
[image: image1.png]‘CSC.

coordinated Highways Action Response Team

state highway administration

[image: image241.wmf]External

Consumers

HTTP

,

XML

CHART

Servers

Service Network

 Hansoc

 Firewall

CHART Exporter

SOC

RITIS

Future

Agencies

CORBA

MDOT

Network

SOC Subnet

HTTP

XML

UMD Listener DMZ

Firewall

UMD Listener DMZ Server

JMS

,

FTP

CORBA

,

FTP

HTTP

,

XML

CHART Map

CHART R5 Detailed Design
Contract SHA-06-CHART

· Document # WO18-DS-001

· Work Order 18, Deliverable 04

· March 26, 2010
· By

· CSC
[image: image250.png]Configuration (it

Provider Type / Model: COHU 3955 Camera

Video Transmission Settings:

Transmission Medium 1: Video over IP, via CODEC

Encoder Model CoreTec MPEG4 IP-based CODEC
Encoder Hostname 192.168.1.55 : 55

(or IP Address) & Port:

Encoder Multicast 224.0.0.5:82

Address & Port:

Video Compression Type: MPEG4

Transmission Medium 2: Video over IP, via CODEC

Encoder Model iMPath MPEG2 IP-based CODEC
Encoder Hostname 102.168.1.44 : 22

(or IP Address) & Port:

Encoder Multicast 224.0.0.78 : 8080

Address & Port:

Video Compression Type: MPEG2

Transmission Medium 3: Vicon 1500 Switch
Switch Name: ‘SIM BHT Switch
Switch Input Port: 1

Transmission Medium 4: Vicon 1500 Switch
Switch Name: ‘SIM FMT Switch
‘Switch Input Por 2

Flash Streaming Server Settings:

Server 1: 192.168.1.88
Port: 9990
Password: testing

	Revision
	Description
	Pages Affected
	Date

	0
	Initial Release
	All
	03/26/2010

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

1-11
Introduction

1.1
Purpose
1-1
1.2
Objectives
1-1
1.3
Scope
1-2
1.4
Design Process
1-2
1.5
Design Tools
1-2
1.6
Work Products
1-2
2
Architecture
2-1
2.1
Network/Hardware
2-1
2.1.1
Integrated Map
2-1
2.1.2
Data Exporter
2-1
2.1.3
Video Changes
2-2
2.1.4
Intranet Map
2-2
2.2
Software
2-3
2.2.1
COTS Products
2-3
2.2.2
Deployment /Interface Compatibility
2-5
2.2.2.1
External Interfaces
2-5
2.2.2.2
Internal Interfaces
2-9
2.3
Security
2-9
2.4
Data
2-11
2.4.1
Data Storage
2-11
2.4.1.1
Database
2-11
2.4.1.2
CHART Flat Files
2-29
2.4.2
Database Design
2-31
2.4.2.1
Integrated Map
2-31
2.4.2.2
Data Exporter
2-32
2.4.2.3
Video
2-32
2.4.2.4
Archiving - Changes
2-32
3
Key Design Concepts
3-1
3.1
Maintenance GUI
3-1
3.2
CHART GUI Integrated Map
3-1
3.3
CHART Data Exporter
3-3
3.4
Video
3-6
3.5
Intranet Map
3-6
3.6
Error Processing
3-8
3.7
Packaging
3-8
3.8
Assumptions and Constraints
3-9
4
Use Cases
4-1
4.1
R5HighLevel (Use Case Diagram)
4-1
4.2
MaintainDevicesUCD (Use Case Diagram)
4-5
4.3
MaintainCamera (Use Case Diagram)
4-9
4.4
MaintainDMS (Use Case Diagram)
4-12
4.5
MaintainHAR (Use Case Diagram)
4-16
4.6
MaintainSHAZAM (Use Case Diagram)
4-20
4.7
MaintainTSS (Use Case Diagram)
4-23
4.8
MapAndGISUses (Use Case Diagram)
4-25
4.9
MapDeviceAndTrafficEventUses (Use Case Diagram)
4-32
4.10
R5CameraUses (Use Case Diagram)
4-36
4.11
R5ProvideDataToExternalSystems (Use Case Diagram)
4-39
4.12
DATAExporterClient (Use Case Diagram)
4-42
4.13
SpatialWebService (Use Case Diagram)
4-45
4.14
ChartIntranetMap (Use Case Diagram)
4-46
4.15
Deprecated Functionality
4-48
5
Detailed Design
5-49
5.1
Human-Machine Interface
5-49
5.1.1
Maintenance GUI
5-49
5.1.1.1
Login
5-49
5.1.1.2
Maintenance GUI Home Page
5-50
5.1.1.3
Search Results
5-51
5.1.1.4
Device Lists
5-52
5.1.1.5
Device Details
5-52
5.1.1.6
HAR Editor
5-55
5.1.1.7
Links to Non-Device Pages
5-55
5.1.1.8
Pop-ups
5-56
5.1.1.9
Logout
5-56
5.1.2
Integrated Map
5-57
5.1.2.1
Home Page
5-57
5.1.2.2
Home Page Map
5-59
5.1.2.3
Marker Interaction
5-61
5.1.2.4
Home Page Map Toolbar
5-63
5.1.2.5
Nearby Devices Map
5-64
5.1.2.6
Device And Traffic Event Map Interaction
5-65
5.1.2.7
Traffic Event and Device Location Editing
5-69
5.1.2.8
Location Aliases
5-80
5.1.3
Video
5-86
5.1.3.1
Add Video Source
5-86
5.1.3.2
Diplay Video Details
5-87
5.1.3.3
Display Image
5-87
5.1.3.4
Flash Video Control
5-88
5.1.3.5
Video Stream Control Command Status
5-88
5.1.3.6
Flash Video Stream Servers
5-89
5.1.3.7
Configure Flash Video Servers
5-89
5.1.4
CHART Intranet Map
5-90
5.1.4.1
CHART Intranet Mapping GUI
5-90
5.2
System Interfaces
5-97
5.2.1
Class Diagrams
5-97
5.2.1.1
AliasManagement (Class Diagram)
5-97
5.2.2
Sequence Diagrams
5-99
5.3
Camera Control Module
5-99
5.3.1
Class Diagrams
5-99
5.3.1.1
CameraControlModule (Class Diagram)
5-99
5.3.2
Sequence Diagrams
5-109
5.3.2.1
CameraControlModule:AddCamera (Sequence Diagram)
5-109
5.3.2.2
CameraControlModule:BlockToPublic (Sequence Diagram)
5-110
5.3.2.3
CameraControlModule:RemoveCamera (Sequence Diagram)
5-111
5.3.2.4
CameraControlModule:RequestCameraControl (Sequence Diagram)
5-112
5.3.2.5
CameraControlModule:RevokeControl (Sequence Diagram)
5-114
5.3.2.6
CameraControlModule:RevokeDisplay (Sequence Diagram)
5-115
5.3.2.7
CameraControlModule:SetCameraConfiguration (Sequence Diagram)
5-116
5.4
Monitor Control Module
5-117
5.4.1
Class Diagrams
5-117
5.4.1.1
MonitorControlModule (Class Diagram)
5-117
5.4.2
Sequence Diagrams
5-122
5.4.2.1
MonitorControlModule:ConnectRecToSend (Sequence Diagram)
5-123
5.4.2.2
MonitorControlModule:DisplayImage (Sequence Diagram)
5-123
5.4.2.3
MonitorControlModule:DisplayImageImpl (Sequence Diagram)
5-124
5.5
Router Control Module
5-126
5.5.1
Class Diagrams
5-126
5.5.1.1
BridgeCircuitManagement2 (Class Diagram)
5-126
5.5.1.2
Router (Class Diagram)
5-129
5.5.2
Sequence Diagrams
5-132
5.5.2.1
Router:Connect (Sequence Diagram)
5-132
5.6
Utility Package
5-133
5.6.1
Class Diagrams
5-133
5.6.1.1
UtilityClasses2 (Class Diagram)
5-133
5.7
GUI - servlet (chartlite/servlet)
5-138
5.7.1
Class Diagrams
5-138
5.7.1.1
ServletBaseClasses (Class Diagram)
5-138
5.7.1.2
ServletMiscClasses (Class Diagram)
5-141
5.7.2
Sequence Diagrams
5-143
5.7.2.1
FormUtil:populateFormData (Sequence Diagram)
5-143
5.7.2.2
chartlite.servlet.HomePageReqHdlr:getHomePageJSON (Sequence Diagram)
5-144
5.7.2.3
chartlite.servlet.MainServlet:customizeResponseForPortal (Sequence Diagram)
5-145
5.7.2.4
chartlite.servlet.MainServlet:handleRequest (Sequence Diagram)
5-148
5.8
GUI - Servlet - User Management (chartlite/servlet/usermgmt)
5-149
5.8.1
Class Diagrams
5-149
5.8.1.1
chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)
5-149
5.8.1.2
chartlite.servlet.usermgmt_classes (Class Diagram)
5-150
5.8.2
Sequence Diagrams
5-151
5.8.2.1
LoginReqHdlr:processLogin (Sequence Diagram)
5-151
5.8.2.2
LogoutReqHdlr:processMaintLogout (Sequence Diagram)
5-153
5.8.2.3
SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm (Sequence Diagram)
5-155
5.8.2.4
SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm (Sequence Diagram)
5-155
5.9
GUI – servlet – DMS (chartlite/servlet/dms)
5-156
5.9.1
Class Diagrams
5-156
5.9.1.1
GUIDMSServletClasses (Class Diagram)
5-156
5.9.2
Sequence Diagrams
5-158
5.9.2.1
chartlite.servlet.dms:displayDMSTestMessage (Sequence Diagram)
5-158
5.10
GUI – Servlet – HAR (chartlite/servlet/har)
5-159
5.10.1
Class Diagrams
5-159
5.10.1.1
GUIHARServletClasses (Class Diagram)
5-159
5.10.2
Sequence Diagrams
5-162
5.10.2.1
HARReqHdlr:broadcastCHARTestMessage (Sequence Diagram)
5-162
5.11
GUI –Servlet – Map (chartlite/servlet/map)
5-163
5.11.1
Class Diagrams
5-163
5.11.1.1
MapClasses (Class Diagram)
5-163
5.11.2
Sequence Diagrams
5-165
5.11.2.1
MapReqHdlr:getCloseDevicesMapDataJSON (Sequence Diagram)
5-165
5.11.2.2
MapReqHdlr:getHomePageMapDataJSON (Sequence Diagram)
5-166
5.12
GUI – Servlet – Alias Management (chartlite/servlet/aliasmgmt)
5-167
5.12.1
Class Diagrams
5-167
5.12.1.1
GUIAliasServletClasses (Class Diagram)
5-168
5.12.2
Sequence Diagrams
5-170
5.12.2.1
chartlite.servlet.aliasmgmt:AliasReqHdlr.getAddAliasForm (Sequence Diagram)
5-170
5.12.2.2
chartlite.servlet.aliasmgmt:AliasReqHdlr.initialize (Sequence Diagram)
5-171
5.12.2.3
chartlite.servlet.aliasmgmt:AliasReqHdlr.processAddAlias (Sequence Diagram)
5-172
5.12.2.4
chartlite.servlet.aliasmgmt:AliasReqHdlr.processViewAliasList (Sequence Diagram)
5-173
5.12.2.5
 chartlite.servlet.aliasmgmt:DiscoverLocationAliasesCommand.execute
 (Sequence Diagram)
5-174
5.13
GUI – Servlet – Alerts (chartlite/servlet/alerts)
5-175
5.13.1
Class Diagrams
5-175
5.13.1.1
AlertsClasses (Class Diagram)
5-175
5.13.2
Sequence Diagrams
5-176
5.13.2.1
chartlite.serlet.alerts:AlertReqHdlr.getAlerts (Sequence Diagram)
5-176
5.14
GUI – Servlet – Location (chartlite/servlet/location)
5-177
5.14.1
Class Diagrams
5-177
5.14.1.1
chartlite.servlet.location_classes (Class Diagram)
5-177
5.14.2
Sequence Diagrams
5-179
5.14.2.1
SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML (Sequence Diagram)
5-179
5.14.2.2
SpecifyLocationReqHdlr:getLocationInfoXML (Sequence Diagram)
5-180
5.15
GUI – Servlet – Video (chartlite/servlet/video)
5-181
5.15.1
Class Diagrams
5-181
5.15.1.1
GUIVideoServletClasses (Class Diagram)
5-181
5.15.2
Sequence Diagrams
5-184
5.15.2.1
EditVideoCameraLocationSupporter:setObjectLocation (Sequence Diagram)
5-184
5.15.2.2
SelectMonitorListSupporter:setRoutingInfo (Sequence Diagram)
5-184
5.15.2.3
VideoSourceConfigReqHdlr:parseWebVideoSourceConfig (Sequence Diagram)
5-185
5.15.2.4
VideoSourceConfigReqHdlr:populateFormData (Sequence Diagram)
5-186
5.16
GUI – Javascript – Open Layers (chartlite/javascript/OpenLayers)
5-187
5.16.1
Class Diagrams
5-187
5.16.1.1
OpenLayersClasses (Class Diagram)
5-187
5.17
GUI – Javascript – CHART Layers (chartlite/javascript/CHARTLayers)
5-189
5.17.1
Class Diagrams
5-189
5.17.1.1
CHARTLayersClasses (Class Diagram)
5-189
5.17.1.2
MapViewSpecificClasses (Class Diagram)
5-192
5.17.2
Sequence Diagrams
5-194
5.17.2.1
CHARTMap:handleRawJSONResponse (Sequence Diagram)
5-194
5.17.2.2
CHARTMap:startJSONUpdates (Sequence Diagram)
5-195
5.17.2.3
CHARTMap:stopJSONUpdates (Sequence Diagram)
5-196
5.17.2.4
CloseDevicesMap:handleMapDataJSON (Sequence Diagram)
5-197
5.17.2.5
CloseDevicesMap:initialize (Sequence Diagram)
5-198
5.17.2.6
HomePageMap:handleMapDataJSON (Sequence Diagram)
5-199
5.17.2.7
HomePageMap:showEvents (Sequence Diagram)
5-200
5.17.2.8
SpecifyLocation:jsUpdateMapGeoLocInfo (Sequence Diagram)
5-201
5.17.2.9
SpecifyLocationMap:specifyLonLatViaMapClick (Sequence Diagram)
5-202
5.18
GUI – Flex – Edit Location (chartlite/Flex/editlocation)
5-203
5.18.1
Class Diagrams
5-203
5.18.1.1
GUIFlexEditLocationClasses (Class Diagram)
5-203
5.18.2
Sequence Diagrams
5-205
5.18.2.1
EditLocation:latitudeChanged (Sequence Diagram)
5-205
5.18.2.2
EditLocation:zoomMapOnCountyOrStateSelectionChanged (Sequence Diagram)
5-206
5.19
GUI – Flex – Home Page (chartlite/Flex/homepage)
5-207
5.19.1
Class Diagrams
5-207
5.19.1.1
HomePageClasses (Class Diagram)
5-207
5.20
GUI – Flex – Event Launcher (chartlite/Flex/eventlauncherapp)
5-207
5.20.1
Class Diagrams
5-207
5.20.1.1
EventLauncherApp (Class Diagram)
5-207
5.20.2
Sequence Diagrams
5-208
5.20.2.1
EventLauncher:addTrafficEvent (Sequence Diagram)
5-208
5.20.2.2
EventLauncher:handleAddTrafficEventResult (Sequence Diagram)
5-209
5.21
GUI – Flex – Components (chartlite/Flex/shared/components-flex)
5-210
5.21.1
Class Diagrams
5-210
5.21.1.1
GUIFlexComponentsClasses (Class Diagram)
5-210
5.21.2
Sequence Diagrams
5-211
5.21.2.1
SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult (Sequence Diagram)
5-211
5.21.2.2
SpecifyLocation:handleGetLocationInfoXMLResult (Sequence Diagram)
5-212
5.21.2.3
SpecifyLocation:intersectingFeatureTypeChanged (Sequence Diagram)
5-213
5.21.2.4
SpecifyLocation:routeSelectionChanged (Sequence Diagram)
5-214
5.21.2.5
SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest (Sequence Diagram)
5-215
5.21.2.6
SpecifyLocation:setUserSpecifiedLonLatStr (Sequence Diagram)
5-216
5.21.2.7
SpecifyLocation:updateExits (Sequence Diagram)
5-217
5.21.2.8
SpecifyLocation:updateIntersectingRouteList (Sequence Diagram)
5-217
5.21.2.9
SpecifyLocation:updateMileposts (Sequence Diagram)
5-218
5.22
GUI – Flex – Utility (chartlite/Flex/shared/util-flex)
5-219
5.22.1
Class Diagrams
5-219
5.22.1.1
util_classes (Class Diagram)
5-219
5.23
GUI – Flex –Data (chartlite/Flex/shared/data-flex)
5-220
5.23.1
Class Diagrams
5-220
5.23.1.1
FlexLocationClasses (Class Diagram)
5-220
5.24
GUI – Data (chartlite/data)
5-223
5.24.1
Class Diagrams
5-223
5.24.1.1
MapFeatures (Class Diagram)
5-223
5.24.1.2
chartlite.data_location_classes (Class Diagram)
5-224
5.25
GUI – Data – Alerts (chartlite/data/alerts-data)
5-227
5.25.1
Class Diagrams
5-227
5.25.1.1
data.alerts.classes (Class Diagram)
5-227
5.26
GUI – Data – Location (chartlite/data/location-data)
5-231
5.26.1
Class Diagrams
5-231
5.26.1.1
GUILocationDataClasses (Class Diagram)
5-231
5.26.2
Sequence Diagrams
5-234
5.26.2.1
chartlite.data.location:InitializeRoadwayLocationLookup (Sequence Diagram)
5-234
5.26.2.2
WebRoadwayLocationLookup:lookupIntersectingFeatures (Sequence Diagram)
5-236
5.27
GUI – Data – Video (chartlite/data/video-data)
5-237
5.27.1
Class Diagrams
5-237
5.27.1.1
GUIVideoDataClasses (Class Diagram)
5-237
5.28
GUI – Vivid Solutions (chartlite/com.vividsolutions.jts.geom.sys)
5-239
5.28.1
Class Diagrams
5-239
5.28.1.1
GeometryClasses (Class Diagram)
5-239
5.29
Data Export Utility (webservices/dataexportUtility)
5-241
5.29.1
Class Diagrams
5-241
5.29.1.1
DataExporterUtilityClasses (Class Diagram)
5-241
5.29.2
Sequence Diagrams
5-243
5.29.2.1
ExportSubscription:sendDataToSubscriber (Sequence Diagram)
5-243
5.29.2.2
ExportSubscriptionManager:creation (Sequence Diagram)
5-244
5.29.2.3
ExportSubscriptionManager:removeExpiredSubscriptions (Sequence Diagram)
5-245
5.29.2.4
ExportSubscriptionManager:removeSubscription (Sequence Diagram)
5-246
5.30
Web Services Utility (webservices/wsutil)
5-247
5.30.1
Class Diagrams
5-247
5.30.1.1
webservices.util-classes (Class Diagram)
5-247
5.31
Web Services Client Module (webservices/wsclientmodule)
5-248
5.31.1
Class Diagrams
5-248
5.31.1.1
wsclientmoduleclasses (Class Diagram)
5-248
5.31.2
Sequence Diagrams
5-251
5.31.2.1
wsclientmodule:PostedDataRequestHandler.processRequest (Sequence Diagram)
5-251
5.31.2.2
wsclientmodule:RequestLooper.processRequestFile (Sequence Diagram)
5-252
5.32
Web Services Base (webservices/base)
5-253
5.32.1
Class Diagrams
5-253
5.32.1.1
WebServicesBaseClasses (Class Diagram)
5-253
5.32.2
Sequence Diagrams
5-258
5.32.2.1
CHART2.webservices.base:BasicRequestHandler.processRequest (Sequence Diagram)
5-258
5.32.2.2
CHART2.webservices.base:WebService.handleRequest (Sequence Diagram)
5-259
5.32.2.3
CHART2.webservices.base:WebService.init (Sequence Diagram)
5-260
5.33
GIS Module (webservices/gismodule)
5-261
5.33.1
Class Diagrams
5-261
5.33.1.1
GISModuleClasses (Class Diagram)
5-261
5.33.2
Sequence Diagrams
5-263
5.33.2.1
CHART2.webservices.gismodule:GISLocationAliasRequestHandler. processCreateLocationAliasRequest (Sequence Diagram)
5-263
5.33.2.2
CHART2.webservices.gismodule:GISLocationAliasRequestHandler.
processGetAliasesRequest (Sequence Diagram)
5-265
5.33.2.3
CHART2.webservices.gismodule:GISLocationRequestHandler.
processGetCountiesByStateRequest (Sequence Diagram)
5-266
5.33.2.4
CHART2.webservices.gismodule:GISLocationRequestHandler.
processGetIntersectingFeaturesOfType (Sequence Diagram)
5-267
5.33.2.5
CHART2.webservices.gismodule:GISLocationRequestHandler.
processGetStatesRequest (Sequence Diagram)
5-268
5.33.2.6
CHART2.webservices.gismodule:GISModule.initialize (Sequence Diagram)
5-269
5.34
Export Listener (webservices/exportlistener)
5-270
5.34.1
Class Diagrams
5-270
5.34.1.1
ExportListenerModuleClasses (Class Diagram)
5-270
5.35
DMS Export Module (webservices/WSDMSExportModulePkg)
5-272
5.35.1
Class Diagrams
5-272
5.35.1.1
DMSSubscriptionSupportClasses (Class Diagram)
5-272
5.35.1.2
WSDMSExportModuleClasses (Class Diagram)
5-273
5.35.2
Sequence Diagrams
5-278
5.35.2.1
DMSExportHandler:getDMSInventoryList (Sequence Diagram)
5-278
5.35.2.2
DMSExportHandler:getDMSStatusList (Sequence Diagram)
5-279
5.35.2.3
DMSRequestHandler:handleExceptions (Sequence Diagram)
5-279
5.35.2.4
DMSRequestHandler:processRequest (Sequence Diagram)
5-280
5.35.2.5
DMSSubscription:doPush (Sequence Diagram)
5-281
5.35.2.6
DMSSubscriptionMgr:creation (Sequence Diagram)
5-282
5.35.2.7
DMSSubscriptionMgr:initialize (Sequence Diagram)
5-283
5.35.2.8
DMSSubscriptionMgr:modelObserverUpdate (Sequence Diagram)
5-284
5.35.2.9
DMSSubscriptionMgr:updateSubscription (Sequence Diagram)
5-284
5.35.2.10
DMSSubscriptionRequestHandler:processRequest (Sequence Diagram)
5-285
5.35.2.11
WSDMSExportModule:initialize (Sequence Diagram)
5-286
5.35.2.12
WSDMSExportModule:shutdown (Sequence Diagram)
5-287
5.36
Traffic Event Export Module (webservices/WSTrafficEventExportModule)
5-288
5.36.1
Class Diagrams
5-288
5.36.1.1
TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)
5-288
5.36.1.2
TrafficEventRequestHandler:processRequest (Sequence Diagram)
5-289
5.36.1.3
TrafficEventSubscription:doPush (Sequence Diagram)
5-290
5.36.1.4
TrafficEventSubscriptionMgr:creation (Sequence Diagram)
5-291
5.36.1.5
TrafficEventSubscriptionMgr:initialize (Sequence Diagram)
5-292
5.36.1.6
TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)
5-293
5.36.1.7
TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)
5-294
5.36.1.8
TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)
5-295
5.36.1.9
TrafficEventSubscriptionSupportClasses (Class Diagram)
5-296
5.36.1.10
WSTrafficEventExportModule:initialize (Sequence Diagram)
5-298
5.36.1.11
WSTrafficEventExportModule:shutdown (Sequence Diagram)
5-299
5.36.1.12
WSTrafficEventExportModuleClasses (Class Diagram)
5-300
5.36.2
Sequence Diagrams
5-305
5.36.2.1
TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)
5-305
5.36.2.2
TrafficEventRequestHandler:processRequest (Sequence Diagram)
5-306
5.36.2.3
TrafficEventSubscription:doPush (Sequence Diagram)
5-307
5.36.2.4
TrafficEventSubscriptionMgr:creation (Sequence Diagram)
5-308
5.36.2.5
TrafficEventSubscriptionMgr:initialize (Sequence Diagram)
5-309
5.36.2.6
TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)
5-309
5.36.2.7
TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)
5-310
5.36.2.8
TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)
5-311
5.36.2.9
WSTrafficEventExportModule:initialize (Sequence Diagram)
5-312
5.36.2.10
WSTrafficEventExportModule:shutdown (Sequence Diagram)
5-313
5.37
CHART Mapping – Data Synchronization
5-314
5.37.1
Class Diagrams
5-314
5.37.1.1
CHARTInventoryHandler (Class Diagram)
5-314
5.37.2
Sequence Diagrams
5-316
5.37.2.1
DataSynchronization:ParseRequest (Sequence Diagram)
5-316
5.38
CHART Mapping – GIS Web Service
5-318
5.38.1
Class Diagrams
5-318
5.38.1.1
CHART.Lib.IdentifyFeatureHandler (Class Diagram)
5-318
5.38.1.2
CHARTWebServiceHandler (Class Diagram)
5-318
5.38.2
Sequence Diagrams
5-320
5.38.2.1
CHARTWebService:ParseRequest (Sequence Diagram)
5-320
6
Mapping To Requirements
6-1
7
Acronyms/Glossary
7-1

Table of Figures

2-6Figure 2‑1 CHART and External Interfaces

Figure 2‑2 R5 Server Deployment
2-8
Figure 2‑3 R5 ERD
2-20
Figure 3‑2 Export TMDD Devices
3-5
Figure 4‑1 R5HighLevel (Use Case Diagram)
4-2
Figure 4‑2 MaintainDevicesUCD (Use Case Diagram)
4-6
Figure 4‑3 MaintainCamera (Use Case Diagram)
4-10
Figure 4‑4 MaintainDMS (Use Case Diagram)
4-13
Figure 4‑5 MaintainHAR (Use Case Diagram)
4-17
Figure 4‑6 MaintainSHAZAM (Use Case Diagram)
4-21
Figure 4‑7 MaintainTSS (Use Case Diagram)
4-24
Figure 4‑8 MapAndGISUses (Use Case Diagram)
4-26
Figure 4‑9 MapDeviceAndTrafficEventUses (Use Case Diagram)
4-33
Figure 4‑11 R5ProvideDataToExternalSystems (Use Case Diagram)
4-39
Figure 4‑12 DataExporterClient (Use Case Diagram)
4-43
Figure 4‑13 SpatialWebService (Use Case Diagram)
4-45
Figure 4‑14 ChartIntranetMap (Use Case Diagram)
4-47
Figure 5‑1 Login Page
5-49
Figure 5‑2 Maintenance GUI Home Page
5-50
Figure 5‑3 Search Results
5-51
Figure 5‑4 Device List
5-52
Figure 5‑5 Device Details Page
5-53
Figure 5‑6 Clips stored in HAR, Standard GUI (can have Edit link)
5-54
Figure 5‑7 Clips stored in HAR, Maintenance portal (no edit links)
5-54
Figure 5‑8 Simplified HAR Editor
5-55
Figure 5‑9 Example of Pop-up Window Elimination
5-56
Figure 5‑10 Logout Warning for Maint Mode Devices
5-57
Figure 5‑11 Home Page Layout
5-58
Figure 5‑12 Home Page Alerts
5-59
Figure 5‑13 Rubber Band Zoom
5-60
Figure 5‑14 Layer Visibility Control
5-61
Figure 5‑15 Camera Marker With Tooltip
5-62
Figure 5‑16 Traffic Event Marker Callout
5-62
Figure 5‑17 Multiple Marker Tooltip
5-63
Figure 5‑18 Multiple Markers Callout
5-63
Figure 5‑19 Home Page Map Toolbar
5-64
Figure 5‑20 Nearby Devices Map
5-65
Figure 5‑21 Traffic Event Marker and Callout
5-66
Figure 5‑22 DMS Marker and Callout
5-67
Figure 5‑23 Camera Callout
5-68
Figure 5‑24 Controlled Camera and Callout
5-69
Figure 5‑25 Event Launcher
5-70
Figure 5‑26 Intersecting Exit Locations
5-72
Figure 5‑27 Intersecting Exit Free Form Text
5-73
Figure 5‑28 Intersecting Milepost Locations
5-74
Figure 5‑29 Reset Location Fields Prompt
5-75
Figure 5‑30 Overwrite Coordinates Prompt
5-75
Figure 5‑31 Edit Traffic Event Location
5-76
Figure 5‑32 Edit Device Location
5-77
Figure 5‑33 Edit Location of New Device
5-78
Figure 5‑34 DMS Details Actions
5-79
Figure 5‑35 Location Alias List
5-80
Figure 5‑36 Select Alias List Columns
5-81
Figure 5‑37 Add Location Alias
5-82
Figure 5‑38 Edit Alias Location
5-83
Figure 5‑39 Location Alias Details
5-84
Figure 5‑40 Edit Location Alias Names
5-85
Figure 5‑41 Remove Location Alias
5-85
Figure 5‑42 Add Camera Page
5-86
Figure 5‑43 Camera Detail Page Configuration Section
5-87
Figure 5‑44 System Profile Video Settings
5-89
Figure 5‑45 Configure Flash Video Stream Servers
5-90
Figure 5‑46 Exit Locator
5-91
Figure 5‑47 Display Exit on Map
5-91
Figure 5‑48 911 in Legend
5-92
Figure 5‑49 911 Tooltip
5-92
Figure 5‑51 State Police Barracks Tooltip
5-93
Figure 5‑52 State Police Barracks Popup
5-94
Figure 5‑53 Select View
5-95
Figure 5‑54 Hybrid View with Transparency Slide Bar
5-96
Figure 5‑55 Street View
5-97
Figure 5‑56 AliasManagement (Class Diagram)
5-98
Figure 5‑57 CameraControlModule (Class Diagram)
5-100
Figure 5‑58 CameraControlModule:AddCamera (Sequence Diagram)
5-110
Figure 5‑59 CameraControlModule:BlockToPublic (Sequence Diagram)
5-111
Figure 5‑60 CameraControlModule:RemoveCamera (Sequence Diagram)
5-112
Figure 5‑61 CameraControlModule:RequestCameraControl (Sequence Diagram)
5-113
Figure 5‑62 CameraControlModule:RevokeControl (Sequence Diagram)
5-114
Figure 5‑63 CameraControlModule:RevokeDisplay (Sequence Diagram)
5-116
Figure 5‑64 CameraControlModule:SetCameraConfiguration (Sequence Diagram)
5-117
Figure 5‑65 MonitorControlModule (Class Diagram)
5-118
Figure 5‑66 MonitorControlModule:ConnectRecToSend (Sequence Diagram)
5-123
Figure 5‑67 MonitorControlModule:DisplayImage (Sequence Diagram)
5-124
Figure 5‑68 MonitorControlModule:DisplayImageImpl (Sequence Diagram)
5-125
Figure 5‑69 BridgeCircuitManagement2 (Class Diagram)
5-126
Figure 5‑70 Router (Class Diagram)
5-130
Figure 5‑71 Router:Connect (Sequence Diagram)
5-133
Figure 5‑72 UtilityClasses2 (Class Diagram)
5-134
Figure 5‑73 ServletBaseClasses (Class Diagram)
5-139
Figure 5‑74 ServletMiscClasses (Class Diagram)
5-142
Figure 5‑75 FormUtil:populateFormData (Sequence Diagram)
5-144
Figure 5‑76 chartlite.servlet.HomePageReqHdlr:getHomePageJSON (Sequence Diagram)
5-145
Figure 5‑77 chartlite.servlet.MainServlet:customizeResponseForPortal (Sequence Diagram)
5-147
Figure 5‑78 chartlite.servlet.MainServlet:handleRequest (Sequence Diagram)
5-149
Figure 5‑79 chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)
5-150
Figure 5‑80 chartlite.servlet.usermgmt_classes (Class Diagram)
5-151
Figure 5‑81 LoginReqHdlr:processLogin (Sequence Diagram)
5-153
Figure 5‑82 LogoutReqHdlr:processMaintLogout (Sequence Diagram)
5-154
Figure 5‑83 SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm (Sequence Diagram)
5-155
Figure 5‑84 SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm (Sequence Diagram)
5-156
Figure 5‑85 GUIDMSServletClasses (Class Diagram)
5-157
Figure 5‑86 chartlite.servlet.dms:displayDMSTestMessage (Sequence Diagram)
5-159
Figure 5‑87 GUIHARServletClasses (Class Diagram)
5-160
Figure 5‑88 HARReqHdlr:broadcastCHARTestMessage (Sequence Diagram)
5-163
Figure 5‑92 MapClasses (Class Diagram)
5-164
Figure 5‑93 MapReqHdlr:getCloseDevicesMapDataJSON (Sequence Diagram)
5-166
Figure 5‑94 MapReqHdlr:getHomePageMapDataJSON (Sequence Diagram)
5-167
Figure 5‑95 GUIAliasServletClasses (Class Diagram)
5-168
Figure 5‑96 chartlite.servlet.aliasmgmt:AliasReqHdlr.getAddAliasForm (Sequence Diagram)
5-171
Figure 5‑97 chartlite.servlet.aliasmgmt:AliasReqHdlr.initialize (Sequence Diagram)
5-172
Figure 5‑98 chartlite.servlet.aliasmgmt:AliasReqHdlr.processAddAlias (Sequence Diagram)
5-173
Figure 5‑99 chartlite.servlet.aliasmgmt:AliasReqHdlr.processViewAliasList (Sequence Diagram)
5-174
Figure 5‑100 chartlite.servlet.aliasmgmt:DiscoverLocationAliasesCommand.execute (Sequence Diagram)
5-175
Figure 5‑101 AlertsClasses (Class Diagram)
5-176
Figure 5‑102 chartlite.serlet.alerts:AlertReqHdlr.getAlerts (Sequence Diagram)
5-177
Figure 5‑103 chartlite.servlet.location_classes (Class Diagram)
5-178
Figure 5‑104 SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML (Sequence Diagram)
5-180
Figure 5‑105 SpecifyLocationReqHdlr:getLocationInfoXML (Sequence Diagram)
5-181
Figure 5‑106 GUIVideoServletClasses (Class Diagram)
5-182
Figure 5‑107 EditVideoCameraLocationSupporter:setObjectLocation (Sequence Diagram)
5-184
Figure 5‑108 SelectMonitorListSupporter:setRoutingInfo (Sequence Diagram)
5-185
Figure 5‑109 VideoSourceConfigReqHdlr:parseWebVideoSourceConfig (Sequence Diagram)
5-186
Figure 5‑110 VideoSourceConfigReqHdlr:populateFormData (Sequence Diagram)
5-186
Figure 5‑111 OpenLayersClasses (Class Diagram)
5-187
Figure 5‑112 CHARTLayersClasses (Class Diagram)
5-190
Figure 5‑113 MapViewSpecificClasses (Class Diagram)
5-193
Figure 5‑114 CHARTMap:handleRawJSONResponse (Sequence Diagram)
5-195
Figure 5‑115 CHARTMap:startJSONUpdates (Sequence Diagram)
5-196
Figure 5‑116 CHARTMap:stopJSONUpdates (Sequence Diagram)
5-197
Figure 5‑117 CloseDevicesMap:handleMapDataJSON (Sequence Diagram)
5-198
Figure 5‑118 CloseDevicesMap:initialize (Sequence Diagram)
5-199
Figure 5‑119 HomePageMap:handleMapDataJSON (Sequence Diagram)
5-200
Figure 5‑120 HomePageMap:showEvents (Sequence Diagram)
5-201
Figure 5‑121 SpecifyLocation:jsUpdateMapGeoLocInfo (Sequence Diagram)
5-202
Figure 5‑122 SpecifyLocationMap:specifyLonLatViaMapClick (Sequence Diagram)
5-203
Figure 5‑123 GUIFlexEditLocationClasses (Class Diagram)
5-204
Figure 5‑124 EditLocation:latitudeChanged (Sequence Diagram)
5-205
Figure 5‑125 EditLocation:zoomMapOnCountyOrStateSelectionChanged (Sequence Diagram)
5-206
Figure 5‑126 HomePageClasses (Class Diagram)
5-207
Figure 5‑127 EventLauncherApp (Class Diagram)
5-208
Figure 5‑128 EventLauncher:addTrafficEvent (Sequence Diagram)
5-209
Figure 5‑129 EventLauncher:handleAddTrafficEventResult (Sequence Diagram)
5-210
Figure 5‑130 GUIFlexComponentsClasses (Class Diagram)
5-211
Figure 5‑131 SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult (Sequence Diagram)
5-212
Figure 5‑132 SpecifyLocation:handleGetLocationInfoXMLResult (Sequence Diagram)
5-213
Figure 5‑133 SpecifyLocation:intersectingFeatureTypeChanged (Sequence Diagram)
5-214
Figure 5‑134 SpecifyLocation:routeSelectionChanged (Sequence Diagram)
5-215
Figure 5‑135 SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest (Sequence Diagram)
5-215
Figure 5‑136 SpecifyLocation:setUserSpecifiedLonLatStr (Sequence Diagram)
5-216
Figure 5‑137 SpecifyLocation:updateExits (Sequence Diagram)
5-217
Figure 5‑138 SpecifyLocation:updateIntersectingRouteList (Sequence Diagram)
5-218
Figure 5‑139 SpecifyLocation:updateMileposts (Sequence Diagram)
5-219
Figure 5‑140 util_classes (Class Diagram)
5-220
Figure 5‑141 FlexLocationClasses (Class Diagram)
5-221
Figure 5‑142 MapFeatures (Class Diagram)
5-223
Figure 5‑143 chartlite.data_location_classes (Class Diagram)
5-225
Figure 5‑144 data.alerts.classes (Class Diagram)
5-228
Figure 5‑145 GUILocationDataClasses (Class Diagram)
5-232
Figure 5‑146 chartlite.data.location:InitializeRoadwayLocationLookup (Sequence Diagram)
5-235
Figure 5‑147 WebRoadwayLocationLookup:lookupIntersectingFeatures (Sequence Diagram)
5-237
Figure 5‑148 GUIVideoDataClasses (Class Diagram)
5-238
Figure 5‑149 GeometryClasses (Class Diagram)
5-240
Figure 5‑150 DataExporterUtilityClasses (Class Diagram)
5-241
Figure 5‑151 ExportSubscription:sendDataToSubscriber (Sequence Diagram)
5-244
Figure 5‑152 ExportSubscriptionManager:creation (Sequence Diagram)
5-245
Figure 5‑153 ExportSubscriptionManager:removeExpiredSubscriptions (Sequence Diagram)
5-246
Figure 5‑154 ExportSubscriptionManager:removeSubscription (Sequence Diagram)
5-247
Figure 5‑155 webservices.util-classes (Class Diagram)
5-247
Figure 5‑156 wsclientmoduleclasses (Class Diagram)
5-249
Figure 5‑157 wsclientmodule:PostedDataRequestHandler.processRequest (Sequence Diagram)
5-252
Figure 5‑158 wsclientmodule:RequestLooper.processRequestFile (Sequence Diagram)
5-253
Figure 5‑159 WebServicesBaseClasses (Class Diagram)
5-254
Figure 5‑160 CHART2.webservices.base:BasicRequestHandler.processRequest (Sequence Diagram)
5-259
Figure 5‑161 CHART2.webservices.base:WebService.handleRequest (Sequence Diagram)
5-260
Figure 5‑162 CHART2.webservices.base:WebService.init (Sequence Diagram)
5-261
Figure 5‑163 GISModuleClasses (Class Diagram)
5-262
Figure 5‑164 CHART2.webservices.gismodule:GISLocationAliasRequestHandler.
processCreateLocationAliasRequest (Sequence Diagram)
5-265
Figure 5‑165 CHART2.webservices.gismodule:GISLocationAliasRequestHandler.

processGetAliasesRequest (Sequence Diagram)
5-265
Figure 5‑166 CHART2.webservices.gismodule:GISLocationRequestHandler.
processGetCountiesByStateRequest (Sequence Diagram)
5-266
Figure 5‑167 CHART2.webservices.gismodule:GISLocationRequestHandler.
processGetIntersectingFeaturesOfType (Sequence Diagram)
5-268
Figure 5‑168 CHART2.webservices.gismodule:GISLocationRequestHandler.
processGetStatesRequest (Sequence Diagram)
5-268
Figure 5‑169 CHART2.webservices.gismodule:GISModule.initialize (Sequence Diagram)
5-270
Figure 5‑172 WSDMSExportModuleClasses (Class Diagram)
5-274
Figure 5‑173 DMSExportHandler:getDMSInventoryList (Sequence Diagram)
5-278
Figure 5‑174 DMSExportHandler:getDMSStatusList (Sequence Diagram)
5-279
Figure 5‑175 DMSRequestHandler:handleExceptions (Sequence Diagram)
5-280
Figure 5‑176 DMSRequestHandler:processRequest (Sequence Diagram)
5-281
Figure 5‑177 DMSSubscription:doPush (Sequence Diagram)
5-282
Figure 5‑178 DMSSubscriptionMgr:creation (Sequence Diagram)
5-283
Figure 5‑179 DMSSubscriptionMgr:initialize (Sequence Diagram)
5-283
Figure 5‑180 DMSSubscriptionMgr:modelObserverUpdate (Sequence Diagram)
5-284
Figure 5‑181 DMSSubscriptionMgr:updateSubscription (Sequence Diagram)
5-285
Figure 5‑182 DMSSubscriptionRequestHandler:processRequest (Sequence Diagram)
5-286
Figure 5‑183 WSDMSExportModule:initialize (Sequence Diagram)
5-287
Figure 5‑184 WSDMSExportModule:shutdown (Sequence Diagram)
5-288
Figure 5‑185 TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)
5-289
Figure 5‑186 TrafficEventRequestHandler:processRequest (Sequence Diagram)
5-290
Figure 5‑187 TrafficEventSubscription:doPush (Sequence Diagram)
5-291
Figure 5‑188 TrafficEventSubscriptionMgr:creation (Sequence Diagram)
5-292
Figure 5‑189 TrafficEventSubscriptionMgr:initialize (Sequence Diagram)
5-293
Figure 5‑190 TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)
5-294
Figure 5‑191 TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)
5-295
Figure 5‑192 TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)
5-296
Figure 5‑193 TrafficEventSubscriptionSupportClasses (Class Diagram)
5-297
Figure 5‑194 WSTrafficEventExportModule:initialize (Sequence Diagram)
5-299
Figure 5‑195 WSTrafficEventExportModule:shutdown (Sequence Diagram)
5-300
Figure 5‑196 WSTrafficEventExportModuleClasses (Class Diagram)
5-301
Figure 5‑197 TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)
5-306
Figure 5‑198 TrafficEventRequestHandler:processRequest (Sequence Diagram)
5-307
Figure 5‑199 TrafficEventSubscription:doPush (Sequence Diagram)
5-308
Figure 5‑200 TrafficEventSubscriptionMgr:creation (Sequence Diagram)
5-309
Figure 5‑201 TrafficEventSubscriptionMgr:initialize (Sequence Diagram)
5-309
Figure 5‑202 TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)
5-310
Figure 5‑203 TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)
5-311
Figure 5‑204 TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)
5-312
Figure 5‑205 WSTrafficEventExportModule:initialize (Sequence Diagram)
5-313
Figure 5‑206 WSTrafficEventExportModule:shutdown (Sequence Diagram)
5-314
Figure 5‑207 CHARTInventoryHandler (Class Diagram)
5-315
Figure 5‑208 DataSynchronization:ParseRequest (Sequence Diagram)
5-318
Figure 5‑209 CHART.Lib.IdentifyFeatureHandler (Class Diagram)
5-318
Figure 5‑210 CHARTWebServiceHandler (Class Diagram)
5-319
Figure 5‑211 CHARTWebService:ParseRequest (Sequence Diagram)
5-321

1 Introduction

1.1 Purpose

This document describes the design of the software for Release 5 of the CHART system. This build provides:

· The Maintenance GUI, a portal into the existing CHART GUI that provides a view of the system tailored to device maintenance personnel. Upon login, the user can choose to view the maintenance portal instead of the normal CHART GUI pages.
· An Integrated Map, a map is being added to the home page to provide users with a map view that is always available to them. A second type of map that is being added to the CHART GUI is the nearby devices map which is added to the details page of each traffic event. The nearby devices map focuses on the display of devices near the target traffic event that could be used for verification or response. The third type of map that has been added to the GUI is the object location map. This map allows users to see a geographic view of where they are locating a traffic event or device, and allows them to use the map to set a different point location for the object as well.

