVisibility: AlertManagementGroup[] alertNextVisibility: AlertManagementGroup[] nextActionTimeMsec : unsigned long alertLastStateChangeTime: unsigned long alertHistory : AlertHistory[] baseAlertData: AlertData eventId: Identifer typeOfFailedDevice: DeviceFailureDeviceTypebaseAlertDate: AlertData newerEvent: Identifier olderEvent: Identifier baseAlertData: AlertData eventId: Identifer baseAlertData: AlertData opCenterId: Identifier

Figure 5‑44. AlertModule (Class Diagram)

5.3.1.2.1 AcceptDelayTimerTask (Class)

This class implements the alert accept-and-delay timer task. It periodically inspects alerts in the accept state for those that have taken too long completion in the accept state. This accept timeout limit is established in the system profile for each alert. Similarly it periodically reviews the alerts in the delay state for those whose delay period has expired. As with the accept state timeout, the delay timeout period is established in the system profile for each alert type. When either the accept timeout or the delay timeout expires, this task calls into the AlertImpl to escalate the alert.

5.3.1.2.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.3.1.2.3 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.3.1.2.4 AlertDB (Class)

This class provides a database interface for the AlertModule. It includes methods needed to store and retrieve Alert related information.

5.3.1.2.5 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts and storing alert information on the alerts that it created.

5.3.1.2.6 AlertFactoryImpl (Class)

This AlertFactoryImpl class implements the IDL AlertFactory interface and is responsible for creating and managing the objects created to represent alerts (AlertImpls) in the Chart2 system.

5.3.1.2.7 AlertImpl (Class)

The AlertImpl class implements the IDL Alert interface. The AlertImpl class contains the base class functionality for all other alert types in the Chart2 system. Each instance of one of the AlertImpls derived types represents a specific alert.

5.3.1.2.8 AlertModule (Class)

This class provides the resources and support functionality necessary to serve alert related objects in a service application. It implements the ServiceApplicationModule interface which allows it to be served from any ServiceApplication.

5.3.1.2.9 AlertModuleProperties (Class)

This class provides operations for getting values in the service's java properties file.

5.3.1.2.10 AlertPrivateData (Class)

This class contains base alert data which is private to the AlertImpl class, Among the data stored in AlertPrivateData is the time of the previous escalation or reset time, and the isOffline flag to indicate the alert is ready for archiving.

5.3.1.2.11 ArchiveTimerTask (Class)

This class implements the alert archive timer task. It periodically sweeps through the closed alerts in the system for those alerts deemed old enough to be archived. If an alert is found that has aged beyond the system defined archive timer limit, it will set a flag on the alert to mark it for removal. At some later time a separate database task will run to remove and off-load these alerts to an archive file.

5.3.1.2.12 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.3.1.2.13 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.3.1.2.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is implemented by classes representing DeviceFailureAlerts in the Chart2 System.

5.3.1.2.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.3.1.2.16 DeviceFailureAlertImpl (Class)

The DeviceFailureAlertImpl class is derived from the AlertImpl class and implements the IDL DeviceFailureAlert interface. Type specific functionality is provided by this class for Device Failure alerts.

5.3.1.2.17 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is implemented by classes representing DuplicateEventAlertsDevice in the Chart2 System.

5.3.1.2.18 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.3.1.2.19 DuplicateEventAlertImpl (Class)

The DuplicateEventAlertImpl class is derived from the AlertImpl class and implements the IDL DuplcateEventAlert interface. Type specific functionality is provided by this class for Duplicate Event alerts.

5.3.1.2.20 EscalateTimerTask (Class)

This class implements the alert escalate timer task. It periodically checks the new alerts in the system for those that have not been accepted, delayed, or closed within the escalation timeout period. This timeout period is established in the system profile for each alert type. If an alert is found that has exceeded the escalation timer limit, a call into AlertImpl will be made to escalate the alert.

5.3.1.2.21 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is implemented by classes representing EventStillOpenAlerts in the Chart2 System.

5.3.1.2.22 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.3.1.2.23 EventStillOpenAlertImpl (Class)

The EventStillOpenAlertImpl class is derived from the AlertImpl class and implements the IDL EventStillOpenAlert interface. Type specific functionality is provided by this class for Event Still Open alerts.

5.3.1.2.24 ExecuteScheduledActionsAlert (Class)

This IDL interface contains operations specific to aExecute Scheduled Actions alert. This interface is implemented by classes representing ExecuteScheduledActionsAlert in the Chart2 System.

5.3.1.2.25 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.3.1.2.26 ExecuteScheduledActionsAlertImpl (Class)

The ExecuteScheduledEventAlertImpl class is derived from the AlertImpl class and implements the IDL ExecuteScheduledEventAlert interface. Type specific functionality is provided by this class for scheduled event alerts.

5.3.1.2.27 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is implemented by classes representing GenericAlerts in the Chart2 System.

5.3.1.2.28 GenericAlertImpl (Class)

The GenericAlertImpl class is derived from the AlertImpl class and implements the IDL GenericAlert interface. Any type specific functionality that may be implemented in the future would be provided by this class for Generic alerts.

5.3.1.2.29 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.3.1.2.30 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.3.1.2.31 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.3.1.2.32 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.3.1.2.33 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including the local service). The complete set of data for each alert is stored in the ProxyAlert, along with its ID and a reference to the Alert object it represents. These proxy alerts allow every alert module service in the system to have some knowledge of every alert in the entire system, for the quickly determining whether a proposed new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert class is the super class for derived classes for each specialized type of alert in the system, so that type specific data can be stored and accessed for each alert type, and can be queried for comparison for the Duplicatable isDuplicateOf() method.

5.3.1.2.34 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer implementation to an event channel, and maintaining that connection. When the verifyConnection method is called, this object will determine if the channel has been lost and will attempt to re-connect to the channel if it has.

5.3.1.2.35 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.3.1.2.36 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a Chart2service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.3.1.2.37 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.3.1.2.38 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to anUnhandled Resources alert. This interface is implemented by classes representing UnhandledResourceAlerts in the Chart2 System.

5.3.1.2.39 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.3.1.2.40 UnhandledResourcesAlertImpl (Class)

The UnhandledResourceAlertImpl class is derived from the AlertImpl class and implements the IDL UnhandledResourceAlert interface. Type specific functionality is provided by this class for Unhandled Resource alerts.

5.3.1.2.41 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.3.1.3 ProxyAlertClasses (Class Diagram)

This class diagram shows all classes related to the storage of proxy alerts in the object cache. The ProxyAlert class, and its subclasses, provide access to all alerts known to be in the system, so that an alert factory can quickly determine whether a requested new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again).

[image: image57.emf]*1 ObjectCacheProxyAlertAlertData«datatype»1ProxyGenericAlertProxyUnhandedResourcesAlertDuplicateEventAlertData«datatype»UnhandledResourcesAlertData«datatype»11111ProxyDeviceFailureAlertProxyEventStillOpenAlertEventStillOpenAlertData«datatype»111Duplicatable«interface»1111ProxyDuplicateEventAlertDeviceFailureAlertData«datatype»11DataModel1 ExecuteScheduledActionsAlertData ProxyExecuteScheduledActionsAlert Alert«interface»+getDeviceFailureAlertData() : DeviceFailureAlertData+setDeviceFailureAlertData(data : DeviceFailureAlertData) : void+isDuplicateOf(other : ProxyDeviceFailureAlert) :booleanm_deviceFailureAlertData : DeviceFailureAlertDataisDuplicateOf(type : Class, other : Duplicatable) : boolean+getDuplicateEventAlertData() : DuplicateEventAlertData+setDuplicateEventAlertData(data : DuplicateEventAlertData) : void+isDuplicateOf(other : ProxyDuplicateEventAlert) :booleanm_duplicateEventAlertData : DuplicateEventAlertData+getRef() : Alert+getAlertData() : AlertData+setAlertData(data : AlertData) : void+getExtendedAlertData() : ExtendedAlertData+isDuplicateOf(other : ProxyAlert): booleanm_ref : Alertm_alertData : AlertData+getEventStillOpenAlertData() : EventStillOpenAlertData+setEventStillOpenAlertData(data : EventStillOpenAlertData) : void+isDuplicateOf(other : ProxyEventStillOpenAlert) :booleanm_eventStillOpenAlertData : EventStillOpenAlertData+isDuplicateOf(other : ProxyGenericAlert) :boolean+getUnhandledResourcesAlertData() : UnhandledResourcesAlertData+setUnhandledResourcesAlertData(data : UnhandledResourcesAlertData) : void+isDuplicateOf(other : ProxyUnhandledResourcesAlert) :booleanm_unhandledResourcesAlertData : UnhandledResourcesAlertData+getExecuteScheduledActionsAlertData(): ExecuteScheduledActionsAlertData +setExecuteScheduledActionsAlertData(data : ExecuteScheduledActionsAlertData) : void +isDuplicateOf(other : ProxyExecuteScheduledActionsAlert) :boolean m_proxyExecuteScheduledActionsAlertData: ExecuteScheduledActionsAlertData

Figure 5‑45. ProxyAlertClasses (Class Diagram)

5.3.1.3.1 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.3.1.3.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.3.1.3.3 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.3.1.3.4 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.3.1.3.5 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.3.1.3.6 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.3.1.3.7 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.3.1.3.8 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.3.1.3.9 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.3.1.3.10 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including the local service). The complete set of data for each alert is stored in the ProxyAlert, along with its ID and a reference to the Alert object it represents. These proxy alerts allow every alert module service in the system to have some knowledge of every alert in the entire system, for the quickly determining whether a proposed new alert already exists elsewhere in the alert system (and therefore does not need to be redundantly entered into the system again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert class is the super class for derived classes for each specialized type of alert in the system, so that type specific data can be stored and accessed for each alert type, and can be queried for comparison for the Duplicatable isDuplicateOf() method.

5.3.1.3.11 ProxyDeviceFailureAlert (Class)

his subclass of ProxyAlert is used to cache DeviceFailureAlert types of alerts. It holds and provides access to data specific to the DeviceFailureAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.3.1.3.12 ProxyDuplicateEventAlert (Class)

This subclass of ProxyAlert is used to cache DuplicateEventAlert types of alerts. It holds and provides access to data specific to the DuplicateEventAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.3.1.3.13 ProxyEventStillOpenAlert (Class)

This subclass of ProxyAlert is used to cache EventStillOpenAlert types of alerts. It holds and provides access to data specific to the EventStillOpenAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.3.1.3.14 ProxyExecuteScheduledActionsAlert (Class)

This subclass of ProxyAlert is used to cache ExecuteScheduledActionsAlert types of alerts. It holds and provides access to data specific to the ExecuteScheduledActionsAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.3.1.3.15 ProxyGenericAlert (Class)

his subclass of ProxyAlert is used to cache GenericAlert types of alerts. It holds and provides access to data specific to the GenericAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.3.1.3.16 ProxyUnhandedResourcesAlert (Class)

This subclass of ProxyAlert is used to cache UnhandledResourcesAlert types of alerts. It holds and provides access to data specific to the UnhandledResourcesAlert, and provides an isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.3.1.3.17 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.4 Comm Log Module

5.4.1 Classes

5.4.1.1 LogCommon (Class Diagram)

This class diagram contains all interfaces that are necessary to multiple log types within the CHART system.

[image: image58.emf]1 LogEntryDataList «type» LogIterator«interface»LogQueryResults LogFilter«struct»LogEntry «struct»LogEntryList «type» LogEntryData «typedef» 1* 1* 1 0..11 1 LogEntryMessageType «enumeration» LogFilterMessageType «struct» New in R3B2

1 New attribute LogEntryMessageTYpe added in R3B2 Changed from valuetype to struct in R3B2

1 1 1 1 getMoreEntries(long maxCount) : LogEntryListdestroy():voidlong m_timeOfLastUseSource source

boolean sourceIsUsed

string author

TimeStamp startDate

TimeStamp endDate

Identifier eventID

Identifier logEntryID

string opCenterName

string containsText

boolean isCaseSensitive

LogFilterMessageType messageType

LogEntryList initialEntries boolean hasAdditionalEntries LogIterator additionalEntriesIterator sequence LogEntryData boolean m_system boolean m_user boolean m_device String entryText Identifier trafficEventID Source entrySource LogEntryMessageType messageType USER DEVICE SYSTEM sequence LogEntry Identifier ID TimeStamp timeStamp

Identifier eventID

string text

string author

string opCenterName

string hostName

Source source

LogEntryMessageType messageType

Figure 5‑46. LogCommon (Class Diagram)

5.4.1.1.1 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

5.4.1.1.2 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text (the body of the event) and an ID which refers to a Traffic Event, if appropriate.

5.4.1.1.3 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which contain the data needed to create one Log Entry. Normally each LogEntryDataList will contain only one LogEntryData object, but if the CommLog service is unavailable for a time, it is possible that multiple LogEntryData objects may be queued up for insertion into the database.

5.4.1.1.4 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting process in one clump. (Some requests return so much data that data is returned in clumps. The initial request returns a LogIterator from which additional LogEntryList sequences can be requested, in order to complete the entire query.

5.4.1.1.5 LogEntryMessageType (Class)

This enumeration defines log entry message types supported in the system.

5.4.1.1.6 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

5.4.1.1.7 LogFilterMessageType (Class)

LogFilterMessageType used to filter out entries that were entered by user, system, or device

5.4.1.1.8 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

5.4.1.1.9 LogQueryResults (Class)

This structure contains the data that is the results of a log entry query, including the first batch of entries (if any).

5.4.1.2 CommLogModuleClassDiagram (Class Diagram)

This Class Diagram displays classes used for managing the Communications Log. Operators can add entries directly to the Communications Log, and entries are also added indirectly with certain Traffic Events manipulations. Operators can view or search entries in the Communications Log, but cannot edit them.

[image: image59.emf]1

1

java.util.Properties

1

1

1

CommLogClient

CommLogModuleProperties 1

1

1

1

1

CommLogModule

TokenManipulator

CommLog

«interface»

IteratorCleanupTask

LogEntry

«struct»

CommLogImpl

*

1

1

1

1

1

1

1

1

pushes

LogEntries

using

LogEntryWrapper

1

1

1

New for R3B2

1

1

*

1

ServiceApplication

«interface» ServiceApplicationModule

«interface» CosTrading.Register

«interface»

PushEventSupplier

ORB

«interface»

java.util.TimerTask

DatabaseLogger

java.util.Timer

1

1

start(args : string[]) : boolean

shutdown() : boolean

getORB() : ORB

getPOA(string poaName) : POA

getTradingRegister() : CosTrading.Register

getTradingLookup() : CosTrading.Lookup

getEventChannelFactory() : EventChannelFactory

getDBConnectionManager() : DBConnectionManager

getOperationsLog() : OperationsLog

getProperties() : java.util.Properties

getDefaultProperties() : java.util.Properties

registerObject(obj, id, name, type, publish) : void

registerEventChannel(EventChannel, name) : void

withdrawObject(id) : void

getIDGenerator() : IdentifierGenerator

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

static getNumInstancesNotFinalized():int

compareTo(Object other): int

finalize():void

hashCode()boolean equals(Object other):int

getLogEntry():LogEntry

static int m_numInstances

addCommLog(CommLog)

getEntries(AccessToken token, LogFilter filter,

 long maxCount, LogEntryList entries) : LogIterator

addEntries(AccessToken token, LogEntryDataList logEntries) : void

getLogIteratorDisuseTimeout() : int

getLogIteratorDisuseCheckInterval() : int

int m_factoryOfferID

getEntries(AccessToken token, LogFilter filter,

 long maxCount) : LogQueryResults

addEntries(AccessToken token, LogEntryDataList logEntries) : void

overrideEntryTime(AccessToken token, Identifier logEntryID,

 TimeStamp logEntryTime):void

getProperty()

setProperty()

init()

resolve_initial_references()

string_to_object()

object_to_string()

run()

export

()withdraw()

schedule() : void

cancel() : void

DBConnectionManager m_db

run()

run()

DatabaseLogger m_dbLogger

Figure 5‑47. CommLogModuleClassDiagram (Class Diagram)

5.4.1.2.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or specific log entries for a specific Traffic Event. This class is the primary interface for the CommLog service. It is used to persist log entries in the CHART system and retrieve them for review. Log entries can be created directly by users or indirectly as a result of manipulating Traffic Events.

5.4.1.2.2 CommLogClient (Class)

This class is a wrapper to be used by clients of the Communications Log. It provides services such as discovering instances of the CommLog in the trader and caching entries to the comm log that are added when the comm log is not available.

5.4.1.2.3 CommLogImpl (Class)

This class implements the CommLog interface; that is, it implements the methods defined by CommsLog, allowing user interface processes access to the Communications Log for adding entries and selecting entries for viewing.

5.4.1.2.4 CommLogModule (Class)

This class implements the ServiceApplicationModule for controlling the CommLog. This class starts up the CommLog service, and shuts it down when requested.

5.4.1.2.5 CommLogModuleProperties (Class)

This class represents an object that provides access to properties that are specific to the CommLog module.

5.4.1.2.6 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover.

5.4.1.2.7 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

5.4.1.2.8 IteratorCleanupTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process to cleanup LogIterators that are no longer being used.

5.4.1.2.9 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.4.1.2.10 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.4.1.2.11 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.4.1.2.12 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

5.4.1.2.13 LogEntryWrapper (Class)

This class provides accessor methods that provide access to the information in a CHART2.LogCommon.LogEntry object. In R3B2 this class implements the DynListSubject interface for use in DynLists

5.4.1.2.14 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

5.4.1.2.15 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.4.1.2.16 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.4.1.2.17 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.4.1.2.18 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information: Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights.
5.4.2 Sequence Diagrams

5.4.2.1 CommLogModule:addEntries (Sequence Diagram)

This sequence is initiated by a process (GUI) which is adding one or more entries into the Communications Log. (A process normally adds entries one at a time as events are created. More than one entry may be queued up if the CommLog service has been unavailable.) The CommLog service adds each entry on the list to the database.

[image: image60.emf]New attributes

added in R3B2

TokenManipulator CommLog

ORB

DatabaseLogger

LogEntry

PushEventSupplier

addEntry

create

push(LogEntry)

for each

LogEntryData

passed in

[if bad]

Chart2Exception

hasRight

[if no rights]

AccessDenied

validateToken

addEntries

delete

"Add entry

to database"

Figure 5‑48. CommLogModule:addEntries (Sequence Diagram)

5.4.2.2 CommLogModule:getEntries (Sequence Diagram)

This sequence shows how the CommLog service responds to a request from another process (GUI) for entries from the Communications Log. The request may be constrained by a filter (based on time, originating Op Center, author, etc.). If the amount of data is larger than the requestor-specified size, the first clump is returned immediately, together with a LogIterator which can be used to later retrieve additional data, which is cached as the initial request is processed.

[image: image61.emf]getMoreEntries()

getEntries()

hasRight()

validateToken()

[if no rights]

AccessDenied

[if bad]

Chart2Exception

getEntries()

DatabaseLogger TokenManipulator CommLog

ORB

If LogIterator is non-NULL,

caller can call LogIterator for

more entries as desired.

LogIterator

See

DatabaseLogger::getEntries()

for details

New Filter attributes

added in R3B2

LogIterator may be NULL if

all entries fit in one "clump".

LogEntryList & LogIterator

LogEntryList

&LogIterator

LogEntryList

Figure 5‑49. CommLogModule:getEntries (Sequence Diagram)

5.5 Common

5.5.1 Class Diagrams
These are classes and interfaces that are applicable to more than one module.
5.5.1.1 ActionManagement (Class Diagram)

This class diagram shows the structures used for scheduling actions in CHART.

[image: image62.emf]ACTION_TYPE_OPENEVENT ACTION_TYPE_OPENEVENT 11 See AlertManagement for details ActionType«enumeration»OpenEventActionData «struct» 1 ActionData «union» ActionData is a union, withActionType as the discriminator.OpenEventActionData is the onlypossible type for R3B2.1ACTION_TYPE_OPEN_EVENTdiscriminator: ActionType openEventActionData: OpenEventActionData pendingEventId: Identifier

Figure 5‑50. ActionManagement (Class Diagram)

5.5.1.1.1 ActionData (Class)

This IDL union holds the data used to describe a schedule action. It has been designed as a union discriminated by the enumeration ActionType to support schedule actions to be determined in future releases of CHART. Currently the only supported variant is the OpenEventAction.

5.5.1.1.2 ActionType (Class)

ActionType is an IDL enumeration of the possible schedule action types. Currently only the open event action is supported.

5.5.1.1.3 OpenEventActionData (Class)

This IDL struct represents the data used to describe an open event action in a schedule.

5.5.1.2 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

[image: image63.emf]Password «type» UnsupportedOperation

«exception»

GeoLocatable«interface»AbsoluteOrRelativeTime

«union»

CHART2Exception

«exception»

SpecifiedObjectNotFound

«exception»

RouteTypeInfo

«typedef»

TimeStamp2

«typedef»

CommandStatus

«interface»

DuplicateData

«exception»

TimeStamp«typedef»RouteType

«enumeration»

Direction «typedef» TimeSpecificationType

«enumeration»

NEW FOR R3B2

AccessDenied

«exception»

ApplicationVersion

«typedef»

NetworkConnectionSite «type» 1 InvalidState

«exception»

UserName «type» UniquelyIdentifiable«interface»SourceTypeValues «interface» Service «interface» DirectionValues «interface» TrafficParameters «typedef» Source

«typedef»

1 ComponentVersion

«typedef»

NEW FOR R3B2: TimeStamp2.Note: Timestamp2 is a newtypedef defined in Common,which defines a "long long"timestamp. It will be used in allnew code instead of Timestamp(a long). The long long datatypemaps to a Java long.getID()getName()String getLocationDesc()timestamp : longtimestamp : long long

ping():void getName():string; getVersion():ApplicationVersion getNetConnectionSite():string; oneway shutdown(AccessToken token):void TIME_ABSOLUTE

TIME_RELATIVE

SourceType theSourceType

string otherDescription

discriminator TimeSpecificationType

Timestamp2 absTime if TIME_ABSOLUTE

long relTimeSecs relTimeSecs if TIME_RELATIVE

int m_speedData; int m_volumeData; int m_percentOccupancy; string reason

string debug

RouteType typeOfRoute

string nameOfRouteType

const short OTHER_NO_ADDITIONAL_INFO const short OTHER_ADDITIONAL_INFO const short NORTH const short NORTH_EAST const short EAST const short SOUTH_EAST const short SOUTH const short SOUTH_WEST const short WEST const short NORTH_WEST const short INNER_LOOP const short OUTER_LOOP short string reason

I

MD

US

string reason

string requiredRights

string name

string version

const short SOURCE_OTHER_NO_ADDL_INFO

const short SOURCE_OTHER_WITH_INFO

const short CCTV

const short SYSTEM_ALARM

const short STATE_POLICE

const short LOCAL_POLICE

const short CHART_UNIT

const short CITIZEN

const short MCTMC

const short MEDIA

string reason

string reason

update(String status):void

completed(boolean commandSuccessful,

 String finalStatus):void

completedSameStatus(boolean commandSuccessful):void

string reason string applicationName

ComponentVersionList componentVersions

Figure 5‑51. Common (Class Diagram)
5.5.1.2.1 AbsoluteOrRelativeTime (Class)

This union stores a time, in either absolute or relative terms.

5.5.1.2.2 AccessDenied (Class)

This class represents an access denied, or "no rights" failure.

5.5.1.2.3 ApplicationVersion (Class)

This structure contains the name of the application and information about the versions of its components.

5.5.1.2.4 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very generic exceptions which require no special processing by the client. It supports a reason string which may be shown to any user and a debug string which will contain detailed information useful in determining the cause of the problem.

5.5.1.2.5 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

5.5.1.2.6 ComponentVersion (Class)

This structure contains the name and version number of the software component.

5.5.1.2.7 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in DirectionValues.

5.5.1.2.8 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

5.5.1.2.9 DuplicateData (Class)

This exception is thrown when an object is to be added to the system, but the system already contains an object with equivalent data.

5.5.1.2.10 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.5.1.2.11 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid state to perform the operation.

5.5.1.2.12 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is running. This field is useful for administrators in debugging problems should an object become "software comm failed".. It is included in the Chart2DMSStatus.

5.5.1.2.13 Password (Class)

Typedef used to define the type of a Password.

5.5.1.2.14 RouteType (Class)

This enumeration is used to specify the classification of a road (interstate, MD, etc.)

5.5.1.2.15 RouteTypeInfo (Class)

This structure contains information about the classification type of a road.

5.5.1.2.16 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown externally. All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

5.5.1.2.17 Source (Class)

This structure contains information about the source of the data being added to the system.

5.5.1.2.18 SourceTypeValues (Class)

This enumeration contains the possible sources of information that can be used for adding CommLog entries and/or traffic event data.

5.5.1.2.19 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object that cannot be found by the invoked object.

5.5.1.2.20 TimeSpecificationType (Class)

This enumeration lists the types of times which can be stored in the AbsoluteOrRelativeTime union.

5.5.1.2.21 TimeStamp (Class)

This typedef defines the type of TimeStamp fields.

5.5.1.2.22 TimeStamp2 (Class)

This data type offers extended date range beyond the year 2038 limititation implicit in the TimeStamp data type.

5.5.1.2.23 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535 is used to indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent. (thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a missing or invalid value.

5.5.1.2.24 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.5.1.2.25 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which it is called.

5.5.1.2.26 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

5.6 Data Model

5.6.1 Class Diagram

5.6.1.1 DataModelClasses (Class Diagram)

The data model classes represent a collection of objects which, when altered via the DataModel, will notify observers that they have been modified. The notification will be delivered in the form of a call to the observer's update() method and will include a collection of changes that have occurred in the system in the preceding interval. Each change is either an object added change, an object removed change, or an object updated change. If the change is an object updated change it may include hints which help an observer determine if it needs to take any action based on the change.

[image: image64.emf]ObjectAdded

java.util.Hashtable ModelObserver «interface» ObjectRemoved

UpdatePriorityLevel ObjectUpdated

java.lang.Runnable «interface» GUIModelObserver «interface» * *

1 *

* 11 1 ModelChange ObjectChange

ChangeCollection IdentifierUpdateHint

«interface»

DataModel This class is

used as the key to

store and look up

all Identifiable objects

GUIUpdater 1 1

1 1

1 1 1 * * 1

* 1 1 1This diagram is unchanged for R3B1.

It is included in the R3B1 design for

reference only, as these classes

have not been used on the server

side since the fat GUI was

decommisioned.

+DataModel() : ctor+getObject(key : Object) : Object+getObjectsOfType(classCheck : Class) : Object[]+getAllObjects() : Object[]+attachObserver(modelObserver, priority) : boolean+detachObserver(modelObserver) : void+objectAdded(key : Object, value : Object) :Object+objectUpdated(key : Object) :void+objectUpdated(key : Object, hint : UpdateHint) :void+objectUpdated(key : Object, hints : UpdateHint[]) :void+objectRemoved(key : Object) : Object+setUpdateInterval(priorityLevel : int, updateInterval : int) : boolean+getUpdateInterval(priorityLevel : int) : intm_table : Hashtable<Object>Identifier(byte[] chartID)equals(Object obj)hashCode()byte[] getID()m_idrun() getPriority() isAttached(observer) attach(observer) detach(observer) getUpdateInterval() objectAdded(keyObject, object) objectUpdated(keyObject, updateHint) objectRemoved(keyObject) setUpdateInterval() -getChangeCollection(Class checkClass) -getChangesAndReset() -getObservers() -updateObservers() m_delay m_priority getObject()

m_object

getChanges() getChangeClass() addChange(keyObject, objectChange) isForClass(Class checkClass)

m_class addHint()

getHints()

numHints()

update(ModelChanges changes) isEqual(rhs)

run()

getChanges() getChanges(Class checkClass) getClasses()

addChanges(checkClass, changes)

hasChanges()

Figure 5‑52. DataModelClasses (Class Diagram)

5.6.1.1.1 ChangeCollection (Class)

This class represents a collection of object changes. All object changes in the collection must be for objects of the same type. Object type is determined by making the Java call getClass(). This allows an observer to look at one object in the collection and determine if it is interested in changes to this type of object. If the observer is not, it may ignore the entire collection.

5.6.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.6.1.1.3 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the data model. Observers of this type will be notified of changes on the GUI event dispatch thread.

5.6.1.1.4 GUIUpdater (Class)

This class is used to send all changes to GUIModelObservers in the GUI event dispatch thread. It does this by storing the changes until the dispatch thread calls the run() method.

5.6.1.1.5 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and perform subsequent lookup operations.

5.6.1.1.6 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

5.6.1.1.7 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-null object can be used as a key or as a value. Objects used as keys implement the hashCode method which is inherited by all objects from the java.lang.Object class.

5.6.1.1.8 ModelChange (Class)

This class is used to convey changes to observers of the DataModel. It contains all ObjectChanges for a particular update priority level for a particular period of time.

5.6.1.1.9 ModelObserver (Class)

This interface must be implemented by any object which would like to attach to the DataModel as an observer and get updated as system objects are added, deleted or changed.

5.6.1.1.10 ObjectAdded (Class)

This class is used to indicate that the object it represents was added to the DataModel.

5.6.1.1.11 ObjectChange (Class)

This class represents the changes to a particular object stored in the DataModel for a particular period. The change may be that this object was added to the model, removed from the model, or updated during this period.

5.6.1.1.12 ObjectRemoved (Class)

This class is used to indicate that the object it represents was removed from the DataModel.

5.6.1.1.13 ObjectUpdated (Class)

This class indicates that an object which was already in the model has been updated. The update may be specific to certain parts of the object, and the UpdateHint objects are used to specify which data members within the object were changed. If there are no hints in the ObjectUpdated, it signifies that the entire object has been changed so the observer must query the object for any data members that it is displaying.

5.6.1.1.14 UpdateHint (Class)

This interface must be implemented by all objects which are to be used as update hints. An update hint is a concept that is negotiated between a (subject) object and observers which are interested in that object. The data model makes no assumptions about how the hints will be used. The data model will invoke the isEqual method of the update hint to ask it to determine if it is equivalent to another hint. This allows the model to perform update optimizations by not sending notification to observers of two updates with equivalent hints in the same period. An example of how an update hint would be used follows: A DMS object has state variables that track the current message being displayed and the current latitude and longitude location of the sign controller. Because the system map requires significant processing load to redraw and needs only be notified if the latitude or longitude of the DMS changes the DMS and map view use a DMSMapChange hint. When the DMS object has a state change to the latitude or longitude property to report, that change is reported by calling objectUpdated and passing a DMSMapChange hint. When it has other changes which are not state changes to the latitude or longitude properties, it reports those changes to the DataModel by calling objectUpdated passing a DMSNonMapChange update hint. The map view will only redraw the DMS if the ObjectUpdate contains a DMSMapChange hint.

5.6.1.1.15 UpdatePriorityLevel (Class)

This class represents a particular priority update level. When an observer attaches to the data model an update priority level is specified. The system currently supports five levels of priority ranging from real time updates for animated displays to delayed updates for windows which can tolerate not being notified for a significant period of time when a change occurs to the system data model. Each time an object is modified it is added to the ChangeCollection for all priority levels. The notification of observers simply happens at longer and longer intervals as the priority level decreases. Thus, an observer of the data model connected at real time may be updated three times in one second while a lower priority observer may only be updated once at the end of the second. However, both observers will be told about the exact same changes that occurred during the second.

5.7 GUI chartlite.data

5.7.1 Classes
5.7.1.1 MiscDataClasses (Class Diagram)

This diagram shows miscellaneous classes used by the CHART GUI servlet related to the data cache.

[image: image65.emf]TempObjectStore

SystemProfileNotificationProperties

NotificationShortcutListItem

BasePushConsumer

WebOpCenter Searchable

«interface»

WebAdministered

«interface»

WebUniquelyIdentifiable «interface» SystemProfileProperties WebSharedResource

«interface»

get():SystemProfilePropertiesgetAlertArchiveTimeMinutes() : intgetAlertAudibleReminderInterval() : intgetAlertDefaultAcceptTimeMinutes(type:WebAlertType) : intgetAlertDefaultDelayTimeMinutes(type:WebAlertType) : intgetAlertDeviceFailureAudio() : byte[]getAlertDuplicateEventAudio() : byte[]getAlertEscalationTimeMinutes(type:WebAlertType) : intgetAlertEventStillOpenAudio() : byte[]getAlertGenericAudio() : byte[]getAlertMaxAcceptTimeMinutes(type:WebAlertType) : int

getAlertMaxDelayTimeMinutes(type:WebAlertType) : int

getAlertReminderAudio() : byte[]

getAlertUnhandledRsrcAudio() : byte[]

getNotificationProperties() : SystemProfileNotificationProperties

getScheduleRemovalTimeMinutes() : int

getScheduleActivationSuppressionTimeMinutes() : int

getMissedActivationGracePeriodMinutes()

getAlertBackupCenters() : WebOpCenter[] getSupportedAlertTypes() getMsgTextWarningLength() : int

getMsgTextErrorLength() : int

getCacheRetainTimeMinutes() : int

getMaxMRUIndividuals() : int

getMaxMRUGroups() : int

getDefaultNotificationHistoryEntriesPerPage() : int

getDisplayGroupMembersOutsideEvent() : boolean

getDisplayGroupMembersWithinEvent() : boolean

get10Codes(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]

getMiscShortcuts(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]

getSingleClickShortcuts(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]

getIncidentTypeAbbreviation(incType:WebIncidentType) : String

getCountyAbbreviation(stateCode:String, countyInfo:CountyInfo) : String

getRegionAbbreviation(stateCode:String, regionInfo:RegionInfo) : String

getVehicleTypeAbbreviation(webVehicleType:WebVehicleType) : String

getParticipationAbbreviation(participation:WebResponseParticipation) : String

getOpCenterAbbreviation(centerID:Identifier) : String

setMsgTextWarningLength(props:Properties, length: int) : void

setMsgTextErrorLength(props:Properties, length: int): void

setCacheRetainTimeMinutes(props:Properties, minutes:int) : void

setMaxMRUIndividuals(props:Properties, maxNum: int) : void

setMaxMRUGroups(props:Properties, maxNum: int) : void

setDefaultNotificationEntriesPerPage(props:Properties, numPerPage: int) : void

setDisplayGroupMembersOutsideEvent(props:Properties, flag: boolean) : void

setDisplayGroupMembersWithinEvent(props:Properties, flag: boolean) : void

set10Codes(props:Properties, items:NotificationShortcutListItem[]) : void

setMiscShortcuts(props:Properties, items : NotificationShortcutListItem[]) : void

setSingleClickShortcuts(props:Properties, items : NotificationShortcutListItem[]) : void

setIncidentTypeAbbreviation(props:Properties, incType:WebIncidentType, abbrev:String) : void

setCountyAbbreviation(props:Properties, stateCode:String, countyCode:String, abbrev:String) : void

setRegionAbbreviation(props:Properties, stateCode:String, regionName:String, abbrev:String) : void

setVehicleTypeAbbreviation(props:Properties, webVehicleType:WebVehicleType, abbrev:String) : void

setParticipationAbbreviation(props:Properties, participantType:int, participantName:String,

 appliesToNotified:boolean, appliesToResponded:boolean, appliesToDeparted:boolean, abbrev:String) : void

setOpCenterAbbreviation(props:Properties, centerID:Identifier, abbrev:String) : void

getID() : Identifier getName() : String getControllingOpCenterID() : Identifier

getControllingOpCenterName() : String

setControllingOpCenter(byte[] token, WebOpCenter target) : void

getTypeDesc() : String

isTransferrable() : boolean

matchesSearch(String criteria, boolean caseSensitive) : boolean

doPing() : boolean

getDetailsAction() : String

getDetailsPageName() : String

getDataModel() : DataModel

getPushConsumer() : PushConsumer

push(data:Any) : void

setPushConsumer(consumer:PushConsumer):void

handleEventData(data:Any) : void

isApplicableWithinTrafficEvent() : boolean

isApplicableOutsideTrafficEvent() : boolean

getShortcutText() : String

getMsgTextToInsert() : String

Figure 5‑53. MiscDataClasses (Class Diagram)

5.7.1.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement handleEventData().

5.7.1.1.2 NotificationShortcutListItem (Class)

This class represents an item in a notification shortcut list.

5.7.1.1.3 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.7.1.1.4 SystemProfileNotificationProperties (Class)

This class contains functionality for accessing notification settings in the system profile.

5.7.1.1.5 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is also used to interact with the server to change system profile settings.

5.7.1.1.6 TempObjectStore (Class)

This class provides a self cleaning storage area for temporary objects.

5.7.1.1.7 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console pages.

5.7.1.1.8 WebOpCenter (Class)

This class is used to wrap an OperationsCenter object to allow it to be cached in the CHART GUI servlet and to allow the cached data to be accessed within Velocity templates.

5.7.1.1.9 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART shared resources in the system, corresponding to the SharedResource IDL interface.

5.7.1.1.10 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable objects as defined in the IDL.

5.8 GUI chartlite.data.alerts-data

5.8.1 Classes

5.8.1.1 data.alerts.classes (Class Diagram)

This diagram shows classes related to alerts that are used to store alerts in the data model. For R3B2, one new alert type is being added, as annotated on the diagram. The remainder of the classes shown on this diagram existed prior to R3B2.

[image: image66.emf]ExecuteScheduledActionsAlertData

1

Updated for R3B2WebExecuteScheduledActionsAlert

1 New for R3B2

1

1 1

Alert «interface» UnhandledResourcesAlertData

«datatype»

EventStillOpenAlertData

«datatype»

1

1

1 DuplicateEventAlertData

«datatype»

DeviceFailureAlertData

«datatype»

1 1 1

AlertData «datatype» 1 WebEventStillOpenAlert WebUnhandledResourcesAlert WebDeviceFailureAlert1 WebAlert WebAlertHistory WebDuplicateEventAlert WebGenericAlert * 1

1 WebAlertType «enumeration» m_alertType m_name m_systemProfilePrefix m_defaultDefaultAcceptTimeMinutes m_defaultMaxAcceptTimeMinutes m_defaultDefaultDelayTimeMinutes m_defaultEscalationTimeMinutes m_defaultEnabledFlag m_defaultAutoEscalateDisabled DeviceFailure DuplicateEvent EventStillOpen Generic UnhandledResources ExecuteScheduledActions getID():Identifier getAlertRef():Alert getDescription():String isAccepted() : boolean isClosed() : boolean isDelayed() : boolean isNew() : boolean getCreationTime() : long getClosedTime() : long getNextActionTime():long getResponsibleUser():String getResponsibleCenter():WebOpCenter getOpCenterVisibility():WebOpCenter[] getNextOpCenterVisibility():WebOpCenter[] getDetailsPage() : String getAlertHistory() : WebAlertHistory[] getDetailsPage():StringisDMS():booleanisTSS():booleangetDevice():WebDevicegetDMS():WebDMS

getTSS():WebTSS

WebAlertHistory(hist:AlertHistory) getTimestamp() : long getOpCenterName() : String getOperatorName() : String getDescriptiveText():String m_descriptiveText:String m_timestamp:long m_operatorName:String m_opCenterName:String getDetailsPage():String getNewerEvent():WebTrafficEvent getOlderEvent():WebTrafficEvent getDetailsPage():String getDetailsPage():String

getResolveAction():String

getActions():WebActionData[]

getActionData():ActionData[]

getSchedule():WebSchedule

getDetailsPage():String getOpCenter():WebOpCenter getDetailsPage():String getEvent():WebTrafficEvent

Figure 5‑54. data.alerts.classes (Class Diagram)

5.8.1.1.1 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.8.1.1.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.8.1.1.3 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.8.1.1.4 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.8.1.1.5 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.8.1.1.6 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.8.1.1.7 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.8.1.1.8 WebAlert (Class)

This class is used to wrap a CORBA Alert object so that its data may be cached in the CHART GUI servlet and to allow its data to be accessed from within a Velocity template.

5.8.1.1.9 WebAlertHistory (Class)

This class is used to wrap AlertHistory data to allow it to be accessed from within a Velocity template.

5.8.1.1.10 WebAlertType (Class)

This enumeration identifies the alert types supported by the system along with information specific to each alert type that helps in using generic code to process all alert types. For R3B2 the ExecuteScheduledActions alert type is added.

5.8.1.1.11 WebDeviceFailureAlert (Class)

This class is used to wrap a DeviceFailureAlert CORBA object and provide access to data that is specific to this type of alert.

5.8.1.1.12 WebDuplicateEventAlert (Class)

This class is used to wrap a DuplicatEventAlert and provide access to its type specific data.

5.8.1.1.13 WebEventStillOpenAlert (Class)

This class is used to wrap an EventStillOpenAlert and provide access to its type specific data.

5.8.1.1.14 WebExecuteScheduledActionsAlert (Class)

This class is used to cache data for an ExecuteScheduledActionsAlert in the GUI. It provides access to the alert data and overrides the abstract methods of WebAlert to provide a details page and resolve action specific to this alert type.

5.8.1.1.15 WebGenericAlert (Class)

This class is used to wrap a GenericAlert (manual alert).

5.8.1.1.16 WebUnhandledResourcesAlert (Class)

This class is used to wrap an UnhandledResourcesAlert and provide access to its type specific data.

5.9 GUI chartlite.data.notification-data

5.9.1 Classes

5.9.1.1 chartlite.data.notification_classes (Class Diagram)

This diagram shows classes related to the caching of notification records and recipients, and the maintenance of the cache.

[image: image67.emf]NotificationRecord

«datatype»

1

1

WebNotification

1

Notification

«interface»

1

NotificationRecipientData

«datatype»

1

1

WebUniquelyIdentifiable

«interface»

WebNotificationGroup

WebNotificationIndividual

WebNotificationRecord

WebNotificationRecipient

«interface»

WebNotificationIndividualStatus *

java.util.TimerTask

NotificationDiscoveryCmd BasePushConsumer 1

1

WebNotificationCache

*

*

1

NotificationPushConsumer*

1

QueueableCommand «interface» handleEventData(data:Any):void

handleNotificationRecordAdded(notificationInfo:Any) : void

handleNotificationRecordUpdated(notificationInfo:Any) : void

handleNotificationRecordTakenOffline(recordID:byte[]) : void

getID() : Identifier

getTimestamp() : Date

getText() : String

getEventID() : Identifier

getOpCtrID() : Identifier

getOpCtrName() : String

getAuthor() : String

getStatusDesc() : String

getSelectedRecipients() : WebNotificationRecipient[]

getIndividualStatus() : WebNotificationIndividualStatus[]

updateCachedData(data:NotificationRecord) : void

m_notificationConsumer : NotificationPushConsumer

get() : WebNotificationCache

getNumCachedNotificationRecords(includeEventNotifications:boolean) : int

getAllCachedNotificationRecords() : WebNotificationRecord[]

getCachedNotificationRecord(id:Identifier) : WebNotificationRecord

getLatestNotificationRecord(optionalAuthor:String, isStandaloneRecord:Boolean) : WebNotificationRecord

getNotificationRecordsForTrafficEvent(eventID:Identifier) : WebNotificationRecord[]

getNotificationGroups() : WebNotificationGroup[]

getNotificationIndividuals() : WebNotificationIndividual[]

updateNotificationRecords(factoryRecords:HashMap<Identifier, NotificationRecord[]>) : void

updateNotificationRecipients(recipients:NotificationRecipientData[]) : void

notificationRecordAdded(record:NotificationRecord) : void

notificationRecordChanged(record:NotificationRecord) : void

notificationRecordTakenOffline(recordID: Identifier) : void

m_cachedNotificationRecords : WebNotificationRecord[]

m_notificationRecordMap: HashMap{Identifier,WebNotificationRecord}

m_lastFactoryContactTimes : HashMap{Identifier,Date}

m_cachedGroups : WebNotificationGroup[]

m_cachedIndividuals : WebNotificationIndividual[]

m_systemContextProvider: SystemContextProvider

getName() : String

isGroup() : boolean

getJSONObject() : JSONObject

getName() : String

getLastStatusTime() : Date

getLastStatusDesc() : String

successful() : boolean

failed() : boolean

getNotificationRef() : Notification

Figure 5‑55. chartlite.data.notification_classes (Class Diagram)

5.9.1.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement handleEventData().

5.9.1.1.2 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.9.1.1.3 Notification (Class)

The Notification interface is implemented by objects that will send notification messages to either a distribution list or a specific list of members. This interface will allow an operator to notify the appropriate parties of a serious problem.

5.9.1.1.4 NotificationDiscoveryCmd (Class)

This class periodically discovers the notification classes and event channels.

5.9.1.1.5 NotificationPushConsumer (Class)

This class handles CORBA events pushed on the notification event channel.

5.9.1.1.6 NotificationRecipientData (Class)

This object contains the data that is returned as a result of an object get recipient request.

5.9.1.1.7 NotificationRecord (Class)

This structure contains the data detailing a notification that has been sent on the CHART system.

5.9.1.1.8 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.9.1.1.9 WebNotification (Class)

This interface wraps a Notification interface from the IDL, which supports the querying and sending of notification messages.

5.9.1.1.10 WebNotificationCache (Class)

This class represents the cache of notification records in the GUI. The cache will contain records for the last N hours, and also notifications sent for any online (open or closed) traffic events.

5.9.1.1.11 WebNotificationGroup (Class)

This class represents a notification group that is configured in the notification COTS tool.

5.9.1.1.12 WebNotificationIndividual (Class)

This class represents an individual notification recipient.

5.9.1.1.13 WebNotificationIndividualStatus (Class)

This class represents the most recent status for the notification of an individual.

5.9.1.1.14 WebNotificationRecipient (Class)

This class represents a notification recipient (group or individual).

5.9.1.1.15 WebNotificationRecord (Class)

This contains details about an attempt to notify some selected recipients.

5.9.1.1.16 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable objects as defined in the IDL.

5.9.2 Sequence diagrams

5.9.2.1 chartlite.data.notification:discoverNotificationClasses (Sequence Diagram)

This diagram shows how the discovery of notification event channels and notification classes will occur. The notification event channels are queried from the trading service(s) and are connected to the push consumer. Next the Notification interface objects (i.e., the "factory" objects) are queried. The returned CORBA reference is narrowed to a Notification reference and is wrapped in a WebNotification object, and stored in the DataModel cache. All online notification records are queried from the notification service and are stored in a hash map along with the factory ID. The individuals and groups are also queried and put into a recipient hash map. When all factories have been queried, the WebNotificationCache is called to update its cached records and recipients. See the updateNotificationRecords diagram for details.

[image: image68.emf]Replace Recipients

In Cache

getGroups()

getIndividuals()

updateRecipients(notificationRecipientDataList)

NotificationRecordIterator

getMoreRecords()

Set Groups And Individuals

Into Recipient HashMap

Keyed on ID

getRecords()

[* while

has more records]

[* for each

object returned]

Get all online notification records.

NotificationRecord[]

Notification

WebNotification

org.omg.CORBA.Object[]

Notification

getObject(id)

[not found]

create

number of channels added

DiscoverNotification

ClassesCommand

execute

NotificationHelper DataModel

findAllObjectsOfType(

SERVICE_TYPE_NOTIFICATION.value)

narrow

getID()

WebNotification or null

[WebNotification created]

objectAdded()

This queries the trading service

for event channels and adds them to

the event consumer group.

Discovery

Driver

TraderGroup

destroy()

discoverEventChannelsOfName(

eventConsumerGroup,

channelName, pushConsumer)

NotificationRecipientData[]

NotificationRecordQueryResults

Add records to HashMap,

keyed by factory ID

WebNotificationCache

NotificationRecipientData[]

updateNotificationRecords(factoryRecordsMap)

get

See the updateNotificationRecords

sequence diagram for details.

Figure 5‑56. chartlite.data.notification:discoverNotificationClasses (Sequence Diagram)

5.9.2.2 chartlite.data.notification:updateNotificationRecords (Sequence Diagram)

This diagram shows how the cache will be updated for the notification records that have been retrieved from the discovered Notification interfaces (a.k.a. "factories"). The factory contact time is saved in the cache so that we can remove records from the cache if the server stays down for a long period of time (e.g., if its factory ID changes, etc). The cache retain time is retrieved from the system profile and is used to exclude any standalone notifications (i.e., not sent from a traffic event) with timestamps older than this time. For other entries, they are looked up in the cache and if not found a WebNotificationRecord is created and added to the cache. If already in the cache, the existing WebNotificationRecord is updated with the current contents of the record. Any records that belong in the cache (i.e., added/updated ones) are put into a hash map. Then the existing records in the cache with the given factory ID are examined, and if not in that hash map they are removed from the cache. After the records from all factories are processed, the notification records from the cache are examined and if a notification record's server couldn't be contacted for a long time or if it's a standalone notification and older than the cache retain time, it is removed from the cache.

[image: image69.emf][standalone notification that is older than cache retain time]

Remove Record From Cache

The notification records will include records for any online traffic events, and the server will try to not return records for offline traffic events. (Notification records sent from a traffic event are not affected by the cache retain time.) While it is possible that some records for some offline traffic events may be included, they will go away on a future discovery cycle after the notification service takes them offline. updateNotificationRecords(factoryRecordMap)getSystemProfileProperties()getNotificationProperties() getCacheRetainTimeMinutes() [not found] create Save Current Time as Factory Contact TimeIn Hash Map [WebNotificationRecord created]add to cache [record found in cache] update(record) Put In Added Or UpdatedHash Map [* for each recordpassed in]Look Up Record In Cache[record older thancache retain timeand without event ID][not in added or updatedhash map] Remove Record From CacheDiscoverNotificationClassesCommandWebNotificationCacheSystemContextProviderSystemProfile Properties SystemProfile NotificationProperties WebNotificationRecord [* for each recordin cache withgiven factory ID]This will remove any records owned by this factory that no longer belong in the cache, either because a standalone notification record is too old for the cache or the record has been taken offline by the server. This depends on the notification records not being replicated. If replication is used, since all records would be returned from the factory and passed into this method, it would not need to compare against a specific factory ID.

Sort WebNotificationRecords In Cache By Timestamp

This parameter is a map of factory factory IDs to NotificationRecord[] Lookup Last Factory Contact Time

By Factory ID

[* for each

WebNotificationRecord

in cache]

[last factory contact time older than factory contact timeout]

Remove Record From Cache

[* for each factoryin hash map]

Figure 5‑57. chartlite.data.notification:updateNotificationRecords (Sequence Diagram)

5.10 GUI chartlite.data.plans-data

5.10.1 Classes

5.10.1.1 plans_data_classes (Class Diagram)

This diagram shows classes related to filtering response plans/items.

[image: image70.emf]1

PlanFilterAttributeList in IDL 1 1

PlanFilterAttributeList

1

uses

Array of filterable attributes could contain the following

PlanFilterAttribute m_eventNameAttribute

PlanFilterAttribute m_eventTypeAttributes

PlanFilterAttribute m_operationsCenterAttributes

PlanFilterAttribute m_keywordAttributes

PlanFilterAttribute m_countyRegionAttributes

PlanFilterAttribute m_locationAliasAttributes

FilterablePlanObject

«interface»

WebPlan

Array of filterable attributes could contain the following

PlanFilterAttribute m_deviceNameAttributes

PlanFilterAttribute m_deviceMessageAttributes

* 1

PlanAttributeDataFilter defined in IDL <<struct>>

PlanFilterAttribute

WebPlanItem

PlanFilterAttribute[] attributes

new(String booleanOperator, Attributes[] attributeFilter,

boolean searchPlanName, boolean searchDeviceName,

boolean searchDeviceText, boolean searchKeywords)

boolean matchesFilter(FilterableObject object)

Integer m_filterOperator

PlanFilterAttributeList m_filterAttributeList

boolean m_searchPlanName

boolean m_searchDeviceName

boolean m_searchDeviceText

boolean m_searchKeywords

String getFilterableAttribute(PlanFilterAttributeType type)

String getDeviceNameFilter()

String getDeviceMessageFilter()

PlanAttributeDataFilter m_filter

PlanFilterAttributeList getFilterableAttributes()

void setFilterableAttributes(FilterableAttribute[] attributes)

String getEventTypeFilter()

String getOpCtrFilter()

String getKeywordFilter()

String getCountyRegionFilter()

String getLocationAliasFilter()

PlanAttributeDataFilter m_filter

Figure 5‑58. plans_data_classes (Class Diagram)

5.10.1.1.1 <<struct>> PlanFilterAttribute (Class)
This is the filter associated with the plan.

5.10.1.1.2 FilterablePlanObject (Class)

This interface defines methods for getting, setting filterable attributes.

5.10.1.1.3 PlanAttributeDataFilter (Class)

This dataclass implements logical and/or/not plan and plan item attribute filtering.

5.10.1.1.4 PlanFilterAttributeList (Class)
A list of filter attributes which can be associated with a plan

5.10.1.1.5 WebPlan (Class)
This class represents a response plan which is a collection of plan item objects

5.10.1.1.6 WebPlanItem (Class)
This class represents a Response plan Item.

5.10.2 Sequence Diagrams

5.10.2.1 chartlite.data.plans-data.PlanAttributeDatafilter:matchesFilter (Sequence Diagram)

This diagram show the processing that occurs while looping through an array of Plan, Plan Item objects on a request to view a list of plans or filter the list of plans.

[image: image71.emf][filterType is keyword]

matchesKeywordFilter(WebPlan plan)

PlanReqHdlr

See chartlite.data.plans-data.WebPlan

if any filter is matched and the operator is or, return immediatly

[m_filterOperator == OR && match == true] return true

if any filter doesn't match and the operator is and, return false

[m_filterOperator == AND && match == false] return false

if the filter matched and the operator is not, return false

[m_filterOperator == NOT && match == true] return false

otherwise return true

see chartlite.data.plans-data.PlanAttributeDataFilter.matchesKeywordFilter

[doesn't contain attribute string]

match is false

contains(filterAttributeValue, filterableObjectAttributeValue)

[contains attribute string]

match is true

PlanAttributeDataFilter java.lang.String

matchesFilter(WebPlan plan)

[* for each attribute in filter]

return

The diagrams show the processing that occurs while looping through an array of Plan, Plan Item objects on a request to view a list of plans or filter the list of plans. getFilterableAttribute(currAttributeType)

Figure 5‑59. chartlite.data.plans-data.PlanAttributeDatafilter:matchesFilter (Sequence Diagram)

5.10.2.2 chartlite.data.plans-data.PlanAttributeDataFilter:matchesKeywordFilter (Sequence Diagram)

This diagram shows the processing that occurs when a PlanAttributeDataFilter contains a keyword filter. If the WebPlan or WebPlanItem matches one of the keyword filters flagged for comparison, this method returns true, otherwise false.

[image: image72.emf]boolean

return boolean

[keywords in plan keywords]

getFilterableAttribute(planKeywordsAttrib)

returns String

returns String

returns String

PlanAttributeDataFilter matchesKeyWordFilter(FilterablePlanObject object) PlanAttributeDataFilter[keywords in devName]

getFilterableAttribute(devNameKeywordAttrib)

contains(keywordFilter, objectFilterVal)

contains(keywordFilter, objectFilterVal)

boolean

WebPlanitem [keywords in devText]

getFilterableAttribute(devTextKeywordAttrib)

 [*for each plan

item]

[keywords in devText]

getFilterableAttribute(devnameKeywordsAttrib)

returns WebPlanItem[]

contains(keywordFilter, objectFilterVal)

contains(keywordFilter, objectFilterVal)

This diagram shows the processing that occurs when a PlanAttributeDataFilter contains a keyword filter. If the WebPlan or WebPlanItem matches one of the keyword filters flagged for comparison, this method returns true, otherwise false. java.lang.String Return true immediately after matching ANY

 one of the keywords filters

[keywords in devText || devName]

getPlanItems()

[keywords in planName]

getFilterableAttribute(eventNameAttrib)

WebPlanboolean

Figure 5‑60. chartlite.data.plans-data.PlanAttributeDataFilter:matchesKeywordFilter (Sequence Diagram)

5.10.2.3 chartlite.data.plans-data.WebPlan:getFilterableAttributes (Sequence Diagram)

This diagram shows the processing that occurs when a WebPlan object is queries for its configured attribute filters. This method is called from the view plans request when the request contains an AttributeDataFilter object.

[image: image73.emf]WebPlanItem

getPlanItems()

returns an array of all plan items

[for each plan item]

getFilterableAttributes()

returns an array list of all filterable attributes

PlanReqHdlr

WebPlan

ArrayList

This diagram shows the processing that occurs when a WebPlan object is queries for it's configured attribute filters. This method is called from the view plans request when the request contains an AttributeDataFilter object. getFilterableAttributes()

returns ArrayList containing all filters

for this plan

[has event type filters]

add(PlanFilterAttributeType.PLAN_ATTR EVENT_TYPE, String values)

[has operations center filters]

add(PlanFilterAttributeType.PLAN_ATTR_OP_CENTER, String values)

[has county region filters]

add(PlanFilterAttributeType.PLAN_ATTR_COUNTY_REGION, String values)

[has location alias filters]

add(PlanFilterAttributeType.PLAN_ATTR_LOCATION_ALIAS, String values)

[has keyword filters]

add(PlanFilterAttributeType.PLAN_ATTR_ KEYWORD, String values)

Figure 5‑61. chartlite.data.plans-data.WebPlan:getFilterableAttributes (Sequence Diagram)
5.10.2.4 chartlite.data.plans-data.WebPlanItem:getFilterableAttributes (Sequence Diagram)

The diagram shows the processing that occurs when the WebPlanItem object is queried for its configured attribute filters. This method is called from the WebPlan's getFilterableAttributes() for each plan item in the plan

[image: image74.emf]WebPlan

WebPlanItem

java.util.ArrayList

The diagram shows the processing that occurs when the a WebPlanItem object is queried for it's configured attribute filters. This method is called from the WebPlan's getFilterableAttributes() for each plan item in the plangetFilterableAttributes()

returns ArrayList containing all filters

for this plan item

add(PlanFilterAttributeType.PLAN_ATTR_KEYWORD_DEVICE_NAME, values)

getName()

getStoredMessagePlainTextContent()

add(FilterableAttributeType.PLAN_ATR_KEYWORD_DEVICE_TEXT, values)

new()

Figure 5‑62. chartlite.data.plans-data.WebPlanItem:getFilterableAttributes (Sequence Diagram)
5.11 GUI chartlite.data.schedule-data

5.11.1 Classes

5.11.1.1 GUIScheduleClasses (Class Diagram)

This class diagram shows GUI classes related to schedules and their use.

[image: image75.emf]not isRecurring isRecurring

WebScheduleConfig WebScheduleStatus

ScheduleStatus

«struct»

WebActivationSchedule 1

1

*

1

WebDOWRecurringActivation WebActivationTime

1

1

DOWRecurringActivation «struct» java.util.Date 11 isRecurring

11

*

1

1

1

1 1

1 1

not isRecurring *1 ActivationSchedule «union» ActivationTime

«struct»

1 1

ScheduleConfig

«struct»

BasePushConsumer

1

OpenEventActionData

«struct»

1

1

TraderGroup

11 1

1

1

WebActionData

«interface»

DiscoverScheduleClassesCommand

WebSchedule

WebOpenEventActionData

QueueableCommand

«interface»

QueueableCommand

«interface»

WebScheduleFactory

Schedule

«interface»

1

creates

1

1

DataModel

SchedulePushConsumer

SchedulePushConsumer.PushHandler

*

1

1

1

1

EventConsumerGroup

1

1 1

WebTrafficEvent

1

*

creates

1

ScheduleFactory

«interface»

getID():Identifier

getRef():Schedule

getNetConnectionSite():String

getConfig():WebScheduleConfig

getStatus():WebScheduleStatus

hasFutureActivationTimes():boolean

isReferencingObject(id : Identifier) : boolean

update(config:ScheduleConfig):void

update(status:ScheduleStatus):void

getLastUseTime():Date

getNextActivationTime():Date

push(data:Any):void

processPush(data:Any):void

handleScheduleAdded():void

handleScheduleDeleted():void

handleScheduleConfigChanged():void

handleScheduleStatusChanged():void

isRecurring():boolean

getRecurringActivation():WebDOWRecurringActivation

getMultiDateActivations():Date[]

clone():WebActivationSchedule

getName():String

getDesc():String

getOpCenter():WebOpCenter

getActionData():ActionData[]

getAction(index:int):WebActionData

getActivationSchedule():WebActivationSchedule

isDisabled():boolean

clone():WebScheduleConfig

isMonday():boolean

isTuesday():boolean

isWednesday():boolean

isThursday():boolean

isFriday():boolean

isSaturday():boolean

isSunday():boolean

getStartDate():Date

getEndDate():Date

getTimesOfDay():WebActivationTime[]

clone():WebDOWRecurringActivation

isOpenEventAction():boolean

getScheduleDetailsPanelTemplate():String

getAssociatedDetailsURL():String

getActionData():ActionData

clone():WebActionData

getHour24():int

getMinute():int

clone():WebActivationTime

Figure 5‑63. GUIScheduleClasses (Class Diagram)

5.11.1.1.1 ActivationSchedule (Class)

This IDL union holds the schedule activation data and is discriminated by the enumeration ScheduleType. Currently there are two supported schedule activation types: multi-date activations and recurrant day-of-the-week activations.

5.11.1.1.2 ActivationTime (Class)

ActivationType is an IDL struct containing the moment of schedule activation.

5.11.1.1.3 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement handleEventData().

5.11.1.1.4 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.11.1.1.5 DiscoverScheduleClassesCommand (Class)

This class is used by the GUI's discovery process to find Schedule related classes. When run, this task finds all ScheduleFactory objects in the system and retrieves the schedules from each and stores them in the GUI's object cache. It also discovers schedule event channels and ensures the ScheduleEventConsumer is connected to them.

5.11.1.1.6 DOWRecurringActivation (Class)

An IDL struct representing the schedule data needed for a day-of-the-week recurring schedule.

5.11.1.1.7 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that they do not lose their connection to the CORBA event service. The class will periodically ask each consumer to verify its connection to the event channel on which it is dependant to receive events.

5.11.1.1.8 java.util.Date (Class)

A class used to store dates and times.

5.11.1.1.9 OpenEventActionData (Class)

This IDL struct represents the data used to describe an open event action in a schedule.

5.11.1.1.10 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.11.1.1.11 Schedule (Class)

This IDL interface contains the base set of operations that can be performed on a schedule. It forms the basis for all Schedule specific interfaces defined in the ScheduleModule IDL.

5.11.1.1.12 ScheduleConfig (Class)

This IDL struct represents the user defineable configuration for a Schedule. It includes scheduled activation times and the actions to be executed.

5.11.1.1.13 ScheduleFactory (Class)

This IDL interface details the operations available to a Schedule factory. It is responsible for creating schedules and maintaining information about them.

5.11.1.1.14 SchedulePushConsumer (Class)

This class is used to process events that are pushed on CORBA event channels used for events related to schedules.

5.11.1.1.15 SchedulePushConsumer.PushHandler (Class)

This class is used to allow schedule related events to be processed asynchronously by a command queue, freeing the event channel to push its event to another push consumer quickly without waiting for the event to be processed.

5.11.1.1.16 ScheduleStatus (Class)

This class represents the dynamic info updated during normal operations including last use time and next activation time.

5.11.1.1.17 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.11.1.1.18 WebActionData (Class)

This interface is implemented by various actions that can be placed in a schedule. For R3B2, only one action type (open event) is supported, however this interface is used to mirror the structs defined in the IDL to allow for future expandability.

5.11.1.1.19 WebActivationSchedule (Class)

This class is a wrapper for the IDL defined ActivationSchedule union. If the schedule type indicates a recurring schedule, the getRecurringActivation method will return a WebDOWRecurringActivation object, otherwise it will return null. Likewise, if the schedule type is multi-date, getMultiDateActivations will return an array, otherwise it will return null. The isRecurring method needs to be called prior to calling one of these methods to know the proper method to call.

5.11.1.1.20 WebActivationTime (Class)

This class wraps an IDL defined ActivationTime struct.

5.11.1.1.21 WebDOWRecurringActivation (Class)

This class wraps an IDL defined DOWRecurringActivation object as defined in IDL.

5.11.1.1.22 WebOpenEventActionData (Class)

This class is used to wrap an OpenEventActionData struct (defined in IDL) to allow its data to be accessed from within dynamic web pages.

5.11.1.1.23 WebSchedule (Class)

This class wraps a CORBA schedule object to allow it to be stored in the GUI's cache of system objects (the DataModel).

5.11.1.1.24 WebScheduleConfig (Class)

This class is a wrapper for the IDL defined ScheduleConfig struct.

5.11.1.1.25 WebScheduleFactory (Class)

This class is a wrapper for a ScheduleFactory CORBA object.

5.11.1.1.26 WebScheduleStatus (Class)

This class wraps an IDL defined ScheduleStatus struct.

5.11.1.1.27 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access. It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.11.2 Sequence diagrams

5.11.2.1 chartlite.data.schedule:ScheduleDiscovery (Sequence Diagram)

This sequence diagram shows the processing performed to discover schedule related classes and event channels from the server. This is done initially when the GUI is started, and periodically throughout the lifetime of the GUI in case CORBA events are missed, and also when an administrator manually requests discovery. The TraderGroup is called to discover schedule event channels and to make sure the DiscoverScheduleClassesCommand's push consumer is properly connected to each, wraps the push consumer with a PushEventConsumer object, and stores it in the EventConsumerGroup that was passed to the DiscoverScheduleClasses command during construction. No special processing is needed by the DiscoverScheduleClassesCommand - all processing is handled by the TraderGroup. After having the TraderGroup discover the schedule event channels, the DiscoverScheduleClassesCommand turns its attention to Schedule and schedule factory objects. It has the TraderGroup discover all ScheduleFactory objects in the system. For each factory found, it checks to see if a WebScheduleFactory already exists in the object cache, and if it does it updates it. If not, it creates a new WebSchedule factory object. It then asks each factory for its list of schedules. For each schedule found, a check is made to see if the GUI has previously discovered the schedule. If it has, its data is updated. If not previously discovered, a new WebSchedule object is create to wrap the schedule data and the WebSchedule object is added to the GUI's object cache.

[image: image76.emf][WebSchedule with given ID found]

update(ScheduleStatus)

See WebScheduleConstructor

diagram for details

Schedule ScheduleData getData() ScheduleInfo[][WebSchedule with given ID found]

objectUpdated()

WebSchedule getObject(Identifier)[for each ScheduleFactory]WebSchedule

[WebSchedule with ID not found]

create

IdentifierWebScheduleFactoryWebScheduleFactory creategetObject(Identifier)null or WebScheduleFactory[not found]createDataModel Identifiercreatenull or WebSchedule[WebSchedule with ID not found]objectAdded(WebScheduleFactory)DiscoveryDriverDiscoverScheduleClassesCommandTraderGroupThis finds the schedule event channels, makes sure our push consumer is connected, and stores a wrapped version of the channel in the event consumer group. use schedule factory type value specified in IDL ScheduleFactoryHelperScheduleFactory executediscoverEventChannelsOfName()findAllObjectsOfType()org.omg.CORBA.Object[]narrow()ScheduleFactorygetSchedules()[for each

Schedule]

[WebSchedule with given ID found] update(ScheduleConfig) [WebSchedule with ID not found]

objectAdded()

[WebSchedule with ID found] update()

Figure 5‑64. chartlite.data.schedule:ScheduleDiscovery (Sequence Diagram)

5.11.2.2 chartlite.data.schedule:WebScheduleConstructor (Sequence Diagram)

This diagram shows the processing that takes place when a WebSchedule is created to wrap a Schedule object discovered in a ScheduleFactory. The WebSchedule is constructed with a reference to the CORBA schedule object being wrapped, and the ScheduleData retrieved from that object. Various other wrappers are created to hold the data structures that are contained in the ScheduleData object. In cases where the ScheduleData or its children contain unions, the discriminator method of the union is used to determine the proper type of object wrappers to create.

[image: image77.emf]WebOpenEventActionData

[ActionType is OpenEvent]

create(OpenEventActionData)

getObject(pendingEventID)

WebTrafficEvent or null

[for each ActionData]

DataModel WebActivationSchedule

WebDOWRecurringActivation

WebActivationTime

Date

[op center name empty]

getObject(opCenterID)

WebOpCenter or null

create(ActivationSchedule)

[ScheduleType is Recurring]

create(DOWRecurringActivation)

[for each

ActivationTime]

create

[ScheduleType is MultiDate]

create(long)

[for each date]

DiscoverScheduleClassesCmdWebSchedule The schedule ID and net connection site are stored in the WebSchedule. The ScheduleData object does not need to be wrapped. WebScheduleStatus

WebScheduleConfig

create(ScheduleStatus)

create(ScheduleConfig)

Identifier

create

create(ScheduleData)

Figure 5‑65. chartlite.data.schedule:WebScheduleConstructor (Sequence Diagram)

5.12 GUI chartlite.data.trafficevents-data

5.12.1 Classes

5.12.1.1 chartlite.data.trafficevents.TrafficEventDynListClasses (Class Diagram)

This diagram shows classes related to displaying a dynamic list of traffic events in the system.

[image: image78.emf]TrafficEventDynListDefaultDynListDynListDelegateSupporter «interface» TrafficEventDynListSupporter -m_id:Identifier-m_desc:String-m_cols:DynListCol[]-m_sortCol:DynListCol-m_globalFilters:ArrayList<DynListFilter>-m_subjects:ArrayList<DynListSubject>setShowClosedEventsFlag(show:boolean) : voidsetShowOpenEventsFlag(show:boolean) : voidsetShowPendingEventsFlag(show:boolean) : voidshowClosedEvents() : booleanshowOpenEvents() : booleanshowPendingEvents() : booleanm_showOpenEvents : booleanm_showClosedEvents : booleanm_showPendingEvents : booleancreateDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter,dynListID:Identifier)getDynListSubjects(req:HttpServletRequest, supporter:RequestHandlerSupporter, dynList:DynList):DynListSubject[]getFilterValue(col:DynListCol, filterValueStr:String):Object-setEventStateInclusionFlags(req:HttpServletRequest, dynList:TrafficEventDynList) : void

Figure 5‑66. chartlite.data.trafficevents.TrafficEventDynListClasses (Class Diagram)

5.12.1.1.1 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a collection of columns, a collection of global filters, and a collection of subjects. Filters in this list are treated additively - that is, a subject must pass all filters to be displayed.

5.12.1.1.2 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.12.1.1.3 TrafficEventDynList (Class)

This class represents an instance of a dynamic list containing traffic events. It has flags for which traffic event states to include, which are stronger than global filters as they cannot be cleared.

5.12.1.1.4 TrafficEventDynListSupporter (Class)

This class provides functionality for creating a traffic event dynamic list and populating its filters, performing any non-text filtering, and returning the traffic events to show in the list.

5.12.1.2 chartlite.data.trafficevents_classes (Class Diagram)

This diagram shows the main wrapper class used for storing traffic event related data in the cache.

[image: image79.emf]TrafficEventDataProvider

«interface»

WebTrafficEvent Searchable

«interface»

WebArbQueueEntryOwner

«interface»

WebSharedResource

«interface»

WebAdministered

«interface»

WebUniquelyIdentifiable

«interface»

Updated for R3B1 impl.

Simple accessors that are only used by

Velocity templates are not shown here.

addEventAssociation(eventID:Identifier) : void

addResponseParticipation(p:ResponseParticipation, pd:ResponseParticipationData) : void

addResponsePlanItem(rpi:WebResponsePlanItem) : void

addResponsePlanItems(token:byte[], rpiData:ResponsePlanItemData[]) : void

displayPublicWebSiteAlert() : boolean

getAssociatedEventIdentifiers() : Identifier[]

getClosedDate() : Date

getCountyRegionStateDesc() : String

getDirectionDesc() : String

getDMSResponseDevices() : WebDMS[]

getEventType() : WebTrafficEventType

getEventTypeDesc() : abstract String

getHARResponseDevices() : WebHAR[]

getHistoryEntry(entryID:Identifier) : LogEntryWrapper

getImageName() : String

getInitiatingScheduleID() : Identifier

getInitiatingSchedule() : WebSchedule

getLaneClosureDesc() : String

getLaneConfiguration() : WebLaneConfiguration

getLaneDisplayLargeGIFManager() : LaneDisplayGIFManager

getLaneDisplaySmallGIFManager() : LaneDisplayGIFManager

getLatestHistoryEntries(num:int, numPreviousHolder:int[]) : LogEntryWrapper[]

getLocation() : WebTrafficEventLocation

getLocationDesc() : String

getNextHistoryEntries(num:int, endSeq:int, numPreviousHolder:int[], numNextHolder:int[]):LogEntryWrapper[]

getNotificationRecords() : WebNotificationRecord[]

getNumLanesClosed() : int

getOpenedTimestamp() : int

getPriorHistoryEntries(num:int, endSeq:int, numPreviousHolder:int[], numNextHolder:int[]):LogEntryWrapper[]

getRawBasicEventData() : BasicEventData

getResponseParticipation(id:Identifier):WebResponseParticipation

getResponseParticipations() : WebResponseParticipation[]

getResponsePlanItem(id:Identifier) : WebResponsePlanItem

getResponsePlanItemForTarget(targetID:Identifier) : WebResponsePlanItem

getResponsePlanItems() : WebResponsePlanItem[]

getSchedulesReferencing() : WebSchedule

getTimeLastModified() : int

getTrafficEventRef() : TrafficEvent

getValidResponseParticipantTypes() : ResponseParticipantType[]

getVehiclesInvolvedDesc() : String

hasDMSResponseDevices() : boolean

hasEventAssociations() : boolean

hasHARResponseDevices() : boolean

hasLaneConfig() : boolean

hasParticipants() : boolean

hasRoadConditions() : boolean

hasVehiclesInvolved() : boolean

isAssociatedWithEvent(id:Identifier) : boolean

isClosed() : boolean

isLaneConfigApplicable() : boolean

isNameOverridden() : boolean

isOpen() : boolean

isPending() : boolean

isPrimary() : boolean

removeEventAssociation(eventID:Identifier) : void

removeResponseParticipation(id:Identifier) : void

removeResponsePlanItem(id:Identifier) : void

removeResponsePlanItems(token:byte[], ids:Identifier[]) : String

supportsLaneConfig() : boolean

update() : void

update(eventData:BasicEventData) : void

update(eventData:BasicEventData, changeFlags:TrafficEventDataChanged[]) : void

updateAssociatedEvents() : void

updateBasicEventData() : void

updateCachedLocation(location:TrafficEventLocation) : void

updateEventHistory() : void

updateEventHistory(entries: LogEntry[]) : void

updateLaneConfig() : void

updateLaneConfig(config : LaneConfiguration) : void

getTrafficEventType():short

getBasicEventData():BasicEventData

getResponsePlanItemData():ResponsePlanItemData[]

getResponseParticipationData():ResponseParticipationData[]

Figure 5‑67. chartlite.data.trafficevents_classes (Class Diagram)

5.12.1.2.1 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.12.1.2.2 TrafficEventDataProvider (Class)

This interface is implemented by classes that can provide data from a traffic event. This interface exists because traffic event data may be accessible in different forms depending on where the ActionExecutionGroup (and related classes) are being used. For example, the data for a traffic event may be accessible via a cache of traffic event data or via a CORBA object reference.

5.12.1.2.3 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console pages.

5.12.1.2.4 WebArbQueueEntryOwner (Class)

This interface specifies methods to be implemented by all objects that may place entries on an arbitration queue.

5.12.1.2.5 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART shared resources in the system, corresponding to the SharedResource IDL interface.

5.12.1.2.6 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access. It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.12.1.2.7 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable objects as defined in the IDL.

5.12.1.3 chartlite.data.trafficevents_event_type_classes (Class Diagram)

This diagram shows classes used to cache traffic event related data in the CHART GUI servlet.

[image: image80.emf]WebTrafficEventType «enumeration» WebActionEvent

WebTrafficEvent WebPlannedRoadwayClosure

WebCongestionEvent

WebSafetyMessageEvent

WebDisabledVehicleEvent

WebSpecialEvent

WebWeatherServiceEvent

WebIncident createBasicEventData(type:WebTrafficEventType, eventID:byte[]) : BasicEventDatafromIDLValue(value:int) : WebTrafficEventTypefromTypeName(name:String) : WebTrafficEventTypefromWebTrafficEventClass(theClass:Class) : WebTrafficEventTypegetDefaultDefaultEventStillOpenRemindDelayMinutes() : intgetIDLValue() : shortgetSysProfileKeyEventTypeName() : StringgetTrafficEventClass() : ClassgetTypeName() : StringgetWebTrafficEventClass() : ClasssupportsParticipation() : booleansupportsResponsePlan() : booleanActionEventCongestionEventDisabledVehicleEventIncidentPlannedRoadwayClosureSafetyMessageEventSpecialEventWeatherServiceEventgetActionEventData() : ActionEventData

getActionEventRef() : ActionEvent

getOtherDescription() : String

hasDebris() : boolean

hasOther() : boolean

hasSignal() : boolean

hasUtility() : boolean

getCongestionEventData() : CongestionEventData

getCongestionEventRef() : CongestionEvent

isRecurring() : boolean

getSpecialEventRef() : SpecialEvent

getSafetyMessageEventRef() : SafetyMessageEvent

getEORSPermitTrackingNumber() : String

getPlannedRoadwayClosureEventData() : PlannedRoadwayClosureEventData

getPlannedRoadwayClosureRef() : PlannedRoadwayClosure

getIncidentData() : IncidentData getIncidentRef() : Incident getIncidentTypeName() : String getMinNumCars() : int getMinNumCommercialBus() : int getMinNumLoadedCommercialBus() : int getMinNumLoadedSchoolBus() : int getMinNumMotorcycles() : int getMinNumPickupVanSUVs() : int getMinNumSchoolBus() : int getMinNumSingleUnitTrucks() : int getMinNumTractorTrailers() : int getMinNumUnloadedCommericialBus() : int

getMinNumUnloadedSchoolBus() : int

getMinNumVehicles() : int

getNumCarsInvolved() : int

getNumCarsOverturned() : boolean

getNumLoadedCommercialBusInvolved() : int

getNumLoadedCommercialBusOverturned() : int

getNumLoadedSchoolBusInvolved() : int

getNumLoadedSchoolBusOverturned() : int

getNumMotorcyclesInvolved() : int

getNumPickupVanSUVsInvolved() : int

getNumPickupVanSUVsOverturned() : int

getNumSingleUnitTrucksInvolved() : int

getNumSingleUnitTrucksLostLoad() : int

getNumSingleUnitTrucksOverturned() : int

getNumTractorTrailersInvolved() : int

getNumTractorTrailersJackKnifed() : int

getNumTractorTrailersLostLoad() : int

getNumTractorTrailersOverturned() : int

getNumUnloadedCommercialBusInvolved() : int

getNumUnloadedCommercialBusOverturned() : int

getNumUnloadedSchoolBusInvolved() : int

getNumUnloadedSchoolBusOverturned() : int

getRoadConditionDesc() : String

getShortEventTypeDesc() : String

getVehiclesInvolvedDesc() : String

isHazmat() : boolean

abandonedVehicle() : boolean

callForService() : boolean

directions() : boolean

gas() : boolean

getDisabledVehicleData() : DisabledVehicleData

getDisabledVehicleEventRef() : DisabledVehicleEvent

getOtherDescription() : String

getVehicleMakeColor() : String

getVehicleTagInfo() : String

goneOnArrival() : boolean

hotShot() : boolean

other() : boolean

ownDisposition() : boolean

relayOperator() : boolean

tireChange() : boolean

water() : boolean

getOtherDescription() : String

getRoadConditionDesc() : String

getWeatherServiceEventData() : WeatherServiceEventData

getWeatherServiceEventRef() : WeatherServiceEvent

hasActionEventData() : boolean

hasRoadConditionsData() : boolean

isEvacuationRequired() : boolean

isFlood() : boolean

isHighWater() : boolean

isHurricane() : boolean

isLandslide() : boolean

isOther() : boolean

isOzone() : boolean

isRain() : boolean

isReducedVisibility() : boolean

isSevereWind() : boolean

isSnow() : boolean

isStormCleanupRequired() : boolean

isTornado() : boolean

Figure 5‑68. chartlite.data.trafficevents_event_type_classes (Class Diagram)

5.12.1.3.1 WebActionEvent (Class)

This class is a wrapper for a CORBA ActionEvent that allows it to be cached and to be accessed within Velocity templates.

5.12.1.3.2 WebCongestionEvent (Class)

This class is a wrapper for a CORBA CongestionEvent that allows it to be cached and to be accessed from within Velocity templates.

5.12.1.3.3 WebDisabledVehicleEvent (Class)

This class is a wrapper for a CORBA DisabledVehicleEvent that allows it to be cached and to be accessed from within a Velocity template.

5.12.1.3.4 WebIncident (Class)

This class is a wrapper for a CORBA Incident that allows it to be cached and to be accessed from within a Velocity template.

5.12.1.3.5 WebPlannedRoadwayClosure (Class)

This class is a wrapper for a CORBA PlannedRoadwayClosure that allows it to be cached and to be accessed from within a Velocity template.

5.12.1.3.6 WebSafetyMessageEvent (Class)

This class is a wrapper for a CORBA SafetyMessageEvent that allows it to be cached and to be accessed from within a Velocity template.

5.12.1.3.7 WebSpecialEvent (Class)

This class is a wrapper for a CORBA SpecialEvent that allows it to be cached and to be accessed from within a Velocity template.

5.12.1.3.8 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access. It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.12.1.3.9 WebTrafficEventType (Class)

This enumeration contains the traffic event types.

5.12.1.3.10 WebWeatherServiceEvent (Class)

This class is a wrapper for a CORBA WeatherServiceEvent that allows it to be cached and accessed from within a Velocity template.

5.12.1.4 chartlite.data.trafficevents_misc_classes (Class Diagram)

This diagram shows miscellaneous classes related to traffic events.

[image: image81.emf]WebVehicleType

«enumeration»

LaneDisplayGIFManager LaneGIFData LaneGIFLaneData

* 1

WebLaneConfiguration WebLocation «interface» WebTrafficEventLocation WebLaneConfiguration(config:LaneConfiguration, eventDirection:short)setConfigDirection(config:LaneConfiguration, eventDirection:short) : static voidsetToDefaultStatus(config:LaneConfiguration, eventDirection:short) : static voidcloneConfig(config:LaneConfiguration) : LaneConfigurationgetClonedConfig() : LaneConfigurationcopy(newDir:short) : WebLaneConfigurationcopy() : WebLaneConfigurationgetClosureDesc() : StringgetDescription() : StringgetDirectionName(direction:short) : static StringgetLane(laneIdx : int) : LanegetLaneChangeTimeDesc(laneIdx : int) : StringgetLaneConfiguration() : LaneConfigurationgetUtilLaneConfiguration() : chartlite.util.lane.LaneConfigurationgetLaneInfoString() : StringgetLanes() : LaneWrapper[]getLatestLaneChangedTime() : DategetName() : StringgetNumExistingLanes() : intgetNumLanes() : intgetNumLanesClosed() : intgetPercentageOfLanesClosed() : intgetReferenceDir() : shortgetOppositeReferenceDir() : shortgetReferenceDirName() : StringgetReferenceDirAbbreviation() : StringgetOppositeReferenceDirName() : StringgetOppositeReferenceDirAbbreviation() : StringisConfigEmpty() : booleanisDefaultStateOver(eventDirection:short) : booleansetUnknownLanesOpen(eventDirection:short) : voidupdateForEventDirection(eventDirection:short) : voidupdateLaneDirectionsAndStates(laneDisplayLaneInfoStr:String) : void-m_laneConfig : LaneConfigurationLaneDisplayGIFManager(widthMultiplier:double, heightPixels:int, lineWidth:int, abbreviateDirNames:boolean, filenamePrefix:String, dynImageDir:File)getDynamicImageFilenamesToKeep() : String[]getFilename() : StringgetGIFData(filename: String) : LaneGIFDatagetHeightPixels() : intgetWidthPixels() : intupdateGIF(laneConfig : WebLaneConfiguration) : voidgetStateAbbreviation() : String getCountyOrRegionName() : String getRouteTypeDesc() : String getRouteNumber() : String getDirectionName() : String getIntersectingFeatureProximityDesc() : String getIntersectingFeatureTypeName() : String getMilepostStr() : String getMilepost() : Double getIntersectingRouteNumber() : String getIntersectingRouteName() : String getLocationAliasInternalName() : String getLocationAliasPublicName() : String getLocationDesc() : String LaneGIFData(width:int, height:int, lanes:LaneGIFLaneData[], config:WebLaneConfiguration)

getConfig() : WebLaneConfiguration

getHeight() : int

getLanes() : LaneGIFLaneData[]

getWidth() : int

Car

LoadedCommercialBus

LoadedSchoolBus

Motorcycle

PickupVanSUV

SingleUnitTruck

TractorTrailer

UnloadedCommercialBus

UnloadedSchoolBus

isLocationOverridden() : boolean LaneGIFLaneData(lane:chartlite.util.lane.Lane, pixelRect:Rectangle)

getLane() : chartlite.util.lane.Lane

getMaxX() : int

getMaxY() : int

getMinX() : int

getMinY() : int

Figure 5‑69. chartlite.data.trafficevents_misc_classes (Class Diagram)

5.12.1.4.1 LaneDisplayGIFManager (Class)

This class manages a GIF file representation of a lane configuration. The configuration may be updated, which would cause a new GIF file to be created.

5.12.1.4.2 LaneGIFData (Class)

This class contains metadata for a single instance of a GIF file, making it easy to create an image map for the file via Velocity.

5.12.1.4.3 LaneGIFLaneData (Class)

This class represents a single lane within a single instance of a GIF file. It is used when building an image map.

5.12.1.4.4 WebLaneConfiguration (Class)

This class wraps a LaneConfiguration structure and provides auxiliary methods for getting and manipulating the data.

5.12.1.4.5 WebLocation (Class)

This class provides a superset of location data that may be applicable to objects in the GUI. All fields are optional, and are null if not available.

5.12.1.4.6 WebTrafficEventLocation (Class)

This class provides information about the location of a traffic event.

5.12.1.4.7 WebVehicleType (Class)

This enumeration lists the vehicle types that can be recorded in an Incident event

5.13 GUI chartlite.servlet

5.13.1 Classes

5.13.1.1 ServletBaseClasses (Class Diagram)

This diagram shows classes related to the base CHART GUI servlet.

[image: image82.emf]1 1 NavLinkRights chartlite.servlet.UserLoginSessionImpl ServletDB11 ServletProperties * 1 1 1 MainServlet RequestHandlerSupporter «interface» RequestHandlerMapping 11 11 1 RequestHandler «interface» UserLoggedOutPolicy «enumeration» 1 RequestAction org.apache.velocity.VelocityServlet getProperties():ServletProperties getDB():ServletDB getCachedObject(objID:Identifer):Object getCachedObjectsOfType(type:Class):Object[] getSysProfileProps():SystemProfileProperties getORB():ORB getRootPOA():POA getPersistentPOA():POA getTraderGroup():TraderGroup handleRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context):Template getUserLoggedOutPolicy():UserLoggedOutPolicy getAction():String getLocalMonitorGroupID():Identifier getNavLinkRights():NavLinkRights getLastAlertFilterSetting():String initialWorkingPageShown() : boolean setInitialWorkingPageShown(shown : boolean) : void getInitialWorkingPageURL() : String getHomeMonitorID() : Identifier setHomeMonitorID(id:Identifier) : void getMRUTrafficEventNotificationGroups() : WebNotificationGroup[] getMRUTrafficEventNotificationIndividuals() : WebNotificationIndividual[] getMRUStandaloneNotificationGroups() : WebNotificationGroup[] getMRUStandaloneNotificationIndividuals() : WebNotificationIndividual[] updateNotificationMRULists(recipients:WebNotificationRecipient[], isForEvent:boolean) : void m_initializedNotificationMRULists : boolean getRequestAction():RequestAction getRequestHandler():RequestHandlerDisplayLoginPage DisplayError DisplayNoContent XMLError init(supporter:RequestHandlerSupporter) : void getActions() : ArrayList<RequestAction> processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String shutdown(supporter:RequestHandlerSupporter) : void isViewOnly():boolean canManageEvents():boolean canViewEventDetails():boolean canHandleUncontrolledRes():boolean canViewAlert(alert:WebAlert):boolean canManageAlert(alert:WebAlert):boolean canManageDictionary():boolean getFramingTemplate():String getNavBarTemplate():String getErrorTemplate():String trapUserEnabled():boolean getXMLGeneralResultTemplate():String

Figure 5‑70. ServletBaseClasses (Class Diagram)

5.13.1.1.1 chartlite.servlet.UserLoginSessionImpl (Class)

This class is used to store information about the logged in user. It is also the implementation of the UserLoginSession CORBA interface that can be called from the server to ensure the user is still logged in, send them an instant message, or force the user to become logged out.

5.13.1.1.2 MainServlet (Class)

This class is the main class of the servlet. It handles all requests and dispatches them to the appropriate request handler. It also acts as a RequestHandlerSupporter, which is passed to each request handler to help them process requests.

5.13.1.1.3 NavLinkRights (Class)

This class provides user rights checking for the servlet. It contains a user's token and provides easy to use methods that can check the presence of functional rights, combinations of rights, or even rights that are specific to the object the user wishes to use.

5.13.1.1.4 org.apache.velocity.VelocityServlet (Class)

The base class for the Velocity template engine. This template engine is used to provide dynamic content from the CHART GUI Servlet. The web pages are code in templates using velocity specific macros. The code in the servlet loads data that will be shown on the page into a velocity Context, and this VelocityServlet class is used to merge the content with the template to create HTML for the browser to display.

5.13.1.1.5 RequestAction (Class)

This class contains information about an action that can be invoked via a request handler. The action parameter is specified in the URL as the "action" parameter, or as the last part of the servlet path. The user logged out policy specifies what the servlet should do if this action is requested when the user is logged out.

5.13.1.1.6 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.13.1.1.7 RequestHandlerMapping (Class)

This class provides a mapping between an action and the request handler used to process a request for that action.

5.13.1.1.8 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods that are helpful to request handlers.

5.13.1.1.9 ServletDB (Class)

This class is used by the CHART GUI servlet to access CHART GUI specific data that is stored in the database.

5.13.1.1.10 ServletProperties (Class)

This class provides access to properties defined in the chart gui's properties file.

5.13.1.1.11 UserLoggedOutPolicy (Class)

This enumeration specifies the types of actions that may be specified for responding to a request that is received when the user is logged out.
5.13.1.2 Servlet Misc Classes
This diagram shows miscellaneous classes used within the servlet.

[image: image83.emf]addParamValue(name:String, value:String) : void

addParamValuesFromRequest(req:HttpServletRequest) : void

appendErrorMessage(errMsg:String) : void

clearAllParameters() : void

clearAutoErrorMsg() : void

clearParamValues(name:String) : void

containsValue(name:String, value:String) : boolean

getAutoErrorMsg() : String

getBooleanParm(name:String, displayName:String, required:boolean) : boolean

getDateParm(name:String, displayName:String, required:boolean) : Date

getDoubleParm(name:String, displayName:String, required:boolean) : double

getErrorMessage() : String

getID() : String

getIdentifierParm(name:String, displayName:String, required:boolean) : Identifier

getIdentifierParms(name:String, displayName:String, required:boolean) : ArrayList<Identifier>

getIntegerParm(name:String, displayName:String, required:boolean) : Integer

getIntParm(name:String, displayName:String, required:boolean) : int

getRequiredValue(name:String) : String

getStringParm(name:String, displayName:String, required:boolean) : String

getTotalErrorLength() : int

getValue(name:String) : String

getValue(name:String, trim:boolean) : String

getValues(name:String) : String[]

hasAutoErrorMsg() : boolean

hasError() : boolean

isParmPresent(name:String) : boolean

populateFromRequest(req : HttpServletRequest) : void

prefixErrorMessage(str : String) : void

setErrorMessage(str : String) : void

setID(id:String) : void

setParameterValue(name:String, value:String) : void

setParameterValues(name:String, values : ArrayList<String>) : void

setParameterValues(name:String, values : String[]) : void

UserFormData

getParameter(name:String) : String

«interface»

RequestParameterSupplier

m_req : HttpServletRequest

HttpServletRequestParameterSupplier

CommandStatusMgr

ExtendedCommandStatusImpl

*

1

Figure 5‑71. ServletMiscClasses (Class Diagram)

5.13.2 Sequence Diagrams

5.13.2.1 chartlite.servlet.UserLoginSessionImpl:getMRUTrafficEventNotificationGroups (Sequence Diagram)

This diagram show how the MRU (most recently used) notification groups for within the context of a traffic event will be obtained to put into the Send Notification form. If the MRU lists have already been initialized (based on a flag in the login session), it will return the cached MRU list. Otherwise, it will initialize all of the MRU lists, by getting the notification records from the cache, looking for records matching the user's name, and adding the recipient to the appropriate MRU list. Then, if the MRU lists are not full (at their max size) based on cached notification records, it will query the server using a filter to query the user's records. Then it will look through the returned records, adding to the appropriate MRU lists. When done it will return the requested MRU list.

[image: image84.emf] TODO: Make sure this class exists in the system interfaces. NOTE - the other notification MRU lists will be obtained in a similar manner, but will not be diagrammed. getMRUTrafficEventNotificationGroupsSize() getMRUTrafficEventNotificationIndividualsSize() getMRUStandaloneNotificationGroupsSize() getMRUStandaloneNotifcationIndividualsSize() create Set Filter Author NameQuery Notification RecordsFrom Server[* for each recipient]

Mark MRU notification listinitiation attemptedWebNotificationRecord The recipient will go into one of the 4 MRU lists, depending on whether the notification was standalone vs. within a traffic event, and whether it is a group or individual recipient. initNotificationMRULists()Put Group Or Individual InAppropriate MRU list (Standalone or Traffic Event)If Not Present getSelectedRecipients() getEventID() [* for each recipient][All 4 MRU lists full]return [* for each notification recordreturned, going backwardin time]

NotificationReqHdlrUserLoginSessionImplWebNotificationCache getMRUTrafficEventNotificationGroupsget [MRU notification lists initializationattempted]return WebNotificationGroup[]getAllCachedNotificationRecords()NotificationFilter return WebNotificationGroup[]

Put Group Or Individual In

Appropriate MRU List

If Not Present And MRU List Not Full

SystemProfileProperties TODO: change this to the action server call when the interface is defined. [* for each notificationrecord where authormatches username, going backward in time]

Figure 5‑72. chartlite.servlet.UserLoginSessionImpl:getMRUTrafficEventNotificationGroups(Sequence Diagram)

5.14 GUI chartlite.servlet.alerts

5.14.1 Classes

5.14.1.1 AlertsClasses (Class Diagram)

This diagram shows CHART GUI servlet classes related to alerts.

[image: image85.emf]11 FirstAvailableOfferWrapper

1

Used to locate AlertFactory where

a manual alert will be added.

1

RequestHandlerSupporter «interface» AlertReqHdlr RequestHandler«interface»acceptAlert(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringviewAlerts(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

+FirstAvailableOfferWrapper(ORB, TraderGroup, className : string,

 serviceType : string, constraint : string,

 minDiscoveryIntervalSeconds : int,

 maxRemoteServiceUseMins : int) : ctor

+createIterator() : Iterator

Figure 5‑73. AlertsClasses (Class Diagram)

5.14.1.1.1 AlertReqHdlr (Class)

This class is a request handler used to process requests related to alerts.

5.14.1.1.2 FirstAvailableOfferWrapper (Class)

This class is a generic wrapper that provides the ability to find the first available reference to a service that may have multiple instances within the system.

5.14.1.1.3 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.14.1.1.4 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods that are helpful to request handlers.

5.14.2 Sequence diagrams
5.14.2.1 chartlite.servlet.alerts:AlertReqHdlr.getAlertSound (Sequence Diagram)

This sequence diagram shows the processing that occurs when a Sound object in the Flex HomePage application loads the sound associated with a specific alert type. The load method of the sound is called using a URL that points to this request in the Alert request handler, and it expects MP3 data in return. The request handler uses a parameter to determine the sound to be returned. The request handler translates the request parameter into the name of a CHART system property, and calls the SystemProfileProperties object to retrieve the audio data. The SystemProfileProperties object either returns the data from its cache or it calls the CHART UserManager (via the UserManagerWrapper) to retrieve the audio data that was previously stored via a system configuration request. This data is then returned to the browser via the HttpServletResponse object's OutputStream as MIME type audio/mpeg. The output stream is flushed and closed and the request handler method returns null to its caller.

For R3B2, this processing will be updated to support one new alert type, the ExecuteScheduledActionsAlert.

[image: image86.emf]HttpServletResponse

getBinaryProperty(propName)

flush()

close()

ServletOutputStream

write(audio data)

SystemProfileProperties

[sound type not valid or missing]

HTTP Status 404 (not found)

flash.media.Sound

AlertReqHdlr

sound is loaded using URLRequest that points to chartlite

servlet.

HttpServletRequest

getAlertSound

getParameter("soundType")

new string that contains

name of system profile

property that contains

audio data for the specified

sound type.

getOutputStream()

setContentType("audio mpeg")

[property not found]

HTTP Status 404 (not found)

If binary property is in cache, returns it,

otherwise, use user manager wrapper

to find a UserManager and call the

appropriate method.

byte[]

String

new

Figure 5‑74. chartlite.servlet.alerts:AlertReqHdlr.getAlertSound (Sequence Diagram)

5.14.2.2 chartlite.servlet.alerts:NotifyUserOfNewAlertsFlex (Sequence Diagram)

This sequence shows the processing performed to provide an audio notification of new alerts. (Visual notification of new alerts is shown in the viewNewAlerts sequence diagram.) Prior to this processing taking place, initialization will be performed to load sounds from the server and setup some member variables. See the NotifyUserOfNewAlertsFlexInit diagram for details. The member variables we make use of in this diagram are as follows: A member variable of type "Sound" for each alert type; A Sound for the reminder sound; An array used to store a list of new alerts we already know about (from a prior call to this processing); An array of Sounds that need to be played.

When alert data is received from the servlet, either due to the initial load of data, or via periodic updates or user actions, the AlertView's handleAlertsUpdated method will be called. The timer used to play the "reminder" sound is stopped, and the list of "sounds to be played" is cleared. A new Array is created, and each alert in the "new" state is processed. Each alert is placed in this new Array as a record of "knowing" about the alert for the next time this processing is called. For each new alert, a search is done through the list of known new alerts (populated from a prior call to this processing). If the alert is found, that means we already processed it in the previous call to this processing and no further action is needed. If the alert is not found, it is an alert the user has not seen yet, and thus notification is needed. The sound associated with the alert type is determined, and a check is made to see if the sound already exists in the array of sounds to be played. If not, it is added.

After all alerts in the "new" state are processed, the new Array of these alerts is stored in the member variable of "new alerts we already know about", replacing the existing array. This will be used the next time this processing is called to determine which alerts require user notification, as discussed above. Next, if there are no sounds to play and alerts exist in the "new" state, the timer used to play the "reminder" sound is restarted. Note that "start" is used and not "reset". This causes the timer to pick up where it left off when it was stopped at the beginning of this processing, leaving its repeat interval unchanged. If there ARE sounds to be played, the first one is played, and an event listener is registered to be called when the sound finishes playing. When the sound eventually finishes playing, a check is made to see if there are more sounds to be played. If so, the next sound is played and an event listener is again registered. This continues until all sounds have been played, at which point the reminder timer is reset. This causes the reminder sound to play only after a full reminder interval has elapsed from the time the last sound was played.

For R3B2, this processing will be updated to support one new alert type, the ExecuteScheduledActionsAlert.

[image: image87.emf]pop()

control returns to the HTTPService. The sound will finish playing at a later time.

Above soundCompleteHandler logic will get repeated until there are no more sounds to play

soundCompleteHandler()

pop()

Sound or null

[no sound to play AND

open alerts exist]

reset()

[sound to play] play()

[sound to play] addEventListener(SOUND_COMPLETE, soundCompleteHandler)

[no sound to play]

[no sound to play AND

open alerts exist]

start()

play()

SoundChannel

addEventListener(SOUND_COMPLETE, soundCompleteHandler)

Sound

SoundChannel

The array on the left

is stored in member

variable to replace

existing array.

replace existing

array of known

open alerts with

new array of

open alerts

Sound or null

search for alert by id

indexOf(sound)

until array

is empty

HTTPService

[sound not already in array]

push(sound)

determine sound

member variable

to use based

on alert type

index or -1 if sound not in array

alert or null

for each open alert

in lastResult

[alert found in

known alerts

array]

AlertsView Timer Array Array

Array

Timer used to play reminder sound.

Array of open alerts we already know about.

Array of sounds that need to be played

handleAlertsUpdated()

get lastResult.openAlerts.alert

Array

stop()

new

push()

pop()

Figure 5‑75. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlex (Sequence Diagram)

5.14.2.3 chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexReminder (Sequence Diagram)

This sequence shows the processing used to play a reminder sound to the user periodically after the initial sound(s) for new alerts have been played and the alerts remain in the "new" state. (Note that the processing to provide a visual cue is shown in the viewNewAlerts sequence diagram).

A Timer is used to periodically fire an event when the reminder duration as specified in the system properties elapses. The management of the timer is shown in the NotifyUserOfNewAlerts diagram. It is only active when there are alerts in the "new" state AND an initial notification sound has been played for each alert in the "new" state.

When the timer fires, checks are made to make sure that there are still alerts in the "new" state, and that the queue of alert specific sounds to be played is empty. These are precautionary checks to make sure the reminder sound isn't played at inappropriate times, and by design, the checks should always yeild a false result. After it has been determined that the reminder sound should be played, the Sound member variable that holds the reminder sound is played. The timer will continue to fire, until the time when the list of alerts is refreshed from the servlet and the situation is re-evaluated (as shown in NotifyUserOfNewAlerts).

[image: image88.emf]AlertsView Sound HTTPService Reminder sound. lastResult.openAlerts.alert.length [no new alerts]

handleAlertReminder() TimerTimer Reminder timer. [number of sounds queued > 0]

stop()

[number of sounds queued > 0]

play()

Array of sounds to be played. Following is a precaution to make sure the reminder doesn't play when

there are alert specific sounds to play. By design, the timer will only

be activated when there are no alert specific sounds to be played,

so this next call should always return zero.

number of "new" alerts

length

Array Timer fires on the reminder interval as specified in the system properties. Timer is only active when no alert type specific sounds are queued for playing. number of sounds queued for playing

Figure 5‑76. chartlite.servlet.alerts:NotifyUserOfNewAlertsFlexReminder (Sequence Diagram)

5.14.2.4 chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

This diagram shows the processing that is done when the servlet receives a request to resolve an alert. This request is issued when the user clicks the resolve button for an alert on the home page, or the user clicks the resolve link on an alert details page. The user's rights are checked, and if they don't have the right required to manage alerts, an error page is returned. The alertID parameter is retrieved from the request, and this is used to find the WebAlert in the servlet's object cache. If the parameter is missing or the alert cannot be found in the object cache, an error page is returned. The getResolutionAction() method is called on the WebAlert. The default implementation of this method will return a url that can be used to close the alert. Alert type specific subclasses of WebAlert may override this method to provide a url used to point the user to right page where they can resolve the alert. After the resolution url is retrieved from WebAlert (or a subclass), a redirect to that URL is performed. Following are the URLs that each subclass will use:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events in the alert as the event1 and event2 parameters of the request.

WebManualAlert: viewAlertDetails

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert as the eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

WebExecuteScheduledActionsAlert: The redirect depends on the number of actions in the schedule that fired the alert. If zero actions to execute, viewAlertDetails is the redirect action. If there are more than 1 action, getExecuteScheduledActionsForm is the redirect action. If there is a single Open Event action, viewEventDetails is the redirect action (pass the pending event ID specified in the Open Event action).

[image: image89.emf]getResolutionAction()

User

WebAlert NavLinkRights

boolean

getParameter("alertID")

The default implementation of this method returns a URL that will close the

alert. Classes derived from WebAlert override this method to provide a URL

 that is specific to the alert type. Following are the type specific URLs:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events

in the alert as the event1 and event2 parameters of the request.

WebManualAlert: use default (close alert)

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert

as the eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

WebExecuteScheduledActionsAlert: if more than 1 scheduled action, display

Execute Schedule Actions form. If only 1 action, and the action is an

Open Event Action, show the pending alert details page for that event. If

zero actions in the schedule, show the alert details page.

AlertReqHdlr

resolveAlert request received by servlet due to user clicking resolve button for alert on home page, or user clicking

resolve link on alert

details page.

RequestHandlerSupporter

new

WebAlert or null

HttpServletRequest

[no rights]

Error.vm

redirect to URL provided by

getResolutionAction()

canManageAlerts()

Identifier

getCachedObject()

[alert not found in cache]

Error.vm

[missing parameter]

Error.vm

resolveAlert()

Figure 5‑77. chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

5.14.2.5 chartlite.servlet.alerts:viewAlertDetailsFlex (Sequence Diagram)

This sequence diagram shows processing that occurs within the Flex HomePage application and web browser when the user chooses to view the details for an alert. The processing that takes place within the servlet is shown on a separate diagram.

When the view details button is clicked, the button calls the viewAlertDetails method of the AlertsView. The AlertsView gets the HomePage and calls its openURL method. The details of the openURL method are not shown on this diagram - see HomePage.openURL for details. The net result of the call is that the Working window's href gets set to the URL that invokes the viewAlertDetails request in the servlet. The working window will open the URL and display the resultant HTML. For details about the servlet processing related to this request, see the viewAlertDetails sequence diagram.

[image: image90.emf]href gets set See HomePage.openURL diagram for details. The net result of this function is that the href in the working window gets set to the desired URL. It is shown conceptually here. Working Window shows

HTML that results from

viewAlertDetails request.

AlertsView viewAlertDetails get() [click] viewAlertDetails (event, alert id) user clicks details buttonUserSee viewAlertDetails sequence diagram to see processing done by request handler. HTML

AlertReqHdlr Working Window openURL("action=viewAlertDetails&alertid=id") Controller HomePage getHomePage() Button

Figure 5‑78. chartlite.servlet.alerts:viewAlertDetailsFlex (Sequence Diagram)

5.15 GUI chartlite.servlet.commlog

5.15.1 Classes
5.15.1.1 GUICommLogServletClasses (Class Diagram)

This diagram shows classes used by the GUI (servlet) to support requests related to Comm Log entries

[image: image91.emf]1

creates

LogEntryWrapper

* 1

contains

CommLogReqHdlr DynListReqHdlrDelegate

DynListDelegateSupporter

«interface»

LogEntryDynListSupporter

1

1

1 1

LogEntryDynList

NavigatableDynList

1

DynListSubject

«interface»

DefaultDynList

viewCommLog(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String searchCommLog(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

viewCommLogPage(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

-m_id:Identifier

-m_desc:String

-m_cols:DynListCol[]

-m_sortCol:DynListCol

-m_globalFilters:ArrayList<DynListFilter>

-m_subjects:ArrayList<DynListSubject>

setLogEntryTypeInclusionFlags(HttpServletRequest req, LogEntryDynList dynList):void

getEntriesOnPage(page:int, numEntries:int):LogEntryDynListSubject[]

getNumberOfPages():int

getNumEntriesPerPage():int

setNumEntriesPerPage(numEntries:Integer):void

setCurrentPage(page:Integer):void

m_currentPage:int

m_numEntriesPerPage:int

getPropertyValue(property:DynListCol):String

getPropertyValues(property:DynListCol):String[]

getNumberOfEntries():Integer

showUserEntries():boolean

showEntries():boolean

setShowSystemEntriesFlag(boolean flag):void

setShowUserEntriesFlag(boolean flag):void

m_showUserMsgs: boolean

m_showSystemMsgs: boolean

Figure 5‑79. GUICommLogServletClasses (Class Diagram)

5.15.1.1.1 CommLogReqHdlr (Class)

This class handles HTTP requests related to comm log functionality.

5.15.1.1.2 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a collection of columns, a collection of global filters, and a collection of subjects. Filters in this list are treated additively - that is, a subject must pass all filters to be displayed.

5.15.1.1.3 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.15.1.1.4 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.15.1.1.5 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.15.1.1.6 LogEntryDynList (Class)

This object extends the DefaultDynList class to provide a flag and method for inclusion of user, system, and/or device messages.

5.15.1.1.7 LogEntryDynListSupporter (Class)

This class is a DynListDelegateSupporter for comm log entries. Its implementation of the createDynList method sets up the columns for the list of comm log entries. Its implementation of the getDynListSubjects method retrieves the log entries from the GUI's CommLogManager and wraps them as LogEntryDynListSubjects.

5.15.1.1.8 LogEntryWrapper (Class)

This class provides accessor methods that provide access to the information in a CHART2.LogCommon.LogEntry object. In R3B2 this class implements the DynListSubject interface for use in DynLists

5.15.1.1.9 NavigatableDynList (Class)

This object extends the DefaultDynList class to provide page navigation of DynListSubjects

5.15.2 Sequence Diagrams

5.15.2.1 chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing that takes place when A LogEntryDynList object is created. This occurs when viewing/searching Traffic Event History, or Communications Log entries. A LogEntryDynList object is created with the appropriate columns and filters.

[image: image92.emf]This diagram shows the processing that takes place when A LogEntryDynList object is created. This

occurs when viewing/searching Traffic Event History, or Communications Log entries. A LogEntryDynList

object is created with the appropriate columns and filters.

DynListReqHdlrDelegate

LogEntryDynListSupporter

java.util.ArrayList

DefaultDynListCol

TextValColFilter

LogEntryDynList

new(dynListID, "Log Entries", cols)

LogEntryDynList created

returns new LogEntryDynList

add(col)

Time Entered column

createDynList(req, supporter, dynListID)

Op Ctr column

Author column

DefaultDynListCol

add(col)

new(LogEntryDynListSubject.Text, null, false)

setFilter(DynListFilter filter)

new()<DynListCol>

new(DynListCol col, "Source")

new(DynListCol col,"Author")

new(LogEntryDynListSubject.Author, comparator, false)

add(DynListCol col)

add(col)

new(LogEntryDynListSubject.TimeEntered, null, false)

new(LogEntryDynListSubject.OpCenter, null, false)

DefaultDynListCol

setFilter(DynListFilter filter)

new(LogEntryDynListSubject.Source, null, false)

Text column

Source column

TextValColFilter

DefaultDynListCol

DefaultDynListCol

add(col)

Figure 5‑80. chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:createDynList (Sequence Diagram)

5.15.2.2 chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:getDynListSubjects (Sequence Diagram)

This diagram shows the processing that occurs when a DynListReqHdlrDelegate creates a LogEntryDynList. This occurs for both Comm Log Entries and Traffic Event history entries. A list of subjects is generated from an object in the temp store if an objectID is specified in the request. This occurs when a search is performed. IIf an object id is not specified, the list is generated from all cached LogEntry objects.

[image: image93.emf]LogEntryDynList

boolean

boolean

boolean

isSystemEntry()

[showSystemMessages && isSystemEntry]

add(LogEntryDynListSUbject(LogEntryWrapper))

DynListReqHdlrDelegate

LogEntryDynListSupporter

RequestHandlerSupporter

java.util.ArrayListLogEntryWrapper

[for each

LogEntryWrapper]

new ArrayList for storing LogEntryDynListSubjects

This diagram shows the processing that occurs when a DynListReqHdlrDelegate creates a LogEntryDynList. This occursfor both Comm Log Entries and Traffic Event history entries. A list of subjects is generated from an object in the temp store if an objectID is specified in the request. This occurs when a search is performed. IIf an object id is not specified, the list is generated from all cached LogEntry objects.

HttpServletRequest

id of object in store holding Comm Log Entries

getAttribute("logEntriesObjectID")

isUserEntry()

returns WebTrafficEvent

CommLogManager

TempObjectStore

getAttribute("trafficEventID")

returns LogEntryWrapper[] search results object

returns array of all cached LogEntryWrapper objects

[id of object holding entries not null]

getTempObjectStore()

[trafficEventID null]

getAllEntries()

get(id)

new(<LogEntryDynListSubject>)

returns LogEntryDynListSubject[]

getDynListSubjects(req, supporter, dynList)

returns search results LogEntryWrapper[] object

getHistoryEntries()

getCachedObject(trafficEventID)

setLogEntryTypeInclusionFlags(HttpServletRequest req, LogEntryDynList dynList)

showUserMessages()

showSystemMessages()

[showUserMessages && is user entry]

add(LogEntryDynListSubject(LogEntryWrapper))

boolean

LogEntryDynListSubject added to ArrayList

WebTrafficEvent

returns LogEntryWrapper[] of history entries for this event

Figure 5‑81. chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:getDynListSubjects (Sequence Diagram)

5.15.2.3 chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:setLogEntryTypeInclusionFlags (Sequence Diagram)

This diagram shows the processing that occurs when a LogEntryDynListSupporter calls setLogEntryTypeInclusionFlags. This method sets flags for whether to display user, system, and/or device messages in the LogEntryDynList.

[image: image94.emf]This diagram shows the processing that occurs when a LogEntryDynListSupporter

calls setLogEntryTypeInclusionFlags. This method sets flags for whether to display user,

system, and/or device messages in the LogEntryDynList.