· The Data Exporter, a web service to provide CHART Data to External Systems. A new web service is included in R5 to allow external systems such as RITIS to connect to CHART to retrieve information. This new service provides better security and data protection than the existing CORBA based interface. It also provides better isolation of the CHART system from external systems.

· CHART R5 enhances the video service capabilities. In this release an administrator is able to configure more than one video sending device for each source. CHART R5 gives the administrator the ability to configure at least five sending devices. CHART R5 will display video images to each sending device configured from one video source. CHART R5 also provides the capability to control (enable and disable) public flash video streams. Administrator will be able to configure public video stream controls. Once configured public flash video associated with the control will be automatically disabled as Block to Public Monitors is executed. Public flash video streams will be automatically enabled as Unblock to Public Monitors is executed.
· The Intranet Map application expands its capability by giving users the ability to locate exits, locate points of interest, and display satellite imagery. It also expands its role by providing a common home for GIS services to be used by both the Intranet Map and the Integrated Map. The existing CORBA Web Listener is replaced by the ExportClient as the source of its CHART traffic event and device data.
1.2 Objectives

The main objective of this detailed design document is to provide software developers with a framework in which to implement the requirements identified in the CHART R5 Requirements document. A matrix mapping requirements to the design is presented in Section 6 (Mapping To Requirements).

1.3 Scope

This design is limited to Release 5 of the CHART System. It addresses both the design of the server components of CHART and the Graphical User Interface (GUI) components of CHART to support the new features being added. Unlike previous design documents, the design changes for the Intranet Map are included. This design does not include designs for components implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams. Class diagrams were generated showing the high level objects that address the Use Cases. Sequence diagrams were generated to show how each piece of major functionality will be achieved. This process was iterative in nature – the creation of sequence diagrams sometimes caused re-engineering of the class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling Language (UML) Suite design tool. Within this tool, the design will be contained in the CHART project, Release 5, Analysis phase and System Design phase. And also in the CHARTMapping project, Release 5, Analysis phase and System Design phase.
1.6 Work Products

The final R5 design consists of the following work products:

· Use Case diagrams that capture the requirements of the system

· Human-Machine Interface section which provides descriptions of the screens that are changing or being added in order to allow the user to perform the described uses.

· UML Class diagrams, showing the software objects which allow the system to accommodate the uses of the system described in the Use Case diagrams

· UML Sequence diagrams showing how the classes interact to accomplish major functions of the system

· Requirement Verification Traceability Matrix that shows how this design meets the documented requirements for this feature

2 Architecture

The sections below discuss specific elements of the architecture and software components that are created, changed, or used in R5.

2.1 Network/Hardware

2.1.1 Integrated Map

The following figure shows the network layout for the Integrated Map and Intranet Map features. The CHART GIS Server houses the Integrated Map while the Mapping GIS Service houses the Intranet Map which now includes GIS services used by both maps.

 [image: image2.jpg]XML for Fiex components
JSON for Maps XML forroutes.
HIML for Pages XML for infersecting route

Internet| Browser

WS Map Images for-
Base Map Layer (pre-fled cache)
Eds

Misposts

XML for location alizses.

CHARTIGUI Server CHART

DB

JDBC for spatial data
Alises.

XML for exis and milepass
XML forlocalon info, state extents,
‘and county boudaries.

Mapping GIS
Service

S |« SQL Server DB

o

ESRI ARCGIS

2.1.2 Data Exporter

CHART R5 introduces a new interface for CHART – an export service is included to allow external systems to retrieve data from the CHART system. The CHART system will host an HTTPS/XML interface for data export.
The following Data Exporter network change will be implemented in the CHART System. The CHART Exporter server will live outside the CHART firewall however it supports both external (RITIS) and internal (Intranet Map) clients. Initially RITIS will continue to use the CORBA UMD Listener however it is expected they will transition to the Data Exporter before R6 is deployed.

[image: image3]
2.1.3 Video Changes

There are no network changes required for R5 Video Updates.

2.1.4 Intranet Map

There are no network changes required for the Intranet Map
2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base architecture, with custom built software objects made available on the network allowing their data to be accessed via well defined CORBA interfaces. Communications to remote devices use the Field Management Server (FMS) architecture. As external interfaces are added such as the Data Exporter, they are created using a web services architecture combining an HTTP request/response structure to pass XML messages.

The Integrated Map feature is replacing the existing Roadway Location Lookup CORBA service with a REST (Representational State Transfer) web service in order to make the information more accessible to other applications. It is also adding the use of an external web service that provides GIS information.
2.2.1 COTS Products

CHART uses numerous COTS products for both run-time and development. New products being added in Release 5 are as follows:
	Product Name
	Description

	JAXB
	CHART uses the jaxb java library to automate the tedious task of hand-coding field-by-field XML translation and validation for exported data.

	OpenLayers
	The Integrated Map feature uses the Open Layers JavaScript API 2.8 (http://openlayers.org/) in order to render interactive maps within a web application without relying on vendor specific software. Open Layers is an open source product released under a BSD style license which can be found at (http://svn.openlayers.org/trunk/openlayers/license.txt).

	Apache XML-RPC
	CHART uses the apache xmlrpc java library 3.1.2 protocol that uses XML over HTTP to implement remote procedure calls. The video Flash streaming “red button” (“kill switch”) API uses XML over HTTP remote procedure calls.

The following table contains existing COTS products that have not changed for R5:
	Product Name
	Description

	Apache ActiveMQ
	CHART uses this to connect to RITIS JMS queues

	Apache Jakarta Ant
	CHART uses Apache Jakarta Ant 1.6.5 to build CHART applications and deployment jars.

	Apache Tomcat
	CHART uses Apache Tomcat 6.0.18 as the GUI web server.

	Attention! CC
	CHART uses Attention! CC Version 2.1 to provide notification services.

	Attention! CC API
	CHART uses Attention! CC API Version 2.1 to interface with Attention! CC.

	Attention! NS
	CHART uses Attention! NS Version 6.1 to provide notification services.

	Bison/Flex
	CHART uses Bison and Flex as part of the process of compiling binary macro files used for performing camera menu operations on Vicon Surveyor VFT cameras.

	CoreTec Decoder Control
	CHART uses a CoreTec supplied decoder control API for commanding CoreTec decoders.

	Dialogic API
	CHART uses the Dialogic API for sending and receiving Dual Tone Multi Frequency (DTMF) tones for HAR communications.

	ESRI's ArcGIS Sever
	CHART uses version 9.3 to serve maps over the Internet.

	ESRI's MapObjects
	CHART uses the Map Objects for spatial algorithms.

	Flex2 SDK
	The CHART GUI will use the Flex2 SDK, version 3.1 to provide the Flex compiler, the standard Flex libraries, and examples for building Flex applications.

	GIF89 Encoder
	Utility classes that can create .gif files with optional animation. This utility is used for the creation of DMS True Display windows.

	JDOM
	CHART uses JDOM b7 (beta-7) dated 2001-07-07. JDOM provides a way to represent an XML document for easy and efficient reading, manipulation, and writing.

	JacORB
	CHART uses a compiled, patched version of JacORB 2.2.4. The JacORB source code, including the patched code, is kept in the CHART source repository.

	Java Run-Time (JRE)
	CHART uses 1.5.0_16.

	JavaService
	CHART uses JavaService to install the server side Java software components as Windows services.

	JAXEN
	CHART uses JAXEN 1.0-beta-8 dated 2002-01-09. The Jaxen project is a Java XPath Engine. Jaxen is a universal object model walker, capable of evaluating XPath expressions across multiple models.

	JoeSNMP
	CHART uses JoeSNMP version 0.2.6 dated 2001-11-11. JoeSNMP is a Java based implementation of the SNMP protocol. CHART uses for commanding iMPath MPEG-2 decoders and for communications with NTCIP DMSs.

	JSON-simple
	CHART uses the JSON-simple java library to encode/decode strings that use JSON (JavaScript Object Notation).

	JTS
	CHART uses the Java Topology Suite (JTS) version 1.8.0 for geographical utility classes.

	Log4J
	CHART uses the log4J version 1.2.15 for logging purposes.

	NSIS
	CHART uses the Nullsoft Scriptable Installation System (NSIS), version 2.20, as the server side installation package.

	Nuance Text To Speech
	For text-to-speech (TTS) conversion CHART uses a TTS engine that integrates with Microsoft Speech Application Programming Interface (MSSAPI), version 5.1. CHART uses Nuance Vocalizer 4.0 with Nuance SAPI 5.1 Integration for Nuance Vocalizer 4.0.

	Oracle
	CHART uses Oracle 10.1.0.5 as its database and uses the Oracle 10G JDBC libraries (ojdbc1.4.jar) for all database transactions.

	O’Reilly Servlet
	Provides classes that allow the CHART GUI to handle file uploads via multi-part form submission.

	Prototype Javascript Library
	The CHART GUI uses the Prototype Javascript library, version 1.5.1, a cross-browser compatible Javascript library provides many features (including easy Ajax support).

	SAXPath
	CHART uses SAXPath 1.0-beta-6 dated 2001-09-27. SAXPath is an event-based API for XPath parsers, that is, for parsers which parse XPath expressions.

	SQLServer JDBC Driver
	CHART uses this driver to lookup GIS releated data and also to store Location Aliases in SQL Server databases.

	Velocity Template Engine
	Provides classes that CHART GUI uses in order to create dynamic web pages using velocity templates.

	Vicon V1500 API
	CHART uses a Vicon supplied API for commanding the ViconV1500 CPU to switch video on the Vicon V1500 switch

2.2.2 Deployment /Interface Compatibility

2.2.2.1 External Interfaces

This section describes the external interfaces being added in Release 5 of the CHART system.

[image: image4.emf]CHART

DMS

EORS

Baltimore Media

Washington Media

Broadcast

Television

Beacons

HARs

RTMS

Speed Data

CCTV

Live

Traffic

Images

Statewide HAR

& DMS Network

Traffic Cameras

Snapshot Cameras

DMS Messages

Interactive Mapping

Incident Reports

Lane Closures

Speed Sensor Data

Weather Station Data

Weather Service Data

SCAN

Weather Data

Snapshot Cameras

Roadway Surface Data

RWIS:

Reports from:

CHART & SHA Units

MSP and Local Police

Other Agencies

Travelers

CHART Intranet

Map & Web Site

RITIS

UMD

Event Listener,

FTP, (between R5

& R6: Traffic

Event, DMS, HAR,

SHAZAM, Speed

Data

Regional Web

Services:

Traffic Land Video

CHART

Reporting

Tool

Regional

Event,

DMS,

Speed

data

INRIX

Travel Time

Data

Vector

Toll Rate

Data

Email Notifications

Text Notifications

Traffic Event,

DMS, HAR,

SHAZAM, Speed

Data

Figure 2‑1 CHART and External Interfaces

The external interfaces included are:

1. The Integrated Map is reliant on a GIS web service API provided by the CHART Intranet Map application for GIS data. This interface is documented in a separate ICD (Interface Control Document) and is governed by an XSD published by the CHART Intranet Map application. This interface provides the Integrated Map with the following information:

· Geographic extents for Maryland and neighboring states.

· Geographic boundaries for Maryland counties

· Exits along a given road within a specified county

· Mileposts along a given road within a specified county

· State and county (if within Maryland) of a specified point location (lat/lon coordinate)

The Integrated Map is also reliant on the following WMS map layers that are exported from the CHART Intranet mapping application for display in the CHART GUI.

· Base map layer: The Integrated Map shows CHART traffic events and devices over the same base map image that is used by the CHART Intranet map.

· Exits layer: The Integrated Map shows roadway exits as an overlay layer.

· Mileposts layer: The Integrated Map shows state mileposts as an overlay layer.
2. The primary purpose of the Data Exporter is to provide an external interface to CHART data however it is also a convenient method for controlling data to other independent CHART applications such as the Intranet map and the public web site. It replaces the previous CORBA Event Listener approach which provided external systems with direct access to view and potentially modify sensitive internal objects including passwords, phone numbers, and restricted traffic event information such as fatalities. The R5 Data Exporter prevents external clients from modifying internal objects. It also provides the CHART administrator with the ability to use existing CHART rights to control information flow to external clients.
For R5, the Intranet Map and CHART Public Web Site will receive their CHART data via a new Export Client application that writes the standards-based messages to the Map database. The other external client, the University of Maryland, will not initially use the Data Exporter however the expectation is that UMD will transition to the Data Exporter on their own schedule after R5 is deployed but before R6 is deployed. Once R6 is deployed, external clients will no longer be able to use CORBA directly to access CHART internal objects.

 [image: image5.png]CHART Application Server

CORBA Trading Service

CORBA Event Services

User Manager Service

DMS Service

HAR Service

TSS Service

Message Utiliy Service

Viden Service

See GUI Deplayment Diagram
for details

Maintenance GUI
added for RS

ISDN POTS,
Telephony |

Field Devices

[DMSs HARs SHAZAMS TSSs]

Travel Route Service

Runs an one
prirmary server and
one hackup server

Toll Rate Import Service

EORS Service

Web Server
IOP:
IOP:
Field Management Server
IOP:
% Communications Service
IOP:
TCPIP- Video Device
[Cameras Monitors]
TCPIP
Vector
HTTP:
EORS Server
TCPIP-JDBC-

Schedule Service

Traffic Event Service

Chart GIS Service

Do ® Bo0Ga6EEDLD

MSSQL,

Tinked Server

EORS DB

CHART Mapping DB Server

TCPIP JDBC—>|

Mapping DB SQL Server

CHART Mapping Application Server

Updated for RS
Mapping GIS Server now
implements Roadway
Lacatian Lookup Module
and other GIS functions

——
RoatwayLocation Lookup Module New for R5 CHART Mapping Senvice
rernoved for RS, Functionality now e —
implemented in Mapping Application Server -
- CHARTExpurtClientService
.
Roatway Location Lookup Service
GeoAreaModule
Added
Data Exporter Server
TCPIP JDBC: Data Exporter Server k-HTTPS eteen 5
an
HOP- Data Export Service
= HTTPS:
Alert Senvice
Removed L\
-1 between
UMd Listener Server R
Oracle RDBMS Service
— UMd Listener Service
IOP- RITIS System
— IS
RITIS Senice

INRIX Import Service

IMS:

Notification Service

HTTPS:

Firewall 5

Notification Server

INRIX Web Service ‘

=
==
==
==

==

Watchdog Service 1

——]

——

Watchdog Service 2

[——]

Runs an one
prirmary server and
one hackup server

COTS:

COTS

Email-Pager Providers

Figure 2‑2 R5 Server Deployment

2.2.2.2 Internal Interfaces

This section describes the internal interfaces being added or modified in Release 5 of the CHART system.
1. The Maintenance GUI utilizes the existing GUI interface. Changes are made to allow the user to choose to view pages tailored to a device maintainer.
2. The Integrated Map feature utilizes the existing GUI interface. Changes are made to add a map to the home page, a map that shows nearby devices on the details page of each traffic event, and a map to the various screens that allow users to specify the location of traffic events and devices. The Integrated Map feature is replacing the existing CHART Roadway Location Lookup CORBA based service with a REST Web Service that provides the same functionality. The benefit of this replacement is that other CHART applications such as the Internet Map, Intranet Map, EORS, etc. will be able to benefit by using the published REST API.
3. Before R5, the WebListener application used CORBA to collect CHART information and provide it to the database shared by the Internet/Intranet Map and the Public Web. For R5 this same information is provided with the addition of a relatively simple ExportClient application. The WebListener will be retired for R5. The ExportClient application will adhere to the following rules:

· For Event data exchange it follows the SAE ATIS J2354 standard. For devices it adheres to the TMDD standards.

· Once it receives the updated data it modifies the appropriate database shared by the Internet/Intranet Map and the Public Web.

· For any configuration changes received by the Data Exporter it alerts the map application via HTTP requests.
2.3 Security

1. The CHART System itself runs entirely behind the MDOT firewall. CHART R5 introduces a web service that allows external systems (such as RITIS) to obtain data from CHART. This will eventually eliminate the need for CHART to allow external systems to connect via its CORBA interfaces, although access to the CORBA interfaces will still be required until existing external consumers of CHART data are updated to use the new HTTPS/XML interface. This new web service requires the opening of a specific port in the MDOT firewall. This is permitted because the services use a non-standard port for HTTPS as well as connection security measures described in the next paragraph.
All external systems that connect to a CHART HTTPS/XML web service to obtain data from CHART will be assigned a unique client ID and must be pre-configured in the CHART system by an Administrator to allow access. A public/private key pair will be generated by the Administrator for each external system, with the public key being stored in the CHART system, and the private key being provided to the external system owner for their use when connecting to the CHART system. Each request received from an external system will include the external system client ID and a digital signature created with their private key. CHART will validate all requests using the client’s public key to ensure the request is from a trusted source. For external systems retrieving data from CHART via the HTTPS/XML interface, each external system client ID will also be pre-configured in CHART by an Administrator to assign one or more CHART user roles. The CHART user roles and the functional rights contained in each role will be used by CHART to determine the data an external client is permitted to retrieve from CHART, and in some cases the detail of the data retrieved. (For example for some detectors an external system may be provided actual speeds, others a speed range, and yet others no speed data, depending on the organization that owns the detector and the functional rights assigned to the client’s role(s)).

There are three security aspects to the deployment of the Data Exporter in a production environment:

· Authentication – Before any client is allowed to request information, their identity is first verified using an authentication key. This key is provided to each client by the CHART administrator using a separate communications method. All requests and reponses are encrypted using HTTPS to prevent man-in-the-middle and eavesdropping attacks.

· Content – Once authenticated, the client receives only the information the CHART administrator permits them to receive. This is accomplished using the existing CHART rights and roles infrastructure.

· Protection – By providing public access to the CHART system, the Data Exporter exposes CHART and therefore the MDOT network to a potentially dangerous threat of attack. This threat is mitigated by placing the Data Exporter in a DMZ outside of the CHART network. Its connection to the rest of the CHART system is created and administered by MDOT.

2. The Integrated Map does not include any changes to security; the existing CHART credentials and user rights are used for this feature. The REST web service that manages locations aliases utilizes public/private key pairs and digital signatures to authenticate requests to add, delete or modify location aliases. This service will allow any client with either the manage aliases functional right or the CHART2System functional right to perform these operations. The CHART GUI utilizes the CHART2System functional right to make the call, but only if the currently logged in user possesses the Manage Aliases functional right.

3. CHART calls into the SFS-1000 Flash Streaming devices include a password configured for the SFS-1000 configured for each camera.

4. The Maintenance GUI does not include any changes to security; existing CHART credentials and user rights are used for the Maintenance GUI.
2.4 Data

CHART R5 will be tested with the Oracle database patches that are available and will be deployed in the field at the time of CHART R5 deployment. The database patches may possibly be applied in the field before CHART R5 deployment.

2.4.1 Data Storage

The CHART System stores most of its data in an Oracle database. Additionally the Integrated Map feature adds the ability to store location aliases to the spatial SQL Server database. However, some data is stored in flat files on the CHART servers. This section describes both types of data.

2.4.1.1 Database

2.4.1.1.1 Database Architecture

The Integrated Map, Maintenance GUI, Data Exporter and Video changes do not affect the architecture of the CHART database.

2.4.1.1.2 Logical Design

2.4.1.1.2.1 Entity Relationship Diagram (ERD)
CHART R5 updates the HAR, OBJECT_LOCATION, and EVENT tables and adds some new video tables. Database entity relationship diagrams are shown below in the multiple pages of figures labeled collectively as Figure 2-3.
[image: image6.emf] [image: image7.emf]
[image: image8.emf]
[image: image9.emf]
[image: image10.emf]
[image: image11.emf]
[image: image12.emf]
[image: image13.emf]
[image: image14.emf] Figure 2‑3 R5 ERD
2.4.1.1.2.2 Function to Entity Matrix ReportThe Create, Retrieve, Update, Delete (CRUD) matrix cross-references business functions to entities and shows the use of the entities by those functions. This report will be generated as part of the CHART O&M Guide.
2.4.1.1.2.3 Table Definition Report –
In existing tables shown below:
· Deleted columns marked with a minus sign (“-“)

· Modified columns marked with an asterisk (“*”)

· New columns marked with a plus sign (“+”)
2.4.1.1.2.3.1 New Tables for DataExporter in the CHART R5 Live database

EXPORT_SUBSCRIPTION
CLIENT_ID varchar2(256) NOT NULL

SUBSCRIPTION_DATA_TYPE number(3) NOT NULL

TARGET_URL varchar2(1024)
EXPIRATION_TIME date
2.4.1.1.2.3.2 New Tables for Video in the CHART R5 Live database

FLASH_VIDEO_STREAM_CONTROL
FLASH_VIDEO_ID CHAR(32) NOT NULL,
CAMERA_DEVICE_ID CHAR(32) NOT NULL,
FLASH_VIDEO_HOST VARCHAR2(16) NOT NULL,
PASSWORD VARCHAR2(32),
PORT NUMBER(5, 0),
CONSTRAINT FLASH_VIDEO_STREAM_CONTROL_PK PRIMARY KEY
(FLASH_VIDEO_ID)ENABLE
CAMERA_VIDEO_CONNECTION
CONNECTION_ID CHAR(32 byte) NOT NULL,
CONNECTION_TYPE NUMBER(5) NOT NULL,

CAMERA_DEVICE_ID CHAR(32 byte) NOT NULL,
CONSTRAINT "CC_CAMERA_FK" FOREIGN KEY("CAMERA_DEVICE_ID")

2.4.1.1.2.3.3 Tables Modified for External Map in the CHART SQL Server database
TABLE event_basicinfo

[eventid] [varchar](50) NOT NULL,

[eventtype] [int] NOT NULL,

[eventname] [varchar](255) NULL,

[location] [varchar](255) NULL,

[direction] [int] NOT NULL,

[county] [int] NOT NULL,

[queuelength] [int] NULL,

[falsealarm] [bit] NOT NULL CONSTRAINT [DF_event_basicinfo_falsealarm] DEFAULT ((0)),

[scenecleartime] [datetime] NULL,

[delaycleartime] [datetime] NULL,

[confirmtime] [datetime] NULL,

[closed] [datetime] NULL,

[created] [datetime] NOT NULL,

[updated] [datetime] NOT NULL,

[opcenter] [varchar](50) NULL,

[SourceType] [int] NULL,

[SourceDescription] [varchar](255) NULL,

[EORSTrackingNum] [varchar](255) NULL,

[stateCode] [char](2) NULL,

[stateFipsCode] [char](2) NULL,

[stateName] [varchar](32) NULL,

[regionName] [varchar](32) NULL,

[countyCode] [char](3) NULL,

[countyName] [varchar](50) NULL,

[countyFipsCode] [char](3) NULL,

[routeSpecType] [int] NULL,

[routeFreeFormText] [varchar](50) NULL,

[routeType] [int] NULL,

[roadName] [varchar](50) NULL,

[routePrefix] [varchar](10) NULL,

[routeNumber] [varchar](10) NULL,

[routeSuffix] [varchar](4) NULL,

[roadwayLocAliasPubName] [varchar](90) NULL,

[roadwayLocAliasIntName] [varchar](90) NULL,

[intFeatType] [int] NULL,

[intFeatProxType] [int] NULL,

[intFeatProxDist] [int] NULL,

[intRouteSpecType] [int] NULL,

[intRouteFreeFormText] [varchar](50) NULL,

[intRouteType] [int] NULL,

[intRoadName] [varchar](50) NULL,

[intRoutePrefix] [varchar](10) NULL,

[intRouteNumber] [varchar](10) NULL,

[intRouteSuffix] [varchar](4) NULL,

[intFeatMilePostType] [int] NULL,

[intFeatMillimilePostData] [int] NULL,

[displayWebsiteAlert] [bit] NULL,

[websiteAlertText] [varchar](3000) NULL,

[latitude] [int] NULL,

[longitude] [int] NULL,

[publiceventname] [varchar](255) NULL,

[owningOrg] [varchar](32) NULL,

+[exitNumber] [int] NULL,

+ [exitSuffix] [varchar](4) NULL,

+ [exitRoadName] [varchar](50) NULL,

+ [updateFlag] [bit] NULL

 TABLE dms_devices

[id] [varchar](32) NOT NULL,

[name] [varchar](250) NULL,

[location] [varchar](250) NULL,

[type] [int] NOT NULL DEFAULT ((0)),

[comm_mode] [int] NOT NULL CONSTRAINT [DF_dms_devices_commmode] DEFAULT ((0)),

[opstatus] [int] NOT NULL CONSTRAINT [DF_dms_devices_opstatus] DEFAULT ((0)),

[message] [varchar](1024) NULL,

[removed] [bit] NOT NULL CONSTRAINT [DF_dms_devices_removed] DEFAULT ((0)),

[updated] [datetime] NULL CONSTRAINT [DF_dms_devices_updated] DEFAULT (getdate()),

[beacon] [bit] NOT NULL CONSTRAINT [DF_dms_devices_beacon] DEFAULT ((0)),

[latitude] [int] NULL,

[longitude] [int] NULL,

[direction] [int] NULL,

[OwningOrganization] [varchar](32) NULL,

[stateCode] [char](2) NULL,

[stateFipsCode] [char](2) NULL,

[stateName] [varchar](32) NULL,

[regionName] [varchar](32) NULL,

[countyCode] [char](3) NULL,

[countyName] [varchar](50) NULL,

[countyFipsCode] [char](3) NULL,

[routeSpecType] [int] NULL,

[routeFreeFormText] [varchar](50) NULL,

[routeType] [int] NULL,

[roadName] [varchar](50) NULL,

[routePrefix] [varchar](10) NULL,

[routeNumber] [varchar](10) NULL,

[routeSuffix] [varchar](4) NULL,

[roadwayLocAliasPubName] [varchar](90) NULL,

[roadwayLocAliasIntName] [varchar](90) NULL,

[intFeatType] [int] NULL,

[intFeatProxType] [int] NULL,

[intFeatProxDist] [int] NULL,

[intRouteSpecType] [int] NULL,

[intRouteFreeFormText] [varchar](50) NULL,

[intRouteType] [int] NULL,

[intRoadName] [varchar](50) NULL,

[intRoutePrefix] [varchar](10) NULL,

[intRouteNumber] [varchar](10) NULL,

[intRouteSuffix] [varchar](4) NULL,

[intFeatMilePostType] [int] NULL,

[intFeatMillimilePostData] [int] NULL,

+ [exitNumber] [int] NULL,

+ [exitSuffix] [varchar](4) NULL,

+ [exitRoadName] [varchar](50) NULL,

+ [updateFlag] [bit] NULL

 TABLE HAR

[Id] [varchar](32) NOT NULL,

[Name] [varchar](15) NULL,

[Location] [varchar](255) NULL,

[OpStatus] [int] NOT NULL,

[LastContactTime] [datetime] NULL,

[ReceivedTime] [datetime] NULL,

[Comm_Mode] [int] NOT NULL,

[TransmitterOn] [bit] NOT NULL,

[Removed] [bit] NOT NULL CONSTRAINT [DF_HAR_Removed] DEFAULT ((0)),

[HasActiveMessage] [bit] NOT NULL,

[latitude] [int] NULL,

[longitude] [int] NULL,

[OwningOrganization] [varchar](32) NULL,

[stateCode] [char](2) NULL,

[stateFipsCode] [char](2) NULL,

[stateName] [varchar](32) NULL,

[regionName] [varchar](32) NULL,

[countyCode] [char](3) NULL,

[countyName] [varchar](50) NULL,

[countyFipsCode] [char](3) NULL,

[routeSpecType] [int] NULL,

[routeFreeFormText] [varchar](50) NULL,

[routeType] [int] NULL,

[roadName] [varchar](50) NULL,

[routePrefix] [varchar](10) NULL,

[routeNumber] [varchar](10) NULL,

[routeSuffix] [varchar](4) NULL,

[roadwayLocAliasPubName] [varchar](90) NULL,

[roadwayLocAliasIntName] [varchar](90) NULL,

[intFeatType] [int] NULL,

[intFeatProxType] [int] NULL,

[intFeatProxDist] [int] NULL,

[intRouteSpecType] [int] NULL,

[intRouteFreeFormText] [varchar](50) NULL,

[intRouteType] [int] NULL,

[intRoadName] [varchar](50) NULL,

[intRoutePrefix] [varchar](10) NULL,

[intRouteNumber] [varchar](10) NULL,

[intRouteSuffix] [varchar](4) NULL,

[intFeatMilePostType] [int] NULL,

[intFeatMillimilePostData] [int] NULL,

+ [exitNumber] [int] NULL,

+ [exitSuffix] [varchar](4) NULL,

+ [exitRoadName] [varchar](50) NULL,

+ [frequency] [int] NULL,

+ [band] [int] NULL,

+ [callSign] [varchar](10) NULL,

+ [updateFlag] [bit] NULL

TABLE SHAZAM

[ID] [char](32) NOT NULL,

[Name] [varchar](15) NULL,

[Location] [varchar](255) NULL,

[OpStatus] [int] NOT NULL,

[DirectionalCode] [int] NOT NULL,

[LastContactTime] [datetime] NULL,

[ReceivedTime] [datetime] NULL,

[Comm_Mode] [int] NOT NULL,

[Removed] [bit] NOT NULL,

[BeaconActivated] [bit] NULL,

[latitude] [int] NULL,

[longitude] [int] NULL,

[OwningOrganization] [varchar](32) NULL,

[stateCode] [char](2) NULL,

[stateFipsCode] [char](2) NULL,

[stateName] [varchar](32) NULL,

[regionName] [varchar](32) NULL,

[countyCode] [char](3) NULL,

[countyName] [varchar](50) NULL,

[countyFipsCode] [char](3) NULL,

[routeSpecType] [int] NULL,

[routeFreeFormText] [varchar](50) NULL,

[routeType] [int] NULL,

[roadName] [varchar](50) NULL,

[routePrefix] [varchar](10) NULL,

[routeNumber] [varchar](10) NULL,

[routeSuffix] [varchar](4) NULL,

[roadwayLocAliasPubName] [varchar](90) NULL,

[roadwayLocAliasIntName] [varchar](90) NULL,

[intFeatType] [int] NULL,

[intFeatProxType] [int] NULL,

[intFeatProxDist] [int] NULL,

[intRouteSpecType] [int] NULL,

[intRouteFreeFormText] [varchar](50) NULL,

[intRouteType] [int] NULL,

[intRoadName] [varchar](50) NULL,

[intRoutePrefix] [varchar](10) NULL,

[intRouteNumber] [varchar](10) NULL,

[intRouteSuffix] [varchar](4) NULL,

[intFeatMilePostType] [int] NULL,

[intFeatMillimilePostData] [int] NULL,

+ [exitNumber] [int] NULL,

+ [exitSuffix] [varchar](4) NULL,

+ [exitRoadName] [varchar](50) NULL,

+ [updateFlag] [bit] NULL

TABLE tss_devices(

[device_id] [varchar](32) NOT NULL,

[device_name] [varchar](255) NULL,

[location] [varchar](255) NULL,

[removed] [bit] NULL,

[timestamp] [datetime] NULL,

[assigned] [bit] NULL,

[TSSSiteID] [varchar](50) NULL,

[latitude] [int] NULL,

[longitude] [int] NULL,

[direction] [int] NULL,

[OwningOrganization] [varchar](32) NULL,

[stateCode] [char](2) NULL,

[stateFipsCode] [char](2) NULL,

[stateName] [varchar](32) NULL,

[regionName] [varchar](32) NULL,

[countyCode] [char](3) NULL,

[countyName] [varchar](50) NULL,

[countyFipsCode] [char](3) NULL,

[routeSpecType] [int] NULL,

[routeFreeFormText] [varchar](50) NULL,

[routeType] [int] NULL,

[roadName] [varchar](50) NULL,

[routePrefix] [varchar](10) NULL,

[routeNumber] [varchar](10) NULL,

[routeSuffix] [varchar](4) NULL,

[roadwayLocAliasPubName] [varchar](90) NULL,

[roadwayLocAliasIntName] [varchar](90) NULL,

[intFeatType] [int] NULL,

[intFeatProxType] [int] NULL,

[intFeatProxDist] [int] NULL,

[intRouteSpecType] [int] NULL,

[intRouteFreeFormText] [varchar](50) NULL,

[intRouteType] [int] NULL,

[intRoadName] [varchar](50) NULL,

[intRoutePrefix] [varchar](10) NULL,

[intRouteNumber] [varchar](10) NULL,

[intRouteSuffix] [varchar](4) NULL,

[intFeatMilePostType] [int] NULL,

[intFeatMillimilePostData] [int] NULL,

+ [exitNumber] [int] NULL,

+ [exitSuffix] [varchar](4) NULL,

+ [exitRoadName] [varchar](50) NULL,

+ [updateFlag] [bit] NULL

2.4.1.1.2.3.4 Tables Modified for Map in CHARTWebArch database

 Existing / Deleted (“(-)”) columns

New (“+”) columns

TABLE event_basicinfoarch

[eventid] [varchar](50) NOT NULL,

[eventtype] [int] NOT NULL,

[eventname] [varchar](255) NULL,

[location] [varchar](255) NULL,

[direction] [int] NOT NULL,

[county] [int] NOT NULL,

[queuelength] [int] NULL,

[falsealarm] [bit] NOT NULL CONSTRAINT [DF_event_basicinfo_falsealarm] DEFAULT ((0)),

[scenecleartime] [datetime] NULL,

[delaycleartime] [datetime] NULL,

[confirmtime] [datetime] NULL,

[closed] [datetime] NULL,

[created] [datetime] NOT NULL,

[updated] [datetime] NOT NULL,

[opcenter] [varchar](50) NULL,

[SourceType] [int] NULL,

[SourceDescription] [varchar](255) NULL,

[EORSTrackingNum] [varchar](255) NULL,

[stateCode] [char](2) NULL,

[stateFipsCode] [char](2) NULL,

[stateName] [varchar](32) NULL,

[regionName] [varchar](32) NULL,

[countyCode] [char](3) NULL,

[countyName] [varchar](50) NULL,

[countyFipsCode] [char](3) NULL,

[routeSpecType] [int] NULL,

[routeFreeFormText] [varchar](50) NULL,

[routeType] [int] NULL,

[roadName] [varchar](50) NULL,

[routePrefix] [varchar](10) NULL,

[routeNumber] [varchar](10) NULL,

[routeSuffix] [varchar](4) NULL,

[roadwayLocAliasPubName] [varchar](90) NULL,

[roadwayLocAliasIntName] [varchar](90) NULL,

[intFeatType] [int] NULL,

[intFeatProxType] [int] NULL,

[intFeatProxDist] [int] NULL,

[intRouteSpecType] [int] NULL,

[intRouteFreeFormText] [varchar](50) NULL,

[intRouteType] [int] NULL,

[intRoadName] [varchar](50) NULL,

[intRoutePrefix] [varchar](10) NULL,

[intRouteNumber] [varchar](10) NULL,

[intRouteSuffix] [varchar](4) NULL,

[intFeatMilePostType] [int] NULL,

[intFeatMillimilePostData] [int] NULL,

[displayWebsiteAlert] [bit] NULL,

[websiteAlertText] [varchar](3000) NULL,

[latitude] [int] NULL,

[longitude] [int] NULL,

[publiceventname] [varchar](255) NULL,

[owningOrg] [varchar](32) NULL,

+[exitNumber] [int] NULL,

+ [exitSuffix] [varchar](4) NULL,

+ [exitRoadName] [varchar](50) NULL,

+ [updateFlag] [bit] NULL

2.4.1.1.2.3.5 Tables Modified for Video Service in CHART R5 database

TABLE CAMERA

DEVICE_ID
CHAR(32 BYTE)

CAMERA_MODEL_ID
NUMBER(3,0)

ORG_ORGANIZATION_ID
CHAR(32 BYTE)

DEVICE_NAME
VARCHAR2(50 BYTE)

LOCATION_PROFILE_TYPE
NUMBER(3,0)

LOCATION_PROFILE_ID
CHAR(32 BYTE)

TMDD_CCTV_IMAGE
NUMBER(2,0)

CAMERA_NUMBER
NUMBER(5,0)

CAMERA_CONTROLLABLE
NUMBER(1,0)

TMDD_CONTROL_TYPE
NUMBER(2,0)

TMDD_REQUEST_COMMAND_TYPES
NUMBER(5,0)

ENABLE_DEVICE_LOG
NUMBER(1,0)

- VIDEO_CONNECTION_ID
CHAR(32 BYTE)

- VIDEO_CONNECTION_TYPE
NUMBER(2,0)

NO_VIDEO_AVAIL_INDICATOR
NUMBER(1,0)

DEVICE_LOCATION_DESC
VARCHAR2(50 BYTE)

TMDD_DEVICE_NAME
VARCHAR2(50 BYTE)

POLL_INTERVAL_CONTROLLED_SECS
NUMBER(5,0)

POLLING_ENABLED_UNCONTROLLED
NUMBER(1,0)

DEFAULT_CAMERA_TITLE
VARCHAR2(24 BYTE)

DEFAULT_CAMERA_TITLE_LINE2
VARCHAR2(24 BYTE)

CONTROL_CONNECTION_TYPE
NUMBER(1,0)

CONTROL_CONNECTION_ID
CHAR(32 BYTE)

POLL_INTERVAL_UNCTRLD_SECS
NUMBER(4,0)

DB_CODE
VARCHAR2(1 BYTE)

CREATED_TIMESTAMP
DATE

UPDATED_TIMESTAMP
DATE

DSP_STATUS_ENABLED
NUMBER(1,0)

DSP_STATUS_LENGTH
NUMBER(5,0)

2.4.1.1.2.4 PL/SQL Module Definition and Database Trigger Reports
There are no new PL/SQL modules for the Data Exporter, Maintenance GUI and the Integrated Map. For the Intranet Map the following new stored procedures are added.
Intranet Map

+ dms_add_update_config_wl – To add or update a DMS device configuration.
+ har_add_update_config_wl - To add or update a HAR device configuration.
+ SHAZAM_add_update_config_wl - To add or update a SHAZAM device configuration.
+ traffic_event_add_event_wl - To add or update basic traffic event data.
+ traffic_event_add_incident_wl - To add or update Incident traffic event.
+ traffic_event_add_weather_event_wl - To add or update Weather traffic event.
+ tss_add_update_config_wl - To add or update a TSS device configuration.
2.4.1.1.2.5 Database Size Estimate - provides size estimate of current design
There are no changes for any significance to the database size for R5.
2.4.1.1.2.6 Data Distribution
There are no changes to data distribution for R5.
2.4.1.1.2.7 Database Replication
There are no changes to database replication for R5.
2.4.1.1.2.8 Archival Migration
There are no changes to archival migration for R5.
2.4.1.1.2.9 Database Failover Strategy
There are no changes to the database failover strategy for R5.
2.4.1.1.2.10 Reports
There will be minor changes to the HAR Configuration Report, CCTV Configuration Report to account for new configuration data stored in HARs (callsign, frequency, band formerly stored only in the mapping application) and cameras (for multiple transmission devices and Flash streaming devices). There will be internal coding changes for several traffic event reports to account for traffic event locations being stored in the OBJECT_LOCATION table instead of the EVENT table, but there will be no changes to the appearance of these reports.
2.4.1.2 CHART Flat Files

The following describes the use of flat files in CHART.
2.4.1.2.1 Service Registration Files

The CHART GIS web service publishes an event channel where it pushes CORBA events each time a location alias is added, modified or removed. For each publication, the CORBA trader returns an offer ID which is persisted to a flat file in the GIS web service WEB-INF directory.