LogEntryDynListSupporter

LogEntryDynListSupporter HttpServletRequest

LogEntryDynList

setShowDevicesMessages(false) setShowDevicesMessages(false)

setLogEntryTypeInclusionFlags(req, LogEntryDynList list) setLogEntryTypeInclusionFlags(req, LogEntryDynList list)

[showSystemMessages]

setShowUserMessagesFlag(true)

[showSystemMessages]

setShowUserMessagesFlag(true)

setShowUserMessagesFlag(false) setShowUserMessagesFlag(false)

getParameter("showSystemMessages") getParameter("showSystemMessages")

[showDeviceMessages]

setShowDevicesMessages(true)

[showDeviceMessages]

setShowDevicesMessages(true)

getParameter("showDeviceMessages") getParameter("showDeviceMessages")

setShowUserMessagesFlag(false) setShowUserMessagesFlag(false)

getParameter("showUserMessages") getParameter("showUserMessages")

[showUserMessages]

setShowUserMessagesFlag(true)

[showUserMessages]

setShowUserMessagesFlag(true)

Figure 5‑82. chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter:getDynListSubjects (Sequence Diagram)

5.15.2.4 chartlite.servlet.CommLogReqHdlr:searchCommLog (Sequence Diagram)

This diagram shows the processing that occurs when a user has clicked the search button on the Comm Log management page. New for R3B2, the user can specify whether to include system and user messages In R3B2 the results are also displayed in a page navigatable, number of records specifiable dynamic list.

[image: image95.emf]put("numEntriesToDisplay", numEntries)

put("filter", filter)

Context

put("logEntriesObjectID", id)

LogEntryWrapper objects matching search added to temp store

TempObjectStore

chartlite.util.ServletUtil

searchCommLog

[insufficient rights]

getParameter("sourceType")

getSourceIDFromNonTrafficEventSourceTypeName(sourceName)

returns sourceTypeid

[if srcID != -1]

new(sourceTypeID,"")

getParameter("author")

getParameter("dateVariable")

calculate date filters

getParameter("opCtrName")

isCheckboxChecked(req, "isCaseSensitive")

isCheckboxChecked(req,"displaySystemMessages")

See chartlite.servlet.commlog.viewCommLog,

Also see chartlite.servlet.commlog.LogEntryDynListSupporter.getDynListSubjects for

population of the DynList

getParameter("entryText")

DynListReqHdlrDelegate

viewCommLog

CHART2.LogCommon.LogFilterImpl

RequestHandlerSupporter

CommLogManager

new(source, author, startDate, endDate, eventID, entryID, opCenterName, entryText, caseSensitive, LogFilterMessageType)

getCommLogManager()

search(token, filter, maxentries)

returns LogEntryWrapper[]

User

This diagram shows the processing that occurs when a user has clicked the search button on the Comm Log management page. New for R3B2, the user can specify whether to include system and user messages

In R3B2 the results are also displayed in a page navigatable,

number of records specifyable dynamic list.

CommLogReqHdlr

HttpServletRequest SourceInfo

CHART2.Common.Source

Retrieve many date parameters

from the context.

isCheckBoxChecked(req,"displayUserMessages")

getTempObjectStore()

return template

add(id,LogEntryWrapper[])

Figure 5‑83. chartlite.servlet.CommLogReqHdlr:searchCommLog (Sequence Diagram)

5.15.2.5 chartlite.servlet.CommLogReqHdlr:viewCommLog (Sequence Diagram)

This diagram shows the processing that takes place when a user has clicked on the Communications Log link at the top of the HomePage, or the user has submitted a comm log search form. If the user has chosen to manage the comm log, a form is shown for adding new log entries, along with links/buttons for filtering user/system entries and navigating. If the user has executed a search, the entry portion of the form is not displayed.Initially the latest page of log entries are shown.

[image: image96.emf]User

See chartlite.servlet.dynlist.NavigatableDynListReqHdlrDelegate.viewDynListPage

returns template

DynListReqHdlrDelegate

Request made from an ajax request in

CommLog.vm

This diagram shows the processing that takes place when a user has clicked on the Communications Log link at the top of the HomePage, or the user has submitted a comm log search form. If the user has chosen to manage the comm log, a form is shown for adding new log entries, along with links/buttons for filtering user/system entries and navigating. If the user has executed a search, the entry portion of the form is not displayed.Initially the latest page of log entries are shown. put("pageContent", "CommLog.vm")

Context

CommLogReqHdlr

returns commlog template

viewDynListPage(req, resp, ctx, supporter)

viewCommLog(req, resp, ctx, supporter)

viewCommLogPage&page=1

Figure 5‑84. chartlite.servlet.CommLogReqHdlr:viewCommLog (Sequence Diagram)

5.15.2.6 chartlite.servlet.CommLogReqHdlr:viewCommLogPage (Sequence Diagram)

This diagram shows the processing that takes place when the user has selected a specific page of records to view in a dynlist or updated the number of entries to display per page.

[image: image97.emf]See chartlite.servlet.dynlist.NavigatableDynListReqHdlrDelete:viewDynListPage

Displays dynlist template

returns dynlist template with context populated

This diagram shows the processing that takes place when the user has selected a specific page of records to view in a dynlist or updated the number of entries to display per page. DynListReqHdlrDelegate

viewDynListPage(req, resp, ctx, supporter:String)

User

CommLogReqHdlr

viewCommLogPage(req, resp, ctx, supporer)

Figure 5‑85. chartlite.servlet.CommLogReqHdlr:viewCommLogPage (Sequence Diagram)

5.15.2.7 Chartlite.servlet.commlog.ViewCommLogFirstRequest

This diagram shows end to end processing that occurs when viewing the initial page of the comm log.

[image: image98.emf]This diagram shows end to end processing that occurs when viewing the

initial page of the comm log.

User

Request made from an ajax request in CommLog.vm

CommLogReqHdlr

The following calls are made

from the CommLogPage.vm

template

DynListReqHdlrDelegate

Context

LogEntryDynListSupporter

NavigatableDynList

getDynList() getDynList()

returns NavigatableDynList returns NavigatableDynList

viewCommLog(req, resp, ctx, supporter) viewCommLog(req, resp, ctx, supporter)

returns DynListSubject[] returns DynListSubject[]

returns current page number returns current page number

returns template returns template

getDynListSubjects() getDynListSubjects()

setNumEntriesPerPage() setNumEntriesPerPage()

setCurrentPage() setCurrentPage()

viewDynListPage(req, resp, ctx, supporter) viewDynListPage(req, resp, ctx, supporter)

returns NavigatableDynList returns NavigatableDynList

[dynList NULL]

createDynList

[dynList NULL]

createDynList

put("pageContent", "CommLog.vm") put("pageContent", "CommLog.vm")

returns CommLog template returns CommLog template

put("pageContent","CommLogPage.vm") put("pageContent","CommLogPage.vm")

viewCommLogPage&page=1 viewCommLogPage&page=1

put("dynList", dynList) put("dynList", dynList)

getEntriesOnPage(currentPage) getEntriesOnPage(currentPage)

returns template returns template

getCurrentPage() getCurrentPage()

Figure 5‑86. chartlite.servlet.CommLogReqHdlr: ViewCommLogFirstRequest (Sequence Diagram)

5.16 GUI chartlite.servlet.notification

5.16.1 Classes

5.16.1.1 chartlite.servlet.notification_classes (Class Diagram)

This diagram shows classes used by the GUI (servlet) to support requests related to notifications.

[image: image99.emf]NotificationRecordDynList

DynListDelegateSupporter

«interface»

DynListSubject

«interface»

NavigatableDynList

1 1

1

creates

NotificationRecordDynListSupporter

DynListReqHdlrDelegate

*

1

creates

1

1

NotificationRecordDynListSubject

1

DefaultDynList

NotificationReqHdlr RequestHandler «interface» getSendNotificationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String getSearchNotificationHistoryForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String sendNotification(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

submitSearchNotificationHistoryForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getNotificationDetails(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

getTrafficEvent():WebTrafficEvent

getPropertyValue():String

WebNotificationRecord m_record

PROP_TIME_SENT: String

PROP_TXT: String

PROP_OP_CTR: String

PROP_SENDER: String

PROP_STATUS: String

createDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter,dynListID:Identifier)

getDynListSubjects(req:HttpServletRequest, supporter:RequestHandlerSupporter, dynList:DynList):DynListSubject[]

getFilterValue(col:DynListCol, filterValueStr:String):Object

-m_id:Identifier

-m_desc:String

-m_cols:DynListCol[]

-m_sortCol:DynListCol

-m_globalFilters:ArrayList<DynListFilter>

-m_subjects:ArrayList<DynListSubject>

getEntriesOnPage(page:int, numEntries:int):LogEntryDynListSubject[]

getNumberOfPages():int

getNumEntriesPerPage():int

setNumEntriesPerPage(numEntries:Integer):void

setCurrentPage(page:Integer):void

m_currentPage:int

m_numEntriesPerPage:int

setDisplayTrafficEventNotificationsFlag(req:HttpServletRequest, dynListDynList)

setShowTrafficEventNotificationsFlag(boolean):void

showTrafficEventNotifications():boolean

m_showTrafficEventNotifications:boolean

Figure 5‑87. chartlite.servlet.notification_classes (Class Diagram)

5.16.1.1.1 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a collection of columns, a collection of global filters, and a collection of subjects. Filters in this list are treated additively - that is, a subject must pass all filters to be displayed.

5.16.1.1.2 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.16.1.1.3 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.16.1.1.4 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.16.1.1.5 NavigatableDynList (Class)

This object extends the DefaultDynList class to provide page navigation of DynListSubjects

5.16.1.1.6 NotificationRecordDynList (Class)

This class extends the NavigatableDynList class to provide inclusion/exclusion of notifications associated with online traffic events.

5.16.1.1.7 NotificationRecordDynListSubject (Class)

This class is used to wrap a WebNotificationRecord object so that it may be used as a subject in a dynamic list. It implements the getPropertyValue() and getPropertyValues() methods to return the proper data to appear in each column, as identified by a property name.

5.16.1.1.8 NotificationRecordDynListSupporter (Class)

This class is a DynListDelegateSupporter for a list of notifications. Its implementation of the createDynList method sets up the columns for the list of notifications. Its implementation of the getDynListSubjects method retrieves the notifications from the GUI's WebNotificationCache and wraps them as NotificationRecordDynListSubjects.

5.16.1.1.9 NotificationReqHdlr (Class)

This class handles HTTP requests related to notification functionality.

5.16.1.1.10 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.16.2 Sequence Diagrams

5.16.2.1 chartlite.servlet.notification.dynlist.NotificationRecordDynListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing performed when the NotificationRecordDynListSupporter is asked to create a DynList. It creates a column object for each column shown on the Notification History pages. .After all columns are created, they are used to construct a NotificationRecordDynList object. The NotifcationRecordDynList extends the NavigatableDynList which adds the functionality to return the list in the form of pages of records

[image: image100.emf]A NotificationRecordDynList object is created.

The list could contain all cached notification records, or

a subset generated from a search query.

DynListReqHdlrDelegate

NotificationRecordDynListSupporter

ArrayList

DefaultDynListCol

Time sent colujmn

DefaultDynListCol

Text column

DefaultDynListCol

Operations Center

column

DefaultDynListCol

DefaultDynListCol

Author column

Column for filtering notifications

with/without online traffic events

TextValueColFilter

NavigatabledDynList

add() add()

setFilter() setFilter()

add() add()

create new(dynListID,"Notification History", cols) create new(dynListID,"Notification History", cols)

NavigatableDynList created NavigatableDynList created

returns NavigatableDynList returns NavigatableDynList

create() create()

create create

add() add()

create() create()

create() create()

create() create()

add() add()

createDynList(req, supporter, dynListID) createDynList(req, supporter, dynListID)

create create

create() create()

add() add()

Figure 5‑88. chartlite.servlet.notification.dynlist.NotificationRecordDynListSupporter:createDynList (Sequence Diagram)

5.16.2.2 chartlite.servlet.notification.dynlist.NotificationRecordDynListSupporter:getDynListSubjects (Sequence Diagram)

This diagram shows the processing performed when the NotificationRecordDynListSupporter is asked for a list of DynListObjects. It either gets all WebNotificationRecord objects from the WebNotificationCache or uses an object in the temp store as the result of a search. Each WebNotificationRecord is wrapped with a NotificationRecordDynListSubject object. It then returns this array of NotificationRecordDynListSubject objects.

[image: image101.emf]The diagram show the processing of the DynListReqHdlr delegate retrieving subjects..

The list of subjects is generated from either an object in the temp store as a result

of a search query, or all cached notification records.

DynListReqHdlrDelegate

NotificationRecordDynListSupporter HttpServletRequest

RequestHandlerSupporter

TempObjectStore

java.util.ArrayList

WebNotificationCache

NotificationRecordDynList

WebNotificationRecord

boolean boolean

[traffic event notification &&

 showTrafficEventNotifications]

add()

[traffic event notification &&

 showTrafficEventNotifications]

add()

[!traffic event notification]

add()

[!traffic event notification]

add()

returns NotificationRecordDynListSubject[] returns NotificationRecordDynListSubject[]

getNotificationRecordsManager() getNotificationRecordsManager()

showTrafficEventNotifications() showTrafficEventNotifications()

setDisplayTrafficEventNotificationsFlag(HttpServletReq req, NotificationRecordDynList dynList) setDisplayTrafficEventNotificationsFlag(HttpServletReq req, NotificationRecordDynList dynList)

getDynListSubjects(req, supporter, dynList) getDynListSubjects(req, supporter, dynList)

getAttribute("notificationRecordsObjectID") getAttribute("notificationRecordsObjectID")

id of object in store holding notificationRecords id of object in store holding notificationRecords

[id of object holding records not null]

getTempObjectStore()

[id of object holding records not null]

getTempObjectStore()

[* for each

WebNotificationRecord]

[* for each

WebNotificationRecord]

getAllCachedNotificationRecords() getAllCachedNotificationRecords()

[id of object holding records not null]

get(notificationRecordsObjectID)

[id of object holding records not null]

get(notificationRecordsObjectID)

returns search results WebNotificationRecord[] returns search results WebNotificationRecord[]

returns WebNotifificationsRecord[] returns WebNotifificationsRecord[]

isTrafficEventNotification() isTrafficEventNotification()

new new

Figure 5‑89. chartlite.servlet.notification.dynlist.NotificationRecordDynListSupporter:getDynListSubjects (Sequence Diagram)

5.16.2.3 NotificationReqHdlr:getIndividualsJSON (Sequence Diagram)

This diagram shows how the list of notification individuals is queried and sent to the browser. This is done asynchronously to avoid delaying the initialization of the Send Notification form, as the list could be large. The WebNotificationIndividual objects are obtained from the WebNotificationCache object, and then a JSONObject is built for each one (that contains the name of the individual), which is then added to a JSONArray object. This object is converted to a string and is sent to the browser via the HttpServletResponse object.

[image: image102.emf]UserNotificationReqHdlrcreate put("name", name) add(jsonObj) sendJSONObject(resp, obj) getWriter()println(str) WebNotificationCache WebNotificationIndividual JSONArray JSONObject HttpServletResponse PrintWriter get WebNotificationIndividual[]getJSONObject() JSONObject put("isGroup", false) [*for eachindividual]setContentType("application\json") toString() nullServletUtil getIndividualsJSONgetNotificationIndividuals()create

Figure 5‑90. NotificationReqHdlr:getIndividualsJSON (Sequence Diagram)

5.16.2.4 NotificationReqHdlr:getSearchNotificationHistoryForm (Sequence Diagram)

This diagram shows the processing that occurs when the user has clicked the search button on the manage notifications page. A form is displayed with controls for retrieving a specific set of notification records from the database.

[image: image103.emf]new

getName()

[isGroup]

add(name)

toArray()

put("recipients", recipientsNames)

This diagram shows the processing that occurs when theuser has clicked the search button on the manage notifications page. A form is displayed with controls for retrieving a specific set of notificaiton recordsfrom the database.

add(name)

put("pageContent", "notification\SearchNotificationForm.vm")

EnclosingTemplate.vm

put("recipientGroups", recipientGroupNames)

java.util.ArrayList

Create two ArrayLists. One for

individual recipients, and one for

recipient groups.

new

isGroup()

boolean

toArray()

WebNotificationCache

java.util.ArrayList

WebNotificationIndividual

getNotificationIndividuals()

WebNotificationIndividual[]

[for each

individual

Context

NotificationReqHdlr

getSearchNotificationHistoryForm(req, resp, ctx, supporter)

User

Figure 5‑91. NotificationReqHdlr:getSearchNotificationHistoryForm (Sequence Diagram)

5.16.2.5 NotificationReqHdlr:getSendNotificationForm (Sequence Diagram)

This diagram shows how the Send Notification form will be populated. If the form is invoked from within a traffic event, the "eventID" parameter will be specified. If it is, the WebTrafficEvent will be retrieved from the cache and will be called to get its notification records. This in turn will call the notification cache to search for records having the given event ID. (The latest notification record will be used to get the previous message text.) If the "eventID" parameter is not specified, it will call the notification cache to get the latest standalone record. The latest notification entry will be put into the Velocity context to be used on the form, as will the MRU (most recently used) notification groups and individuals, which will be put into the Velocity context. The notification groups will also be obtained from the notification cache and put into the context. The notifications individuals will not, however; they will be requested asynchronously after the page is displayed, as there could be a large number of them.

[image: image104.emf]put("notificationGroups", groups)

get

getNotificationGroups()

Context put("trafficEvent", event)

return "PopupTemplate.vm"

NOTE - since this is for the "Prior Message"

link, it will only be meaningful to the user

if the notification was sent recently.

Therefore, if it's not in the cache, we don't

need to do anything fancier like query it

from the server.

Determine Latest Entry

getMRUStandaloneNotificationGroups()

getMRUStandaloneNotificationIndividuals()

[eventID param not

specified]

[eventID specified]

getLatestNotificationRecord(userName, true)

UserLoginSessionImpl getMRUTrafficEventNotificationGroups()

getMRUTrafficEventNotificationIndividuals()

put("mruGroups", mruGroups)

put("mruIndividuals", mruIndividuals)

put("pageContent", "SendNotification.vm"

[eventID specified but

event not found]

return error

getParameter("eventID")

getCachedObject(eventID)

Check User Rights

[insufficient rights]

return error

WebTrafficEvent or null

User

NotificationReqHdlr HttpServletRequest RequestHandlerSupporter getSendNotificationForm

The MainServlet class puts the SystemProfileProperties object into the context.

From this, the web page can get:

- msg text warning/error length

- standalone text shortcuts (10-codes, misc, single-click shortcuts)

When the notification is sent from the context of a traffic event,

the SystemProfileProperties object, combined with the traffic event,

will be called from the Velocity template to obtain all of the

event-specific text shortcuts. The details of this are left for implementation.

NOTE: the notification individual list will be requested

asynchronously from the web page because the amount

of data in the list might cause the page to load slowly,

and because the individual list is not shown by default

so there's time for it to load in the background.

The web page can get the notification

recipients to pre-select (for a traffic event notification)

and the message text for the "Prior Message" link from this

notification record. Note that for a traffic event, the previous

record will most likely always be present, whereas if it's

a standalone record it may be null if old.

put("previousNotificationRecord", previousRecord)

WebNotificationCache WebTrafficEvent getNotificationRecords()

get

getNotificationRecordsForTrafficEvent(id)

WebNotificationRecord[]

WebNotificationRecord[]

Figure 5‑92. NotificationReqHdlr:getSendNotificationForm (Sequence Diagram)

5.16.2.6 NotificationReqHdlr:searchNotificationHistory (Sequence Diagram)

This diagram shows the processing that occurs when the user has submitted a search from the notification search page. All search parameters are retrieved from the request, and a server side search query is sent. The results are stored in a temporary object and displayed in a DynList.

[image: image105.emf]create

vector for holding NotificationRecordWrapper's created

HttpServletRequest

NotificationFilterImpl

searchNotificationHistory

getParameter("eventIndicator")

getParameter("author")

getParameter("opCtr")

getParameter("startDate")

getParameter("endDate")

getParameter("text")

getParameter("recipient")

getParameter("recipientGroup")

calculateDateFilters

create()

filter containing requested parameters created

User

This diagram shows the processing that occurs when the user has submitted a search from the notification searc page. All search parameters are retrieved from the request, and a server side search query is sent. The resultsare stored in a temporary object and displayed in a DynList.NotificationReqHdlr

returns dynlist template

DynListReqHdlrDelegate

viewList

Context

put("searchEntriesObjectID", id)

getTempObjectStore()

temp object store

add(id, NotificationRecordVector)

TempObjectStore

[for each

query result

record

NotificationWrapper

getNotificationHistory(token, NotificationFilterImpl, maxEntries)

returns NotificationQueryResults

RequestHandlerSupporter

add(record)

getCachedObjectsOfType(NotificationWrapper)

returns NotificationWrapper object

java.util.Vector

getParameter("maxEntries")

Figure 5‑93. NotificationReqHdlr:searchNotificationHistory (Sequence Diagram)
5.16.2.7 NotificationReqHdlr:sendNotification (Sequence Diagram)

This diagram shows the processing when the user sends a notification, either standalone or from the context of a traffic event. The recipients (groups and individuals) are parsed from the request, as are the message text and user initials. The event ID will be specified if sending from a traffic event. The message (with initials appended) is checked against the error length, and an error is returned if it is too long. Otherwise, a call to the server is made to send the notification, the MRU lists are updated, and the browser is redirected to view the notification details page.

[image: image106.emf]NotificationWrapper SystemProfile NotificationProperties sendNotification(token, auxData, recipients, message) getNotificationProperties()SystemProfileProperties updateNotificationMRULists(groups, eventID != null)getSysProfileProps()updateNotificationMRULists(individuals, eventID != null)UserNotificationReqHdlrHttpServletRequestUserLoginSessionImplsendNotificationCheck Rights[no rights]Return ErrorgetParameter("messageText")getParameter("userInitials")Check Message LengthWith Initials AppendedgetMsgTextErrorLength() RequestHandlerSupporter [message too long]return errorRedirect Popup WindowTo View Notification DetailsgetParameter("selectedIndividuals")getParameter("eventID")getParameter("selectedGroups")

Figure 5‑94. NotificationReqHdlr:sendNotification (Sequence Diagram)
5.16.2.8 NotificationReqHdlr:viewNotificationDetails (Sequence Diagram)

This diagram shows the processing to get the Notification Details page. The notification record ID is retrieved from the request and is used to look up the WebNotificationRecord object from the WebNotificationCache. The object is put into the Velocity context and the Notification Details page is set up to be displayed.

[image: image107.emf]NotificationReqHdlrgetNotificationDetails()[no rights]return error"PopupTemplate.vm"

WebNotificationCache Context get getCachedNotificationRecord(notificationRecordID) WebNotificationRecord or null [not found]return errorput("notificationRecord", notificationRecord) put("pageContent", "NotificationDetails.vm") UserHtttpServletRequest Check Rights getParam("notificationRecordID")

Figure 5‑95. NotificationReqHdlr:viewNotificationDetails (Sequence Diagram)
5.16.2.9 NotificationReqHdlr:viewNotificationHistory (Sequence Diagram)

This diagram show the processing that occurs when the user chooses the notification link on the home page. Online notifications are shown. The user can show/hide notifications from traffic events. The user can browse through records page by page, or direct page access, and can control the number of records displayed per page.

[image: image108.emf]See chartlite.servlet.dynlist.NavagatableDynListreqHdlrDelegate:viewDynListPage

viewDynListPage

Request made from an Ajax request in NotificationHistory.vm

NavigatableDynListreqHdlrDelegate UserNotificationReqHdlr This diagram show the processing that occurs when the user chooses the notification link on the home page. Online notifications are shown. The user can show/hide notificationsfrom traffic events. The user can browse through records page by page, or direct page access, and can control the number of records displayed per page.Context returns template containing latest Notification histories

viewNotificationHistory(req, resp, ctx, supporter)

[no rights]

error

put("pageContent", "NotificationHistory.vm")

returns notification history template

viewNotificationHistoryPage&pageNum=1

Figure 5‑96. NotificationReqHdlr:viewNotificationHistory (Sequence Diagram)
5.17 GUI chartlite.servlet.planmgmt

5.17.1 Classes

5.17.1.1 Chartlite.servlet.planmgmt.planrequest.Hdlr

This class diagram illustrates the actions supported by the PlanReqHdlr class.

[image: image109.emf]processAddEditPlanReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processViewPlanListReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processViewPlanDetailsReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processAddDMSPlanItemReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processAddHARPlanItemReq(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processAddPlanItemsToTrafficEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processGetPlanItemsJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processGetFilteredPlansJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processAddDMSPlanItems(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processAddHARPlanItems(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

processSearchForPlanItemTargets(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter)

PlanReqHdlr

Figure 5‑97. Chartlite.servlet.planmgmt.PlanReqHdlr (Class Diagram)

5.17.2 Sequence Diagrams

5.17.2.1 charlite.servlet.PlanReqHdlr:processAddEditPlanReq (Sequence Diagram)

This diagram shows the processing that occurs when the user has chosen to create or edit a Plan. In addition to the existing form data, R3B2 adds the ability to specify the following types of filter attributes. Event Type, Operations Center, Keyword, County/Region, Location Aliases.

[image: image110.emf]getPlan() setFilterAttributes(PlanFilterAttributeList attribs) NewPlanInfo [plan info is null] Error.vm View plan list page shown

[plan already exists]

objectUpdated(planId)

DataModel objectAdded(webPlan.getID(), webPlan)

[insufficient priviledges] PlanFactory Plan returns Plan [filters changed]

setFilterAttributes(PlanFilterAttributeList attribs)

returned in the form, PlanFilterAttributeType: Value Each parameter value must be parsed into PlanFilterAttributeWebPlan [plan doesn't exist] createPlanAtFirstAvailableFactory()UserPlanReqHdlr returns NewPlanInfo processAddEditPlanReq(req, resp, ctx,supp)[plan already exists]

update(planName, PlanFilterAttributeList attributes)

createPlan(byte[] token, String planName) [plan doesn't exist] new (Plan plan, SystemContextProvider provider, String factoryName) HttpServletRequest getParameterValues("filterAttributes") returns string array containing all attributes

Figure 5‑98. charlite.servlet.PlanReqHdlr:processAddEditPlanReq (Sequence Diagram)

5.17.2.2 chartlite.servlet.PlanReqHdlr:processAddDMSPlanItemsReq (Sequence Diagram)

This diagram shows the processing that occurs when the user has submitted the request to adding DMSs to a Plan. In R3B2, the user will have the ability to select one or more DMSs to be added to the plan. The IDs are parsed from the request parameters and the processing that was done for one DMS (in previous releases) is applied to all specified DMSs.

[image: image111.emf]getParameterValues("dmsIDs") returns an array of dms ID's [for each

dms id]

returns template for plan details

UserPlanReqHdlr HttpServeletRequest Use what is already coded for a single DMS

processAddDMSPlanItemsReq(req, resp, ctx, supporter)

Figure 5‑99. chartlite.servlet.PlanReqHdlr:processAddDMSPlanItemsReq (Sequence Diagram)

5.17.2.3 chartlite.servlet.PlanReqHdlr:processAddHARPlanItemsReq (Sequence Diagram)

This diagram shows the processing that occurs when the user has submitted the request to adding HARs to a Plan. In R3B2, the user will have the ability to select one or more HARs to be added to the plan. The IDs are parsed from the request parameters and the processing that was done for one HAR (in previous releases) is applied to all specified HARs.

[image: image112.emf]UserPlanReqHdlruse what is already coded for a single HAR

HttpServeletRequest getParameterValues("harIDs") returns an array of HAR ID's [for each

HAR id]

returns template for plan details

processAddHARPlanItemsReq(req, resp, ctx, supporter)

Figure 5‑100. chartlite.servlet.PlanReqHdlr:processAddHARPlanItemsReq (Sequence Diagram)

5.17.2.4 chartlite.servlet.PlanReqHdlr:processEditPlanPropertiesFormReq (Sequence Diagram)

This diagram shows the processing that occurs when the user has chosen to edit a plan from the manage plans page. A form is displayed with controls for editing the plan name and filterable attributes.

[image: image113.emf]WebRoadwayLocationLookup returns WebRoadwayLocationAliasInfo[] Edit plan properties form shown

WebTrafficEventType getTypeNames() put("eventTypeNames", eventTypeNames[]) [WebPlan object not found] Error.vm HttpServletRequest DataModel Context getObject(planID) put("pageContent", "planmgmt\EditPlanPropertiesForm.vm") [no rights to edit plans] Error.vm processEditPlanPropertiesFormReq(req, resp, ctx, supporter)getParameter("planID")put("plan", WebPlan) CountyRegionState desc, OpCenters, and PlanFactories (connection sites) already in the context via MainServlet.handleRequest and existing code getAliases() put("roadwayLocationAliases", aliasInfo[]) put("pageTitle", "Edit Plan Properties") UserPlanReqHdlr

Figure 5‑101. chartlite.servlet.PlanReqHdlr:processEditPlanPropertiesFormReq (Sequence Diagram)

5.17.2.5 chartlite.servlet.PlanReqHdlr:processGetFilteredPlansJSON (Sequence Diagram)

This diagram shows the processing that occurs when the user has specified a plan filter or sort order. Upon updating the filter, a javascript method is called to initiate an Ajax request for updating the list of plans based on the filter.

[image: image114.emf]sort filtered plan list

getParameter("sortField")

return JSON template containing filtered plans

[matchesFilter]

add(plan)

DataModel

boolean

ischeckBoxChecked("inPlanName")

Also perform for inMessageText

inPlanKeywords, and inDeviceName

HttpServletResponse

setContentType("application\JSON")

new()

java.util.ArrayList

new(String operator, PlanFilterAttributeList filterableAttributes, boolean devName, boolean devText, boolean planName, boolean keywords)

[for each WebPlan object]

System(JavaScript Method)

PlanReqHdlr HttpServletRequest

Build array of FilterableAttribute type/values

getParameter("filterableAttribute")

returns all WebPlan objects

[for each non empty filter parameter]

matchesFilter(WebPlan plan)

A Javascript method is responsible for building up a filter query and appending it to this call, initiated by a AJAX request. Parameter string will be in the below format. filterableAttributeType1=value1+value2+value3&filterableAttributeType2=value1+...Do for each filterable attribute PlanAttributeDataFilter

getFilteredPlansJSON(req, resp, supporter)

returns boolean

ServletUtil

getObjectsOfType(WebPlan.class)

Figure 5‑102. chartlite.servlet.PlanReqHdlr:processGetFilteredPlansJSON (Sequence Diagram)

5.17.2.6 chartlite.servlet.PlanReqHdlr:processGetPlanItemsJSON (Sequence Diagram)

This diagram shows the processing that occurs when the user has selected a plan, when an AJAX request is sent to get the list of PlanItems for the selected plan.

[image: image115.emf]WebPlan HttpServletResponse getPlanItemsJSON(req, resp, supporter)new()getPlanItems() return JSON template containing planItems matching the filter

setContentType("application\JSON") getParameter("planID") getObject(Identifier planID) returns WebPlan object returns an array of plan items in this plan [for each WebPlanItem add(WebPlanItem item) Context put("planItems") UserPlanReqHdlr HttpServletRequest DataModel java.util.ArrayList

Figure 5‑103. chartlite.servlet.PlanReqHdlr:processGetPlanItemsJSON (Sequence Diagram)

5.17.2.7 chartlite.servlet.PlanReqHdlr:processSearchForPlanItemTargetsReq (Sequence Diagram)

This diagram shows the processing that occurs when the user chooses to add items to a plan. The user clicks on the Add DMS/HAR Plan Items link, or clicks on the edit plan item link and the select dms button. A form is displayed containing a list of available DMS/HARs. New for R3B2 is the ability to add more than one DMS/HAR from a request. The Single Option field is replaced with check box fields. The existing processing will be used for R3B2, but the returned form will need changes to allow multiple selection.

[image: image116.emf]For R3B2 change the template file to

use checkboxes for allowing multiple dms selections

planmgmt/SelectPlanItemTargetsForm.vm

return template for displaying dms's

User

PlanReqHdlr processSearchForPlanItemTargetsReq(req, resp, ctx, supporter)

Figure 5‑104. chartlite.servlet.PlanReqHdlr:processSearchForPlanItemTargetsReq (Sequence Diagram)

5.17.2.8 chartlite.servlet.PlanReqHdlr:processViewPlanDetailsReq (Sequence Diagram)

This diagram shows the processing that occurs when the user chooses to view the plan details page. For R3B2, the filterable attributes will also be displayed.

[image: image117.emf][for each

type of

filterable

attribute]

One of the following: EventTypes LocationAliases CountyRegions OperationalCenters

ConnectionSites

ObjectCache PlanReqHdlr WebPlan getObject(planID) processViewPlanDetailsReq(HttpServletRequest req, HttpServletResponse resp, Context ctx, RequestHandlerSupporter supporter) [no rights] return template

Context UserSee chartlite.data.plans-data.WebPlan.getFilterableAttributes() returns WebPlan object return all attributes of type in ArrayList getFilterableAttributes() put("attributeType", attributeValues)

Figure 5‑105. chartlite.servlet.PlanReqHdlr:processViewPlanDetailsReq (Sequence Diagram)

5.17.2.9 chartlite.servlet.PlanReqHdlr:processViewPlanListReq (Sequence Diagram

This diagram shows the processing that occurs when the user chooses to display or sort the plan list. By default plans are ordered by plan name, but the request allows sorting by event type or date the plan was last used.

[image: image118.emf][no rights] [for each WebPlan object]

Context [sortField DateLastUsed]

new(PlanComparator.DateLastUsed)

sort(planList, planComparator)

returns array list sorted on correct comparator

put(planList)

UserPlanReqHdlr DataModel PlanComparator Collections processViewPlanListReq(HttpServletRequest req, HttpServletResponse resp, Context ctx, RequestHandlerSupporter supporter) getObjectsOfType(WebPlan.class) [sortField EventType]

new(PlanComparator.EventType)

Return velocity template for manage plans

[sortField Name]

new(PlanComparator.Name)

HttpServletRequest getParmeter("sortField")add(WebPlan object)

java.util.ArrayList returns all WebPlan objects

Figure 5‑106. chartlite.servlet.PlanReqHdlr:processViewPlanListReq (Sequence Diagram)

5.18 GUI chartlite.servlet.schedules

5.18.1 Classes

5.18.1.1 GUIScheduleServletClasses (Class Diagram)

This diagram shows classes used by the GUI (servlet) to support requests related to schedules.

[image: image119.emf]UserFormData

1

1

1 1

1 1

ActionExecutionGroup

ScheduleExecutionCommandStatus

ExtendedCommandStatusImpl CommandStatusMgr

1 1

*

1

creates

*

1

WebScheduleConfig

1

1

1 1

*

*

uses

1

1

1 1usesScheduleActionExecutionSupporter

ActionExecutionSupporter «interface» PrimaryFirstOfferWrapper

DataModel

ScheduleTrafficEventFormData

AddEditScheduleFormData

1

creates

1

1

DynListDelegateSupporter

«interface»

ScheduleReqHdlr

creates

1

ScheduleReqHdlr creates instance

of ScheduleDynListSupporter and

passes it to the DynListReqHdlrDelegate

as it's DynListDelegateSupporter.

WebSchedule

1

1

ScheduleActionsFilter NextActivationsFilter

BaseDynListFilter

1

1

creates

DynListSubject

«interface»

ScheduleDynListSubject

DynListReqHdlrDelegate

1

1

1 1

ScheduleDynListSupporter

1 1

uses

RequestHandlerSupporter

«interface»

javax.servlet.http.HttpServletRequest

«interface»

javax.servlet.http.HttpServletResponse

«interface»

org.apache.velocity.context.Context

ActivationTimeComparator

DynListComparator

«interface»

1

1

creates

TempObjectStore

1

1 1

uses

1

* 1

creates

1

1

uses

setActionExecutionGroup(group:ActionExecutionGroup):void

getActionExecutionGroup():ActionExecutionGroup

AddEditScheduleFormData()

AddEditScheduleFormData(id:Identifier,ref:Schedule, config:WebScheduleConfig)

AddEditScheduleFormData(config:WebScheduleConfig)

isEdit():boolean

isCopy():boolean

parseFormData()

storeInterimFormData()

getFormData():UserFormData

getScheduleConfig():WebScheduleConfig

getIDLScheduleConfig():ScheduleConfig

getFactoryID():Identifier

getErrorAction():String

getSuccessAction():String

setErrorMessage(msg:String):void

updateAction(index:int, action:ActionData)

addAction(action:ActionData)

removeAction(index:int):void

-m_edit:booean

-m_copy:boolean

-m_ref:Schedule

-m_id:Identifier

parseFormData(final:boolean)

getActions():ArrayList<RequestAction>

viewSchedules():String

getAddEditScheduleForm():String

getAddEditOpenEventActionForm():String

addEditOpenEventAction():String

removeScheduleAction():String

addEditSchedule():String

copySchedule():String

removeSchedule():String

getScheduleTrafficEventForm():String

viewSchedule():String

getExecuteScheduleActionsForm():String

executeScheduleActions():String

-m_ascending:boolean

-m_nextActivation:boolean

-m_actionTypeToFilterNameXREF:Hashtable

PROP_NAME:String

PROP_DESC:String

PROP_OP_CTR:String

PROP_SCHED_TYPE:String

PROP_ACTIONS:String

PROP_LAST_ACTIVATION:String

PROP_NEXT_ACTIVATION:String

-m_filterNametoNumDaysXRef:Hashtable

Figure 5‑107. GUIScheduleServletClasses (Class Diagram)

5.18.1.1.1 ActionExecutionGroup (Class)

An ActionExecutionGroup is a group of related actions that are to be executed. The group is constructed using an array of ActionData objects. An ActionExecutor for each type of action will be created, with the actions begining in the "Pending" state. The group of actions can then be executed using a variety of methods. For R3B2, only sequential execution will be supported. It is anticipated that in the future parallel execution would be supported, or other types of execution patterns. For R3B2, sequential execution supports a flag that indicates if execution on the group should stop if an error is encountered. When this feature is enabled, all actions net yet executed when the failure occurs will be canceled, and they will end up in the COMPLETED state, with a status of CANCELED. It is anticipated that the haltOnFailure flag will always be set to "false" for R3B2. In addition to providing the capability to execute a group of actions, this class provides the ability to retrieve status regarding execution of the group, such as the number of actions in certain states, and an overall status summary. The entire list of ActionExecuter objects can also be retrieved from this object to obtain a detailed status of each.

5.18.1.1.2 ActionExecutionSupporter (Class)

This interface is implemented by classes that can provide support for ActionExecuter objects in performing the execution of their assigned action. Note that the createCommandStatus method is for future use and is not needed for R3B2. It is shown on this diagram to illustrate support for future actions that execute a long running operation that requires a command status.

5.18.1.1.3 ActivationTimeComparator (Class)

This class is a DynListComparator that can compare ScheduleDynListSubjects based on an activation time, rather than the text display of the activation time. This comparator can be sorted based on the prior activation time or the next activation time, depending on a flag set during construction.

5.18.1.1.4 AddEditScheduleFormData (Class)

This class is used to store form data while a schedule is being added, edited, or copied. Three constructors exist for these purposes. When doing an add operation, the default constructor is used, and an empty WebScheduleConfig will be constructed. When doing a copy, the WebScheduleConfig is passed in addition to the ID and CORBA object reference of the schedule being edited. For a copy, a WebScheduleConfig is passed, prepopulated with the config data from the schedule being copied. The data from the WebScheduleConfig will be used to pre-populate forms, therefore when doing an add, the forms will be initially empty, and when doing an edit or copy, the forms will be pre-populated appropriately. Multiple forms are used during the add, edit, and copy operations to allow a schedule's actions to be added or edited. This requires the form data to be temporarily persisted in the servlet while the user is working. This class contains all data entries that the user has entered on the form. A helper method exists to parse data from an HTTP request into this object.

5.18.1.1.5 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

5.18.1.1.6 CommandStatusMgr (Class)

This class manages command status objects served by the GUI.

5.18.1.1.7 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.18.1.1.8 DynListComparator (Class)

This interface is implemented by classes that are used to sort dynamic lists.

5.18.1.1.9 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.18.1.1.10 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.18.1.1.11 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.18.1.1.12 ExtendedCommandStatusImpl (Class)

This is an abstract class that is extended by classes that implement the ExtendedCommandStatus CORBA interface. It handles the basic implementation required of a command status, and leaves the implementation of updateAny() and completedAny() to the derived classes.

5.18.1.1.13 javax.servlet.http.HttpServletRequest (Class)

Provides information about a request made to an HTTP servlet.

5.18.1.1.14 javax.servlet.http.HttpServletResponse (Class)

Provides a way for an HTTP servlet to send a response.

5.18.1.1.15 NextActivationsFilter (Class)

This class is a DynListFilter used to filter the next activation column of the schedules dynamic list. The getUniqueFilterValues() method is implemented to provide the values "TODAY", "NEVER", and increments of a number of days as specified in the system profile. For example, the number of days could include "Next 7 Days", "Next 14 Days", etc. The passesFilter() method is implemented to pass any schedule whose next activation time is within the criteria specified by the filter value. A mapping of the text filter value to a number of days threshold will be used for this purpose.

5.18.1.1.16 org.apache.velocity.context.Context (Class)

This class is used to allow an application to provide "named" data to a template so the data can be used when rendering the template.

5.18.1.1.17 PrimaryFirstOfferWrapper (Class)

This class inherits from OfferWrapper and gives the caller the ability to suggest a preferred service instance whenever service offers are being searched. If that instance is unavailable, the rest of the offers are searched per normal.

5.18.1.1.18 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods that are helpful to request handlers.

5.18.1.1.19 ScheduleActionExecutionSupporter (Class)

This class is an ActionExecutionSupporter that uses a PrimaryFirstOfferWrapper to supply an Iterator that can be used to find an available TrafficEventFactory for creating new events. The PrimaryFirstOfferWrapper will ensure that the new traffic event is usually created at the traffic event "closest" to the web server being accessed by the user. In most cases, this will mean that the traffic event will be hosted on a server that is part of the set of services with data most critical to the user. (This set of services is sometimes referred to as an "island" since that part of the system could stand alone and provide functionality to the user despite loss of network connectivity to other remote sites). This class will supply a TrafficEventDataProvider for a given traffic ID by retrieving the WebTrafficEvent from the GUI's data model (WebTrafficEvent will implement the TrafficEventDataProvider interface).

5.18.1.1.20 ScheduleActionsFilter (Class)

This class is a dynamic list filter used for the Actions column of a schedule list. It implements the getUniqueValueDescs() method to return the unique types of actions that exist in the schedules in the lists. It implements the passesFilter() method to pass a schedule if it has an action of the type specified by the filter value.

5.18.1.1.21 ScheduleDynListSubject (Class)

This class is used to wrap a WebSchedule object so that it may be used as a subject in a dynamic list. It implements the getPropertyValue() and getPropertyValues() methods to return the proper data to appear in each column, as identified by a property name.

5.18.1.1.22 ScheduleDynListSupporter (Class)

This class is a DynListDelegateSupporter for a list of schedules. Its implementation of the createDynList method sets up the columns and filters for the list of schedules. Its implementation of the getDynListSubjects method retrieves the schedules from the GUI's object cache and wraps them as ScheduleDynListSubjects.

5.18.1.1.23 ScheduleExecutionCommandStatus (Class)

This class is an ExtendedCommandStatusImpl used to allow the status of the execution of one or more actions to be summarized with a single command status object. Using the GUI's command status framework for this purpose allows the results of a schedule execution to be accessed by the user even if they navigate away from the page showing the initial results of the execution. This class will override functions in the base class such that all status information that it returns (such as "isCompleted()") will be obtained from the ActionExecutionGroup it contains. The details page template used by this extended command status will be a page that shows the status of each action in the ActionExecutionGroup, including an indication of actions that were excluded.

5.18.1.1.24 ScheduleReqHdlr (Class)

This class is a request handler that processes all schedule related requests. It uses a DynListReqHdlrDelegate object to handle requests related to viewing, sorting, and filtering the schedule list. Other requests are handled directly by this class.

5.18.1.1.25 ScheduleTrafficEventFormData (Class)

This class is an AddEditScheduleFormData object that overrides the parseFormData() method to allow it to parse data specific to the Schedule Traffic Event form in addition to standard "Add Schedule" data. It calls the base class parseFormData() method prior to parsing parameters specific to scheduling a traffic event (which is just a short cut to create a schedule with a single open event action in it).

5.18.1.1.26 TempObjectStore (Class)

This class provides a self cleaning storage area for temporary objects.

5.18.1.1.27 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex form, and provides convenience methods for parsing the values from the request.

5.18.1.1.28 WebSchedule (Class)

This class wraps a CORBA schedule object to allow it to be stored in the GUI's cache of system objects (the DataModel).

5.18.1.1.29 WebScheduleConfig (Class)

This class is a wrapper for the IDL defined ScheduleConfig struct.

5.18.2 Sequence Diagrams

5.18.2.1 servlet.schedules.ScheduleDynListSupporter:createDynList (Sequence Diagram)
This diagram shows the processing performed when the ScheduleDynListSupporter is asked to create a DynList. It creates a column object for each column shown on the Schedule List page. Many columns can use the default text based sorting, while others need a custom DynListComparator. The columns that support filtering either use a default text value filter, or utilize a custom filter. After all columns are created, they are used to construct a DefaultDynList object. The functionality provided by this default implementation of DynList is sufficient for use with the schedule list.

[image: image120.emf]DynListReqHdlrDelegate

ScheduleDynListSupporter

ArrayList

DefaultDynListCol

Name column

DefaultDynListCol

DefaultDynListCol

Description column

Op Center column

TextValueColFilter

DefaultDynListCol

Schedule Type column

TextValueColFilter

DefaultDynListCol

Actions column

ScheduleActionsFilter

DefaultDynListCol

Last Activation column

ActivationTimeComparator

DefaultDynListCol

Next Activation column

ActivationTimeComparator

NextActivationsFilter

DefaultDynList

pass columns created

above to contructor

create create

DynList DynList

create create

create create

setSortComparator() setSortComparator()

add() add()

create create

create create

setSortComparator() setSortComparator()

create create

setFilter() setFilter()

add() add()

create create

create create

setFilter() setFilter()

add() add()

setFilter() setFilter()

add() add()

create create

create create

createDynList createDynList

create create

create create

add() add()

create create

add() add()

create create

create create

setFilter() setFilter()

add() add()

Figure 5‑108. servlet.schedules.ScheduleDynListSupporter:createDynList (Sequence Diagram)

5.18.2.2 servlet.schedules.ScheduleDynListSupporter:getDynListSubjects (Sequence Diagram)

This diagram shows the processing performed when the ScheduleDynListSupporter is asked for a list of DynListObjects. It simply gets all WebSchedule objects from the object cache and wraps each with a ScheduleDynListSubject object. It then returns this array of ScheduleDynListSubject objects.

[image: image121.emf]DynListReqHdlrDelegateScheduleDynListSupporterRequestHandlerSupporter ObjectCache ScheduleDynListSubject

getDynListSubjects() getObjectCache() ObjectCache getObjectsOfType(WebSchedule.class) WebSchedule[] create [for each WebSchedule]

ScheduleDynListSubject[]

Figure 5‑109. servlet.schedules.ScheduleDynListSupporter:getDynListSubjects (Sequence Diagram)

5.18.2.3 servlet.schedules.ScheduleReqHdlr:getAddEditScheduleForm (Sequence Diagram)

This diagram shows the processing that is performed when a request is made to display the Add/Edit Schedule form. This request may be made initially when the user clicks the link to add or edit a schedule, or may be made during the editing process, or after the user has initiated a copy. In any case, the process may involve multiple screens if the user chooses to add or edit schedule actions during the process. When this process is invoked when the user copies a schedule it will look as if it is an "Add Schedule" already in progress, for the copy process will pre-load a form data object and pass it's id to this process. When this request is received, a check is made to ensure the user has the proper functional rights to manage schedules. If not, an error message will be displayed. A check is then made for a tempID in the request parameters. If a tempID is present, this indicates the add/edit (or copy) is already in progress, and the previously stored form data is retrieved from the temp object store. If an add/edit/copy is not already in progress, a check is made to see if a schedule ID is passed in the request. The existence of a schedule ID indicates an edit operation is being initiated, and the WebSchedule object for the schedule being edited is retrieved from the DataModel and its current configuration is cloned so it can be used to pre-populate the form. A new AddEditScheduleFormData object is created using the existing schedule’s data for an edit, or using a default constructor for an add. The form data object is then added to the temp object store for later access. After the form data object is retrieved (operation in progress) or created (add or edit being initiated), other objects needed by the form are retrieved from the data model and placed in the velocity context. The AddEditSchedule form is then returned, and data from the context is used to dynamically fill in the HTML that is displayed to the user.

[image: image122.emf]tempID NOT NULL indicates an add, edit,or copy is already in progress, next sectionis skipped.WebScheduleWebScheduleConfig tempID NULLindicates initiatingadd or edit. Existenceof schedule id indicatesedit.May already exist if add, edit or copy in progress, or may need to be created in this method. Processing resumeshere that is commonto add, copy, edit

in progress, or initiating

add or edit

[WebSchedule found] getConfig() WebScheduleConfig [WebSchedule found] clone() WebScheduleConfig [WebSchedule found] getID() Identifier [WebSchedule found] getRef() Schedule getAddEditScheduleForm()canManageSchedules()boolean[no rights]Error.vmgetParameter("tempID")tempID or null[tempID not null]getObject()AddEditScheduleFormData[AddEditScheduleFormData newly created]]add(AddEditScheduleFormData)[WebSchedule found meaning this is an edit]create(id, Schedule, WebScheduleConfig)[schedule id not null]getObject(schedule id)WebSchedule [schedule id not null ANDWebSchedule not found]Error.vm[tempID null]getParameter("scheduleID")schedule id or nullput("opCenters", WebOpCenter[])

put("factories", WebScheduleFactory[])

put("pageContent", "AddEditSchedule.vm")

Add Edit Schedule Form

Shown

put("formData", AddEditScheduleFormData)

Context DataModel getObjectsOfType(WebOpCenter.class)

WebOpCenter[]

getObjectsOfType(WebScheduleFactory.class)

WebScheduleFactory[]

[no schedule factories]

Error.vm

UserScheduleReqHdlrNavLinkRightsHttpServletRequestTempObjectStoreAddEditScheduleFormData [schedule id not specified meaning this is an add]create()

Figure 5‑110. servlet.schedules.ScheduleReqHdlr:getAddEditScheduleForm (Sequence Diagram)

5.18.2.4 servlet.schedules:AddEditOpenEventAction (Sequence Diagram)

This diagram shows the processing that is performed when the user submits the form used to add or edit an Open Event action in a schedule that is being added or edited. The tempID parameter, passed in the request, is used to find the form data object in the temporary object store. The form data exists to hold data the user has entered as they move from form to form, such as data from the main add/edit schedule form while they are working on the add/edit Open Event action form. The event ID is the only parameter specific to an Open Event action; it is retrieved from the request and used in construction of an ActionData object - the IDL defined structure used to hold data for an action contained in a schedule. This object is then passed to the form data object, using an updateAction call if an actionIndex was specified in the request (indicating an edit), or using the addAction call. After processing the request, the user's browser is redirected to the request used to get the form used to add/edit a schedule, and the form will be shown with the newly added/updated action.

[image: image123.emf]The AddEditScheduleFormData object replaces the existing ActionData or adds the new ActionData to the ActionData array within the WebScheduleConfig oeActionData(OpenEventActionData)NavLinkRightsHttpServletRequest TempObjectStore UserScheduleReqHdlraddEditOpenEventAction[form data not found]Error.vm[actionIndex IS null] addAction(ActionData) redirect to addEditScheduleForm

AddEditScheduleFormData tempID canManageSchedules()Error.vmnull OR actionIndexActionData OpenEventActionDatagetObject(tempID) AddEditScheduleFormData getParameter("eventID")eventID createcreate()[actionIndex not null] updateAction(actionIndex, ActionData) booleangetParameter("tempID")getParameter("actionIndex")

Figure 5‑111. servlet.schedules:AddEditOpenEventAction (Sequence Diagram)

5.18.2.5 servlet.schedules:AddEditSchedule (Sequence Diagram)

This diagram shows the processing that takes place when the user submits a create schedule form. This can be used to create a new schedule (including the case where the "schedule traffic event" shortcut is used) or to edit an existing schedule. In any case, an AddEditScheduleFormData object (created in a prior request to add, edit, or copy a schedule) is retrieved from the temporary object store. While the form data object was in the temp object store, the user may or may not have performed edits to the data by adding, editing, or removing actions. At the point shown by this processing, the user has indicated they are ready to submit the schedule to the server. The user's current entries on the main schedule form are parsed and stored in the form data object. When parsing the data, checks are made to make sure all required fields contain valid data (unlike other times the parsing may occur for interim submits). In the case of scheduling a traffic event, the form data will actually be a subclass that parses data specific to scheduling an event (namely the traffic event ID) in addition to parsing the base schedule data (by calling the base class). After validating the form data, including a check to make sure the schedule name is not a duplicate, a call is made to have the form data placed into the IDL struct required to create or update a schedule. A check is then made to determine if an existing schedule is to be updated, or a new schedule created. (This was specified at the time the form data was created - an edit operation will cause a schedule update, a create schedule, schedule traffic event, or copy schedule will cause a new schedule to be created). If an existing schedule is to be updated, the CORBA Schedule object's updateSchedule method is called. If successful, the associated WebSchedule object in the GUI cache is also updated. If a new schedule is to be created, a check is made to make sure the schedule name is not a duplicate of an existing schedule name; if it is, an error is flagged and the schedule is not created. Otherwise, the WebScheduleFactory corresponding to the network connection site selected by the user is retrieved from the GUI cache. It's associated CORBA ScheduleFactory object's createSchedule method is called to create the schedule. If successful, a WebSchedule object is created to wrap the newly created CORBA Schedule object and the WebSchedule is placed in the GUI cache. If any errors occur while performing the add or edit, an error message is stored in the form data object and the user request is redirected as specified when the form data object was created. Likewise, if the operation is successful, the user's request is redirected to a page to show the results of the action. This is done generically to allow the add/edit operations to originate from several different screens in the GUI, and to return the user to the appropriate place when the operation is complete. For example, when adding a schedule from the schedule list, an error will result in the user seeing the Add Schedule form, and success will result in the user seeing the schedule list with the newly added schedule in the list. When performing "schedule traffic event" from the pending event details page, an error will cause the schedule traffic event form to be shown, while success will cause the pending traffic event details page to be shown, where the new schedule will be shown as referring to the pending event. Lastly, if the schedule traffic event operation is invoked from the schedules list, an error will cause the schedule traffic event form to be displayed, and success will cause the schedule list to be displayed, where the new schedule for the traffic event will appear.

[image: image124.emf]UserFormData

populateFromRequest()

[is edit]

getRef()

check for duplicate name

This processing

is used when

creating a schedule

This processing

is used when

editing a schedule

UserIdentifier

WebScheduleFactory

success or error

[is edit AND success]

update(ScheduleConfig)

isEdit()

NavLinkRightsHttpServletRequestTempObjectStoreAddEditScheduleFormDataThe form data object will retrieve data

from the UserFormData object

Validation checks are performed for required data.

In the case of the schedule traffic event

shortcut, the form data is a derived class that

calls the base class, then parses data specific

to its form.

addEditSchedule()canManageSchedules() boolean

[no rights]

Error.vm

getParameter("tempID")

tempID

getObject(tempID)

[error]

setErrorMessage()

[not edit]

getObject(factory id)

[not edit]

createSchedule(ScheduleConfig)

DataModel [required data missing

or data invalid]

Error.vm

[error]

getErrorAction()

boolean

Schedule AddEditScheduleFormData or null

[form data not found]

Error.vm

getIDLScheduleConfig()

ScheduleConfig

parseFormData()

ScheduleFactory [duplicate name]

Error.vm

[not edit AND success]

create

Schedule

ScheduleReqHdlr [not error]

getSuccessAction()

not shown - get ScheduleFactory ref from WebScheduleFactory

[not edit]

getFactoryID()

[not edit AND success]

objectAdded(WebSchedule)

redirect

action and params for redirect - could be addEditSchedule or schedule Event form

success or error

action and params for redirect - could be schedule list, or pending event details

WebSchedule [is edit]

updateSchedule(ScheduleConfig)

Figure 5‑112. servlet.schedules:AddEditSchedule (Sequence Diagram)

5.18.2.6 servlet.schedules:CopySchedule (Sequence Diagram)

This sequence shows the processing that takes place when a user chooses to copy a schedule. The user's rights are checked, and if they don't have rights to manage schedules, an error message will be shown. The ID of the schedule they wish to copy is retrieved from the request parameters, and the associated schedule is retrieved from the GUI's data model. The WebScheduleConfig is retrieved from the WebSchedule and cloned (deep copy), and is used to construct an AddEditScheduleFormData object. This form data object is placed into the temporary object store, and its ID is passed on a redirect to the getAddEditScheduleForm request. The getAddEditScheduleForm request will proceed exactly as if an "Add Schedule" is in progress, with the form pre-populated with the data from the schedule that was copied.

[image: image125.emf]prepend Copy Of to schedule name in cloned dataUserScheduleReqHdlrNavLinkRightsHttpServletRequest DataModel WebSchedule WebScheduleConfig AddEditScheduleFormDataTempObjectStore canManageSchedules()[no rights]Error.vmscheduleIDWebScheduleWebScheduleConfig WebScheduleConfig add(AddEditScheduleFormData) redirect togetAddEditScheduleFormcreate(WebScheduleConfig)copySchedule()booleangetParameter("scheduleID")getObject(scheduleID)getConfig()clone()

Figure 5‑113. servlet.schedules:CopySchedule (Sequence Diagram)

5.18.2.7 servlet.schedules:ExecuteScheduledActions (Sequence Diagram)

This diagram shows the processing that is performed when a user submits the Execute Schedule Actions form. The user must have rights to execute schedules to perform this request, otherwise they will be shown an error message. The parameters for this request include a few that are optional. The tempID and includedActionIndex are required. The former provides the ID of the ActionExecutionGroup that was previously stored in the temp object store, and the latter provides the indices of the actions that the user has selected for execution. The optional parameters are as follows: The scheduleID will be present if the user initiated the execution of schedule actions from the schedule list page. It will be used to notify the schedule that it has been executed, which is information needed by the system when it automatically deletes unused/old schedules. Also, if the execution of the schedule actions was initiated from the schedule list, the user will have the option to skip the next execution of the schedule. This is indicated with the optional skipNextActivation parameter. If the user is executing the schedule actions as the resolution of an Execute Scheduled Actions Alert and the user has chosen the option to close the alert after execution, an alertID parameter will be present. The AlertExecutionGroup (created and stored when the execute schedule actions page was displayed) is retrieved from the temporary object store, and the list of ActionExecuters is retrieved from the group. The indexes of actions to be executed that were passed in the includedActionIndex parameter are placed in a hashtable for easy lookup. A loop is then made through the list of ActionExecuters, and if the index of the action executer was not specified in the includedActionsIndex parameter, the ActionExecuter is marked as "EXCLUDED". A command status object is then created, and the ActionExecutionGroup is stored in it. The command status will be managed by the GUI command status manager which allows users to view prior commands they have issued, including details of the command. This will allow the user to view the results of the execution even if they navigate off of the initial status page they see after they choose to execute the actions. Prior to executing the actions, optional processing takes place. If an alertID parameter was specified, it is used to find the WebAlert with the given ID in the GUI data model, and a call is made to close the alert. If a scheduleID parameter was specified, the WebSchedule with the given ID is found in the GUI's data model, and a reference to the CORBA Schedule object is obtained and its scheduleExecuted() method is called. The value passed in the suppressNextActivationTime parameter of the method will be the timestamp of the activation to skip if the skipNextActivation parameter was passed to this request, and zero otherwise. (Note that the skipNextActivation option will only be presented to the user for selection if a next activation time exists and is within a threshold specified in the system profile). The executeSequentially() method of the ActionExecutionGroup is called to cause each action to be executed in the order they appear in the list of actions. The haltOnFailure flag is set to true, meaning the failure of one action will not keep the remaining actions from being executed. Details of the executeSequentially() method can be found on the ActionExecutionGroup:executeSequentially diagram. Prior to returning, the AlertExecutionGroup is removed from the temporary object store, which serves to prevent the request from being repeated (multiple executions). The ID of the command status is then used in a URL that is used via a redirect to display the details of a command status. This details page will show each action and the status/result of its execution.

[image: image126.emf]getParameter("alertID")

alertID OR null

getParameter("tempID")

tempID

getParameter("skipNextActivation")

timestamp OR null

User

ScheduleReqHdlrNavLinkRightsHttpServletRequest

TempObjectStore

executeScheduleActions()

canExecuteSchedules()

boolean

[no rights]

Error.vm

WebSchedule Schedule

If scheduleID specified,

this processing is done

to record the last used

time and optionally skip

the next activation.

[scheduleID not null] getObject(scheduleID)

WebSchedule

Schedule

[scheduleID not null] scheduleExecuted(skipNextActivation)

getParameter("scheduleID")

scheduleID or null

DataModel WebAlert

If alertID specified,

this processing is

done to close the

alert.

[alertID not null] getObject(alertID)

WebAlert

[alertID not null] performAction()

Pass the ID of the command status retrieved above

as the cmdStatusID parameter.

getID()

redirect to action

"viewOneCommandStatus"

removeObject(tempID)

CommandStatusMgr

ScheduleExecutionCommandStatus [scheduleID not null] getRef()

See ActionExecutionGroup:executeSequentially

diagram for details.

createExtendedCommandStatusImpl(sessionID, desc, ScheduleExecutionCommandStatus.class)

ScheduleExecutionCommandStatus

setActionExecutionGroup(ActionExecutionGroup)

executeSequentially(token, false)

ActionExecutionGroupActionExecuter

Hashtable

getObject(tempID)

ActionExecutionGroup

getActions()

ActionExecuter[]

[no object in Hashtable for loop index]

setExcluded()

create

put(Integer,"true") [for each included

action index]

get(loopIndex)

String OR null

[for each

ActionExecuter]

If the execution was initiated from the

schedule list using "execute actions", the

schedule ID will be present. If the user chose

to skip the next activation of that schedule,

skipNextActivation will be present.

alertID will be present if the user is

resolving an alert AND they have

chosen the option to close the alert

after executing the actions.

getParameter("includedActionIndex")

int[]

Figure 5‑114. servlet.schedules:ExecuteScheduledActions (Sequence Diagram)

5.18.2.8 servlet.schedules:getAddEditOpenEventActionForm (Sequence Diagram)

This diagram shows the processing that takes place when a user chooses to add or edit an Open Event schedule action while they are in the process of adding or editing a schedule. While adding or editing a schedule, an AddEditScheduleFormData object was stored in the temporary object store. When the user chooses to add or edit an Open Event action, this form data object is retrieved using the tempID parameter passed with the request. If the form data object is not found, this indicates the temporary object has expired and an error is returned. After the form data is retrieved from the temporary object store, a call is made to have the form data object store the data from the add/edit schedule form so the user doesn't lose anything they have changed but not yet submitted. No parsing is done on this data - it is simply stored so it can later be used to re-populate the form fields after the user adds/edits an action and is returned to the add/edit schedule form. If the user is editing an Open Event action (as indicated by the presence of the actionIndex parameter in the request), the data for that action is retrieved from the form data and placed in the context. If the action data at the specified index is not an Open Event action, an error is returned, indicating a programming error because this request should only be used for Open Event actions. The list of pending events is created by retrieving all WebTrafficEvent objects from the GUI's data model and filtering to include only those events that are pending. The list of pending events is stored in the context in addition to the form data and the name of the template to load. The end result is that the user will see the AddEditOpenEventAction form containing a list of pending events and pre-populated if the user is editing an existing action.

[image: image127.emf]UserFormData Saves data from the add/edit schedule form so we can repopulate the form fields after user finishes add/edit open event action. TrafficEventUtility populateFromRequest() WebTrafficEvent[]

getFormData() [actionIndex not null AND action is OpenEvent action] put("actionData", WebActionData) UserScheduleReqHdlr NavLinkRightsHttpServletRequestTempObjectStore Context If an actionIndex is passed, this is the edit of an existing action, and the following processing is performed. put("pageContent", "AddEditOpenEventAction.vm")

[actionIndex not null AND action is OpenEvent action] put("actionIndex", actionIndex) AddEditOpenEventAction.vm

put("pendingEvents",ArrayList)

put("formData", AddEditScheduleFormData)

[actionIndex not null] getScheduleData() WebScheduleData [actionIndex not null] getAction(actionIndex) WebActionDataboolean UserFormData getPendingEvents()

WebActionData End of processing done when actionIndex is passed, indicating edit of existing action

[actionIndex not null] isOpenEventAction() [not open event action] Error.vm AddEditScheduleFormData WebScheduleData null OR actionIndex getObject(tempID) AddEditScheduleFormData [temp obj not found] Error.vm getAddEditOpenEventActionForm()boolean getParameter("tempID") getParameter("actionIndex") canManageSchedules() [no rights] Error.vm tempID

Figure 5‑115. servlet.schedules:getAddEditOpenEventActionForm (Sequence Diagram)

5.18.2.9 servlet.schedules:getExecuteScheduleActionsForm (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to execute the actions in a schedule, or resolves an Execute Scheduled Actions Alert that contains 2 or more actions. This part of the processing prepares for the display of the form that shows the users the actions and allows them to choose which actions will be executed and to view details of each action. If the user does not have the rights to execute schedules, an error page will be shown and this processing will not be completed. Depending on how the user invoked this request, either the schedule ID or the Alert ID will be present as a parameter in the request. If the request was issued because the user chose to execute actions of a schedule (from the schedule list), the schedule ID will be passed as a parameter. If the request was issued because the user chose to resolve an Execute Scheduled Actions Alert that contains 2 or more actions, the alert ID will be passed as a parameter. An attempt is made to retrieve both of these parameters from the request, and conditional processing is done based on which parameter is found. (It is an error if neither or both parameters are found). If a schedule ID was passed as a parameter, it is used to find the associated WebSchedule object in the GUI's data model. The schedule config is retrieved from the WebSchedule and cloned to ensure that the actions presented to the user for execution will match the actions actually executed, even if another user changes the schedule's actions while the execute actions form is displayed. If an alert ID was passed as a parameter, the associated WebExecuteScheduledActionsAlert object is retrieved from the GUI's data model, and it is called to retrieve the schedule that caused the alert to be generated, and the actions stored in the alert. Note that cloning is not required for the actions in an alert because the alert data is non-mutable. The ID of the alert is placed in the velocity context. This is done to make the form display a "delete alert" option to allow the user to have the alert deleted after they execute the actions. After the list of ActionData is obtained, either via the schedule, or via the alert, it is used to construct an ActionExecutionGroup. All ActionExecuters in the group will begin with their state initialized to "PENDING". The ActionExecutionGroup is stored in the temporary object store so it can be recalled later when the user submits the form. This technique assures us that the actions shown to the user will exactly match the actions later executed, and also serves to allow us to know the order of the actions as presented to the user so we can later mark the appropriate actions as "EXCLUDED" if the user excludes any actions shown on the form. The Context is loaded with the schedule, the action execution group and it's temp object store ID, and the Execute Schedule Actions form is displayed to the user. The form will show each action with the option for the user to include or exclude actions individually. Actions for which the user doesn't have rights to perform will automatically be marked as excluded and the user will not be permitted to include those actions.

[image: image128.emf]getObject(alertID) WebExecuteScheduledActionsAlert getActionData() ActionData[] getSchedule()put("alertID", alertID) ExecuteScheduleActions.vm

put("schedule", WebSchedule)

put("actionExecGroup", ActionExecutionGroup) Context ActionData[] put("scheduleID", scheduleID) This processing is done if a scheduleID is passed in the request (which is the case when this request is sent from the schedule mgmt page) alertID is put in context so it can be used to allow the user to choose to close the alert after executing the actions. This processing is done if an alertID is passed in the request (which is the case when this request is sent as a resolve alert action) WebScheduleput("tempID", tempID)

WebExecuteScheduledActionsAlert The request will pass in either a scheduleID OR an alertID, depending on where the request originates (executing actions from schedule, or resolving an execute scheduled actions alert) getParameter("alertID") alertID OR null add(ActionExecutionGroup) UserScheduleReqHdlr NavLinkRights HttpServletRequest DataModel WebSchedule WebScheduleConfigWebScheduleConfig ActionExecutionGroup getExecuteScheduleActionsForm() canExecuteSchedules() boolean [no rights] Error.vm getParameter("scheduleID") scheduleID OR null getObject(scheduleID) WebSchedulegetConfig() WebScheduleConfigclone() create WebScheduleConfig getActionData() create TempObjectStore

Figure 5‑116. servlet.schedules:getExecuteScheduleActionsForm (Sequence Diagram)

5.18.2.10 servlet.schedules:RemoveSchedule (Sequence Diagram)

This diagram shows the processing that is performed when a user chooses to remove a schedule from the system. Prior to this request being issued, the user will have confirmed their intention to remove the schedule. If the user doesn't have rights to manage schedules, an error message will be shown. Otherwise, the ID of the schedule to be removed is retrieved from the request and used to find the WebSchedule in the GUI's data model. The reference to the CORBA Schedule object is retrieved from the WebSchedule object and a CORBA request is made to remove the schedule. If the operation is successful, the WebSchedule object is removed from the data model. Otherwise an error message is shown to the user.

[image: image129.emf]User[failure]Error.vmScheduleReqHdlrNavLinkRights HttpServletRequest DataModel WebSchedule Schedule removeSchedule()canManageSchedules()boolean[no rights]Error.vmgetParameter("scheduleID")scheduleID getObject(scheduleID) WebSchedulegetRef() Schedule remove(token) [success]redirect to viewSchedules[success] objectRemoved(scheduleID)

Figure 5‑117. servlet.schedules:RemoveSchedule (Sequence Diagram)

5.18.2.11 servlet.schedules:RemoveScheduleAction (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to remove an action from a schedule while they are adding or editing a schedule. Prior to sending this request, the user will have already confirmed their intention to remove the action. The user's rights are checked and if the user doesn't have rights to manage schedules, an error will be shown. Otherwise, the AddEditScheduleFormData object is retrieved from the temporary object store using the tempID passed as a request parameter. The form data object is called to retrieve the UserFormData object and all request parameters are stored in it so the user's current entries on the add/edit schedule form are not lost during this operation. The form data object is then called to remove the action at the index specified by the actionIndex request parameter. A redirect is then used to cause the browser to issue the getAddEditScheduleForm request, which results in the user seeing the AddEditScheduleForm with their previously entered data in-tact and the removed action no longer present in the list of actions for the schedule.

[image: image130.emf]UserFormData This stores the data the user has entered in the other fields on the add/edit schedule form so they are not lost. No validation is done on them. populateFromRequest() getFormData() getParameter("tempID") getParameter("actionIndex") getObject(tempID) redirect togetAddEditScheduleFormUserScheduleReqHdlr NavLinkRights HttpServletRequestTempObjectStore AddEditScheduleFormData removeScheduleAction()canManageSchedules() boolean [no rights]Error.vmtempID actionIndex removeAction(actionIndex)

Figure 5‑118. servlet.schedules:RemoveScheduleAction (Sequence Diagram)

5.18.2.12 servlet.schedules:ScheduleTrafficEvent (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to schedule a traffic event. Scheduling a traffic event is a GUI shortcut that allows a user to create a schedule and add an Open Event action to it in one step using a single form. This "short cut" can be invoked from either the pending event details page (by clicking the 'Schedule' button) or from the list of schedules, using the Schedule Traffic Event Link. When the user chooses to schedule a traffic event from the pending event details page, the id of the traffic event is passed in the request, and the operation is tied to creating a schedule for that specific traffic event. When the user chooses to schedule a traffic event from the schedule list, no event ID is passed in the request and instead the list of current pending events in the system is loaded into the context so they can be presented to the user for selection. To enable reuse of the code used to create a new schedule, this request creates an AddEditScheduleFormData derived object and initializes the object with an Open Event action (if scheduling a specific event). This derived object contains code that can parse data on the Schedule Traffic Event form in addition to the standard "create schedule" fields. The context is then loaded with data needed by the form, such as the form data object, a list of traffic event factories in the system and the list of operations centers in the system. The form is then displayed to the user. When the form is submitted, the processing shown in the CreateSchedule diagram is used. This is possible due to the use of the derived form data object stored in the temporary object store.

[image: image131.emf]put("opCenters", WebOpCenter[])

WebOpCenter[]

put("formData", ScheduleTrafficEventFormData)

OpenEventActionData [eventID null] put("pendingEvents", WebTrafficEvent[]) DataModel TrafficEventUtility Context TempObjectStore [eventID not null]getObject(eventID)WebTrafficEvent[eventID null] getPendingEvents() [WebTrafficEvent found] put("trafficEvent", WebTrafficEvent) HttpServletRequest getParameter("eventID")eventID or nullcanManageSchedules()[no rights]Error.vmUserScheduleReqHdlrNavLinkRightsgetScheduleTrafficEventForm()booleanScheduleTrafficEventFormData See AddEditSchedule diagram

for details regarding submittal

of this form.

[eventID not null] create create add(ScheduleTrafficEventFormData) [eventID not null] addAction(OpenEventActionData) getObjectsOfType(WebScheduleFactory.class)WebScheduleFactory[]put("factories", WebScheduleFactory[]) ScheduleTrafficEvent.vm

getObjectsOfType(WebOpCenter.class)

Figure 5‑119. servlet.schedules:ScheduleTrafficEvent (Sequence Diagram)

5.18.2.13 servlet.schedules:SpecifyScheduleAttributes (Sequence Diagram)

This diagram shows the processing that takes place to allow schedule attributes to be specified. This processing is done by the parseFormData() method of the AddEditScheduleFormData class and is used when a schedule is being added to the system or when an existing schedule is being edited. The specification of attributes related to a schedule's actions is not shown on this diagram and is instead contained in the AddEditOpenEventAction diagram. The parseFormData method retrieves parameters from the request and stores them in the appropriate IDL defined classes, with the top level class being a ScheduleConfig object. This object will already exist due to the initialization of the Add Schedule or Edit Schedule action being performed by the user, so data is set within that existing object and any data pertaining to schedule actions is not disturbed. The data specified for a schedule depends on the schedule type selected by the user. If the user selects the datesAndTimes schedule type, a list of zero or more formatted date strings are passed in the dateTimeList parameter and they must be parsed into an array of long variables to be stored in the ActivationSchedule. If the user selects the recurring schedule type, the start and end dates must be parsed from Strings into long variables and stored in a DOWRecurringActivation object. An attempt is made to retrieve a parameter for each day of week, and the existence or absence of a parameter is used to set the associated day of week member in the DOWRecurringActivation object (true or false). One or more activation times are specified in the timeList parameter as formatted hour/minute strings. Each string is parsed into a Date, and then a Calendar object is used to extract the hour and minute from the Date object so they can be stored in an ActivationTime object. These activation times are then stored in the DOWRecurringActivation object, and the object is stored into the ActivationSchedule object. The ActivationSchedule object is then stored in the ScheduleConfig object. If any required data is missing from the ScheduleConfig an error will be returned, otherwise the parseFormData returns with no error.

[image: image132.emf][end date

zero]

set day of week members - parameter not null = true

SimpleDateFormat

[required data missing AND

final parameter is true]

error

This processing is

done if the

scheduleType is

recurring

dowActivation(DOWRecurringActivation)

set timesOfDay member

minute

getParameter("tue")

No duplicate times allowed.

success

set activationSched member

[for each String]

ActivationTime

set hour and minute members

Date

getTime()

set beginDate member

SimpleDateFormat

getParameter("beginDate")

create

getParameter("endDate")

parse()

Date

Date

long

Calendar

get(Calendar.HOUR_OF_DAY)

get(Calendar.MINUTE)

getParameter("mon")

getParameter("wed")

getParameter("fri")

getParameter("sun")

String[]

parse()

DOWRecurringActivation

create

This processing is

done if the

scheduleType is

datesAndTimes

ActivationSchedule

Date

datesAndTimes OR recurring

create

getTime()

long

store long in array

multiDateActivations(long[])

SimpleDateFormat

ScheduleConfig String[]

create

set(Date)

parse(String)

Date

[for each String]

store above params

store factoryID

in member variable

ScheduleReqHdlrAddEditScheduleFormData HttpServletRequest parseFormData()

getParameter("name")

getParameter("desc")

getParameter("opCenterID")

getParameter("factoryID")

getParameter("disabled")

getParameterValues("dateTimeList")

getParameter("sat")

getParameterValues("timeList")

int

getParameter("thu")

create

Date

getParameter("scheduleType")

duplicate times not allowed

parse()

create

store activation time

in array

Date

long

getTime()

set endDate member

create

Figure 5‑120. servlet.schedules:SpecifyScheduleAttributes (Sequence Diagram)

5.18.2.14 servlet.schedules:ViewSchedule (Sequence Diagram)

This diagram shows the processing that takes place when a user chooses to view the details of a schedule. Their user rights are checked to make sure they have been given the right to view schedules. If not, an error is shown. Otherwise, the ID of the schedule to be viewed is retrieved from the request parameters and the associated WebSchedule object is retrieved from the GUI's object cache. The WebSchedule is placed in the velocity context so its data can be used by the returned template to dynamically fill in the content of the web page shown to the user. The schedule details page that is shown will show details about the schedule and details for each action in the schedule.

[image: image133.emf]DataModel Context viewSchedulecanViewSchedules() boolean [no rights]Error.vmgetObject(scheduleID) put("schedule", WebSchedule) UserScheduleReqHdlrNavLinkRights HttpServletRequest getParameter("scheduleID") WebSchedule ScheduleDetails.vm

Figure 5‑121. servlet.schedules:ViewSchedule (Sequence Diagram)

5.18.2.15 servlet.schedules:ViewSchedules (Sequence Diagram)

This diagram shows the processing performed when a user chooses to view the schedules defined in the system. Note that much of the processing is handled by the DynListReqHdlrDelegate class, a mature existing class that is not being modified for use with Schedules. For this reason, much of its processing is summarized with text rather than showing the details. The points where it interacts with Schedule specific classes (namely the ScheduleDynListSupporter) are shown in their proper context.

After receiving the request to view schedules, the user's rights are checked to make sure they have rights to view schedules. If not, they will be shown an error page. If the user has proper rights, the processing is passed to the DynListReqHdlrDelegate. It checks to see if the list is already displayed, and if not it calls the ScheduleDynListSupporter to create a DynList (see the createDynList diagram for details). After creating the dynamic list, it redirects the browser to the view list request, which will result in this exact same processing being invoked again, except the list will now exist.

If the list exists, it is touched to make sure it doesn't expire from the temp object store. The subjects for the list are then retrieved (see the getDynListSubjects diagram for details). The subjects are placed into the dynamic list, and the delegate clears any filters that need to be cleared (as specified via request parameters). The delegate then loads the context, and returns to the ScheduleReqHdlr. The schedule request handler checks to see if the delegate encountered an error, and if it did, it returns the error message supplied. Otherwise, the schedule list will be shown to the user.

[image: image134.emf][error string

from delegate]

Error.vm

put("pageContent", templateName)

put(dynListContentName, DynList)

error string or null

The following processing takes place if the dynamic list DOES NOT exist in the temp object storeContext [DynList not exists] createDynList [DynList not exists] store in temp obj store [DynList exists]

getDynListSubjects()

touch dyn list in

temp obj store

ScheduleReqHdlrNavLinkRights viewSchedules()canViewSchedules()[no rights]Error.vmSee getDynListSubjects diagram for details.

See getDynList diagram for details The following processing takes place if the dynamic list already exists in the temp object store.

DynListReqHdlrDelegate ScheduleDynListSupporter gets DynList from temp object store, in case where the DynList is already displayed (for example refresh, or after sort or filter) viewDynList()getDynList() UserDynList [no error]

Schedule List

clear dyn list filters

as needed

put("refreshInterval", configured std refresh rate)

[DynList not exists]redirect to view list, this time with ID of list just createdScheduleDynListSubject[]

Figure 5‑122. servlet.schedules:ViewSchedules (Sequence Diagram)

5.19 GUI chartlite.servlet.servlet-dynlist

5.19.1 Classes

5.19.1.1 ServletDynListClasses (Class Diagram)

This diagram shows classes that support dynamic lists.

[image: image135.emf]1

creates

1

DynListSubject

«interface»

contains

*

LogEntryDynListSupporter

DynListReqHdlrDelegate

1

NavigatableDynList

DefaultDynList

LogEntryWrapper

1

1

DynListDelegateSupporter

«interface»

DynListReqHdlrDelegate

viewDynList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

viewDynListPage(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupportergetCurrentPage():int

filterDynList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

sortDynList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter):DynList

-m_dynListTemplateName:String

-m_viewDynListActionName:String

-m_dynListIDParamName:String

-m_propertyParamName:String

-m_filterValueParamName:String

-m_dynListContextName:String

viewDynList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

viewDynListPage(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupportergetCurrentPage():int

filterDynList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

sortDynList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter):DynList

-m_dynListTemplateName:String

-m_viewDynListActionName:String

-m_dynListIDParamName:String

-m_propertyParamName:String

-m_filterValueParamName:String

-m_dynListContextName:String

-m_id:Identifier

-m_desc:String

-m_cols:DynListCol[]

-m_sortCol:DynListCol

-m_globalFilters:ArrayList<DynListFilter>

-m_subjects:ArrayList<DynListSubject>

getPropertyValue(property:DynListCol):String

getPropertyValues(property:DynListCol):String[]

setLogEntryTypeInclusionFlags(HttpServletRequest req, LogEntryDynList dynList):void

static getNumInstancesNotFinalized():int

compareTo(Object other): int

finalize():void

hashCode()boolean equals(Object other):int

getLogEntry():LogEntry

static int m_numInstances

getEntriesOnPage(page:int, numEntries:int):LogEntryDynListSubject[]

getNumberOfPages():int

getNumEntriesPerPage():int

setNumEntriesPerPage(numEntries:Integer):void

setCurrentPage(page:Integer):void

m_currentPage:int

m_numEntriesPerPage:int

Figure 5‑123. ServletDynListClasses (Class Diagram)

5.19.1.1.1 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a collection of columns, a collection of global filters, and a collection of subjects. Filters in this list are treated additively - that is, a subject must pass all filters to be displayed.

5.19.1.1.2 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.19.1.1.3 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.19.1.1.4 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.19.1.1.5 LogEntryDynListSupporter (Class)

This class is a DynListDelegateSupporter for comm log entries. Its implementation of the createDynList method sets up the columns for the list of comm log entries. Its implementation of the getDynListSubjects method retrieves the log entries from the GUI's CommLogManager and wraps them as LogEntryDynListSubjects.

5.19.1.1.6 LogEntryWrapper (Class)

This class provides accessor methods that provide access to the information in a CHART2.LogCommon.LogEntry object. In R3B2 this class implements the DynListSubject interface for use in DynLists

5.19.1.1.7 NavigatableDynList (Class)

This object extends the DefaultDynList class to provide page navigation of DynListSubjects

5.19.2 Sequence Diagrams

5.19.2.1 chartlite.servlet.dynlist.NavigatableDynList:getEntriesOnPage (Sequence Diagram)

This diagram shows the processing that occurs when a user has chosen to view a specific page number of NavigatableDynList A NavigatableDynList object is in the context and the getEntriesOnPage method is called from the Velocity template. This method retrieves the BaseDynList's filtered and sorted subjects. A new ArrayList is created to hold the references to existing DynListSubject objects.

.

[image: image136.emf]Velocity Template

startNum = (pageNum*numEntries) -1

endNum = startNum + numEntries

NavigatableDynList

java.util.ArrayList

new<DynListSubject> new<DynListSubject>

[while startNum < = endNum] [while startNum < = endNum]

entry added to list, startNum incremented entry added to list, startNum incremented

toArray(new DynListSubject[list.size()] toArray(new DynListSubject[list.size()]

new array of DynListSubject's on the requested page new array of DynListSubject's on the requested page

returns DynListSubject[] returns DynListSubject[]

getEntriesOnPage(pageNum, numEntries) getEntriesOnPage(pageNum, numEntries)

add(m_subjects[startNum]) add(m_subjects[startNum])

Figure 5‑124. chartlite.servlet.dynlist.NavigatableDynList:getEntriesOnPage (Sequence Diagram)

5.19.2.2 chartlite.servlet.dynlist.NavigatableDynListReqHdlrDelegate:viewDynListPage (Sequence Diagram)

This document shows the processing that occurs when a RequestHandler makes a call to the DynListReqHdlrDelegate to return a specific subset of entries stored in the NavigatableDynList object. An attempt is made to retrieve an existing dynList. If none exists, it's created and populated. The NavigatableDynList object is updated with the page and number of records to display from the context The dynList is placed in the context for use in retrieving the correct records from a velocity template.
.

[image: image137.emf]Request Handler with

NavigatableDynListReqHdlrDelegate

member

DynListReqHdlrDelegate

HttpServletRequest

RequestHandlerSupporter

See: chartlite.servlet.dynlist.LogEntryDynListSupporter.createDynList,

or chartlite.servlet.NotificationRecordDynListSupporter.createDynList

Upon creation call redirectToViewDynList which displays the

first page of records.

see chartlite.servlet.commlog.dynlist.createDynList, or

chartlite.servlet.trafficevents.dynlist.createDynList

TempObjectStore

Context

NavigatableDynList

getParameter("m_dynListIDParamName") getParameter("m_dynListIDParamName")

[dynList NULL]

createDynList

[dynList NULL]

createDynList

getTempObjectStore() getTempObjectStore()

getCachedObject(dynListID) getCachedObject(dynListID)

setCurrentPage(pageNum) setCurrentPage(pageNum)

getParameter("numRecords") getParameter("numRecords")

returns NavigatableDynlist object returns NavigatableDynlist object

touchObject(dynList.getID() touchObject(dynList.getID()

NavigatableDynList object touched NavigatableDynList object touched

setNumEntriesPerPage(numRecords) setNumEntriesPerPage(numRecords)

put("pageContent", m_dynListTemplateName) put("pageContent", m_dynListTemplateName)

getParameter("pageNum") getParameter("pageNum")

viewDynListPage(req, resp, ctx, supporter) viewDynListPage(req, resp, ctx, supporter)

put("dynList", dynlist) put("dynList", dynlist)

getDynList getDynList

Figure 5‑125. chartlite.servlet.dynlist.NavigatableDynListReqHdlrDelegate:viewDynListPage (Sequence Diagram)

5.20 GUI chartlite.servlet.trafficevents

5.20.1 Classes

5.20.1.1 chartlite.servlet.trafficevents_add_copy_event_classes (Class Diagram)

This diagram shows classes in the servlet used to handle requests related to adding and copying traffic events.

[image: image138.emf]UserFormData RequestHandler «interface» CopyEventFormData

AddTrafficEventReqHdlr init(supporter:RequestHandlerSupporter) : voidgetActions() : ArrayList<RequestAction>processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):Stringshutdown(supporter:RequestHandlerSupporter) : voidaddTrafficEventXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringaddWebTrafficEventAndRedirectToDetailsPage():voidcreateActionEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateCongestionEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateDisabledVehicleEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateEventFromForm(req:HttpServletRequest, supporter:RequestHandlerSupporter, eventDataClass:Class, eventType:short, copyEventData:CopyEventFormData):TrafficEventCreationResultcreateEventPrivate(req:HttpServletRequest, supporter:RequestHandlerSupporter, eventType:short, evtData:BasicEventData,evtToCopy:WebTrafficEvent, copyParticipations:boolean, copyRPIs:boolean, copyLogEntries:boolean, newEvtCommLogEntryIDs:Identifier[], pending:boolean, scheduleID:Identifier)createEventData(eventDataClass:Class, eventID:byte[]) : BasicEventDatacreateIncident(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreatePlannedRoadwayClosureEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateSafetyMessageEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateSpecialEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcreateWeatherServiceEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringparseBasicEventDataFormParameters(eventData:BasicEventData, req:RequestParameterSupplier) : voidparseDisabledVehicleEventDataFormParameters(eventData:DisabledVehicleEventData, req:HttpServletRequest) : voidparseIncidentDataFormParameters(eventData:IncidentData, req:HttpServletRequest) : voidcopyTrafficEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringcopyTrafficEventWithoutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringdisplayCopyEventForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringsubmitCopyEventBasicEventDataForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetInitialLogEntries(reqHdlrSupporter:RequestHandlerSupporter, newEvtCommLogEntryIDs:Identifier[], eventToCopy:WebTrafficEvent) : LogEntry[]CopyEventFormData(req:HttpServletRequest, newType:short, newEventDataClass:Class, originalEvent:WebTrafficEvent)

getNewEventType() : short

getNewEventDataClass() : Class

getOriginalEvent() : WebTrafficEvent

m_newType : short

m_newEventDataClass : Class

m_originalEvent : WebTrafficEvent

Figure 5‑126. chartlite.servlet.trafficevents_add_copy_event_classes (Class Diagram)
5.20.1.1.1 AddTrafficEventReqHdlr (Class)

This class is used to handle requests related to adding a traffic event to the system.

5.20.1.1.2 CopyEventFormData (Class)

This class is used to hold data related to copying a traffic event. The user can specify information pertaining to the copy over several different web pages, and this object is used to allow their data to persist over multiple requests.

5.20.1.1.3 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.20.1.1.4 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex form, and provides convenience methods for parsing the values from the request.

5.20.1.2 chartlite.servlet.trafficevents_classes (Class Diagram)

This diagram shows the various classes that are used to handle requests related to traffic events.

[image: image139.emf]chartlite.servlet.TrafficEventUtility

TrafficEventXMLReqHdlr

AddTrafficEventReqHdlr

MergeEventReqHdlr

ResponsePlanReqHdlrRequestHandler«interface»TrafficEventReqHdlr LaneConfigReqHdlr

getPotentialDuplicateEventsXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringdeletePendingEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringopenPendingEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringviewEventDetails(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringdisplayEditLaneConfigurationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

displayEditLaneStateChangedTimeForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

submitLaneConfiguration(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

submitLaneStateChangedTimeForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

submitLaneDirAndStateInfo(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

updateEditLaneConfigurationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

lookupRequestedEvent(req:HttpServletRequest, supporter:RequestHandlerSupporter):WebTrafficEvent

reportScheduleExecutionIfSpecified(req:HttpServletRequest, supporter:RequestHandlerSupporter) : void

closeAlertIfSpecified(req:HttpServletRequest, supporter:RequestHandlerSupporter) : void

redirToEventDetails(eventID:Identifier, req:HttpServletRequest, resp:HttpServletResponse) : void

getPendingEvents():WebTrafficEvent[]

Figure 5‑127. chartlite.servlet.trafficevents_classes (Class Diagram)
5.20.1.2.1 AddTrafficEventReqHdlr (Class)

This class is used to handle requests related to adding a traffic event to the system.

5.20.1.2.2 chartlite.servlet.TrafficEventUtility (Class)

This class contains methods that are useful for one or more traffic event related request handlers.

5.20.1.2.3 LaneConfigReqHdlr (Class)

This class handles any requests related to the traffic event lane configuration.

5.20.1.2.4 MergeEventReqHdlr (Class)

This class handles all requests related to merging traffic events.

5.20.1.2.5 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.20.1.2.6 ResponsePlanReqHdlr (Class)

This class handles requests related to traffic event response plans.

5.20.1.2.7 TrafficEventReqHdlr (Class)

This class handles requests related to traffic events that are not handled by one of the other specific traffic event request handlers.

5.20.1.2.8 TrafficEventXMLReqHdlr (Class)

This class handles requests related to traffic events that return XML for the Flex2 application.

5.20.2 Sequence Diagrams

5.20.2.1 AddTrafficEventReqHdlr:addTrafficEventXML2 (Sequence Diagram)

This shows the processing of the request to add a traffic event. The AddTrafficEventReqHdlr class is called to handle the request. After checking the user's rights, it gets the event type from the request, and uses the event type (e.g., "action") and converts it to an enumeration value, and passes it to the createEventFromForm() method. (See the createEventFromForm diagram for details). If the event is successfully created, a new WebTrafficEvent wrapper object of the appropriate type is created and added to the object cache for future lookups. Then, the event is added to the Velocity context and the addTrafficEventXML.vm template is returned. Velocity uses the template to create the XML response, using data from the WebTrafficEvent. If an error occurred, the GeneralResultXML.vm template will be used to convey an error message to the user.

[image: image140.emf]See the createEventFromForm Sequence Diagram

for more details.

createEventFromForm(req, supporter,

webTrafficEventType, null)

HttpServletRequest

getParameter("eventType")

addTrafficEventXML

User

(via Flex)

addTrafficEventXML.chart

WebTrafficEvent

or

CHARTLiteException

Convert Type to

WebTrafficEventType

enum value

put("event", webEvent)

[no rights]

return GeneralResultXML.vm

Check Manage Traffic Events Rights

AddTrafficEventReqHdlr Context

[error or event not created]

return GeneralResultXML.vm

[success]

return addTrafficEventResultXML.vm

Figure 5‑128. AddTrafficEventReqHdlr:addTrafficEventXML2 (Sequence Diagram)
5.20.2.2 AddTrafficEventReqHdlr:copyEventWithoutForm (Sequence Diagram)

This diagram shows how an event is copied without the use of the Copy Event Form. This functionality will be used in R3B2 for copying a pending traffic event and for opening a copy of a pending traffic event. The specified source event ID is used to retrieve the source WebTrafficEvent object from the cache, and its type and event data are retrieved. The "createPending" flag is parsed from the request, and will be used to determine whether the new event will be created in the pending or opened state. The reportScheduleExecutionIfSpecified() method is called to report the schedule execution to the server, if the "scheduleID" parameter is specified. The closeAlertIfSpecified() method is also called, which closes the alert if the ID is specified in the request. The createEventPrivate() method is called, which creates the new traffic event and adds the WebTrafficEvent wrapper to the cache. Finally the browser is redirected to the Event Details page of the new event.

[image: image141.emf]This will close the alert if the

"alertIDToClose" parameter is specified.

This will report the schedule execution, if

the "scheduleID" parameter is present in

the request.

reportScheduleExecutionIfSpecified(req, supporter)

closeAlertIfSpecified(req, supporter)

lookupRequestedEvent()

[not found]

return error

getEventType()

isPending()

User

HttpServletRequest

Check Rights

For R3B2 this will be used

for the Copy Pending Event and

Open Copy of Pending Event

use cases.

Redirect To Event Details

return null

[exception caught]

return error

getParameter("eventID")

Look Up Event From Cache

[isPending == createPending]

Prefix Event Name With "Copy Of "

WebTrafficEvent

or

CHARTLiteException

WebTrafficEvent

The copyParticiptions and copyRPIs parameters

are set to true. The copyLogEntries parameter

is set to false. See the createEventPrivate diagram

for details on this operation.

WebTrafficEvent or null

createEventPrivate(req, reqHdlrSupporter,

eventType, eventData, eventToCopy,

true, true, false, null, createPending,

scheduleID)

getRawBasicEventData()

getParameter("createPending")

AddTrafficEventReqHdlr

copyEventWithoutForm

[no rights]

return error

TrafficEventUtility

Figure 5‑129. AddTrafficEventReqHdlr:copyEventWithoutForm (Sequence Diagram)
5.20.2.3 AddTrafficEventReqHdlr:createEventFromForm (Sequence Diagram)

This diagram shows how an event is added or copied using the Event Launcher or Copy Event forms. The WebTrafficEventType enumeration is called to create a new BasicEventData object of the appropriate type, and then the form parameters are parsed into the BasicEventData object. (The form parameter names are the same, whether they are coming from the CopyEventFormData object or directly from the HttpServletRequest). The "pendingEvent" parameter is parsed, to determine whether the new event will be created in the pending or opened state. If it's a copy operation, the flags for whether to copy log entries, participations, and response plan items are parsed. If it is a new event, the incident or disabled vehicle information is parsed (these are the only type-specific fields on the Event Launcher), and the comm log entry IDs are parsed. Finally the createEventPrivate() method is called to create the event with the correct data and store a WebTrafficEvent wrapper in the cache for later use.

[image: image142.emf]createActionEventData(nullID)

Get Log Entry IDs

From "logEntryID" request parameter

[copyEventFormData == null]

getBooleanParameter("copyRPIs", "Copy Response Plan Items", false)

See the CreateEventPrivate diagram for details.

getBooleanParameter("copyLogEntries", "Copy Log Entries", false)

TrafficEventUtilityThe paramSupplier is either the CopyEventFormData (for

a copy operation) or a proxy object for the HttpServletRequest (for an add) parseBasicEventDataFormParameters(eventData, paramSupplier)

[is DVE]

parseDisabledVehicleEventDataFormParameters(eventData, req)

[is Incident]

parseIncidentDataFormParameters(eventData, req)

[copyEventFormData != null]

WebTrafficEvent

or

CHARTLiteException

If the event launcher was invoked from the

Comm Log, entry IDs may be specified.

createEventFromForm(req,

supporter,

webTrafficEventType,

copyEventFormData)

create

This is called when copying

an event (from the Copy

Event Form) or creating a new

event from the Event Launcher.

 If it is a copy, the

CopyEventFormData parameter

will be passed. If it's a new

event, the parameters will come

directly from the request.

[error parsing data]

throw CHARTLiteException

createEventPrivate(req, reqHdlrSupporter, eventType, eventData,

eventToCopy, copyParticipations, copyRPIs, copyLogEntries, newEvtCommLogEntryIDs, pending, null)

AddTrafficEventReqHdlr

WebTrafficEventType createBasicEventData(

eventType, nullID)

ActionEventData

getBooleanParameter("copyParticipations", "Copy Participations", false)

getOriginalEvent()

AddTrafficEventReqHdlr CopyEventData Parse "pendingEvent"

Parameter from paramSupplier

BasicEventData

The event type is used to

instantiate the correct type of

default factory and call

(for example) the

createActionEventData() method.

The EventLauncher form contains type-specific fields for

Disabled Vehicle Event and Incident types (ONLY).

ActionEventDataDefaultFactory

Figure 5‑130. AddTrafficEventReqHdlr:createEventFromForm (Sequence Diagram)
5.20.2.4 AddTrafficEventReqHdlr:createEventPrivate (Sequence Diagram)

This diagram shows the processing that is done to create a new traffic event, which may be a copy of an existing event. The new event may be created in the opened or pending state. The "default event still open remind time" value is retrieved from the system profile. The initial log entries are then obtained. For a new event, the specified comm log entries (if any) will be queried from the CommLogManager object. For an existing event, if the "copy log entries" flag is true, the log history entries from the existing event will be used. If copying an event and the "copy participations" flag is set, the ResponseParticipationData objects from the source event will retrieved to be passed to the server (the server will have to copy them and provide new IDs). The ResponseParticipationData objects will be retrieved to be passed to the server. If the event is being copied and the source event is a pending event, the open event remind delay is retrieved and will override the default value from the system profile. (If the open event remind delay is non-zero, if the new event will be created as a pending event, this relative value will be set, but if the new event is to be opened the absolute "open event remind time" value will be set.) Each TrafficEventFactory object is called to create the event until one is successful. If successful, the Traffic Event MRU (most recently used) list is updated, and a new WebTrafficEvent wrapper object is created and stored in the cache for later use.

[image: image143.emf][eventToCopy!=null && eventToCopy.isPending()] Set Pending Event Last Copied or Used Time [scheduleID specified] Set Initiating Schedule ID in BasicEventData AddTrafficEventReqHldr[remind delay > 0 && pending == false] Set Absolute Open Event Remind Time In BasicEventData WebActionEvent

[copyRPIs && new event type supports RPIs] getResponsePlanItems() WebResponsePlanItem[]getResponsePlanItemData() [* for each WebResponsePlanItem][eventToCopy == null]AddTrafficEventReqHdlr eventToCopy: WebTrafficEvent createEventPrivate(req, reqHdlrSupporter,eventType, eventData, eventToCopy,copyParticipations,copyRPIs, copyLogEntries,newEvtCommLogEntryIDs,pending, scheduleID)[copyParticipations && new event type supports part's] getResponseParticipations() [eventToCopy==null || copyLogEntries] getInitialLogEntries(reqHdlrSupporter, newEvtCommLogEntryIDs,eventToCopy) LogEntry[] This will either look up the specified comm log entries by ID (if eventToCopy is null) or will get the get the event history entries from the event to copy. It will create new LogEntryImpl objects with new unique IDs. Create the appropriate type-specific wrapper class

corresponding to the new event type. The other

event types will have similar logic.

The WebTrafficEvent constructor will query

the new TrafficEvent for its response participations and

response plan items, but not its history log entries.

[eventType==ActionEvent]

Narrow To ActionEvent

return WebTrafficEvent

WebResponseParticipation[] If a pending event is being created, a (relative) open event remind delay is stored. If an open event is being created, the (absolute) open event remind time is calculated. The user will be able to modify the default value (relative or absolute) after the event is created. [remind delay > 0 && pending == true] Set Relative Open Event Remind Delay In BasicEventData isPending() getSysProfileProps().getDefaultEventStillOpenRemindDelayMinutes(eventType) Call userLoginSession.getUserProfile().updateCountyMRUList().

Classes not shown here to save space.

[no factories couldcreate event] throw CHARTLiteExceptionUpdate State And County MRU

List From County In BasicEventData

[* for each TrafficEventFactory untila TrafficEvent is created]TrafficEventCreationResult m_eventFactoryWrapper: FirstAvailableOfferWrapperTrafficEventFactory createIterator() createTrafficEvent(token, eventType, eventData, srcParticipationData, rpiData, initialLogEntries, pending) WebResponseParticipation NOTE - the ResponseParticipationData objects from the original event cannot be used directly when creating the new event, as they contain an ID that must be unique, and there is no way of setting the ID using the current IDL. The server will be responsible for copying the ResponseParticipationData objects and assigning new IDs to them. WebReponsePlanItem The ResponsePlanItemData objects do not contain an ID and can be used by the server as they are passed in. getResponseParticipationData() [* for each WebResponseParticipation][eventType == ActionEvent]

create

Add WebTrafficEvent

 To Cache

Queries the initial log entries.

RequestHandler Supporter updateEventHistory()

[eventToCopy is pending] Get Relative Open Event Remind Delay From Pending Event

Figure 5‑131. AddTrafficEventReqHdlr:createEventPrivate (Sequence Diagram)
5.20.2.5 AddTrafficEventReqHdlr:submitCopyEventForm (Sequence Diagram)

This diagram shows the processing that occurs when the user submits the Copy Event form. After checking rights, the CopyEventFormData object is retrieved from the temporary object cache, using the "formDataID" request parameter. The request parameters for copying log entries, participations, and response plan items are also parsed and stored in the CopyEventFormData object for later use. The "copyAsPending" flag is also parsed. Then createEventFromForm() is called, which calls the server to create the new TrafficEvent, copies the appropriate data, and creates and adds the appropriate type of WebTrafficEvent object to the cache (see the createEventFromForm diagram for details). Finally the response is redirected to show the Event Details page for the new traffic event.

[image: image144.emf]setParameterValue("copyAsPending", copyAsPending)

getObject(formDataIDStr)

[not found]

return Error Page

[error]

Redirect To Copy

Event Page

createEventFromForm(req,

supporter,

formData.getNewEventType(),

formData)

ServletUtil isCheckBoxChecked(req, "copyParticipations")

CopyEventFormData isCheckboxChecked(req, "copyLogEntries")

isCheckBoxChecked(req, "copyResponsePlanItems")

setParameterValue("copyParticipations", copyParticipations)

TempObjectStore [not specified]

return Error Page

User

RequestHandlerSupporter submitCopyEventForm

[no rights]

return Error Page

getParameter("formDataID")

setParameterValue("copyLogEntries", copyLogEntries)

setParameterValue("copyResponsePlanItems", copyResponsePlanItems)

CopyEventFormData or null

return Error Msg

or null

isCheckboxChecked(req, "copyAsPending")

Check User

Rights For

Manage Traffic Events

[error]

setErrorMessage()

WebTrafficEvent

or

CHARTLiteException

See the createEventFromForm diagram for details.

AddTrafficEventReqHdlr redirToEventDetails(eventID, req, resp)

TrafficEventUtility

Figure 5‑132. AddTrafficEventReqHdlr:submitCopyEventForm (Sequence Diagram)
5.20.2.6 TrafficEventReqHdlr:deletePendingEvent (Sequence Diagram)

This diagram shows how a pending traffic event will be deleted when requested by the user. The "eventID" parameter is used to retrieve the WebTrafficEvent object from the cache. The TrafficEvent CORBA reference is used to call the server to remove the event. The object is removed from the cache, and the Results page is prepared for display.

[image: image145.emf]getCachedObject(eventID) lookupRequestedEvent(req, supporter)WebTrafficEvent or nullnot foundreturn errorUserTrafficEventReqHdlrdeletePendingEventCheck Rights[insufficient rights]return errorRequestHandlerSupporter ObjectCache DataModel Context getTrafficEventRef()Call TrafficEvent Reference To DeletegetObjectCache()getDataModel() objectRemoved(eventID) put("heading", "Delete Pending Event") put("success", "true") put("buttonName", "View Pending Events") put("buttonAction", "viewEventList&showPending=true") put("pageContent", "Results.vm") return "EnclosingTemplate.vm"TrafficEventUtilityWebTrafficEvent

Figure 5‑133. TrafficEventReqHdlr:deletePendingEvent (Sequence Diagram)
5.20.2.7 TrafficEventReqHdlr:openPendingEvent (Sequence Diagram)

This diagram shows how a pending traffic event is opened. The "eventID" parameter is used to look up the WebTrafficEvent object from the cache. It is called to obtain the TrafficEvent CORBA reference, which is called to open the event. The BasicEventData is then queried from the traffic event, and is used to update the cached data. (This is done as insurance in case the expected CORBA event does not arrive). The schedule execution is reported to the server, if the "scheduleID" parameter is specified in the request. Also the alert is closed, if an alert ID is specified in the request. Finally the browser is redirected to show the event details page for the newly opened event.

[image: image146.emf][not pending] throw InvalidState reportScheduleExecutionIfSpecified(req, supporter)This will report the execution of the schedule, but only if the "scheduleID" parameter is specified in the request. This is done before attempting to open the event, so that it will be done even if that operation fails. updateEventHistory() updateBasicEventData()Get Cached Event From "eventID" parameter [not found]return errorTrafficEvent [not pending]return errorThis will close the alert if the "alertIDToClose" is specified. This is done before attempting to open the event, so that it will be done even if that operation fails. closeAlertIfSpecified(req, supporter)TrafficEventReqHdlrWebTrafficEvent openPendingEvent[insufficient rights]return errorgetTrafficEventRef() These calls to the server get the current information and update the cache. redirToEventDetails(eventID, req, resp)

return null

openPending(scheduleID) UserTrafficEvent Check User RightslookupRequestedEvent(req, supporter)sendRedirect()

HttpServletResponse WebTrafficEvent or nullTrafficEventUtility

Figure 5‑134. TrafficEventReqHdlr:openPendingEvent (Sequence Diagram)
5.20.2.8 TrafficEventReqHdlr:viewEventDetails (Sequence Diagram)

This diagram shows the processing to view the event details page. The traffic event with the requested ID is retrieved from the cache and put into the Velocity context. (The logic is unchanged for R3B2, and is only reproduced here to explain that the Velocity template will extract the notification records from this traffic event object by calling getNotificationRecords().) The lane configuration is obtained from the traffic event and is used to get the lane display GIF file name and metadata, and those are put into the Velocity context. The response devices are retrieved and are put into the context, as are the road conditions and the event types (for copy event). The recently viewed events list is updated within the UserLoginSession. Finally the template name is returned so it can be processed by Velocity.

[image: image147.emf]For R3B2 the velocity template will determine whether the event is pending by calling the WebTrafficEvent.isPending() method, and will change its behavior appropriately to only display the applicable functionality. put("alertID", alertID")put("scheduleID", req.getParameter("scheduleID"))The alert ID will be passed in if the page is being viewed

when resolving an ExecuteScheduledActions alert with

one Open Event action. If specified, the details page will

include a checkbox allowing the user to close the alert

as part of the Open Copy or Open operation.

If the event is pending, the schedule ID flag is used if the page is being viewed

due to an ExecuteScheduledActions alert with one Open Event

action. In this case we need to carry the schedule ID

through to the Open, Open Copy, or Copy As Pending buttons, so that

we can call the schedule to report that it was executed,

and so that the schedule ID can be passed to the new event

to record that it intiated from the schedule.

If the event is open and was initiated via a schedule,

the velocity template can call WebTrafficEvent.getInitiatingSchedule()

and/or getInitiatingScheduleID() to get the schedule info.

put("readOnly", req.getParameter("readOnly"))ResponsePlanItemInfo create UserTrafficEventReqHdlrTrafficEventUtilityWebTrafficEvent viewEventDetails()WebTrafficEvent or nullput("trafficEvent", trafficEvent)getFilename(laneConfig)getLaneDisplayLargeGIFManagerput("laneConfig", webLaneConfig)WebLaneConfigurationgetResponsePlanItems()RecentViewedEvents For R3B2 the velocity template will get the traffic event's notifications by calling the WebTrafficEvent.getNotificationRecords() method. It will get the schedules referencing it by calling WebTrafficEvent.getReferencingSchedules() [incident or weather event]populateContextForRoadConditionForm()put("roadConditions", roadConditions)put("defaultRoadCondition",defaultRoadCondition)getRecentViewedEvents() UserLoginSessionImpl [* for eachRPI]put("pageContent", "<type-specific VM file>"The "read only" flag will be used to invoke the Event Details page in a mode that prevents the user from opening or editing the pending event. This is used by the Execute Schedule Actions page. Get WebTrafficEvent from cacheContext LaneDisplayGIFManager lookupRequestedEvent()[not found]return errorgetLaneConfiguration()getLaneDisplay(filename)put("laneDisplay", laneDisplay)put("gifFilename", filename)[lane config nullor empty]WebResponsePlanItem[]eventViewed(webTrafficEvent) put("pageTItle", title)put("eventTypes", WebTrafficEventType.values())return "EnclosingTemplate.vm"

Look up response device from cacheput("rpiInfoList", rpiInfoList)

Figure 5‑135. TrafficEventReqHdlr:viewEventDetails (Sequence Diagram)
5.20.2.9 TrafficEventUtility:closeAlertIfSpecified (Sequence Diagram)

This shows the processing that will close an alert if the alert ID is specified in the request. It retrieves the WebAlert from the cache, and calls peformAction() on it, with an action of close. This in turn calls the Alert CORBA object and updates the cache with the returned alert status.

[image: image148.emf]WebAlert [not found]close(token, "") update() TrafficEventUtilityRequestHandlerSupporter getParameter("alertIDToClose") TrafficEventReqHdlrorAddTrafficEventReqHdlrHttpServletRequest closeAlertIfSpecified(req, supporter)[not specified]WebAlert or null Alert performAction(token, ActionToPerform.close, null, null) close(token, "") getCachedObject(alertID)

Figure 5‑136. TrafficEventUtility:closeAlertIfSpecified (Sequence Diagram)
5.20.2.10 TrafficEventUtility:reportScheduleExecutionIfSpecified (Sequence Diagram)

This diagram shows how the schedule execution will be reported to the server, when the user invokes an operation from the event details page for a pending event that would require it. If the schedule ID parameter is specified, the WebSchedule object is retrieved from the cache. The Schedule reference is used to call the server-side object to report the execution, passing the "skipNextActivation" parameter if it's specified (otherwise, false).

[image: image149.emf]getScheduleRef() getCachedObject(scheduleID) [not specified]WebSchedule or null [not found]Schedule scheduleExecuted(skipNextActivation) [error] Log Error AddTrafficEventReqHdlrorTrafficEventReqHdlrTrafficEventUtillity HttpServletRequest RequestHandlerSupporter WebSchedule reportScheduleExecutionIfSpecified(req,supporter)getParameter("scheduleID") getParameter("skipNextActivation")

Figure 5‑137. TrafficEventUtility:reportScheduleExecutionIfSpecified (Sequence Diagram)
5.20.2.11 chartlite.servlet.trafficevents.ResponsePlanReqHdlr:selectPlanForResponseForm (Sequence Diagram)

This diagram shows the processing that takes place when a user has clicked on the select plans button from traffic event detail page. A form is shown with the same filter controls as on the manage/view plans page.

[image: image150.emf]User

if showAll is true, retrieve all plans from the data model,

otherwise retrieve only plans from the user's op center (Not New Code)

ResponsePlanReqHdlr

When the page is loaded, the following is called

from the velocity template via an ajax call.