No changes to this section for the Maintenance GUI , Integrated Map , Data Exporter or Video.

2.4.1.2.2 Service Property Files

Each of the five modules in the Data Exporter has their own properties stored in a common file containing the normal settings such as database connection settings, CORBA discovery parameters, and XML translation parameters. The properties file is read from the Data Exporter web service WEB-INF directory.
The CHART GIS web service obtains configuration values from a properties file that it reads from the GIS web service WEB-INF directory.

There are no changes to this section for the Maintenance GUI, Integrated Map or Video.
2.4.1.2.3 GUI Property Files

A new GUI property file is added to support the maintenance GUI. This file contains a mapping of standard GUI web page template names to maintenance GUI template names. This is used to allow custom versions of specific pages to be created and used in the maintenance GUI in a generic fashion.

The integrated map adds new GUI properties for GIS web service url’s, web service client credentials, and for map layer configuration.

There are no changes to GUI property files for the Data Exporter, Video or the Intranet Map.

2.4.1.2.4 Arbitration Queue Storage Files

There are no changes to Arbitration Queue Storage Files for R5.
2.4.1.2.5 Device Logs

There are no changes to Device Log Files for R5.
2.4.1.2.6 Traffic Sensor Raw Data Logs

There are no changes to Traffic Sensor Raw Data Log Files for R5.
2.4.1.2.7 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity undertaken by the services. These logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the service’s properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel.

· No changes to this section for the Maintenance GUI.

· The GIS web service maintains a rolling application log file in the GIS web service WEB-INF directory

· The COTS library “Log4J” will be used to log messages for the Data Exporter service. The log files will be stored under the service directory in the Apache folder. The files will be named by the service name and date, plus a “.txt” extension. The installed data export service modules will log in the sub-directory where the directory name will be named based on the module. XML request/response transactions can be logged in their own tracing log file, but for production this capability will be turned off.

· No changes to this section for Video.

· No changes to this section for Intranet Map.

2.4.1.2.8 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by the services. Most messages, including most errors, are captured by the CHART software and written to the process logs, but certain messages (typically produced by the Java Virtual Machine itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad installation; once the system is up and running, errors rarely appear in these error logs. Debugging information from the JacORB COTS, which is not usually indicative of errors, can routinely be found in these error logs, as well. These log files can be reviewed by software engineering personnel to diagnose an installation problem or other type of problem. These logs are automatically deleted by the system after a set period of time defined by the service's properties file, so they do not accumulate infinitely. These files are stored in the individual service directories and are named by the service name and date, plus an ".err" extension. These logs are typically read only by software engineering personnel.

· No changes to this section for the Maintenance GUI.

· The GIS web service redirects stderr to an application error log file in the GIS web service WEB-INF directory.

· The Data Exporter service error messages will be placed in the “*.err” files. The error logs will be stored under the service directory in the Apache folder.

· No changes to this section for Video.

· No changes to this section for the Intranet Map.

2.4.1.2.9 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file, used to provide a historical record of activity undertaken by the process. These GUI process logs are occasionally referenced by software engineering personnel to diagnose a problem or reconstruct a sequence of events leading to a particular anomalous situation. These logs are automatically deleted by the system after a set period of time defined by the GUI service’s properties file, so they do not accumulate infinitely. These files are stored in the chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat installation area. They are named by the service name (“chartlite”) and date, plus a “.txt” extension. These logs are typically read only by software engineering personnel. Additional log files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache Tomcat installation area.

· R5 GUI changes do not change the way the GUI process logs operate.
2.4.1.2.10 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named PortConfig.xml, upon startup, which indicates which ports are to be used by the service and how they are to be initialized. A Port Configuration Utility is provided which allows for addition, removal of ports and editing of initialization parameters. As indicated by the extension, these files are in XML format. This means these files are hand-editable, although the Port Configuration Utility allows for safer, more controlled editing. The Port Configuration files are typically modified only by software engineers or telecommunications engineers.
· No changes to this section for the Maintenance GUI , Integrated Map , Data Exporter , Video and the Intranet Map.

2.4.1.2.11 Watchdog Configuration Files

The watchdog configuration files are updated to provide monitoring and restarting of the CHART GIS Web Service.
2.4.2 Database Design

Changes made to the CHART database design for Release 5 features are described below.

2.4.2.1 Integrated Map
The Integrated map feature includes the following changes with regard to database.

· Traffic event location data is no longer stored in the EVENT table. Rather it is stored in the generic OBJECT_LOCATION table along with the location information for all device types.

· Location alias data is no longer stored in the CHART Oracle database. Rather it is stored in the MS SQL Server database to allow aliases to be stored spatially. This will later allow the system to provide lists of aliases based on spatial queries. For example: Return aliases within a geographic area, such as an operator’s area of responsibility.

· The HAR table in the Oracle database will have columns added in order to store HAR frequency data including the frequency, band, and call sign.
2.4.2.2 Data Exporter

The Data Exporter feature includes the following changes with regard to database.

· A new table EXPORT_SUBSCRIPTION is added that stores the client subscription information.

2.4.2.3 Video

The Video feature includes the following changes with regard to database.

· A new table CAMERA_VIDEO_CONNECTION is added to manage multiple transmission devices per camera

· A new table FLASH_VIDEO_STREAM_CONTROL is added to manage SFS-1000 information for enabling and disabling Flash video streaming.

2.4.2.4 Archiving - Changes

The CHART Archive database stores data from the CHART operational system as part of a permanent archive. The CHART Archive database design is a copy of the CHART operational system for those tables containing system, alert, traveler information messages and their underlying data, and event log information. In addition, the CHART Archive database stores detector data. In CHART R5 archiving process will archive event location from the OBJECT_LOCATION table for CHART events, and it will enhance the object location archive process for CHART external events. As a part of this release, old event data of existing event and external event tables will use to populate the archived OBJECT_LOCATION table. See Figure 2-6 which includes the ERD for the Archive database.
3 Key Design Concepts

3.1 Maintenance GUI

The Maintenance GUI is a portal into the existing CHART GUI that provides a view of the system tailored to device maintenance personnel. Upon login, the user can choose to view the maintenance portal instead of the normal CHART GUI pages. The user uses their normal CHART username and password to log into the maintenance portal, and the user rights assigned within the normal CHART GUI apply to use of the maintenance portal. In fact, the code used to log into the maintenance portal is the same as that used to log into the standard GUI.

Upon login, if the user has selected to view the maintenance portal, the GUI sets a flag that causes all pages displayed to the user in the main browser window to utilize a custom framing template which is used to display all pages shown while logged into the portal. This framing template contains only information useful to maintenance personnel and does not contain features such as the communications log, site search, or links to various areas of the system and/or external systems.

After the user is logged into the maintenance portal, the system directs the user to a custom home page. The maintenance portal does not make use of a separate home page window and working window like the standard GUI. Instead, when the user logs into the maintenance portal, the same window they used to log into the system is used to display content.

The content of pages shown in the maintenance portal, other than the home page, is mostly the same as when the user logs into the standard GUI. The device lists, device details pages, and search results (for the search from the maintenance portal home page) are customized. The content of other pages is unchanged (other than the different framing template). Most pages that are normally displayed in pop-up windows in the standard GUI will not be pop-ups in the maintenance GUI; most pages will appear within the main browser window. (Certain pages such as those used to listen to HAR audio must remain as pop-up windows due to technical issues).

To support customized pages for the maintenance portal (and other portals that may be required in the future), the CHART GUI Servlet is being changed to include generic processing that can customize pages just prior to rendering the page for display to the user. This processing allows a customized outer (framing) template and request specific page content templates to be defined for each portal (the maintenance GUI being the one and only portal at this time). The generic processing also allows the portal type to specify whether or not pop-up windows are preferred when the user is logged into the portal.

3.2 CHART GUI Integrated Map

The integrated CHART GUI map uses an open source JavaScript mapping API called Open Layers to render CHART traffic events and devices geographically within the CHART GUI process. A map is being added to the home page to provide users with a map view that is always available to them. A second type of map that is being added to the CHART GUI is the nearby devices map which is added to the details page of each traffic event. The nearby devices map focuses on the display of devices near the target traffic event that could be used for verification or response. The third type of map that has been added to the GUI is the object location map. This map allows users to see a geographic view of where they are locating a traffic event or device, and allows them to use the map to set a different point location for the object as well.

For each type of map the GUI starts with a base map that is exported from the existing ESRI map server. This design leverages the work that has already been done by the CHART Intranet Map application and provides a consistent user experience. The map also provides exits and mileposts layers that are also each exported from the ESRI map server as a WMS (Web Map Service). The exits and milepost layers are displayed only when zoomed in to a high level of detail and can be independently toggled on or off in that case. Above these the map adds dynamic marker layers. Dynamic marker layers are layers that are populated using the JavaScript API. A marker icon is added to the map for each device or traffic event on the layer. The user can then click on these markers in order to obtain information about the object it represents via a callout graphic. The dynamic marker layers are ordered such that devices are below traffic events and traffic events are displayed on separate layers based on type. Incident type events are on the top layer. The data used to populate the dynamic markers is retrieved from the CHART GUI Servlet via REST Web Service request. The CHART GUI responds with data in JSON format (a lightweight alternative to XML that is easier to parse using Javascript) that describes each marker. The map JavaScript code parses this JSON data and passes it to the OpenLayers JavaScript API in order to add or update the marker and its associated callout.

The Home Page Map allows users to navigate their map to view any devices and traffic events that have been populated with a point location geographically. The nearby devices map, on the other hand, allows users only to see devices within a specified distance from a target traffic event. This map is designed in the same way as the home page map with the exception that it does not display any traffic events except for the target traffic event. Additionally the nearby devices map allows users to select nearby devices that should be added to the response plan of the target traffic event. The map changes the display of the selected devices to indicate that they are the candidates for addition or removal.

The object location map works in conjunction with the existing object location form that is currently used to set the location for traffic events and devices. When users make selections on the form they see visual feedback on the object location map. For instance, if a user selects Maryland from the list of states on the form, their map will pan and zoom to the extents of the state of Maryland. When the user selects a county within Maryland the map will further zoom to show only the county of interest. If the user clicks on a point on the object location map, the object location form updates the selected state and county to show the state and county containing the point that was clicked. The GIS data required for this operation is queried from a REST web service provided by the CHART Intranet Map application. This service can return geographic extents for a state, the geographic extents and boundary polygons for a county within a state, as well as the state and county that a point resides in. Additionally this service can provide data about the mileposts and exits that intersect a particular roadway within a particular county and state. This GIS knowledge was kept outside of the integrated GUI map process in order to make it accessible to other CHART applications that might benefit from it.

In addition to the aforementioned map types, the integrated map GUI also includes a replacement for the existing CORBA Roadway Location Lookup service. The replacement service has been designed as a REST web service that can provide the non-spatial data that is consumed by the object location form such as the list of states, list of counties within a state, list of road types in a specified county and state, and list of roads of a particular type that exist within a specified county and state. Additionally this service provides a REST web service API that allows for the management and querying of location aliases. Location aliases are used by the object location map and form to allow the user to quickly locate an object at a known landmark (example: “Bay Bridge”) rather than having to select a number of drop downs or pan/zoom the map to get to this location. The addition, modification or removal of a location alias via the web services API requires the calling client to digitally sign their request using a key issued by a CHART administrator. The API that returns the list of known location aliases is publicly available and may be used by any CHART application that needs this functionality.

3.3 CHART Data Exporter
CHART R5 includes a web service that allows pre-approved external systems to obtain data from the CHART system. External systems can issue data requests (via HTTPS) and receive the requested data in the form of an XML document. R5 allows traffic events, DMS, TSS, HAR, and SHAZAM data to be retrieved in this manner. Authentication and data protection schemes ensure that only authorized clients can retrieve data, and that clients can only retrieve data for which they are permitted to receive.

The effort was undertaken to replace the existing CORBA-based export in order to protect CHART operational system from calls by external systems. It prevents access to CHART data by not providing IDL level access. External systems retrieve data using defined requests (via HTTPS). Data exported will be guarded by the granted access rights to the client by the administrator. An administrator in CHART grants rights to an external client – like a CHART user, most data may be viewed by virtue of being an authenticated user. Also like a CHART user, additional rights are needed before being able to view sensitive data such as fatalities. The Data Exporter should be considered a second user interface or presentation layer. In this light, it is natural that user rights and roles should be applied just as they are applied to the GUI.

The Data Exporter service allows the consumer to request inventory and status in its entirety or based on a lookback time period. The full inventory and status contains data for all requested data type entities in the CHART system. The lookback inventory and status restricts the data exported based on how far back to look in time for changes to the requested data type entities in the CHART system.

A more responsive option is available where customer provides a URL where the Data Exporter posts real-time updates. Updates are queued in case the consumer is temporarily unable to keep up with the throughput. Once the queue is full, the queue is flushed and a flag is set in the next message informing the client that they have missed data and should pull a fresh inventory.

The Internet/Intranet Map and Public Web are special clients of the Data Exporter. Changes have been made to the respective interfaces to gather data from the Data Exporter and to break the previous linkage via CORBA. These clients are strictly consumers of data and share the external interface via a simple Exporter Client Application. The application’s prime responsibility is to gather data from the Data Exporter. It then updates the database shared by the Internet/Intranet Map. In the event of configuration changes detected by this application it notifies the map application via a HTTP message. This triggers the maps to re-cache their data.

Figure 3-1 figure shows the common ground between the CHART traffic event data and ATIS standards, along with the exported data available to the external entities. Often CHART data could not be fully expressed by the ATIS standard message set so additional elements were added as necessary (listed on the left of the figure).

[image: image15.png]Airline
Transit
Parking
Traveler Info
Pricing

Link Info
Pollution

ATIS

Event Alerts

Pending Events
External Events

Event Notifications

Traffic Event
(Header, Type,
Location, Times
Lane Configuration,
Vehicles Types,
Weather, others)

CHART-formatted data
(some also exported in
ATIS format):

Basic Event Data
Lane Configuration
Lane State
Participants
Weather
Vehicle Types
State/County Codes
Roadway Intersecting Features
Road Conditions
Action Required
History Log Entries
Source (PD, cell, etc.)
Associated Events
Response Plan Items

Figure 3‑1 Export ATIS Events

The following extensions were added to the ATIS standards to support CHART specific data:

· <statusBlock> contains elements that indicate whether the response is a full inventory. If this message is sent in response to a subscription request, the missedData flag indicates to the client that there was a problem with the previous publication back to the client’s URL so the client may wish to request a full inventory to ensure they are up-to-date.

· <AdminAreaGroup> to include information for region name, state code and county code.

· routeLocation was extended to include CHART specific route information, location alias public, location alias intersection, intersecting feature and direction.

· IncidentInformation was extended to include CHART basic event data, incident data, lane configuration, weather conditions data, action data, EORS tracking number, participant, response plan information, event history log and related events.

Please refer to the Traffic Event Export ICD for additional details on how each field is exported.
Figure 3-2 shows the common grounds between the CHART device data and TMDD standards, along with the exported data that will be available to the external entities.

[image: image16.png]Event Association
Comm Info

Passwords
Phone #s
HAR Audio

Location
Beacon State
Comm Status
Route Location

Operational Status
Traffic Params (VSO)
TSS Speed Range

ccTv

DMS Font Table
Device Priority Queue!

DMs
HAR

SHAZAM
TSS

Lane Control
Signal Control
Link Messages
Node Messages
Route Messages
Device Control Requests
Ramp Meters
Gates
Video
ESS

Figure 3‑2 Export TMDD Devices

Please refer to the Device specific export ICD for additional details.

CHART R3B3 included the ability to view the status of all external connections, including those connections from CHART to RITIS and INRIX, and connections to CHART from Vector and clients using the CHART export web service. The same ability is used to monitor each external client’s connection for each data type they subscribed to.

3.4 Video

CHART R5 enhances the existing video services. Two new video service enhancements are provided in CHART R5. Administrators can configure multiple video sending devices for each camera in this release. Multiple sending devices eliminate the need to create multiple camera devices, to display images from a single camera in different formats. The other enhancement is the ability to enable and disable public flash video streams.

Add camera will provide links to add encoders, switches and flash steams. As a link is clicked a table will appear for the item being added. There is a separate table for each item type encoder, switch and flash video stream. As additional items are added they are added to an existing table. Each item will have boxes that allow an administrator to modify attributes of the encoder, switch or flash video stream. Each item will have a remove link that will allow the administrator to remove the item from the table. Once the add video source page is submitted the video sending devices and flash video steams will appear on the video source page under the configuration section.

Displaying an image on a monitor will operate the same as the exiting system currently does. The system will make connections between video sources and video sinks by selecting receiving devices and sending devices on the same fabric. If the monitor is not on the same fabric as the sending device then the system uses a router to look for a bridge circuit that will provide the needed route.

Once configured public flash video associated with the control will be automatically disabled as Block to Public Monitors is executed. The user will simply click on the Block to Public Monitors link and all public flash video stream configured will be blocked along with the public monitors. Public flash video streams will be automatically enabled as Unblock to Public Monitors is executed.

3.5 Intranet Map

The system design utilizes a web based multi-tier system architecture. The application is partitioned into the data tier, the business tier and the user (presentation) tier. The data storage is managed at the data tier by the databases using Microsoft SQL Server and ESRI ArcSDE platforms. The main business logic is hosted in the two applications (Internet and Intranet Mapping Application) in the web server. They will be implemented using the ASP.Net platform. The final user interface will be implemented with the ASP.Net with client side JavaScript. Because mapping is an area that there are many requirements related to client side interactions with the graphic content of the application, application logic is partitioned based on the most appropriate location to execute them. The client side JavaScript on the web browsers help provide instantaneous feedback to the user.

CHART R5 will introduce new interfaces for both CHART and CHART Mapping – the CHART Exporter, CHART Data Exporter Client, CHART Spatial Web Service, CHART Mapping Synchronization Application and Satellite Imagery Web Map Service (WMS). The CHART system will host an HTTPS/XML interface for CHART Data Exporter. CHART Exporter Client will connect to the CHART Exporter on an HTTPS/XML interface hosted on the CHART system. The CHART Exporter Client will also connect to the CHART Mapping Synchronization Application on an HTTP GET interface. The Spatial Web Service will host an HTTP/XML interface for the CHART GUI. The Intranet Mapping Application will connect to the Satellite Imagery Web Map Service (WMS) on an HTTP/JSON interface.

CHART R5 will also introduce two new GIS Data Layers (9-1-1 Emergency Medical Service (EMS) and State Police Barracks).

In addition to the replacement of the CORBA feed with CHART Data Exporter, mapping of the CHART Events and Devices (except TSS) will also be conducted in the integrated map in CHART in R5. In R5 the Intranet Map and Internet Map will be able to display up-to-date information about CHART Events and Devices using the Data Exporter. This will operate as follows:
1. Use CHART Exporter Client as Portal

The CHART Exporter Client is an application that pulls and listens to both status and inventory update by the CHART Data Exporter. When any new update occurs, the CHART Exporter Client writes the non-spatial data to the CHARTWeb database the same way as the CORBA-listener did in the previous releases. In addition, the CHART Exporter Client forwards request to the CHART Mapping application when an inventory update event is received.

2. Create a synchronization application to update the spatial tables

A synchronization application will be created to accept request by the CHART Exporter Client when an inventory update occurs. Once the synchronization receives the request it will compare the existing spatial and non-spatial by their unique ID and determine whether the record needs be inserted, updated or removed from the spatial table. (Note: Both spatial and non-spatial CHART Event data should be removed only by the nightly scheduled job.)

 3. Continuity of Operations

CHART keeps its clients updated via a push model using the CHART Data Exporter. The Data Exporter does not guarantee delivery; therefore it is possible for event and device data to be lost or dropped (although in practice, this is rare). To account for this possibility, the CHART Data Exporter Client is configured to retrieve a full inventory and status update of devices and traffic events from the CHART Data Exporter at a configurable interval. Also, each time the CHART Data Exporter Client is started, it will also retrieve a full inventory and status update. Thus, the update model becomes a push model with an occasional pull for failsafe. In addition, a special administration page will be created in the Intranet Mapping Application to allow the administrator to manually request for full inventory update for events and devices.

 This process will be used to recover from the following situations:

1. The CHART Data Exporter Client receives no data because the CHART Data Exporter is down or other network related issues.

2. The CHART Data Exporter Client is up but did not receive new data from the CHART Data Exporter.

3. The CHART Data Exporter Client is up but is failing to send requests to the synchronization application to update the spatial information.

Another likely scenario is that the CHART server or service(s) restart. As the CHART services will not be processing events during this time, no events are likely to be missed. Therefore, the CHART Data Exporter Client does not need to do anything special to handle a CHART server or service(s) restart.
3.6 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are trapped by the GUI are reported immediately back to the user. The GUI will also report communications problems with the server back to the user. The server may also trap user errors and those messages will be written to a server log file and returned back to the GUI for display to the user. Additionally, server errors due to network errors or internal server problems will be written to log files and returned back to the GUI.

3.7 Packaging

This software design is broken into packages of related classes. The table below shows each package that is new or changed to support the Release 5 features.

Table 1 Package Descriptions
	Package Name
	Package Description

	CHART2.AliasManagement
	This CORBA system interface package was added to define the data that will be pushed via CORBA event channels when location aliases are added, removed or modified.

	CHART2.CameraControlModule
	This package is modified for R5 to support multiple transmission devices and Flash streaming control.

	CHART2.Common
	This CORBA system interface package was changed to add exits as a possible intersecting feature type when specifying the location of a device or traffic event.

	CHART2.RouterControlModule
	This package is modified for R5 to support routing cameras with multiple transmission devices.

	CHART2.Utility.ObjectCache
	This package was expanded for R5 to support the Data Exporter’s need for an ObjectCache. Changes were generally based on the GUI’s ObjectCache implementation..

	CHART2.webservices.dataexporter.dmsexportmodule
	This package is new for R5 and contains the classes that comprise the DMS export.

	CHART2.webservices.dataexporter.harexportmodule
	This package is new for R5 and contains the classes that comprise the HAR export.

	CHART2.webservices.dataexporter. shazamexportmodule
	This package is new for R5 and contains the classes that comprise the SHAZAM export.

	CHART2.webservices.dataexporter. trafficeventexportmodule
	This package is new for R5 and contains the classes that comprise the Traffic Event export.

	CHART2.webservices.dataexporter. tssexportmodule
	This package is new for R5 and contains the classes that comprise the TSS export.

	CHART2.webservices.dataexporter.utility
	This package is new for R5 and contains the common classes and utilities shared by the other export packages.

	CHART2.webservices.exportlistenermodule
	This package is new for R5 and contains the classes that implement the ExportClient for all datatypes.

	CHART2.webservices. wsclientmodule
	This package is new for R5 and contains the base classes and utilities used by the other export client packages.

	chartlite
	This package contains all of the classes that comprise the CHART GUI. This package is changed for the Maintenance GUI to allow the user to choose to log into the maintenance portal and to allow the display of customized versions of CHART web pages tailored to device maintenance personnel.

	chartlite.data
	This package contains the GUI data elements that are used by the chartlite.servlet package to create web pages and XML/JSON data responses to satisfy requests. This package has been changed to add Java interfaces that can be implemented by existing data objects such as the WebDMS or WebTrafficEvent to allow them to be shown on the new map components. Additionally, this package has been changed to obtain data from the Map GIS web service rather than the CORBA Roadway Location Lookup service.

	chartlite.flex
	This package contains the Abobe Flex applications that are used for creating traffic events, setting object locations, and viewing the home page traffic events and alerts lists. This package is changed to remove the tab navigator from the home page and to integrate the location editor and traffic event launcher with a map component.

	chartlite.servlet
	This package contains the GUI application code that handles incoming http requests for pages or data. This package is changed to add a map request handler, and alias request handler and to serve more GIS data to the location editing component such as exits as intersecting features.

3.8 Assumptions and Constraints

1. Constraint: The maintenance GUI has a feature that warns users of any devices in maintenance mode that are controlled by the user’s center when the user attempts to log off. Within the CHART system, detectors do not have a controlling operations center, so the maintenance GUI cannot show the user the detectors that their center has placed in maintenance mode. To fix this underlying CHART behavior is beyond the scope of R5, and has been entered as a LevA PR.
2. There is no requirement for the number of simultaneous external clients the Data Exporter must support however enough parameters have been exposed in the service’s property file to allow for run-time tuning in case load becomes a problem. Examples include the ability to collect multiple changes before exporting them to a client, limiting the size of export queues, reducing how often a client (e.g. ExportClient) requests information, limiting the number of TrafficEvent history log entries returned, etc.
3. Constraint: The CHART Data Exporter does not yet include the exporting of Camera data – this is planned for a future release. This implies that the location assigned to a Camera in the CHART GUI using the object location form cannot be used to display that same camera at the exact same position on the CHART Intranet and Internet maps. The team plans to minimize the impact of this issue by synchronizing camera positions prior to deployment.

4. Constraint: Although the Integrated Map is designed to be able to display a variety of base map types (Google, ESRI, Yahoo!, etc.) the application will use only the ESRI base map used by the CHART Intranet Map.

5. Assumption: The operator workstations will be able to handle the increased demands of a graphical map display.

6. Assumption: The operator workstations will have Internet Explorer version 7 installed.

4 Use Cases

The following use case diagrams depict new functionality for CHART R5.

4.1 R5HighLevel (Use Case Diagram)

This use case diagram shows use cases related to new R5 features and R5 enhancements to existing features at a high level.

[image: image17.emf]OperatorControl Flash Video Streams Administrator

Device Maintainer

Use Devices from Map Specify Object

Location

System

Manage Aliases

See MaintainDevicesUCD

for details

See MapAndGISUses

UCD for details.

Perform GIS Query

Use Traffic Event from Map Provide Data

to External

Systems

Manage External

Clients

See MapDeviceAndTrafficEventUses UCD for details.See R5CameraUses UCD for details. See R5ProvideDataToExternalSystems

UCD for details

See R5CameraUses

UCD for details

Use Intranet Map See ChartIntranetMap UCD for details.See MapAndGISUses

UCD for details.

Display Video View Cameras Configure

Video Sources

Maintain Devices

Use Map

Figure 4‑1 R5HighLevel (Use Case Diagram)

4.1.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

4.1.2 Configure Video Sources (Use Case)

The systeml allows an administrator with the Configure Camera right to configre video sources in the CHART sytem. The system allows an administrator to configure multiple video sending devices for the video source.

4.1.3 Control Flash Video Streams (Use Case)

An operator shall be able to control a camera's flash stream to the public.

4.1.4 Device Maintainer (Actor)

A Device Maintainer is a maintenance operator tasked to maintain CHART devices. CHART maintainers typically use devices in maintenance mode.

4.1.5 Display Video (Use Case)

An operator shall be able to display video when a camera has more than one sending device specified.

4.1.6 Maintain Devices (Use Case)

A device maintainer shall be able to perform device maintenance actions on devices configured into the CHART system.

4.1.7 Manage Aliases (Use Case)

A user with sufficient privileges may use the system to manage location aliases. Refer to extending use cases for details.

4.1.8 Manage External Clients (Use Case)

The system shall allow an administrator to manage the external clients that are permitted to retrieve data from CHART via its external system interface.

4.1.9 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

4.1.10 Perform GIS Query (Use Case)

A client application may utilize REST web services to query GIS information from the system.

4.1.11 Provide Data to External Systems (Use Case)

The system shall provide access to external systems via a web service to allow them to receive data that the CHART system makes available to third parties. One or more Roles assigned to each external client will be used to determine the data the client will be permitted to access. All requests made by external systems shall be validated against published XSD. CHART will return a response XML document for each request. The XML returned will contain an error code and error text for invalid requests, and will return the requested data for valid, authorized requests. The response XML shall be formatted as specified in published XSD.

4.1.12 Specify Object Location (Use Case)

A user may specify the location of an object with the aid of a system map. This process can involve selecting a state, county or region, primary route, and intersecting feature. The system will suggest a location description based on the selections the user makes. The user may override the suggested location description if desired, but will be warned when doing so and again before submitting the location form. During the process of setting an object location, a user may press a button to reset the form. Doing this will cause all previously entered location data to be lost and the location marker will be cleared from the map.

4.1.13 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use case that another actor has initiated.

4.1.14 Use Devices from Map (Use Case)

A user may use devices and traffic events from the map by clicking on the marker that represents the object. Clicking will open a callout (popup overlaid on map view) that will allow the user to view information about the object and use HTML links to use the object. Refer to the MapDeviceAndTrafficEventUses use case diagram for details.

4.1.15 Use Intranet Map (Use Case)

Authorized users shall be able to use the Intranet Map.

4.1.16 Use Map (Use Case)

CHART Operators shall be able to use maps integrated into CHART to manipulate the system.

4.1.17 Use Traffic Event from Map (Use Case)

A traffic event will have a different icon on the Map depending on the type of incident. A user may click on a traffic event icon in the map to display summary information in a popup. When a user causes the mouse cursor to hover over a traffic event icon in the map, the name of the traffic event and a description of the lane closures (if the traffic event has a defined roadway configuration) will appear. The traffic event map popup will display the name of the traffic event and a graphical representation of the lane closures (if the traffic event has a defined roadway configuration).

4.1.18 View Cameras (Use Case)

An operator shall be able to view the details for a camera. Details include the flash streaming configuration/status and multiple video sending devices.

4.2 MaintainDevicesUCD (Use Case Diagram)

This diagram shows use cases for the Device Maintenance GUI, a portal that provides a view of the CHART GUI tailored to device maintenance personnel.

[image: image18.emf]Device Maintainer

LoginLogout View Maintenance

Home Page

View Device Details For Maint

View Device List For Maint

Maintain DMS

Maintain HAR

Maintain SHAZAM

Maintain TSS

Maintain Camera

Search for Device

Figure 4‑2 MaintainDevicesUCD (Use Case Diagram)

4.2.1 Login (Use Case)

A user with proper credentials can log into the CHART system. When logging in, the user can choose to log into the standard GUI (default) or the device maintenance portal; the same credentials and user rights will apply to both. When the user logs into the standard GUI, the system will pop up two new windows, a home page window and a working window. Both of these pages will be stripped of normal browser controls to better control navigation within the application and to help prevent the user from leaving the application while they are controlling shared resources. After these new windows are popped up, the system will recommend that they close the window they used to initiate the login sequence. If the user chooses to log into the maintenance GUI, all content will be presented in the window in which the user logged in, and the browser adornments (navigation etc.) will be left intact as they were prior to login. The system will not prevent the user from navigating to other web pages outside of the CHART system and will not attempt to stop them from closing their browser without logging out of the CHART system. When logged into the maintenance portal, the system will identify all pages as such, and will also display the user's operations center and username on all pages. A link will also exist on all pages within the maintenance portal to allow the user to return to the home page. The system will remember the user's choice regarding which GUI portal they logged into (standard GUI or maintenance GUI) and will default to that choice the next time the user accesses the CHART login page. If the user has not logged into CHART previously or they have cleared their browser cache since the last login, the default will be to log into the standard GUI.

4.2.2 Logout (Use Case)

The system shall allow the user to logout of the system. When a logout is requested from the standard GUI, the system will attempt to find any shared resources that are controlled by the user's operations center, and also find the number of users logged into the operations center. If the user attempting to log out is the last user logged into the the center an there are shared resources controlled by the center, the user will not be allowed to log out and will instead be shown a page listing the controlled resources and provide a way for the user to transfer the resources and/or access pages that will allow the control of the resource to be relinquished. When a logout is requested from the maintenance GUI, the above check for controlled resources will not be done. Instead, the system will check to see if there are any devices in maintenance mode that are controlled by the user's center. If there are, a warning will be shown to the user listing these maintenance mode devices. The user will be able to ignore the warning and log out anyway, leaving devices in maintenance mode.

4.2.3 Maintain Camera (Use Case)

The user shall be able to maintain cameras using the maintenance portal.

4.2.4 Maintain DMS (Use Case)

The user shall be able to maintain DMS devices using the maintenance portal.

4.2.5 Maintain HAR (Use Case)

The user shall be able to maintain HAR devices using the maintenance portal.

4.2.6 Maintain SHAZAM (Use Case)

The user shall be able to maintain SHAZAM devices using the maintenance portal.

4.2.7 Maintain TSS (Use Case)

The user shall be permitted to maintain TSS devices using the maintenance portal.

4.2.8 Search for Device (Use Case)

The user shall be able to search for a device they wish to maintain. The user can enter all or part of some identifying information for a device and have the system search and return a list of all devices that match the search text using a case insensitive search. Only DMS, HAR, SHAZAM, TSS, and Camera devices will be searched. The fields that are searched can vary by device type; the actual search used will be the existing site search feature. The results of the search will separate the devices by type, and for each device will show only an icon indicating the device type and its mode/status, the device name, and the device location description. The search results will provide access to the details page for each device which matched the search.

4.2.9 View Device Details For Maint (Use Case)

The system shall allow the details for a device to be viewed for the purpose of performing maintenance. This shall be supported for DMS, HAR, SHAZAM, TSS, and Camera devices. The details shall include the device type, name, and location left justified near the top of the page. All other information on the page shall also be left justified. Any actions that apply to the device in its current mode and based on the user's rights shall be available toward the top of the page, under the device type/name/location. The list of actions available for a device shall match the actions available for the device within the standard GUI, except as follows: The list of actions available shall exclude the ability to copy the device. The list of actions available shall exclude and the ability to remove the device. Exceptions specific to a device type may also apply and are specified in the extending use cases where applicable. The data displayed for a device shall match the data displayed for the device if the user were to view details for the device for other purposes (non maintenance activities) except as specified in extending use cases.

4.2.10 View Device List For Maint (Use Case)

The system shall allow the user to view a list of devices that are candidates for maintenance. This shall include the ability to list DMS, HAR, SHAZAM, TSS, and Camera devices (in separate lists). Each list will identify the type of devices that are shown in the list. Each list can include all CHART devices of the selected type, or can be pre-filtered. The pre-filtering can be done by device mode/status or using the GUI's folder feature. When the folder feature is used, only devices that exist in folders that are tagged with the user's operations center are shown. If no such devices exist then all CHART devices of the specified type are shown (unfiltered list). The list of devices will show the number of devices that appear in the list. If the device is filtered, the list will also show the number of devices that would appear if the list is unfiltered and will show the filter(s) in use. The user shall be able to remove all filtering from a list that is filtered. The list will show each device with an icon to identify the device type and mode/status, the device name, and the device location. Each list will provide access to a details page for each device shown.

4.2.11 View Maintenance Home Page (Use Case)

When a user logs into the maintenance portal the system shall show a page that allows the user to quickly find the device they wish to maintain. There will be two methods of doing this, a device search, and access to device lists. The device search will allow the user to type in all or part of information that helps to identify a device (such as its name or location) and search to find all devices that match the search. The device list access will be per device type, and will allow a full list of CHART devices of the specified type to be viewed or will allow the device lists to be pre-filtered. See the Search for Device and View Device List For Maint use cases for details.

4.3 MaintainCamera (Use Case Diagram)

This diagram shows use cases related to maintaining Cameras via the Maintenance GUI.

[image: image19.emf]«extends» «extends» Device MaintainerView Camera List for Maint View Camera Details for Maint Put Camera

Online

Take Camera

Offline

Poll Camera

Request

Camera

Control

Terminate Camera

Control

Control Camera

View Device List For Maint View Device Details For Maint Existing features,

just accessed from

a different web page.

New for Maint GUI, but will use existing servlet code. Only changes are to the display.

Figure 4‑3 MaintainCamera (Use Case Diagram)

4.3.1 Control Camera (Use Case)

An operator with the proper functional rights may control a camera. In this case, control refers to issuing commands to the camera to cause the camera to pan/tilt/zoom etc. Refer to the send Camera Commands use case diagram for more details.

4.3.2 Poll Camera (Use Case)

A camera is polled by the system in order to establish the status of the camera control communications path. The polling process consists of sending the camera a poll command and receiving a response from the camera. This is done by the system for all cameras that are online, regardless of whether the cameras are controlled or not. It is also done immediately after camera control has been granted so that the camera control status is current. In addition, polling takes place while a camera is actively controlled. When a camera is actively controlled, the polling is typically much more frequent that when the camera is not actively controlled.

4.3.3 Put Camera Online (Use Case)

An operator with the proper functional rights can put a camera online if the camera is currently offline. Putting the camera online makes it available for display and control to any operators having the proper functional rights.

4.3.4 Request Camera Control (Use Case)

An operator with the proper functional rights may request control of a camera. This means that the operator may send pan/tilt/zoom (PTZ) and other commands to the camera. The system evaluates the request, and will accept the request, prompt the operator to override an existing camera control session, or reject the request. If the request is accepted or the user chooses to override an existing control session, a GUI will be launched which can be used to send commands to the camera. The GUI itself will not be addressed in this document.

4.3.5 Take Camera Offline (Use Case)

Operators with the proper functional rights may take a camera offline. A camera that has been taken offline may not be displayed or controlled until it is put back online.