HttpServletRequest

WebPlan

Create PlanFilterAttributeList object with the following filters

PLAN_ATTR_EVENT_TYPE

PLAN_ATTR_LOCATION_ALIAS || PLAN_ATTR_COUNTY_REGION

WebTrafficEvent

See chartlite.servlet.PlanReqHdlr:processGetFilteredPlansJSON

java.util.Vector

WebTrafficEventLocation

WebRegionInfo

WebCountyInfo

Context

[WebCountyInfo not null]

getCountyName()

[WebCountyInfo not null]

getCountyName()

getEventType() getEventType()

getLocation() getLocation()

getInternalAliasName() getInternalAliasName()

[WebRegionInfo not null]

getRegionName()

[WebRegionInfo not null]

getRegionName()

getParameterValue("trafficEventID") getParameterValue("trafficEventID")

getFilteredPlansJSON(req, resp, supporter) getFilteredPlansJSON(req, resp, supporter)

WebTrafficEventType WebTrafficEventType

WebTrafficEventLocation WebTrafficEventLocation

String or null if no aliasl String or null if no aliasl

WebCountyInfo or null if no county WebCountyInfo or null if no county

WebRegionInfo or null if no region WebRegionInfo or null if no region

put("planFilter",PlanFilterAttributeList) put("planFilter",PlanFilterAttributeList)

returns template returns template

[no alias]

getCountyInfo()

[no alias]

getCountyInfo()

[no county info]

getRegionInfo()

[no county info]

getRegionInfo()

showSelectPlanPage(req, ctx, supporter) showSelectPlanPage(req, ctx, supporter)

Figure 5‑138. chartlite.servlet.trafficevents.ResponsePlanReqHdlr:selectPlanForResponseForm (Sequence Diagram)
5.20.2.12 chartlite.servlet.trafficevents.TrafficEventReqHdlr:searchEventHistory (Sequence Diagram)

This diagram shows the processing that takes place when the user submits the form used to search event history entries. New for R3B2 is the ability to filter for user, system, and/or device messages. The user also has the ability to navigate through the results by page number, and the ability to further filter, and sort the results by data column.

[image: image151.emf]Also retrieve other parameters below

Author

Begin/End date

OpCtr Name

Entry text

TrafficEventReqHdlr

Add query results entries to the

LogEntryWrapper[] array

TrafficEventUtility

LogFilterImpl

HttpServletRequest

Also retrieve other parameters below

userMessages

deviceMessages

systemMessages

ServletUtil

Pass all params to constructor.

New for R3B2 are the user, device, system

messages fields, passed in a LogFilterMessageType object.

WebTrafficEvent

TrafficEvent DynListReqHdlrDelegate

RequestHandlerSupporter

LogEntryWrapper[]

LogFilterWrapper

TempObjectStore

Context

Max entries is set to a large number

as to not limit entries returned in a single

request

LogEntryDynListSupporter

See chartlite.servlet.commlog.dynlist.LogEntryDynListSupporter.getDynListSubjects

viewDynList viewDynList

return dynList template return dynList template

put("pageTitle", "Event History Search Results") put("pageTitle", "Event History Search Results")

new LogEntryWrapper created of LogQueryResults length new LogEntryWrapper created of LogQueryResults length

getTempObjectStore() getTempObjectStore()

add(id, LogEntryWrapper[] entries) add(id, LogEntryWrapper[] entries)

put("logEntriesObjectID", id) put("logEntriesObjectID", id)

returns TrafficEvent reference returns TrafficEvent reference

returns LogQueryResults object returns LogQueryResults object

create create

getParameter("sourceType") getParameter("sourceType")

returns source type returns source type

isCheckBoxChecked(req,"caseSensitive") isCheckBoxChecked(req,"caseSensitive")

getDynListSubjects() getDynListSubjects()

lookupRequestedEvent(req, supporter) lookupRequestedEvent(req, supporter)

returns WebTrafficEvent returns WebTrafficEvent

[traffic event not found]

error

[traffic event not found]

error

submitSearchEventHistoryParms(req, resp, ctx, supporter) submitSearchEventHistoryParms(req, resp, ctx, supporter)

create create

returns TempObjectStore object returns TempObjectStore object

entries added to temp object store entries added to temp object store

ID for logEntries query results placed in context ID for logEntries query results placed in context

getTrafficEventRef() getTrafficEventRef()

getHistory(user.getAccessToken(), filter, 10000000) getHistory(user.getAccessToken(), filter, 10000000)

put("logFilterWrapper", logFilterWrapper) put("logFilterWrapper", logFilterWrapper)

create(LogFilterImpl) create(LogFilterImpl)

Figure 5‑139. chartlite.servlet.trafficevents.TrafficEventReqHdlr:searchEventHistory (Sequence Diagram)
5.20.2.13 chartlite.servlet.trafficevents.TrafficEventReqHdlr:viewEventHistory (Sequence Diagram)

The diagram shows the processing that takes place when the user clicks on the event history link. The latest event history entries are shown for this event. New for R3B2 are the display of records in a Navigatable DynList which supports filtering. Filtering is handled with existing DynList code. When a filter is updated, the user is sent to the first page of records.

[image: image152.emf]User

TrafficEventReqHdlr

Request made from an ajax call when the page is loaded,

the user changes the number of entries per page or the user

navigates to a specific page.

RequestHandlerSupporter

TrafficEventUtility

NavigatableDynListReqHdlrDelegate

See chartlite.servlet.dynlist.NavigatableDynListReqHdlrDelegate:viewDynListPage

displayEventSpecificPage("EventHistory.vm", req, ctx, supporter, false) displayEventSpecificPage("EventHistory.vm", req, ctx, supporter, false)

[event not found]

return template displaying error msg

[event not found]

return template displaying error msg

displays template containing latest entries inside

div

displays template containing latest entries inside

div

[traffic event null]

return string "Event not Found"

[traffic event null]

return string "Event not Found"

viewEventHistory(req, resp, ctx, supporter) viewEventHistory(req, resp, ctx, supporter)

viewEventHistoryPage&page=xx&eventID=xx&numEntriesPerPage=xx viewEventHistoryPage&page=xx&eventID=xx&numEntriesPerPage=xx

returns template containing dynlist entries on page returns template containing dynlist entries on page

lookupRequestedEvent(req, supporter) lookupRequestedEvent(req, supporter)

viewDynListPage(req, resp, ctx, supporter) viewDynListPage(req, resp, ctx, supporter)

Figure 5‑140. chartlite.servlet.trafficevents.TrafficEventReqHdlr:viewEventHistory (Sequence Diagram)
5.20.2.14 chartlite.servlet.trafficevents.TrafficEventReqHdlr:viewEventHistoryPage (Sequence Diagram)

 This diagram shows the processing that takes place when a user has navigated to a specific event history page, selected a specific page of records to view, updated the number of entries to display per page, or changed the sort column.

[image: image153.emf]User

TrafficEventReqHdlr

HttpServletRequest

TrafficEventReqHdlr will contain a single delegate. State data is kept

in a NavigatableDynList object.

RequestHandlerSupporter

See chartlite.servlet.dynlist.NavigatableDynListReqHdlrDelegate:viewDynListPage

WebTrafficEvent

NavigatableDynListReqHdlrDelegate

viewEventHistoryPage(req, resp, ctx, supporter) viewEventHistoryPage(req, resp, ctx, supporter)

getAttribute("eventID") getAttribute("eventID")

getCachedObject(eventID) getCachedObject(eventID)

returns WebTrafficEvent returns WebTrafficEvent

viewDynListPage(req, resp, ctx, supporter) viewDynListPage(req, resp, ctx, supporter)

returns dynlist template with context populated returns dynlist template with context populated

Displays dynList template Displays dynList template

Figure 5‑141. chartlite.servlet.trafficevents.TrafficEventReqHdlr:viewEventHistoryPage (Sequence Diagram)
5.21 GUI chartlite.util

5.21.1 Classes

5.21.1.1 chartlite.util_classes (Class Diagram)

This diagram shows utility classes used in the CHART GUI servlet.

[image: image154.emf]ServletUtil getObjectFromIDString(dataModel:DataModel, idStr:String) : Object

getCurrentUserToken(req:HttpServletRequest):byte[]

sendJSONObject(resp:HttpServletResponse, obj:JSONObject) : void

Figure 5‑142. chartlite.util_classes (Class Diagram)

5.21.1.1.1 ServletUtil (Class)

This class provides static utility methods useful to request handlers in the servlet.

5.22 GUI chartlite.util.dynlist

5.22.1 Classes

5.22.1.1 DynamicListClasses (Class Diagram)

This diagram shows interfaces and classes that provide generic support for dynamic lists. A dynamic list is a list of objects that has one or more columns and can be sorted and filtered.

[image: image155.emf]DynList«interface»0..1

1

global filter

* 1 * 1

0..1

1

DynListFilter

«interface»

DefaultDynList

DynListCol «interface» DynListSubject

«interface»

DefaultDynListCol

BaseDynListFilter

SubjectTextPropertyComparator

java.util.Comparator «interface» DynListComparator

«interface»

1 1

TextValueColFilter

getID():IdentifiergetDescription():StringgetColumns():DynListCol[]getColumn(property:String):DynListCol

setColumns(columns:DynListCol[]):void

setSubjects(subjects:DynListSubject[]):void

getAllSubjects():DynListSubject[]

getFilteredSubjects():DynListSubject[]

getGloballyFilteredSubjects():DynListSubject[]

clearAllFilters():void

getGlobalFilters():DynListFilter[]

addGlobalFilter(filter:DynListFilter):void

removeGlobalFilter(filter:DynListFilter):void

clearGlobalFilters():void

sort(column:DynListCol):void

isCurrentSortCol(property:String):boolean

getCurrentSortCol():DynListCol

isCurrentSortAscending():boolean

isFiltered():boolean

getActiveFilterValueDescs():String[]

hasActiveColumnFilters():boolean

hasActiveGlobalFilters():boolean

getFilteredSubjectList():ArrayList<DynListSubject>

getProperty():String supportsMultipleValues():boolean supportsFiltering():boolean getFilter():DynListFilter

setFilter(filter:DynListFilter):void

allowsSort():boolean

getSortComparator():DynListComparator<DynListSubject>

-m_id:Identifier

-m_desc:String

-m_cols:DynListCol[]

-m_sortCol:DynListCol

-m_globalFilters:ArrayList<DynListFilter>

-m_subjects:ArrayList<DynListSubject>

getPropertyValue(property:DynListCol):String

getPropertyValues(property:DynListCol):String[]

getDescription():String

getUniqueValueDescs(subjects:DynListSubject[]):String[]

getFilteringValueDesc():String

setFilterValue(value:Object):void

passesFilter(subject:DynListSubject):boolean

deactivate():void

isActive():boolean

setSortOrder(isAscending:boolean):void

isSortOrderAscending():boolean

-m_description:String

#m_filterValue:Object

-m_property:DynListCol

-m_isMultiValueProperty:boolean

-m_ascending:boolean

-m_col:DynListCol

-m_property:String

-m_filter:DynListFilter

-m_sortComparator:DynListComparator<DynListSubject>

-m_multiVal:boolean

Figure 5‑143. DynamicListClasses (Class Diagram)

5.22.1.1.1 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

5.22.1.1.2 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a collection of columns, a collection of global filters, and a collection of subjects. Filters in this list are treated additively - that is, a subject must pass all filters to be displayed.

5.22.1.1.3 DefaultDynListCol (Class)

This class provides a default implementation of the DynListCol interface. This column is constructed with a string property name for which subjects are expected to provide a value. By default, this column uses a SubjectTextPropertyComparator, which means a string comparison of the property values provided by the subjects for this column is used. You may optionally set a different comparator. Multiple values for this column (from a single subject) are supported.

5.22.1.1.4 DynList (Class)

This interface is implemented by classes that wish to provide dynamic list capabilities. A dynamic list is a list of items that has one or more columns that can optionally be sorted, and the list can be filtered by column values or by global filters.

5.22.1.1.5 DynListCol (Class)

This interface is implemented by classes that are to be used as a column in a dynamic list.

5.22.1.1.6 DynListComparator (Class)

This interface is implemented by classes that are used to sort dynamic lists.

5.22.1.1.7 DynListFilter (Class)

This interface is implemented by classes that are used to filter dynamic lists.

5.22.1.1.8 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.22.1.1.9 java.util.Comparator (Class)

This interface is implemented by classes that can be sorted.

5.22.1.1.10 SubjectTextPropertyComparator (Class)

This class provides an implementation of the DynListComparator interface which compares subjects based on the values they supply for the property supplied to this class during construction. A case insensitive text comparison is done on the values, and multiple value columns are supported.

5.22.1.1.11 TextValueColFilter (Class)

This class is a DynListFilter that filters subjects of a dynamic list based on the text value of a column's property.

5.23 Notification Module

5.23.1 Classes

5.23.1.1 NotificationManagement (Class Diagram)

These classes describe the interfaces that will be used for Notification in CHART.
[image: image156.emf]NotificationStatus

«datatype»

1

1

NotificationManager

«interface»

1

1

NotificationChangedEventInfo

«datatype»

NotificationInfo

«datatype»

NotificationHistoryFilter

«datatype»

NotificationEvent

NotificationRecord

«datatype»

*

NotificationTargetType

«enumeration»

Notification

«interface»

NotificationCreationInfo

«datatype»

NotificationHistoryQueryResults

«datatype»

NotificationMemberInfo

«datatype»

1

1

1

1

1

NoticationRecordIterator

«interface»

*

*

*

NotificationEventType

«enumeration»

*

1

1

NotificationGroupInfo

«datatype»

1

NotificationType

«enumeration»

1

1

NotificationRecipientData

«datatype»

1

1

UniquelyIdentifiable

«interface»

1

NotificationAdded

NotificationChanged

NotificationrRemoved

discriminator: NotificationEventType

notifiInfo : NotificationInfo

notifRequestStatus : NotificationStatus[]

notifRemovedId : string

id : string

requestStatus:NotificationStatus[]

recepientName:String

status:String

statusTime : TimeStamp2

record : NotificationRecord

ref:Notification

id : string

name : string

id Identifier

eventId : Identifier

objectType :NotificationType

author : String

opCenterId : Identifier

startTime : TimeStamp2

endTime : TimeStamp2

recipientName : String

groupName : String

status : String

group:NotificationGroupInfo

membesr:NotificationRecipientData[]

id : Identifier

notificationId : String

eventFactoryId : Identifier

eventId : Identifier

notiftType : NotificationType

author : String

opCenterId : Identifier

createDate : TimeStamp2

requestList:NotificationRecipientData[]

requestStatus :NotificationStatus[]

type : NotificationTargetType

id : string

name : string

NOTIF_TYPE_STAND_ALONE

NOTIF_TYPE_TRAFFIC_EVENT

type :NotificationType

eventId:Identifier

NOTIF_TARGET_TYPE_INDIVIDUAL

NOTIF_TARGET_TYPE_GROUP

getMoreRecords(maxCount:long):NotificationRecord[]

destroy():void

initialRecords:NotificationRecord[]

hasAdditionalRecords:boolean

additionalRecordsIterator:NoticationRecordIterator

getNotifications(AccessToken):NotificationInfo[]

getGroups(AccessToken) : NotificationRecipientData[]

getIndividuals(AccessToken) : NotificationRecipientData[]

getMembers(AccessToken, NotificationGroupInfo[]) : NotificationMemberInfo[]

sendNotificationMessage(AccessToken token,

 NotificationCreationInfo ni,

 NotificationRecipientData[] nrl,

 String message):Notification

getNotificationHistory(token: AccessToken,

 filter : NotificationHistoryFilter,

 maxCount : long) : NotificationHistoryQueryResults

activeNotifications: Notification[]

getID()

getName()

getNotificationRecord() : NotificationRecord

takeOffline():boolean

delete(AccessToken):boolean

Figure 5‑144. NotificationManagement (Class Diagram)

5.23.1.1.1 NoticationRecordIterator (Class)

A NoticationRecordIterator is used to retrieve notification records from a notification server in chunks.

5.23.1.1.2 Notification (Class)

The Notification interface is implemented by objects that will send notification messages to either a distribution list or a specific list of members. This interface will allow an operator to notify the appropriate parties of a serious problem.

5.23.1.1.3 NotificationChangedEventInfo (Class)

This struct contains the data that is passed with a notification CORBA event. It contains information identifying the notification, and the list of recipient statues affected by the event.

5.23.1.1.4 NotificationCreationInfo (Class)

Structure contains data used to create a new notification.

5.23.1.1.5 NotificationEvent (Class)

This represents the CORBA event that will be supported in the Notification Module.

5.23.1.1.6 NotificationEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the NotificationModule. These can either be Added, Changed, or Deleted.

5.23.1.1.7 NotificationGroupInfo (Class)

Contains information used to identify a notification group.

5.23.1.1.8 NotificationHistoryFilter (Class)

This object contains the filter used to query data from the notification status history in the CHART DB.

5.23.1.1.9 NotificationHistoryQueryResults (Class)

This structure contains the data that is returned from a notification history record query.

5.23.1.1.10 NotificationInfo (Class)

This structure contains a reference to a notification, its ID and its type.

5.23.1.1.11 NotificationManager (Class)

This interface is supported by objects that are capable of creating notification objects in the system.

5.23.1.1.12 NotificationMemberInfo (Class)

Contains data that describes a member as it relates to a group.

5.23.1.1.13 NotificationRecipientData (Class)

This object contains the data that is returned as a result of an object get recipient (groups, individuals, or members) request.

5.23.1.1.14 NotificationRecord (Class)

This structure contains the data detailing a notification that has been sent on the CHART system.

5.23.1.1.15 NotificationStatus (Class)

Contains data describing the status of an individual recipient of a given notification message.

5.23.1.1.16 NotificationTargetType (Class)

This enumeration specifies the type of a notification record that has been retrieved when a recipient query is performed on the Notification server.

5.23.1.1.17 NotificationType (Class)

This enumeration specifies the type of notification that is represent by data in a notification record, history filter or info.

5.23.1.1.18 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.23.1.2 NotificationModule (Class Diagram)

These classes represent the Notification Module used for managing Notifications in CHART.
[image: image157.emf]SetOfflineTimerTask

GetNewStatusTask

NotificationRecipientData«datatype» 1

java.util.Timer

NotificationManagerImpl

1

1

1

AttentionNSNotificationRecipient

NotificationRecord

«datatype»

1

*

1

java.util.TimerTask

NotificationModuleProperties

1

NotificationDB

NotificationImpl

NotificationModule

Notification

«interface»

UniquelyIdentifiable «interface» 1

NotificationManager «interface» 1

1

1

type : NotificationTargetTypeid : stringname : stringtype : AttentionNSNotificationRecipientType

recipientID : String

startState : int

schedule() : void

cancel() : void

getNotifications(AccessToken):NotificationInfo[]

getGroups(AccessToken) : NotificationRecipientData[]

getIndividuals(AccessToken) : NotificationRecipientData[]

getMembers(AccessToken, NotificationGroupInfo[]) : NotificationMemberInfo[]

sendNotificationMessage(AccessToken token,

 NotificationCreationInfo ni,

 NotificationRecipientData[] nrl,

 String message):Notification

getNotificationHistory(token: AccessToken,

 filter : NotificationHistoryFilter,

 maxCount : long) : NotificationHistoryQueryResults

activeNotifications: Notification[] run()

getID()getName() +initialize(ServiceApplication) : boolean

+shutdown(ServiceApplication) : boolean

-addEventLocationTypeToTrader() : void

createNotificationManager() : boolean

m_props : Properties

m_serviceApp : ServiceApplication

getNotificationRecord() : NotificationRecord

takeOffline():boolean

delete(AccessToken):boolean

getNotificationHistory(String id):String

getNotivicationRecord():NotificationRecord

addNotificationRecord(String id, NotificationRecord:record)

getProperties() : NotificationModuleProperties

-log(String, String, String)

-opLog(token,String,int,String,String)

addNotifyHistoryLog()

id : Identifier

notificationId : String

eventFactoryId : Identifier

eventId : Identifier

notiftType : NotificationType

author : String

opCenterId : Identifier

createDate : TimeStamp2

requestList:NotificationRecipientData[]

requestStatus :NotificationStatus[]

Figure 5‑145. NotificationModule (Class Diagram)

5.23.1.2.1 AttentionNSNotificationRecipient (Class)

This object contains the data necessary for sending a message.

5.23.1.2.2 GetNewStatusTask (Class)

This Timer Task will periodically poll the COTS Notification tool looking for new status information about the currently sent Notification. Once a new status has been found, an event will be pushed to the GUI.

5.23.1.2.3 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.23.1.2.4 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.23.1.2.5 Notification (Class)

The Notification interface is implemented by objects that will send notification messages to either a distribution list or a specific list of members. This interface will allow an operator to notify the appropriate parties of a serious problem.

5.23.1.2.6 NotificationDB (Class)

Object used to save and retrieve archived information for a notification that has been created and an attempt to send it has been made.

5.23.1.2.7 NotificationImpl (Class)

This class is the implementation of the Notification interface.

5.23.1.2.8 NotificationManager (Class)

This interface is supported by objects that are capable of creating notification objects in the system.

5.23.1.2.9 NotificationManagerImpl (Class)
The NotificationManagerImpl is the class is the service module for the NotificationManager interface.
5.23.1.2.10 NotificationModule (Class)

The NotificationModule class is the service module for the Notification interface. It implements the ServiceApplicationModule interface. It creates and serves a single NotificationImpl object. It also creates NotificationDB, NotificationModuleProperties, and PushEventSupplier objects.

5.23.1.2.11 NotificationModuleProperties (Class)

The NotificationModuleProperties class is used to provide access to properties used by the Notification Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Notification Module.

5.23.1.2.12 NotificationRecipientData (Class)

This object contains the data that is returned as a result of an object get recipient (groups, individuals, or members) request.

5.23.1.2.13 NotificationRecord (Class)

This structure contains the data detailing a notification that has been sent on the CHART system.

5.23.1.2.14 SetOfflineTimerTask (Class)

This TimerTask will run periodically looking for Notifications that are not offline and setting them offline based on certain criteria. A notification can be set to offline when the traffic it is associated with has been closed. This is normally handled by the Traffic Event. If the Notification isn't associated with a Traffic Event, it will have a DateTime field associated with it that will be a Time to Live. Once the threshold has been passed the, the Notification is set to offline.

5.23.1.2.15 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.23.2 Sequence Diagrams

5.23.2.1 NotificationImpl:getGroups (Sequence Diagram)

This diagram describes how the notification groups will be retrieved from the COTS tool, Attention! NS.
[image: image158.emf][request error]

log

checkAccess()

[no access]

log

requestLookUp(lookUpType, searchPattern)

NotificationImpl

[if lookup error]

return error code

AttentionCCWrapper

response[]

[no Access]

AccessDenied

[Attention error]

chart2Exception

TokenManipulator OperationsLog

getGroups(token)

NotificationRecipientDataList

Figure 5‑146. NotificationImpl:getGroups (Sequence Diagram)

5.23.2.2 NotificationImpl:getNotificationHistory (Sequence Diagram)

This diagram describes how the NotificationModule will retrieve the appropriate notification Records for the CHART GUI.
[image: image159.emf]NotificationRecords[]

create

[db error]

chart2Exception

NotificationImpl TokenManipulator OperationsLog NotificationDB NotificationRecord NoticationRecordIterator

getNotificationHistory(token,

NotificationHistoryFilter filter,

int maxCount)

checkAccess()

[no access]

log

getNofificationRecords(filter)

[for each NotificationRecord]

record = create

[no Access]

AccessDenied

NotificationHistoryQueryResults[]

[database error]

log

May not want to get the record here.

The notification status page has record info on it.

It could be done in a seperate call to another

function ie getNotificationHistory which only gets

records stored in CHART db not states from Attention!.

Figure 5‑147. NotificationImpl:getNotificationHistroy (Sequence Diagram)

5.23.2.3 NotificationImpl:sendNotificationMessage (Sequence Diagram)

This sequence diagram describes the interaction of the client GUI with the server when sending a notification message to a list of recipients.

[image: image160.emf][db error]

log

[db error]

CHART2Exception

[successful]

NotificationRecord

checkMessageLength()

PushEventSupplier

log(records)

NotificationImpl TokenManipulator OperationsLog NotificationDB

sendNotificationMessage(token,

NotificationInfo,

 NotificationRecipienDatatList,

message)

[AttentionCC error]

CHART2Exception

send(NotificationRecipientList, message)

createXMLMessage(NotificationRecipientList, message)

push a Message

sent event if

everything is

successful

[no Access]

AccessDenied

[message > 140 ch]

CHART2Exception

addNotificationRecords(NotificationRecord)

push()

checkAccess()

[no access]

log

AttentionCCWrapper

sendHTTPRequest(XMLdoc)

Figure 5‑148. NotificationImpl:sendNotificationMessage (Sequence Diagram)

5.23.2.4 NotificationImpl:takeOffline (Sequence Diagram)

This sequence diagram describes the process of taking a notification offline.

[image: image161.emf][successful]

NotificationImplOperationsLog NotificationDB TokenManipulator takeOffline(token,id)setOfflineFlag(id) checkAccess(token) [no access] AccessDenied push()

[db error]

PushEventSupplier push an event

so that the GUI

knows that it was

successful

[db error]

CHART2 Exception

opLog(NotificationRecord)

[no access]AccessDenied

Figure 5‑149. NotificationImpl:takeOffline (Sequence Diagram)

5.23.2.5 NotificationModule:setNotificationOffline (Sequence Diagram)

This TimerTask checks to see if the Notification should be set to offline based on certain conditions. There will be a system property to define what the length of time a standalone Notification will be left in the system. It will have a Time to live based on the creation of the notification. If the notification is associated with a traffic event, check to see if the traffic event is still open. If it is closed or has been false alarmed, take the notification offline. If the traffic event server is unreachable then we leave the notification in the system.

[image: image162.emf][isTTLexpired() || ! isTrafficEventOpen()] TimerNotificationImpl setNotificationOffline() iter : getNotificationIterator() [iter.hasNext()]

SetNotificationOfflineTaskNotificationManagerImpl run()takeOffline(token,

id)

if part of a traffic event, check to see if the traffic event is still open. if it is open or can't reach the traffic event factory leave the notification alone. else if it is older than a system defined property, set the offline indicator

Figure 5‑150. NotificationModule:setNotificationOffline (Sequence Diagram)

5.24 Plan Module

5.24.1 Classes

5.24.1.1 PlanManagement (Class Diagram)

This class diagram contains the interfaces used in the creation and management of plans. A plan is a group of actions that are set-up in advance to be used in response to a traffic event. Given the unpredictable nature of traffic events, pre-defined plans are usually only useful for congestion, safety messages, and weather related messages.

[image: image163.emf]* 1

PlanNameChangeEventInfo

«typedef»

UniquelyIdentifiable «interface» 1 1 1

1 PlanItemChangedEventInfo

«typedef»

PlanEventType

«enumeration»

PlanItemData

PlanList

«typedef»

PlanItemList «typedef» PlanItem

«interface» Plan «interface» PlanFactory «interface» PlanItemAddedEventInfo

«typedef»

PlanItemRemovedEventInfo

«typedef»

PlanAddedEventInfo

«typedef»

1

* *

* createPlan(AccessToken token,

 string name):PlanData

getPlans():PlanDataList

getID():byte[]

getName():String

removePlan(Object):void

shutdown():void

PlanAdded

PlanRemoved

PlanItemAdded

PlanItemRemoved

PlanNameChanged

PlanItemChanged

setName(AccessToken,string):void

addItem(AccessToken,PlanItemData):PlanItem

removeItem(AccessToken,PlanItem):void

getItems():PlanItemList

remove(AccessToken):void

isUsingObject(IdentifierList planIDs)

setPlanFilterAttributes(AccessToken, PlanFilterAttributesList):void

getID() getName() Plan thePlan

Identifier planID

PlanItem planItem

Identifier planID

Identifier planItemID

Identifier planID

string newName

setName(AccessToken, string):void

setData(AccessToken, PlanItemData):void

getData():PlanItemData

remove(AccessToken):void

getPlanID():Identifier

isUsingObject(IdentifierList):boolean

Identifier planID

Identifier planItemID

isUsingObject(IdentifierList objectIDs):boolean

PlanItem thePlanItem;

PlanItemData itemData;

string itemName;

Identifier planID;

Identifier planItemID;

Figure 5‑151. PlanManagement (Class Diagram)

5.24.1.1.1 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items.

5.24.1.1.2 PlanAddedEventInfo (Class)

The PlanAddedEventInfo class defines the data passed in the PlanAdded event.

5.24.1.1.3 PlanEventType (Class)

The PlanEventType class is an enumeration which describes the types of events that can be pushed for plans. When a plan item is added or modified it is up to the derived item type to push the appropriate type of event.

5.24.1.1.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the system.

5.24.1.1.5 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This CORBA interface is subclassed for specific actions that can be planned in the system.

5.24.1.1.6 PlanItemAddedEventInfo (Class)

The PlanItemAddededEventInfo class defines the data passed in the PlanItemAdded event.

5.24.1.1.7 PlanItemChangedEventInfo (Class)

The PlanItemChangedEventInfo class defines the data passed in the PlanItemChanged event.

5.24.1.1.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

5.24.1.1.9 PlanItemList (Class)

The PlanItemList class is simply a collection of PlanItem objects.

5.24.1.1.10 PlanItemRemovedEventInfo (Class)

The PlanItemRemovedEventInfo defines the data passed in the PlanItemRemoved event.

5.24.1.1.11 PlanList (Class)

The PlanList class is simply a collection of Plan objects.

5.24.1.1.12 PlanNameChangeEventInfo (Class)

The PlanNameChangeEventInfo class defines the data passed in the PlanNameChanged event.

5.24.1.1.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.24.1.2 PlanModuleClasses (Class Diagram)

This is an installable module that serves the PlanFactory and Plan objects to the rest of the CHART system.

[image: image164.emf]getPlanFilterAttributes is a new method

in R3B2 to allow searching of plans

1

1

1

1

1

PlanItem

«interface»

1

*

PlanImpl

PlanItemData

PlanDB

PlanFactory «interface» 1 1

1

1

*

1

1

1

1

1

1

1

1 *

PushEventSupplier

ServiceApplicationModule

«interface» PlanFactoryImpl

ServiceApplication

«interface»

PlanModule

PlanItemImpl

Plan

«interface»

DBConnectionManager

1

1

Return value for createPlan and getPlans changed in R3B2 to allow searching of plans 11

1

setPlanFilterAttributes is a new method

in R3B2 to allow searching of plans

1

1

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

createPlan(AccessToken token, string name):PlanData getPlans():PlanDataList getID():byte[]

getName():String

removePlan(Object):void

shutdown():void

setName(AccessToken, string):void

setData(AccessToken, PlanItemData):void

getData():PlanItemData

remove(AccessToken):void

getPlanID():Identifier

isUsingObject(IdentifierList):boolean

PlanFactoryImpl(ServiceApplication, PushEventSupplier, PlanDB,

 Identifier, IdentifierGenerator)

m_devicePlanCollection

m_offerIDs

setName(AccessToken,string):void

addItem(AccessToken,PlanItemData):PlanItem

removeItem(AccessToken,PlanItem):void

getItems():PlanItemList

remove(AccessToken):void

isUsingObject(IdentifierList planIDs)

setPlanFilterAttributes(AccessToken, PlanFilterAttributesList):void

PlanItemImpl(PlanImpl, PushEventSupplier,

 PlanDB, PlanItemData)

m_id

m_name

m_planItemData

PlanImpl(ServiceApplication , PushEventSupplier, PlanDB, PlanFactoryImpl,

 IdentifierGenerator, PlanDataStruct, boolean)

getPlanFilterAttributes(Identifier planID):PlanFilterAttributesList

m_id

m_name

getPlanList():PlanDataStruct[]

insertPlan(PlanDataStruct planData):void

deletePlan(String planID):void

insertPlanItem(PlanItemDataStruct planItemData):void

deletePlanItem(String planID):void

getPlanItemsList(String planID):PlanItemDataStruct[]

setPlanName(String id, String name):void

setFilters(Identifier planID, PlanFilterAttributesList filterList):void

getFilters(Identifier planID):PlanFilterAttributesList

Figure 5‑152. PlanModuleClasses (Class Diagram)

5.24.1.2.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.24.1.2.2 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic event. Each action is defined to be a Plan item. The Plan supports functionality to add and remove plan items.

5.24.1.2.3 PlanDB (Class)

This class contains the methods that perform database operations for the Plan module. It is constructed with a Database object that provides the connections to the database server. All the methods in this class get a new connection to the database before performing any operation on the database. The connection is released at completion of the operation.

5.24.1.2.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the system.

5.24.1.2.5 PlanFactoryImpl (Class)

This class implements the PlanFactory interface and enables the management of the Plan objects by other processes. It creates, publishes and deletes the objects that implement the Plan interface.

5.24.1.2.6 PlanImpl (Class)

This class implements the Plan interface and provides the implementation for the methods defined in the interface. It also manages the database operations for the PlanItems contained in this Plan.

5.24.1.2.7 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This CORBA interface is subclassed for specific actions that can be planned in the system.

5.24.1.2.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes contain specific data that map a device to an operation and the data needed for the operation. For example a derived class provides a mapping between a specific DMS and a DMSMessage.

5.24.1.2.9 PlanItemImpl (Class)

This class implements the PlanItem interface.

5.24.1.2.10 PlanModule (Class)

This module creates, publishes and deletes the object that implements the PlanFactory interface.

5.24.1.2.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.24.1.2.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.24.1.2.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.24.2 Sequence Diagrams

5.24.2.1 PlanModule:AddPlan (Sequence Diagram)

This diagram shows how a user with proper functional rights can add a plan to the system. An AccessDenied exception is returned if the user does not have the functional right to add a plan. Otherwise, the plan object is created and added to the database. The plan object is published in CORBA Trader service and a PlanAdded event is pushed through the event channel to notify the other processes that a new plan has been added.

[image: image165.emf]PushEventSupplier POA TokenManipulator PlanFactoryImpl createPlan

log(PlanAdded)

activate_object(PlanImpl)

[Database error]

CHART2Exception

registerObject(Plan)

[no rights]

AccessDenied

ServiceApplication OperationsLog push(PlanAdded)

create

PlanDB ORB

PlanImpl

Plan

insertPlan

checkAccess

[no rights]

log

Figure 5‑153. PlanModule:AddPlan (Sequence Diagram)

5.24.2.2 PlanModule:GetPlanFilterAttributes (Sequence Diagram)

 This diagram shows the steps to retrieve the Plan Filter Attributes from memory. The Plan Filter Attributes are then passed to the GUI.

[image: image166.emf]ORB

PlanImpl OperationsLog

return PlanFilterAttributesList return PlanFilterAttributesList

getPlanFilterAttributes(planID) getPlanFilterAttributes(planID)

log (CHART2 Exception) log (CHART2 Exception)

[error]

CHART2 Exception

[error]

CHART2 Exception

Figure 5‑154. PlanModule:GetPlanFilterAttributes (Sequence Diagram)

5.24.2.3 PlanModule:SetPlanFilterAttributes (Sequence Diagram)

 This diagram shows the steps to save the Plan Filter Attributes in both memory and the database. The Plan Filter Attributes are passed into the server from the GUI.

[image: image167.emf]ORB

PlanImpl TokenManipulator PlanDB PushEventSupplier OperationsLog

[if no error]

save PlanFilterAttributeList in memory

[if no error]

save PlanFilterAttributeList in memory

[Database error]

CHART2 Exception

[Database error]

CHART2 Exception

[error]

Chart2Exception

[error]

Chart2Exception

log(FilterAttributes added) log(FilterAttributes added)

checkAccess checkAccess

setFilters(planID, PlanFilterAttributeList) setFilters(planID, PlanFilterAttributeList)

[no rights]

log

[no rights]

log

setPlanFilterAttributes(

AccessToken, PlanFilterAttributeList)

setPlanFilterAttributes(

AccessToken, PlanFilterAttributeList)

[no rights]

AccessDenied

[no rights]

AccessDenied

push(FilterAttributes added) push(FilterAttributes added)

Figure 5‑155. PlanModule:SetPlanFilterAttributes (Sequence Diagram)

5.25 Schedule Module

5.25.1 Classes

5.25.1.1 ScheduleManagement (Class Diagram)

This class diagram identifies the classes found in the ScheduleManagement interface.

[image: image168.emf]ScheduleData«struct»ScheduleStatus«struct»11111 1 1 1ScheduleCreationResult«struct»UniquelyIdentifiable«interface»Schedule«interface»1OpenEventActionData«struct»1ActionDetail is a union, withActionType as the discriminator.OpenEventActionData is the onlypossible type for R3B2.11ScheduleEventType «enumeration»1 1ActivationSchedule «union» DOWRecurringActivation «struct» ScheduleType «enumeration» ActivationTime «struct» 11 1 1*1 TimeStamp2 «typedef»ActivationSchedule is a union, with ScheduleType as the discriminator. An array of Timestamp2 is contained if SCHEDULE_TYPE_MULTI_DATE; A DOWRecurringActivation is contained if SCHEDULE_TYPE_DOW_RECURRING. 1 * 2 *ScheduleConfig«struct»ScheduleInfo«struct»ScheduleFactory«interface»*ActionType«enumeration»1Defined in ActionManagementActionData«union»getID()getName()createSchedule(token : AccessToken, theData : ScheduleConfig): ScheduleCreationResultgetSchedules(): ScheduleInfo[]scheduleId: IdentifiertheSchedule: Scheduledata: ScheduleDatacreationWarningMessage: stringgetData(): ScheduleConfiggetNextActivationTime(): Timestamp2getScheduleType(): ScheduleTypeupdateSchedule(token : AccessToken, newConfig : SchduleConfig): voidscheduleExecuted(token, suppressNextActivationTime: TimeStamp2)remove(token : AccessToken): voidid : Identifierref : SchedulescheduleId: IdentifiernetConnectionSite: stringconfig: ScheduleConfigstatus: ScheduleStatusACTION_TYPE_OPEN_EVENTlastUseTime: Timestamp2nextActivationTime: Timestamp2nextActivationSuppressed: booleanname: stringdescription: stringreceivingCenterId: Identifierdisabled: booleantheActions: ActionData[]activationSched : ActivationSchedulediscriminator: ActionTypeopenEventActionData: OpenEventActionDatapendingEventId: Identifierdiscriminator: ScheduleType multiDateActivations : TimeStamp2[] dowActivation: DOWRecurringActivation SCHEDULE_TYPE_MULTI_DATE SCHEDULE_TYPE_DOW_RECURRING timestamp : long long ScheduleAdded ScheduleDeleted ScheduleConfigChanged ScheduleStatusChanged beginDate: TimeStamp2 endDate: TimeStamp2 sunday: boolean monday: boolean tuesday: boolean wednesday: boolean thursday: boolean friday: boolean saturday: boolean timesOfDay: ActivationTime[] hour: int minute: int

Figure 5‑156. ScheduleManagement (Class Diagram)

5.25.1.1.1 ActionData (Class)

This IDL union holds the data used to describe a schedule action. It has been designed as a union discriminated by the enumeration ActionType to support schedule actions to be determined in future releases of CHART. Currently the only supported variant is the OpenEventAction.

5.25.1.1.2 ActionType (Class)

ActionType is an IDL enumeration of the possible schedule action types. Currently only the open event action is supported.

5.25.1.1.3 ActivationSchedule (Class)

This IDL union holds the schedule activation data and is discriminated by the enumeration ScheduleType. Currently there are two supported schedule activation types: multi-date activations and recurrent day-of-the-week activations.

5.25.1.1.4 ActivationTime (Class)

ActivationType is an IDL struct containing the moment of schedule activation.

5.25.1.1.5 DOWRecurringActivation (Class)

An IDL struct representing the schedule data needed for a day-of-the-week recurring schedule.

5.25.1.1.6 OpenEventActionData (Class)

This IDL struct represents the data used to describe an open event action in a schedule.

5.25.1.1.7 Schedule (Class)

This IDL interface contains the base set of operations that can be performed on a Schedule. It forms the basis for all Schedule specific interfaces defined in the ScheduleModule IDL.

5.25.1.1.8 ScheduleConfig (Class)

This IDL struct represents the user defineable configuration for a Schedule. It includes scheduled activation times and the actions to be executed.

5.25.1.1.9 ScheduleCreationResult (Class)

This IDL struct holds the status data returned from a schedule creation call made to the ScheduleFactory. It includes the following data: a schedule id, a CORBA reference to the schedule just created, and a warning string used to describe non-fatal conditions encountered during schedule creation.

5.25.1.1.10 ScheduleData (Class)

This struct is used to store the all data associated with a Schedule. It stores the static identification information along with the Schedule's configuration and current status (dynamic information used during processing).

5.25.1.1.11 ScheduleEventType (Class)

This IDL enumeration defines the CORBA event types supported by the ScheduleModule. It will be used as a discriminator between schedule events namely, adding a schedule, deleting a schedule and changing a schedule.

5.25.1.1.12 ScheduleFactory (Class)

This IDL interface details the operations available to a Schedule factory. It is responsible for creating schedules and maintaining information about them.

5.25.1.1.13 ScheduleInfo (Class)

This structure provides key identifying information about a schedule.

5.25.1.1.14 ScheduleStatus (Class)

This class represents the dynamic info updated during normal operations including last use time and next activation time.

5.25.1.1.15 ScheduleType (Class)

ScheduleType is an IDL enumeration of the two schedule types.

5.25.1.1.16 TimeStamp2 (Class)

This data type offers extended date range beyond the year 2038 limitation implicit in the TimeStamp data type.

5.25.1.1.17 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.25.1.2 ScheduleModuleClasses (Class Diagram)

This class diagram identifies the classes in the ScheduleModule package. Taken together these classes comprise the ScheduleModule server. There are dependencies on CHART utility classes as well as code generated from CHART IDL.

[image: image169.emf]Existing Singleton class.

Add Schedule

related properties

for R3B2.

SystemProfileProperties

1

1

java.util.Timer

java.util.TimerTask

ActivationTimerTask

ScheduleRemovalTimerTask

SchedulePrivateData

AlertFactoryWrapper

11

schedule data follows IDL structure

*

1

1 1

1

1

1 1

1 1

1

1

UniquelyIdentifiable

«interface»

ScheduleFactoryImpl

«implementationClass»

java.util.Properties

ScheduleDB

Schedule

«interface»

ScheduleImpl

«implementationClass»

ScheduleModule

«implementationClass»

ScheduleData

«struct»

1

1

1

1

1

1

ScheduleFactory

«interface»

ScheduleModuleProperties

DBConnectionManager

ServiceApplicationModule

«interface»

ServiceApplication

«interface»

PushEventSupplier

1

*

1

1

1

1

scheduleFactoryImpl(factoryId: Identifier, db: ScheduleDB,

 pushEventSupplier: PushEventSupplier, module: ScheduleModule): ctor

activateTimedOutSchedules(): void

-pushScheduleAdded(): boolean

-pushScheduleDeleted(): void

removeTimedOutSchedules(): void

removeSchedule(id:Identifier): void

-m_scheduleImplList:scheduleImpl

-m_alertFactoryWrapper:

 Chart2.Utility.Wrappers.AlertFactoryWrapper

+getActivationTimerTaskIntervalMillis(): int

+getRemovalTimerTaskIntervalMillis(): int

+getLogFlags(): string

ScheduleDB(db:DBConnectionManager)

getSchedules(): ScheduleImpl[]

insertSchedule(sd:ScheduleData, sfi:ScheduleFactoryImpl): ScheduleImpl

removeSchedule(id:Identifier): void

updateSchedule(si:ScheduleImpl): void

updateDates(suppressNextActivationTime:Timestamp2, lastUseTime:Timestamp2)

-getActions(scheduleId:Identifier): ActionData[]

-getDow(scheduleId:Identifer):DOWRecurringActivation

-getMultidate(scheduleId:Identifier):Timestamp2[]

-getSchedule(scheduleId:Identifier): ScheduleData

-setAction(scheduleid:Identifier, ad:ActionData[]):void

-setDow(scheduleId:Identifier, dow:ActivationTime[]):void

-setMultidate(scheduleId:Identifier, multidates:Timestamp2[]):void

-setSchedule(ScheduleImpl): void

-setScheduleData(sched:ScheduleData):void

scheduleImpl(data:ScheduleData,

 private:SchedulePrivateData,

 factory:ScheduleFactoryImpl,

 fromPersistence:boolean)

#activate()

#activateIfNecessary()

-getNextRecurringActivationTime():

 long

-initializeDepersistedSchedule()

-persist()

-pushScheduleConfigChangedEvent()

-pushScheduleStatusChangedEvent()

#removeIfNecessary()

-updateNextActivationTime()

-validateCfg()

-m_data: ScheduleData

-m_privateData: SchedulePrivateData

-m_factory:ScheduleFactoryImpl

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

+m_suppressNextActivationTime: TimeStamp2

ScheduleModule(): ctor

-createEventChannel(name): PushEventSupplier

-createScheduleFactory(): boolean

+run()

-m_factory: ScheduleFactoryImp

scheduleId: Identifier

netConnectionSite: string

config: ScheduleConfig

status: ScheduleStatus

+run()

-m_factory: ScheduleFactoryImp

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)

getChannel():EventChannel;

getMaxReconnectInterval(void):int;

setMaxReconnectInterval(int seconds):void;

push(Any data):void;

disconnectPushConsumer(void):void;

get():SystemProfileProperties

getAlertArchiveTimeMinutes() : int

getAlertAudibleReminderInterval() : int

getAlertDefaultAcceptTimeMinutes(type:WebAlertType) : int

getAlertDefaultDelayTimeMinutes(type:WebAlertType) : int

getAlertDeviceFailureAudio() : byte[]

getAlertDuplicateEventAudio() : byte[]

getAlertEscalationTimeMinutes(type:WebAlertType) : int

getAlertEventStillOpenAudio() : byte[]

getAlertGenericAudio() : byte[]

getAlertMaxAcceptTimeMinutes(type:WebAlertType) : int

getAlertMaxDelayTimeMinutes(type:WebAlertType) : int

getAlertReminderAudio() : byte[]

getAlertUnhandledRsrcAudio() : byte[]

getNotificationProperties() : SystemProfileNotificationProperties

getScheduleRemovalTimeMinutes() : int

getScheduleActivationSuppressionTimeMinutes() : int

getMissedActivationGracePeriodMinutes()

Figure 5‑157. ScheduleModuleClasses (Class Diagram)

5.25.1.2.1 ActivationTimerTask (Class)

This class extends the java.util.TimerTask class and is used specifically for system initiated Schedule Activation. When this timer task runs it will call the ActivateIfNecessary() method on all Schedules served by the factory to given each an opportunity to activate if needed.

5.25.1.2.2 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic location of an Alert Factory and automatic re-discovery should the Alert Factory reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" Alert Factory without the user of this class being aware that this being done. In addition, this class defers the discovery of the Alert Factory until its first use, thus eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently known good reference to an AlertFactory. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Alert Factory objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances, not at all.

5.25.1.2.3 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.25.1.2.4 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a stream or loaded from a stream. Each key and its corresponding value in the property list is a string. A property list can contain another property list as its "defaults"; this second property list is searched if the property key is not found in the original property list.

5.25.1.2.5 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.25.1.2.6 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.25.1.2.7 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.25.1.2.8 Schedule (Class)

This IDL interface contains the base set of operations that can be perform on a Schedule. It forms the basis for all Schedule specific interfaces defined in the ScheduleModule IDL.

5.25.1.2.9 ScheduleData (Class)

This struct is used to store the all data associated with a Schedule. It stores the static identification information along with the Schedule's configuration and current status (dynamic information used during processing).

5.25.1.2.10 ScheduleDB (Class)

The ScheduleDB class provides database access for creating, removing and updating schedules in the Chart2 System.

5.25.1.2.11 ScheduleFactory (Class)

This IDL interface details the operations available to a Schedule factory. It is responsible for creating schedules and maintaining information about them.

5.25.1.2.12 ScheduleFactoryImpl (Class)

The ScheduleFactoryImpl class implements the IDL ScheduleFactory interface and is responsible for creating and managing Schedule objects in the Chart2 system.

5.25.1.2.13 ScheduleImpl (Class)

The ScheduleImpl class implements the IDL Schedule interface. The ScheduleImp represenst a schedule in the Chart2 System and contains the activation information and specific actions that define the schedule.

5.25.1.2.14 ScheduleModule (Class)

This class provides the resources and support functionality necessary to serve Schedule objects in a service application. It implements the ServiceApplicationModule interface which allows it to be installed as part of a DefaultServiceApplication.

5.25.1.2.15 ScheduleModuleProperties (Class)

This class represents the configurable properties of the SchduleModule.

5.25.1.2.16 SchedulePrivateData (Class)

This class represents private data associated with the Schedule. It is used as a convenience class with public data members.

5.25.1.2.17 ScheduleRemovalTimerTask (Class)

This class extends the java.util.TimerTask class and is used specifically for system initiated Schedule Removal. When this timer task runs it will call the RemoveIfNecessary() method on all Schedules served by the factory to given each an opportunity to remove themselves if needed.

5.25.1.2.18 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a Chart service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.25.1.2.19 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.25.1.2.20 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is also used to interact with the server to change system profile settings.

5.25.1.2.21 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.25.2 Sequence Diagrams

5.25.2.1 ScheduleDB:insertSchedule (Sequence Diagram)

This diagram shows how ScheduleDB constructs schedules for the factory before saving them to the DB.

[image: image170.emf]ScheduleFactoryScheduleImpl schedImpl

scheduleData.ScheduleStatus.nextActivationSupressed = FALSE

schedPriv = new SchedulePrivateData ScheduleDBinsertSchedule(scheduleData:ScheduleData,schedFact:ScheduleFactoryImpl)schedImpl(scheduleData:ScheduleData,

schedPriv:SchedulePrivateData,

schedFact:ScheduleFactoryImpl)

schedPriv.suppressNextActivationTime=0 setSchedule(scheduleImpl)

[any DB errors]

CHART2Exception

scheduleData.ScheduleStatus.lastUsedTime = 0

Figure 5‑158. ScheduleDB:insertSchedule (Sequence Diagram)

5.25.2.2 ScheduleDB:setSchedule (Sequence Diagram)

This is a private method to support ScheduleDB:insertSchedule and ScheduleDB:updateSchedule

[image: image171.emf]cascade deletes all

foreign keyed tables

ScheduleDBScheduleDBDBConnectionManager Statement

removeSchedule(scheduleId)

[scheduleData.config.activationSched.descriminator==multi-date

[any DB errors]

getConnection()

setAction(id,

scheduleData.config.theActions)

setScheduleData(scheduleData)

setDowl(id,

scheduleData.config.activationTime[])

[scheduleData.config.activationSched.descriminator==DOW

[no DB errors]

setMultiDatel(id,

scheduleData.config.activationSchedule.timestamp2[])

removeAction(scheduleId)

executeQuery(ROLLBACK TRANSACTION)

executeQuery(COMMIT TRANSACTION)

void

[no connection]

CHART2Exception

setSchedule(scheduleImpl:ScheduleImpl)

[any DB error]

CHART 2 Exception

executeQuery(BEGIN TRANSACTION)

releaseConnection()

called from insertSchedule

and updateSchedule

new

Figure 5‑159. ScheduleDB:setSchedule (Sequence Diagram)

5.25.2.3 ScheduleDB:updateSchedule (Sequence Diagram)

This sequence diagram shows how the public updateSchedule method can accomplish update-specific processing before using the private setSchedule helper method, which it shares with the public insertSchedule method.

[image: image172.emf]ScheduleDB updateSchedule(scheduleImpl:ScheduleImpl)ScheduleFactorysetSchedule(scheduleImpl) void [any DB errors]CHART2Exceptionupdate-specific processing can go here

Figure 5‑160. ScheduleDB:updateSchedule (Sequence Diagram)

5.25.2.4 ScheduleFactoryImpl:activateTimedOutSchedules (Sequence Diagram)

This diagram depicts the ScheduleFactoryImpl.activateTimedOutSchedules() method. This method is a worker method that is called from the ActivationTimerTask when its Timer calls its run() method. The method iterates through the current ScheduleImpls calling the activateScheduleIfNecessary() method for each. The activateScheduleIfNecessary() method checks the activation time of each ScheduleImpl and compares it against the time now. If the activation time occurs within a user-specified grace period in the past, a call is made to the activateSchedule() method to activate it. If the schedule's activation time occurs in the past but it lies outside the grace period, then the schedule is not activated.

[image: image173.emf]TimerActivationTimerTaskGet an iterator for the current list of Schedules for this factory. ScheduleImpl void activateTimedOutSchedules() iter:java.util.Iterator getScheduleIterator() activateIfNecessary() void[iter.hasNext()] run()ScheduleFactoryImpl

Figure 5‑161. ScheduleFactoryImpl:activateTimedOutSchedules (Sequence Diagram)

5.25.2.5 ScheduleFactoryImpl:createSchedule (Sequence Diagram)

This diagram shows how a new schedule is created. The ScheduleFactoryImpl is called to create the new schedule. A schedule identifier, the network connection site, and the configuration data are placed in a ScheduleData struct. This struct is an argument to the database insert method that constructs the ScheduleImpl. After checking the user's rights, the database is called to both persist the Schedule as well as create the ScheduleImpl. A handle to the POA is solicited next and the schedule object is activated. A ScheduleAdded event is pushed to notify of the schedule's creation. And a ScheduleCreationResult is returned as processing finishes.

[image: image174.emf]In the course of normal processing, no fields in the scheduleData object can be left null. The createSchedule method is relying on the insertSchedule() method below to populate the balance of the fields in this struct with values consistent with the operation of CHART's ORB. Failing to properly initialize any field will result in a CORBA exception when passed to CHART's ORB. In particular, scheduleData is a component of the ScheduleCreation Result returned at the end of this method which is an IDL method.ScheduleImpl

opLog(token, "Schedule created")

ScheduleDBscheduleData.scheduleId=m_svcApp.getIdentifierGenerator().createIdentifier()[configuration invalid]

CHART2Exception

[configuration invalid]

CHART2Exception

create

ORBScheduleFactoryImplTokenManipulatorScheduleModule POA OperationsLog setSchedule() returns a new ScheduleImpl object

insertSchedule(scheduleData, this)

getPOA()

PushEventSupplier [no rights]

AccessDenied

checkAccess[no rights]

opLog(token, "Invalid Access Attempt")

pushEvent(ScheduleAdded)

getEventSupplier()

ScheduleCreationResult

createSchedule(token:AccessToken,theData:ScheduleConfig)m_scheduleImplList.add()

activate_object(id)

scheduleData.config=theDatascheduleData.netConnectionSite=m_svcApp.getNetConnectionSite()scheduleData.status=nullScheduleData:scheduleData=new ScheduleData()

Figure 5‑162. ScheduleFactoryImpl:createSchedule (Sequence Diagram)

5.25.2.6 ScheduleFactoryImpl:removeSchedule (Sequence Diagram)

This sequence diagram describes how the ScheduleFactoryImpl removes a schedule from the system. To perform this operation the requesting process must possess the proper functional rights. Given those rights, the ScheduleFactory may then proceed with the removal. First, the ScheduleImpl and its associated information are removed from the database. The reference to the ScheduleImpl is next removed from the factory's internal list of schedule impls. The method then withdraws the schedule's offer from the trader. The factory pushes a ScheduleDeletedEvent into the event channel, and shuts down the ScheduleImpl. An operations log entry is made noting the removal of the schedule. And lastly the removeSchedule method returns.

[image: image175.emf]POA deactivate_object(id) pushScheduleDeleted(scheduleImpl) [delete failed]CHART2ExceptionremoveSchedule(id)OperationsLog opLog(token, "Schedule <name> removed" removeSchedule(id) ScheduleDB m_scheduleImplList.remove(id) voidScheduleFactoryImpl

Figure 5‑163. ScheduleFactoryImpl:removeSchedule (Sequence Diagram)
5.25.2.7 ScheduleFactoryImpl:removeTimedOutSchedules (Sequence Diagram)

This diagram depicts the ScheduleFactoryImpl.removeTimedOutSchedules() method. This method is a worker method that is called from the ScheduleRemovalTimerTask when its Timer calls its run() method. The method iterates through the current ScheduleImpls calling the removeScheduleIfNecessary() method for each. The removeScheduleIfNecessary() method checks the last use time of each ScheduleImpl and compares it against the time now. If the ScheduleImpl's last used time lies outside the time now less the user-specified schedule keep time, then the schedule is removed. This is accomplished by calling the removeScheule() method to remove it.

[image: image176.emf]TimerGet an iterator for the current list of Schedules for this factory. ScheduleImpl void removeTimedOutSchedules() iter:java.util.Iterator getScheduleIterator() removeIfNecessary() ScheduleRemovalTimerTaskScheduleFactoryImpl void[iter.hasNext()] run()

Figure 5‑164. ScheduleFactoryImpl:removeTimedOutSchedules (Sequence Diagram)
5.25.2.8 ScheduleFactoryImpl:ScheduleFactoryImpl (Sequence Diagram)

This sequence diagram details how the ScheduleFactoryImpl constructor creates a schedule factory. The process begins in the ScheduleModule initialize method where a call is made to create a new factory. The call is made to the ScheduleFactoryImpl class and processing begins. First the log flags are fetched to determine what, if anything, will be logged by the Schedule Factory. In essence, this is setting a log filter for all further processing. Next the constructor gets a trader reference from the POA. Since schedules use alerts to notify users of schedule activations, a reference to the AlertFactoryWrapper is retrieved. A call to initialize the AlertFactoryWrapper follows. This call creates an instance of this singleton class if it doesn't already exist or just returns a reference if it does. A setScheduleFactoryImp() call establishes the factory to use when constructing the ScheduleImpls in the database. Once the factory reference is set, a call to the getSchedules() fetches a list of persisted schedules from the database and creates ScheduleImpls for them. A list of schedules is returned to the factory and each is activated with the POA and added to the factory list. After all the persisted schedules are active in the factory and in the POA, the constructor returns.