4.3.6 Terminate Camera Control (Use Case)

An operator with the proper functional rights may manually terminate a camera control session that the operator is actively using. Note that an operator who has the proper functional rights to establish the control session will always have the proper functional rights to terminate that session. Also, a camera control session may be terminated if that session is overridden by an appropriately privileged operator. Also, an active control session may be terminated if a camera is taken offline or if the camera is no longer displayed on a monitor within the controlling operator’s monitor group as a result of displaying a NoVideoAvailable source. Note that part of this process will include terminating the camera control GUI, although that is beyond the scope of this document.

4.3.7 View Camera Details for Maint (Use Case)

The details for Camera devices shall be available for viewing for the purpose of performing maintenance, as specified in the View Device Details For Maint use case.

4.3.8 View Camera List for Maint (Use Case)

The system shall allow the user to view a list of Cameras that are candidates for device maintenance as specified in the View Device List for Maint use case.

4.3.9 View Device Details For Maint (Use Case)

The system shall allow the details for a device to be viewed for the purpose of performing maintenance. This shall be supported for DMS, HAR, SHAZAM, TSS, and Camera devices. The details shall include the device type, name, and location left justified near the top of the page. All other information on the page shall also be left justified. Any actions that apply to the device in its current mode and based on the user's rights shall be available toward the top of the page, under the device type/name/location. The list of actions available for a device shall match the actions available for the device within the standard GUI, except as follows: The list of actions available shall exclude the ability to copy the device. The list of actions available shall exclude and the ability to remove the device. Exceptions specific to a device type may also apply and are specified in the extending use cases where applicable. The data displayed for a device shall match the data displayed for the device if the user were to view details for the device for other purposes (non maintenance activities) except as specified in extending use cases.

4.3.10 View Device List For Maint (Use Case)

The system shall allow the user to view a list of devices that are candidates for maintenance. This shall include the ability to list DMS, HAR, SHAZAM, TSS, and Camera devices (in separate lists). Each list will identify the type of devices that are shown in the list. Each list can include all CHART devices of the selected type, or can be pre-filtered. The pre-filtering can be done by device mode/status or using the GUI's folder feature. When the folder feature is used, only devices that exist in folders that are tagged with the user's operations center are shown. If no such devices exist then all CHART devices of the specified type are shown (unfiltered list). The list of devices will show the number of devices that appear in the list. If the device is filtered, the list will also show the number of devices that would appear if the list is unfiltered and will show the filter(s) in use. The user shall be able to remove all filtering from a list that is filtered. The list will show each device with an icon to identify the device type and mode/status, the device name, and the device location. Each list will provide access to a details page for each device shown.

4.4 MaintainDMS (Use Case Diagram)

This diagram shows use cases related to maintaining DMSs via the Maintenance GUI.

[image: image20.emf]«extends» «extends» View DMS List for Maint View DMS Details for Maint Device Maintainer

Put DMS Online Take DMS Offline Put DMS In Maint Mode

Poll DMS

Set DMS Message

Blank DMS

Perform Pixel

Test

Get Extended Status

View Last Extended Status

Reset DMS

Display DMS Test Message Existing Features

No Changes for Maint GUI,

Just adding access

from a different web page.

New for Maint GUI, however no changesto the servlet needed.Changes for Maint GUI are display changes only,providing a less detaileddisplay for device maintainers.New for Maint GUI View Device Details For Maint View Device List For Maint

Figure 4‑4 MaintainDMS (Use Case Diagram)

4.4.1 Blank DMS (Use Case)

A DMS can be blanked when the DMS is online or in maintenance mode. When the DMS is online, it is only blanked by the device's arbitration queue when the arbitration queue becomes empty. When the DMS is in maintenance mode, the DMS can be blanked directly by the user if they have the proper functional rights.

A DMS can be blanked indirectly by other commands, such as placing the device online, offline or in maintenance mode or by resetting the device.

When a DMS that has beacons is blanked, its beacons are turned off.

4.4.2 Display DMS Test Message (Use Case)

The system shall allow device maintenance personnel with appropriate rights to display a pre-configured test message on a DMS without using a message editor when the DMS is in maintenance mode. The message text will be specified in the system profile and will apply to all DMSs. A flag that specifies whether or not the DMS beacons should be activated will also be included in the system profile and apply to all DMSs. The system will automatically format the message text for the sign size where it is being used. If the automatically formatted text cannot fit on the sign, an error will be shown when the user attempts to display the test message.

4.4.3 Get Extended Status (Use Case)

A user with appropriate rights can issue a command to get the extended status for a DMS. Only certain DMS models support extended status (FP9500, PCMS, Sylvia, TS3001, and NTCIP). The system timestamps the status once it is recieved, and the system only updates the extended status when explicitly told to do so via this get extended status command.

4.4.4 Perform Pixel Test (Use Case)

A user with appropriate rights can perform a pixel test on a DMS when it is in maintenance mode. Only certain DMS models support this command (FP9500, TS3001, and NTCIP). When the sign is performing a pixel test, the CHART GUI shall have an indication to allow the user to know the pixel test is in progress. The user can blank the sign to end the pixel test.

4.4.5 Poll DMS (Use Case)

A user with appropriate rights can poll a DMS for its current status. The GUI shall update to show the current status after it is retrieved.

4.4.6 Put DMS In Maint Mode (Use Case)

A user with appropriate rights can put a DMS in maintenance mode. When a DMS is in maintenance mode, its arbitration queue is deactivated and the user can issue maintenance mode only commands.

4.4.7 Put DMS Online (Use Case)

A user with appropriate privileges can put a DMS online if that DMS has previously been taken offline or put in maintenance mode. This makes the DMS available for control through the system. When the DMS is brought online, it is automatically blanked. Automatic polling is resumed using the current polling settings for the DMS.

4.4.8 Reset DMS (Use Case)

A user with appropriate rights can send a reset command to a DMS in maintenance mode.

4.4.9 Set DMS Message (Use Case)

The message on a DMS can be set when the DMS is online or in maintenance mode. When the DMS is online, the message is set by the DMS's arbitration queue. This queue sets the message of the DMS to be the message that is on the queue that has the highest priority. When the DMS is in maintenance mode, an operator with proper functional rights can set the message on a DMS directly.

4.4.10 Take DMS Offline (Use Case)

A user with appropriate rights can take a DMS offline.

4.4.11 View Device Details For Maint (Use Case)

The system shall allow the details for a device to be viewed for the purpose of performing maintenance. This shall be supported for DMS, HAR, SHAZAM, TSS, and Camera devices. The details shall include the device type, name, and location left justified near the top of the page. All other information on the page shall also be left justified. Any actions that apply to the device in its current mode and based on the user's rights shall be available toward the top of the page, under the device type/name/location. The list of actions available for a device shall match the actions available for the device within the standard GUI, except as follows: The list of actions available shall exclude the ability to copy the device. The list of actions available shall exclude and the ability to remove the device. Exceptions specific to a device type may also apply and are specified in the extending use cases where applicable. The data displayed for a device shall match the data displayed for the device if the user were to view details for the device for other purposes (non maintenance activities) except as specified in extending use cases.

4.4.12 View Device List For Maint (Use Case)

The system shall allow the user to view a list of devices that are candidates for maintenance. This shall include the ability to list DMS, HAR, SHAZAM, TSS, and Camera devices (in separate lists). Each list will identify the type of devices that are shown in the list. Each list can include all CHART devices of the selected type, or can be pre-filtered. The pre-filtering can be done by device mode/status or using the GUI's folder feature. When the folder feature is used, only devices that exist in folders that are tagged with the user's operations center are shown. If no such devices exist then all CHART devices of the specified type are shown (unfiltered list). The list of devices will show the number of devices that appear in the list. If the device is filtered, the list will also show the number of devices that would appear if the list is unfiltered and will show the filter(s) in use. The user shall be able to remove all filtering from a list that is filtered. The list will show each device with an icon to identify the device type and mode/status, the device name, and the device location. Each list will provide access to a details page for each device shown.

4.4.13 View DMS Details for Maint (Use Case)

The details page used for DMS maintenance shall be based on the standard details page for DMSs and the View Device Details for Maint use case, with the following exceptions: The page shall not show the current message text as MULTI The page shall not include the Travel Time / Toll Messages section The page shall not include the Associated Travel Routes section The page shall not include the Travel Time Message Schedule section

4.4.14 View DMS List for Maint (Use Case)

The system shall allow the user to view a list of DMSs that are candidates for device maintenance as specified in the View Device List for Maint use case.

4.4.15 View Last Extended Status (Use Case)

A user with appropriate rights can view the extended status that was previously obtained for a DMS model that supports extended status. The extended status contains a timestamp to allow the user to know when the status was retrieved.

4.5 MaintainHAR (Use Case Diagram)

This diagram shows use cases related to maintaining HARs via the Maintenance GUI.

[image: image21.emf]«extends» «extends»

Turn Off HAR Transmitter

Set HAR Maint Mode Message Put HAR in Maintenance Mode

Blank HAR

Turn On HAR Transmitter

Reset HAR

Setup HAR

View Device Details For Maint

View HAR List for Maint View HAR Details for Maint

Send HAR Test Message Existing features,

just accessed from

a different web page.

New for Maint GUI New for Maint GUI, but will use

existing servlet code. Only

changes are to the display.

View Device List For Maint Device Maintainer

Put HAR Online

Take HAR Offline

Figure 4‑5 MaintainHAR (Use Case Diagram)

4.5.1 Blank HAR (Use Case)

A HAR can be blanked if it is online or in maintenance mode. When the HAR is online, the device is only blanked if there are no traffic events that have currently requested that a message be placed on the device. When the HAR is in maintenance mode, the HAR can be blanked directly by the user.

A HAR can be blanked indirectly through administrative functions such as placing the device online or resetting the device.

When a HAR is blanked, the system will set the HAR's default message to be the current message. Additionally, the system will deactivate any associated active SHAZAMs before blanking the HAR itself.

4.5.2 Put HAR in Maintenance Mode (Use Case)

A user with proper functional rights may place a HAR in maintenance mode. When placed in maintenance mode, if the HAR was previously offline, the setup command is used to reload the HAR's slots that are configured for use in CHART II. If the HAR was previously online, the HAR's message is set to its default message. The HAR shall proceed to maintenance mode even if attempts to control the device during this process fail. When a HAR is placed in maintenance mode, the controlling op center of the HAR becomes the op center of the user that performed the operation.

4.5.3 Put HAR Online (Use Case)

A user with appropriate privileges can put a HAR device online if it has previously been taken offline or put in maintenance mode. This automatically turns on the HAR transmitter and makes the HAR available for control through the system. When a HAR is placed online, the user shall be given the option to put any associated SHAZAMs online as well.

4.5.4 Reset HAR (Use Case)

A user with proper privileges can reset a HAR that is in maintenance mode. Resetting a HAR clears the HAR's memory and restores it to its factory settings. All messages previously stored in the HAR controller are lost from the controller. The system automatically issues the setup command after the HAR is reset to restore the settings and to restore the messages that were previously stored in the controller.

4.5.5 Send HAR Test Message (Use Case)

The system shall allow device maintenance personnel with appropriate rights to display a pre-configured test message on a HAR without using a message editor when the HAR is in maintenance mode. The message text will be specified in the system profile and will apply to all HARs. The message text will be converted to speech and used with the default header and trailer for the HAR. No SHAZAMs will be activated with the test message.

4.5.6 Set HAR Maint Mode Message (Use Case)

The system shall allow a user with proper rights to set the maintenance mode message of a HAR via the maintenance portal. The system shall allow the user to specify the body of the message as text that will be converted to speech. The system shall use the default header and trailer for the HAR where the message is to be broadcast. The system shall detect banned words in the message text entered by the user and will prevent any message containing banned words from being sent to the HAR. Spell checking will not be supported for this feature.

4.5.7 Setup HAR (Use Case)

An administrator can issue the setup command on a HAR that is in maintenance mode. The setup command causes the CHART II system to load its configuration values for the HAR into the device. The setup command also causes all messages that are currently specified to be stored in the HAR controller to be restored into the device.

4.5.8 Take HAR Offline (Use Case)

A user with appropriate privileges can take a HAR offline to disallow control of the HAR through the system. When a HAR is taken offline, the HAR's transmitter is turned off and all associated SHAZAM devices are also taken offline.

4.5.9 Turn Off HAR Transmitter (Use Case)

A user with appropriate privileges can turn off the transmitter of a HAR that is in maintenance mode.

4.5.10 Turn On HAR Transmitter (Use Case)

A user with appropriate privileges can turn on the transmitter of a HAR that is in maintenance mode.

4.5.11 View Device Details For Maint (Use Case)

The system shall allow the details for a device to be viewed for the purpose of performing maintenance. This shall be supported for DMS, HAR, SHAZAM, TSS, and Camera devices. The details shall include the device type, name, and location left justified near the top of the page. All other information on the page shall also be left justified. Any actions that apply to the device in its current mode and based on the user's rights shall be available toward the top of the page, under the device type/name/location. The list of actions available for a device shall match the actions available for the device within the standard GUI, except as follows: The list of actions available shall exclude the ability to copy the device. The list of actions available shall exclude and the ability to remove the device. Exceptions specific to a device type may also apply and are specified in the extending use cases where applicable. The data displayed for a device shall match the data displayed for the device if the user were to view details for the device for other purposes (non maintenance activities) except as specified in extending use cases.

4.5.12 View Device List For Maint (Use Case)

The system shall allow the user to view a list of devices that are candidates for maintenance. This shall include the ability to list DMS, HAR, SHAZAM, TSS, and Camera devices (in separate lists). Each list will identify the type of devices that are shown in the list. Each list can include all CHART devices of the selected type, or can be pre-filtered. The pre-filtering can be done by device mode/status or using the GUI's folder feature. When the folder feature is used, only devices that exist in folders that are tagged with the user's operations center are shown. If no such devices exist then all CHART devices of the specified type are shown (unfiltered list). The list of devices will show the number of devices that appear in the list. If the device is filtered, the list will also show the number of devices that would appear if the list is unfiltered and will show the filter(s) in use. The user shall be able to remove all filtering from a list that is filtered. The list will show each device with an icon to identify the device type and mode/status, the device name, and the device location. Each list will provide access to a details page for each device shown.

4.5.13 View HAR Details for Maint (Use Case)

The details for HAR devices shall be available for viewing for the purpose of performing maintenance, as specified in the View Device Details For Maint use case. One difference between the HAR details page when viewed within the maintenance GUI vs. viewing the same page in the standard GUI is that the Edit link available for editing clips stored in the HAR will not be present when viewing the page in the maintenance GUI.

4.5.14 View HAR List for Maint (Use Case)

The system shall allow the user to view a list of HARs that are candidates for device maintenance as specified in the View Device List for Maint use case.

4.6 MaintainSHAZAM (Use Case Diagram)

This diagram shows use cases related to maintaining SHAZAMs via the Maintenance GUI.

[image: image22.emf]«extends» «extends» Existing features, just accessed from a different web page. New for Maint GUI, but will use existing servlet code. Only changes are to the display. Device MaintainerView SHAZAM List for Maint View SHAZAM Details for Maint Put SHAZAM Online Take SHAZAM Offline Put SHAZAM in Maintenance Mode Activate SHAZAM

Deactivate SHAZAM

View Device Details For Maint View Device List For Maint

Figure 4‑6 MaintainSHAZAM (Use Case Diagram)

4.6.1 Activate SHAZAM (Use Case)

A SHAZAM is activated through a HAR message activation that includes the SHAZAM. When a SHAZAM device is activated, its beacons are enabled. In the case of a DMS acting as a SHAZAM, a previously configured message (similar to a message that would be displayed on a SHAZAM with a fixed sign) is displayed.

A SHAZAM can only be activated if the SHAZAM is associated to a HAR and the HAR is currently playing a message (other than the default message).

If a SHAZAM is allowed to be activated when it is already in use by an event response plan (same op center usage or override functional right), a message is logged in the original event's history indicating that the SHAZAM is no longer in use by the event.

4.6.2 Deactivate SHAZAM (Use Case)

A SHAZAM can be deactivated by a user closing an event that was using the SHAZAM in its response plan or indirectly through operations such as taking a SHAZAM or HAR offline. Deactivating a SHAZAM stops its beacons from flashing and in the case of a DMS acting as a SHAZAM, blanks the "tune radio" message. When a SHAZAM is deactivated and it was being used in an event's response plan, a message is logged in the event's history indicating the SHAZAM was deactivated.

4.6.3 Put SHAZAM in Maintenance Mode (Use Case)

A user with proper functional rights can place a SHAZAM in maintenance mode. When the SHAZAM is placed in maintenance mode, an attempt is made to deactivate the SHAZAM. Even if this attempt fails, the SHAZAM proceeds to maintenance mode and the controlling operations center of the SHAZAM is set to the operations center of the user that performed the operation.

4.6.4 Put SHAZAM Online (Use Case)

A user with appropriate privileges can put a SHAZAM online if the SHAZAM is currently offline. Putting the SHAZAM online makes it available for control through the system.

4.6.5 Take SHAZAM Offline (Use Case)

A user with appropriate privileges can take a SHAZAM offline. A SHAZAM that has been taken offline is not able to be controlled through the system (activated or deactivated) until the SHAZAM is put online. Taking a SHAZAM off line does not affect any HAR that has been associated with the SHAZAM.

4.6.6 View Device Details For Maint (Use Case)

The system shall allow the details for a device to be viewed for the purpose of performing maintenance. This shall be supported for DMS, HAR, SHAZAM, TSS, and Camera devices. The details shall include the device type, name, and location left justified near the top of the page. All other information on the page shall also be left justified. Any actions that apply to the device in its current mode and based on the user's rights shall be available toward the top of the page, under the device type/name/location. The list of actions available for a device shall match the actions available for the device within the standard GUI, except as follows: The list of actions available shall exclude the ability to copy the device. The list of actions available shall exclude and the ability to remove the device. Exceptions specific to a device type may also apply and are specified in the extending use cases where applicable. The data displayed for a device shall match the data displayed for the device if the user were to view details for the device for other purposes (non maintenance activities) except as specified in extending use cases.

4.6.7 View Device List For Maint (Use Case)

The system shall allow the user to view a list of devices that are candidates for maintenance. This shall include the ability to list DMS, HAR, SHAZAM, TSS, and Camera devices (in separate lists). Each list will identify the type of devices that are shown in the list. Each list can include all CHART devices of the selected type, or can be pre-filtered. The pre-filtering can be done by device mode/status or using the GUI's folder feature. When the folder feature is used, only devices that exist in folders that are tagged with the user's operations center are shown. If no such devices exist then all CHART devices of the specified type are shown (unfiltered list). The list of devices will show the number of devices that appear in the list. If the device is filtered, the list will also show the number of devices that would appear if the list is unfiltered and will show the filter(s) in use. The user shall be able to remove all filtering from a list that is filtered. The list will show each device with an icon to identify the device type and mode/status, the device name, and the device location. Each list will provide access to a details page for each device shown.

4.6.8 View SHAZAM Details for Maint (Use Case)

The details for SHAZAM devices shall be available for viewing for the purpose of performing maintenance, as specified in the View Device Details For Maint use case.

4.6.9 View SHAZAM List for Maint (Use Case)

The system shall allow the user to view a list of SHAZAMs that are candidates for device maintenance as specified in the View Device List for Maint use case.

4.7 MaintainTSS (Use Case Diagram)

This diagram shows use cases related to maintaining TSSs via the Maintenance GUI.

[image: image23.emf]«extends» «extends» Device Maintainer

View TSS List for Maint View TSS Details for Maint Put TSS Online

Take TSS Offline

Put TSS in Maint Mode

Get TSS Status

View Device List For Maint View Device Details For Maint Existing features,

just accessed from

a different web page.

New for Maint GUI, but will use existing servlet code. Only changes are to the display.

Figure 4‑7 MaintainTSS (Use Case Diagram)

4.7.1 Get TSS Status (Use Case)

A user with appropriate rights can poll a TSS to get its current status.

4.7.2 Put TSS in Maint Mode (Use Case)

A user with appropriate rights can put a TSS in maintenance mode.

4.7.3 Put TSS Online (Use Case)

A user with appropriate rights can put a TSS online.

4.7.4 Take TSS Offline (Use Case)

A user with appropriate rights can take a TSS offline.

4.7.5 View Device Details For Maint (Use Case)

The system shall allow the details for a device to be viewed for the purpose of performing maintenance. This shall be supported for DMS, HAR, SHAZAM, TSS, and Camera devices. The details shall include the device type, name, and location left justified near the top of the page. All other information on the page shall also be left justified. Any actions that apply to the device in its current mode and based on the user's rights shall be available toward the top of the page, under the device type/name/location. The list of actions available for a device shall match the actions available for the device within the standard GUI, except as follows: The list of actions available shall exclude the ability to copy the device. The list of actions available shall exclude and the ability to remove the device. Exceptions specific to a device type may also apply and are specified in the extending use cases where applicable. The data displayed for a device shall match the data displayed for the device if the user were to view details for the device for other purposes (non maintenance activities) except as specified in extending use cases.

4.7.6 View Device List For Maint (Use Case)

The system shall allow the user to view a list of devices that are candidates for maintenance. This shall include the ability to list DMS, HAR, SHAZAM, TSS, and Camera devices (in separate lists). Each list will identify the type of devices that are shown in the list. Each list can include all CHART devices of the selected type, or can be pre-filtered. The pre-filtering can be done by device mode/status or using the GUI's folder feature. When the folder feature is used, only devices that exist in folders that are tagged with the user's operations center are shown. If no such devices exist then all CHART devices of the specified type are shown (unfiltered list). The list of devices will show the number of devices that appear in the list. If the device is filtered, the list will also show the number of devices that would appear if the list is unfiltered and will show the filter(s) in use. The user shall be able to remove all filtering from a list that is filtered. The list will show each device with an icon to identify the device type and mode/status, the device name, and the device location. Each list will provide access to a details page for each device shown.

4.7.7 View TSS Details for Maint (Use Case)

The details for TSS devices shall be available for viewing for the purpose of performing maintenance, as specified in the View Device Details For Maint use case.

4.7.8 View TSS List for Maint (Use Case)

The system shall allow the user to view a list of TSSs that are candidates for device maintenance as specified in the View Device List for Maint use case.

4.8 MapAndGISUses (Use Case Diagram)

This diagram shows the mapping and GIS related use cases supported by the system.

[image: image24.emf]Select Region

Select Alias

Location

Select Intersecting

Feature

Add Close Devices to Response from Map

Edit Traffic Event

Properties

Create Traffic Event

Specify Object

Location

Select Target

Location on

Map

Select State

Select County

Select Primary Route

Select Intersecting Route

Select Intersecting Milepost

Select Intersecting Exit

Use Devices

and Traffic Events

from Map

Specify

Traffic Event

Location

Specify Alias Location

Specify Device Location

System

Add Alias

Edit Alias

Remove Alias

Perform GIS

Query

Get States

Get Counties

By State

Get Regions

By State

Get Aliases

Get Routes

Get Intersecting

Routes

These use cases currently

exist in the Roadway Location

Lookup Service.

View Close

Devices on Map

View Devices Close to Traffic

Event

View Traffic

Event Details

Operator

View Center's

Events On

Map

View Home

Page

View Open

Events On

Map

Select Map

Layers

Navigate Map

View Alias List

Manage Aliases

View Home

Page Map

View Devices

On Map

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include» «include»

«extend»

«extend»

«extend»

«include»

«include»

«include»

«include»

«include»

«extend»

«extend»

«extend»

«include»

«include»

«include»

«include»

«extend»

«include»

«include»

«include»

«include»

«include»

«extend»

«extend»

«extend»

«extend»

«include»

«include»

«include»

Figure 4‑8 MapAndGISUses (Use Case Diagram)

4.8.1 Add Alias (Use Case)

A suitably privileged user may add a new location alias to the system. A user may specify the internal name, public name, and location of the alias.

4.8.2 Add Close Devices to Response from Map (Use Case)

A user may select one or more devices on the close device map for a traffic event and add them to the response plan of the target traffic event. The close devices map will update the markers of the added devices to indicate that they are in the response plan.

4.8.3 Create Traffic Event (Use Case)

The user with the correct functional rights may add a new traffic event. When creating a traffic event, the system will show the user a list of existing traffic events that may be duplicates of the new event being created based on the user's selections for the new event's location. This existing feature will be changed in R3B2 to ensure external and pending events do not appear as possible duplicate events.

4.8.4 Edit Alias (Use Case)

A suitably privileged user may edit the information for an existing location alias. A user may specify the internal name, public name, and location of the alias.

4.8.5 Edit Traffic Event Properties (Use Case)

A user with sufficient privileges may alter the properties of a traffic event from the traffic event details page.

4.8.6 Get Aliases (Use Case)

A client application may query the list of location aliases.

4.8.7 Get Counties By State (Use Case)

A client application may query the complete list of counties in a specified state. The returned county data may optionally include extents and boundary information.

4.8.8 Get Intersecting Routes (Use Case)

A client application may query the set of routes that intersect a specified route in a particular state and county. The system will only return multiple points where the two routes intersect if those points are greater than a configurable distance from one another.

4.8.9 Get Regions By State (Use Case)

A client application may query the set of regions defined for a particular state.

4.8.10 Get Routes (Use Case)

A client application may query the list of routes defined within a particular state and county.

4.8.11 Get States (Use Case)

A client application may query the complete list of states. Each returned state may include optional extents data.

4.8.12 Manage Aliases (Use Case)

A user with sufficient privileges may use the system to manage location aliases. Refer to extending use cases for details.

4.8.13 Navigate Map (Use Case)

The user shall be able to pan and zoom a map display. This may include various associated features, such as pan using arrows or mouse drag, zoom using clicking, direct zoom to a specific level, draw new bounding box, etc. The pan/zoom capability provided will be dependent on the underlying map viewer chosen ... with the basic requirement being some method of pan/zoom. Other map navigation features include a Refresh Now button that immediately requests fresh data for the map view and a Close All Popups button that will close all open object callouts (popup overlays).

4.8.14 Perform GIS Query (Use Case)

A client application may utilize REST web services to query GIS information from the system.

4.8.15 Remove Alias (Use Case)

A suitably privileged user may remove a location alias from the system. Removing the location alias will not impact the location of devices and traffic events that were located using the alias in the past. Each devices or traffic event gets a copy of the alias location information when it is created.
4.8.16 Select Alias Location (Use Case)

A user may select from a previously defined set of alias locations in order to specify the location of an object. Doing so will populate the location with all data that was specified when the alias was created. In this case the location description will also include the public name of the alias in parentheses.

4.8.17 Select County (Use Case)

When specifying an object's location, a user may select a county from a list of known counties. They system will also allow the user to select a county from a list of recently used counties, or enter a free text county if the state is not Maryland. If the specified county has known extents, the map will zoom to the extent of the selected county.

4.8.18 Select Intersecting Feature (Use Case)

A user may select an intersecting feature along a primary route when defining the location of an object. The user may specify that the location is at, past, prior to, east of, west of, north of, or south of the selected feature.

4.8.19 Select Intersecting Exit (Use Case)

A user may select an intersecting exit along a primary route when setting the location of an object. If the specified exit is from the list of known exits, it will also populate the exit suffix (if applicable) and the name of the road the exit leads to (if that data is available).

4.8.20 Select Intersecting Milepost (Use Case)

A user may specify a milepost location using state or county milepost numbers along a route within a state and county. The system will attempt to find a defined milepost that exactly matches the specified milepost. If it cannot, it will attempt to find the two closest surrounding mileposts on the same route within a configurable distance and calculate an approximate milepost location from them (Note that this is done using straight-line interpolation. If the roadway curves significantly, the calculated point may be off the roadway. It is expected that the user would fine-tune the location using the map if the calculated point is not satisfactorily close to the roadway). If a point can be determined the map will move to this point and a marker will be placed on the map to show the user where the location is.

4.8.21 Select Intersecting Route (Use Case)

The user may select an intersecting route for the object location from a list of known routes that intersect the specified primary route, or may specify a free text route name if the route needed is not in the list of known intersecting routes. The system will display intersecting routes that are determined to be ramps in a separate list. If the selected intersecting route has a point location, the map will move to this location and place a marker to show the user the exact location.

4.8.22 Select Map Layers (Use Case)

The user shall be able to choose the map layers to be displayed on a map from a list of available layers that pertain to the map being viewed. Each device type is shown on a separate device type specific overlay layer. Traffic events are shown on separate overlay layers that are specific to the traffic event type. All maps can be displayed over a pre-determined ESRI base map. The CHART Intranet base map is such a map and will be an option for the base map layer (note: the Intranet base map will be the only base map available in R5). When using the CHART base map, users may also view maps and exits as separate overlay map layers that are only visible when zoomed in on a detailed area but can be made invisible if desired.

4.8.23 Select Primary Route (Use Case)

The user may select a primary route for the object location from a list of known routes or may specify a free text route name if no known routes are available. The route is selected by first selecting a route type, then specifying the desired route of the specified type. If the user has selected a known route, they may specify whether the route number or route name is used. The user may also select a route direction from a pre-determined list of directions.

4.8.24 Select Region (Use Case)

The user may specify a region that the object is located in. If the state is MD the system will provide the user with a defined list of regions to choose from. If the state is not MD the user may enter free form text in the region field. Selecting a region will automatically cause the system to not have a county selected.

4.8.25 Select State (Use Case)

When specifying an object's location the user may select a state from a list of known states. Maryland will be selected by default. When this is done, the object location map will move to the extent of the specified state if it is known.

4.8.26 Select Target Location on Map (Use Case)

A user may click on a map in a specified way to indicate that the point they are clicking on is the desired location. When this is done during object location editing, the system will attempt to populate the state and county of the clicked location and populate those fields for the user. If the user has previously entered data about a location such as county, primary route, and intersecting feature and the new location that has been clicked is within a configurable distance of the previous location the form entries will not be lost. If, however, the new location is too far away from the previous location the user will be prompted and allowed to specify if the old location selections apply to the new point.

4.8.27 Specify Traffic Event Location (Use Case)

When adding a new traffic event or editing the details of an existing traffic event, a user may specify the location of the traffic event. Refer to the SpecifyObjectLocation use case for details.

4.8.28 Specify Alias Location (Use Case)

When adding a new location alias or editing the details of an existing location alias, a user may specify the location of the alias. Refer to the SpecifyObjectLocation use case for details.

4.8.29 Specify Device Location (Use Case)

A user with sufficient privileges may specify the location of the equipment. See Specify Object Location use case for details.

4.8.30 Specify Object Location (Use Case)

A user may specify the location of an object with the aid of a system map. This process can involve selecting a state, county or region, primary route, and intersecting feature. The system will suggest a location description based on the selections the user makes. The user may override the suggested location description if desired, but will be warned when doing so and again before submitting the location form. During the process of setting an object location, a user may press a button to reset the form. Doing this will cause all previously entered location data to be lost and the location marker will be cleared from the map.

4.8.31 Use Devices and Traffic Events from Map (Use Case)

A user may click on an object marker on the map to use the device or traffic event that the marker represents. Doing so will open a callout (popup overlay on map) that contains information about the clicked object and HTML links that allow the user to use the device or traffic event. Clicking at a point that has multiple object markers overlapping will result in an intermediate popup that allows the user to select which of the hit markers they would like to use. Refer to the MapDeviceAndTrafficEventUses use case diagram for details.

4.8.32 View Alias List (Use Case)

A suitably privileged user may view the list of location aliases in the system. The detailed data for each location alias in the list shall include the Internal Name, Public Name, Location Description, County, Route, and Direction. A user may sort the list of aliases by Internal Name, Public Name, Location Description, County, and Route. A user may filter the list of aliases by County, Route, and Direction. A user may choose the columns to display in the alias list.

4.8.33 View Center's Events On Map (Use Case)

The system shall allow the user to view a layer on the home page map that shows the traffic events for which the user's center is responsible. This layer shall be visible by default. When the home page map is showing only events for the user's operations center, it will also show text indicating that the data is filtered. Activating this filter will move the map to an extent that includes all events controlled by the user's center and will make the event layers visible if they were not already.

4.8.34 View Close Devices on Map (Use Case)

The R3B3 feature that shows devices close to a traffic event on the event details page will be extended to show those devices on a map. The map will be initially panned / zoomed such that all close devices in a selected radius are shown. The user may change the defined radius to any of a pre-defined set of values. Doing so will pan/zoom the map to the extent of the devices within the new range.

4.8.35 View Devices Close to Traffic Event (Use Case)

This use case is implemented in R3B3 and is shown to provide context.

4.8.36 View Devices On Map (Use Case)

The home page map shall include map layers to allow the user to view devices. Each device type shall be presented on a different map layer. The device types available for display on the map in release 5 are DMS, HAR, SHAZAM, and Camera. Any device of these types that has a defined point location can be viewed on the home page map by clicking a link on the details page for the device.

4.8.37 View Home Page (Use Case)

This use case shows the home page being shown to the user. A user is shown the home page when logging in, and can view the home page at any other time during the login session. The home page always shows the user a visual indication of the number of open alerts in the new state and allows the user to quickly view summary information about the new alerts (including alert type, creation time, and description) without leaving their current view.

4.8.38 View Home Page Map (Use Case)

A user may view a map on the Home Page. The home page map will show all open events for the user's operating center by default.

4.8.39 View Open Events On Map (Use Case)

A user may choose to show all open events on the home page map. When this action is performed, the traffic event layers are made visible if they were previously hidden, and the map is zoomed to the extent of all open traffic events. Any open traffic event that has a defined point location can be viewed on the home page map by clicking a link on the details page for the traffic event.

4.8.40 View Traffic Event Details (Use Case)

A user with appropriate rights shall be permitted to view the details for an event. This feature is being enhanced in release 5 to include a map view that shows nearby devices on the traffic event details page.

4.9 MapDeviceAndTrafficEventUses (Use Case Diagram)

This diagram shows the ways that users may interact with devices and traffic events from the map.

[image: image25.emf]Override Controlof CameraAll use cases shown can be accessed directly by the operator via the text-based R4 interface. View HAR Details Page Edit HAR Response Message View SHAZAMDetails Page Use HAR from Map Use SHAZAM from Map Operator Use DMS from Map Request Controlof CameraDisplay Camera onHome MonitorDisplay Camera onLocal MonitorUse Traffic Event from Map View Traffic Event Details Page Edit Traffic Event Roadway Conditions View DMS Details PageEdit DMS Response Message Use Camera from Map View Camera Details Page Release Controlof Camera«extend» «extend»«extend» «extend» «include» «extend» «extend» «include» «extend» «extend» «extend» «extend»«extend» «extend» «extend»

Figure 4‑9 MapDeviceAndTrafficEventUses (Use Case Diagram)

4.9.1 Display Camera on Home Monitor (Use Case)

A user may click on a link in the camera map popup to display the camera on the user's home monitor, if a home monitor has been assigned.

4.9.2 Display Camera on Local Monitor (Use Case)

A user may click on a link in the camera map popup to display the camera on a monitor in the user's local monitor group (if a group has been assigned) and bring up the list of local monitors in the working window.

4.9.3 Edit DMS Response Message (Use Case)

A suitably privileged user may edit and execute a DMS response message from the DMS map popup. The user may invoke either the DMS Response Message (Auto) Editor or the DMS Response Message (Manual) Editor from the DMS map popup. The edited DMS response message will be executed when the editor form is submitted.

4.9.4 Edit HAR Response Message (Use Case)

A suitably privileged user may edit and execute a HAR response message from the HAR map popup. The user may invoke the HAR Response Message Editor from the HAR map popup, and the edited HAR response message will be executed when the editor form is submitted.

4.9.5 Edit Traffic Event Roadway Conditions (Use Case)

A user may click on a link to invoke the roadway conditions editor from the traffic event map popup.

4.9.6 Override Control of Camera (Use Case)

A suitably privileged user may override control of a controllable camera (that is currently being controlled by another user) from the camera map popup.

4.9.7 Release Control of Camera (Use Case)

A suitably privileged user may release control of a camera that is currently being controlled, from the camera map popup.

4.9.8 Request Control of Camera (Use Case)

A suitably privileged user may request control of a controllable camera from the camera map popup.

4.9.9 Use Camera from Map (Use Case)

A Camera will have a different icon on the Map depending on its operational status (e.g. online or offline). When a user causes the mouse cursor to hover over a Camera icon in the map, the name or location of the camera (as specified in the system profile) will appear. A user may click on a camera icon in the map to display summary information in a popup. The Camera map popup will display the name or location of the Camera (as configured in the system profile) and the name and operations center of the user controlling a camera, if the camera has a control session open.

4.9.10 Use DMS from Map (Use Case)

A DMS will have a different icon on the Map depending on its mode (e.g. online, offline, or maintenance) and whether it is currently displaying a message. When a user causes the mouse cursor to hover over a DMS icon in the map, the name of the DMS and a plain text representation of the DMS message will appear. A user may click on a DMS in the map to display summary information in a popup. The DMS map popup will display the name and location of the DMS, a representation of the DMS's current message, a list of open traffic events that currently have the DMS in their response plans, and an indicator of whether a traffic event owns a message that is active on the DMS's message queue.

4.9.11 Use HAR from Map (Use Case)

A HAR will have a different icon on the Map depending on its mode (e.g. online, offline, or maintenance) and whether it is currently playing a non-default message. When a user causes the mouse cursor to hover over a HAR icon in the map, the name of the HAR will appear. A user may click on a HAR icon in the map to display summary information in a popup. The HAR map popup will display the name of the HAR, a representation of the HAR's current message, a list of open traffic events that currently have the HAR in their response plans, and an indicator as to whether a traffic event owns a message that is active on the HAR's message queue.

4.9.12 Use SHAZAM from Map (Use Case)

A SHAZAM will have a different icon on the Map depending on its mode (e.g. online, offline, or maintenance) and whether it has its beacons on. When a user causes the mouse cursor to hover over a SHAZAM icon in the map, the name of the SHAZAM and the current beacon state will appear. A user may click on a SHAZAM icon in the map to display the name of the SHAZAM in a popup.

4.9.13 Use Traffic Event from Map (Use Case)

A traffic event will have a different icon on the Map depending on the type of incident. A user may click on a traffic event icon in the map to display summary information in a popup. When a user causes the mouse cursor to hover over a traffic event icon in the map, the name of the traffic event and a description of the lane closures (if the traffic event has a defined roadway configuration) will appear. The traffic event map popup will display the name of the traffic event and a graphical representation of the lane closures (if the traffic event has a defined roadway configuration).

4.9.14 View Camera Details Page (Use Case)

A user may click on a link in the Camera map popup to invoke the Camera details page in the working window.

4.9.15 View DMS Details Page (Use Case)

A user may click on a link in the DMS map popup to invoke the DMS details page in the working window.

4.9.16 View HAR Details Page (Use Case)

A user may click on a link in the HAR map popup to invoke the HAR details page in the working window.

4.9.17 View SHAZAM Details Page (Use Case)

A user may click on a link in the SHAZAM map popup to invoke the SHAZAM details page in the working window.

4.9.18 View Traffic Event Details Page (Use Case)

A user may click on a) a link in the traffic event map popup, b) a traffic event listed in the DMS map popup, or c) a traffic event listed in the HAR map popup to invoke the traffic event details page in the working window.

4.10 R5CameraUses (Use Case Diagram)

This diagram shows high level use cases for camera enhancements implemented in R5. Features include supporting multiple video sending devices, and control/status of video sources streaming flash video.

[image: image26.emf]Choose Camera

For Monitor

Choose Monitor

For Camera

extends

Configure Flash

Streaming

Control

includes

Display Video

MODIFIED FOR R5

added:

display monitor routing

Copy Video

Source

Display Camera

Image

MODIFIED FOR R5

added:

Choose the correct camera video sending device depending on the monitor's receiving device.

Simultaneously display video from a single camera on multiple monitors using different sending devices.

includes

System

MODIFIED FOR R5

added:

configure multiple video sending devices

configure flash streaming server

MODIFIED FOR R5

added:

View multiple video sending devices

View flash streaming status

View Cameras

Display Flash

Streaming

Status

Display Multiple

Video Sending

Devices

includes

Administrator

includes

includes

Operator

Block Flash Video

To Public

Control Flash

Video Streams

Enable Flash Video

To Public

Configure

Video Sources

Add Video Source

Remove Video

 Source

Update Video

Source

Configure Multiple

Video Sending Devices

Configure Switches

ConfigureEncoders

includes

includes

includes

includes

includes

includes

includes

includes

includes

Figure 4‑10 R5CameraUses (Use Case Diagram)

4.10.1 Add Video Source (Use Case)

The system shall allow the user to add video sources to the system. The system allows an administrator to configure multiple video sending devices for the video source.

4.10.2 Block Flash Video To Public (Use Case)

An operator shall be able to block a camera's flash stream to the public.

4.10.3 Choose Camera For Monitor (Use Case)

An operator shall be able to choose a camera to display on a monitor from the monitor list. The monitors shown in the list should have the correct route displayed. If a camera contains a local and routed connecting device, local will be shown.

4.10.4 Choose Monitor For Camera (Use Case)

An operator shall be able to choose a monitor for display from the camera list. The monitors shown in the list should have the correct route displayed. If the monitor contains a local and routed connecting device, local will be shown.

4.10.5 Configure Video Sources (Use Case)

The system allows an administrator with the Configure Camera right to configure video sources in the CHART system. The system allows an administrator to configure multiple video sending devices for the video source.

4.10.6 Configure Flash Streaming Control (Use Case)
The system shall allow an administrator to specify a flash video stream control for the video source. (This is the system which manages the "red button", also known as the flash "kill switch".)

4.10.7 Configure Multiple Video Sending Devices (Use Case)

An administrator shall be able to configure one or more video sending devices.

4.10.8 Configure Switches (Use Case)

The system should allow an administrator to configure one or more switches as a video sending device for a camera.

4.10.9 ConfigureEncoders (Use Case)

The system shall allow an administrator to configure one or more encoders as a video sending device for a camera.

4.10.10 Control Flash Video Streams (Use Case)

An operator shall be able to control a camera's flash stream to the public.

4.10.11 Copy Video Source (Use Case)
The system shall allow a user to copy video sources when creating new video sources. The system shall allow an administrator to copy multiple (one or more) video sending devices while copying a video source..

4.10.12 Display Camera Image (Use Case)

When the system displays a camera image on a monitor. The correct sending device will be used based on the receiving device's video fabric.

4.10.13 Display Flash Streaming Status (Use Case)

An operator shall be able to see the streaming status of a camera.

4.10.14 Display Multiple Video Sending Devices (Use Case)

The operator shall be able to view multiple sending device configurations for a video camera.The flash streaming server configuration should also be shown.

4.10.15 Display Video (Use Case)

An operator shall be able to display video when a camera has more than one sending device specified.

4.10.16 Enable Flash Video To Public (Use Case)

An operator shall be able to enable a camera's flash stream to the public.

4.10.17 Remove Video Source (Use Case)
The system shall allow a user to remove video sources from the system.

4.10.18 Update Video Source (Use Case)
The system shall allow an user to update video source attributes. The system shall allow an administrator to configure multiple (one or more) video sending devices while updating a video source.

4.10.19 View Cameras (Use Case)

An operator shall be able to view the details for a camera. Details include the flash streaming configuration/status and multiple video sending devices.

4.11 R5ProvideDataToExternalSystems (Use Case Diagram)

This diagram shows uses of the system related to providing data to external systems. For R5, CHART will provide Traffic Event, HAR, DMS, and SHAZAM to external systems. The existing R3B3 feature will provide external client management.

[image: image27.emf]View External

Clients

Provide HAR

Data To

External Systems

System

Manage External

Clients

Add External

Client

Generate

Key Pair

Provide SHAZAM

Data To

External Systems

Provide DMS

Data To

External Systems

Authenticate External System Provide Detector

Data To

External Systems

Provide Data

to External

Systems

Provide Traffic Event Data To External Systems Remove External

Client

Administrator

Edit External

Client

«include» «include»

«include»

«include»

«include»

«include»

Figure 4‑11 R5ProvideDataToExternalSystems (Use Case Diagram)

4.11.1 Add External Client (Use Case)

The system shall allow an administrator to add an external client to the CHART system. When doing so, the administrator will specify data pertaining to the client including a client ID to be used by the external system and a public key used to validate data signed by the external system. The administrator will specify whether the external system is a supplier and/or consumer of CHART data, and if it is a consumer, one or more CHART Roles whose user rights will determine the data accessible to the external system. The administrator will also be able to specify a name and description of the external system, contact information for a person responsible for managing the external system.

4.11.2 Authenticate External System (Use Case)

The system shall authenticate external system connections to validate that they are authorized to connect to CHART and to enforce rights regarding the data the external system is permitted to access. Each external system owner will be provided a private key from a public/private key pair generated within the CHART system. Each request from an external system will include the system's CHART client ID (as configured within CHART) and a digital signature of the request data, created using the private key provided by the CHART administrator. The CHART system will validate each request signature using the client's public key.

4.11.3 Edit External Client (Use Case)

The system shall allow an administrator to edit the data associated with an external client, as described in the Add External Client use case.

4.11.4 Generate Key Pair (Use Case)

The system shall allow an administrator to generate a public/private key pair for use in controlling access to the CHART external interface. The private key is to be given (offline) to the owner of the external system wishing to gain access to CHART data. The public key is to be used by the administrator when adding the external client to the CHART system that corresponds to the external system that wishes to retrieve data from CHART.

4.11.5 Manage External Clients (Use Case)

The system shall allow an administrator to manage the external clients that are permitted to retrieve data from CHART via its external system interface.

4.11.6 Provide Data to External Systems (Use Case)

The system shall provide access to external systems via a web service to allow them to receive data that the CHART system makes available to third parties. One or more Roles assigned to each external client will be used to determine the data the client will be permitted to access. All requests made by external systems shall be validated against published XSD. CHART will return a response XML document for each request. The XML returned will contain an error code and error text for invalid requests, and will return the requested data for valid, authorized requests. The response XML shall be formatted as specified in published XSD.

4.11.7 Provide Detector Data To External Systems (Use Case)

The system shall provide detector data to external systems. The system shall enforce granular, organization based user rights to allow the level of detail provided for a detector to be controlled. Two user rights will be used to determine if a detector's detailed volume, speed, and occupancy (VSO) data is exported, only a speed range, or no VSO data. When VSO data is provided for a detector, it will include the data for zone groups and for each zone within the group. The detector data will be provided using the TMDD standard, with CHART extensions as needed. External systems can obtain an inventory and status of all CHART system detectors, or the ones that have changed in a certain lookback time period. They can obtain updates to the detector data (including the status) periodically with on-demand request or by subscribing to receive updates at a specified webservice URL.

4.11.8 Provide DMS Data To External Systems (Use Case)

The system shall allow external systems to receive data pertaining to DMSs using the TMDD standard, with CHART extensions to the standard as needed. External systems can obtain an inventory and status of all CHART DMS devices, or the ones that have changed in a certain lookback time period. They can obtain updates to the DMS devices (including the current status) periodically with on-demand request or by subscribing to receive updates at a specified webservice URL.

4.11.9 Provide HAR Data To External Systems (Use Case)

The system shall allow external systems to receive data pertaining to HARs using the TMDD standard, with CHART extensions to the standard as needed. External systems can obtain an inventory and status of all CHART HAR devices, or the ones that have changed in a certain lookback time period. They can obtain updates to the HAR devices (including the current status) periodically with on-demand request or by subscribing to receive updates at a specified webservice URL.

4.11.10 Provide SHAZAM Data To External Systems (Use Case)

The system shall provide SHAZAM (beacon) data to external systems using the TMDD standard format, with CHART extensions as needed. External systems can obtain an inventory and status of all CHART SHAZAM devices, or the ones that have changed in a certain lookback time period. They can obtain updates to the SHAZAM devices (including the current status) periodically with on-demand request or by subscribing to receive updates at a specified webservice URL.

4.11.11 Provide Traffic Event Data To External Systems (Use Case)

The system shall allow external systems to receive traffic event data from CHART. The CHART system shall enforce granular, organization based user rights to determine the level of detail that may be seen by each event. User rights will control whether or not the incident type of "fatality" is exported within the event name and the incident type field. A cleansed version of the incident type and event name that substitutes personal injury for fatality will be exported to external clients that don't have the proper user right. A separate user right determines whether or not event history for an event is exported. The traffic event data is exported using the SAE ATIS J2354 standard format with CHART extensions as needed. External systems can obtain a list of traffic events (an inventory) that includes either all events in the system or the ones that have changed in a certain lookback time period. They can receive updates by polling to receive a new inventory periodically or by subscribing to receive updates at a specified webservice URL.

4.11.12 Remove External Client (Use Case)

The system shall allow an administrator to remove an external client from the system, effectively preventing them from accessing CHART's external interface to retrieve data. The system will prompt the user for confirmation before removing the client.

4.11.13 View External Clients (Use Case)

The system shall allow an administrator to view the external clients allowed to retrieve CHART data via its external interface.

4.12 DATAExporterClient (Use Case Diagram)

In R5, the Data Exporter Client will replace the CORBA listener to handle all the updates to the CHARTWeb database for CHART Events and Devices.
[image: image28.emf]CHART Data Exporter Client

Add Or Update

CHART Events &

Closures

Add Or Update Or Remove

DMS

Add Or Update Or Remove

HAR

Add Or Update Or Remove

SHAZAM

Figure 4‑12 DataExporterClient (Use Case Diagram)

4.12.1 CHART Data Exporter Client (Actor)

The Data Exporter Client will make a request to the synchronization application which processes the updates of CHART Events and Devices’ spatial component in the CHARTWeb database.
4.12.2 Add Or Update of CHART Events & Closures (Use Case)

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an add event occurred. In R5, the Synchronization Application shall synchronize add events when a new CHART Event is added in CHART. The Synchronization Application shall also synchronize any new CHART Events when a full inventory update occurs in CHART Data Exporter Client.

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an update event occurred. In R5, the Synchronization Application shall synchronize update events when an existing CHART Event is updated in CHART. The Synchronization Application shall also synchronize any updates of CHART Events when a full inventory update occurs in CHART Data Exporter Client.

4.12.3 Add or Update Or Remove of DMS (Use Case)

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an add event occurred. In R5, the Synchronization Application shall synchronize add events when a new DMS Device is added in CHART. The Synchronization Application shall also synchronize any new DMS Device when a full inventory update occurs in CHART Data Exporter Client.

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an update event occurred. In R5, the Synchronization Application shall synchronize update events when an existing DMS Device is updated in CHART. The Synchronization Application shall also synchronize any updates of DMS Devices when a full inventory update occurs in CHART Data Exporter Client.

The Synchronization Application shall listen to the CHART Data Exporter Client's request when a remove event occurred. In R5, the Synchronization Application shall synchronize remove events when an existing DMS Device is removed in CHART. The Synchronization Application shall also synchronize any removal of DMS Devices when a full inventory update occurs in CHART Data Exporter Client.

4.12.4 Add Or Update Or Remove of HAR (Use Case)

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an add event occurred. In R5, the Synchronization Application shall synchronize add events when a new HAR Device is added in CHART. The Synchronization Application shall also synchronize any new HAR Device when a full inventory update occurs in CHART Data Exporter Client.

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an update event occurred. In R5, the Synchronization Application shall synchronize update events when an existing HAR Device is updated in CHART. The Synchronization Application shall also synchronize any updates of HAR Devices when a full inventory update occurs in CHART Data Exporter Client.

The Synchronization Application shall listen to the CHART Data Exporter Client's request when a remove event occurred. In R5, the Synchronization Application shall synchronize remove events when an existing HAR Device is removed in CHART. The Synchronization Application shall also synchronize any removal of HAR Devices when a full inventory update occurs in CHART Data Exporter Client.

4.12.5 Add, Update and Remove of SHAZAM (Use Case)

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an add event occurred. In R5, the Synchronization Application shall synchronize add events when a new SHAZAM Device is added in CHART. The Synchronization Application shall also synchronize any new SHAZAM Device when a full inventory update occurs in CHART Data Exporter Client.

The Synchronization Application shall listen to the CHART Data Exporter Client's request when an update event occurred. In R5, the Synchronization Application shall synchronize update events when an existing SHAZAM Device is updated in CHART. The Synchronization Application shall also synchronize any updates of SHAZAM Devices when a full inventory update occurs in CHART Data Exporter Client.

The Synchronization Application shall listen to the CHART Data Exporter Client's request when a remove event occurred. In R5, the Synchronization Application shall synchronize remove events when an existing SHAZAM Device is removed in CHART. The Synchronization Application shall also synchronize any removal of SHAZAM Devices when a full inventory update occurs in CHART Data Exporter Client.
4.13 SpatialWebService (Use Case Diagram)

The spatial web service serves States boundary Geometry, County boundary Geometry, Milepost Types, Exits information, and Lat/Longs for Mileposts.

[image: image29.emf]Integrated Map

Get Counties Extents

By

State Code

Get Location

Information

By

Latitude and Longitude

Get States

Extents

Get Features

By

Given Route Directory

Figure 4‑13 SpatialWebService (Use Case Diagram)

4.13.1 Get Counties Extents By State Code (Use Case)

The Spatial Web Service shall allow the requesting client to query the counties' extents. In addition, the service shall allow the requesting client to query the counties' extents along with its boundary. In response to the Get Counties' Extents request, the Spatial Web Service shall return a list of Counties associated with the state code, each with supporting information in XML format. The Spatial Web Service shall return county boundary information in WSG84 formats if requested.

4.13.2 Get Features By Given Route Directory (Use Case)

The Spatial Web Service shall allow the requesting client to query all or a particular feature by a given route directory. In R5, the available features include both exits and mileposts. In response to the Get Features by a Given Route Directory, the Spatial Web Service shall return a list of mile posts and exits associated with the Route Directory, each with supporting information in XML format. If available, the location information will be provided in both NAD83 State Plane and WSG84 formats.

4.13.3 Get Location Information By Latitude and Longitude (Use Case)

The Spaital Web Service shall allow the requesting client to query location information by providing valid latitude and longitude values. In response to the request, the Spatial Web Service shall return the State and County extent where the Latitude and Longitude falls within, each with supporting information in XML format.

4.13.4 Get States Extents (Use Case)

The Spatial Web Service shall allow the requesting client to query the states extents during the CHART GUI starts. In response to the Get State Extents request, the Spatial Web Service shall return a list of 50 States plus the District of Columbia, each with supporting information in XML format. If available, the Spatial Web Service shall provide the state extent information in both State Plane NAD83 State Plane and WSG84 formats.

4.13.5 Integrated Map (Actor)

In R5, the Integrated Map will make a request to the spatial web service and spatial web service will server spatial as well as wells as non spatial information about State, County, Exit and Milepoint in XML format.

4.14 ChartIntranetMap (Use Case Diagram)

The system shall allow operator to toggle the display of a Point of Interest (POI). In addition to Landmark in production system, R5 will include 911 Emergency Medical Service (EMS) as part of the Point of Interest (POI). Operator can turn on the display of a particular Point of Interest (POI) by checking the check box next to it in the legend and vice versa.
[image: image30.emf]CHART Operator

Display

Points of Interest

911 Public Safety

Answering Point

Locate an ExitDisplay

Satellite Imagery

State Police

Barracks

Figure 4‑14 ChartIntranetMap (Use Case Diagram)

4.14.1 911 Public Safety Answering Point (Use Case)

The system shall allow operator to toggle the display of a Point of Interest (POI). In addition to Landmark in production system, R5 will include 911 Emergency Medical Service (EMS) as part of the Point of Interest (POI). Operator can turn on the display of a particular Point of Interest (POI) by checking the check box next to it in the legend and vice versa.

4.14.2 CHART Operator (Actor)

In R5, CHART Operator can locate an exit, display high resolution satellite imagery, 911 public safety answering point, as well as state police barracks on the Intranet Map.

4.14.3 Display Points of Interest (Use Case)

The system shall allow operator to toggle the display of a Point of Interest (POI). In addition to Landmark in production system, R5 will include 911 Emergency Medical Service (EMS) and State Police Barraks as part of the Point of Interest (POI). Operator can turn on the display of a particular Point of Interest (POI) by checking the check box next to it in the legend and vice versa.

4.14.4 Display Satellite Imagery (Use Case)

The system shall allow operator to toggle the display of the Satellite Imagery provided by MDOT. When Satellite Imagery is turn on, the system shall allow the operator to toggle the transparency of the Satellite Imagery between 0 to 100 percent.

4.14.5 Locate an Exit (Use Case)

The system shall allow operator to locate an exit by selecting a county and a route. If exit(s) is available, the system shall display a list of exits that belongs to the route within the county in the drop down box. Operator can then locate a specific exit by selecting the exit number in the drop down box and hit the locate button. Once located, the map shall center on the exit. In addition, the system shall display a text description about the exit. The text description shall include information about the primary and the exit rotue if avaiable.

4.14.6 State Police Barracks (Use Case)

The system shall allow operator to toggle the display of a Point of Interest (POI). In addition to Landmark in production system, R5 will include State Police Barraks as part of the Point of Interest (POI). Operator can turn on the display of a particular Point of Interest (POI) by checking the check box next to it in the legend and vice versa.
4.15 Deprecated Functionality

The following Intranet Mapping functions have been deprecated due to R5 changes.
4.15.1 Map and Unmap CHART Events

In R5, the Integrated Map in the CHART application will start handling the mapping of CHART Events; the CHART Intranet Map will become a view only application for CHART Events.

4.15.2 Login

As the CHART Intranet Mapping application becomes a view only application for CHART Events, login is no longer needed.
4.15.3 View, Add, Update, Remove CHART Devices

In R5, the Integrated Map in the CHART application will start handling the mapping of CHART Devices (DMS, HAR, and SHAZAM); Device viewing, adding, updating and removing will no longer be available in the CHART Device Editor.

5 Detailed Design

5.1 Human-Machine Interface

5.1.1 Maintenance GUI

The Maintenance GUI includes changes to the CHART Login page and includes a custom home page. Customized versions of device lists, device details pages, and search results are also included.

5.1.1.1 Login

The standard CHART GUI Login page is changed to allow the user to access the maintenance portal instead of the standard CHART GUI view. See the change highlighted on the screen below:

[image: image31.png]CHART Login - Windows Intemet Explorer
GO - E s][] %) [Lvoiea

Fle Edt View Favoites Took Hep

% & [T Logn

User Name:

Password:

Operations Center: RAVENSTOC v

Home Monitor (optional):

Check box
provides access

& e o -

Figure 5‑1 Login Page

The login works the same as prior to the maintenance GUI feature being added; the same CHART username and password is used, and the same user rights will apply regardless of whether the user chooses to access the Device Maintenance Portal. If the user clicks the Device Maintenance Portal box before clicking Login (or hitting enter), they will log into the portal. After logging in, the Maintenance GUI Home Page will appear in the same window they used to login. Note that this differs from the standard GUI. When the user logs into the standard GUI, two new, stripped down web browser windows appear (home page window and working window) and the user is asked to close the window they used for login. This is not the case with the maintenance GUI.
5.1.1.2 Maintenance GUI Home Page

After the user chooses the Device Maintenance Portal option and logs in, the Maintenance GUI home page is shown in the same browser window where the login form was displayed. The browser window is left in tact with all navigation features, tool bars, etc. still present. See the sample below:

[image: image32.png]CHART - Windows Internet Explorer

OO - Erosmeatonson v 4] x

e € Ven Fovsis Tods Hob
* & [Hown
—=4 CHA

[S0)

RT Mobile

Toc

Back | Forward | Refresh | Home | Logout
CHART Device Maintenance

Find Device:

I
Browse for Device:

r——
B i
it Souces

St~ ¥

SelectFiter~ ¥,

g e
- SelectFiter ¥,

| W Locaranst Wik <

Figure 5‑2 Maintenance GUI Home Page

The maintenance GUI Home page is designed to allow the user to quickly find the details page for the device they are maintaining. The page is simple by design, without the myriad of options available in the standard GUI. Content is left justified to minimize the need for horizontal scrolling on smaller screens. The following features exist on this page:

Page Header

The page header includes an indication that the user is not logged into the standard CHART GUI “CHART Mobile”, the operations center, and the user name. The header also contains navigation links (Back / Forward) and a Refresh link to allow the page to be refreshed. The header also contains a Home link, which is a link to this Maintenance GUI home page. Finally, a logout link is included to allow the user to logout of the GUI. This header information is available on every page displayed within the maintenance portal.
Find Device
The Find Device section of the maintenance GUI home page allows the user to do a text search for the device they are maintaining. The user types in all or part of the device name or location and clicks Search and the system will display all devices that meet the search criteria. The search results page is shown below.

Browse For Device

The Browse For Device section allows the user to view a list of devices of a specific type so they may select the device they are maintaining. The user can view all devices of a selected type, or can view a filtered list. When using the device type link (“Message Signs” for example), the system filters the list using folders that are assigned to the operations center (if any). The user can use the drop down list to select an unfiltered list (all) or to filter by various device modes (online, offline, maint mode) and/or status (hardware failed, comm failed, with message, etc.) Device lists are shown in section 5.1.1.4 below.
5.1.1.3 Search Results

If the user clicks the Search button on the device maintenance home page, the results of the search are shown (see sample below).

[image: image33.png]Search Results - CHART - Windows Intemet Explorer.

&+ [Hrpicanosnsmmicnaieisn v 4| %] (Lo |28

Fle Edt View Favoites Took Hep

% & |[F5each Resuts -chanT : @ - [Page - Took =

.—=4 CHART Mobile
=

Back | Forward | Refresh | Home | Logout

Search Results

Searched for: 44
Search was not case sensitive

Highway Message Signs (DMS)
B s

US 50 AT MP 34.3 (BAY BRIDGE)

| Copy of 4403

1-70 WEST AT BALLENGER CREEK PIKE

" Copy of 44033

| Copy3 of 4403
US 50 AT MP 34.3 (BAY BRIDGE)

& e o -

Figure 5‑3 Search Results

The Search Results page shows all devices (and only devices) that matched the user’s search (case insensitive). The devices are organized by device type, and only an icon, device name, and device location are shown for each device. The icon indicates the device type as well as mode/status. Each device name is a link that when clicked causes the details page for that device to be shown. See information about the details page in section 5.1.1.5 below.
5.1.1.4 Device Lists

When the user chooses to view a device list (all or filtered), the list of devices is shown with an icon, device name, and location description for each. See the sample below for a filtered DMS list.

[image: image34.png]/_ Dynamic Message Signs - CHART - Windows Intemet Explorer

Fle Edt View Favortes Taok Help

% &0 | oymaric essage igns-CHART

—=4 CHART Mobile

EN admin

Back | Forward | Refresh | Home | Logout

Highway Message Signs (FILTERED - 2 of 25

shown)

Filters: Op Center Folders: RAVENSTOC folders view an

o JPeS)

US 50 AT MP 34.3 (BAY BRIDGE)
" 7701
1-70 EAST AT JEFFERSON PIKE

Back to Home Page

19 Cocaliiont

- RA00% -

Figure 5‑4 Device List

The page header indicates the type of devices that are listed. The number of devices in the list is shown, as well as the total number of devices available if the list is filtered. Any filters in use are shown (“RAVENSTOC folders” in the example above). If the list is filtered, a “View All” link will exist to allow the user to remove all filters and view all devices of the selected type. The name of each device is a link to its details page. Note that unlike the standard GUI, there is no link to Add a device via the maintenance GUI. Although the above example shows DMSs, the device lists for HARs, SHAZAMs, TSSs, and Cameras will operate in this same manner.

5.1.1.5 Device Details

The device details pages shown within the maintenance portal are customized versions of these pages that appear in the standard GUI. While the information shown will vary by device type, there are some common themes to device details pages shown within the maintenance portal:

· Information is left justified

· Action links are near the top of the page and mirror the action links that would be available had the user logged into the standard GUI, based on the device mode and the user’s rights, with the following exceptions:

· Action links will not include the ability to copy or remove a device, even if the device mode and user’s rights would normally allow those links to be displayed

· The Set Message action link for HARs will utilize a simplified version of the HAR message editor (see below)

· Information that is shown on the details page within the maintenance portal will match the same information shown on the details page within the standard GUI

· Some information normally shown on the page when displayed within the standard GUI will not be shown (applies only to DMSs and HARs as of this design, see below)

The DMS details page, as viewed within the maintenance portal is shown below as an example:

[image: image35.png]DMS: 4403 - CHART - Windows Intemnet Explorer L= [B)x)
[(CH Tk

W [ous-san-cr
=4 CHART Mobile

RAVENSTOC : admin
Back | Forward | Refresh | Home | Logout
DMS: 4403

uS 50 ATMP 34.4

Actions
Ve irviraton Qusue

Take Offing/ Pt n i e
colton

Message

Beacons Enabled: faize
Used

online
& Locaimanet w0 -

Figure 5‑5 Device Details Page
5.1.1.5.1 Maintenance GUI Details Page Data vs. Standard GUI Details Page Data

Most information available on the device details pages in the standard GUI is also available when the details page is accessed within the maintenance portal. The DMS details page has fields that are hidden when shown within the maintenance portal. The following fields are not shown on the DMS details page when viewed within the maintenance portal:

· MULTI text version of the current message

· Travel Time / Toll Rate messages

· Associated Travel Routes

· Travel Time Schedule

On the HAR details page, there is a section that shows the default clips stored on the HAR controller. In the standard GUI, that section can contain an Edit link to allow the user to edit the clip. In the maintenance portal, this link will not be shown (see below).

[image: image36.png]Clips stored in HAR

Edit only available in std GUI

3
Listen | Monior | Edt|

Run Time: 2.09 sec

stot Clip Type. clip
1 Audio
Listen | Monitor | Ed Run Time: 2.59 sec | 91
2 audio
Listen | Monitor | it | O%f2ut MeS320¢ |pun Time: 3,09 sec| def messaoe
Default Traler | AUSIS def railer

Figure 5‑6 Clips stored in HAR, Standard GUI (can have Edit link)

[image: image37.png]Clips stored in HAR

siot | usge | cipType | cip
lsten | ontor Dottt Header |18, 5 59 o defhesder
2, o 1 santer| ook Messooe | 888 Lt message
Raten 1 mantor Dotk Toter | RG99 e ot rder

Figure 5‑7 Clips stored in HAR, Maintenance portal (no edit links)

5.1.1.5.2 New Device Actions Added

New device actions are added as part of the maintenance GUI, one for the DMS device and one for the HAR device. These actions allow a user with the right to maintain the device to send a test message to the device with one click when the device is in maintenance mode. The usefulness of this command is such that these new actions are not limited to the maintenance GUI and will also be available within the standard GUI.

Both of these features operate by sending a canned message to the device. The canned message is defined in the system profile and includes the text to be used for the message. For a DMS, there is also an option to include flashing beacons when the message is displayed. The message will be formatted automatically to fit the DMS on which it is being used, and an error will be shown if the message cannot be made to fit on the DMS without truncation. For a HAR, the message text is converted to speech and the speech is used with the default header and trailer on the HAR to broadcast the test message.

5.1.1.6 HAR Editor

The HAR editor that will be provided within the maintenance GUI for setting the HAR message while the HAR is in maintenance mode will be a simplified editor, shown below.

[image: image38.png]CHART - Windows Internet Explorer

QO - Drsirtmasn v) x

R)
& & [Fowar I -
== CHART Mobile

(5l

Back | Forward | Refresh | Home | Logout

Set HAR Message
HAR: 401

Header

© Use Default Header

© Use Defaukt Traier

= W Locaranst o -

Figure 5‑8 Simplified HAR Editor

The editor allows the user to enter only the body of the HAR message, and only text is allowed (no recorded or uploaded voice). Radio buttons are used to make it clear to the user that the message body they specify will utilize the default header and default trailer to construct a complete HAR message. The Body text will default to test message configured for the HAR test message feature discussed above. The message is initially selected to allow the user to simply begin typing to replace the text with their own. If the user wishes to use the default message they can click the Submit button without entering any text.
5.1.1.7 Links to Non-Device Pages

Several pages within the scope of the maintenance GUI would normally contain links to other parts of the system if the same pages were displayed within the standard GUI. One example is the Controlling Operations Center shown on the DMS details page which is a link to the operations center report for the controlling center. Another example is the “used by” field for DMSs, which can contain links to traffic event details pages for traffic events that are using the DMS as part of their response plan. Links such as these will not be enabled within the maintenance GUI. Instead the information will appear as plain text and will not be a clickable link.

5.1.1.8 Pop-ups

Several pages within the scope of the maintenance GUI would normally be displayed as pop-up windows if displayed within the standard GUI. Examples include the DMS and HAR editors, and pages used to edit device configuration information. The maintenance GUI will not use pop up windows for most of these pages; most pages will be displayed within the main browser window. Popup windows that are used to allow the user to listen to audio will remain as pop-up windows within the maintenance GUI. The main reason for eliminating most popups is to more closely position the maintenance GUI for use on handheld devices in the future.

[image: image39.png]CHART - Windows Internet Explorer [S0)

@) - Evsiroatoston v]) %

Flo E8 Vew Fovotes Took Heb

=== CHART Mobile

RAVENSTOC : admin

Basic Settings For DMS: 4403

Name faa03
Has Beacons.
sion Type EEI
Owning Organization | SHA v
Enable Device Logging (]
Welght widtn
Display Size (chars) (chars)
) 2w
Max Pages 29
Character size x5 Veew

Default Line Justification |t ¥,

Default Page OnTime (25 ¥ sec

e TPy o

Figure 5‑9 Example of Pop-up Window Elimination
5.1.1.9 Logout

When the user logs out of the maintenance GUI using the Logout link, a check will be made to see if there are any devices in maintenance mode that are controlled by the user’s center. If there are, a warning will be shown to the user so they can set devices to online or offline mode if they have forgotten. An example of this warning is shown below:
[image: image40.png]CHART - Windows Internet Explorer 068

G0 - Trusimestossn 5] x

T €8 Veu Ftes Tods Heb
* & [Hown

Logout Warning

The following devices are in
maintenance mode and are controlled
by your center. Please make sure that
any devices you placed into
maintenance mode are

online or are taken of
appropriate.

Device Type Device
ons. 203

ows RihTesta
e s

& Locamvaret R0k -

Figure 5‑10 Logout Warning for Maint Mode Devices

Each device name is a link to its details page, where the user can change the device mode if desired. The “Logout Anyway” button allows the user to ignore the warning and log out of the maintenance portal.

NOTE: At this time, detectors are not “controlled devices” within CHART and do not have a controlling operations center in their status, and therefore will not appear on this warning page, even if they are in maintenance mode and were put in maintenance mode by the user’s operations center. The change to make detectors “controlled devices” is beyond the scope of the maintenance GUI feature.

5.1.2 Integrated Map

5.1.2.1 Home Page

In order to effectively incorporate a map component and dedicate as much screen space to the currently selected map view as possible the GUI home page has been modified as described in the sections that follow.

5.1.2.1.1 Home Page Navigation

The accordion control that was previously used to switch views on the home page has been replaced by a button bar (buttons just above the map on the screen below). As was done on the accordion control the events button shows the current count of open traffic events and the Alerts button is red if there are alerts in the new state. The Alerts button also shows a current alerts count. The user may click the buttons to change the current home page view. The view shown below is the Home Page Map view. Clicking the “Events” button would replace the map display with the familiar list of traffic events. Clicking the “Alerts” button would replace the map display with the familiar alerts list view. Clicking on the “Create Events” would replace the map display with the traffic event launcher view which has been modified for this release as described later in this section.

[image: image41.png]Comm Sourc Text
tos CIETREDNEE] I

Back | Forward | Refresh | Home | Center Rot | Comm. Log | Instant Messaqing | Paging | Intranet Map | Traffic Events | Help |

Events: 10 Map Create Events [Filtered: SOC Events
A

De Management S =5
v
I

Operations Centers
Folders
General

Links

e e

Figure 5‑11 Home Page Layout

5.1.2.1.2 Home Page Alerts Quick View

When the user hovers their mouse over the Alerts button the current home page view moves down and a component is inserted on the web page between the button bar and above the current view (as shown in the diagram below) to provide a quick view of the latest alert(s) received. This alerts view is removed from the page when the user moves their mouse off of the alerts button.

[image: image42.png]h | Home | Center Rpt | Comm. Log | Instant Messaging | Paging | Intranet Map | Traffic Events | Help | Logout

Events: 10 ered: SOC Events

B e oo

7

47 alerts in New state for this center.

SOC has one or more unhandled resources. (Created: 09/01/09 00:50)

Figure 5‑12 Home Page Alerts

5.1.2.2 Home Page Map

The home page map is a new view that the user can utilize to view devices and traffic events spatially. Figure 5-12 above shows a basic map view that is showing a set of markers that represent traffic events rendered over a map of the Capital Beltway and I-270 and I-95 corridors.

5.1.2.2.1 Map Navigation

Users may use the arrows to pan the map North, South, East or West. They may also pan the map by simply clicking their left mouse button anywhere on the map where there is not a marker and dragging the map. The map can be zoomed in or out using the bar at the left edge of the map with the +/- controls on it. Clicking the + control zooms the map in 1 level. Clicking the – control zooms the map out one level. Clicking a level “bar” on the control directly will zoom the map to the clicked level of detail. Users can also zoom in and out using their mouse wheel (if available). Additionally, the map supports rubber band zooming. To invoke this action a user holds the shift key on the keyboard while left clicking on the map at a location where there is no marker, then drags the mouse to draw a shaded rectangle over the area that they would like to zoom the map to as shown in figure 5-13 below. When the user releases the mouse the map pans and zooms such that it is centered on the highlighted area and zooms in until the highlighted area uses the entire map display (if that is not past the maximum zoom level supported by the map).

[image: image43.png]

Figure 5‑13 Rubber Band Zoom

5.1.2.2.2 Layer Visibility Control

Users may select the base map to use if more than one is available and may also choose the overlay layers that they would like shown on the map at any given time. The Layer Visibility Control is accessed using the Blue(+) control that is shown in the upper right hand corner of the map in figure 5-11 Home Page Map. Doing so displays the layer visibility control which shows a list of all available layers. Checkboxes are shown next to each layer to indicate which are currently visible. The user may un-check a checked layer to hide the objects on that layer. Traffic events are displayed on a separate layer per type, so that each type can be hidden/shown separate from the others and to ensure that incidents are not obscured by lower priority events such as safety events. They are also members of the “CHART Events” layer group. Un-checking the group will hide all traffic events in a single action. The layer visibility control can be collapsed by pressing the (-) control in the upper right hand corner when the user is finished setting layer visibility.
[image: image44.png]fase Layer
O cranr

@ ccrl
Overtzys

CHART Everts.
Safety Message Everts
festner Service Events
ctian Events
Special Events
arned Closures
Dissbled Vahicls Evarts
Congestion Everts
nciderts

Mileposts
Eats
Hlovs:

B Carerss

Figure 5‑14 Layer Visibility Control

5.1.2.3 Marker Interaction

Devices and Traffic Events are represented on the map using feature markers; Icons that represent the device or traffic event and provide some visual information about it. Figure 5-12 shows a Congestion type Traffic Event marker on I-270 (top left) and an Incident type Traffic Event on I-95 (top right).

5.1.2.3.1 Marker Tooltips

Figure 5-15 below shows a Camera device marker. The red rectangle with the camera name next to the marker is a tooltip. Tooltips are displayed when a user hovers his/her mouse over a marker on the map. In this case the tooltip shows the name of the Camera that the user is hovering over in order to better identify it.
[image: image45.png]

Figure 5‑15 Camera Marker With Tooltip
5.1.2.3.2 Marker Callouts

When a user wants to interact with a map marker he/she may left click on the marker to display a callout that contains HTML that contains further information about the device or traffic event. Figure 5-16 below shows a callout for a Traffic Event. In general callouts are shown caption-style and are anchored to the marker that they were created from. They provide a description of the device or traffic event as a link that, when clicked, opens the details page for the device or traffic event in the working window of the GUI. Each type of marker also displays status information that is specific to the type of device or traffic event clicked and may provide additional control links and/or graphics. Each type of callout supported is described in more detail in subsequent sections. While a callout is open it will remain anchored to the marker it represents. A user may close a callout at any time by clicking the red X in the upper right corner of the callout or by clicking on the marker again.

[image: image46.png]S e andhst PR R

95 AT AUTH RD [Colision, Personal Iniur

mlml 3/4 eastbound-3 left trafic lanes dosed
(Edit)

Figure 5‑16 Traffic Event Marker Callout

5.1.2.3.3 Multiple Markers

It is possible to have multiple markers at the same location, or near enough to one another that they overlay one another when the map is zoomed out sufficiently. When this happens the integrated map will show all objects under the current mouse position in the tooltip as shown in figure 5-17 below. In this case there is a Congestion Event and a Special Event defined at locations close enough together that the current map zoom level does not allow for seeing both markers. However, the tooltip shows the names of both markers at the location as the mouse hovers over.
[image: image47.png]

Figure 5‑17 Multiple Marker Tooltip

When the user clicks on a location that has multiple markers to invoke a callout, the map determines that there are multiple markers at the clicked location and displays a temporary callout to let the user select which of the markers they are attempting to click. Figure 5-18 below shows such a temporary callout. The user may click the link for the marker they want to select to invoke the callout for that marker.
[image: image48.png]& congestion Event

*Suema\ Event @ [-270 NORTH AT CLARKSBURG RD

wontec T B

70 AT CLARKSBURG RD

Figure 5‑18 Multiple Markers Callout

5.1.2.4 Home Page Map Toolbar

The home page map provides the user with the toolbar shown in diagram 5-19 to allow them to perform several additional functions. This toolbar is always visible at the left edge of the map display. The top two buttons are mutually exclusive and are used to determine which traffic events are displayed on the home page map. The top button (incident with globe behind it) shows all open traffic events regardless of the operations center that is currently controlling them. The second button (incident with house behind it) filters the map to show only the traffic events that are controlled by the operations center that the user is currently logged in at. The toolbar uses a green border to indicate which of these filter buttons is currently selected. To make the selection more obvious, the map also displays in red lettering the word “Filtered” followed by the name of the operations center that it is showing data for whenever the traffic events are filtered for the current operations center. This can be seen at the upper right of Figure 5-11 (to the right of the view selection button bar).

[image: image49.png]

Figure 5‑19 Home Page Map Toolbar

The third button down on the home page map toolbar allows the user to close all open marker callouts in a single action. The final (bottom) button on the home page map toolbar allows the user to refresh the map display without refreshing the entire home page. The map data is refreshed periodically on a timer basis. If the user believes that map markers or callouts are showing incorrect status information clicking this button will force the map to immediately get the latest data and update the markers and their callouts.

5.1.2.5 Nearby Devices Map

This section details the use of the nearby devices map that is included on the details page of each traffic event that has a defined location. Figure 5-20 below shows an example of a close devices map. The map cannot be panned or zoomed. Rather, the user uses the drop down list to specify how far away devices can be from this traffic event and still be considered “nearby”. The map is always zoomed to the appropriate level to show all devices within the specified radius. Markers, tooltips and callouts work exactly as they do on the home page map. The nearby devices map does not have the traffic event filter buttons on the map toolbar because it always shows only the target traffic event that nearby devices are being shown for. The “close all open callouts” and “refresh data” tools work exactly as described for the home page map. The layer visibility control also works exactly as described for the home page map.

[image: image50.png]Device(s) Within 10 ~ Miles (9) Hide

1DMSs selected: test14

Add ToResponse Clear Selections

Figure 5‑20 Nearby Devices Map

5.1.2.5.1 Traffic Event Response From Nearby Devices Map

Figure 4-9 above also shows that devices can be selected on the nearby devices map in order to add them to the response plan of the target traffic event. The user selects a device by holding the shift key down while left clicking on the device to select. When selected a device marker is drawn with a red transparent shading to indicate its selected status. Holding the control key down and clicking on a selected marker will set it back to the unselected state. The text below the map provides additional feedback regarding which devices are currently selected. Clicking the “Add to Response” link (at bottom of figure 5-20) will add the currently selected devices to the response plan of the target traffic event. Once added the devices are drawn using markers that include a green check (notice the DMS on the south side of the Capital Beltway in the figure above) to indicate that it is already part of the response plan for this traffic event. The “Clear Selections” link can be used to immediately set any selected devices back to the unselected state.
5.1.2.6 Device And Traffic Event Map Interaction

This section details the status data displayed and user interactions supported from the map callout for each device type and traffic events. The callouts described here are consistent regardless of whether the user is using the home page map or the nearby devices map.