[image: image177.emf]get()create

getPOA() setScheduleFactoryImpl(this) getLogFlags() ScheduleModuleScheduleFactoryImpl(id, db, pushEventSupplier, module)ScheduleDB POA ScheduleFactoryImplScheduleImpl Get an iterator for the current

list of Schedules for this factory

iter:java.util.Iterator getscheduleIterator()

[iter.hasNext()]

activate_object()

m_scheduleImplList.add()

getID()

AlertFactoryWrapper initialize(svcApp.getOrb(), svcApp.getTraderGroup(), 300, 30) The database returns an array of

ScheduleImpl objects to the factory

getSchedules()

Figure 5‑165. ScheduleFactoryImpl:ScheduleFactoryImpl (Sequence Diagram)
5.25.2.9 ScheduleModule:activateIfNecessary (Sequence Diagram)

This sequence diagram depicts the method (driven by the Activation Timer Task in the Factory) that initiates schedule activation. This method will determine if the next activation time for the schedule has expired and call the ScheduleImpl.activate() method if needed. Note: the activate() method will attempt activation based on several conditions described in the activateSchedule sequence diagram.

[image: image178.emf]CHART2.Utility.DateTimeUtil [m_data.nextActivationTime != 0 && now > m_data.nextActivationTime] NextActivationTime == 0 means no scheduled activations remain.voidScheduleImpl activateIfNecessary()activate() ScheduleFactoryImplnow :long = dateToTimeStamp2(new Date())

Figure 5‑166. ScheduleModule:activateIfNecessary (Sequence Diagram)
5.25.2.10 ScheduleModule:activateSchedule (Sequence Diagram)

The activteSchedule sequence diagram depicts the processing done when an activation time arrives for a schedule. This method is called from the activateIfNecessary() method driven by the ScheduleFactoryImpl's timer task. If the schedule is not disabled and next activation is not being suppressed, an ExecuteScheduleActionsAlert is issued. The last use date for the schedule is only updated if the schedule is enabled. The next activation time is then updated according to the ActivationSchedule. Then the schedule is persisted and a ScheduleChanged event is pushed.

[image: image179.emf]m_data.status.nextActivationSuppressed = false Arguments include systemToken,scheduled actions,AMG[] containingthe Schedule'sreceiving OpCenterID.ScheduleImpl AlertFactoryWrapper CHART2.Utility.DateTimeUtil activate() [m_suppressNextActivationTime == 0] createExecuteScheduleActionsAlert(systemToken, m_data.config.theActions, receivingAmg) m_data.lastUseTime = now Update last use timeonly if schedule is not disabled.m_suppressNextActivationTime = 0 now:long = dateToTimestamp2(new Date()) updateNextActivationTime() will setm_nextActivationTime accordingly based on the ScheduleType. For MULTI_DATE its the next date in the collection relative to now.. For DOW_RECURRING its based on next DOW and time in the recurring pattern. Note: in eithercase if there are no remaining scheduled activations the m_data.nextActivationTime will beset to zero.pushScheduleStatusChangedEvent() persist() updateNextActivationDateTime() [m_data.disabled == false]

Figure 5‑167. ScheduleModule:activateSchedule (Sequence Diagram)
5.25.2.11 ScheduleModule:getNextRecurringActivationTime (Sequence Diagram)

This sequence diagram depicts the processing involved in determining the next activation date/time for a Day of Week Recurring type schedule. It is called by the ScheduleImpl.updateNextActivationTime() method. It utilizes a java.util.GregorianCalendar object. The logic moves the date and time (hour/minute) of the schedule thru the recurring pattern to the next logical activation date/time using the GregorianCalendar object. That time is then retrieved from the GregorianCalendar object and converted to a timestamp to be returned. If no future activation times exist a zero will be returned.

[image: image180.emf]Returns a timestamp of 0 if

no sheduled activation times

exist.

[timesOfDay.length == 0 ||

no selected days]

Loop on

ActivationTimes

in timesOfDay

array.

0

[nextActivationTime > endDate]

set(Calendar.MINUTE, min)

foundNextTime = foundNextDate = true

break

[foundNextDate == false]

[foundNextDate == false &&

cntr < 7]

add(Calendar.DAY_OF_YEAR, 1)

dow:int = get(Calendar.DAY_OF_WEEK)

[m_selectedDays[dow] == true]

foundNextDate = true

throw GeneralException

nextActivationTIme

GregorianCalendar object is

created set to current date/time

if current time is after beginDate.

Otherwise its set to beginDate.

If today is a selected

day, search thru timesOfDay

to find the next hour/min in chron

order. If all are past, we know the

next activation hour/min is the first

ActivationTime on the next

selected day. Our previous

initialization handles that case

correctly.

At this point, hour and min

are known. if the next Day hasn't

been determined yet, it can now be

resolved by incrementing the

calendar by a day at a time until we

find the next selected day of week.

It should not take more then 7

increments based on our assumptions

above.

This condition shouldn't happen unless

schedule data is invalid. ScheduleImpl

ctor and update method will guard

against this.

ScheduleImpl

Note: if not a DOW recurring type schedule throws

General Exception. Assume ,the ActivationTimes are

in chron order. Also, assume begingDate timestamp will

have time component set to 00:00:00.000 and endDate

will have time component set to 23:59:59.999, to make

comparisons easier. These will be enforced at creation

and during updates.

cal:

GregorianCalendar

m_selectDays is a

boolean[] representing

the days of week flags

selected in

DOWRecurringActivation.

It uses values returned from

GregorianCalendar as the

index. See java.util.Calendar

Constant Values.

Initialize the calendar's hour and time

to the first ActivationTime in

DOWRecurringActivation.timesOfDay.

This will be the case if the calendars

current day is not a selected day for

the schedule as well as when the

current hour/min is past all

ActivationTimes for the schedule.

timesOfDay:ActivationTime[]Step

getNextRecurrenceActivationTIme()

[! SCHEDULE_TYPE_DOW_RECURRING]

 throw GeneralException

create()

set(Calendar.SECOND, 0)

set(Calendar.MINUTE, timesOfDay[0].min)

hour:int = ActivationTime.hour

set(Calendar.MILLISECOND, 0)

curHour:int = get(Calendar.HOUR_OF_DAY)

curMin:int = get(Calendar.MINUTE)

curDayOfWeek = get(Calendar.DAY_OF_WEEK)

foundNextDate:boolean = false

set(Calendar.HOUR_OF_DAY, timesOfDay[0].hour)

[* timesOfDay]

[m_selectedDays[curDayOfWeek] == true]

nextActivationTime:long = dateToTimeStamp2(nextActDate)

[hour > curHour ||

(hour == curHour && min > curMin)]

nextActDate:Date = getTime()

0

CHART2.Util.DateTimeUtil

min:int = ActivationTime.min

set(Calendar.HOUR_OF_DAY, hour)

[foundNextDate == false]

Figure 5‑168. ScheduleModule:getNextRecurringActivationTime (Sequence Diagram)
5.25.2.12 ScheduleModule:initialize (Sequence Diagram)

This diagram details the ScheduleModule initialization. First, the ServiceApplication calls the ScheduleModule to begin the initialization. Next, the properties are read in from a file. Default properties are over-ridden where applicable. After that an event channel for schedules is created and published in the POA so that other applications can see it. Appropriate discovery commands to the DiscoveryDriver follow to initialize and update any required remote objects in the ObjectCache. In particular, the SystemProfileProperties are initialized at this point. Next, the ScheduleDB object is created to handle all of the database calls. This is followed by a call to create the ScheduleFactoryImpl to manage the schedules. In the ScheduleFactoryImpl schedules from the ScheduleDB database are loaded and activated. After that a timer is created. It will be used by the ScheduleImpls to monitor activation times and removal times of schedules. Two tasks are created to perform these functions. Lastly, the ScheduleFactory is exported to the trading service and the ScheduleModule initialize method returns.

[image: image181.emf]For detailed explanation of how

a schedule is created please

refer to the sequence diagram for

ScheduleDB:getSchedules().

ServiceApplicationScheduleModuleDefaultServiceApplication This starts discovery of Resource Event Channels

and Op Center updates from all Resource

Management Modules. See

DiscoverResourceMgmtClassesCommand:run for

details.

This event channel is used to push Schedule state changes. DiscoveryManager

PushEventSupplier

ScheduleModuleProperties

POA true means run as daemon

CosTrading.Register ScheduleFactoryImpl

ActivationTimerTask

ScheduleDB

ScheduleRemovalTimerTask

Timer

getProperties()

create

getActivationTimerInterval()

getScheduleRemovalTimerInterval()

maintainSystemProfileProperties()

getDiscoveryManager()

activate_object(Schedule)

getDBConnectionManager()

create(true)

getTradingRegister()

create

create

scheduleAtFixedRate(scheduleRemovalTask, 0+interval, interval)

registerEventChannel()

create

create

export(ScheduleFactory)

initialize()getDefaultProperties() getEventChannelFactory()

getSchedules()

export(Event Channel)

create

scheduleAtFixedRate(activationTask, 0, interval)

Wait one interval before

starting the removal task

Figure 5‑169. ScheduleModule:initialize (Sequence Diagram)
5.25.2.13 ScheduleModule:initializeDepersistedSchedule (Sequence Diagram)

This sequence diagram depicts the initialization processing needed when depersisting a ScheduleImpl at startup. The initializeDepersistedSchedule() is a private method called only by the constructor if the fromPersistence argument is set to true. First, the last previous activation time relative to now is calculated by calling the getPreviousActivationTime() method. If there are none, that method returns a zero. If the return value is within the missed activation startup grace period it is compared to the schedule's last use time. If the value is after the last use time it’s assumed that the activation was missed. In this case the schedule's nextActivationTime is set to this value so that the missed activation can happen the first time activateIfNecessary() is called.

[image: image182.emf]This method will return the previous activation time relative to now. For MULTI_DATE schedules this is straight forward. For DOW_RECURRING it will be done using a similar approach to logic modelled in the getNextRecurringActivationTime() sequence diagram. Note: if no previous, it will return 0 java.util.DateTimeUtilSystemProfileProperties If a last previous activation datehas been found within the startup grace period, compare it to thelast use time. If its after thelast use time assume it was missed. Set next activation timeto this value to initiate the missedactivation via the first call to activateIfNecessary() when ActivationTImerTask is started.prevActTime:long = getPreviousActivationTime()gracePerMins:int = getMissedActivationGracePeriodMinutes()now:long = dateToTimeStamp2(new Date())[prevActTime > (now - gracePerMins * 60)][prevActTime >m_data.status.lastUseTime m_data.status.nextActiationTime = prevActTimeinitializeDepersistedSchedule()Method should be called during constuction only if creating a existing schedule from persistence.ScheduleImpl

Figure 5‑170. ScheduleModule:initializeDepersistedSchedule (Sequence Diagram)
5.25.2.14 ScheduleModule:removeIfNecessary (Sequence Diagram)

This diagram depicts the ScheduleImpl.removeIfNecessary() method. It is called from the ScheduleFactory.removedTimedoutScheduled() method which is driven by the ScheduleRemovalTimeTask. It calls the ScheduleImpl.remove() method if the schedule has not future scheduled activations and hasn't been activated, executed or updated recently.

[image: image183.emf]removeIfNecessary()

The system profile property

RelativeScheduleRemovalTime

represents a window after the

lastUseTime. If the currrent time

is beyond the end of that window,

and the schedule has no future

activations, the schedule should

remove itselt. Note: a system

token isused for the remove()

call.

ScheduleFactoryImplSystemProfilePropertiesCHART2.Utility.DateTimeUtil now:long = DateToTimeStamp2(new Date())

remove(systemToken)

ScheduleImpl [now >

(m_date.lastUseTime + relRemovalTimeMins * 60

&& nextActivationTime == 0]

relRemovalTimeMins:int =

get().getRelativeScheduleRemovalTimeMins()

Figure 5‑171. ScheduleModule:removeIfNecessary (Sequence Diagram)
5.25.2.15 ScheduleModule:removeSchedule (Sequence Diagram)

This diagram depicts the SheduleImpl.remove() method. It is called when the system determines the schedule should be removed and also manually by the administrator.

[image: image184.emf]hasRights = hasRights && checkAccess(token, SYSTEM_TOKEN)ScheduleFactoryImpl ScheduleImplremove(token)[!hasRights]AccessDenied exceptionSchedule IDL interface method. TokenManipulator removeSchedule(m_data.scheduleId)hasRights:boolean = checkAccess(token, MANAGE_SCHEDULES)

Figure 5‑172. ScheduleModule:removeSchedule (Sequence Diagram)
5.25.2.16 ScheduleModule:scheduleExecuted (Sequence Diagram)

This diagram depicts processing done when a client informs the server that a schedule has been executed. Because the "execution" of a schedule is currently done on the client side the server needs to be made aware of schedule executions. The Schedule's last update time is updated along with a value used to control the suppression of the next activation if requested by the client.

[image: image185.emf]m_data.status.nextActivationSuppressed = false

persiste()

m_data.status.nextActivationSuppressed = true

pushScheduleStatusChanged()

m_data.status.lastUseTime = now

[m_data.nextActivationTime <=

(now + actSuppTimeMins * 60)]

Schedule IDL interface method. now:long = dateToTimeStamp2(new Date())

The suppressNextActivationTime

will be set zero if no suppression is

desired OR set to the nextActivationTime

if suppression is desired.

SuppressNextActTime is disregarded IF

there are no scheduled activations within

the next N minutes)where N = the

ScheduleActivationSuppressionTime

in minutes) OR there are no

remaining scheduled activations.

ScheduleImpl CHART2.Utility.DateTimeUtilSystemProfileProperties scheduleExecuted(token, suppressNextActTime:TimeStamp2) [suppressNextActTime == nextActivationTime &&

m_data.nextActivationTime != 0]

else

actSuppTimeMins:int getScheduleActivationSuppressionTimeMinutes()

m_suppressNextActivationTime = 0

m_suppressNextActivationTime =

m_data.nextActivationTime

TokenManipulator [! hasRights] AccessDeniedException hasRights:boolean = checkAccess(token, EXECUTE_SCHEDULE)

Figure 5‑173. ScheduleModule:scheduleExecuted (Sequence Diagram)
5.25.2.17 ScheduleModule:scheduleImpl (Sequence Diagram)

This sequence diagram depicts the processing done when constructing a ScheduleImpl. Members of the ScheduleImpl are set and the config is validated. If the impl is being constructed from persistence, special processing is done to determine if any activation were missed while the system was down. If its determined that an activation was missed in the specified grace period, the schedule's next activation time is set to the missed activation time so that the missed activation will occur the first time the ActivationTimerTask calls the schedule's activateIfNecessary() method. If constructed as a new schedule creation the next activation time is set according to the schedule's config.

[image: image186.emf]else

ScheduleImpl create(data:ScheduleData,pData:SchedulePrivateData,fromPersistence:booleanm_privateData = pData [fromPersistence]

else

updateNextActivationTime() will set

m_nextActivationTime accordingly

based on the ScheduleType. For

MULTI_DATE its the next date in the

collection relative to now.. For

DOW_RECURRING its based on

next DOW and time in the

recurring pattern. Note: in either

case if there are no remaining

scheduled activations the

m_data.nextActivationTime will be

set to zero.

fromPersistence flag indicates whether the constructor is being call in the context of depersistence (module startup) as opposed to schedule creation. m_data.status.nextActivationSuppressed = false

m_data.status.nextActivationSuppress = true

[invalid config] Chart2ExceptionIf there are future activations and

m_suppressNextActTime is equal

to the m_data.status.nextActivationTime

the activation should be surpressed. If

not, set m_suppressNextActTime to

zero and suppression flag to false

to "turn off" suppression of

next activation.

m_suppressNextActTime = 0

Validates ScheduleConfig & Sorts andde-dups all date/time arrays if needed.m_data = data validateConfig() initializeDepersistedSchedule()

updateNextActivationTIme()

[m_suppressNextActTime != 0 &&

m_suppressNextActTime != m_data.status.nextActTime]

If an activation was missed while

system was down (within the

missed activation grace period), this

private method sets the

m_data.status.nextActivationTime

to the missed activation time. The

first time activateIfNecessary() is

called, the schedule will be

activated.

Figure 5‑174. ScheduleModule:scheduleImpl (Sequence Diagram)
5.26 Traffic event Module

5.26.1 Classes

5.26.1.1 TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

[image: image187.emf]MODIFIED FOR R3B2:Modified createTrafficEvent().Incident

«interface»

DisabledVehicleEvent

«interface»

SpecialEvent

«interface»

11TrafficEventFactory«interface»ResponsePlanItemList«typedef»ResponsePlanItemDataLaneConfigurationOrganizationParticipation«interface»111

RoadwayEvent«interface»WeatherServiceEvent

«interface»

WeatherSensorEvent

«interface»

PlannedRoadwayClosure

«interface»

1ActionEvent

«interface»

ResponsePlanItemStatus«typedef»LaneType

«enumeration»

DMSRPIDataCommandStatus«interface»11

1EntryOwner«interface»SafetyMessageEvent

«interface»

1

CongestionEvent

«interface»

LaneState

«enumeration»

ResponseParticipationList«typedef»HARRPIData1***111LaneConfigReferenceDirection«enumeration»ResponseParticipation«interface»1

*

1NEW FOR R3B2.See TrafficEventManagement2for details1TrafficEvent«interface»LaneConfigurationList«typedef»TrafficEventList«typedef»Lane

LaneTrafficFlowDirection

«enumeration»

11

MergeInfoMergeSection«enumeration»11EventInitiator«union»FUTURE.

11

MODIFIED FOR R3B2.Added: openPending()deletePending()Removed:isClosed()MergeAction1AudioClipOwner«interface»11*ResponsePlanItem«interface»***ResourceDeployment«interface»getName() : stringcreateTrafficEvent(AccessToken token, EventInitiator :eventIinitiator, TrafficEventType type, BasicEventData eventData, ResponseParticipationData[] participantData, ResponsePlanItemData[] rpiData, LogEntry[] initialEntries, boolean createAsPending) : TrafficEventCreationResultgetTrafficEvents():TrafficEventListgetStandardLaneConfigurations():LaneConfigurationListgetEORSPermits():PermitListgetType() : TrafficEventTypeaddLogEntry() :voidaddLogEntryWithStats() : voidaddResponseItem() : voidaddResponseParticipation() :vodassociateEvent() :voidremoveEventAssociation() : voidclose() : voidoverrideClosureTime() : voidexecuteResponse() : voidgetAssociatedEvents() : Identifier[]getHistory(filter : LogFilter, maxCount) : LogQueryResultsgetRoadwayLocation() : RoadwayLocationisPrimary() : booleansetPrimary() : voidsetSecondary() : voidgetResponseParticipations() : ResponseParticipant[]getBasicEventData() : BasicEventDatagetResponsePlanItems() : ResponsePlanItem[]setName() : voidsetSource() : voidsetDirection() : voidsetDelayCleared() : voidsetFalseAlarm() : voidsetRoadwayLocation(token : AccessToken, location : RoadwayLocation) : voidsetSceneCleared() : voidsetConfirmed() : voidsetMaxQueueLength() :voidoverrideSceneClearedTime() : voidoverrideDelayClearedTime() : voidoverrideConfirmedTime() : voidoverrideLogEntryTime() : voidrevokeExecution() : voidmergeEvent(token : AccessToken, srcEventID : Identifier, mergeInfoList : MergeInfoList, commandStatus : CommandStatus) : voidopenPending(AccessToken, initiatorType : EventInitiatorType, initiatorId : Identifier) : voiddeletePending(AccessToken) : voidMergeSection sectionMergeCompletionvalue valuegetParticipationData() : ResponseParticipationDatasetNotified(AccessToken token, boolean hasBeenNotified) : voidoverrideNotificationTime(AccessToken token , TimeStamp notificationTime) : voidremove(AccessToken token) : voidMERGE_USE_TARGET_DATAMERGE_USE_SOURCE_DATAMERGE_USE_UNION_OF_DATAsetRespondedToEvent(AccessToken token, boolean hasResponded) : voidoverrideRespondedTime(AccessToken token, TimeStamp respondedTime) : voidMERGE_SECTION_BASIC_EVENTMERGE_SECTION_ROAD_CONDITIONINCIDENT_EVENTINCIDENT_VEHICLES_INVOLVEDDISABLED_VEHICLES_TAG_AND_MAKEDISABLED_VEHICLES_REASONACTION_EVENTCONGESTION_EVENTSPECIAL_EVENTPLANNED_EVENTWEATHER_EVENTMERGE_SECTION_ASSOCIATED_EVENTSMERGE_SECTION_PARTICIPANTSMERGE_SECTION_RESPONSE_PLANgetTargetID():Identifierexecute(AccessToken token):voidsetItemData(AccessToken token, ResponsePlanItemData data):voidgetItemData(AccessToken token):ResponsePlanItemDataisActive():booleanhasBeenExecuted():booleansetState(AccessToken token, ItemState rpiState):voidgetDescription():stringsetDescription(AccessToken token, string description):voidisUsingObject(Identifier[] objectIDs):booleanremove(AccessToken token):voidgetItemStatus():ResponsePlanItemStatusrevokeExecution(AccessTiken token):voidgetLaneConfiguration():LaneConfiguration

setLaneConfiguration(AccessToken token,

 LaneConfiguration laneConfig)

overrideLaneOpenCloseTime(AccessToken token,

 Lane changedLane):void

discriminator: eventInitiatorTypeuserInitiator: EventInitiatorUserDatascheduleInitiator : EventInitiatorScheduleDatasetArrivedOnScene(AccessToken token, boolean hasArrived) : voidsetDepartedFromScene(AccessToken token, boolean hasDeparted) : voidoverrideArrivalTime(AccessToken token, TimeStamp arrivalTime) : voidoverrideDepartureTime(AccessToken token, TimeStampdepartureTime) : voidsetVehicleData(AccessToken token,

 IncidentVehicleData vehicleData):void

setType(AccessToken token,

 IncidentType type):void

setRoadConditions(AccessToke token,

 RoadConditionsData roadConditions):void

overrideLaneOpenCloseTime(

 AccessToken token,

 long laneOffsetFromLeft,

 TimeStamp timeOpenedOrClosed):void

string lastKnownStateboolean isActiveboolean hasBeenExecutedboolean m_modifiedNORTHEASTOUTER_LOOPgetTargetID():IdentifierisExecutable() : booleanexecute(AccessToken token, TrafficEvent trafficEvt, CommandStatus status):voidrevokeExecution(AccessTiken token, TrafficEvent trafficEvt, Identifier itemID):voidisUsingObject(Identifier[] objectIDs):booleangetVerboseDescription(): stringgetTrafficEventType(): intgetTargetOwningOrgID():Identifierstring m_descriptionIdentifier m_targetOwningOrgIDIdentifier m_targetID-int m_trafficEventTypegetLanes():Lane[]string m_configurationNamestring m_configurationDescriptionLane[] m_lanesLaneConfigReferenceDirection m_referenceDirLANE_OPEN

LANE_CLOSED

LANE_UNKNOWN

LANE_NOT_EXIST

PRIMARY

OPPOSITE

BIDIRECTIONAL

NONE

isRecurring(AccessToken token)

setRecurring(AccessToke token,

 boolean isRecurring):void

m_recurring

LaneState m_currentState

LaneTrafficFlowDirection m_directionOfTravel

TimeStamp m_timeStateChanged

LaneType m_type

string m_description

boolean m_orientedSameAsConfigReferenceDir

SHOULDER

TRAFFIC_LANE

COLLECTOR_DISTRIBUTOR

TUNNEL_LANE

TOLL_LANE

CENTER_TURN_LANE

RIGHT_ON_RAMP

RIGHT_OFF_RAMP

RIGHT_MERGE_LANE

RIGHT_ACCELERATION_LANE

RIGHT_TURN_LANE

RIGHT_DECELERATION_LANE

LEFT_ON_RAMP

LEFT_OFF_RAMP

LEFT_ACCELERATION_LANE

LEFT_MERGE_LANE

LEFT_TURN_LANE

LEFT_DECELERATION_LANE

DOUBLE_YELLOW_LINE

MEDIA

Figure 5‑175. TrafficEventManagement (Class Diagram)

5.26.1.1.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not fit well into the other event categories. An example of this type of event would be debris in the roadway.

5.26.1.1.2 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be deleted.

5.26.1.1.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running asynchronous operation. This is normally used when field communications are involved to complete a method call. The most common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server process when it needs to call on another server process to complete an operation. The long running operation typically calls back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information, and it always makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

5.26.1.1.4 CongestionEvent (Class)

This class models roadway congestion which may be tagged as recurring or non-recurring through the use of an attribute.

5.26.1.1.5 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

5.26.1.1.6 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the DMSMessage itself.

5.26.1.1.7 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an ArbQueueEntry on a device's arbitration queue. This validate method of this interface can be called by the device to determine continued validity of the entry (either during recovery or as a final check of the validity of an entry before putting its message on the device).

5.26.1.1.8 EventInitiator (Class)

This union contains information about the entity or entities involved in the initiation of a traffic event. This can be the schedule, if a schedule was involved in initiating the event, and/or a user, if a user was involved in initiating the event. This union allows for possible expansion in future releases, where traffic events may be initiated by a schedule without user confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

5.26.1.1.9 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if and while the message is being broadcast on the HAR.

5.26.1.1.10 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves one or more vehicles and roadway lane closures.

5.26.1.1.11 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

5.26.1.1.12 LaneConfigReferenceDirection (Class)

This enumeration restricts the possible reference directions for a lane configuration, which is necessary because the lane offsets are defined relative to the "left" side, which is an ambiguous term. For example, if the direction is North then "left" to the West, but if the direction is South (also valid on a North-South roadway) then "left" could be considered (if not for this enumeration) to East. Thus if the direction of the lane config were to change from North to South, the lanes would "flip" unintentionally. This enumeration holds the reference direction for a North-South roadway to always be to the West (regardless of whether the direction of the event is North or South), and holds similarly for East-West roadways and beltways (Inner-Outer loops).

5.26.1.1.13 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

5.26.1.1.14 LaneConfigurationList (Class)

A collection of LaneConfiguration objects.

5.26.1.1.15 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

5.26.1.1.16 LaneTrafficFlowDirection (Class)

Defines the possible directions of traffic flow, relative to the lane orientation.

5.26.1.1.17 LaneType (Class)

This enumeration lists the types of lanes.

5.26.1.1.18 MergeAction (Class)
This enumeration specifies how to merge a section of data during a traffic event merge operation.
5.26.1.1.19 MergeInfo (Class)

This valuetype is passed between the GUI and the server to provide instructions for performing the merge

5.26.1.1.20 MergeSection (Class)

This idl enum defines values for each merge section

5.26.1.1.21 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

5.26.1.1.22 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will be expanded in future releases to include interfacing with the EORS system.

5.26.1.1.23 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

5.26.1.1.24 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in response to a particular traffic event.

5.26.1.1.25 ResponseParticipationList (Class)

A collection of ResponseParticipation objects.

5.26.1.1.26 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

5.26.1.1.27 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

5.26.1.1.28 ResponsePlanItemList (Class)

A collection of ResponsePlanItem objects.

5.26.1.1.29 ResponsePlanItemStatus (Class)

This structure contains data that describes the current state of a response plan item.

5.26.1.1.30 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the hierarchy provides a break off point for traffic event types that pertain to other modals.

5.26.1.1.31 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety message to a device.

5.26.1.1.32 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or professional sporting event.

5.26.1.1.33 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.26.1.1.34 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

5.26.1.1.35 TrafficEventList (Class)

A collection of TrafficEvent objects.

5.26.1.1.36 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the system's weather monitoring devices. Operators will need to manually enter the information in these events for this release. In future releases, these events will be automatically generated by the system.

5.26.1.1.37 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by an operator in response to receiving an alert from the national weather service.

5.26.1.2 TrafficEventManagement2 (Class Diagram)

[image: image188.emf]EVENT_INITIATOR_SCHEDULE_USEREVENT_INITATOR_USERAbsoluteOrRelativeTime«union»REMOVED FOR R3B2:ActionEventAddedCongestionEventAddedDisabledVehicleEventAddedIncidentAddedPlannedRoadwayClosureEventAddedSafetyEventAddedSpecialEventAddedWeatherServiceEventAddedADDED FOR R3B2:TrafficEventAddedUnion based on isAbsolute.If true, has absoluteReminderTimeIf false, has relativeReminderTimeSecsTrafficEventState«enumeration»NEW FOR R3B2.NEW FOR R3B2.111EVENT_INITIATOR_SCHEDULE_USER11EventInitatorUserData«struct»MODIFIED FOR R3B2:Added:TrafficEventType eventTypeResponseParticipationData[] participantDataResponsePlanItemData[] rpiData1111EVENT_INITATOR_USER1LaneConfigurationChangedInfo«typedef»ResponseParticipationChangedInfo«typedef»CountyState«enumeration»1ResponseParticipant«typedef»EventInitatorScheduleUserData«struct»ResponsePlanItemInfo«typedef»PlannedRoadwayClosureEventDataResponseParticipationDataRevokeExecutionFailure«exception»TrafficEventTypeChangedInfo«typedef»IncidentData1ResponseParticipationRemovedInfo«typedef»NEW FOR R3B2.EventInitiator«union»BasicEventData«valuetype»11UnknownEventType«exception»TrafficEventEventType«enumeration»11ActionEventData11MODIFIED FOR R3B2:Added:m_eventState - enum (PENDING, OPEN, CLOSED)m_eventInitatorm_openedTime changed to m_openedOrCreatedTime.m_openedOrCreatedTime is the creation time for a pending event. When a pending event is opened, the time is updated to the opened time.Any code that counts on an event being open merely because it is not closed and not false alarmed will have to change.Removed: m_isClosedDisabledVehicleData1111ResponsePlanItemsRemovedInfo«typedef»TrafficEventAssociationRemovedInfo«typedef»111ResourceDeploymentData11IncidentVehicleData«typedef»1OrganizationParticipationDataTrafficEventType«type»TrafficEventAddedInfo«typedef»IncidentType«type»WeatherConditions«typedef»TrafficEventTypeValues«interface»RoadCondition«enumeration»TrafficEventAssociatedInfo«typedef»TrafficEventCreationResult«typedef»ResponseParticipationAddedInfo«typedef»IncidentTypeValues«interface»LogEntriesAdded«typedef»1EventInitiatorType«enumeration»WeatherServiceEventData111EVENT_PENDINGEVENT_OPENEVENT_CLOSEDdiscriminator TimeSpecificationTypeTimestamp2 absTime if TIME_ABSOLUTElong relTimeSecs relTimeSecs if TIME_RELATIVEOTHER_NO_ADDL_INFOOTHER_ADDL_INFOVEHICLE_FIREWEATHERDEBRIS_IN_ROADWAYPERSONAL_INJURYPROPERTY_DAMAGEFATALITYDISABLED_IN_ROADWAYROADWORKCOLLISIONMAINTENANCESIGNAL_CALLPOLICE_ACTIVITYOFF_ROAD_ACTIVITYDECLARATION_OF_EMERGENCYgetID():Identifier-m_id : Identifier+m_name : string+m_location : RoadwayLocationData+m_source : Source+m_eventInitiator : EventInitator+m_eventType : TrafficEventType+m_eventState : TrafficEventState+m_isFalseAlarm : boolean+m_isSceneCleared : boolean+m_sceneClearedTime : Timestamp+m_isDelayCleared : boolean+m_delayClearedTime : Timestamp+m_isConfirmed : boolean+m_confirmedTime : Timestamp+m_openedOrCreatedTime : Timestamp+m_closedTime : Timestamp+m_eventStillOpenReminderTime : AbsoluteOrRelativeTime+m_openedTime : Timestamp+m_maxQueueLength : long+m_controllingOpCenter : OpCenterInfo+m_primary : boolean+m_displayWebSiteTrafficAlert : boolean+m_webSiteTrafficAlertText : string+m_netConnectionSite : stringEVENT_INITIATOR_USEREVENT_INITIATOR_SCHEDULE_USERlong numCarsInvolvedlong numCarsOverturnedlong numPickupVanSuvsInvolvedlong numPickupVanSuvsOverturnedlong numSingleUnitTrucksInvolvedlong numSingleUnitTrucksOverturnedlong numSingleUnitTrucksLostLoadlong numTractorTrailersInvolvedlong numTractorTrailersOverturnedlong numTractorTrailersLostLoadlong numTractorTrailersJackKnifedlong numMotorcyclesInvolvedlong numLoadedCommercialBusInvolvedlong numLoadedCommercialBusOverturnedlong numUnloadedCommercialBusInvolvedlong numUnloadedCommercialBusOverturnedlong numLoadedSchoolBusInvolvedlong numLoadedSchoolBusOverturnedlong numUnloadedSchoolBusInvolvedlong numUnloadedSchoolBusOverturnedIncidentType m_incidentTypeRoadCondition m_roadConditionsIncidentVehicleData m_vehicleDataboolean m_hazmatdiscriminator: EventInitiatorTypeuserInitiator: EventInitiatorUserDatascheduleIUsernitiator : EventInitiatorScheduleUserDataHistoryLogEntriesAddedHistoryLogEntriesUpdatedLaneConfigurationChangedOrganizationParticipationAddedOrganizationParticipationChangedParticipationRemovedResourceDeploymentAddedResourceDeploymentChangedResponsePlanItemAddedResponsePlanItemModifiedResponsePlanItemRemovedResponsePlanStatusChangedTrafficEventAddedTrafficEventAssociatedTrafficEventAssociationRemovedTrafficEventClosedTrafficEventDeletedTrafficEventStateChangedm_name : stringm_opCtrId : Identifierboolean m_signalboolean m_debrisboolean m_utilityboolean m_otherstring m_otherDescriptionROAD_CONDITION_UNSPECIFIEDDRYWETICE_OR_SNOWCHEMICAL_WETIdentifier trafficEventAIDIdentifier trafficEventBIDm_scheduleId : Identifierm_userInitiator : EventInitiatorUserDataIdentifier m_participationIDResponseParticipant m_participantboolean m_notifiedTimeStamp m_timeNotifiedstring m_vehicleTagInfostring m_vehicleMakeColorboolean m_tireChangeboolean m_hotShotboolean m_waterboolean m_gasboolean m_directionsboolean m_ownDispositionboolean m_callForServiceboolean m_goneOnArrivalboolean m_abandonedVehicleboolean m_relayOperatorboolean m_otherstring m_otherDescriptionIdentifier trafficEventIDLogEntry[] logEntriesIdentifier trafficEventIDIdentifier planItemIDstring planItemNameResponsePlanItem planItemResponsePlanItemData planItemDataboolean m_arrivedTimeStamp m_timeArrivedboolean m_departedTimeStamp m_timeDepartedRoadCondition m_roadConditionWeatherConditions m_weatherConditionsboolean m_evacuationRequiredboolean m_cleanupRequiredstring m_nameResponseParticipantType m_typeIdentifier eventIDLaneConfiguration newConfigurationTrafficEventType eventTypeTrafficEvent theTrafficEventBasicEventData trafficEventDataResponseParticipationData[] participantDataResponsePlanItemData[] rpiDataLogEntryList logEntriesboolean m_respondedTimeStamp m_timeRespondedIdentifier trafficEventIDReponseParticipationData participationDataResponseParticipation participationboolean hurricaneboolean tornadoboolean snowboolean severeWindboolean rainboolean reducedVisibilityboolean ozoneboolean highWaterboolean floodboolean landslideboolean otherstring otherDescriptionstring m_eorsPermitTrackingNumberIdentifier trafficEventIDIdentifier[] planItemIDsIdentifier eventIDTrafficEvent newTrafficEventBasicEventData newEventDataIdentifier trafficEventIDIdentifier participationIDTYPE_PLANNED_ROADWAY_CLOSURETYPE_INCIDENTTYPE_DISABLED_VEHICLETYPE_WEATHER_SENSOR_ALERTTYPE_WEATHER_SERVICE_ALERTTYPE_ACTIONTYPE_CONGESTIONTYPE_RECURRING_CONGESTIONTYPE_SAFETYTYPE_SPECIAL_EVENTIdentifier trafficEventIDResponseParticipationData participationDataIdentifier primaryEventIDTrafficEvent primaryEventIdentifier secondaryEventIDTrafficEvent secondaryEventstring reasonstring debugIdentifierList targetIDsTrafficEvent theTrafficEventBasicEventData trafficEventDataLogEntryList failedInitialLogEntriesstring creationWarningMessage

Figure 5‑176. TrafficEventManagement2 (Class Diagram)

5.26.1.2.1 AbsoluteOrRelativeTime (Class)

This union stores a time, in either absolute or relative terms.

5.26.1.2.2 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

5.26.1.2.3 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will inherit all data shown in this class.

5.26.1.2.4 CountyState (Class)

This enumeration defines the various counties in Maryland and the states surrounding Maryland that will be used for defining the traffic event.

5.26.1.2.5 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

5.26.1.2.6 EventInitatorScheduleUserData (Class)

This structure contains data about a schedule involved in the initiation of a traffic event. It is contained within the EventInitiator union.

5.26.1.2.7 EventInitatorUserData (Class)

This structure contains data about a user involved in the initiation of a traffic event. It is contained within the EventInitator union.

5.26.1.2.8 EventInitiator (Class)

This union contains information about the entity or entities involved in the initiation of a traffic event. This can be the schedule, if a schedule was involved in initiating the event, and/or a user, if a user was involved in initiating the event. This union allows for possible expansion in future releases, where traffic events may be initiated by a schedule without user confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

5.26.1.2.9 EventInitiatorType (Class)

This enumeration identifies the types of initiators which can initiate traffic events. Traffic events can be initiated by a user (directly), or by a schedule (with user involvement). This enumeration, and the union in which it is a discriminator, allows for possible expansion in future releases, where traffic events may be initiated by a schedule without user confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

5.26.1.2.10 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

5.26.1.2.11 IncidentType (Class)

This typedef defines the type of the incident.

5.26.1.2.12 IncidentTypeValues (Class)

This interface lists all possible incident types.

5.26.1.2.13 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the exchange of data between GUI and server.

5.26.1.2.14 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic event is changed.

5.26.1.2.15 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event history log of a traffic event.

5.26.1.2.16 OrganizationParticipationData (Class)

This class represents the data required to describe an organization's participation in the response to a traffic event.

5.26.1.2.17 PlannedRoadwayClosureEventData (Class)

This class contains data specific to the PlannedRoadwayEvent type of traffic event.

5.26.1.2.18 ResourceDeploymentData (Class)

This class represents the data required to describe a resource's participation in the response to a traffic event.

5.26.1.2.19 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in a response.

5.26.1.2.20 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the response to a particular traffic event.

5.26.1.2.21 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response participation object changes state.

5.26.1.2.22 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

5.26.1.2.23 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

5.26.1.2.24 ResponsePlanItemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added or an existing response plan item is modified.

5.26.1.2.25 ResponsePlanItemsRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are removed from a traffic event.

5.26.1.2.26 RevokeExecutionFailure (Class)

This class defines an exception thrown when failed to revoke a response plan item's execution.

5.26.1.2.27 RoadCondition (Class)

This enumeration lists the possible roadway conditions at the scene of a traffic event.

5.26.1.2.28 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the system.

5.26.1.2.29 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

5.26.1.2.30 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic events is removed.

5.26.1.2.31 TrafficEventCreationResult (Class)

This result is returned from createEvent() to indicate warning messages if the event was not created cleanly.

5.26.1.2.32 TrafficEventEventType (Class)

his enumeration defines the types of CORBA events that can be broadcast on a Traffic Event related CORBA Event channel.

5.26.1.2.33 TrafficEventState (Class)

This enumeration lists the possible states for a traffic event. The states are pending, open, and closed. A false alarmed "state" is considered a special case of "closed", so false alarmed events will have a TrafficEventState of EVENT_STATE_CLOSED. They will also have the m_isFalseAlarm flag in their BasicEventData set to true to distinguish them from normally closed events.

5.26.1.2.34 TrafficEventType (Class)

This typedef defines the type of traffic event.

5.26.1.2.35 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The traffic event object that represented the traffic event previously is removed from the system and is replaced by the newTrafficEvent reference contained in this structure. If the consumer of this CORBA event has stored any references to the traffic event previously, those references should be replaced with this new reference.

5.26.1.2.36 TrafficEventTypeValues (Class)

This interface defines the types of traffic events that are supported by the system.

5.26.1.2.37 UnknownEventType (Class)

This class defines a exception thrown when the type of a traffic event type is not known and is not defined in TrafficEventTypeValues.

5.26.1.2.38 WeatherConditions (Class)

This structure contains all possible weather conditions. Each member should be set to true if that condition applies, false otherwise. The m_otherDescription member will only be considered valid if the m_other member is set to true.

5.26.1.2.39 WeatherServiceEventData (Class)

This class contains data specific to the WeatherServiceEvent type of traffic event.

5.26.2 Sequence Diagrams
5.26.2.1 TrafficEventModule:CreateTrafficEventR3B2 (Sequence Diagram)

This diagram shows how a new traffic event is created. The TrafficEventFactoryImpl is called to create the new traffic event. After checking the user's rights, it creates a new TrafficEventGroup and calls it to create the appropriate type of TrafficEventImpl, based on the type of BasicTrafficEventData that is passed in. Then the factory calls the TrafficEventGroup to initialize. The traffic event is set to the OPEN or PENDING state based on the value of the createAsPending flag (which overrides the TrafficEventState in the BasicEventData). It also adds any response plan items, participations, and initial entries to the traffic event. It then activates the TrafficEvent object and publishes it in the trading service. It also adds entries to the communications log and the operations log, and pushes a CORBA event through the event service to inform the GUIs of the creation of the new event. Finally, the traffic event is checked to see if it an alert needs to be created for the traffic event being at the same location as any other traffic event in the system.

[image: image189.emf]New for R3B2:set incomingparticipation dataand RPI data innew event.ORBTrafficEventFactoryImplTokenManipulatorTrafficEventGroupTrafficEventModuleObjectCachePOAIncidentImplPlannedRoadwayClosureImplAlertFactoryWrapperDisabledVehicleImplCosTrading.RegisterWeatherSensorAlertImplWeatherServiceAlertImplProcessing for

checking for

duplicate events

and creating

alert.

PushEventSupplierOperationsLogActionEventImplCongestionEventImplTrafficEventDBIdentifierGeneratorSafetyMessageEventImplSpecialEventImplcurrentEvent :

ProxyTrafficEvent

This will store the TrafficEventGroup and

the TrafficEvent data in the database.

duplicateEvent :

ProxyTrafficEvent

Issue alert only if my

event is newer than

any duplicate found.

Surely the other event is

older, but check just to

be sure.

[* for each

duplicate

found]

[typeCode == ActionEvent]create[typeCode == WeatherServiceAlertImpl]createactivate_object(TrafficEvent)

getPOA

initialize

addCommLogEntry "New Event Opened"

push "traffic event added"

getEventSupplier

addLogEntry

[*for each

log entry]

addGroupToDatabase

addLogEntry(eventOpened)

[database error]

CHART2Exception

basicEventData.id = createIdentifier()create with new event data

getDuplicates(currentEvent)

duplicates

dupOpenTime = getOpenedTime()

dupEventId = getID()

[current event open time (now) >= dupOpenTime]

createDuplicateEventAlert(m_systemToken, eventId, dupEventId,

 "Duplicate Event: <name> duplicates <otherName>", AMG for currentEvent op center)

[error other than

AlertTypeDisabledException]

log(error)

addGroup

[typeCode == DisabledVehicle]create[typeCode == PlannedRoadwayClosure]create[UnknownTrafficEventType]UnknownTrafficEventType[unknown traffic event type]UnknownTrafficEventType[typeCode == Incident]createcreateTrafficEventcreategetOpCenterID(token)this.eventInitiator =updated incoming

eventInitiator

New for R3B2:set eventInitiatordata and store inBasicEventData forevent.set user nameset op center ID[no rights]AccessDeniedcheckAccesscreateTrafficEven(token, eventIinitiator, type, eventData, participantData, rpiData, initialEntries, createAsPending)export(TrafficEvent)

getTradingRegister

log "New event created"

[typeCode ==WeatherSensorAlert]create[no rights]log "invalid access attempt"[typeCode == SpecialEvent]create[typeCode == SafetyMessage]create[typeCode == Congestion ||typecode == RecurringCongestion]createParameters change for R3B2.ResponseParticipationDatastore RPI in event[createAsPending true]m_eventState = PENDING[* for eachRPIpassed in][createAsPending false]m_eventState = OPENResponsePlanItemset m_participantID to new IDstore participation in event[* for eachparticipationpassed in]New for R3B2:Set event stateper createAsPending.getUserName(token)eventInitiator :Eventinitiator

Figure 5‑177. TrafficEventModule:CreateTrafficEventR3B2 (Sequence Diagram)

5.26.2.2 TrafficEventModule:DeletePending (Sequence Diagram)

This diagram shows how a pending traffic event can be deleted. Pending traffic events are not aged off of the system and archived, they are just immediately deleted, from memory and from the database. An TrafficEventDeleted event is pushed and an operations log entry is made.

[image: image190.emf]ORBTokenManipulator PushEventSupplier deletePending(token)checkAccess(token, ManageTrafficEvent)push(TrafficEventDeleted)

[DB error]

CHART2Exception

Actually delete,

do not merely set

offline indicator.

(New method)

log (pending event deleted)

TrafficEventtoken : AccessToken TrafficEventDB [no rights]

AccessDenied

[not in PENDING state]

InvalidState

deleteEvent()

OperationsLog delete pending event and

related data from DB

Figure 5‑178. TrafficEventModule:DeletePending (Sequence Diagram)

5.26.2.3 TrafficEventModule:MonitorDuplicateEvents (Sequence Diagram)

This sequence diagram shows the processing executed periodically by the duplicate event monitoring TimerTask to detect duplicate traffic events. The ProxyBasicTrafficEvent method from the Duplicatable interface to detect duplicates is employed to check for duplicates (in the full ObjectCache of all local and remote traffic events) of every currently open traffic event in the local service. Note that this process excludes pending traffic events and traffic events received from external systems. This task is anticipated to run every 5-10 minutes (configurable in .props file).

[image: image191.emf]amg : AlertManagementGroup create from owning op center of currentEventcurrentEvent : ProxyBasicTrafficEvent getDuplicates(currentEvent) and cast to ProxyBasicTrafficEventcreateduplicate events Issue alert only if my event (currentEvent) is newer than any duplicate found. dupOpenTime = getOpenedTime() dupEventId = getID() [*for eachduplicateevent found]duplicateEvent : ProxyBasicTrafficEvent currentEventOpenTime = getOpenedTime()[currentEventOpenTime >= dupOpenTime] createDuplicateEventAlert(m_systemToken, eventId, dupEventId, "Duplicate Event: <name> duplicates <otherName>", amg) DuplicateEventMonitorTimerTaskmonitorDuplicateEvents()[* for each open traffic event]getBasicEventData()AlertFactoryWrapper TrafficEventGroup TrafficEventFactoryImplObjectCache [error other thanAlertTypeDisabledException]log(error)

Figure 5‑180 TrafficEventModule:MonitorDuplicateEvents (Sequence Diagram)
5.26.2.4 TrafficEventModule:OpenPending (Sequence Diagram)

This diagram shows how a pending traffic event can be moved from the PENDING state to the OPEN state. The user name and op center is pulled from the token and inserted into the traffic event, and the traffic event is opened, persisted and pushed. An operations log entry is made.

[image: image192.emf][relative reminder time > 0]

convert to absolute reminder time

ORBTrafficEventTokenManipulator token : AccessToken eventIntiator : EventInitiator TrafficEventChangedInfo

TrafficEventDB [no rights]

AccessDenied

[not in PENDING state]

InvalidState

set user name

set op center ID

getOpCenterName(token)

set

responsibleOpCenter.name

eventState =

EVENT_OPEN

push(TrafficEventChanged)

[DB error]

CHART2Exception

OperationsLog checkAccess(token,

ManageTrafficEvent)

getUserName(token)

getOpCenterID(token)

set

responsibleOpCenter.id

this.eventInitiator =

updated incoming

eventInitiator

create

persist

log(pending event opened)

PushEventSupplier openPending(token,eventInitiator)add opened entry

to event history

Figure 5‑181. TrafficEventModule:OpenPending (Sequence Diagram)

5.27 External Interface Module

5.27.1 Classes

These class diagrams contain all classes relating to the External Interface Module

5.27.1.1 EventImportModuleClasses (Class Diagram)

[image: image193.emf]1

UniquelyIdentifiable «interface»PushEventSupplier

ServiceApplication

«interface»

EventImportModuleProperties 1 1

EventImportHandler

1 1 1

1

1

1

ExternalSystemConnection

«interface»

ExternalSystemConnectionImpl

1

EITaskHandler

1

1

EventImportModule

ServiceApplicationModule «interface» 1

1

EventImportAcquireHandler EventImportTranslationHandler

1 1

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

+initialize(ServiceApplication)

+shutdown(ServiceApplication)

+createTrafficEventFactoryWrapper()

-m_svcApp: ServiceApplication

-m_importHandler

-m_translationHandler

-m_subscriptionHandler

-m_DBConnectionManager

-m_pushEventSupplier

-m_externalSysConn

ctor(props:Properties)

+getExternalSystemID(): String

-acquirerClassName

-connectionCheckInterval

-connectionCheckStartupDelay

-connectionStaleTimeout

-externalSystemID

-importDirectory

-importFilePattern

-importHostIP

-importMode

-importPassword

-importPort

-importQueue

-importUserName

-maxEventsInMessage

-owningOpCenter

-ritisXsdFileName

-translationStepClassName

-testFileName

-retryNumber

-opCenterID

-opCenterName

-userName

-externalSystemID

+createEventImportAcquireTask(EIMessage) : ExternalImportAcquireTask

+handleReceipt(EIMessage)

+initialize(translationHandler : EventImportTranslationHandler,

 props : EventImportModuleProperties, ExternalSystemConnectionImpl)

+setDataLog(logFileName : String, logFileKeepDays : int)

-m_incomingLog : LogFile

-m_initialized : boolean

-m_props : EventImportModuleProperties

-m_subscriber :

-m_translationHandler

: EventTranslationHandler

getConfig(): ExternalSystemConnectionConfig

getStatus(): ExternalSystemConnectionStatus

+ctor(ExternalSystem config:ConnectionConfig,

 pushSup:PushEventSupplier, pushIntervalMins int,

 pushEveryChange boolean)

+getConfig()

+getStatus()

+setStatusOK(statusDesc : String)

+setStatusFailed(statusDesc : String)

-m_pushEventSupplier

-m_config

-m_status

-m_eventPushIntervalMins: int

-m_pushEveryChangeFlag: boolean

-createTranslationSteps(EventAtisImportModuleProperties)

+initialize(EventAtisImportHandler, EventAtisImportModuleProperties)

+createEventAtisTranslationTask(AVList) : ImportEventAtisTranslationTask

+handleTranslation(AVList)

+shutdown()

-m_translationSteps : EITranslationStep[]

+ctor(TrafficEventFactoryWrapper)

+initialize(EventImportModuleProperties)

+createEventImportTask(AVList[])

+handleEventImport(AVList[])

-m_trafficEventFactoryWrapper

Figure 5‑182. EventImportModuleClasses (Class Diagram)

5.27.1.1.1 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is used to process EI tasks (CommandQueable) objects.

5.27.1.1.2 EventImportAcquireHandler (Class)

This class creates an EventImportAcquireTask. When the task receives a message and calls EventImportAcquireTask.execute(), it then calls EventImportAcquireHandler.handleReceipt() to process the message. The message is processed using the class specified in the props file that implements the EIAcquirer interface.

5.27.1.1.3 EventImportHandler (Class)

This class is responsible for handling EI tasks representing external CHART events. It is called when an EventImportTask is put on its queue. It then converts the AVList to the CHART event components needed to create a CHART event.

5.27.1.1.4 EventImportModule (Class)

This module imports traffic events from an external source by loading the class specified in its props file. The class knows how to connect to an external traffic event source and how to prepare it for translation. A separate property tells the module how to translate the external traffic event into an AVList that directly maps to a CHART traffic event.

5.27.1.1.5 EventImportModuleProperties (Class)

This class holds all properties needed by the ExternalImportModule including the name of the class to be loaded to make the external connection and the steps needed to translate the external traffic event into an internal traffic event.

5.27.1.1.6 EventImportTranslationHandler (Class)

This class is called to build a task and put it on its own command queue. When the command queue executes the task, this class is called to translate the tasks's message using the translation steps. When the translation is complete, it knows the name of the next task handler in the chain (from construction) and calls that handler to create one of its tasks and puts that task on the next queue.

5.27.1.1.7 ExternalSystemConnection (Class)

This interface defines how all external connections should report their status.

5.27.1.1.8 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to the GUI.

5.27.1.1.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.27.1.1.10 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a Chart service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.27.1.1.11 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.27.1.1.12 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.27.1.2 EventAtisImportAcquire (Class Diagram)

[image: image194.emf]ConnectionTimerTask

periodically call

EventIMportRitisAcquirer.

connectIfNecessary()

1

1 EventImportRitisAcquirer

EIAcquirer «interface» 11

javax.jms.MessageListener java.util.Timer

java.util.TimerTask

ExternalSystemConnectionImpl 1

1

1 *

creates and

processes

*

EIMessageReceived

1

1

1 1 1

1 EIForwarder «interface» EITaskHandler EventImportAcquireHandler

EventImportModuleProperties 1

EventImportModule EventImportAcquireTask

QueableCommand

ctor(props:Properties) +getExternalSystemID(): String -acquirerClassName -connectionCheckInterval -connectionCheckStartupDelay -connectionStaleTimeout -externalSystemID -importDirectory -importFilePattern -importHostIP -importMode -importPassword -importPort -importQueue -importUserName -maxEventsInMessage -owningOpCenter -ritisXsdFileName -translationStepClassName -testFileName -retryNumber -opCenterID -opCenterName -userName -externalSystemID +initialize(ServiceApplication) +shutdown(ServiceApplication) +createTrafficEventFactoryWrapper() -m_svcApp: ServiceApplication -m_importHandler -m_translationHandler -m_subscriptionHandler -m_DBConnectionManager -m_pushEventSupplier -m_externalSysConn +isShutdown() : boolean

+start() :

+shutdown()

+queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue

-m_handlerName : Strin

+execute()

+interupted()

-m_messageReceived : XmlMessage

-m_handler : EventImportAcquireHandler

+ctor(ExternalSystem config:ConnectionConfig, pushSup:PushEventSupplier, pushIntervalMins int, pushEveryChange boolean) +getConfig() +getStatus() +setStatusOK(statusDesc : String) +setStatusFailed(statusDesc : String) -m_pushEventSupplier -m_config -m_status -m_eventPushIntervalMins: int -m_pushEveryChangeFlag: boolean +prepare(XmlMessage) : boolean

+forward(ArrayList) : boolean

ctor(messageText, Origin)

+cleanup()

+finalize()

+getMessageText() : String

+getOrigin() : String

-m_origin : String

-m_messageText : String

+createEventImportAcquireTask(EIMessage) : ExternalImportAcquireTask

+handleReceipt(EIMessage)

+initialize(translationHandler : EventImportTranslationHandler,

 props : EventImportModuleProperties, ExternalSystemConnectionImpl)

+setDataLog(logFileName : String, logFileKeepDays : int)

-m_incomingLog : LogFile

-m_initialized : boolean

-m_props : EventImportModuleProperties

-m_subscriber :

-m_translationHandler

: EventTranslationHandler

+cleanup() +decode(EIMessage) +initialize(EIForwarder, EIProperties, LogFile +receive(EIMessage) ctor(ExternalSystemConnectionImpl)

+onMessage(textMessage : javax.jms.Message)

+connectIfNecessary()

-m_connectionString : String

-m_connectionImpl : ExternalSystemConnectionImpl

-m_expectRefresh : boolean

-m_forwarder : EIForwarder

-m_password : String

-m_receiver : javax.jms.QueueReceiver

-m_refreshPending : boolean

-m_queueName : String

-m_queueConnection : javax.jms.QueueConnection

-m_session : javax.jms.QueueSession

-m_userName : String

run()

schedule() : void

cancel() : void

Figure 5‑183. EventAtisImportAcquire (Class Diagram)

5.27.1.2.1 ConnectionTimerTask (Class)

This class periodically checks the RITIS connection and reconnects if it's failed or stale (no activity for a period of time).