5.1.2.6.1 Traffic Event Callout

As can be seen in Figure 5-21 below, traffic event markers are drawn with a red border if the traffic event that they represent currently has lane closures. When the user left clicks on this marker the callout for the traffic event is displayed. In the callout the user can see a graphical representation and textual description of the current lane closures. Clicking the “Edit” link provided will take the user directly to the roadway conditions section of the traffic event details page for this traffic event in their working window. There the user can modify the current lane closures. The graphic shown in the callout will be updated to reflect the modified lane states the next time the map data refreshes (either due to a background refresh or due to the user manually refreshing the data using the map refresh tool described earlier).
[image: image51.png]S e andhst PR R

95 AT AUTH RD [Colision, Personal Iniur

mlml 3/4 eastbound-3 left trafic lanes dosed
(Edit)

Figure 5‑21 Traffic Event Marker and Callout

5.1.2.6.2 DMS Callout

As can be seen in Figure 5-22 below, DMS markers are drawn with a green border if the DMS that they represent currently has an active message. When the user left clicks on this marker the callout for the DMS is displayed. In the callout the user can see a graphical representation of the current message. Below the DMS message the user can see a table of all traffic events that are using this DMS (i.e., contain the DMS in their response plan). Rows are shown using alternating colors to aid in visually separating the data. Each row contains a column that indicates if the message for that traffic event is currently active on the DMS (asterisk is shown if active), a description of the traffic event along with a “Details” link that will take the user to the details page for that traffic event in the working window, and Auto/Manual links that allow the user to edit and execute the response message for that traffic event on this DMS in the working window using either the Auto DMS Editor or the Manual DMS Editor. Execution means that the altered message will be put on the arbitration queue of this DMS, it does not necessarily mean that it will be displayed. The marker and message graphic will update the next time the map data is refreshed (either due to a background refresh or due to the user manually refreshing the data using the map refresh tool described earlier).
[image: image52.png]m.. S
e

[incident @ I-155 INNER LOOP AT FURNACE AVE [Collision,
lPersonal injun] (Details)

[Incident @ 1-655 BALTO BELTWAY AT HAMMONDS FERRY RD.

[Other] (Detsils

|auto/manual

|auto/maneal

Figure 5‑22 DMS Marker and Callout

5.1.2.6.3 HAR Callout

No screen capture is available for the HAR map callout because the feature was not prototyped due to its similarity to the DMS callout previously described. HAR markers are drawn with a green border if the HAR that they represent currently has an active message. When the user left clicks on this marker the callout for the HAR is displayed. In the callout the user can see a textual description of the current message. Below the HAR message the user can see a table of all traffic events that are using this HAR (i.e., contain the HAR in their response plan). Rows are shown using alternating colors to aid in visually separating the data. Each row contains a column that indicates if the message for that traffic event is currently active on the HAR (asterisk is shown if active), a description of the traffic event along with a “Details” link that will take the user to the details page for that traffic event in the working window, and “Edit” links that allow the user to edit and execute the message for that traffic event on this HAR in the working window using the HAR Editor. Execution means that the altered message will be put on the arbitration queue of this HAR, it does not necessarily mean that it will be included in the broadcast message. The marker and message description will update the next time the map data is refreshed (either due to a background refresh or due to the user manually refreshing the data using the map refresh tool described earlier).
5.1.2.6.4 SHAZAM Callout

No screen capture is available for the SHAZAM map callout because the feature was not prototyped due to its similarity to the DMS and HAR callouts described previously. SHAZAM markers are drawn with a green border if the SHAZAM that they represent currently has its beacons activated. When the user left clicks on this marker the callout for the SHAZAM is displayed. In the callout the user can see a textual description of the SHAZAM message and an indication if the beacons are currently active or not. The marker and beacons state are updated the next time the map data is refreshed (either due to a background refresh or due to the user manually refreshing the data using the map refresh tool described earlier).

5.1.2.6.5 Camera Callout

When the user left clicks on the marker of a camera that is not currently controlled the callout shown in figure 5-23 below is displayed. The table below the camera details link shows that the camera is not currently controlled. Clicking the request control link will open a camera control window for the user. The status table will update the next time the map data is refreshed (either due to a background refresh or due to the user manually refreshing the data using the map refresh tool described earlier).
[image: image53.png]S0 3955 Camera £ 153 IWIER LOOP/QUTER LoosE
/AT MD 25 (cohu 2]

\ Status Actions
Controlled By: N/A Request Control
Displayed On: None Display on Home / Local Monitor]

Figure 5‑23 Camera Callout

Once the callout has been refreshed it appear as shown in figure 5-24 below. The table below the camera details link shows that the camera currently controlled and provides the username and operations center of the currently controlling user. If the user is the current controller of the camera a “Release Control” link is provided. Clicking the release control link will release control of the camera. The status table will update the next time the map data is refreshed (either due to a background refresh or due to the user manually refreshing the data using the map refresh tool described earlier).
[image: image54.png]\

= Camers L3 pivER LoOP/OUTER oo AT
25 (cohu 2)

Status Actions
Controlled By: admin (SOC) Release Control
Displayed On: None Display on Home / Local Monitor|

Figure 5‑24 Controlled Camera and Callout

The camera callout also provides a table that lists the monitors that the camera is currently displayed on and links to allow the user to display it on additional monitors. Clicking on the “Home” monitor will display this camera on the users home monitor if one has been previously configured. Clicking the “Local” link will show the user a list of monitors in the local monitor group and allow them to display the camera on the local monitors that they select.

5.1.2.7 Traffic Event and Device Location Editing

This section describes the map and form that are used when setting the location of a traffic event or device. This can be done when creating a new traffic event using the Event Launcher on the Home Page, when editing the location of an existing traffic event or when editing the location of a device.

5.1.2.7.1 Event Launcher

Figure 5-25 below shows the Event Launcher component from the Home Page. The Event Launcher has been changed by adding a Map to the right of the location editing form. The map and form work together to provide the user with feedback as they set the location of the traffic event that they are creating. In order to help operators avoid creating duplicate traffic events the map on this page will show traffic events currently active near the selected location when the user is zoomed in.
[image: image55.png]

Figure 5‑25 Event Launcher

As was done in previous releases, the user may select an Alias from a list of previously defined aliases. This will fill in the location fields with the information stored for that alias. If the alias selected was created with a point location (latitude/longitude) then the map will also move to that location and a blue crosshairs will be displayed at the exact location that the traffic event will be created at. At any time during the process the user may double click anywhere on the map to change the point location that the traffic event will be created at. Doing so will move the crosshairs to the new location and may prompt the user if the new location is greater than a previously configured distance from the previous crosshairs position. This will be described more fully in a later section.

If the user is not using a location alias he or she may select a State and County from the lists provided. When the user selects a State, the map will pan and zoom to show the selected state at a high level if GIS data is available for the selected state. When the user selects a county, the map will pan and zoom in on that to show the full extent of that county if GIS data is available for the selected county. Once the user has selected a state and county he or she may select a route type and primary route where their event should be located. If the user would like to locate the traffic event using an exit, milepost or intersecting route along their specified primary route they may do so by selecting the intersecting feature type and providing the information about the intersecting feature. Intersecting routes are selected from a list of routes that intersect the primary route in the selected state and county. Once an intersecting route is selected, the map will pan and zoom to the location of the intersection and will place the crosshairs at the exact location where the traffic event will be created.

If the traffic event is located at an exit along the primary route the user may select “Exit” as the intersecting feature type as shown in figure 5-26 below. In this case the user is shown a list of exits on the specified primary route in the specified county. When the user selects an exit the map will pan and zoom to the location and place the crosshairs at the exact location where the traffic event will be created.

[image: image56.png]Alias:
state: [MD -
County: | Montgomary County
OR Region:
Route Type: [1 (Interstate) -
Route: [1:270
[] show tiame

Diraction: | North v

proximity: AT v

Feature Typs: [Exit v

Location Dese: | Exit 16 Fathar Hurley Blvd

Exit 22 Old Hundred Rd

Figure 5‑26 Intersecting Exit Locations

If the traffic event is located near an exit that is not included in the list, the user may enter a free-form text exit name as shown in figure 5-27 below.

[image: image57.png]Aliss:

State:

D v
County: | Montgomary County
OR Region:
Routs Type: [I (Interstate) v
Routs: 1270

] showniame.

AT v
Exit v
17 some rd

1-270 NORTH AT EXIT 17
'SoME RD

] Overrids Location Dasc.

Figure 5‑27 Intersecting Exit Free Form Text

If the traffic event is located at a milepost along the primary route the user may select “Milepost” as the intersecting feature type as shown in figure 5-28 below. In this case the user is allowed to type a freeform text milepost such as “4” or “4.2” and specify if it is a state or county milepost. When the user has finished entering the milepost text, the system will attempt to locate a milepost on the specified primary route in the specified county with the exact numeric value the user has entered. If one is found, the location of that milepost will be used. If one is not found, the system will locate the closest mileposts of the same type on the same route in both directions within a preconfigured tolerable distance. If mileposts are found on both sides of the specified milepost, the system will calculate the approximate location of the specified milepost and use that location. If a milepost location is determined the map will pan and zoom to the location and place the crosshairs at the exact location where the traffic event will be created.

[image: image58.png]Aliss:
Stater
County:

OR Region:
Route Type:

Routs:

Diraction:
Brosimity:
Fasture Typa:

Milepost (mi):

Latituda:

Longitude:

Location Dasc:

Edit Location: FSK

Baltimors County

1 (Interstate) v

ress

] showniame.

Tnner Loop. -

AT v
Milepost v
o

[County mp

3521572

es2se37

165 INNER LOOP AT MP 0

] Overrids Location Dasc.

1695 INNER LOOP ATMP 0
39215753, -76.529637
(User: admin)

Remeve Coordinates

wamgpont

Figure 5‑28 Intersecting Milepost Locations

As described previously, the user may double click on the map at any time during the object location process to specify a location. If the user does not have a primary route selected then the double click on the map simply sets the crosshairs at the clicked location and sets the form state and county selections to the state and county containing the point that was clicked (if that can be determined). If, however, the user has already selected a primary route the system is more cautious about resetting previously entered form data. This is because it is possible that the user has selected all of the information they intend to enter on the form, and their double click is intended only to “fine-tune” the location that will be used for the traffic event. Thus, when the user clicks on the map and a primary route has previously been selected the system checks to see if the newly clicked location is greater than a pre-configured distance from the previously established location. If it is not, then all form entries are left intact and only the crosshairs are moved. If the new location is too far away from the previously specified location the system will prompt the user to ask them if this represents a new location as shown in figure 5-29 below. If the user answers “Yes” their form entries will be lost and the form will be populated with the state, county and coordinates where the user clicked. If the user answers “No” the form entries will be left in place and only the crosshairs and coordinates will be updated.

[image: image59.png]Reset Location Fields?

"Yas' daars all location fislds
2nd fills in the county and state
using the new coordinates.

|| Mo’ sets ONLY the coordinatas,
leaving all other fields unchanged.

B

Figure 5‑29 Reset Location Fields Prompt

It can also happen that a user double clicks on a map location, and then uses the form fields to select the intersecting feature near the clicked location. Again the system attempts to determine if the form entries are simply more information about the clicked point. If the entries result in the selection of an intersecting feature whose location is within the configurable distance from the previously clicked point then the crosshairs are not moved. If the entries result in a point that is too far away from the previous point the system will prompt the user to ask them if the location of the intersecting feature should be used instead of the previously clicked location. This prompt is shown in figure 5-30 below.

[image: image60.png]Overwrite Coordinates?

Overurite your coordinates
vith coordinates returnad
from 3 lookug?

B

Figure 5‑30 Overwrite Coordinates Prompt

5.1.2.7.2 Edit Traffic Event Location

The same process described above for setting the location of a traffic event also applies when editing the location of an existing traffic event. The edit traffic event location form is shown below as figure 5-31. In this case when the edit location form is first displayed the fields will reflect the current location data for the traffic event and the crosshairs will be placed at the coordinates of the traffic event and the map will be panned and zoomed to that location.

[image: image61.png]Edit Location: Inciderit @ I-95 OUTER LOOP AT AUTH RD [Collision, Fatality]

New Name Incident @ 1-95 OUTER LOOP AT AUTH RD [Collision, Fatality]
New Location ~ 1-95 OUTER LOOP AT AUTH RD
W] QN

stata: M0 I~

County: | Prince George's Caunty

[
Route Type: | I (Interstate) v
——— N & o o ourerio0p araumro B

38.817835, -76.302345

Proximity: AT |
Festur=Typs: [Road v
Intersaction: AUTHRD

[¥] Showtiame

Location Desc: [1-95 OUTER LOOP AT AUTH
RO

[] Overrid Location Dasc.

SHEE

Figure 5‑31 Edit Traffic Event Location

5.1.2.7.3 Edit Device Location

The edit location map can also be used to edit the location of devices as shown in figure 5-32 below. When this form is first displayed it will reflect the current location settings for the device being edited.

[image: image62.png]Edit Location: NTCIP1

Figure 5‑32 Edit Device Location

5.1.2.7.4 New Device Location

Figure 5-33 shows the edit location map and form in use when creating a new device.

[image: image63.png]Edit Location:

Figure 5‑33 Edit Location of New Device

5.1.2.7.5 Details Page Map Links

Once a device or traffic event has a point location specified, the details page for that device will include a “Show on Map” link as shown in Figure 5-34 below. Clicking this link will change the user’s Home Page to display the Map view and will pan and zoom the Home Page Map to the device that was clicked. It will also open the callout for that device or traffic event if it is not already open.

[image: image64.png]Location: (Edit) (Show on Map)

Location Description 1-83 NORTH AT BEAVER DAM RD.

County Baltimore County

Region

State MARYLAND

Route Type Interstate

Route 183

Direction North

Point Along Roadway AT BEAVER DAM RD.
Lat/Long 39.482048° N, 76.66503° W

(Intersection data - GIS Lookup)

Figure 5‑34 DMS Details Actions

5.1.2.8 Location Aliases

This release of the CHART system also adds the ability to add, edit and remove location aliases. This section describes the User Interface components that are used to perform these functions.

5.1.2.8.1 Alias List

Figure 5-35 Shows the list of Location Aliases. This list is accessible in the Geographical Settings section of the System Profile. The list shows the internal and public names of the alias, a location description, the county the aliased location is in, the primary route and direction of the aliased location by default.

[image: image65.png]Location Aliases (3) i setcoums

Name Location Count Route

Pul Direction
~Any- v Any- v —Any- -

1-495 NORTH AT

495N at Clara 1-495 N at Clara
FeeT Pavely CLARABARTON Montgomery County ~ 1-495 Inner Loop/Outer Loop

1-270 N Bridge at Bridge at1-270 1-270 NORTH AT
e O o d | Montgomery County ~ 1-270 Inner Loop/Outer Loop
1-695 NORTH AT

HARBOR TUNNEL Baltimore County 1695 Inner Loop/Outer Loop
THRUWAY

Toll Booth near

Toll Bth at HTT oot e

Add Alias

Figure 5‑35 Location Alias List

The user may change which of those columns is displayed by clicking the “Set Columns” link and then selecting the list of columns that should be visible as shown in Figure 5-36.

[image: image66.png]Set coluns
S column pisplay
| Internal Name

ity
- | Public Name:
Location Description
¥ County County
y County Route

Direction
ounty

Figure 5‑36 Select Alias List Columns

When the selected list of columns is submitted, the alias list updates to show only those columns that the user wants to see. Once the columns are filtered the list page will have a link “Show Default Columns” that can be clicked to return to the default set of columns.

5.1.2.8.2 Add Location Alias

If the user clicks the “Add Alias” link on the location alias list page he/she will be taken to the add alias form shown in figure 5-37. An alias can be created by specifying an internal name, public name and a location that includes at least a primary route and direction.

[image: image67.png]Add Alias

General Alias Information

Internal Name FSK

Public Name | Francis Scott Key Bridge

Location (Edif)

Location Description 1-695 INNER LOOP AT MP 0.0
County Baltimore County

Region

State Maryland

Route Type Interstate

Route 1-695

Direction Tnner Loop

Point Along Roadway AT MP 0

Lat/Long 39.215753° N, 76.529637° W

(Operator - admin)

Figure 5‑37 Add Location Alias

The primary route and direction of an alias are set by clicking the “Edit” link at the top of the location section of this form. This invokes the location editing map for a location alias (figure 5-38). The location editing process works as described previously. When the location editing form is submitted the “Add Alias” form will update to show the new location values. The user may then submit the “Add Alias” form and the new alias will appear in the Alias List.

[image: image68.png]Aliss:
Stater
County:

OR Region:
Route Type:

Routs:

Diraction:
Brosimity:
Fasture Typa:

Milepost (mi):

Latituda:

Longitude:

Location Dasc:

Edit Location: FSK

Baltimors County

1 (Interstate) v

ress

] showniame.

Tnner Loop. -

AT v
Milepost v
o

[County mp

3521572

es2se37

165 INNER LOOP AT MP 0

] Overrids Location Dasc.

1695 INNER LOOP ATMP 0
39215753, -76.529637
(User: admin)

Remeve Coordinates

wamgpont

Figure 5‑38 Edit Alias Location

5.1.2.8.3 Location Alias Details Page

The location alias list page shows the internal name of each alias as a link. Clicking this link takes the user to the details page for the alias as shown in figure 5-39 below.

[image: image69.png]Alias: FSK / Francis Scott Key Bridge

1-695 INNER LOOP AT MP 0.0

Configuration Actions

Basic Configuration: (Edit) Remove Alias

Internal Name: FSK
Public Name: Francis Scott Key Bridge

Location: (Edit)
Location Description 1-695 INNER LOOP AT MP 0.0

County Baltimore County

Region

State Maryland

Route Type Interstate

Route 1-695

Direction Tnner Loop

Point Along Roadway AT MP 0

Lat/Long 39.215753° N, 76.529637° W

(Operator - admin)

Figure 5‑39 Location Alias Details

From the Location Alias details page the user can edit the internal and public name using the form shown in figure 5-40, edit the alias location as described previously or remove the alias.

[image: image70.png]Edit Basic Settings for Alias: FSK /|
Francis Scott Key Bridge

Internal Name FSK

Public Name Francis Scott Key Bridge

Figure 5‑40 Edit Location Alias Names

If the user chooses to remove the alias they are prompted for verification that they really want to remove it using the prompt shown in figure 5-41. If the user chooses “Yes” on this form the alias is removed and the user is returned to the location alias list. If the user chooses “No”, they are returned to the location alias list where they will see that the alias still exists.

[image: image71.png]Delete Alias

Use this form to remove an Alias from the system.

Are you sure you want to delete Alias 'FSK / Francis Scott
Key Bridge' from the system?

(g)

Figure 5‑41 Remove Location Alias

5.1.3 Video

CHART R5 enhances the existing video services with two new features. Administrators can configure multiple video sending devices for each camera in this release. Multiple sending devices eliminate the need to create multiple camera devices, to display images from a single camera in different formats. The other enhancement is the ability to enable and disable public flash video streams.
5.1.3.1 Add Video Source
Add camera will provide a links to add encoders, switches and flash steams. As a link is clicked a table will appear for the item being added. There are separate tables for each item type encoder, switch and flash video stream. As additional items are added they are added to an existing table. Each item will have boxes that allow the administrator to modify attributes of the encoder, switch or flash video stream. Each item will have a remove link that will allow the administrator to remove the item from the table.

[image: image72]
Figure 5‑42 Add Camera Page
5.1.3.2 Display Video Details

Configured video sending devices and flash video steam controls will appear on the video source detail page under the configuration section.

[image: image73]
Figure 5‑43 Camera Detail Page Configuration Section
5.1.3.3 Display Image

Displaying an image on a monitor will operate the same as in the exiting system. The system will make connections between video sources and video sinks by selecting a receiving device and sending device on the same fabric if possible. The sending device select will be from the video source’s configured sending devices. If the monitor’s receiving device is not on the same fabric as a sending device then the system will use a router to look for a bridge circuit that can provide the needed route. The system will select the shortest route possible when making the connection using the router.

5.1.3.4 Flash Video Control
Public flash video streams associated with a video source’s flash video steam control will be automatically disabled as Block to Public Monitors is executed. The user will simply click on the Block to Public Monitors link and all public flash video streams configured will be blocked along with the public monitors. Public flash video streams will be automatically enabled as Unblock to Public Monitors is executed.

[image: image74]
Figure 5‑44 Camera Details Page Status and Actions Section

5.1.3.5 Video Stream Control Command Status

The system will provide a command status for the flash video stream control during block executions.

[image: image75]
Figure 5‑45 Block Display to Public Command Status Page

5.1.3.6 Flash Video Stream Servers
Flash Video Stream Servers are servers external to CHART. They host the Flash Video Streams of CHART cameras. CHART R5 will connect to these servers to enable and disable the flash video streams. Flash Video Steams Servers available for use in the CHART system will be configured in the System Profile Video Settings Servers page.

[image: image76]
Figure 5‑44 System Profile Video Settings
5.1.3.7 Configure Flash Video Servers

Under Video Settings, clicking on the edit link beside Streaming Flash Server Configurations will reveal the Configure Streaming Flash Server Configurations. Adminstrators will be able to add Flash Video Stream Servers and specify their configurations. Each server configuration will have entry boxes for the server name, host/IP Address, Port and Password. Each configured server will have a link to remove the configured server.

[image: image77]
Figure 5‑45 Configure Flash Video Stream Servers
5.1.4 CHART Intranet Map
5.1.4.1 CHART Intranet Mapping GUI

The CHART Intranet Mapping GUI includes changes to the Locator, Legend and the Map frame.

5.1.4.1.1 Locate an Exit

A new Exits radio button is enabled in the Locator frame. To locate an exit, the operator will first check the exits radio button, and then select a county and a route. If the locator found the exit(s), it will populate the exit list in the exit drop down box. Operator can then select a particular exit from the drop down box and hit the locate button to locate the exit on the map.

[image: image242.png]

[image: image78.png]Locator
Route | Landmark | FITM | Signal | Coord.

O county e O state e O Route 1nt O Rosd
ot © Bas

Exit

Figure 5‑46 Exit Locator

[image: image79.png]Windows Intern

(= CHART Mapping lorer JJ|
O - e mlocshontssszicaneoetat s][] (] [uve searen [
Y & [@ cranT mepping [- resge - (FTeck - T

BE :

CHART Devic Other

Route | Landmark | FITM | Signal | Coord.

O county e O state e O Route 1nt O Rosd
ot © Bas

Active Toot: [H| zoomin

T e st oo

Figure 5‑47 Display Exit on Map

Once the system located the exit, the system will center the exit on the map with a bullseye indicator and display textual information about the exit. The textual information of the exit should include the primary route, the exit number, the exit route and exit street name if available.
5.1.4.1.2 Display 9-1-1 Emergency Medical Service (EMS)

A new 911 check box is enabled in the Legend under the Other category. To display the layer, operator will check the checkbox next to 911 and vice versa.

[image: image243.wmf]External

Consumers

HTTP

,

XML

CHART

Servers

Service Network

 Hansoc

 Firewall

CHART Exporter

SOC

RITIS

Future

Agencies

CORBA

MDOT

Network

SOC Subnet

HTTP

XML

UMD Listener DMZ

Firewall

UMD Listener DMZ Server

JMS

,

FTP

CORBA

,

FTP

HTTP

,

XML

CHART Map

[image: image244.png]Video Setiings

(COHU 3955 Firmware / DSP Status Packet Length Mapping view / edit

Defines the allowable COHU 3955 camera status packet lengths, based on firmware
version.

Streaming Flash Server Configurations view / edit
Defines the streaming flash server configurations.

[image: image245.png]Configure Streaming Flash Server Configurations

This list specifies streaming flash server configurations.

Name Host/IP Address Port Password
public 192168.1.88 9999 secret! Remove
public2 192168.155 8888 secret2 Remove

B
B
&

Save Changes

[image: image246.png]Command completed successfully.

Command: Block display of Harbor View' on public monitors.
Image Removal Status: None
None
Unaffected: None
Unknown: None

Not Applicable: None

No public video sinks displaying this camera
Rast to revoke public display of Harbor View queued.
Started

[image: image247.png]Status
Controlled By:

Operational Status:

Device Status: N/A
Monitor Status: N/A

Display Blocked To Public: NO
Display Blocked For Organizations: None
Control Blocked For Organizations: None

Actions
Put Online
Block Display To Public
Set Display Status to Failed
Set Control Status to OK
Edit Blocked Display Organizations
Edit Blocked Control Organizations

Copy
Remove Camera

[image: image248.png]

[image: image249.png]ur

=l comm

Togale Menu | Recent Events | Back | Forward | Refresh | Center Rot | Communications Log | Instant Messaaing | Home Page |
Paing | Map | Traffic Events | Help

Add Camera

Camera Mol
Name
Owning Organization

Sending Device(s)
Encoder(s) Add
1P Video Fabric TCP/1P Type Multicast
Host Host
192.168.155 ORETECMPEG4 | 224005
1P MPEG4 Fabric oc " Remove
P;ﬂl:l OiMPath MPEG2
Host
- . 192168144 OCORETECMPEG |[2240078
vfabric [v R
SIM-vja-impa [Opath emove
Switch(s) Add
Switch Input Port
SIMBHT Switch] Remove
SIMFMT Switch 2] Remove
Flash Stream(s) Add
Quick Pick P Addr/Host Port Password
public[v| 192.168.1.88 | [9999 | [testing Remove

[image: image80.png]_bvents _JNERN _Locator |
- Jirafiic
+- [JRoad Work
+-[JClosure Segments
+-Ovideo/Camera
[JCHART Devices
Oeors
Clother
 [Jiandmark

Figure 5‑48 911 in Legend

[image: image81.png]'SEVERN FIRE DEPARTMENT
Address: 7870 TELEGRAPH ROAD
City: SEVERN
‘County: ANNE ARUNDEL.
Phone number: 410-222-8204

‘Sorvices: AMBULANCE AND FIRE SERVICE
'°e%: COMBINED

Figure 5‑49 911 Tooltip

Once the layer is turned on, the map shall display the 911 layer as a red star icon on the map. A tooltip shall be displayed with the 911 information in this location, when an operator’s mouse hovers over the icon. The 911 information shall include the name of of the 911 service, phone number, address, city, county, and services provided in the tooltip.

5.1.4.1.3 Display State Police Barracks

A new State Police Barracks check box is enabled in the Legend under the Other category. To display the layer, operator will check the checkbox next to State Police Barracks and vice versa.

[image: image82.png]_bvents _JNERN _Locator |
- Jirafiic
+- [JRoad Work
+-[JClosure Segments
+-Ovideo/Camera
[JCHART Devices
Oeors
Clother
 [Jiandmark

Figure 5‑50 State Police Barracks in Legend

[image: image83.png]Maryland State Police, Barrack V - Berlin

9758 Ocean Gateway, Berlin, D
21811

Phone number: 410-641-3101

Figure 5‑51 State Police Barracks Tooltip

Once the layer is turn on, the map shall display the State Police Barracks layer as an olive green star icon on the map. A tooltip shall be displayed with the State Police Barrack information in this location, when an operator hovers over the icon. The State Police Barrack information shall include the name of of the Barrack, address, and phone number in the tooltip.

[image: image84.png]Maryland State Police - Windows Internet Explorer

Gi, - @ T

Live search

P g | paryind stae e

Counties Served:

Commander:

Maryland State Police
Barrack \/ - Berlin
9753 Ocean Gateway
Berlin, Maryland 21511
4106413101 enene) 410-641-3259 (o)
berlin@mdsp org

Driing Directions

Worcester

Lisuanant

@ e

Figure 5‑52 State Police Barracks Popup

Operator can also click on the State Police Barrack icon to bring up the State Police Barrack Web Site (if available) in that location.

5.1.4.1.4 Display Satellite Imagery via Web Map Service (WMS)

In addition to an exiting tile cached background map view, R5 will introduce a new view which displays the high resolution Satellite Imagery via Web Map Service (WMS) provided by MDOT. The available views are Street which displays the basemap, Satellite which displays Satellite Imagery without any transparency and Hybrid which displays both basemap and Satellite Imagery with default transparency set at 80%. User has the option to adjust the transparency level between 0 and 100 percent where 0% is equivalent to Street View and 100% is equivalent to Satellite View. To select view, user will first go to view under menu, from the menu drop down, go to view, and select the desire view.

[image: image85.png]CHART Mapping - Windows Internet Explorer,

)+ (] htpsifcalhost: 1953/ CHARTHapiDefaut aspx v][4][x 2l

K gt |@oetiemng [B - © @ - [heeoe - Grross -

Figure 5‑53 Select View
[image: image86.png](2 CHART Mapping - Windows Internet Explorer

K9) - [httpii1170.93.51.101/CHARTMap test) ™| [#2| [|Live search
& & [@awarvepong I BB - @B Qs

Road Work

@ inermet o -

Figure 5‑54 Hybrid View with Transparency Slide Bar

[image: image87.png]CHART Mapping - Windows Internet Explorer,

Go-

& hitp:fflocahost:1993/CHAR TMap/Def aul. aspx.

* & (@

CHART Mapping

Active Toot:] Zoomn

P

X1383208. 15735331474, Y:161556.44636355943

& ocanronet

H100% -

Figure 5‑55 Street View
5.2 System Interfaces

5.2.1 Class Diagrams

5.2.1.1 AliasManagement (Class Diagram)

This diagram shows the classes that are used in the CORBA system interface to notify interested consumers when an alias is added, removed or modified.

[image: image88.emf]ObjectLocation «typedef» AliasEventType«enumeration»AliasAddedEventInfo

«typedef»

AliasRemovedEventInfo

«typedef»

ObjectLocationAliasNameInfo ObjectLocationAliasInfo Added for R5Map

AliasUpdatedEventInfo

«typedef»

AliasAdded()AliasUpdated()

AliasRemoved()

ObjectLocationAliasInfo()

ObjectLocationAliasInfo(id:byte[],

 aliasNames:ObjectLocationAliasNameInfo,

 location:ObjectLocation)

id:byte[] aliasNames:ObjectLocationAliasNameInfo location:ObjectLocation id:Identifier

alias:ObjectLocationAliasInfo

internalName:String publicName:String id:Identifier

alias:ObjectLocationAliasInfo

locationDesc:string locationDescOverridden:string state:StateInfo county:CountyInfo

region:RegionInfo

optionalRoadwayLocation:RoadwayLocation[]

showRouteName:boolean

showIntRouteName:boolean

roadwayLocationAliasNameInfo:RoadwayLocationAliasNameInfo[]

optGeoLocationInfo:GeoLocationInfo[]

id:Identifier

Figure 5‑56 AliasManagement (Class Diagram)

5.2.1.1.1 AliasAddedEventInfo (Class)

This struct defines the data passed with an AliasAdded event.

5.2.1.1.2 AliasEventType (Class)

This enum defines the types of events that can be pushed on an AliasManagement event channel.

5.2.1.1.3 AliasRemovedEventInfo (Class)

This struct defines the data passed with an AliasRemoved event.

5.2.1.1.4 AliasUpdatedEventInfo (Class)

This struct defines the data passed with an AliasUpdated event.

5.2.1.1.5 ObjectLocation (Class)

This structure defines the location of CHART objects like devices and traffic events. StateInfo, CountyInfo, RegionInfo, RoadwayLocation, RoadwayLocationAliasNameInfo and GeoLocationInfo fields are optional.

5.2.1.1.6 ObjectLocationAliasInfo (Class)

This class represents information about an object location alias as defined in the IDL.

5.2.1.1.7 ObjectLocationAliasNameInfo (Class)
This class represents information about the names (internal and public) of an object location alias.
5.2.2 Sequence Diagrams

None
5.3 Camera Control Module

5.3.1 Class Diagrams

5.3.1.1 CameraControlModule (Class Diagram)

This diagram shows the classes with comprise the CameraControlModule. The CameraControlModule is an installable module that serves the camera-type objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions. The CameraControlModule is responsible for serving all VideoSource objects including controllable cameras, fixed cameras, No Video Available sources, and potentially any other image generators, etc. The COHU3955CameraImpl and the viconSVFTCameraImpl are the primary classes operating in this module. These objects provide all access to the camera status and configuration. The CameraControlModule also includes factory implementations responsible for providing lists of cameras and other such objects to interested clients.