5.27.1.2.2 EIAcquirer (Class)

Any class wishing to import data into CHART must support this EIAcquirer interface. The initialize method is called when the class wants to set up an external connection. The receive method is called when an external message is received for processing. The receive method should immediately place the external message on the acquirer command queue and be ready to take in the next external message. The decode method is called by the command queue to transform the external format into an internal format suitable for translation. The cleanup method is called before shutdown to give the implementing class an opportunity for a clean disconnect from the external source.

5.27.1.2.3 EIForwarder (Class)

This interface is implemented by classes that wish to process and forward messages for translation.

5.27.1.2.4 EIMessageReceived (Class)

This class holds the incoming message from the external source. Its associated task is quickly put on a command queue so the listener can get back to listening for new messages.

5.27.1.2.5 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is used to process EI tasks (CommandQueable) objects.

5.27.1.2.6 EventImportAcquireHandler (Class)

This class creates an EventImportAcquireTask. When the task receives a message and calls EventImportAcquireTask.execute(), it then calls EventImportAcquireHandler.handleReceipt() to process the message. The message is processed using the class specified in the props file that implements the EIAcquirer interface.

5.27.1.2.7 EventImportAcquireTask (Class)

This class wraps an external event message so it can be put on a command queue. When the command queue calls the execute() method, this class invokes the EventImportAcquireHandler to break it up into individual external traffic events.

5.27.1.2.8 EventImportModule (Class)

This module imports traffic events from an external source by loading the class specified in its props file. The class knows how to connect to an external traffic event source and how to prepare it for translation. A separate property tells the module how to translate the external traffic event into an AVList that directly maps to a CHART traffic event.

5.27.1.2.9 EventImportModuleProperties (Class)

This class holds all properties needed by the ExternalImportModule including the name of the class to be loaded to make the external connection and the steps needed to translate the external traffic event into an internal traffic event.

5.27.1.2.10 EventImportRitisAcquirer (Class)

This class knows how to connect to RITIS and obtain external traffic events. It breaks the composite RITIS message into separate traffic event messages and puts them on the translation command queue for processing. It obtains connection information from the EventImportModuleProperty class.

5.27.1.2.11 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to the GUI.

5.27.1.2.12 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.27.1.2.13 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.27.1.3 EventAtisImportChartClasses (Class Diagram)

[image: image195.emf]EventImportModule 11 TrafficEventFactoryWrapper 1

1

EventImportModuleProperties 1 1

ProxyBasicTrafficEvent

DataModel

1

1

EventImportHandler

EventImportTask

AVList

AVElement

* *

creates and processes

1

1

* 1

QueableCommand

EITaskHandler

1

1 Duplicatable

«interface»

1

1

1 1

*

Reference to the remote

TrafficEvent served by

a TrafficEventModule

all external and internal

traffic events are cached

 here without prejudice.

TrafficEvent

«interface»

1

ObjectCache

+isShutdown() : boolean

+start() :

+shutdown()

+queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue

-m_handlerName : Strin

+execute()

+interrupted()

+initialize(ServiceApplication) +shutdown(ServiceApplication) +createTrafficEventFactoryWrapper() -m_svcApp: ServiceApplication -m_importHandler -m_translationHandler -m_subscriptionHandler -m_DBConnectionManager -m_pushEventSupplier -m_externalSysConn +create()

+add(String, Object)

+get(String):AVElement

+get() : AVElement[]

+clear()

+get() : TrafficEventFactoryWrapper

+initialize(ORB, TraderGroup,

 MinDiscoveryIntervalSeconds,

 MaxRemoteServiceUseMins)

+createExternalTrafficEvent(

 byte[] token,

 EventInitiator evInitiator,

 short type,

 BasicEventData eventData,

 ResponseParticipationData[] rpData,

 ResponsePlanItemData[] rpiData,

 LogEntry[] initialEntries,

 boolean markAsInteresting)

+ctor(TrafficEventFactoryWrapper)

+initialize(EventImportModuleProperties)

+createEventImportTask(AVList[])

+handleEventImport(AVList[])

-m_trafficEventFactoryWrapper

ctor(props:Properties)

+getExternalSystemID(): String

-acquirerClassName -connectionCheckInterval -connectionCheckStartupDelay -connectionStaleTimeout -externalSystemID -importDirectory -importFilePattern -importHostIP -importMode -importPassword -importPort -importQueue -importUserName -maxEventsInMessage -owningOpCenter -ritisXsdFileName -translationStepClassName -testFileName -retryNumber -opCenterID

-opCenterName

-userName

-externalSystemID

+create(String name, Object value)

+getName() : String

+getValue() : Object

-m_attributeName : String

-m_value : Object

+getID() : Identifier

+getTrafficEvent() : TrafficEvent

+getBasicEventData() : BasicEventData

+setBasicEventData(data : BasicEventData

+addEventAssociation(

 associatedEventId :Identifier) :void

+getOpenedTime() : long

+removeEventAssociation(

 associatedEventId :Identifier) :void

+updateAssocatedEvents() : void

+isAssociatedWith(EventId : Identifier) : boolean

+isClosed() : boolean

getEventTypeString() : string

m_trafficEvent : TrafficEvent

m_basicEventData : BasicEventData

m_associatedEventsHash : Hashtable

m_associatedEvents : Identifier[]

Figure 5‑184. EventAtisImportChartClasses (Class Diagram)

5.27.1.3.1 AVElement (Class)

One element of an AVList containing an attribute and a big-O-Object for storing/retrieving objects easily

5.27.1.3.2 AVList (Class)

Generic collection of attribute and big-O-Object pairs used to move around the application.

5.27.1.3.3 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.27.1.3.4 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated" within the CHART system. This allows the ObjectCache to search for duplicates of any Duplicatable object. This is different from "equals()" or "compareTo()". To cite two examples: Alerts within CHART are duplicates if they refer to the same objects within CHART (but do not have the same Alert ID, which is more closely associated with "equals()"). Traffic Events within CHART are duplicates if they have the same location (but do not have the same Traffic Event ID).

5.27.1.3.5 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is used to process EI tasks (CommandQueable) objects.

5.27.1.3.6 EventImportHandler (Class)

This class is responsible for handling EI tasks representing external CHART events. It is called when an EventImportTask is put on its queue. It then converts the AVList to the CHART event components needed to create a CHART event.

5.27.1.3.7 EventImportModule (Class)

This module imports traffic events from an external source by loading the class specified in its props file. The class knows how to connect to an external traffic event source and how to prepare it for translation. A separate property tells the module how to translate the external traffic event into an AVList that directly maps to a CHART traffic event.

5.27.1.3.8 EventImportModuleProperties (Class)

This class holds all properties needed by the ExternalImportModule including the name of the class to be loaded to make the external connection and the steps needed to translate the external traffic event into an internal traffic event.

5.27.1.3.9 EventImportTask (Class)

This class is the command to process the event import request received from the translation process and bound for CHART. It is executed by the CommandQueue asynchronously.

5.27.1.3.10 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.27.1.3.11 ProxyBasicTrafficEvent (Class)

This class is used as a proxy for traffic events existing in all traffic event services (including the local service). The proxy traffic events cached are not complete copies of the traffic events, because the full range of data is not needed. The ProxyBasicTrafficEvent data consists of BasicEventData and associated events only (this is why the names of these objects contain the word "Basic", e.g., DiscoverBasicTrafficEventClassesCommand. These proxy traffic events allow every traffic event service in the system to have some knowledge of every traffic event in the entire system, for the purpose of detecting duplicate traffic events.

5.27.1.3.12 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.27.1.3.13 TrafficEventFactoryWrapper (Class)

This class finds a Traffic Event Service and provides a facade to it for the creation of external traffic events.

5.27.1.4 EventAtisImportTranslationClasses (Class Diagram)

[image: image196.emf]1,0..* 1

EventImportModule 1 1 1

EventImportTranslationTask

EventAtisTranslationStep1

EventImportTranslationHandler

1

QueableCommand

AVList

EIPropertiesEITaskHandler EventImportModulePropertiesAVElement

1

1

* 1

*

EITranslationStep

«interface»

In the context of the EventImportModule

the list of EITranslationSteps are

specific to J2354 ATIS and CHART translation

steps. These classes are specified

in the EventImportModule props and are

created when the EventImportTranslationHandler

is initialized.

*

Creates and Processes

-dbUserName-dbPassword-dbConnectString-dbDriver-logFile-logLevel+initialize(ServiceApplication) +shutdown(ServiceApplication)

+createTrafficEventFactoryWrapper()

-m_svcApp: ServiceApplication -m_importHandler -m_translationHandler -m_subscriptionHandler -m_DBConnectionManager -m_pushEventSupplier -m_externalSysConn +execute()

+interupted()

+create()

+add(String, Object)

+get(String):AVElement

+get() : AVElement[]

+clear()

+isShutdown() : boolean +start() : +shutdown() +queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue -m_handlerName : Strin -createTranslationSteps(EventAtisImportModuleProperties)

+initialize(EventAtisImportHandler, EventAtisImportModuleProperties)

+createEventAtisTranslationTask(AVList) : ImportEventAtisTranslationTask

+handleTranslation(AVList)

+shutdown()

-m_translationSteps : EITranslationStep[]

+create(String name, Object value)

+getName() : String

+getValue() : Object

-m_attributeName : String

-m_value : Object

+initialize(EIProperties)

+translate(inLists:ArrayList, outLists:ArrayList)

+cleanup()

+initialize(EIEventImportModuleProperties)

-m_transformer: javax.xml.transform.Transformer

Figure 5‑185. EventAtisImportTranslationClasses (Class Diagram)

5.27.1.4.1 AVElement (Class)

One element of an AVList containing an attribute and a big-O-Object for storing/retrieving objects easily

5.27.1.4.2 AVList (Class)

Generic collection of attribute and big-O-Object pairs used to move around the application.

5.27.1.4.3 EIProperties (Class)

This class supports properties that are generic to all External Interface modules such as log filenames.

5.27.1.4.4 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is used to process EI tasks (CommandQueable) objects.

5.27.1.4.5 EITranslationStep (Class)

An EITranslationStep is the base class for all translations. Implementing translations define how to translate from a particular type of AVList to another particular type of AVList.

5.27.1.4.6 EventAtisTranslationStep1 (Class)

This class represents any number of translation step classes needed to perform a complete message translation. An example of when multiple steps may be needed is when a generic translation step must be executed on all messages before more specific translations can be accomplished.

5.27.1.4.7 EventImportModule (Class)

This module imports traffic events from an external source by loading the class specified in its props file. The class knows how to connect to an external traffic event source and how to prepare it for translation. A separate property tells the module how to translate the external traffic event into an AVList that directly maps to a CHART traffic event.

5.27.1.4.8 EventImportModuleProperties (Class)

This class holds all properties needed by the ExternalImportModule including the name of the class to be loaded to make the external connection and the steps needed to translate the external traffic event into an internal traffic event.

5.27.1.4.9 EventImportTranslationHandler (Class)

This class is called to build a task and put it on its own command queue. When the command queue executes the task, this class is called to translate the tasks's message using the translation steps. When the translation is complete, it knows the name of the next task handler in the chain (from construction) and calls that handler to create one of its tasks and puts that task on the next queue.

5.27.1.4.10 EventImportTranslationTask (Class)

This class wraps an external traffic event message so it can be put on a command queue. When the command queue calls the execute() method, this class invokes the EventImportTranslationHandler to translate it into an internal traffic event message.

5.27.2 Sequence Diagrams

5.27.2.1 EventImportAcquireTask:execute (Sequence Diagram)

This diagram depicts the behavior of the execute() method of the EventImportAcquireTask. It is called when this task reaches the head of the Acquire command queue. This method is responsible for breaking the external message into individual traffic event messages. A special case it handles is that it must place a marker message in the message stream after the complete set of refresh events are received after a reconnect with RITIS. After the Translation Handler passes this marker to the Event Import handler, the Event Import handler knows that all traffic events have recently been refreshed and it should close all events whose last update time is older than the time in the marker message.

[image: image197.emf]log unknown msg

void

EIMessage

once a refresh is pending, we have

to wait until we get a message with

less than the max events before we're

sure we've received an update for all

open events.

we only know that the previous message was the first

refresh message, we can't tell the last until we see a

message less than the maxOccurs value

(PROP_KEY_maxEventInMessage)

set m_refreshPending = TRUE

[m_refreshPending &&

eventCount <

 PROP_KEY_maxEventsInMessage]

m_refreshPending = FALSE

tell downstream a refresh

was received so remove

stale events, if you wish

TranslationTask

[MSG_NAME = "EVENT"]

[MSG_NAME="REFRESH"]

task = createEventAtis

TranslationTask(refreshMessage)

create

ImportEventAtisTranslationTask

m_forwarder.forward(task)

queueMsgTask(task)

else

TranslationTask

[*for each Event

in EIMessage]

validateXML(EIMessage,

PROP_KEY_ritisXsdFileName)

queueMsgTask(task)

void

extract next incident from EIMessage

void

log error if bad extraction or

error creating task or

error queuing task

puts event task on

translation queue

boolean

void

EventAtisImportTranslationHandler m_forwarder.forward(task)

task = createEventAtisTranslationTask(eventList)

ImportEventAtisTranslationTask

EventImportAcquireTaskEventImportAcquireHandler Acquire Command Queue EventImportRitisAcquirer execute(EIMessage)handleReceipt(EIMessage) decode(EIMessage) create

refreshMessage =

ctor(MSG_NAME="REFRESH")

Figure 5‑186. EventImportAcquireTask:execute (Sequence Diagram)

5.27.2.2 EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)

This diagram depicts the setStatusOK() and setStatusFailed() methods for the ExternalSystemConnectionImpl. These methods are called by the AcquireHandler responsible for that specific external connection. If the state changes a CORBA event is pushed with the current status. An event is pushed on any update, if configured to do so.

[image: image198.emf]stateChanged:boolean = true

[m_status.statusVaule !=SimpleStatus.OK

|| desc != m_status.statusDesc]

m_status.statusDesc = desc

pushStatusEvent()

Note: Any acces to m_status should be synchronized in

the ExternalSystemConnection

class.

Note: An optional timer task will

push Corba status events based on a

configurable interval.

Note: At construction the status

will be set to OK will the assumption

that one of these methods will

be called shortly after this object

is registered in the trader.

[m_status.statusValue != SimpleStatus.Failed

|| desc != m_status.statusDesc]

[stateChanged | m_pushEventChangeFlag]

Push event if state had changed

OR configured to push on

every status update

[stateChanged | m_pushEveryChangeFlag]

if desc is NULL,

set statusDesc to

empty string.

m_status.statusConfirmTime = NOW

m_status.stutusChangeTime = NOW

pushEventStatus()

ExternalSystemConnectionImpl

setStatusOK(desc)

m_status.statusChangeTIme = NOW

m_status.statusValue = SimpleStatus.OK

m_status.statusConfirmTime = NOW

setStatusFailed(

desc:String)

m_status.statusValue = SimpleStatus.Failed

m_status.statusDesc = desc

stateChanged:boolean = true

Figure 5‑187. EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)

5.27.2.3 EventImportRitisAcquire:connectIfNecessary (Sequence Diagram)

This diagram depicts the connectIfNecessary() method of the EventImportRitisAcquirer class. This method is called at initiation and periodically after that. When invoked, if the RITIS connection is failed or stale (no activity on the connection for while - see properties), it attempts a reconnection. Its primary duty is to rebuild the JMS connection with RITIS by registering to have the OnMessage() method called whenever RITIS has a message to send. It is expected that the stale connection value will be large enough to not present a performance problem for either CHART or RITIS but small enough to be responsive to users if the connection is temporarily lost. The RITIS connection status is updated if a reconnect is attempted.

[image: image199.emf]javax.jms.QueueSession

ActiveMQQueue

start()

m_receiver : QueueReceiver =

createReceiver(topic)

topic : ActiveMQQueue = ctor(queueName)

setStatusFail()

QueueReceiver

ctor(activeMQConnection)

m_queueConnection = createQueueConnection

(m_userName, m_password)

QueueConnection

if queue fails to start throw JMSException

set m_expectRefresh = TRUE

void

if connStat.statusvalue != OK OR

now - connStat.statusTime > PROP_KEY_max_stale

ExternalSystemConnectionImpl

All this to register

EventImportRitisAcquirer's

OnMessage method as a

receiver of a JMS queue

QueueReceiver

QueueSession

obtain RITIS-specific userName, password,

queueName, and JMS connection string from props

cleanup()

try

create

setMessageListener(this)

m_session = createQueueSession(NOT_TRANSACTED,

Session.AUTO_ACKNOWLEDGE)

throw JMSException

if transaction or acknowledgement modes not supported

or internal error throw JMSException

if invalid queue throw InvalidDestinationException

connStat = getStatus()

ExternalConnectionStatus

connectIfNecessary(

ExternalSystemConnectionImpl)

if internal error throw JMSException

catch

indicates the next

message contains all

current external events

setStatusOK()

create

create

EventImportRitisAcquirer

set m_receiver,

m_session, and

m_queueConnection

to null if not null

ActiveMQConnectionFactory

javax.jms.QueueConnection

ConnectionTimerTask

or

EventImportRitisAcquirer.initialize()

Figure 5‑188. EventImportRitisAcquire:connectIfNecessary (Sequence Diagram)

5.27.2.4 EventImportRitisAcquirer:initialize (Sequence Diagram)

This diagram depicts the initialize() method of the EventImportRitisAcquirer class. After attempting to connect to RITIS and updating the connection status, it kicks off a periodic task that checks the connection status (see connectIfNecessary()) and reconnects, if necessary.

[image: image200.emf]immediately returna failed connectionstatus on startupsometime later on

scheduled intervals ...

connectIfNecessary()

java.util.Timer ConnectionTimerTask connectIfNecessary() ctor(TRUE) run()

EventImportAcquireHandler EventImportModuleProperties EventImportRitisAcquirer only push a goodconnection statuswhen the connection

is truly good

ctor(ExternalSystemConnectionImpl) String acquirer = getAcquireClassName() TRUE

initialize(EIForwarder, EIProperties, LogFile) FALSE schedule(connectionTask, PROP_KEY_connectionCheckStartupDelay, PROP_KEY_connectionCheckInterval) connectionTask = ctor(this) only reconnect if

connection status is

bad or stale

Figure 5‑189. EventImportRitisAcquirer:initialize (Sequence Diagram)

5.27.2.5 EventImportRitisAcquirer:OnMessage (Sequence Diagram)

This diagram depicts the onMessage() method of the EventImportRitisAcquirer class. This method is called when RITIS has a traffic event message for CHART. To ensure CHART is responsive to RITIS, the onMessage() method's only job is to create an Acquire task containing the external message and put it on the Acquire command queue in the proper format and be ready for the next message from RITIS.

Because onMessage() handles every message, it also is in position to know when all events have recently been refreshed after a reconnect. When this happens, it puts a REFRESH marker task on its command queue. When this marker is eventually seen by the Event Import handler, it means that all external traffic events were updated before the date in the marker and therefore the Event Import handler can close any stale external traffic events.

[image: image201.emf]m_forwarder.prepare(refreshMsg) boolean

convert message to javax.jms.TextMessage m_expectRefresh = FALSE tryfinally

the previous msg is a refresh so tell downstream they canclose stale events, if they wishrefreshMsg = ctor() acknowledge() tells

jms queue not to resend

this javax.jms.Message

EventImportAcquireHandler setElement("TIME", Now()) EIMessage EventImportAcquireTask put refresh task on acquire queue

[if m_expectRefresh] set MsgName = "REFRESH" queueMsgTask(task):boolean task = ctor(refreshMsg, this) catch

RITIS queuejavax.jms.Message For lab testing: create a timer task that periodically looks for a file (named in props file) containing RITIS xml messages, calls EventImportRitisAcquirer.onMessage(message), then deletes the file EventImportRitisAcquirer ExternalSystemConnectionImpl EventImportAcquireTask m_forwarder.prepare(EIMessage) createtask = ctor(msg, this) setStatusOK() queueMsgTask(task) : boolean convert TextMessage to msg : EIMessage setStatusFailed("Error receiving RITIS Message")

onMessage(message : javax.jms.Messageput message task on acquire queue boolean acknowledge()

Figure 5‑190. EventImportRitisAcquirer:OnMessage (Sequence Diagram)

5.27.2.6 ExternalInterfaceModule:createEventImportTask (Sequence Diagram)

This diagram shows how a new Import Task is created. When the EventImportTranslationHandler wants to queue an event message, it calls the EventImportHandler's createImportTask() method. This creates a new EventImportTask object and puts it on a command queue for execution.

[image: image202.emf]create

TranslatorEventImportTask

createImportTask

(AVList[])

EventImportHandler create new

EventImportTask

handleExternalImport(m_avLists)

execute()

Figure 5‑191. ExternalInterfaceModule:createEventImportTask (Sequence Diagram)

5.27.2.7 ExternalInterfaceModule:eventTranslationStep1Translate (Sequence Diagram)

This diagram depicts the translation of external event messages into Chart Event data. The EventAtisTranslationStep1.translate() method is called by the EventImportTranslationHandler.handleTranslation() method. It takes in a AVList and based on the message name processes it accordingly. For EVENT related messages it pulls the XML string from the first element in the AVList. This xml string contains information for one specific event or incident. It transforms the XML into a CHART-specific XML string using XSL Transformation. The resulting XML string is then added the outbound AVList and the method returns. For REFRESH messages no translation is done. The message is just added to the outbound AVList and the method returns.

[image: image203.emf]Process Event Refresh Message

catch

Created when step

class is constructed using

xsl file specified in props..

Create and AVList with an

element containing the

translated XML string and

add it to outList

try

else

Process Event Info Message

For the

EVENT_REFRESH

message no

translation is done.

Just pass the

message through.

add(avl)

ArrayList: outList

[avl.getMessageName() ==

ExtEventConstants.EVENT_INFO_MSG]

clear()

add(outAvl)

bReturn:boolean = true

bReturn = false

Log

else

bReturn = false

log("unkown message type")

[bReturn]

TRANSLATION_SUCCESS

avl:AVList = inList.iterator.next()

EventImport

TranslationHandler

transform(new StreamSource(inXML), new StreamResulf(outXML)

TRANSLATION_ERROR

Use Event XML string from

inlist to create a

StringBufferInputStream (inXML).

Create a new StringWriter object

to be used to capture the translated

XML (outXML)..

EventAtisTranslationStep1

ArrayList of

AVLists

ArrayList: inList

translate(inList:ArrayList,

outList:ArrayList)

[*inList]

else [avl.getMessageName() ==

ExtEventConstants.EVENT_REFRESH_MSG]

javax.xml.transform.Transformer: m_xmlTransformer

Figure 5‑192. ExternalInterfaceModule:eventTranslationStep1Translate (Sequence Diagram)

5.27.2.8 ExternalInterfaceModule:handleEITranslationTask (Sequence Diagram)

This diagram depicts the handling of translation tasks. This method utilizes configurable translation steps that are configured via props file. The method starts by creating two ArrayLists to be used as input and output by the translation steps. The AVList passed in is added to the input ArrayList before translation step processing begins. The AVList is processed using the defined translation steps. Appropriate processing is done based on the returned value for the translation steps. Note: for the EventImportModule only one translation step is expected to be used.

[image: image204.emf]EventImportTranslationTaskEventImportTranslationHandler ArrayList:

outList

create()

add(inAvl)

[x > 0]

EITranslationStep EventImportHandler [retCode !=

TRANSLATION_SUCCESS]

Log that translation was

stopped prematurely.

More for debugging.

task:EventImportTask = createEventImportTask(outList.toArray())

[retCode ==

TRANSLATION_ERROR]

void

CommandQueueexecute()

ArrayList:

inList

handleTranslation(

inAvl:AVList)

create()

[*m_translationSteps]

Reset inList and outList

between steps.,

inList.clear();

inList = outList;

outList = new ArrayList()

Break out

of loop

retCode:int = translate(inList, outList)

[retCode ==

TRANSLATION_SUCCESS]

Log that translation

returned an Error.

[retCode ==

TRANSLATION_STOP]

void

queueMsgTask(task)

Figure 5‑193. ExternalInterfaceModule:handleEITranslationTask (Sequence Diagram)

5.27.2.9 ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

This diagram shows how the EventImportHandler class imports external events. After copying the XML from the translation handler into an AVList, it validates the data. If invalid it logs that it is ignoring the event. If valid, it populates the BasicEventData structure. It then looks for the external event in the ObjectCache based on the agency identification and event Identification. If the event exists it updates the event using the TrafficEventFactoryWrapper. If the event is new, it calls TrafficEventFactoryWrapper's createExternalTrafficEvent() method to add the new event to the factory which, in turn, updates the Object Cache.

[image: image205.emf]getEventType(avList) if return = traficEventInfo] buildAVList(String xmlData) return

addToTrafficEventList(key, TrafficEvent)

if ExternalTrafficEvent is new

call createTrafficEvent and add

newly created event to hashTable

, if not call updateTrafficEvent.

isChartEvent (eventType) fullRefresh() if(numberOfTry =

 property.retryNumber

Look for event key in Object cache based on agencyIdentification,

and eventIdentification

If event exist we get reference to

TrafficEvent from Object cache

try

this is a fileld-by-filed convertion from XML to AVList createExternalTrafficEvent

(byte[], EventInitiator, eventType, BasicEventData,

null,null,LaneConfig,false)

throw

UnknownEventType exception

getEventInitiator(avList)throw

 CHART2Exeption

EventImportTesk.excecute()EventImportHandler if name of the AVList is Refresh we call fullRefresh() method. minimum data needed to create an externalTrafficEvent : external agency, externalID, description, eventName.. numberOfTry++

throw

 AccessDenied exception

else

TrafficEventFactoryImpl createExternalTrafficEvent

(byte[], EventInitiator, eventType, BasicEventData,

null,null,LaneConfig,false)()

trafficEvent:updateTrafficEventData(BasicEventData)

setBasicEventData(AVList)

EventImportModule

For each AVList call

setBasicEventData

restart()

throwCHART2Exceptionthrow UnknownEventType exception[*for each avList in AVList[]]for * nuberOfTry

TrafficEvent

validate AVList() createChartToken(AVList)

catch

else shutdown()

return

TrafficEventFactoryWrapper [extEventData = null]throw CHART2ExeptionIF not EventExist(key)

handleExternalImport(AVList[])

Figure 5‑194. ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

5.27.2.10 ExternalInterfaceModule:initializeEventImportModule (Sequence Diagram)

This diagram depicts the initialization of the EventImportModule. After the props file is read the ExternalSystemInterface is created and activated with the ORB. The Handlers are created and then initialized in this order: EventImportHandler, EventImportTranslationHandler, EventImportAcquireHandler. Note that the EventImportHandler may wait forever looking for a valid TrafficEventFactory. This is intentional because without the factory, the other handlers have nothing to do.

[image: image206.emf]ExternalSystemConnectionImp:

m_extSysConn

initialize()

props:Properties =

getProperties()

defProps:Properties =

getDefaultProperties()

m_props = create(props, defProps)

m_pushEventSupplier =

createEventChannel.

extSysConnId:Identifier = getPersistentObjectId("EventImpModuleExtSysConnId.id",

m_app.getIdentifierGenerator)

extSysIdString:String = getExtSysIdString()

create(extSysConnId, extSysIdString, ExternalDataType.TRAFFIC_EVENT)

create(extSystemConfig, m_pushSupplier)

EventImportAcquireHandler:

m_aquireHander

EventImportTranslationHandler:

m_translationHandler

EventImportHandler:

m_importHandler

create()

create()

create()

initialize(m_props)

initialize(m_importHander, m_props)

initialize(m_translationHandler,

m_props, m_extSysConn)

void

DefaultServiceApplication

EventImportModuleServiceApplication: m_app EventImportModuleProperties Create and register event channel

ExternalSystem.

EVENT_CHANNEL_EXT_SYSTEM_CONN

CorbaUtilities Assume only one

EventImportModule

per Service.

ExternalSystemConnectionConfig:

extSystemConfig

Activate m_extSysConn, register

its service type and register object

with service app. Left for

implementation. Probably combined

with extSysConnImpl creation in its

own method. Do this here in case

the EventImportHandler takes a

while (forever?) to find a

TrafficEventFactory.

Figure 5‑195. ExternalInterfaceModule:initializeEventImportModule (Sequence Diagram)

5.27.2.11 ExternalInterfaceModule:restartEventImportModule (Sequence Diagram)

This diagram depicts the restart process of the EventImportModule. It begins with the creation of a restart task that manages the restart process independent of the calling method. It is important to point out that the module itself does not restart as the method name might imply. Rather, the three event import data handlers, the EventImportHandler, the EventImportTranslationHandler, and the EventImportAcquireHandler, are each shutdown and restarted with the intent of purging and resetting the data import queue. Order matters and the handlers are stopped in the reverse order from their original startup. During the time in which the data handlers are shutdown, the external connection status is forced to "failed" to bring about a connection reset with the external data source. Once this is complete, the restart task creates the event import data handlers anew. After all three handlers have been successfully created, they are, in turn, initialized so that they begin the external event import processing.

[image: image207.emf]create()create()create()initialize(m_props)initialize(m_importHandler, m_props)initialize(m_translationHandler,m_props, m_extSysConn)EventImportAcquireHandler:m_acquireHandlerEventImportTranslationHandler:m_translationHandlerEventImportHandlerm_importHandlerDefaultServiceApplicationShutdown handlers in order from externalside to chart side.EventImportModuleEventImportAcquireHandler:m_acquireHandlerEventImportTranslationHandler:m_translationHandlerEventImportHandlerm_importHandlerrestart()shutdown()shutdown()shutdown()connectionStatus=failedRestart handlers inreverse order fromchart side to externalsidevoidEventImportModuleRestartTaskcreate()

Figure 5‑196. ExternalInterfaceModule:restartEventImportModule (Sequence Diagram)

5.27.2.12 ExternalInterfaceModule:shutdownEventImportModule (Sequence Diagram)

This diagram depicts the shutdown of the EventImportModule. Note: handlers are shutdown the reverse order they were originally initialized in.

[image: image208.emf]EventImportModule

EventImportHandler

m_importHandler

EventImportTranslationHandler

:m_translationHandler

shutdown()

shutdown()

EventImportAcquireHandler

:m_acquireHandler

Shutdown handers

inorder from external

side to chart side.

shutdown()

shutdown()

Other corba related cleanup

left for implementation.

Deactivate

ExternalSystemConnectionImpl,

disconnect from event channel,

etc....

Default

Service

Application

Figure 5‑197. ExternalInterfaceModule:shutdownEventImportModule (Sequence Diagram)

5.27.2.13 ExternalIterfaceModule:fullRefresh (Sequence Diagram)

This diagram shows how the CHART handles fullRefresh method when refresh message is received. It gets last UpdateTime for each traffic Event in Object cache and compares it to the time from refresh message. If lastUpdateTime less than refresh time call TrafficEvent.close() method.

[image: image209.emf]buildAVList(String xmlData) EventImportTesk.excecute()handleExternalImport(AVList[]) TrafficEvent trafficEvent.close()

for each trafficEvent

in Object cache

if(traffivEvent.updateTime <

AVElement.value)

EventImportHandler [extEventData = null]throw CHART2Exeptionif(listName == REFRESH) return

fullRefresh()

Figure 5‑198. ExternalIterfaceModule:fullRefresh (Sequence Diagram)
6 Mapping To Requirements

The following table shows how the requirements in the CHART R3B2 Requirements document map to design elements contained in this design.
	Req No.
	Requirement
	Type
	Design Element (Use Case(s))
	Additional Elements

	1
	ADMINISTER SYSTEMS AND EQUIPMENT
	HEADER
	N/A
	N/A

	1.1
	ADMINISTER CHART ORGANIZATIONS, LOCATIONS, AND USERS
	HEADER
	N/A
	N/A

	1.1.1
	MAINTAIN CHART ORGANIZATIONS AND GEOGRAPHIC AREAS OF RESPONSIBILITY. The system shall allow the user to separately specify identify organizations, types of locations, and geographic areas of responsibility, and to associate them to each other.
	FUTURE
	N/A
	N/A

	1.1.1.5
	Maintain Organization Roles and Contacts.
	HEADER
	N/A
	N/A

	1.1.1.5.1
	The system shall allow the system administrator to define role types (relative to events for which they would be notified or asked to respond, not necessarily business title). Suggestion/example to be validated: “MEMA State Commander”.
	Notification
	UserManagementClassDiagram
	

	1.1.1.5.2
	The system shall allow the system administrator to view point of contact information including default notification method. This includes e-mail. *
	Notification
	Manage Notification Individuals
	

	1.1.1.5.3
	The system shall allow users to maintain contact information for notification recipients. *
	Notification
	Manage Notification Individuals
	

	 1.1.1.5.3.1
	The system shall allow users to maintain contact groups. *
	Notification
	Manage Notification Groups
	

	1.1.1.5.3.1.1
	The contact group shall include a list of contacts.
	Notification
	Manage Notification Groups
	

	1.1.1.5.3.1.2
	The contact group shall include, for each contact, an indication of which types of notification should be sent to that contact (page, email).
	FUTURE
	N/A
	N/A

	1.1.1.5.3.2
	The system shall obtain the contact information for all available contacts. *
	Notification
	Manage Notification Groups
	

	1.1.1.5.3.3
	<deleted> *
	DELETED
	N/A
	N/A

	1.1.1.5.4
	The system shall allow the system administrator to enter the corresponding escalation point of contact information for each point of contact into the Notification Tool. Suggestion/example to be validated e-mail, phone/page number; and indicate default notification method. *
	Notification
	Manage Notification Groups Manage Notification Individuals
	

	1.1.1.5.5
	The system shall allow the system administrator to assign an individual contact to one or more contact groups via the Notification Tool. *
	Notification
	Manage Notification Groups
	

	2
	PREPARE FOR EVENTS AND EMERGENCIES
	HEADER
	N/A
	N/A

	2.3
	MAINTAIN TRAFFIC PLANS
	HEADER
	N/A
	N/A

	2.3.3
	MAINTAIN DEVICE PLANS
	HEADER
	N/A
	N/A

	2.3.3.1
	The system shall allow the system administrator to create device plans.
	EXISTING
	N/A
	N/A

	2.3.3.1.1
	The system shall allow a suitably privileged user to create a device plan. *
	EXISTING
	N/A
	N/A

	2.3.3.1.2
	The system shall not exceed 5 seconds in displaying a list of messages and message libraries to the initiating user when the user creates a new device plan. *
	EXISTING
	N/A
	N/A

	2.3.3.1.3
	The system shall provide sort and search capabilities for the lists of device plans.
	Plans
	Sort Plans, View Plans, Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, getFilterableAttributes, processViewPlanListReq, plans_data_classes

	2.3.3.1.3.1
	The system shall provide a free form text search capability for searching for device plans.
	Plans
	View Plans, Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, getFilterableAttributes, processViewPlanListReq, plans_data_classes

	2.3.3.1.3.1.1
	The device plan text search capability shall allow searching for free form text in the plan name.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, plans_data_classes

	2.3.3.1.3.1.2
	The device plan text search capability shall allow searching for free form text in user-specified keywords associated with device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, plans_data_classes

	2.3.3.1.3.1.3
	The device plan text search capability shall allow searching for free form text in the device message text in device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, plans_data_classes

	2.3.3.1.3.1.4
	The device plan text search capability shall allow searching for free form text in device names in device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlanSJSON, matchesFilter, matchesKeywordFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.2
	The system shall allow filtering on one or multiple event types when searching for device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.3
	The system shall allow filtering on one or multiple location aliases when searching for device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.4
	The system shall allow filtering on one or multiple counties when searching for device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.5
	The system shall allow filtering on one or multiple regions when searching for device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.6
	The system shall allow filtering on one or multiple operations centers when searching for device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.7
	The system shall allow filtering on one or multiple network connection sites when searching for device plans.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.8
	The system shall allow the user to indicate whether to show device plans which match all of the chosen filters, or any one (or more) of the filters, or none of the filters.
	Plans
	Filter Plans
	GUI:processGetFilteredPlansJSON, matchesFilter, plans_data_classes

	2.3.3.1.3.9
	The system shall allow sorting on device plan name.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesKeywordFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.3.10
	The system shall allow sorting on the event type(s) associated with a device plan.
	Plans
	View Plans, Filter Plans
	GUI: processGetFilteredPlansJSON, processViewPlanListReq, plans_data_classes

	2.3.3.1.3.11
	The system shall allow sorting on date the device plan or any of its plan items was last used in a response plan.
	Plans
	View Plans
	GUI: processViewPlanListReq, plans_data_classes

	2.3.3.1.4
	The device plan shall include the plan description.
	Plans
	View Plans
	GUI: processViewPlanListReq, plans_data_classes

	2.3.3.1.5
	The system shall provide filter attributes to facilitate filtering, sorting, and searching of device plans. *
	Plans
	View Plans, Filter Plans
	GUI: processViewPlanListReq, processprocessGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, plans_data_classes Server: SetPlanFilterAtrributes, GetPlanFIlterAttributes

	2.3.3.1.5.1
	The system shall allow the user to select one or more event types to be used as filter attributes for a device plan.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes Server: SetPlanFilterAttibutes

	2.3.3.1.5.2
	The system shall allow the user to select one or more location aliases to be used as filter attributes for a device plan.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes Server: SetPlanFilterAttibutes

	2.3.3.1.5.3
	The system shall allow the user to select one or more counties or regions to be used as filter attributes for a device plan.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes Server: SetPlanFilterAttibutes

	2.3.3.1.5.4
	The system shall allow the user to select one or more operations centers to be used as filter attributes for a device plan.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, getFilterableAttributes, plans_data_classes Server: SetPlanFilterAttibutes

	2.3.3.1.5.5
	The system shall allow the user to specify one or more freeform keywords to be used as filter attributes for a device plan.
	Plans
	Filter Plans
	GUI: processGetFilteredPlansJSON, matchesFilter, matchesKeywordFilter, getFilterableAttributes, plans_data_classes

	2.3.3.1.6
	The device plan shall include a list of plan items. *
	EXISTING
	N/A
	N/A

	2.3.3.1.7
	The allowable plan items shall include putting a library message on a DMS. *
	EXISTING
	N/A
	N/A

	2.3.3.1.8
	The system shall allow the system administrator to assign messages to devices.
	EXISTING
	N/A
	N/A

	2.3.3.1.9
	The system shall allow a suitably privileged user to assign a DMS message from a message library to a DMS plan item. *
	EXISTING
	N/A
	N/A

	2.3.3.1.10
	The system shall allow a suitably privileged user to assign a DMS message from a message library to a group of DMSs to create multiple DMS plan items at the same time. *
	Plans
	Add DMS Plan Items
	GUI: processAddDMSPlanItemsReq, plans_data_classes

	2.3.3.1.11
	When a group of DMSs are selected to receive the same message, the message editor shall format the message for each DMS type selected.
	Plans
	Add DMS Plan Items
	GUI: processAddDMSPlanItemsReq, plans_data_classes

	2.3.3.1.12
	The allowable plan items shall include putting a library message on a HAR. *
	EXISTING
	N/A
	N/A

	2.3.3.1.13
	The system shall allow a suitably privileged user to assign a HAR message from a message library to a HAR plan item. *
	EXISTING
	N/A
	N/A

	2.3.3.1.13.1
	The system shall allow a suitably privileged user to assign a HAR message from a message library to a group of HARs to create multiple HAR plan items at the same time.
	Plans
	Add HAR Plan Items
	GUI: processAddHARPlanItemsReq, plans_data_classes

	2.3.3.1.15
	<deleted> *
	DELETED
	N/A
	N/A

	2.3.3.5
	The system shall capture userid and date/timestamps for when each device plan was created, modified, and last accessed.
	FUTURE
	N/A
	N/A

	2.3.3.5.1
	The system shall store the user id and date/timestamp when each device plan was created.
	Plans
	Create Plan
	Server: Add Plan

	2.3.3.5.1.1
	The system shall store the user id of the user who created the device plan.
	Plans
	Create Plan
	Server: Add Plan

	2.3.3.5.1.2
	The system shall store the date/timestamp that the device plan was created.
	Plans
	Create Plan
	Server: Add Plan

	2.3.3.5.2
	The system shall store the user id and date/timestamp when each device plan was last modified.
	FUTURE
	N/A
	N/A

	2.3.3.5.2.1
	The system shall store the user id of the user who last modified the device plan.
	FUTURE
	N/A
	N/A

	2.3.3.5.2.2
	The system shall store the date/timestamp that the device plan was last modified.
	FUTURE
	N/A
	N/A

	2.3.3.5.3
	The system shall store the user id and date/timestamp when each device plan (or at least one of its plan items) was last copied into the response plan of an open or pending traffic event.
	FUTURE
	N/A
	N/A

	2.3.3.5.3.1
	The system shall store the user id of the user who last copied the device plan (or at least one of its plan items) into the response plan of an open or pending traffic event.
	FUTURE
	N/A
	N/A

	2.3.3.5.3.2
	The system shall store the date/timestamp that the device plan (or at least one of its plan items) was last copied into the response plan of an open or pending traffic event.
	Plans
	Edit Plan
	Server: Add Plan, Add Item

	2.5
	SCHEDULE ACTIVITIES *
	HEADER
	N/A
	N/A

	2.5.1
	The system shall allow a suitably privileged user to create a schedule. *
	Scheduler
	Create Schedule
	GUI: AddEditSchedule, createSchedule

	2.5.1.1
	The system shall require the user to name a schedule. *
	Scheduler
	Specify Schedule Attributes
	GUI: AddEditSchedule

	2.5.1.1.1
	The system shall prevent the user from creating a new schedule with a schedule name that is known to already exist in the system.
	Scheduler
	Specify Schedule Attributes
	GUI: AddEditSchedule

	2.5.1.1.2
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.1.1.2.1
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.1.1.2.2
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.1.1.2.3
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.1.2
	The system shall allow the user to store a description for a schedule. *
	Scheduler
	Specify Schedule Attributes
	GUI:AddEditSchedule, GUIScheduleClasses

	2.5.1.3
	The system shall require the user to select the assigned operations center for a schedule. *
	Scheduler
	Specify Schedule Attributes
	GUI: AddEditSchedule, GUIScheduleClasses

	2.5.1.3.1
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.1.3.2
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.1.3.3
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.2
	The system shall allow a suitably privileged user to attach zero, one or more actions to a schedule. *
	Scheduler
	Specify Schedule Data
	GUI: AddEditOpenEventAction, GUIScheduleClasses

	2.5.2.1
	The system shall support device online and offline actions. *
	FUTURE
	N/A
	N/A

	2.5.2.2
	The system shall support a DMS message action. *
	FUTURE
	N/A
	N/A

	2.5.2.3
	The system shall support a HAR message action. *
	FUTURE
	N/A
	N/A

	2.5.2.4
	The system shall support a camera (source) to monitor (destination) action. *
	FUTURE
	N/A
	N/A

	2.5.2.5
	The system shall support a camera tour to monitor action. *
	FUTURE
	N/A
	N/A

	2.5.2.6
	The system shall support a notification action. *
	FUTURE
	N/A
	N/A

	2.5.2.7
	The system shall support a plan activation action. *
	FUTURE
	N/A
	N/A

	2.5.2.8
	The system shall support an Open Event action.
	Scheduler
	Specify Schedule Data
	GUI: AddEditOpenEventAction, GUIScheduleClasses

	2.5.2.8.1
	The system shall allow any pending event to be used as the event to open in an Open Event action.
	Scheduler
	Specify Schedule Data
	GUI: getAddEditOpenEventActionForm, GUIScheduleClasses

	2.5.2.8.2
	When specifying an Open Event action, the user shall be able to specify that when the schedule fires, this single action will generate its own specific Open Scheduled Event Alert independent of any other actions on the schedule.
	FUTURE
	N/A
	N/A

	2.5.2.8.2.1
	The default setting shall be for an Open Event action to generate its own specific Open Scheduled Event Alert.
	FUTURE
	N/A
	N/A

	2.5.2.8.2.2
	If not specified to open its own Open Scheduled Event Alert, when the schedule fires, this action will be listed as one of the actions in a single combined Execute Scheduled Actions Alert along with all other actions not specified to open their own alert.
	FUTURE
	N/A
	N/A

	2.5.3
	The system shall allow a suitably privileged user to specify timestamps for a schedule to be activated. *
	Scheduler
	Specify Schedule Attributes, Specify Recurring Timing Pattern, Specify Discrete Timing Pattern
	GUI: SpecifyScheduleAttributes, GUIScheduleClasses

	2.5.3.1
	The system shall allow zero, one, or more activation times for a schedule.
	Scheduler
	Specify Schedule Attributes, Specify Recurring Timing Pattern, Specify Discrete Timing Pattern
	GUI: SpecifyScheduleAttributes, GUIScheduleClasses

	2.5.3.2
	The system shall allow activation times to be specified either by specifying a recurring schedule, or by listing specific dates/times (but not both)
	Scheduler
	Specify Schedule Attributes, Specify Recurring Timing Pattern, Specify Discrete Timing Pattern
	GUI: SpecifyScheduleAttributes, GUIScheduleClasses

	2.5.3.2.1
	The system shall allow recurring activation times for a schedule to be specified by choosing days of the week (e.g. Monday, Tuesday) at which it is to occur.
	Scheduler
	Specify Recurring Timing Pattern
	GUI: SpecifyScheduleAttributes, GUIScheduleClasses

	2.5.3.2.1.1
	The system shall allow a time to be specified for a recurring schedule. The same time will apply to every day of the week on which the schedule is specified to activate.
	Scheduler
	Specify Recurring Timing Pattern
	GUI: SpecifyScheduleAttributes, GUIScheduleClasses

	2.5.3.2.1.2
	The system shall allow multiple times to be specified for a recurring schedule. The same set of times will apply to every day of the week on which the schedule is specified to activate.
	Scheduler
	Specify Recurring Timing Pattern
	GUI: SpecifyScheduleAttributes, GUIScheduleClasses

	2.5.3.2.1.2.1
	The system shall prohibit the same time to be entered more than once for a recurring schedule.
	Scheduler
	Specify Recurring Timing Pattern
	GUI: SpecifyScheduleAttributes

	2.5.3.2.1.3
	The system shall allow a user to specify the date after which the recurring schedule will end.
	Scheduler
	Specify Recurring Timing Pattern
	GUI: SpecifyScheduleAttributes

	2.5.3.2.1.4
	The system shall allow a user to indicate that there is no end date for the recurring schedule, that is, to specify that the recurring schedule will never end.
	Scheduler
	Specify Recurring Timing Pattern
	GUI: SpecifyScheduleAttributes

	2.5.3.2.2
	The system shall allow a user to specify the activation times by listing specific datetimes at which the schedule will activate.
	Scheduler
	Specify Discrete Timing Pattern
	GUI: SpecifyScheduleAttributes

	2.5.3.2.2.1
	The system shall prohibit the exact same datetime from existing more than once within a given activation schedule.
	Scheduler
	Specify Discrete Timing Pattern
	GUI: SpecifyScheduleAttributes

	2.5.3.3
	The system shall allow a suitably privileged user to disable a schedule. (This allows a schedule to be “turned off” without removing planned future activations.
	Scheduler
	Specify Schedule Attributes.
	GUI: SpecifyScheduleAttributes, updateSchedule

	2.5.3.3.1
	A schedule which is disabled shall not issue an alert when a scheduled activation time arrives.
	Scheduler
	Activate Schedule
	activateSchedule

	2.5.3.3.1.1
	<deleted>
	DELETED
	N/A
	N/A.

	2.5.3.3.1.2
	When a scheduled activation time arrives for a disabled schedule, the last used time of the schedule shall not be updated.
	Scheduler
	Activate Schedule
	activateSchedule

	2.5.3.3.2
	The system shall allow a suitably privileged user to enable a disabled schedule.
	Scheduler
	Specify Schedule Attributes.
	GUI: SpecifyScheduleAttributes, updateSchedule

	2.5.3.4
	The system shall store the last used time of each schedule as the most recent time the schedule was activated or any of its actions were manually executed.
	Scheduler
	Maintain Schedule Last Used Time
	activateSchedule, scheduleExecuted

	2.5.4
	The system shall allow a suitably privileged user to execute a schedule immediately. *
	Scheduler
	Execute Scheduled Actions
	GUI: ExecuteScheduledActions

	2.5.4.1
	When a user chooses to execute a schedule immediately, the user will be presented with an option to cancel the next scheduled activation of the schedule, if the next scheduled activation time is within a configurable number of minutes from the current time. *
	Scheduler
	Suppress Next Activation
	GUI: ExecuteScheduledActions, scheduleExecuted, activateSchedule

	2.5.4.2
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.6
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.7
	<deleted> *
	DELETED
	N/A
	N/A

	2.5.8
	The system shall allow a suitably privileged user to modify a schedule.
	Scheduler
	Edit Schedule
	GUI: AddEditSchedule, updateSchedule

	2.5.8.1
	The system shall allow the user to modify the schedule name to any non-blank name.
	Scheduler
	Specify Schedule Attributes
	GUI: AddEditSchedule

	2.5.8.1.1
	The system shall prevent the user from entering a schedule name that is known to already exist in the system.
	Scheduler
	Specify Schedule Attributes
	GUI: AddEditSchedule

	2.5.8.2
	The system shall allow the user to modify the schedule description.
	Scheduler
	Specify Schedule Attributes
	GUI: SpecifyScheduleAttributes

	2.5.8.3
	The system shall allow the user to modify the assigned operations center for the schedule.
	Scheduler
	Specify Schedule Attributes
	GUI: SpecifyScheduleAttributes

	2.5.8.3.1
	The system shall prohibit the user from submitting the edit with no operations center specified.
	Scheduler
	Specify Schedule Attributes
	GUI: SpecifyScheduleAttributes

	2.5.8.4
	The system shall allow the user to modify the timestamps for a schedule to be activated as specified in requirement 2.5.3 and its subrequirements.
	Scheduler
	Specify Schedule Attributes,
	GUI: SpecifyScheduleAttributes

	2.5.8.5
	The system shall allow the user to add actions to the schedule as specified in requirement 2.5.2 and its subrequirements.
	Scheduler
	Specify Schedule Data, Add Open Event Action
	GUI: AddEditOpenEventAction

	2.5.8.6
	The system shall allow the user to remove actions from the schedule.
	Scheduler
	Specify Schedule Data, Remove Schedule Action
	GUI: RemoveScheduleAction

	2.5.8.6.1
	The system shall require confirmation from the user prior to removing an action.
	Scheduler
	Specify Schedule Data, Remove Schedule Action
	GUI: RemoveScheduleAction

	2.5.8.7
	The system shall allow the user to edit actions contained in the schedule.
	Scheduler
	Specify Schedule Data, Edit Open Event Action
	GUI: AddEditOpenEventAction

	2.5.8.7.1
	When editing an Open Event action, the system shall allow the user to select any pending event to be used as the event to be opened.
	Scheduler
	Specify Open Event Action Attributes.
	GUI: getAddEditOpenEventActionForm

	2.5.8.7.2
	When editing an Open Event action, the system shall allow the user to choose whether the Open Event action is to open its own Open Scheduled Event Alert when the schedule is activated, or if the Open Event action is to be included in a combined Execute Scheduled Actions Alert along with all other actions not specified to open their own alert.
	FUTURE
	N/A
	N/A

	2.5.9
	The system shall allow a suitably privileged user to delete a schedule.
	Scheduler
	Delete Schedule
	GUI: RemoveSchedule, removeSchedule

	2.5.9.1
	The system shall prompt the user for confirmation before deleting a schedule.
	Scheduler
	Delete Schedule
	GUI: RemoveSchedule

	2.5.10
	The system shall allow a suitably privileged user to view schedules.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.1
	The system shall show the name of each displayed schedule.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.2
	The system shall show the description of each displayed schedule.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.3
	The system shall show the operations center assigned to each displayed schedule.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.4
	The system shall show the schedule type for each displayed schedule, where schedule type includes recurring, multiple dates/times, one time, and not scheduled.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.5
	The system shall show a summary of the actions contained in each displayed schedule.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.5.1
	The summary of actions shall show the action types included in the schedule.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.5.2
	The summary of actions shall show the number of actions of each type included in the schedule.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.6
	The system shall show the next activation time (if any) for each displayed schedule.
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.7
	The system shall show the last used time for each displayed scheduled, which is the latest of the most recent activation time (if any), the most recent manual execution (if any), or the most recent edit time (if any).
	Scheduler
	View Schedules
	GUI: ViewSchedules

	2.5.10.8
	The system shall allow the user to filter the displayed schedules.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.8.1
	The system shall allow the displayed schedules to be filtered by assigned Operations Center.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.8.2
	The system shall allow the displayed schedules to be filtered by Schedule Type.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.8.3
	The system shall allow the displayed schedules to be filtered by type of actions contained in the schedule.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.8.4
	The system shall allow the displayed schedules to be filtered by the next activation time, to include those with a next activation time of today, intervals of next X days, or never.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.9
	The system shall allow the user to sort the displayed schedules.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.9.1
	The system shall allow the displayed schedules to be sorted by name.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.9.2
	The system shall allow the displayed schedules to be sorted by description.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.9.3
	The system shall allow the displayed schedules to be sorted by assigned operations center.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.9.4
	The system shall allow the displayed schedules to be sorted by schedule type.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.9.5
	The system shall allow the displayed schedules to be sorted by next activation time.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.9.6
	The system shall allow the displayed schedules to be sorted by last activation/execution time.
	Scheduler
	View Schedules
	GUI: ScheduleDynListSupporter:createDynList

	2.5.10.10
	The system shall allow the user to view all details for any selected schedule.
	Scheduler
	View Schedules
	GUI: viewSchedule

	2.5.11
	The system shall issue the appropriate alert(s) when a schedule activation time arrives.
	Scheduler
	Activate Schedules, Create Execute Scheduled Actions Alert
	activateTimedOutSchedules, activateIfNecessary, activateSchedule

	2.5.11.1
	The system shall provide the schedule name, schedule description, and direct access to the schedule in each alert issued by a schedule,
	Scheduler
	Create Execute Scheduled Actions Alert
	GUI: data.alerts.classes

	2.5.11.2
	If the schedule contains no actions, an Execute Schedule Actions Alert will be issued with an empty list of actions. (The schedule description can be used as an explanation of the intent of the reminder.)
	Scheduler
	Create Execute Scheduled Actions Alert
	activateTimedOutSchedules, activateIfNecessary, activateSchedule

	2.5.11.3
	Any action for which an action-specific alert has been requested shall generate an action-specific alert of the appropriate type.
	FUTURE
	N/A
	N/A

	2.5.11.3.1
	An Open Event action for which an action-specific alert has been request shall issue its own Open Scheduled Event alert as specified by the administrator per requirement 2.5.2.8.2.
	FUTURE
	N/A
	N/A

	2.5.11.3.1.1
	An Open Event Alert shall be presented to the operator with a reference to the pending event.
	FUTURE
	N/A
	N/A

	2.5.11.4
	All actions will be combined into a single Execute Scheduled Actions Alert.
	Scheduler
	Create Execute Scheduled Actions Alert
	GUI: data.alerts.classes, activateTimedOutSchedules, activateIfNecessary, activateSchedule

	2.5.11.4.1
	An Execute Scheduled Actions Alert shall be presented to the operator with a listing of the actions contained in the schedule.
	Scheduler
	View Execute Scheduled Actions Alert Details
	GUI: resolveAlert

	2.5.11.4.1.1
	Within an Execute Scheduled Actions Alert, the Open Event action shall provide read-only access to the pending event.
	Scheduler
	View Execute Scheduled Actions Alert Details
	GUI: resolveAlert, viewEventDetails

	2.5.11.5
	<deleted>
	DELETED
	N/A
	N/A

	2.5.12
	The system shall automatically remove a schedule from the system if the schedule has no future activations scheduled, when the current time moves beyond the last used time plus an administrator-configurable system-wide relative schedule removal time.
	Scheduler
	Delete Schedule
	removeTimedOutSchedules, removeIfNecessary, removeSchedule

	2.5.13
	The system shall allow a suitably privileged user to specify a system-wide relative schedule removal time, which affects automatic removal of obsolete schedules in accordance with requirement 2.5.12.
	Scheduler
	Configure Relative Schedule Removal Time
	GUI: ConfigureScheduleSettings, removeIfNecessary

	3
	MONITOR TRAFFIC AND ROADWAYS
	HEADER
	N/A
	N/A

	3.2
	Record Conditions
	HEADER
	N/A
	N/A

	3.2.3
	The system shall provide a communications log.
	EXISTING
	N/A
	N/A

	3.2.3.1
	The system shall add entries to the communication log when a traffic event is opened or closed.
	EXISTING
	N/A
	N/A