[image: image89.emf]R5Modify createDummyCamera()for multiple video sending devices1R5Update functions for multiplesending devices:getSwitchFabricID()debugPrintConfig()CameraConfigValidationVideoProviderImpl R5Added VideoControlFlashConfig[] for flash video "Red Button" control support.111CameraControlModuleProperties111ControllableVideoCameraImpl1ViconSVFTCameraStatus 1ControllableVideoCamera«interface»*ControllableCameraFactoryImpl1VideoCameraFactory«interface»1PollCameraTaskCameraControlModuleCOHU3955CameraImpl11 RevokeDisplayCmd 1BlockToPublicCmd RevokeControlCmd 1111COHU3955CameraStatusViconSVFTCameraImpUniquelyIdentifiable«interface»PutCameraOnlineCmd11 111111 11111111111CameraCommandRequestCameraOverrideCmdTakeCameraOfflineCmd TerminateControlCmd VideoProviderStatus «datatype» 11 ControllableVideoCameraStatusVideoCameraStatus 11 111 1 1 CameraProtocolHdlrCOHUProtocolHdlrCameraControlComPort1111MoveToPresetCmdFullTourStatusUpdateFlag - says whether to push statusupdates for camera status updates for changes to theactive monitor list pertaining to tours only. Probably default to true unless that causes too much traffic.FullTourOpsLoggingFlag - same except for writing to OpsLog. Probably default to false unless we need it for troubleshooting a problem, as this would be a lot of excessOps Log entries.CameraControlDevice«interface»VideoCameraImplVideoCamera«interface»VideoSource«interface»VideoProvider«interface»CommEnabled«interface»VideoSourceStatus gets module props usingcreates11creates1CommandQueue QueueableCommand«interface»RequestCameraControlCmd DisplayImageCmdControllingInfo «datatype» 11ServiceApplicationModule«interface»ServiceApplication«interface»1CommandProcessor1ViconSVFTProtocolHdlr111ControllableVideoCameraConfigCOHU3955Camera«interface»VideoCameraConfig«datatype»11DBConnectionManager1java.util.Timer*CameraControlDB11 111PushEventSupplier1CheckForAbandonedCameraTask1Encoderjava.util.TimerTaskR5 Modify +validateCfg(byte[], VideoProviderConfig, VideoProviderConfig, CommandStatus, boolean[], VideoProviderStatus, boolean) for multiplesending devices.R5Modify these functions to accomadate mutipleVideoSendingDevices:getProviderConfigWithConnection()getSourceConfigWithConnection()setControllableCameraConfigWithConnection()setVideoProviderConfigWithConnection()deleteSwitchCameraWithConnection()VideoSourceConfigR5Changed m_sendingDeviceConfig and m_sendingDeviceID to Arrays Video Cameras can now have more than one VideoSendingDevice associated with them.1VideoProviderConfig1getID()getName()takeOffline(AccessToken, CommandStatus):voidputOnline(AccessToken, CommandStatus):voidputInMaintenanceMode(AccessToken, CommandStatus):voidgetCommMode() :CommunicationMode+getCameraInfoList() : VideoCameraInfo[]+getValidRegionList() : String[]+createCamera(byte[], VideoProviderConfig):void+getProviderInfoList() : VideoProviderInfo[]+getSourceInfoList() : VideoSourceInfo[]+getNoVideoAvailableSources() : VideoSource[]+getNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]+getOnlineNoVideoAvailableSources() : VideoSourceInfo[]+getOnlineNoVideoAvailableSourcesForFabric(switchFabricID) : VideoSourceInfo[]+getCameraInfoList() : VideoCameraInfo[]+getValidRegionList() : String[]+getControllableCameraInfoList() : ControllableVideoCameraInfo[]+getID() : Identifier+getName() : String+getResources() : SharedResource[]+getControlledResources(opCtrID) : SharedResource[]+hasControlledResources(opCtrID) : booleancheckForAbandonedCameraObjects()+checkForCameraTimeout()findOpCenterName(opCtrID) : String-getOpCenterNamesFromTrader()#getAllowSimulation() : booleangetLogFlags() : boolean[]getHostName() : StringgetCameraPushEventSupplier() : PushEventSuppliergetProperties() : CameraControlModulePropertiespollCameraObjects()shutdown() : boolean-addCameraTypesToTrader()-alarmIfNoLoggedInUsers(Identifier, String)-getControllingOpCenters() : Hashtable+doGetNoVideoAvailableSources(switchFabricID,boolean) : VideoSourceInfo[]-logProd(String, String)#logStackProd(String,String,Exception)-log(String, String, String)#logLockDone(String)#logLockRcvd(String)#logLockRqst(String)-opLog(token,String,int,String,String)#setSimulationFlag(String, String) : boolean-createDummyCamera()findVideoSink(Identifier) : VideoSinkfindMonitorGroup(Identifier) : MonitorGroup-getVideoSinkRefsFromTrader()-getMonitorGroupRefsFromTrader()-m_allowSimulation : boolean-m_providerImplVect : Vector-m_cameraImplVect : Vector-m_controllableImplVect : Vector-m_db : CameraControlDB-m_cameraPushEventSupplier : PushEventSupplier-m_cameraStatusLogFile : LogFile-m_hostName : String-m_idObj : Identifier-m_lockFactory : Object[]-m_logFlags : boolean[]-m_name : Stringm_opCenterNames : Hashtable-m_resMgmtPushEventSupplier : PushEventSupplier-m_sharedResMonInt : int-m_shutdown : boolean-m_svcApp : ServiceApplication-m_timeDownSecs : int-m_props : CameraControlModuleProperties-m_validRegions : String[]m_videoSinkRefs : Hashtablem_monitorGroupRefs : Hashtable+getProviderStatus():VideoProviderStatus+getProviderConfig(token):VideoProviderConfig+setProviderConfig(token,VideoProviderConfig)+removeProvider(token)+AddDisplay(token,MonitorDisplayInfo):void+removeDisplay(token,displayID)+m_componentType : VideoComponentType+m_name : String+m_networkConnectionSite : String+m_owningOrgID : byte[]+m_providerType : VideoProviderType+m_sendingDeviceConfig : VideoTransmissionDeviceConfig[]+m_sendingDeviceIDs : byte[][]+blockToPublic(token,block:boolean)+inhibitDisplay(token,hierarchyLevel:int)+revokeDisplay(token,orgs:VideoDisplayRevokedOrg[])+isRevokedFor(orgId:Identifier)+getSourceStatus():VideoSourceStatus+getSourceConfig(Identifier):VideoSourceConfig+setSourceConfig(Identifier,VideoSourceConfig)+setUserDisplayStatus(Identifier,boolean)+isNoVideoAvailable():boolean+isDisplayable(Identifier,VideoCollectorInfo,reason:string):boolean+isRemovable(VideoCollectorInfo,monitorGroupID[],reason:string):booleaninitialize(ServiceApplication app):booleangetVersion() : ComponentVersiontraderGroupUpdated() : voidshutdown(ServiceApplication app):booleanServiceApplication m_svcApp;DefaultServiceApplicationProperties m_props;+m_providerConfig:VideoProviderConfig+m_isNoVideoAvailableSource: boolean+m_streamingFlashConfig : VideoControlFlashConfig[]+m_sourceConfig:VideoSourceConfig+m_cameraNumber:int+m_deviceLocation:ObjectLocation+m_regions:string[]+m_tmddDeviceName:string+m_tmddCCTVImage:TmddCctvImageType+m_tmddControlType:TmddCameraControlType+m_tmddLocnExtHorizDatum:LRMSHorizontalDatumType+m_tmddLocnExtLRMSLatitude:int+m_tmddLocnExtLRMSLongitude:int+m_tmddLocnExtVertDatum:LRMSVerticalDatumType+m_tmddLocnExtLRMSHeight:int+m_tmddLocnExtVertLevel:int+m_tmddRequestCommands:int+isControllable():boolean+getCameraStatus():VideoCameraStatus+getCameraConfig(token):VideoCameraConfig+setCameraConfig(token,VideoCameraConfig)+getAllowSimulation() : boolean+getSimulatedCommsSuccessRate() : int+getLogFlags() : String+getPollTimerDelayMillis() : int+getRecoveryTimerDelaySecs() : int+getSharedResMonInt() : int+getCameraControlResponseTimeOutMilli() : int+getCameraControlSessionTimeOutSecs() : int+getLastNStateChangeMarginalDenominator() : int+getLastNStateChangeMarginalNumerator() : int+getRecentStateChangeCount() : int+getRecentStateChangeTimeSecs() : int+getCOHU3955ValidTitleCharacters() : String-m_props : Properties-m_defaults : Propertiesschedule() : voidcancel() : void+requestControl(token,info:ControllingInfo,cmdStat:CommandStatus)+requestOverride(token,info:ControllingInfo,cmdStat:CommandStatus)+terminateControl(token)+isControlled():boolean+inhibitControl(token,hierarchyLevel:int)+adjpan(token, direction:int)+adjTilt(token, direction:int)+adjZoom(token, direction:int)+adjFocus(token, where:int)+adjIris(token, direction:int)+setAutoIris(token, boolean)+setActiveTitle(token,title,lineNum:in,cmdStat:CommandStatust)+resetCamera(token)+poll(token)+initialize(ServiceApplication) : boolean+shutdown(ServiceApplication) : boolean-createEventChannel(String) : PushEventSupplier-createCameraFactory(int) : boolean-addCameraFactoryTypesToTrader() : void+getVersion() : ComponentVersion-m_svcApp : ServiceApplication-m_db : CameraControlDB-m_cameraEventSupplier : PushEventSupplier-m_resMgmtEventSupplier : PushEventSupplier-m_cameraFactory : CameraFactoryImpl-m_props : CameraControlModuleProperties-m_timer : Timer
+validateCfg(byte[], COHU3955CameraConfig, COHU3955CameraConfig, CommandStatus, boolean[], VideoProviderStatus, boolean)+validateCfg(byte[], ControllableVideoCameraConfig, ControllableVideoCameraConfig, CommandStatus, boolean[], VideoProviderStatus, boolean)+validateCfg(byte[], ViconSVFTCameraConfig, ViconSVFTCameraConfig, CommandStatus, boolean[], VideoProviderStatus, boolean)+validateCfg(byte[], VideoCameraConfig, VideoCameraConfig, CommandStatus, boolean[], VideoProviderStatus, boolean)+validateCfg(byte[], VideoProviderConfig, VideoProviderConfig, CommandStatus, boolean[], VideoProviderStatus, boolean)+validateCfg(byte[], VideoSourceConfig, VideoSourceConfig, CommandStatus, boolean[], VideoProviderStatus, boolean)#logLockDone(String)#logLockRcvd(String)#logLockRqst(String)+CheckForAbandonedCameraTask (ControllableCameraFactoryImpl)+run()-m_controllableCameraFact: ControllableCameraFactoryImplrun()+deleteCamera(Identifier):void+deleteCameraWithConnection(Identifier, Connection): boolean-getCameraConfig(Identifier): CameraConfig;-getCameraList(): VideoProviderImpl[];-getCameraStatus(Identifier): CameraStatus;-getCOHU3955CameraConfig(Identifier): COHU3955CameraConfig;-getCOHU3955CameraStatus(Identifier):COHU3955CameraStatus;-getControllableCameraConfig(Identifier): ControllableVideoCameraConfig;-getControllableCameraPreset(Identifier, int):ControllableVideoCameraPreset-getControllableCameraPresetList(Identifier): CameraPreset[];-getControllableCameraStatus(Identifier): ControllableVideoCameraStatus;-getDeviceConfig(Identifier)VideoTransmissionDeviceConfig;()-getDeviceStatus(Identifier): VideoTransmissionDeviceStatus;-getProviderConfig(Identifier): VideoProviderConfig;-getProviderStatus(Identifier): VideoProviderStatus;-getRegionList(): String[];-getSourceConfig(Identifier):VideoSourceConfig;-getSourceStatus(Identifier): CideoSourceStatus;-getViconSVFTCameraConfig(Identifier): ViconSVFTCameraConfig;+insertCohu3955Camera(Identifier,COHU3955CameraConfig): COHU3955CameraImpl;+insertViconSVFTCamera(Identifier, ViconSVFTCameraConfig): ViconSVFTCameraImpl;+insertVideoCamera(Identifier, VideoCameraConfig):VideoCameraImpl;+insertVideoSourceCamera(Identifier, VideoSourceConfig): VideoCameraImpl;setCameraData (Identifier, CameraData)void;()setCameraStatus(Identifier, VideoCameraStatus)void;()setCOHU3955CameraConfig(Identifier, COHU3955CameraConfig)void;()setCOHU3955CameraConfigWithConnection(Identifier, COHU3955CameraConfig, Connection)void;()setCOHU3955CameraStatus(Identifier, COHU3955CameraStatus)void;()setControllableCameraConfig(Identifier, ControllableVideoCameraConfig)void;()setControllableCameraConfigWithConnection(Identifier, ControllableVideoCameraConfig, Connection)void;()setControllableCameraPreset(Identifier, ControllableVideoCameraPreset)void;()setControllableCameraStatus(Identifier, ControllableVideoCameraStatus)void;()setFactoryImpl(ControllableCameraFactoryImpl)void;()setRevoke(Identifier, VideoSourceStatus)void;()setRevokeWithConnection(Identifier, VideoSourceStatus, Connection)void;()setSourceStatus(Identifier, VideoSourceStatus)void;()setViconSVFTCameraConfig(Identifier, ViconSVFTCameraConfig)void;()setViconSVFTCameraConfigWithConnection(Identifier, ViconSVFTCameraConfig,Connection)void;()setViconSVFTCameraStatus(Identifier, ViconSVFTCameraStatus)void;()setVideoCameraConfig(Identifier, VideoCameraConfig)void;()setVideoCameraConfigWithConnection(Identifier, VideoCameraConfig, Connection)void;()setVideoProviderConfig(Identifier, VideoProviderConfig)void;()setVideoProviderConfigWithConnection(Identifier, VideoProviderConfig, Connection)void;()setVideoProviderStatus(Identifier, VideoProviderStatus)void;()-m_dbConnMgr : DBConnectionManager2-m_cameraFactoryImpl : ControllableCameraFactoryImpl-m_cameraPushEventSupplier : PushEventSupplier-m_networkConnectionSite : String-m_svcApp : ServiceApplication+blockToPublic(byte[], ExtendedCommandStatus):void+blockToPublicImpl(ExtendedCommandStatus):ImageRemovalResult+clearTimers():void+getCameraConfig(token):VideoCameraConfig+getCameraStatus():VideoCameraStatus+getControllingOpCenter():OpCenterInfo+getLocationDesc():string+getLocationProfiles():LocationProfiles[]+getOwningOrgID():Identifier+getSourceConfig(Identifier):VideoSourceConfig+getSourceStatus():VideoSourceStatus+isControllable():boolean+isDisplayable(token,VideoCollectorInfo,string):boolean+isNoVideoAvailable():boolean+isRemovable(VideoCollectorInfo,monitorGroupID[],string)#pushStatus(desc,warnTxt):boolean#persistData(desc,warnTxt):boolean#persistStatus(desc,warnTxt):boolean+revokeDisplayImpl(byte[][], ExtendedCommandStatus):ImageRemovalResult+setCameraConfig(token,VideoCameraConfig)+setLocation(token:byte[], location:ObjectLocation):void+setControllingOpCenter(token,OpCenterInfo)+setRevokeDisplayOrgs(byte[], byte[][], ExtendedCommandStatus):void+setSourceConfig(token,VideoSourceConfig)+setUserDisplayStatus(token,boolean)+remove(token)+unblockToPublic(byte[]):void-checkControllingOpCenterName()+clearDeviceForOfflineMode(token,CommandStatus)createPOATie():ServantdebugPrintConfig(String,String,VideoSourceConfig)debugPrintConfig(String,String,VideoCameraConfig)debugPrintData(String,String,CameraData)debugPrintStatus(String,String,VideoSourceStatus)debugPrintStatus(String,String,VideoCameraStatus)getServiceTypeName():StringgetProviderType():VideoProviderType#initDefaultCameraData():CameraData#initDefaultCameraStatus():VideoCameraStatus#initDefaultSourceStatus():VideoSourceStatusisNoVideoAvailableSource():boolean-enablePublicFlashVideo()-disablePublicFlashVideo()#m_sourceConfig:VideoSourceConfig#m_cameraConfig:VideoCameraConfig#m_sourceStatus:VideoSourceStatus#m_cameraStatus:VideoCameraStatus#m_cameraData:CameraDatam_displayTimer:Timerm_displayTimerRunning:boolean-m_isVideoSourceOnly:booleanm_publicTimer:Timerm_publicTimerRunning:booleanm_revokeDisplayTask:RevokeDisplayTaskm_revokePublicTask:RevokePublicTask+getConnection() : java.sql.Connection+getCurrentOpenCursors() : int+releaseConnection() : void+shutdown() : void+verifyDBInitialized() : boolean+m_cameraConfig:VideoCameraConfig+m_maxNumPresets:int+m_presets:CameraPreset[]+m_defaultPresetNum:intt+m_skedMoveToDefaultPresetTime:long+m_maxControlIdleTimeMins+m_pollEnabled:boolean+m_pollIntervalControlledSecs+m_pollIntervalUncontrolledSecs+m_lockOnManualIFocus:boolean+m_lockOnManualIris:boolean+m_lockOnManualColor:boolean+m_lowestControlHierarchyLevel:int+m_defaultCameraTitle+run()+PollCameraTask(ControllableCameraFactoryImpl)-m_controllableCameraFact : ControllableCameraFactoryImpl+addConnectedCollector(byte[], byte[]) +debugPrintColMonInfo(String, String) +debugPrintConfig(String, String, VideoProviderConfig) +debugPrintStatus(String, String, VideoProviderStatus) +getCommMode() +getProviderName() +shutdown()#clearConnectedCollectors(String) #clearConnectedCollectorsIfNec() #clearDeviceForOfflineMode(byte[], CommandStatus) #clearDisplays(String) #cmdStatusFailure(CommandStatus, String) #cmdStatusFailureMaybe(CommandStatus, String, boolean) #cmdStatusSuccess(CommandStatus, String) #cmdStatusSuccessMaybe(CommandStatus, String, boolean) #cmdStatusUpdate(CommandStatus, String) #equalCommMode(CommunicationMode) #findOpCenterName(byte[]) #findVideoSink(Identifier) #getAllowSimulation() #getOpStatus() #getProviderConfig() #getProviderType() #getSimulationFlag(String, String) getSvcApp()#initializeLogFlags(String) #isSimulated() #log(String, String, String) #logLockDone(String) #logLockRcvd(String) #logLockRqst(String) #logProd(String, String) #logStackProd(String, String, Exception) #moveToDefaultPresetIfPossible() #opLog(byte[], String, int, String, String) #persistAndPushStatus(String, StringBuffer) #persistStatus(String, StringBuffer) #pushStatus(String, StringBuffer) #setOpStatus(OperationalStatus) #sleep(int)#terminateControlIfNecessary() #verifyAccess(byte[], int, String, String, CommandStatus) #verifyAccess(byte[], int[], String, String, CommandStatus) #verifyCommMode(CommunicationMode, String, CommandStatus) #verifyNoResourceConflict(byte[], String, CommandStatus) -cmdStatusCompleted(CommandStatus, String, boolean) -commModeToString(CommunicationMode) -convertIDToVideoSink(byte[]) -opStatusToString(OperationalStatus) -updateMonitorStatusChangeTime() -verifyCommMode(CommunicationMode, String, CommandStatus, boolean) -m_dateFmtYYYYMMDDHHMMSS : SimpleDateFormat -m_networkConnectionSite : String #m_cmdQueue : CommandQueue #m_createLogFlag : String #m_factory : ControllableCameraFactoryImpl #m_lockConfig : Object[] #m_lockName : Object[] #m_lockStatus : Object[] #m_logFlags : boolean[] #m_proConfig : VideoProviderConfig #m_providerConfig : VideoProviderConfig #m_providerStatus : VideoProviderStatus #m_pushEventSupplier : PushEventSupplier #m_svcApp : ServiceApplication #m_systemRight : FunctionalRightTyp #m_systemToken : byte[] -m_any : Any -m_collectorIDSet : HashSet -m_idObj : Identifier -m_mdiSet : HashSet -m_simulateComms : boolean -m_simulationAllowed : boolean $SIMULATE_CAMERA_COMMS_KEYWORD : String #pushStatus(String, StringBuffer)#persistStatus(String, StringBuffer)+adjFocus(byte[], int)+adjIris(token, int)+adjPan(token, int)+adjTilt(token, int)+adjZoom(token, int)+clearTimers():void+getControllableCameraConfig(token):ControllableVideoCameraConfig+getControllableCameraStatus():ControllableVideoCameraStatus+isControllable():boolean+moveToPreset(token,short,boolean)+pollCamera(token, boolean):boolean+remove(token)+requestControl(token,boolean,ControllingInfo,CommandStatus)+resetCamera(token)+revokeControlmpl(byte[][], CommandStatus):boolean+savePreset(token,short,String)+setActiveTitle(token,String,short,CommandStatus)+setAutoIris(token,boolean)+setControllableCameraConfig(token, ControllableVideoCameraConfig)+setRevokeControlOrgs(byte[], byte[][], CommandStatus):void+setUserControlStatus(token, boolean)+terminateControl(token, CommandStatus)+clearDeviceForOfflineMode(token, CommandStatus)+isRemovable(VideoCollectorInfo,monitorGroupID[],StringHolder):boolean+isControlled():boolean#isControlledBy(token)#terminateControlImpl(token,CommandStatus)debugPrintConfig(String,String,ControllableVideoCameraConfig)debugPrintStatus(String, String, ControllableVideoCameraStatus)#getControllableCameraConfig():ControllableVideoCameraConfig#verifyController(byte[], CommandStatus)+requestCameraControlImpl(token,CommandStatus,ControllingInfo)#isDisplayedLocally(ControllingInfo,token):int#checkControllable(token,CommandStatus int)#hasCommandRunning()+requestCameraOverrideImpl(byte[], CommandStatus, ControllingInfo)#stopCameraIfNecessary(String)pollIfNecessary()#verifyCommModeNotOffline(String, CommandStatus)-setPollInProgress(boolean)#updateCameraTitle(int, String)-updateLastAttemptedPollTime()-updateLastCommandTime()#updateLastContactTime()-updateLastSuccessfulPollTime()#handleOpStatus(OperationalStatus,boolean,CommandStatus, String,boolean,boolean):boolean#updateCmdTimeSecs()#convertToOperationalStatus(CameraOperationalStatus):OperationalStatus#refreshMonitorList()+populateValidTitleCharacters(String)+isTitleValid(String):boolean+getValidTitleChars():String#m_controllableConfig:ControllableVideoCameraConfig#m_controllableStatus:ControllableVideoCameraStatus#m_maxTitleLength:int#m_maxTitleLineNum:int#m_protocolHandler:CameraProtocolHdlr#m_lockOperation:Object[]m_controlTimer:Timerm_controlTimerRunning:booleanm_lastHardOpStatus:OperationalStatus-m_lastNPossibleStateChanges : LinkedListm_numActualStateChanges:intm_numPossibleStateChanges:intm_simulatedCommsSuccessRate:int-m_recentStateChanges:LinkedListm_recentStateChangeCnt:intm_recentStateChangeTimeSecs:intm_revokeControlTask:RevokeControlTask-m_pollInProgress:boolean#m_validCOHU3955Characters:Hashtable+m_header:byte []+m_headerResponse:byte[]+m_command:byte[]+m_commandResponse:byte[]+m_expectedLength:int+m_commandType:int+initialize():boolean+connect():boolean+disconnect():boolean+shutdown():boolean+send(byteMessage:byte []):byte []+send(messages:ArrayList, id:token):boolean+receive(byte [], int):void+receive(data:ArrayList, length:ArrayList, id:token)+getActualBytesRead():int+setConfiguration(COHU3955CameraConfig) :boolean+initialize():boolean+connect():boolean+disconnect():boolean+shutdown():boolean+setCameraId():void+setCameraName():void+getInitialCommands()m_cameraId:intm_cameraName:String+m_cameraStatus:VideoCameraStatus+m_controlled:boolean+m_controllingUserInfo:ControllingUserInfo+m_actionState:CameraActionState+m_inAutoFocusMode:boolean+m_inAutoIrisMode:boolean+m_currentTitle:string+m_lastControlCmdTimeSecs:long+m_userControlStatus:boolean+m_atPreset:CameraPreset+m_controlInhibitLevel:int+adjPan(direction:int):CameraOperationalStatus+adjTilt(direction:int):CameraOperationalStatus+adjZoom(direction:int):CameraOperationalStatus+adjFocus(where:int):CameraOperationalStatus+adjIris(boolean):CameraOperationalStatus+adjBlue(direction:int):CameraOperationalStatus+adjRead(direction:int):CameraOperationalStatus+setAutoIris(boolean):CameraOperationalStatus+setAutoFocus(boolean):CameraOperationalStatus+setAutoColor(boolean):CameraOperationalStatus+setLensFast(boolean):CameraOperationalStatus+resetCamera():CameraOperationalStatus+setActiveTitle(title, lineNum):CameraOperationalStatus+poll():CameraOperationalStatus#buildCommand():byte[]#getReturnedStatus(byte[]:cameraStatus)+miscCommand(string, int):CameraOperationalStatus-receiveACKorNAKStatus():CameraOperationalStatus#sendACK(byte)-sendCommandForData():CameraOperationalStatus#sendMessage(byte[]):CameraOperationalStatus+adjRed(token,direction:int)+adjBlue(token,direction:int)+setAutoColor(token,boolean)+setLensFast(token,boolean)+setPowerOn(token,boolean)+adjPan(token, direction:int)+setAutoFocus(token,boolean)+getCOHU3955CameraStatus() :COHU3955CameraStatus+getCOHU3955CameraConfig(Identifier) :COHU3955CameraConfig+setCOHU3955CameraConfig(Identifier, COHU3955CameraConfig)+addCommand(CommandTransaction)+dequeue()+executeCommand()+receive(Identifier)+receiveResponse(byte[])+run()+sendCommandToComPort(CameraCommand)+stopThread()m_commands : Listm_comport : CameraControlComPortm_comportName : Stringm_enableDeviceLogging : booleanm_lock : Objectm_responseLock : Objectm_responses : Hashtablem_simulated : booleanm_stopThread : boolean-m_cohu3955Config:COHU3955CameraConfig-m_cohu3955Status:COHU3955CameraStatus+m_sourceStatus:VideoSourceStatus execute()interrupted()+adjPan(direction:int):CameraOperationalStatus+adjTilt(direction:int):CameraOperationalStatus+adjZoom(direction:int):CameraOperationalStatus+adjFocus(where:int):CameraOperationalStatus+adjIris(boolean):CameraOperationalStatus+setAutoIris(boolean):CameraOperationalStatus+setActiveTitle(string title, int lineNum):CameraOperationalStatus+poll():CameraOperationalStatus+setAutoFocus(boolean):CameraOperationalStatus+setAutoColor(boolean):CameraOperationalStatus+setLensFast(boolean):CameraOperationalStatus+setAutoIris(boolean):CameraOperationalStatus+resetCamera():CameraOperationalStatus+setPosition(Command, Value):int+getPosition():Position+moveToPosition(Preset):int+savePreset(number):int+execute()+interrupted()-m_cVideoSinkImpl : VideoSinkImpl-m_cmdStat : CommandStatus-m_videoProviderInfoSrc : VideoProviderInfo-m_bTour : boolean-m_token : token+m_providerStatus:VideoProviderStatus +m_maintModeUserName:string +m_blockedToPublic:boolean +m_userDisplayStatus:boolean +m_revokedDisplayOrgID[] +m_siteName:string +m_site:Site+m_siteHierarchyLevel:int +m_workstationName:string +m_workstation:Workstation +m_userName:string -m_requesterToken:Token-m_cmdStat:CommandStatus-m_source:VideoCameraImpl-m_presetNum:int+execute()+interrupted()-m_camera : ControllableVideoCameraImpl-m_cmdStat : CommandStatus-m_token : token-m_info : ControllingInfo+m_controllableStatus:ControllableVideoCameraStatus+m_inAutoColorMode:boolean+m_powerOn:boolean+m_lensSpeedFast:boolean+m_currentTitle2:string+execute()+interrupted() -m_camera : ControllableVideoCameraImpl -m_cmdStat:CommandStatus -m_token : token -m_info : ControllingInfo +adjBlue(byte[],int):void+adjMenuHorizontally(byte[],int):void+adjMenuVertically(byte[],int):void+adjRed(byte[],int):void+getValidTitleChars():String+getViconSVFTCameraConfig(byte[]):ViconSVFTCameraConfig+getViconSVFTCameraStatus():ViconSVFTCameraStatus#persistStatus(String,StringBuffer):boolean#pushStatus(String,StringBuffer):boolean+remove(byte[]):void+setAutoColor(byte[],boolean):void+setAux(byte[],short):void+setLensSpeed(byte[],short);void()+setProgrammingMode(byte[],boolean):void+setViconSVFTCameraConfig(byte,ViconSVFTCamerConfig):voidupdateCameraTitle(int,String):void-verifyCommMode(CommunicationMode,String,CommandStatus,boolean):void+m_commMode:CommunicationMode +m_opStatus:OperationalStatus +m_controllingOpCenter:OpCenterInfo +m_monitorInfo:MonitorDisplayInfo +m_deviceStatusChangeTimeSecs:int +m_monitorStatusChangeTimeSecs:int +execute()+interrupted() -m_camera:ControllableVideoCameraImpl -m_cmdStat:CommandStatus -m_token:Token +execute()+interrupted() -m_provider : VideoProviderImpl -m_cmdStat : CommandStatus -m_token : token +execute()+interrupted() -m_camera : ControllableVideoCameraImpl -m_cmdStat : CommandStatus -m_token : token +execute()+interrupted() -m_camera : VideoCameraImpl -m_cmdStat : CommandStatus -m_token : token -m_orgID : revokedOrgID +execute()+interrupted() -m_camera : ControllableVideoCameraImpl -m_cmdStat : CommandStatus -m_token : token -m_orgID : revokedOrgID +execute()+interrupted() -m_camera : VideoCameraImpl -m_cmdStat : CommandStatus -m_token : token

Figure 5‑57 CameraControlModule (Class Diagram)

5.3.1.1.1 BlockToPublicCmd (Class)

This class represents the information needed to create a block camera to public command to be added on the CommandQueue.

5.3.1.1.2 CameraCommand (Class)

CameraCommand contains information about the commands sent to, and responses received from, the camera.

5.3.1.1.3 CameraConfigValidation (Class)
This class validates camera configuration data for any type of camera (Video Source, (Fixed) Video Camera, COHU3955, SVFT).

5.3.1.1.4 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port with direct connection to the control port of a video camera. It is used to send video camera control commands and return responses to a camera control process.

5.3.1.1.5 CameraControlDB (Class)

The CameraControlDB class provides an interface between the Camera service and the database used to persist and depersist the Camera objects and their configuration and status in the database. It contains a collection of methods that perform database operations on tables pertinent to Camera Control. The class is constructed with a DBConnectionManager object, which manages database connections. Methods exist to insert and delete Camera objects from the database, and to get and set their configuration and status information.

5.3.1.1.6 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides communications for access to control functions for a video camera. This includes encoders, command processors, and direct COM ports.

5.3.1.1.7 CameraControlModule (Class)

The CameraControlModule class is the service module for the Camera devices and a Camera factory. It implements the ServiceApplicationModule interface. It creates and serves a single CameraFactoryImpl object, which in turn serves zero or more CameraImpl objects. It also creates CameraControlDB, CameraControlModuleProperties, and PushEventSupplier objects.

5.3.1.1.8 CameraControlModuleProperties (Class)

The CameraControlModuleProperties class is used to provide access to properties used by the Camera Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Camera Control Module.

5.3.1.1.9 CameraProtocolHdlr (Class)

CameraProtocolHdlr classes provide implementations for all the camera commands. Each CameraImpl class will have a CameraProtocolHdlr instantiated when initialized. When a camera control command is sent to the CameraImpl, CameraProtocolHdlr will be called to translate the command to byte messages which the camera understands. Then those messages are sent by the CameraControlDevice to the camera. CameraProtocolHdlr is capable of using different CameraControlDevice which is created during the initialization.

5.3.1.1.10 CheckForAbandonedCameraTask (Class)

The CheckForAbandonedCameraTask is a timer task. When the timer fires, it checks to see if a camera control session has exceeded the timeout, or whether a camera is controlled by an Operations center with no one logged in.

5.3.1.1.11 COHU3955Camera (Class)

The COHUCamera interface is implemented by objects representing COHU-brand video cameras. The COHUCamera interface is extended by the COHUMPCCamera and COHU3955Camera interfaces. The COHUCamera interface includes all methods which are common to the two COHU cameras used by CHART II, the COHU MPC camera and the COHU 3955 camera. (Note that this interface may well contain a superset of methods which would be implemented by the entire line of all models of COHU video cameras).

5.3.1.1.12 COHU3955CameraImpl (Class)

This class implements the COHU3955Camera interface, and inherits from the ControllableCameraImpl class. The COHU3955CameraImpl implements methods of COHU3955Camera, extending the controllable camera to include 3955-specific operations. This class will contain a configuration and status object as necessary to convey 3955-specific configuration and status information.

5.3.1.1.13 COHU3955CameraStatus (Class)

The CameraStatus class is an abstract value-type class which provides status information for a Camera. This status information is relatively dynamic: things like the communication mode, operational status, operation center information, status change time.

5.3.1.1.14 COHUProtocolHdlr (Class)

COHUProtocolHdlr is the base class for all COHU cameras. At present, this class contains implementations for common functions for COHU MPC and COHU 3955 cameras

5.3.1.1.15 CommandProcessor (Class)
The CommandProcessor interface is implemented by a class representing a command processor control port with direct connection to the control port of several video cameras. It is used to send video camera control commands and return responses to a camera control process.

5.3.1.1.16 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.3.1.1.17 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer available for use through the system and automated polling (if any) is halted. When put online, a device is again available for use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of device are allowed to help in troubleshooting.

5.3.1.1.18 ControllableCameraFactoryImpl (Class)

The CameraFactoryImpl class provides an implementation of the CameraFactory interface (and its CameraFactory and SharedResourceManager interfaces) as specified in the IDL. The CameraFactoryImpl maintains a list of CameraImpl objects and is responsible for publishing Camera objects in the Trader on startup and as new camera objects are created. Whenever a Camera is created or removed, that information is persisted to the database. This class is also responsible for performing the checks requested by the timer tasks: to poll the Camera devices, to look for Camera devices with timeout exceeded, to look for Camera devices with no one logged in at the controlling operations center, and to initiate recovery processing as needed

5.3.1.1.19 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The ControllableVideoCamera interface represents a controllable video camera as opposed to the uncontrollable, immovable VideoCamera. Current plans call for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of ControllableVideoCamera. The ControllableVideoCamera interface includes all methods common to the three known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day. Current plans call for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

5.3.1.1.20 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration information about ControllableVideoCamera objects at the ControllableVideoCamera level.

5.3.1.1.21 ControllableVideoCameraImpl (Class)

The ControllableCameraImpl class provides an implementation of the ControllableVideoCamera interface and is derived from the CameraImpl class implementing the VideoCamera interface.

This class contains a CommandQueue object that is used to sequentially execute long running operations related to camera control in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are ControllableVideoCameraConfig and ControlablVideoCameraStatus objects (used to store the configuration and status of the camera), and a VideCameraData object (used to store internal status information which is persisted but not pushed out to clients).

The ControllableCameraImpl contains *Impl methods that map to methods specified in the IDL, including requests to request control of the camera, terminate control of the camera, override control of the camera, and to send pan/tilt/zoom (PTZ) commands to the camera. Some of these requests are long running, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate ControllableCameraImpl method as the command is executed by the CommandQueue in its thread of execution. PTZ commands are not considered long running and are not placed on the command queue.

The ControllableCameraImpl also contains methods called by the CameraFactory to support the timer tasks of the Camera Service: to poll the Camera, to look for Camera devices with communications timeout exceeded.

5.3.1.1.22 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

5.3.1.1.23 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or requesting to control) a VideoCamera.

5.3.1.1.24 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.3.1.1.25 DisplayImageCmd (Class)

This class represents the information needed to create a display image command to be added on the CommandQueue.

5.3.1.1.26 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder. The Encoder interface includes both the Codec and the VideoSendingDevice interfaces, which means in addition to providing forwarding of video, it also is used to send video camera control commands and return responses to a camera control process.

5.3.1.1.27 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.3.1.1.28 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.3.1.1.29 MoveToPresetCmd (Class)

This class represents the information needed to create a move to preset command to be added on the CommandQueue.

5.3.1.1.30 PollCameraTask (Class)

The PollCameraTask is a timer task. When the timer fires it polls a camera by sending a poll command to the camera.

5.3.1.1.31 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.3.1.1.32 PutCameraOnlineCmd (Class)

This class represents the information needed to request a put camera online command to be added on the CommandQueue.

5.3.1.1.33 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.3.1.1.34 RequestCameraControlCmd (Class)

This class represents the information needed to request a camera control command to be added on the CommandQueue.

5.3.1.1.35 RequestCameraOverrideCmd (Class)

This class represents the information needed to request a camera control override command to be added on the CommandQueue.

5.3.1.1.36 RevokeControlCmd (Class)

This class represents the information needed to create a revoke camera control command to be added on the CommandQueue.

5.3.1.1.37 RevokeDisplayCmd (Class)

This class represents the information needed to create a revoke camera display command to be added on the CommandQueue.

5.3.1.1.38 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.3.1.1.39 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.3.1.1.40 TakeCameraOfflineCmd (Class)

This class represents the information needed to request a take camera offline command to be added on the CommandQueue.

5.3.1.1.41 TerminateControlCmd (Class)

This class represents the information needed to request a terminate camera control command to be added on the CommandQueue.

5.3.1.1.42 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.3.1.1.43 ViconSVFTCameraImp (Class)

This class implements the ViconSVFTCamera interface, and inherits from the ControllableCameraImpl class. The ViconSurveyorVFTCameraImpl implements methods of ViconSVFTCamera, extending the controllable camera to include Vicon SVFT-specific operations. This class will contain a configuration and status object as necessary to convey Vicon SVFT-specific configuration and status information.

5.3.1.1.44 ViconSVFTCameraStatus (Class)

The ViconSVFTCameraStatus class is used to hold camera status information at the ViconSVFTCamera level. Only ViconSVFTCamera specific information is stored.

5.3.1.1.45 ViconSVFTProtocolHdlr (Class)

This class contains an implementation for Vicon SVFT camera control commands. It translates every camera command (pan, tilt, zoom…) into bytes that a Vicon SVFT camera understands. Then, it uses a CameraControlDevice to send the byte codes to the camera and evaluate responses from the camera.

5.3.1.1.46 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing controllable video cameras within the CHART II system. The VideoCamera interface represents a controllable video camera as opposed to the uncontrollable, immovable FixedVideoCamera, the other type of GenericVideoCamera. (The VideoCamera class could have been called the ControllableVideoCamera interface, but since the CHART II video system exists primarily to control controllable video cameras, the camera hierarchy has been arranged to avoid the longish name ControllableVideoCamera.) Current plans call for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of VideoCamera. The VideoCamera interface includes the GeoLocatable interface, to someday allow for advanced features such as automatic identification of cameras near traffic events, automatic pointing of cameras to traffic events, etc.

The VideoCamera interface includes all methods common to the three known types of video cameras currently in use by MDSHA, although it is likely to contain a superset of methods which would be implemented by the entire universe of all video cameras which could someday be used. This interface may have to be refined in the event that future brands or models of video cameras might be incorporated under CHART II, but it is an appropriate set of methods for the present day.

5.3.1.1.47 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

5.3.1.1.48 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for creating, maintaining, and controlling a collection of VideoCamera objects.

5.3.1.1.49 VideoCameraImpl (Class)

The CameraImpl class provides an implementation of the VideoCamera interface, and by extension the VideoSource, SharedResource, CommEnabled, GeoLocatable, and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long running operations in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are VideoCameraConfig and VideoCameraStatus objects (used to store the configuration and status of the camera), and a VideCameraData object (used to store internal status information which is persisted but not pushed out to clients).

The CameraImpl contains *Impl methods that map to methods specified in the IDL, including requests to display the camera video on a monitor, remove the camera video from a monitor, put the camera online, put the camera offline, put the camera in maintenance mode (future), or to change (set) the configuration of the camera (future). Some of these requests require (or potentially require) field communications to the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate CameraImpl method as the command is executed by the CommandQueue in its thread of execution.

The CameraImpl also contains methods called by the CameraFactory to support the timer tasks of the Camera Service: to look for Cameras with no one logged in at the controlling operations center, and to initiate recovery processing if needed (future).

5.3.1.1.50 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera objects at the VideoCamera level. Further details about lower-level VideoCamera subclasses are provided by subclasses of VideoCameraStatus.

5.3.1.1.51 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

5.3.1.1.52 VideoProviderConfig (Class)
This structure defines configuration data common to all video sources.

5.3.1.1.53 VideoProviderImpl (Class)
This class implements the VideoProvider interface as an abstract class. Subclasses for this class are the VideoCameraImpl and BridgeCircuitProviderImpl class.

5.3.1.1.54 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

5.3.1.1.55 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such as video cameras and image generators. Within the user interface, the VideoSource interface represents all video sources which can be put on monitors (i.e., VideoSink objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is controlled by an Operations Center if the VideoSource is in maintenance mode, or if the VideoSource is a camera which has an active control session up.

5.3.1.1.56 VideoSourceConfig (Class)

This structure defines configuration data common to all video sources.

5.3.1.1.57 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold and transmit status information about VideoSource objects at the VideoSource level. Further details about lower-level VideoSource subclasses are provided by subclasses of VideoSourceStatus.

5.3.2 Sequence Diagrams

5.3.2.1 CameraControlModule:AddCamera (Sequence Diagram)

This sequence diagram shows the implementation of the createCamera interface of the VideoCameraFactory. There are actually two create methods in the factory, one for each type of camera: COHU 3955 and Surveyor VFT. Since they both work the same way, they are both represented by createCamera(). First a check is performed to verify that the operator has sufficient privileges to create a camera. Next, the camera is inserted into the database. All video sending devices and flash video stream controls configurations are stored in the database. Part of this process includes creating the camera object itself. Finally, the new camera object is activated and the event is pushed out to clients.

[image: image90.emf]setVideoProviderConfig(Identifier, config)

Log createCamera(token,config)[no rights]

AccessDenied

insertCamera

(Identifier, config)

errorMessage

ControllableVideoCameraFactoryImplCameraControlDB ORBcheckAccess

[no rights[

log(token, "unauth. attempt to create Camera)

[DB Error]

Chart2Exception

pushAddCamera

TokenManipulator persist all

 video sending

devices

persist all flash

video stream controls

R5

Adds persitance of multiple

flash video stream controls and

video sending devices

setVideoCameraConfig(Identifier, config)

CameraConfigValidation validate each

flash video stream control

validate each

sending device config

validateConfig(configR5

Validates multiple

flash video stream controls and

video sending devices

Figure 5‑58 CameraControlModule:AddCamera (Sequence Diagram)

5.3.2.2 CameraControlModule:BlockToPublic (Sequence Diagram)

This Sequence Diagram shows the process of blocking a camera from being viewed by the public. The public video sinks are the TV station feeds and the website. This code will loop through all the video sinks displaying this camera, and attempt to display "No Source Available" on the public video sinks. If any video sinks could not be contacted, or were contacted and still did not remove this camera display, a timer will be started to try and remove the display from those video sinks once a minute until all public video sinks stop displaying this camera.

 If any public flash video stream controls are configured for the camera the function will attempt to disable video for each control and report the status of the attempt. If any flash video stream is not disabled its ID will be added to the list of video sinks that failed removal and that video stream will be part of the list contact for removal by a timer.

[image: image91.emf]R5Adds disable public flash video stream

disableFlashVideo()

[flash disabled]

cmdUpdate(success or failed

log(flash video disabled by operator)

[for each public

flash video control]

log("already done") persistandPush(VideoProviderStatus)

command queued BlockToPublic() addCommand(BlockToPublic) setVideoProviderstatus(cameraId) BlockToPublicTimer()

create displayNoVideoAvailableImpl (ifAnyRevokeFailed)

execute (isBlocked == true) See CameraControlModule:: DisplayNoVideoAvailable VideoSink [for each public monitor displayed] PushEventSupplier persistandPush(VideoSourcestatus) VideoCameraImpl TokenManipulator CommandQueue getSourceStatus ()checkAccess(token) [no right] Completed command queued

create

blockToPublic (token,cmdStat) CameraProtocolHdlr setVideoSourceStatus (cameraId) update("Command queued")

sourceUnavailable () completed ()

CommandStatus BlockToPublicCmd

OperationsLog [no right] log(token, "unauth attempt to block public camera display") addCommand(BlockToPublicTimer)

[no right] Access Denied execute

verifyAccess(token) create DisplayNoVideoAvailbleCmd log (token, "Camera image removed from monitor") CameraControlDB BlockToPublicCmd update(camera removed from monitor)

Figure 5‑59 CameraControlModule:BlockToPublic (Sequence Diagram)

5.3.2.3 CameraControlModule:RemoveCamera (Sequence Diagram)

This sequence diagram shows the implementation of the removeCamera interface of the VideoCameraFactory. First a check is performed to verify that the operator has sufficient privileges to remove a camera. Next a camera is checked to see if it is offline. Only offline cameras may be removed. Next, the factory removes the camera from the trader and calls the CameraControlDB class to delete the camera from the database. During the delete process, all flash video stream controls and video sending devices configured for the camera are deleted from the database. A message is written to the operations log and a cameraDeleted event is pushed out to the clients.

[image: image92.emf]PushEvent Supplier log(token, "Camera<name> removed.")

deleteCamera(Camera ID)

push(CameraDeleted)

[not offline]

push(currentStatus)

[not offline]

Chart2Exception

removeCamera(this)

[not found]

Chart2Exception

remove(token)

checkAccess

[no rights]

log(token, "unauth. attempt to remove CAMERA <name>)

Camera ImplsCommandQuue CameraControlDB OperationsLog [no rights]

AccessDenied

ControllableCamera FactoryImpl TokenManipulator [flash video controls]

delete Flash Video Controls

R5

Deletes multiple video

sending devices and flash

video controls.

[video sending devices]

delete Video Sending Devices

shutdown

[error removing Camera]

chart2Exception

log(token, errorMessage)

pushCameraDeleted

checkCommMode

[not found]

Chart2Exception

log(token, error message)

Figure 5‑60 CameraControlModule:RemoveCamera (Sequence Diagram)

5.3.2.4 CameraControlModule:RequestCameraControl (Sequence Diagram)

This sequence diagram shows the implementation of the RequestCameraControl interface of the VideoCamera object. This sequence arbitrates access to control the camera by checking the operator site's camera control hierarchy, and initializes the control device and database to start sending control commands.

It is possible that the camera that is requested for control may already be controlled. If the operator has the right to override camera control for the camera's organization, then the camera control override processing will occur. If not, the request fails.

[image: image93.emf]CHART2Exception

saveStatus

cmdStatusFailure(Request for camera control failed)

MonitorGroup

addControlledCamera

OperatorCameraImpl TokenManipulator Yes,Camera is controlled OperationsLog Camera not

controlled

return

isDisplayedLocally(info, token)

log(connecting to protocol handler)

Success log(Done connecting to protocol handler)

checkAccess log(token,"norights")

add(token,Chart2System)

No image displayed

CHART2Exception

(control revoked for orgID)

lock()

CameraIsControlledException

(override = true)

connect()

Camera is controlled, and sufficient priority

CommandQueue CameraControlDB PushEventSupplierCommandStatus Poll thread should already be running to

constantly check the camera and

 update the status.

[camera controlled] completed(false,"camera controlled. would or wouldnot be allowed")

log(token,"control granted to xx")

cmdStatusSuccess(true, "request camera control granted")

persistAndPushStatus()

isControlledBy(token) stopIfNecessary()

CameraIsControlledException

(override = false)

ControllingInfo()

CameraProtocolHandler

isControlled isControlRevoked(orgID,token)

cmdStatusFailure(You must have a camera image displayed locally in order to control it)

cmdStatusFailure(camera is currently contolled by another operator)

log(camera isControlled = true or false) log(camera is not controlled by requester) unlock()

log(camera is currently contolled by another operator)

Exception

(requestCameraControl (token,ControllingInfo)

Figure 5‑61 CameraControlModule:RequestCameraControl (Sequence Diagram)

5.3.2.5 CameraControlModule:RevokeControl (Sequence Diagram)

This Sequence Diagram shows the process of revoking a user from controlling a camera. This code will find the Monitor Group ID for the user controlling the camera, and then get the Organization ID for that Monitor Group. If the controlling organization ID matches an organization being revoked, the code will then send a command to terminate that user's control. If the command does not successfully revoke control, a timer will be started to try and revoke control from that user once a minute until successful.