	3.2.3.2
	The system shall allow a suitably privileged user to add an entry to the communications log.
	EXISTING
	N/A
	N/A

	3.2.3.3
	The system shall keep at least the last 24 hours of communications log entries online.
	EXISTING
	N/A
	N/A

	3.2.3.4
	The system shall allow a suitably privileged user to view the online communication log entries.
	EXISTING
	N/A
	N/A

	3.2.3.4.1
	The system shall allow the user to specify the number of log entries to be shown per viewable page.
	Logs
	View CommLog, Filter CommLog, View Event History, Search Event History
	GUI: getNumEntriesPerPage, setNumEntriesPerPage, getEntriesOnPage, GUICommLogServletClasses, viewCommLog

	3.2.3.4.2
	The system shall allow the user to view the prior or next page of entries.
	Logs
	View CommLog, Search CommLog
	GUI:getEntriesOnPage, viewDynListPage, viewCommLogPage, GUICommLogServletClasses

	3.2.3.4.3
	The system shall allow the user to show or hide system generated entries.
	Logs
	View CommLog
	GUI: getDynListSubjects, setLogEntryTypeInclusionFlags, GUICommLogServletClasses

	3.2.3.4.4
	The system shall allow the user to show or hide user generated entries.
	Logs
	View CommLog
	GUI: getDynListSubjects, setLogEntryTypeInclusionFlags GUICommLogServletClasses

	3.2.3.5
	The system shall allow a suitably privileged user to search the online communication log entries.
	EXISTING
	N/A
	N/A

	3.2.3.5.1
	The system shall allow the user to specify if user generated entries are to be included or excluded from the search.
	Logs
	Search CommLog
	GUI:getDynListSubjects, setLogEntryTypeInclusionFlags, searchCommLog, GUICommLogServletClasses

	3.2.3.5.2
	The system shall allow the user to specify if system generated entries are to be included or excluded from the search.
	Logs
	Search CommLog
	GUI:getDynListSubjects, setLogEntryTypeInclusionFlags, searchCommLog, GUICommLogServletClasses

	3.3
	ISSUE ALERT OR POST INFORMATION
	HEADER
	N/A
	N/A

	3.3.3
	The system shall compare the timing for scheduled events (suggestion/example: e.g., construction setup from EORS, Ravens game) to the system clock, and issue an alert if the times are the same and the events are geographically close to each other. *
	FUTURE
	N/A
	N/A

	3.3.3.1
	The system shall issue an alert for scheduled event open times when conflicting events are detected. *
	FUTURE
	N/A
	N/A

	3.3.3.2
	<deleted> *
	DELETED
	N/A
	N/A

	3.3.4
	The system shall compare scheduled lane closures (for incidents) or lane-narrowing (for construction events) with permits in EORS for wide/heavy loads to alert and/or divert the vehicle from an incident or a limited lane area.
	FUTURE
	N/A
	N/A

	3.3.10
	The system shall prevent duplicate, non-closed alerts from being displayed to users.
	EXISTING
	N/A
	N/A

	3.3.10.6
	Two Execute Scheduled Actions Alerts shall be considered duplicates when the schedule they reference and the activation time they specify are the same.
	Scheduler
	Confirm Unique Alert
	

	3.4
	RECEIVE AND RESPOND TO ALERT
	HEADER
	N/A
	N/A

	3.4.2.
	A suitably privileged user shall be able to manage alerts through the following states: New, Accepted, Delayed, and Closed.
	EXISTING
	N/A
	N/A

	3.4.2.6
	A suitably privileged user shall be able to Resolve alerts in the New, Accepted, and Delayed states
	EXISTING
	N/A
	N/A

	3.4.2.6.6
	Clicking the Resolve link of an Execute Scheduled Actions Alert containing at least two actions shall take the user to an Execute Scheduled Actions page.
	Scheduler
	Resolve Alert
	GUI: resolveAlert

	3.4.2.6.6.1
	The system shall present the user with a list of actions attached to the schedule on the Execute Scheduled Actions page.
	Scheduler
	Execute Schedule Actions
	GUI: resolveAlert, getExecuteScheduleActionsForm

	3.4.2.6.6.1.1
	The system shall allow the user to view details of the actions listed in the Execute Scheduled Actions Alert.
	Scheduler
	Execute Schedule Actions
	GUI: resolveAlert, getExecuteScheduleActionsForm

	3.4.2.6.6.1.2
	The system shall prohibit the user from modifying details of the actions listed in the Execute Scheduled Actions Alert.
	Scheduler
	Execute Schedule Actions
	GUI: resolveAlert, getExecuteScheduleActionsForm

	3.4.2.6.6.1.3
	A suitably privileged user shall be able to select or unselect actions in the Execute Scheduled Actions Alert to be executed.
	Scheduler
	Execute Schedule Actions
	GUI: ExecuteScheduledActions

	3.4.2.6.6.1.3.1
	All actions which the user has rights to execute will be selected by default.
	Scheduler
	Execute Schedule Actions
	GUI: Detailed Design Doc 5.1.2.5

	3.4.2.6.6.1.3.2
	All actions which the user does not have rights to execute will be unselected and unselectable.
	Scheduler
	Execute Schedule Actions
	GUI: Detailed Design Doc 5.1.2.5

	3.4.2.6.6.2
	The system shall allow the user to cancel without executing any actions.
	Scheduler
	Execute Schedule Actions
	GUI: Detailed Design Doc 5.1.2.5

	3.4.2.6.6.3
	When the user chooses to execute the selected actions, the system shall execute each selected action. (The actions will not necessarily be executed in the order listed or selected.)
	Scheduler
	Execute Schedule Actions
	GUI: ExecuteScheduledActions, executeSequentially

	3.4.2.6.6.3.1
	When executing multiple selected actions, a failure of one or more actions shall not prevent the attempted execution of any other actions.
	Scheduler
	Execute Schedule Actions
	GUI: ExecuteScheduledActions, executeSequentially

	3.4.2.6.6.3.2
	After execution of all selected actions has been initiated, the system shall display execution status of each selected action.
	Scheduler
	Execute Schedule Actions
	GUI: ExecuteScheduledActions, executeSequentially

	3.4.2.6.6.3.2.1
	If execution is still in progress or has failed, the execution status of an Open Event action on the Execute Selected Actions display shall provide the name and direct access to the scheduled Pending traffic event.
	Scheduler
	Execute Schedule Actions
	GUI: Detailed Design Doc 5.1.2.5

	3.4.2.6.6.3.2.2
	If execution is successful, the execution status of an Open Event action on the Execute Selected Actions display shall provide the name and direct access to the newly opened traffic event.
	Scheduler
	Execute Schedule Actions
	GUI: Detailed Design Doc 5.1.2.5

	3.4.2.6.6.4
	When the user chooses to execute an Open Event action while resolving an Execute Scheduled Actions Alert, the system shall always open a copy of the referenced pending event, leaving the referenced pending event in the system in the pending state.
	Scheduler
	Execute Schedule Actions
	GUI: ExecuteScheduledActions, executeSequentially

	3.4.2.6.7
	Clicking the Resolve link of an Execute Scheduled Actions Alert containing only a single action shall take the user to a page appropriate for executing the specific type of action contained in the alert.
	Scheduler
	Resolve Alert
	GUI: resolveAlert

	3.4.2.6.7.1
	Clicking the Resolve link of an Execute Scheduled Actions Alert containing only a single action which is an Open Event action shall take the user to a read-only display of the scheduled pending traffic event. (From here the user can open a copy of the pending event (usually) or open the event directly.).
	Scheduler
	Resolve Alert
	GUI: resolveAlert

	3.4.2.6.7.1.1
	If the schedule which generated the alert is the only schedule referencing the pending event, and if this is the last scheduled activation time for this schedule, the system shall warn the user if the user chooses to open a copy of the pending event instead of opening the event directly (which would leave the pending event in the system).
	Scheduler
	Open Copy of Pending Event
	GUI: GUIScheduleClasses CD, trafficevents_classes CD

	3.4.2.6.7.1.2
	If the schedule which generated the alert is not the only schedule referencing the pending event, or if this is not the last scheduled activation time for this schedule, the system shall warn the user if the user chooses to open the pending event directly instead of opening a copy of the pending event (which would remove the pending event from the system and prevent future scheduled activations of this pending event from working).
	Scheduler
	Open Pending Event
	GUI: GUIScheduleClasses CD, trafficevents_classes CD

	3.4.2.6.7.1.3
	If the schedule which generated the alert is not the only schedule referencing the pending event or if this is not the last scheduled activation time for this schedule, and the user does not have the right to modify schedules, the system shall prohibit the user from opening the event directly. (The consequent removal of the pending event would modify the affected schedule(s), which the user cannot do. The user will always have the option to open a copy of the pending event.)
	Scheduler
	Open Pending Event
	GUI: GUIScheduleClasses CD, trafficevents_classes CD

	3.4.2.6.8
	Clicking the Resolve link of an Execute Scheduled Actions Alert containing zero actions shall take the user to the alert details page for the alert.
	Scheduler
	Resolve Alert
	GUI: resolveAlert

	3.4.5
	The system shall be able to receive alerts from external systems. Suggestions/examples to be validated include alerts coming through Center to Center external interfaces (e.g., Amber alerts from EMNet, Homeland Security alerts, private traffic service, CAD 911 or some feed from RITIS) related to incidents or events that have the potential for affecting traffic or roadways within CHART's purview.
	FUTURE
	N/A
	N/A

	3.5
	ISSUE NOTIFICATION
	HEADER
	N/A
	N/A

	3.5.1
	The system shall allow a suitably privileged user to send a notification.
	Notification
	Send Notification
	GUI: getSendNotificationForm, sendNotification

	3.5.1.1
	The system shall support multiple notification methods.
	Notification
	Manage Notification Individuals
	

	3.5.1.1.1
	The system shall support the sending of notifications by email. <moved from 4.2.3.4.7.5.1>
	Notification
	Manage Notification Individuals
	

	3.5.1.1.2
	The system shall support the sending of notifications by page. <drawn from 4.2.3.4.7.7>
	Notification
	Manage Notification Individuals
	

	3.5.1.1.2.1
	The paging Notification Tool shall be usable from multiple operations centers via the GUI. <moved from 4.2.3.4.7.7.1>
	Notification
	 Send Notification
	Figure 2-3 CHART Internal Interfaces (Server deployment) a Notification module is installed on each CHART server.

	3.5.1.1.2.2
	The paging Notification Tool shall support multiple paging service providers. <combined from 4.2.3.4.7.7.2, 4.2.3.4.7.7.4, and 4.2.3.4.7.7.5>
	FUTURE
	N/A
	 N/A

	3.5.1.1.3
	The system shall support the sending of notifications by fax. <moved from 4.2.3.4.7.4>
	FUTURE
	N/A
	 N/A

	3.5.1.1.3.1
	The fax Notification Tool shall be usable from multiple operations centers via the GUI. <moved from 4.2.3.4.7.4.1>
	FUTURE
	 N/A
	N/A

	3.5.1.1.4
	The system shall support the sending of text to voice notifications by phone.
	FUTURE
	N/A
	N/A

	3.5.1.1.5
	The system shall support the sending of text by instant message. <drawn from 4.2.3.4.7.6>
	FUTURE
	N/A
	N/A

	3.5.1.2
	The system shall allow the user to specify notification recipients.
	Notification
	Specify Notification Recipients
	GUI: getSendNotificationForm, sendNotification

	3.5.1.2.1
	 The system shall allow notifications to be sent to one or more individual contacts.
	Notification
	Specify Notification Recipients
	GUI: sendNotification

	3.5.1.2.1.1
	The system shall retrieve the list of individual contacts from the Notification Tool.
	Notification
	Specify Notification Recipients
	GUI: chartlite.data.notification:updateCache, or N/A (server-side)

	3.5.1.2.2
	The system shall allow notifications to be sent to one or more contact groups.
	Notification
	Specify Notification Recipients
	GUI: sendNotification

	3.5.1.2.2.1
	The system shall retrieve the list of contact groups from the Notification Tool.
	Notification
	Specify Notification Recipients
	GUI: chartlite.data.notification:updateCache, or N/A (server-side)

	3.5.1.2.2.1.1
	The fax Notification Tool shall support contact groups. <modified from 4.2.3.4.7.4.3) *
	FUTURE
	N/A
	 N/A

	3.5.1.2.2.1.2
	The email Notification Tool shall support contact groups. <modified from 4.2.3.4.7.5.2> *
	Notification
	Manage Notification Groups
	

	3.5.1.2.2.1.3
	The paging Notification Tool shall support contact groups. <modified from 4.2.3.4.7.7.3> *
	Notification
	Manage Notification Groups
	

	3.5.1.2.3
	The system shall allow the user to specify any combination of contact groups and individual contacts in a single notification request.
	Notification
	Specify Notification Recipients
	GUI: sendNotification

	3.5.1.2.4
	The system shall allow the user to search the list of notification recipients.
	Notification
	Specify Notification Recipients
	GUI: prototype only

	3.5.1.2.4.1
	The system shall allow the user to search for individual contacts to notify.
	Notification
	Specify Notification Recipients
	GUI: prototype only

	3.5.1.2.4.2
	The system shall allow the user to search for contact groups to notify.
	Notification
	Specify Notification Recipients
	GUI: prototype only

	3.5.1.3
	The system shall allow a suitably privileged user to send a notification from an open traffic event.
	Notification
	Send Notification From Open Event
	GUI: getSendNotificationForm, sendNotification

	3.5.1.3.1
	The system shall pre-populate the recipient list based on the prior notification (if any) sent from the current traffic event.
	Notification
	Send Notification From Open Event
	GUI: getSendNotificationForm

	3.5.1.3.2
	The system shall record any notifications sent from an open traffic event in the corresponding event log. <moved from 4.2.3.4.7.3>
	Notification
	Send Notification From Open Event
	GUI: N/A (server side)

	3.5.1.3.3
	When presenting a traffic event notification recipient picklist to a user, the system shall populate the top of the list with the user’s most recent traffic event contacts or contact groups.
	Notification
	Specify Notification Recipients
	GUI: getSendNotificationForm, sendNotification

	3.5.1.4
	The system shall allow a suitably privileged user to send a standalone notification.
	Notification
	Send Notification From Outside Traffic Event
	GUI: getSendNotificationForm, sendNotification

	3.5.1.4.1
	The system shall allow the user to pre-populate the recipient list based on the last standalone notification the user sent
	Notification
	Send Notification From Outside Traffic Event
	GUI: getSendNotificationForm

	3.5.1.4.2
	When presenting a standalone notification recipient picklist to a user, the system shall populate the top of the list with the user’s most recent standalone contacts or contact groups.
	Notification
	Specify Notification Recipients
	GUI: getSendNotificationForm, sendNotification

	3.5.1.5
	The system shall record all notifications sent in the Operations log. <modified from 4.2.3.7.4.7.2> *
	Notification
	Send Notification
	GUI: N/A (server side)

	3.5.1.6
	<not used>
	EMPTY
	N/A
	N/A

	3.5.1.7
	The system shall allow a user to specify a notification message.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm, sendNotification, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.1
	The system shall support a configurable limit on the number of characters that may be sent in a notification message.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.1.1
	The system shall not allow a notification message to be sent if it exceeds the notification message character limit.
	Notification
	Specify Notification Message
	GUI: none (UCD only)

	3.5.1.7.1.2
	The default notification message character limit shall be 140 characters.
	Notification
	Specify Notification Message
	GUI: prototype only

	3.5.1.7.2
	The system shall provide typing shortcuts that allow the user to quickly add text to the message, for any type of notification.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.2.1
	The system shall provide an Update shortcut, which prepends the word “Update“ plus a colon plus a space to the beginning of the message, regardless of the current location the cursor within the message.
	Notification
	Specify Notification Message
	GUI: prototype only

	3.5.1.7.2.2
	The system shall provide an administrator-configurable shortcut list of SHA “10” codes that allows the user to populate message text using those shortcuts.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.2.3
	The system shall provide an administrator-configurable shortcut list of “Miscellaneous” shortcuts that allows the user to populate message text using those shortcuts.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.2.4
	The system shall provide administrator-configurable one-click shortcuts that allow the user to populate message text using those shortcuts. These are intended to be more frequently used than shortcuts in the combined “Miscellaneous” shortcut list.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.2.4.1
	The system shall allow an administrator to specify whether each common shortcut is applicable within the context of a traffic event, outside the context of a traffic event or both.
	Notification
	Specify Notification Message
	GUI: MiscDataClasses CD

	3.5.1.7.3
	The system shall provide typing shortcuts that allow the user to quickly add text to the message for a standalone notification started within no particular context.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.3.1
	The system shall provide a shortcut that allows the user to pre-populate message text based on the prior standalone notification sent from within no particular context.
	Notification
	Specify Notification Message
	GUI: getSendNotificationForm

	3.5.1.7.4
	The system shall provide typing shortcuts that allow the user to quickly add text to the message for a notification started within the context of a traffic event.
	Notification
	Send Notification From Open Event
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.4.1
	The system shall provide a shortcut that allows the user to pre-populate message text based on the prior notification sent from within the traffic event.
	Notification
	Send Notification From Open Event
	GUI: getSendNotificationForm

	3.5.1.7.4.2
	The system shall provide a Location shortcut, which allows the user to insert a system-generated location string into the message.
	Notification
	Send Notification From Open Event
	GUI: getSendNotificationForm, getNotificationSettingsForm, setNotificationSettings

	3.5.1.7.4.3
	If the event is an incident with HAZMAT specified, the system shall provide a HAZMAT shortcut which allows the user to insert “HAZMAT” into the message.
	Notification
	Send Notification From Open Event
	GUI: prototype only

	3.5.1.7.4.4
	If a lane configuration is specified in the event, the system shall provide a Lane Status shortcut which allows the user to insert a system-generated lane status string into the message.
	Notification
	Send Notification From Open Event
	GUI: prototype only

	3.5.1.7.4.5
	If the event is an incident, the system shall provide a Vehicles shortcut, which allows the user to insert a system-generated string listing the types and numbers of vehicles involved into the message.
	Notification
	Send Notification From Open Event
	GUI: getNotificationSettingsForm, setNotificationSettings

	3.5.2
	The system shall allow a suitably privileged user to view the current status of previously initiated notifications.
	Notification
	View Notification History
	

	3.5.2.1
	View Notification History
	HEADER
	N/A
	N/A

	3.5.2.1.1
	The system shall allow a user to view a history of notifications sent.
	Notification
	View Notification History
	

	3.5.2.1.1.1
	The system shall allow a user to view only online notifications.
	Notification
	View Notification History
	

	3.5.2.1.1.1.1
	The system shall archive (take off-line) standalone notifications after some configurable period of time.
	Notification
	View Notification History
	

	3.5.2.1.1.1.2
	The system shall archive (take off-line) traffic event notifications for closed or false alarmed traffic events when the traffic event goes offline.
	Notification
	View Notification History
	

	3.5.2.1.1.2
	The system shall have the capability to show/hide the notification history of open traffic events.
	Notification
	View Notification History
	

	3.5.2.1.2
	The system shall have the capability to view the history of all notifications sent for a particular online traffic event.
	Notification
	View Event Details
	GUI: viewEventDetails

	3.5.2.1.3
	The system shall allow a user to search for particular notification history entries.
	Notification
	Search Notification History
	

	3.5.2.1.3.1
	The system shall allow the user to include a traffic event indicator in the search criteria. (Examples: None, Any, Specified Event)
	Notification
	Search Notification History
	

	3.5.2.1.3.2
	The system shall allow the user to include an author’s username in the search criteria.
	Notification
	Search Notification History
	

	3.5.2.1.3.3
	The system shall allow the user to include the author’s operations center in the search criteria.
	Notification
	Search Notification History
	

	3.5.2.1.3.4
	The system shall allow the user to include a date range in the search criteria.
	Notification
	Search Notification History
	

	3.5.2.1.3.5
	The system shall allow the user to include an individual recipient name in the search criteria.
	Notification
	Search Notification History
	

	3.5.2.1.3.6
	The system shall allow the user to include a contact group recipient name in the search criteria.
	Notification
	Search Notification History
	

	3.5.2.1.3.7
	The system shall allow the user to include free form message text in the search criteria.
	Notification
	Search Notification History
	

	3.5.2.1.4
	The system shall allow the user to specify the number of notification history entries to be shown per viewable page.
	Notification
	View Notification History
	

	3.5.2.1.5
	The system shall allow the user to view the previous or next page of notification history entries.
	Notification
	View Notification History
	

	3.5.2.2
	 View Notification Details
	HEADER
	N/A
	N/A

	3.5.2.2.1
	The system shall allow a user to view notification details for standalone notifications.
	Notification
	View Notification Details
	GUI: viewNotificationDetails

	3.5.2.2.2
	The system shall allow a user to view notification details from within a traffic event.
	Notification
	View Notification Details
	GUI: viewNotificationDetails

	3.5.2.2.3
	Notification details shall include the notification status for each individual contact that was to be notified.
	Notification
	View Notification Details
	GUI: notification_classes CD

	4
	MANAGE EVENTS
	HEADER
	N/A
	N/A

	4.1
	Record and Update Event Status
	HEADER
	N/A
	N/A

	4.1.1
	The system shall record the disabled vehicle event state.
	EXISTING
	N/A
	N/A

	4.1.1.1
	The disabled vehicle event state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.1.2
	The disabled vehicle event state shall include Scene Cleared.
	EXISTING
	N/A
	N/A

	4.1.1.3
	The disabled vehicle event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.2
	The system shall record the action state.
	EXISTING
	N/A
	N/A

	4.1.2.1
	The action state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.2.2
	The action state shall include Scene Cleared.
	EXISTING
	N/A
	N/A

	4.1.2.3
	The action event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.3
	The system shall record the incident state.
	EXISTING
	N/A
	N/A

	4.1.3.1
	The incident state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.3.2
	The incident state shall include Scene Cleared.
	EXISTING
	N/A
	N/A

	4.1.3.3
	The incident state shall include Delay Cleared.
	EXISTING
	N/A
	N/A

	4.1.3.4
	The incident state shall include Closed.
	EXISTING
	N/A
	N/A

	4.1.3.5
	The incident event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.4
	The system shall record the non-recurring congestion event state.
	EXISTING
	N/A
	N/A

	4.1.4.1
	The non-recurring congestion event state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.4.2
	The non-recurring congestion event state shall include Closed.
	EXISTING
	N/A
	N/A

	4.1.4.3
	The non-recurring congestion event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.5
	The system shall record the recurring congestion event state.
	EXISTING
	N/A
	N/A

	4.1.5.1
	The recurring congestion event state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.5.2
	The recurring congestion event state shall include Closed.
	EXISTING
	N/A
	N/A

	4.1.5.3
	The recurring congestion event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.6
	The system shall record the weather alert event state.
	EXISTING
	N/A
	N/A

	4.1.6.1
	The weather alert event state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.6.2
	The weather alert event state shall include Closed.
	EXISTING
	N/A
	N/A

	4.1.6.3
	The weather alert event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.7
	The system shall record the weather sensor alert event state.
	FUTURE
	N/A
	N/A

	4.1.7.1
	The weather sensor alert event state shall include Open.
	FUTURE
	N/A
	N/A

	4.1.7.2
	The weather sensor alert event state shall include Closed.
	FUTURE
	N/A
	N/A

	4.1.7.3
	The weather sensor alert event state shall include Pending.
	FUTURE
	N/A
	N/A

	4.1.8
	The system shall record the special event state.
	EXISTING
	N/A
	N/A

	4.1.8.1
	The special event alert event state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.8.2
	The special event alert event state shall include Closed.
	EXISTING
	N/A
	N/A

	4.1.8.3
	The special event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.9
	The system shall record the safety message event state.
	EXISTING
	N/A
	N/A

	4.1.9.1
	The safety message event state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.9.2
	The safety message event state shall include Closed.
	EXISTING
	N/A
	N/A

	4.1.9.3
	The safety message event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.10
	The system shall record the planned closure event state.
	EXISTING
	N/A
	N/A

	4.1.10.1
	The planned closure event state shall include Open.
	EXISTING
	N/A
	N/A

	4.1.10.2.
	The planned closure event state shall include Closed.
	EXISTING
	N/A
	N/A

	4.1.10.3
	The planned closure event state shall include Pending.
	Pending
	Create Pending Event
	TrafficEventManagement2 CD

	4.1.11
	The system shall maintain an event history log for each traffic event.
	EXISTING
	N/A
	N/A

	4.1.11.1
	The system shall log details related to opening, closing, or updating the state of an event in the event’s history log.
	EXISTING
	N/A
	N/A

	4.1.11.2
	The system shall allow suitably privileged users to add freeform text entries to the event history log of an event.
	EXISTING
	N/A
	N/A

	4.1.11.3
	The system shall allow users to view the content of an event history log.
	EXISTING
	N/A
	N/A

	4.1.11.3.1
	The system shall allow the user to specify the number of log entries to be shown per viewable page.
	Logs
	View Event History, Search Event History, Filter Event History
	GUI: getEntriesOnPage, getNumEntriesPerPage, setNumEntriesPerPage, ServletDynListClasses

	4.1.11.3.2
	The system shall allow the user to view the previous or next page of entries.
	Logs
	View EventHistory, Search Event History
	GUI: getEntriesOnPage, getCurrentPage, setCurrentPage, viewDynListPage, viewEventHistoryPage, ServletDynListClasses

	4.1.11.3.3
	The system shall allow the user to choose to show or hide user generated log entries.
	Logs
	View EventHistory
	GUI:getDynListSubjects, setLogEntryTypeInclusionFlags

	4.1.11.3.4
	The system shall allow the user to choose to show or hide system generated log entries indicating device message changes for devices included in the event’s response plan.
	Logs
	View Event History, Search Event History, Filter Event History
	GUI: getDynListSubjects, setLogEntryTypeInclusionFlags, ServletDynListClasses

	4.1.11.3.5
	The system shall allow the user to choose to show or hide other system generated entries (not indicating device message changes).
	Logs
	View Event History, Search Event History, Filter Event History
	GUI: getDynListSubjects, setLogEntryTypeInclusionFlags, ServletDynListClasses

	4.1.11.4
	The system shall allow users to search the content of an event history log.
	EXISTING
	N/A
	N/A

	4.1.11.4.1
	The system shall allow the user to specify if user generated log entries are to be included or excluded from the search.
	Logs
	Search Event History
	GUI:getDynListSubjects, searchEventHistory, ServletDynListClasses

	4.1.11.4.2
	The system shall allow the user to specify if system generated entries indicating device message changes for devices included in the event’s response plan are to be included or excluded from the search.
	Logs
	Search Event History
	GUI:getDynListSubjects, searchEventHistory, ServletDynListClasses

	4.1.11.4.3
	The system shall allow the user to specify if other system generated entries (not indicating device message changes) are to be included or excluded from the search.
	Logs
	Search Event History
	GUI:getDynListSubjects, searchEventHistory, ServletDynListClasses

	4.1.12
	The system shall allow a suitably privileged user to perform all the same editing activities for an event in the Pending state as for an event in the Open state except for those activities which are not relevant for an event in the Pending state.
	Pending
	Edit Pending Event, View Event Details
	GUI: prototype only

	4.1.12.1
	The system shall prohibit execution of response plan items in an event in the Pending state. (This naturally precludes revocation of response plan items in a Pending traffic event.)
	Pending
	Edit Pending Event
	GUI: prototype only

	4.1.12.2
	The system shall prohibit sending notifications from within the context of an event in the Pending state.
	Pending
	View Event Details
	GUI: prototype only

	4.1.12.3
	The system shall prohibit setting participant notified, arrived/responded and departed times for participants in a Pending traffic event. (This does not restrict adding or removing participants.)
	Pending
	Edit Pending Event
	GUI: prototype only

	4.1.12.4
	The system shall prohibit associating a Pending traffic event to an Open traffic event. (This naturally precludes unassociating a Pending traffic event from an Open traffic event.)
	Pending
	Edit Pending Event
	GUI: none (UCD only)

	4.1.12.5
	The system shall prohibit associating an Open traffic event to a Pending traffic event. (This naturally precludes unassociating an Open traffic event from a Pending traffic event.)
	Pending
	Edit Pending Event
	GUI: none (UCD only)

	4.1.12.6
	The system shall prohibit merging a Pending traffic event into an Open traffic event.
	Pending
	View Event Details
	GUI: none (UCD only)

	4.1.12.7
	The system shall prohibit merging an Open traffic event into a Pending traffic event.
	Pending
	View Event Details
	GUI: prototype only

	4.1.13
	A suitably privileged user shall be able to perform the following operations for an event in the Pending state: Open Copy, Open Event, Schedule, Delete Event, Copy as Pending.
	Pending
	Open Copy of Pending Event, Open Pending Event, Schedule Traffic Event, Delete Pending Event, Copy Pending Event
	GUI: copyEventWithoutForm, openPendingEvent, ScheduleTrafficEvent, deletePendingEvent

	4.1.13.1
	The Open Copy operation shall copy the pending event and place the copy into the Opened state.
	Pending
	Open Copy of Pending Event
	GUI: copyEventWithoutForm, createEventPrivate

	4.1.13.1.1
	The system shall prompt the user for confirmation before executing the Open Copy operation.
	Pending
	Open Copy of Pending Event
	GUI: none (UCD only)

	4.1.13.1.2
	The system shall not prepend the words “Copy of “ to the name of the copied event.
	Pending
	Open Copy of Pending Event
	GUI: copyEventWithoutForm

	4.1.13.1.3
	The event history of the copied event shall be cleared prior to opening it.
	Pending
	Open Copy of Pending Event
	GUI: copyEventWithoutForm, createEventPrivate

	4.1.13.2
	The Open Event operation shall change the state of the event from Pending to Open.
	Pending
	Open Pending Event
	GUI: openPendingEvent

	4.1.13.2.1
	The system shall prompt the user for confirmation before executing the Open Event operation.
	Pending
	Open Pending Event
	GUI: none (UCD only)

	4.1.13.2.2
	The event history of the event shall be cleared prior to opening it.
	Pending
	Open Pending Event
	GUI: N/A (server side)

	4.1.13.3
	The Schedule operation shall create a schedule to allow the pending event to be copied and opened in the future.
	Scheduler
	Schedule Traffic Event
	GUI: ScheduleTrafficEvent

	4.1.13.3.1
	The name of the schedule shall default to the string “Open” plus the name of the event.
	Scheduler
	Schedule Traffic Event
	use case only

	4.1.13.3.2
	<deleted>
	DELETED
	N/A
	N/A

	4.1.13.3.3
	The schedule shall contain a single Open Event action for the pending event.
	Scheduler
	Schedule Traffic Event
	GUI: ScheduleTrafficEvent

	4.1.13.3.3.1
	The Open Event action shall be set to create its own Open Scheduled Event Alert by default.
	FUTURE
	N/A
	N/A

	4.1.13.3.4
	The user shall be able to specify the time(s) at which the schedule should fire as detailed in requirement 2.5.3 and its subrequirements.
	Scheduler
	Specify Schedule Attributes, Specify Recurring Timing Pattern, Specify Discrete Timing Pattern
	

	4.1.13.3.5
	The user shall be able to cancel the Schedule operation prior to the creation of the Schedule.
	Scheduler
	Schedule Traffic Event
	GUI: prototype only

	4.1.13.3.6
	When the schedule is activated, the system shall issue an alert as specified in requirement 2.5.11 and its subrequirements.
	Scheduler
	Activate Schedule, Create Execute Schedule Actions Alert
	activateTimedOutSchedules, activateIfNecessary, activateSchedule

	4.1.13.4
	The Delete Event operation shall delete the Pending event.
	Pending
	Delete Pending Event
	GUI: deletePendingEvent

	4.1.13.4.1
	The system shall prompt the user for confirmation before executing the Delete Event operation.
	Pending
	Delete Pending Event
	GUI: none (UCD only)

	4.1.13.5
	The Copy As Pending operation shall copy the pending event and leave the copy in the Pending state.
	Pending
	Copy Pending Event
	GUI: copyEventWithoutForm, createEventPrivate

	4.1.13.5.1
	The system shall not prompt the user for confirmation before executing the Copy As Pending operation.
	Pending
	Copy Pending Event
	GUI: none (UCD only)

	4.1.13.5.2
	The system shall prepend the words “Copy of “ to the name of the copied event.
	Pending
	Copy Pending Event
	GUI: copyEventWithoutForm

	4.1.13.5.3
	The event history of the copied event shall be cleared.
	Pending
	Copy Pending Event
	GUI: copyEventWithoutForm

	4.1.14
	The system shall indicate within the Pending traffic event details all schedules which reference it.
	Pending
	View Event Details
	GUI: viewEventDetails

	4.1.15
	The system shall store the time the Pending traffic event was most recently copied as a new open traffic event, either with or without a schedule.
	Pending
	Open Copy of Pending Event
	GUI: createEventPrivate

	4.1.16
	If a traffic event in the Open state has been created as a result of a schedule firing, the system shall indicate the event has been opened via a schedule.
	Pending
	View Event Details
	GUI: createEventPrivate, viewEventDetails

	4.1.16.1
	If a traffic event in the Open state has been created as a result of a schedule firing and the schedule still exists within the system, the system shall indicate the schedule which contains that action. (Note, the schedule might be automatically deleted if specified to be deleted soon after the last scheduled activation time is fired.)
	Pending
	View Event Details
	GUI: viewEventDetails

	4.1.17
	Pending traffic events shall not appear on user’s Home page traffic event list.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.18
	The Event Listener shall ignore Pending traffic events (not store them in the Event Listener database), so they will not appear on the public web site. (If the University of Maryland picks up this change for their web site listener, pending events also will not appear in RITIS.)
	Pending
	 Create Pending event
	

	4.1.19
	The system shall allow a suitably privileged user to request a list of traffic events in the open state only.
	EXISTING
	N/A
	N/A

	4.1.20
	The system shall allow a suitably privileged user to request a list of traffic events in the open or closed states only.
	EXISTING
	N/A
	N/A

	4.1.21
	The system shall allow a suitably privileged user to request a list of traffic events in the pending states only.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.1
	The system shall display the event name of each event in the list of pending traffic events.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.2
	The system shall display the location description of each event in the list of pending traffic events.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.3
	The system shall display the direction of each event in the list of pending traffic events (if any).
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.4
	The system shall display the type of each event in the list of pending traffic events.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.5
	The system shall display the county/state of each event in the list of pending traffic events (if any).
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.6
	The system shall display the lane closures of each event in the list of pending traffic events (if any).
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.7
	The system shall display a “schedule usage” indicator for each event in the list of pending traffic events to show events that are used in one or more schedules.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.8
	The system shall display the next scheduled activation time of each event in the list of pending traffic events (if any).
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.9
	The system shall allow the user to filter the list of pending events.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.9.1
	The system shall allow the user to filter the list of pending events by event type.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.9.2
	The system shall allow the user to filter the list of pending events by direction.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.9.3
	The system shall allow the user to filter the list of pending events by county/state.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.9.4
	The system shall allow the user to filter the list of pending events by lane closures.
	Pending
	View Pending Events
	GUI: prototype only

	4.1.21.9.5
	The system shall allow the user to filter the list of pending events by schedule usage (used in schedule(s), not used in schedules).
	Pending
	View Pending Events
	GUI: prototype only

	4.1.22
	The system shall prevent users from modifying external events except for those modifications that are relevant for external events.
	External Interface
	Edit External Event
	GUI: use case only

	4.1.22.1
	Ths system shall allow a suitably privileged user to flag an external event as “interesting” or “not interesting” from the external traffic event list.
	External Interface
	Edit External Event,

Change Interesting State
	GUI: use case only

	4.1.22.2
	Ths system shall allow a suitably privileged user to flag an external event as “interesting” or “not interesting” from the external traffic event details display.
	External Interface
	Edit External Event,

Change Interesting State
	GUI: user case only

	4.1.22.3
	External traffic events which have been flagged by any CHART user as interesting shall appear on the Home page traffic event list, in a separate External event tab for suitably privileged users.
	External Interface
	View Interesting External Events
	GUI: use case only

	4.1.22.4
	External traffic events appearing in the external event tab shall be marked in the list as to their traffic event type. (All traffic event types appear in the same external event tab.)
	External Interface
	View Interesting External Events
	GUI: use case only

	4.2
	OPEN EVENT
	HEADER
	N/A
	N/A

	4.2.1
	The system shall allow a suitably privileged user to create a new event.
	EXISTING
	N/A
	N/A

	4.2.1.6
	The system shall allow the user to create a new event in the open state from their home page. *
	EXISTING
	N/A
	N/A

	4.2.1.6.10
	The system shall detect when the location entries made by the user match the location of an existing open event in the system and provide an indication to the user that the event may be a duplicate.
	EXISTING
	N/A
	N/A

	4.2.1.6.10.5
	The system shall not flag Pending traffic events as possible duplicates of the event being created.
	Pending
	 Create Pending event
	

	4.2.1.6.10.6
	The system shall not flag External traffic events as possible duplicates of the event being created.
	External Interface
	Create Traffic Event
	GUI: Use Case Only

	4.2.1.6.11
	The system shall prevent the user from creating an external event.

	External Interface
	Negative requirement demonstrated by GUI’s lack of an external event option
	

	4.2.1.7
	The system shall allow a suitably privileged user to create a new event in the pending state.
	Pending
	Create Pending Event
	GUI: createEventFromForm, createEventPrivate

	4.2.2
	RECORD EVENT DETAILS
	HEADER
	N/A
	N/A

	4.2.2.5
	IDENTIFY EVENT SOURCE
	Header
	N/A
	N/A

	4.2.2.5.1
	The system shall automatically capture the source of the notification of the event when it comes in from any of the automatic/electronic sources. Suggestion to be validated for new event sources: detected event from alert, automatic feed from RITIS, citizen complaint, scanner, and fireboard.
	External Interface
	Remotely Open External Event,

View Event Details
	ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

	4.2.2.5.1.1
	The system shall automatically capture the source of the notification of the event when it comes in from automatic feed from RITIS.
	External Interface
	Remotely Open External Event View Event Details
View External Event Details
	ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

	4.2.2.5.1.2
	The system shall automatically capture the source of the notification of the event when it comes in from the scheduler.

	Scheduler
	Resolve Alert

View Event Details
	

	4.2.2.6
	CAPTURE RELATED EVENTS
	HEADER
	N/A
	N/A

	4.2.2.6.1
	The system shall automatically check on a regular basis to see if any two open events are similar geographically. *
	EXISTING
	N/A
	N/A

	4.2.2.6.1.4
	Pending traffic events shall not be flagged as duplicates of other Pending traffic events, of External traffic events, or of Open traffic events.
	Pending
	 Create Traffic Event

	GUI: use case only

TrafficEventModule:MonitorDuplicateEvents

	4.2.2.6.1.5
	Open traffic events shall not be flagged as duplicates of Pending traffic events.
	Pending
	 Create Traffic Event
	GUI: use case only

TrafficEventModule:MonitorDuplicateEvents

	4.2.2.6.1.6
	External traffic events shall not be flagged as duplicates of other External traffic events, of Pending traffic events, or of Open traffic events.
	External Interface
	Create Traffic Event
	GUI: use case only
TrafficEventModule:MonitorDuplicateEvents

	4.2.2.6.1.7
	Open traffic events shall not be flagged as duplicates of External traffic events
	External Interface
	Create Traffic Event
	TrafficEventModule:MonitorDuplicateEvents

	4.2.2.6.4
	The system shall allow the user to associate related events. Suggestions to be validated: for roadwork, other incidents, special events, water main break, weather.
	EXISTING
	N/A
	N/A

	4.2.2.6.4.1
	The system shall display the association between events in the system
	EXISTING
	N/A
	N/A

	4.2.2.6.4.2
	The system shall allow a suitably privileged user to associate an Open external event to any other Open event.

	External Interface
	Edit External Event,

Change Event Associations
	GUI: use case only

	4.2.2.6.4.3
	The system shall allow a suitably privileged user to disassociate other associated events from an external event.

	External Interface
	Edit External Event,

Change Event Associations
	GUI: use case only

	4.2.2.6.5
	The system shall allow a suitably privileged user to merge open events.

	EXISTING
	N/A
	N/A

	4.2.2.6.5.6
	The system shall prevent the merging of an external event with any other event.
	External Interface
	View Event Details - Negative requirement demonstrated by lack of merge option for external events,

	

	4.2.3
	DEPLOY RESOURCES The system shall allow the user to view the pre-defined decision support plans to suggest the course of action and notifications, and execute the selected (or modified) course of action. .The ability to record the deploying of resources only applies to user generated events - not External Events
	FUTURE
	N/A
	N/A

	4.2.3.3
	SELECT/ MODIFY COURSE OF ACTION The system shall allow the user to accept, modify, or bypass the decision support recommendations for device usage, message, and control; for resource requests and notifications; for equipment type; and for equipment location.
	FUTURE
	N/A
	N/A

	4.2.3.3.7
	SELECT DEVICE PLAN OR PLAN ITEMS
	HEADER
	N/A
	N/A

	4.2.3.3.7.1
	The system shall allow the user to choose a device plan to be used for the response.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.2
	The system shall provide search capabilities for searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, getFilteredPlansJSON, processGetPlanItemsJSON, plans_data_classes

	4.2.3.3.7.2.1
	The system shall provide a free form text search capability for searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch. matchesKeywordSearch, plans_data_classes

	4.2.3.3.7.2.1.1
	The device plan text search capability shall allow searching for free form text in the plan name.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch. matchesKeywordSearch, plans_data_classes

	4.2.3.3.7.2.1.2
	The device plan text search capability shall allow searching for free form text in user-specified keywords associated with device plans.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch. matchesKeywordSearch, plans_data_classes

	4.2.3.3.7.2.1.3
	The device plan text search capability shall allow searching for free form text in device names in device plans.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch. matchesKeywordSearch, plans_data_classes

	4.2.3.3.7.2.2
	The system shall allow filtering on one or multiple event types when searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch, plans_data_classes Server: setPlanFilterAttributes

	4.2.3.3.7.2.3
	The system shall allow filtering on one or multiple location aliases when searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch, plans_data_classes Server: setPlanFilterAttributes

	4.2.3.3.7.2.4
	The system shall allow filtering on one or multiple counties when searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch, plans_data_classes Server: setPlanFilterAttributes

	4.2.3.3.7.2.5
	The system shall allow filtering on one or multiple regions when searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch, plans_data_classes Server: setPlanFilterAttributes

	4.2.3.3.7.2.6
	The system shall allow filtering on one or multiple operations centers when searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch, plans_data_classes Server: setPlanFilterAttributes

	4.2.3.3.7.2.7
	The system shall allow the user to indicate whether to show device plans which match all of the chosen filters, or any one (or more) of the filters, or none of the filters when searching for device plans to include in the response.
	Plans
	Specify response plan items
	GUI: processGetFilteredPlansJSON, matchesSearch, matchesKeywordSearch, plans_data_classes

	4.2.3.3.7.3
	The system shall show all text search criteria and filters in use (if any) when showing the user the list of device plans for selection.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.4
	The system shall allow the user to view all device plans for selection, removing any filters and/or search text currently in use.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.5
	The system shall initially filter the list of device plans shown to the user for selection based on attributes of the event.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.5.1
	The system shall initially filter the list of device plans shown to the user for selection based on the type of traffic event.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.5.2
	The system shall initially filter the list of device plans shown to the user for selection based on the location alias if a location alias has been used to specify the location of the event.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.5.3
	The system shall initially filter the list of device plans shown to the user for selection based on county/region of the event if a location alias was not used to specify the event location AND a county or region has been used to specify the event location.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.6
	The system shall allow the user to view the plan items contained in a device plan when selecting a device plan to be used in a response.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, processGetPlanItemsJSON, plans_data_classes

	4.2.3.3.7.7
	The system shall allow the user to choose specific items from a device plan to be used for the response.
	Plans
	Specify response plan items
	GUI: showSelectPlanPage, plans_data_classes

	4.2.3.3.7.8
	If the devices included in the device plan or individual plan items selected for use in the response already exist in the response, the system shall utilize the message for the device as specified in the device plan or individual plan items, overriding any message previously selected for that device in the response.
	Plans
	Edit Plan
	Server: SetPlanItemData

	4.2.3.4
	EXECUTE COURSE OF ACTION
	HEADER
	N/A
	N/A

	4.2.3.4.7
	The system shall automatically send out the selected messages or notifications to the specified resources in accordance with the selected course of action.
	FUTURE
	N/A
	N/A

	4.2.3.4.7.1
	The system shall provide the capability to automatically notify individuals of specific system events.
	FUTURE
	N/A
	N/A

	4.2.3.4.7.2
	<deleted – moved (slightly reworded) to 3.5.1.5> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.3
	<deleted – moved (slightly reworded) to 3.5.1.3.2> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.4
	The system shall provide the capability to send notifications and requests for resources via fax.
	FUTURE
	N/A
	N/A

	4.2.3.4.7.4.1
	<deleted – moved to 3.5.1.1.2.1> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.4.2
	<deleted> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.4.3
	<deleted – moved (slightly reworded) to 3.5.1.2.2.1.1> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.5
	The system shall provide the capability to send notifications and requests for resources via e-mail.
	FUTURE
	N/A
	N/A

	4.2.3.4.7.5.1
	<deleted – moved to 3.5.1.1.1> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.5.2
	<deleted – moved (slightly reworded) to 3.5.1.2.2.1.2> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.6
	The system shall provide the capability to send notifications and requests for resources via instant message.
	FUTURE
	N/A
	N/A

	4.2.3.4.7.7
	The system shall provide the capability to send notifications and requests for resources via page.
	FUTURE
	N/A
	N/A

	4.2.3.4.7.7.1
	<deleted – moved to 3.5.1.1.2.1> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.7.2
	<deleted> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.7.3
	<deleted> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.7.4
	<deleted> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.7.5
	<deleted> *
	DELETED
	N/A
	N/A

	4.2.3.4.7.8
	<deleted – moved (reworded) to 9.2.3.1.1.1> *
	DELETED
	N/A
	N/A

	4.4
	CLOSE EVENT
	HEADER
	N/A
	N/A

	4.4.2
	DETERMINE EVENT CLOSURE OR TRANSFER
	HEADER
	N/A
	N/A

	4.4.2.3
	The system shall automatically send an alert to the controlling operations center of an event that was opened from the pending state to close the event if the expected duration of the event is set and subsequently reached. (This refers both to pending events opened via a schedule and pending events opened directly without a schedule. If the pending event had a relative duration specified, it will be converted to an absolute event reminder time in the open event.) *
	Pending
	Open Pending Event
	GUI: N/A (server side)

	4.4.2.4
	The system shall prompt the user to close an event (issue an alert) when an event has remained open past a user-specified time limit. *
	EXISTING
	N/A
	N/A

	4.4.3
	CHANGE EVENT TYPE
	HEADER
	N/A
	N/A

	4.4.3.9
	The system shall prevent the user from changing an external event to any other event type.
	External Interface
	Edit External Event, Negative requirement demonstrated by lack of option to change event type. Edit External Event
	

	4.4.3.10
	The system shall prevent the user from changing any event type into an external event.
	External Interface
	Edit External Event, Negative requirement demonstrated by lack of option to specify an external event.
	

	4.4.4
	RECORD EVENT CLOSURE
	HEADER
	N/A
	N/A

	4.4.4.9
	<deleted> *
	DELETED
	N/A
	N/A

	6
	Provide Traveler Information
	HEADER
	N/A
	N/A

	6.2
	Maintain [External] Web Site Information
	HEADER
	N/A
	N/A

	6.2.4
	The system shall provide a restricted set of incident data to the WWW server
	EXISTING
	N/A
	N/A

	6.2.4.1
	The system shall not provide external event incident data to the public web site.
	External Interface
	N/A
	N/A

	9
	SYSTEM MAINTAINABILITY, AVAILABILITY, SECURITY, AND DATA DISTRIBUTION
	HEADER
	N/A
	N/A

	9.2
	Availability
	HEADER
	N/A
	N/A

	9.2.3
	The system shall support distributed operations.
	EXISTING
	N/A
	N/A

	9.2.3.1
	The system shall include multiple locations capable of performing all CHART functions (excluding archiving).
	EXISTING
	N/A
	N/A

	9.2.3.1.1
	The redundant components shall support operations in a geographically separated configuration. (Placing redundant systems in different locations is desirable because it provides an added measure of service protection in case of an event that could cripple an entire facility.)
	Notification
	COTS application Attention! NS will be deployed on two server one acting as a hot backup. This feature is not shown on any diagram.
	

	9.2.3.1.1.1
	The notification subsystem shall provide redundant operations. (A system implemented with redundant, hot-backup servers will provide uninterrupted notification capabilities in the event of a primary server failure.)
	Notification
	COTS application Attention! NS will be deployed on two server one acting as a hot backup. This feature is not shown on any diagram.
	

	10
	SYSTEM INTEGRATION
	HEADER
	N/A
	N/A

	10.1
	The system shall interface with other regional ATMS’s in the area. Suggestion/example to be validated: RITIS, Regional 911, IEN, CAPWIN, EMMA/MEGIN, WEBEOC, 511, etc.
	FUTURE
	N/A
	N/A

	10.1.1
	The system shall support the SAE ATIS J2354 standard for event data exchange with external systems (e.g. RITIS).
	External Interface
	Translate ATIS Event
	ExternalInterfaceModule:eventTranslationStep1Translate(Sequence Diagram)

	10.1.1.1
	The system shall support the importation of event data from external systems using the SAE ATIS J2354 standard.
	External Interface
	 Translate ATIS Event
	ExternalInterfaceModule:eventTranslationStep1Translate(Sequence Diagram)

	10.1.1.1.1
	The system shall translate SAE ATIS J2354 standard formatted event data from RITIS into a compatible CHART external event.
	External Interface
	Maintain RITIS Event Connection

Translate ATIS Event
	EventImportRitisAcquirer (Class), EventImportRitisAcquire:connectIfNecessary(Sequence Diagram),

	10.1.1.2
	The system shall export event data to external systems using the SAE ATIS J2354 standard.
	FUTURE
	N/A
	N/A

	10.1.2
	The system shall provide access to event data imported from external systems.
	External Interface
	Archive Traffic Event
	 N/A

	10.1.2.1
	The system shall archive event data imported from external systems in a data store.
	External Interface
	 Archive Traffic Event
	 N/A

	10.1.2.1.1
	Personnel shall be able to browse stored imported event data outside of the operational CHART GUI.
	External Interface
	 Archive Traffic Event
	 N/A

	10.1.2.2
	The system shall integrate event data from external systems together with internally created CHART events.
	FUTURE
	N/A
	N/A

	10.7
	The system shall support external connections.
	HEADER
	N/A
	N/A

	10.7.1
	All external connections shall be made in conjunction with MDOT security policy (e.g., through a protected facility to restrict public access to and limit compromise of the back-end CHART servers).
	External Interface
	CHART Internal Interfaces (Server Deployment Diagram)

	

	10.7.2
	The system shall monitor and maintain the state of external connections established by the system
	External Interface
	Monitor RITIS Event Connection
	EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)

	10.7.2.1
	The system shall provide an indication to the users of any connections which are detected to be down
	External Interface
	Monitor RITIS Event Connection
	EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)

	10.7.2.2
	The system shall monitor and maintain the state of the connection to RITIS
	External Interface
	Monitor RITIS Event Connection
Maintain RITIS Event Connection
	EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)

	10.7.2.2.1
	The system shall automatically attempt to re-establish the RITIS connection when it is detected to be down or when it seems unreasonably inactive.
	External Interface
	Maintain RITIS Event Connection
	EventImportRitisAcquire:connectIfNecessary (Sequence Diagram)

	10.8
	The system shall integrate event data from external systems together with internally created CHART events.
	External Interface
	Remotely Open External Event

Remotely Update External Event

Remotely Close External Event
	ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

	10.8.1
	Upon initial receipt of event data from an external system, the system shall open a CHART event and designate that event an external event.
	External Interface
	Remotely Open External Event

	ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

	10.8.2
	Upon receipt of updates to event data from an external system, the system shall update the corresponding CHART external event.
	External Interface
	Remotely Update External Event

Remotely Close External Event
	ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

	10.8.3
	Upon receipt of an event closure notification from an external system, the system shall close the corresponding CHART external event.
	External Interface
	Remotely Update External Event

Remotely Close External Event
	ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

	10.8.3.1
	The closed external event shall remain in the system until it is archived.
	External Interface
	Archive Traffic Event
	

	10.8.4
	The system shall archive external event data into the CHART archive database after the archive timeout expires following closure of the external event.
	External Interface
	Archive Traffic Event
	

	10.8.4.1
	External events will be flagged as external in the archive data.
	External Interface
	Archive Traffic Event
	

	10.8.5
	The system shall allow a suitably privileged user to close external events. (This is expected to be done only be very few highly privileged users, and only for events which are “stale” and believed to be truly closed by the originating agency.)
	External Interface
	Close External Event
	

	10.8.5.1
	External events which have been closed by a CHART operator will be reintroduced into CHART if an update received from the external system indicates that the event is still open per the originating agency.
	External Interface
	Remotely Update External Event
	

	10.8.5.1.1
	If an external event which has been closed needs to be reintroduced into CHART because of an update received from the external system, and the external event has not been archived out of the CHART system, the external event will be reopened.
	External Interface
	Remotely Update External Event
	

	10.8.5.1.2
	If an external event which has been closed needs to be reintroduced into CHART because of an update received from the external system, and the closed external event has been archived out of the CHART system, a new external event with a new CHART ID will be created with the same external system/agency/event identification information and the new traffic event state data.
	External Interface
	Remotely Open External Event
	

	10.8.6
	The system shall allow a suitably privileged user to request a list of external traffic events.
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.1
	The system shall display the event name of each event in the list of external traffic events
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.2
	The system shall display the event type of each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.3
	The system shall display the location description of each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.4
	The system shall display the direction of each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.5
	The system shall display the county/state of each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.6
	The system shall display the lane closures of each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.7
	The system shall display the originating agency of each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.8
	The system shall display the interesting flag for each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.9
	The system shall display the vehicles involved for each event in the list of external traffic events (if provided).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10
	The system shall allow the user to filter the list of external events.
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.1
	The system shall allow the user to filter the list of external events by event status (view only open, only closed, or both types of external events).
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.2
	The system shall allow the user to filter the list of external events by direction
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.3
	The system shall allow the user to filter the list of external events by county/region/state.
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.4
	The system shall allow the user to filter the list of external events by lane closures.
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.5
	The system shall allow the user to filter the list of external events by originating agency.
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.6
	The system shall allow the user to filter the list of external events by vehicles involved.
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.7
	The system shall allow the user to filter the list of external events by event type
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.6.10.8
	The system shall allow the user to filter the list of external events by interesting flag.
	External Interface
	View External Event Summary
	GUI: use case only

	10.8.7
	The system shall optionally hide external events associated with an external connection that has been detected to be down for an administrator configurable period of time.
	External Interface
	View External Event Summary
	GUI: use case only

7 Acronyms/Glossary

	Arbitration Queue
	A prioritized queue containing messages for display or broadcast on a traveler information device.

	CCTV
	Closed Circuit Television

	CHART
	Coordinated Highways Action Response Team

	Constituent HAR
	A HAR that is part of a Synchronize HAR group and may play HAR messages in a synchronized manner.

	CORBA
	Common Object Request Broker Architecture. CORBA is the CHART application’s architecture for distributed computing.

	CORBA Event
	A CORBA mechanism using which different CHART components exchange information without explicitly knowing about each other.

	DMS
	Dynamic Message Sign

	EORS
	Emergency Operations Reporting System

	FMS
	Field Management Server

	GUI
	Graphical User Interface

	HAR
	Highway Advisory Radio

	HIS
	Highway Information Systems

	IOR
	Interoperable Object Reference

	ISDN
	Integrate Services Digital Network

	ISS
	Information System Specialists

	JRE
	Java Run-time Environment

	MDOT
	Maryland Department of Transportation

	MDSHA
	Maryland State Highway Administration

	MdTA
	Maryland Transportation Authority

	NTCIP
	National Transportation Communications for ITS Protocol

	POTS
	Plain Old Telephone Service

	RTMS
	Remote Traffic Microwave Sensor

	SHA
	State Highway Administration

	SOC
	Statewide Operations Center

	Synchronizable HAR
	A HAR that may play messages in a synchronized manner.

	Synchronized HAR
	A HAR entity that is comprised of one or more HAR transmitters (also known as constituent HARs).

	TSS
	Traffic Sensor System

	TTS
	Text to Speech

� EMBED PBrush ���

CHART R3B2 Detailed Design Rev2
iii
06/06/2008

_1230309699