[image: image94.emf]commend queued execute create RevokeControlCmd setVideoSourceStatusStatus(CameraId) persistandPushVideoSourceStatus(CameraId) (ifRevokedOrgOwnsCamera) (log "cannotRevokeYourself") update("Commend queued") revokeControlCmd() (ifRevokeFailed)

addCommand(RevokeControlCmd CameraControlDB persistandPushStatus(CameraId)

CameraProtocolHdlr MonitorGroup update("Command queued")

[revoked] VideoSink PushEventSupplier completed ()

ControllableVideoCameraImpl CommandStatus TokenManipulator RevokeControlCmd

CommandQueue OperationsLog getSourceStatus () revokeControl (token,orgID,cmdStat) checkAccess(token) [no right] log(token, "unauth attempt to revoke control") [no right] CompletedaddCommand(RevokeControlTimer)

command queued

revokeControTimer()

[isControlled == true] terminateControlImpl () See CameraControlModule: TerminateControl Sequence Diagram [no right] Access Denied create

execute

Figure 5‑62 CameraControlModule:RevokeControl (Sequence Diagram)

5.3.2.6 CameraControlModule:RevokeDisplay (Sequence Diagram)

This Sequence Diagram shows the process of blocking a camera from being viewed by the listed organizatons. This code will loop through all the video sinks displaying this camera, and if any belong to the revoked organization, it will attempt to display "No Source Available" on that video sink. If any video sinks could not be contacted, or were contacted and still did not remove this camera display, a timer will be started to try and remove the display from those video sinks once a minute until all video sinks belonging to the revoked organization stop displaying this camera.

[image: image95.emf]command queued execute create displayNoVideoAvailableImpl() update("Command queued")

setVideoSourceStatus(CameraId) persistandPushVideoProviderStatus(CameraId)

update("Command queued") revokeDisplayCmd()addCommand(RevokeDisplayCmd) RevokeDisplayCmd (ifAnyRevokeFailed)

log("cannotRevokeYourself") persistandPushVideoSourceStatus(CameraId) (ifRevokedOrgOwnsCamera) See CameraControlModule:: DisplayNoVideoAvailable VideoSink sourceUnavailable () [for each revokedOrgID monitor displayed] PushEventSupplier completed ()

revokeDisplayTimer()

VideoCameraImpl CommandStatusTokenManipulator RevokeDisplayCmd

CommandQueueOperationsLog getSourceStatus () checkAccess(token)[no right] log(token, "unauth attempt to revoke camera display") [no right] Completed addCommand(RevokeDisplayTimer)

command queued

[no right] Access Denied create

execute

CameraControlDB verifyAccess(token) revokeDisplay (token,orgID,cmdStat) createCameraProtocolHdlr DisplayNoVideoAvailbleCmd update(camera removed from Monitor) setVideoProviderStatus (cameraId)

log (token, "Camera image removed from monitor")

Figure 5‑63 CameraControlModule:RevokeDisplay (Sequence Diagram)

5.3.2.7 CameraControlModule:SetCameraConfiguration (Sequence Diagram)

This sequence diagram shows the implementation of the setConfiguration interface of the CameraImpl class (which represents VideoProviderImpl, VideoSourceImpl, VideoCameraImpl etc.). First a check is performed to verify that the operator has sufficient privileges to update a camera. Next a check is made to see that the camera is offline. Only offline cameras may have their configurations updated. If the camera is offline, the new configuration is validated. During this process all flash video stream control and video sending device configurations are validated. Next the new configuration is written to the database. During the set configuration process, all flash video stream controls and video sending devices configured for the camera are updated in the database. Finally, the camera is apprised of its new configuration.

[image: image96.emf]setVideoCameraConfig(cameraID, config)

[invalid config]

Char2Exception

checkCommdMode

notOffline

Char2Exception

acessDenied

CameraControlDB validateConfig(config)

[no rights]

log(token, "unauth. attempto to configure camera)

VideoCameraImplsOperationsLog PushEvent Supplier setConfig(token,config)checkAccessTokenManipulatorpushConfig

[online]

log(token, "must be offline to change configuration)

setConfiguration(cameraID, config)

[invalid configuration]

log(token, "invalid data")

insert or update all

 flash video controls

setVideoProviderConfig(Identifier, config)

R5

Adds insert or update of multiple

flash video stream controls and

video sending devices

insert or update all

video sending devices

setVideoSourceConfig(Identifier, config)

R5

Validate multiple

flash video stream controls and

video sending devices

CameraConfigValidationvalidate each video

sending device config

validate each

flash video stream control

Figure 5‑64 CameraControlModule:SetCameraConfiguration (Sequence Diagram)

5.4 Monitor Control Module

5.4.1 Class Diagrams

5.4.1.1 MonitorControlModule (Class Diagram)

This diagram shows the classes that comprise the MonitorControlModule. The MonitorControlModule is an installable module that serves the monitor objects and factory to the rest of the CHART II system. It also serves workstations, sites, tours, and their factories. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions. The MonitorImpl object is the primary class operating in this module. This object provides all access to the monitor status, and configuration. Every request to display an image on a monitor comes to the MonitorImpl object first, through the Monitor interface. When a new image is displayed on a monitor, the Monitor's status is updated to indicate the new camera is being displayed on it, and the new Camera's status and old Camera's status will be updated correspondingly. The MonitorControlModule also includes factory implementations responsible for providing lists of monitors, sites, workstations, and tours to interested clients. Tours and their configruations are maintained in the TourFactory, but execute within the Monitor(s) that they are running on.

[image: image97.emf]R5

Modify putOnlineImpl() to handle mutiple

Video Sending Devices.

R5

Modify functions to handle mutiple

Video Sending Devices:

displayNoVideoAvailableImpl()

displayImage()

displayImageImpl()

1

1

VideoTransmissionDevice

«interface»

1

1

VideoCollector

«interface»

1

1

1

1

ServiceApplication

«interface»

MonitorControlDB

1

DBConnectionManager

1

1

VideoSink

«interface»

1

MonitorControlProperties

MonitorImpl

1

1

Monitor

«interface»

1

1

1

MonitorFactory

«interface»

FullTourStatusUpdateFlag - says whether to push status

updates for camera status updates for changes to the

active monitor list pertaining to tours only. Probably

default to true unless that causes too much traffic.

FullTourOpsLoggingFlag - same except for writing to Ops

Log. Probably default to false unless we need it for

troubleshooting a problem, as this would be a lot of excess

Ops Log entries.

1

MonitorStatus

VideoSinkImpl

VideoReceivingDevice

«interface»

DecoderImpl

iMPathDecoderImpl

1

VideoCollectorImpl

Decoder

«interface»

CoreTecDecoderImpl

1

1

MonitorControlModule

MonitorConfiguration

1

ServiceApplicationModule

«interface»

R5

Modify connectReceivingToSendingDevice()

 to handle mutiple

Video Sending Devices

MonitorFactoryImpl

+getMonitorList():Monitor[]

+getMonitorsWithActiveTours():Monitor[]

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

-addMonitorTypesToTrader() : void;

+createMonitor(byte[] MonitorConfig):Monitor

+ findMonitorGroup(Identifier id) : MonitorGroup

+ findVideoProvider(Identifier id): VideoProvider

+ findVideoSource(String site): VideoSource

+ findVideoSwitch(byte[] switchId): VideoSwitch;

+ findVideoTour(Identifier id)VideoTour;()

getAllowSimulation() : void;

+getCollectorInfoList VideoCollectorInfo[];()

getHostName() : String;

-getID() : byte[];

-getLogFlags boolean;()

getMonitorGroupRefsFromTrader void;()

+ getMonitorInfoList MonitorInfo[]()

+getMonitorPushEventSupplier PushEventSupplier;()

-getName() : String;

+ getNoVideoAvailable VideoProviderInfo;()

+ getProperties MonitorControlModuleProperties;()

+ getSinkInfoList VideoSinkInfo[];()

+ getSinksWithActiveTours VideoSinkInfo[;()

getVideoProviderRefsFromTrader void;()

getVideoSourceFactoryRefsFromTrader void;()

getVideoSwitchRefsFromTrader void;()

getVideoTourFactoryRefsFromTrader void;()

getVideoTourRefsFromTrader void;()

log(String flags, String method, String txt)void;()

logProd(String method, String txt)void;()

logStackProd (String method, String txt, Exception e)void;()

opLog(byte[] token, String msg, int action, String deviceID,

 String deviceName)void;()

+pushMonitorAdded(Monitor mnt, MonitorConfig config,

 String statMsg): boolean;

+ pushMonitorDeleted(MonitorImpl mntImpl, String statMsg):

 void;

removeMonitor(MonitorImpl mntImpl, byte[] token)void()

restartVideoTours void;()

resumeAllTours(byte[] token, byte[] monitorGroupID,

 CommandStatus cmdStat)void;()

+ shutdown(): boolean;

suspendAllTours(byte[] token, byte[] monitorGroupID,

 CommandStatus cmdStat)void;()

validateCfg(MonitorConfig cnfg)void;()

boolean m_allowSimulation;

Vector m_MonitorImplVect;

Vector m_pendingDeleteMonitorImplVect;

MonitorControlDB m_db;

PushEventSupplier m_monitorPushEventSupplier;

LogFile m_monitorStatusLogFile;

String m_hostName;

Identifier m_idObj;

boolean m_logFlags[]

String m_name;

boolean m_shutdown;

Hashtable m_videoProviderRefs;

Hashtable m_videoSourceFactoryRefs;

Hashtable m_videoTourRefs;

Hashtable m_videoSwitchRefs;

Hashtable m_videoTourFactoryRefs;

Hashtable m_nvaSources;

Hashtable m_monitorGroupRefs;

VideoSourceInfo m_nvaSourceInfo;

VideoSourceInfo m_localNvaSourceInfo;

Hashtable m_localNvaSourceInfoHash;

boolean m_nvaSrcIsLocal;

int m_sharedResMonInt;

ServiceApplication m_svcApp;

MonitorControlModuleProperties m_props

Vector m_connectionSites;

+getCollectorStatus():VideoCollectorStatus

+getCollectorConfig(token):VideoCollectorConfig

+removeCollector(token)

+connectReceivingToSendingDevice(byte[],VideoProviderInfo,

 byte[],CommandStatus,boolean,

 StringHolder) : boolean

+disconnectReceivingFmSendingDevice(byte[],CommandStatus,

 boolean,StringHolder) : boolean

-getAllowSimulation(): boolean;

-getFullTourOpsLoggingFlag(): boolean

-getFullTourStatusUpdateFlag(): boolean

-getLogFlags(): String;

-getNumOfTraderLookupsForNVASource(): int

-getTourRefreshIntervalSecs(): int

-hasLocalNVASource(): boolean;

String PROP_KEY_ALLOW_SIMULATION ;

String PROP_KEY_LOG_FLAGS;

String

PROP_KEY_NUM_OF_TRADER_LOOKUPS_FOR_NVA_SOURCE

String DEFAULT_ALLOW_SIMULATION;

String DEFAULT_LOG_FLAGS;

String

DEFAULT_NUM_OF_TRADER_LOOKUPS_FOR_NVA_SOURCE

String PROP_KEY_HAS_LOCAL_NVA_SOURCE ;

String DEFAULT_HAS_LOCAL_NVA_SOURCE;

String PROP_KEY_FULL_TOUR_STATUS_UPDATE

String DEFAULT_FULL_TOUR_STATUS_UPDATE

String PROP_KEY_FULL_OPS_LOGGING

String DEFAULT_TOUR_REFRESH_INTERVAL_SECS;

String DEFAULT_FULL_TOUR_OPS_LOGGING;

Properties m_props;

ServiceApplication m_serviceApp;

Properties m_defaults

+displayImage(VideoSource)

+dropImage()

+getStatus()

+getStatus():VideoSinkStatus

+getConfiguration(token):VideoSinkConfiguration

+setConfiguration(token,VideoSinkConfiguration)

+remove(token)

#initCollectorStatus() : void

+getCollectorStatusImpl() : VideoCollectorStatus

#getCollectorConfigImpl() : VideoCollectorStatusImpl

#debugPrintVideoCollectorConfig(String, String,

 VideoCollectorConfig) : void

#debugPrintVideoCollectorStatus(String, String,

 VideoCollectorStatus) : void

#isOnVideoFabric(byte[]) : boolean

#getOwningOrgID() : byte []

+getID() : byte []

#getAllowSimulation() : boolean

#setSimulationFlag() : boolean

getIDString() : String

+getIdentifier() : Identifier

#getLogFlags() : boolean []

+getName() : String

+getCommMode() : CommunicationMode

#commModeIs(CommunicationMode) : boolean

getSvcApp() : ServiceApplication

#initializeLogFlags(String) : void

#opLog(byte[], String, int, String, String) : void

#opLog(byte[], String, int, String, String, String, String) : void

#logLockRqst(String) : void

#logLockRcvd(String) : void

#logLockDone(String) : void

#logProd(String, String) : void

#logStackProd(String, String, Exception) : void

#log(String, String, String) : void

addMyselfToProviderStatus(byte[], StringBuffer) : boolean

removeMyselfFromProviderStatus(byte[], StringBuffer) : boolean

#cmdStatusCompleted(CommandStatus, String, boolean) : boolean

#cmdStatusFailure(CommandStatus, String) : boolean

#cmdStatusFailureMaybe(CommandStatus, String, boolean) : boolean

#cmdStatusSuccess(CommandStatus, String) : boolean

#cmdStatusSuccessMaybe(CommandStatus, String, boolean) : boolean

#cmdStatusUpdate(CommandStatus, String) : boolean

+getCollectorName() : String

+getCollectorType() : VideoCollectorType

getCollectorTypeName() : String

+getCollectorInfo() : VideoCollectorInfo

#isSimulated() : boolean

#setOpStatus(OperationalStatus) : void

#updateLastContactTime() : void

#updateStatusChangeTime() : void

#verifyAccess(byte[], int, String, String, CommandStatus) : void

#verifyAccess(byte[], int[], String, String, CommandStatus) : void

#verifyAccessAll(byte[], int[], String, String, CommandStatus) : void

#verifyCommMode(CommunicationMode, String,

 CommandStatus,boolean) : void

#verifyCommModeNot(CommunicationMode,

 CommandStatus, boolean) : void

#verifyCommModeNotOffline(String, CommandStatus) : void

#persistAndPushConfig(String, StringBuffer) : boolean

#persistAndPushStatus(String, StringBuffer) : boolean

#persistConfig(String, StringBuffer) : boolean

#persistStatus(String, StringBuffer) : boolean

#pushConfig(String, StringBuffer) : boolean

#pushStatus(String, StringBuffer) : boolean

#findVideoProvider(byte[]) : VideoProvider

#findVideoSwitch(byte[]) : VideoSwitch

+connectReceivingToSendingDevice(byte[], VideoProviderInfo,

 byte[], CommandStatus, boolean, StringHolder)

#m_createLogFlag : String

#m_collectorConfig : VideoCollectorConfig

#m_dateFmtYYYYMMDDHHMMSS : SimpleDateFormat

-m_idObj : Identifier

#m_svcApp : ServiceApplication

-m_networkConnectionSite : String

#m_lockName : Object[]

#m_lockConfig : Object[]

#m_lockStatus : Object[]

#m_collectorStatus : VideoCollectorStatus

#m_props : MonitorControlModuleProperties

-m_recvDevice : VideoReceivingDeviceOperations

#m_logFlags : boolean[]

-m_simulationAllowed : boolean

-m_simulateComms : boolean

-SIMULATE_MONITOR_COMMS_KEYWORD : String

#m_systemRight : FunctionalRightType

#m_systemToken : byte[]

addMonitorFactoryTypesToTrader void;()

addMonitorGroupFactoryTypesToTrader void;()

addVideoTourFactoryTypesToTrader void;()

+createEventChannel(String): PushEventSupplier;

+createMonitorFactory() : boolean;

+createMonitorGroupFactory(): boolean

+createVideoTourFactory(): boolean;

-getVersion(): ComponentVersion;

+initialize(ServiceApplication): boolean;

+shutdown(ServiceApplication): boolean;

traderGroupUpdated void;()

String MONITOR_FACTORY_ID_FILENAME =

"MonitorFactory.id";

String MONITORGROUP_FACTORY_ID_FILENAME =

"MonitorGroupFactory.id";

String VIDEOTOUR_FACTORY_ID_FILENAME =

"VideoTourFactory.id";

String VERSION_NAME = "Monitor Control Module";

MonitorControlDB m_monitorDb;

MonitorGroupControlDB m_monitorGroupDb;

VideoTourControlDB m_videoTourDb;

PushEventSupplier m_monitorEventSupplier;

MonitorFactoryImpl m_monitorFactory

MonitorGroupFactoryImpl m_monitorGroupFactory;

VideoTourFactoryImpl m_videoTourFactory;

MonitorControlModuleProperties m_props;

ServiceApplication m_svcApp;

+setPosition(token,xPos,yPos,xSize,ySize)

+stopCameraTour(token,cameraTour)

+startCameraTour(token,cameraTour)

+deleteMonitor(Identifier):void

+deleteMonitorFromMonitorGroup(Identifier,

 Connection): boolean

deleteMonitorWithConnection(Identifier ,Connection)void()

+getMonitorList() : MonitorImpl;

-getConfiguration(Identififer MonitorID) : MonitorConfiguration;

-getConfigWithConnection(Identifier ,Connection):

 MonitorConfig

-getIPMonitorConfigWithConnection(Identifier,Connection):

 MonitorConfig

-getMonitorList(): MonitorInpl[];

-getStatus(Identifier MonitorID) : MonitorStatus;

-getStatusWithConnection(Identifier , Connection):

 MonitorStatus;

-getV1500MonitorConfigWithConnection(Identifier,

 Connection): MonitorConfig;

+insertMonitor(monitorID, MonitorConfid): MonitorImpl;

+setConfiguration(Identifier, MonitorConfiguration) : void;

setConfigWithConnection(Identifier, MonitorConfig,

 Connection)void;()

setMonitorFactoryImpl(MonitorFactoryImpl);()

+setStatus(Identifier MonitorID) : void;

setStatusWithConnection(Identifier, MonitorStatus,

 Connection)void;()

DBConnectionManager m_dbConnMgr;

MonitorFactoryImpl m_cameraFactoryImpl;

CommFailureDB m_commFailDB;

ServiceApplication m_svcApp;

getDeviceStatus() : VideoTransmissionDeviceStatus

getDeviceConfig(byte[]) : VideoTransmissionDeviceConfig

+callAddDisplay(byte[] ,VideoSource ,

 boolean ,CommandStatus): booleal;

+createPOATie()Servant;()

debugPrintConfig(String, String, MonitorConfig)void;()

debugPrintConfig(String,String, MonitorStatus)void;()

-getAllowSimulation(): boolean;

+getCollectorType(): VideoCollectorType;

-getMonitorConfig(byte[]): MonitorConfig;

-getMonitorConfigImpl(): MonitorConfig;

getMonitorName String;()

-getMonitorStatus MonitorStatus;()

initializeNewMonitor void;()

initStatus void;()

+persistConfig(String , StringBuffer): boolean;

+persistStatus(String , StringBuffer): boolean;

+pushConfig(String , StringBuffer): boolean;

+pushStatus(String , StringBuffer): boolean;

putInMaintenanceMode(byte[] ,CommandStatus)void()

putOnline(byte[] , CommandStatus)void()

putOnlineImpl(byte[] , CommandStatus)void()

removeCollector(byte[])void()

setMonitorConfig(byte[] ,MonitorConfig)void()

shutdown()void;()

shutdown(byte[]);()

shutdownImpl(byte[]);()

sleep(int , String)void;()

takeOffline(byte[], CommandStatus)void;()

takeOfflineImpl(byte[], CommandStatus)void;()

validateCfg(byte[], MonitorConfig);()

MonitorControlDB m_db

PushEventSupplier m_monitorPushEventSupplier

MonitorStatus m_monitorStatus

MonitorConfig m_monitorConfig

CommandQueue m_shutdown

getReceivingDeviceStatus() : VideoReceivingDeviceStatus

connectFrom(byte[], byte[],

 VideoTransmissionDeviceConfig) : boolean

disconnectFrom(byte[],

 VideoTransmissionDeviceConfig) : boolean

disconnect(byte[]) : boolean

+getConnection() : java.sql.Connection

+getCurrentOpenCursors() : int

+releaseConnection() : void

+shutdown() : void

+verifyDBInitialized() : boolean

+addMonitorGroup(byte[], byte[]) : void

+dropRoutedImageDisplay(byte[], CommandStatus, boolean,

 boolean, StringHolder) : boolean

+getSinkStatus() : VideoSinkStatus

+HasActiveTour() : boolean

+HasSuspendedTour() : boolean

+getMonitorTourConfig() : VideoTourConfig

+setMonitorTourConfig(VideoTourConfig) : void

+hasActiveOrSuspendedTour() : boolean

+getCurrentTourOnMonitor() : byte []

+isCurrentTour(Identifier) : boolean

#getSinkStatusImpl() : VideoSinkStatus

+getSinkConfig(byte[]) : VideoSinkConfig

#getSinkConfigImpl() : VideoSinkConfig

+removeMonitorGroup(byte[], byte[]) : void

-convertIDToVideoProvider(byte[]) : VideoProvider

#debugPrintVideoSinkConfig(String, String, VideoSinkConfig) : viod

#debugPrintVideoSinkStatus(String, String, VideoSinkStatus) : void

#getAllowSimulation() : boolean

+startTour(byte[], byte[], byte[], CommandStatus) : void

+startTourImpl(byte[], CommandStatus, boolean) : void

+stopTour(byte[], byte[], byte[], CommandStatus) : void

+stopTourImpl(byte[], CommandStatus, boolean) :void

+suspendTour(byte[], byte[], byte[], CommandStatus)

+suspendTourImpl(byte[], CommandStatus) :void

+resumeTourImpl(byte[], CommandStatus) :void

+shutdownTourImpl(byte[]) :void

+resumeTour(byte[], byte[], byte[], CommandStatus) :void

+tourConfigChanged(byte[], byte[], VideoTourConfig) :void

+tourDeleted(byte[], byte[]) :void

+sourceUnavailable(byte[], byte[], boolean, byte[][],

 CommandStatus) : boolean

+displayNoVideoAvailable(byte[], byte[], byte[],

 CommandStatus) : void

+displayNoVideoAvailableImpl(byte[], Identifier,

 CommandStatus) : void

+doDisplayNoVideoAvailable(VideoProviderInfo,

 CommandStatus) : boolean

#initSinkStatus() : void

+getMonitorFactory() : MonitorFactoryImpl

+displayImage(byte[], boolean, byte[], VideoProviderInfo,

 boolean, ExtendedCommandStatus) : void

+displayImageImpl(byte[], boolean, VideoProviderInfo, boolean,

 ExtendedCommandStatus) : void

#callAddDisplay(byte[], VideoSource, boolean,

 CommandStatus) : boolean

#isInMonitorGroup(byte[]) : boolean

#isOnline() : boolean

#verifyTourAccess(byte[], byte[], CommandStatus, String) : void

+getCollectorType() : VideoCollectorType

#checkCameras(byte[], VideoSource, CommandStatus,

 boolean) : boolean

#callRemoveDisplay(byte[], VideoSource) : void

#findVideoProvider(byte[]) : VideoProvider

#findVideoSwitch(byte[]) : VideoSwitch

-VideoSinkConfig m_sinkConfig

#VideoSinkStatus m_sinkStatus

#CommandQueue m_cmdQueue

#MonitorFactoryImpl m_factory

#Timer m_videoTourTimer

VideoTourTimerTask m_videoTourTimerTask

VideoTourConfig m_monitorTourConfig

getID() : byte[]

getName() : String

void verifyAccess(byte[] token, int rightID,

 String descPrefix, String descSuffix)

-String m_ipAddress

-String m_port

-VideoTransmissionDeviceConfig m_decoderConfig

-boolean m_simulationFlag

Figure 5‑65 MonitorControlModule (Class Diagram)

5.4.1.1.1 CoreTecDecoderImpl (Class)

The CoreTecDecoderImpl class is derived from the DecoderImpl class.

This class contains the methods and attributes that are specific to managing an actual CoreTec Decoder. These methods include the device specific calls to switch the video streams on a monitor.

5.4.1.1.2 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.4.1.1.3 Decoder (Class)

This interface describes the Decoder interface. The decoder includes the VideoReceivingDevice interface.

5.4.1.1.4 DecoderImpl (Class)

The DecoderImpl class provides an implementation of the Decoder interface.

This class contains the methods and attributes that are common to the decoders used in CHARTII.

5.4.1.1.5 iMPathDecoderImpl (Class)

The iMPathDecoderImpl class is derived from the DecoderImpl class.

This class contains the methods and attributes that are specific to managing an actual iMPath Decoder. These methods include the device specific calls to handle displaying the video streams on a monitor.

5.4.1.1.6 Monitor (Class)

The Monitor interface is implemented by objects which represent a video monitor, e.g., a real, physical "television set" on which a video image can be displayed. This is the most common type of VideoSink (the other being a SWMonitor, part of a future requirement to stream video directly to user's workstations (or potentially other nearby computers).

5.4.1.1.7 MonitorConfiguration (Class)

The MonitorConfiguration contains configuration information specific to Chart II processing. Such information includes, but is not limited to, the monitor name, owning organization, and decoder configuration.

5.4.1.1.8 MonitorControlDB (Class)

The MoniorControlDB class provides an interface between the Monitor service and the database used to persist the camera objects and their configuration and status in the database. This class provides the ability to retrieve and view the camera from local and remote workstations. The class is constructed with a DBConnectionManager object, which manages database connections

5.4.1.1.9 MonitorControlModule (Class)

The MonitorControlModule class is the service module for the monitor devices and a Monitor factory. It implements the ServiceApplicationModule interface providing a platform for displaying camera objects within a service application. This class is the controlling class for the Minitor Control Module, providing initialization and overall operation of the module. It also creates MonitorControlDB and MonitorControlModuleProperties objects.

5.4.1.1.10 MonitorControlProperties (Class)

The MonitorControlModuleProperties class is used to provide access to properties used by the Monitor Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Monitor Control Module.

5.4.1.1.11 MonitorFactory (Class)

This CORBA interface allows new devices to be added to the system. It allows an operator to acquire a list of camera tour objects under the domain of the specific MonitorFactory object. It also implements the SharedResourceManager capability to control Monitor objects as shared resources between workstations.

5.4.1.1.12 MonitorFactoryImpl (Class)

The MonitorFactoryImpl class provides an implementation of the MonitorFactory interface as specified in the IDL. The MonitorFactoryImpl maintains a list of MonitorImpl objects and is responsible for publishing Monitor objects in the Tradr on startup and as new monitor objects are created. Whenever a monitor is created or removed, that information is persisted in the database

5.4.1.1.13 MonitorImpl (Class)

The MonitorImpl class provides an implementation of the Monitor interface by extension of the Monitor, SharedResource, and UniquelyIdentifiable interfaces, CommEnabled, as specified in the IDL. Also contained in this class are MonitorConfiguration and MonitorStatus objects used to store the configuration and status of the monitor.

5.4.1.1.14 MonitorStatus (Class)

This class (struct) contains data that indicates the current status of a Monitor device specific to Chart II processing, such as information on the particular controlling operation centers. The data contained in this class is that status information which can be transmitted from the local monitors to remote monitors . This struct is also used within the Monitor Service to transmit data to/from the MonitorControlDB database interface class.

5.4.1.1.15 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.4.1.1.16 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.4.1.1.17 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

5.4.1.1.18 VideoCollectorImpl (Class)

The VideoCollectorImpl class provides an implementation of the VideoCollector interface.

This class contains a CommandQueue object that is used to sequentially execute long running operations related to display in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are VideoCollectorConfig and VideoCollectorStatus objects (used to store the configuration and status of the video receiving device).

The VideoCollectorImpl contains *Impl methods that map to methods specified in the IDL, including requests to connect and disconnect video receiving devices to video sending devices (an actual camera or a video switch port). Some of these requests are long running, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate VideoCollectorImpl method as the command is executed by the CommandQueue in its thread of execution.

5.4.1.1.19 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is used to represent a video receiving device in the field. These devices are used to actually connect a video provider to a video collector. The system contains an instance of this interface for each video receiving device.

5.4.1.1.20 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video signals, such as video monitors and streaming video receivers directly on user workstations. Within the user interface, the VideoSink interface represents all objects on which a video source can be placed for viewing by users.

5.4.1.1.21 VideoSinkImpl (Class)

The VideoSinkImpl class provides an implementation of the VideoSink interface and is derived from the VideoCollectorImpl class implementing the VideoCollector interface.

This class contains a CommandQueue object that is used to sequentially execute long running operations related to display in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are VideoSinkConfig and VideoSinkStatus objects (used to store the configuration and status of the video sinks).

The VideoSinkImpl contains *Impl methods that map to methods specified in the IDL, including requests to create a tour, start a tour, stop a tour, suspend a tour, shutdown a tour, resume a tour, and display an image on a video sink. Some of these requests are long running, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate VideosinkImpl method as the command is executed by the CommandQueue in its thread of execution.

5.4.1.1.22 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is used to represent a video transmision device in the field (either a video sending device or a video receiving device). These devices are used to actually connect a video provider to a video collector. The system contains an instance of this interface for each video transmission device.

5.4.2 Sequence Diagrams

5.4.2.1 MonitorControlModule:ConnectRecToSend (Sequence Diagram)

This diagram shows the process of connecting this monitor's reciving device (decoder or switch output port) to the sending device of a video source (an encoder or switch input port). If the at least one of sending devices is on the same fabric as the receiving device, a simple connectFrom() call is made to the local receiving device. If the switch fabrics are different, the Router is called to make the connection, which will involve at least one bridge circuit and at least two pairs of sending and receiving devices. If more than one sending device is configured for the camera the router will use the one that provides the best route (fewest number of hops).

[image: image98.emf]If providerConfig.m_sendingDeviceConfig.m_switchFabricID == my recevingDeviceConfig.m_switchFabricIDmake a simple (non-routed) connection..VideoProviderIf providerConfig.m_sendingDeviceConfig.m_switchFabricID != my recevingDeviceConfig.m_switchFabricIDmake route.m_recvDevice:VideoReceivingDevicecmdStat:CommandStatusconnectReceivingToSendingDevice(token, VideoProviderInfo,VideoSourceID, overrideIfNec, testOnly, CommandStatus)getProviderConfig()[fabric IDs match]connectFrom(token,videoTransmissionDeviceConfig)[fail]Router[fail][fail]completed(falure, reason)look for matchinga fabricfind shortes routeif multiple sendingdevicesR5Modified to select amongsending devices configuredfor the provider that allowsshortest route.R5Modified to select asending device on the same fabric among those avaiable from providerIncudes calls from other functionsi.e. putOnlineImple(), doDisplayNoVideoAvailable(), displayNoVideoAvailableImpl(),and build().[fail]false[success]providerConfig[fail]completed(failure, reason)[fail]false[fabric IDs different]connect(providerInfo, providerConfig, collectorInfo, collectorConfig, overrideIfNec, testOnly, reason)[fabric IDs match &&testOnly == true]trueReceiving device can be a CoreTeDecoderImpl,an iMPathDecoderImpl, or a SwitchOutputPortImpl[fail]false, reason[fail]completed(failure, reason)[fail]false[success]true[success]true[success][success]trueVideoSinkImplVideoCollectorImplThese are the same object.Shown as separate for clarity.

Figure 5‑66 MonitorControlModule:ConnectRecToSend (Sequence Diagram)

5.4.2.2 MonitorControlModule:DisplayImage (Sequence Diagram)

This sequence diagram describes the process of displaying an image on a monitor. The token is checked for appropriate access. If there is an error, an operations log message is written, the command status is updated, and the failure is returned. Otherwise, a DisplayImageCommand is placed on the command queue. Execution of DisplayImageCommand will display the video image on the monitor selecting the correct video sending device of those configured for the camera. Note that the DisplayImageImpl sequence diagram provides more details about what happens during execution of that command.

[image: image99.emf]R5

Modifies VideoSinkImpl

 to ensure the

correct sending device is

selected to complete display

operation

Test call (testOnly = true) to see if it would work. [not forTour] connectReceivingToSendingDevice(token, videoProviderInfo, videoProviderInfo.providerID, true,cmdStat) [test failed && override not requestedOverrideNotRequestedException][test failed && override requested

CannotOverrideException

Same instance, split for clarity displayImage(token, overrideRequested, VideoProviderInfo, forTour, cmdStat)[AccessDenied] log (token, "unauthorized attempt to display an image") [Access Denied] cmdStatusFailure ("Current user does not have the right to display on") addCommand (DisplayCmd)

See MonitorControlModule : DisplayImageImpl

Sequence Diagram

CommandStatus VideoSinkImpl Log [no rights]Access DeniedcmdStatusUpdate ("Command queued")

VideoCollectorImpl DisplayImageCommand

command queued

displayImageImpl

(VideoSinkImpl,

VideoProviderInfo,

bTour,

cmdStat)

CommandQueue execute

verifyAccessAll (token, funcRightIDs, string, string, cmdStat) new

Figure 5‑67 MonitorControlModule:DisplayImage (Sequence Diagram)

5.4.2.3 MonitorControlModule:DisplayImageImpl (Sequence Diagram)

When the display image command is executed, a check is made to see if the monitor is online. Also, there is a check to see if the new camera is revoked, offline, or if the "old" camera is controlled and this monitor has only display of the old camera within the controlling operator's monitor group. If any of these conditions are true, or if an object cannot be reached, false is returned. Next, connectReceivingToSendingDevice is called.

If the provider has a sending device that is on the same switch fabric as the receiving device, this method commands the monitor's decoder to switch the image. An error here will cause false to be returned. Otherwise, the monitor status is updated, persisted, and pushed. The commandStatus is updated as well.

If the sending device is not on the same switch fabric as the receiving device, the Router will be called to attempt to make a route. The process will select the best route among the any possible routes for successful display. This will ultimately result in one or more receiving devices to be switched to the appropriate sending devices to create or update the route through one or two bridge circuits to put up the image. As in the simple non-routed case, an error here will cause false to be returned. Otherwise, the monitor status is updated, persisted, and pushed. The commandStatus is updated as well.

Next, the "new" camera is updated to include this monitor in its list of VideoSinks. If the "new" camera cannot be updated, a NoVideoAvailable source will be displayed on the monitor. See the DisplayNoVideoAvailable sequence diagram for details. If the "new" camera can be updated, the "old" camera is updated to remove this monitor from its list of VideoSinks. Regardless of whether the "old" camera can be updated, an operations log message is written indicating that the display request was successful. Finally, the monitor status is persisted to the database, pushed out to the clients, and the commandStatus is updated.

[image: image100.emf]persistStatus(finalReason)setOpStatus("OK")[failed to add monitor]CHART2ExceptionpersistStatus(cameraDisplayed)
connectReceivingToSendingDevice(token, vsNewSource, sourceID, false, cmdStat)addDisplay(token, MonitorDisplayInfo)See MonitorControlModule:StopCameraTour Sequence Diagram, start at stopCameraTourImplMonitorControlDB[NOT a tour OR (is a tour AND tour status update true)]push (currentStatus)[failed to add monitor]failure to communicate with decoder[regular display or tour display with tour logging onopLog (token,"display request")OperationsLogno error processing otherthan log if it failsaddDisplay non-error returnremoveVideoSink(MonitorID)displayImageImpl(token,overrideRequested,monGrpID,src,forTour,cmdStat)oldCamera:VideoSourceVideoSinkImplPushEventSupplierCommandStatusSelect the shortest routeof all possible[false][false]Added the monitor tothe camera's status[failed to add monitor]doDisplayNoVideoAvailable(vpiNVA, cmdStat)[NOT a tour OR (is a tour AND tour status update true)]push (status)Attempt display of NVA if error adding Video Sink to new cameracmdStatusUpdate()1) CommandStatus will be NULL for Tours.2) "reason" should concatenated to the next "reason", etc.[active or suspended tour]stopTourImpl(tourID, cmdStat)cmdStatusUpdate()CameraControlDBThis will reject if camera is controlled at site and request will remove last display of camera at the controlling user's monitor group.Checks if camera is not revoked for display at this site and is onlinecheckCameras (sysToken,vsNewSource,cmdStat)CommandQueue2[not online]cmdStatusFailure("not online")persistStatus (camera image removed)push(status)Disconnect old image from monitor. (If this connected directly,this does nothing. If routed, route is dropped.) SeeMonitorControlModule:DisconnectRecFmSend for details.[false][false]persistStatus(finalReason)newCamera:VideoSourcedisconnectReceivingToSendingDevice(token,oldSource,cmdStat)cmdStatusSuccess(reason)Text: "Adding the monitor tothe camera's status"select sendingdevice on same fabricR5Modified to select amongsending devices configuredfor the provider that allowsshortest route.RouterWrapperR5Modified to select asending device on the same fabric among those avaiable fromr providerIncudes calls from other functionsi.e. putOnlineImple(), doDisplayNoVideoAvailable(), displayNoVideoAvailableImpl(),and build().[no sending deviceon same fabric]connect()

Figure 5‑68 MonitorControlModule:DisplayImageImpl (Sequence Diagram)

5.5 Router Control Module

5.5.1 Class Diagrams

5.5.1.1 BridgeCircuitManagement2 (Class Diagram)

This diagram shows the classes that comprise the bridge circuit classes of the RouterControlModule. The RouterControlModule is an installable module that serves the outer and bridge circuit objects and factories to the rest of the CHART II system. This diagram shows how the implementation of these CORBA interfaces rely on other supporting classes to perform their functions

[image: image101.emf]R5Modify connectReceivingToSendingDevice() to handle mutipleVideo Sending DevicesR5Modify to use new VideoProviderConfigwith arrays of sending device IDs and sending device configurations in:getBridgeCircuitConfigWithConnection() setBridgeCircuitStatusWithConnection()111111111BridgeCircuitProviderImplVideoProvider«interface»VideoCollectorImplVideoProviderImplVideoCollector«interface»VideoCollectorStatus«datatype»1VideoProviderStatus«datatype»11BridgeCircuitlDB111BridgeCircuitImpl extends VideoCollectorImplto implement the VideoCollector operationsand owns a BridgeCIrcuitProviderImpl whichextends the abstract VideoProviderImpl.BridgeCircuitImpl implements VideoProvideroperations by delegating them to theBridgeCircuitProviderImpl.1ServiceApplication2VideoProviderConfig11111*111111RouterControlModulePropertiesServiceApplicationModule«interface»RouterControlModule BridgeCircuitFactory«interface»BridgeCircuitFactoryImplBridgeCircuit«interface»BridgeCircuitImplPushEventSupplier2BridgeCircuitStatus«datatype»BridgeCircuitConfig«datatype»*111111VideoCollectorConfig«datatype»1R5Changed m_sendingDeviceConfig and m_sendingDeviceID to Arrays videoSources can now have more than one VideoSendingDevice associated with it+createBridgeCircuit(token, BridgeCircuitConfig)+getBridgeCircuitinfoList():BridgecircuitInfoList-addBridgeCircuitTypesToTrader():void+createbridgeCircuit(byte[] token, BridgeCircuitConfig bridgeCircuitCfg):BridgeCircuitInfogetHostName():String+getID():byte[]getLogFlags():boolean[]+getName():StringgetProperties():RouterControlModuleProperties+getBridgeCircuitInfoList():BridgeCircuitInfo[]getBridgeCircuitPushEventSupplier():PushEventSupplier-log(String flags, String method, String txt):void-logProd(String method, String txt):void-logStackProd (String method, String txt, Exception e):voidremoveBridgeCircuit(BridgeCircuitImpl bridgeCircuitImpl, byte[] token):voidshutdown():booleanm_db:DBConnectionManager2m_factoryIDObj:Identifierm_hostName:Stringm_logFlags:boolean[]m_name:Stringm_pendingDeleteBridgeCircuitImplVect:Vectorm_props:RouterControlModulePropertiesm_shutdown:booleanm_svcApp:ServiceApplicationm_bridgeCircuitImplVect:Vectorm_bridgeCircuitInfoVect:Vectorm_bridgeCircuitPushEventSupplier:PushEventSupplierm_bridgeCircuitStatusLogFile:LogFile+getCollectorStatus():VideoCollectorStatus+getCollectorConfig(token):VideoCollectorConfig+removeCollector(token)+connectReceivingToSendingDevice(byte[],VideoProviderInfo, byte[],CommandStatus,boolean, StringHolder) : boolean+disconnectReceivingFmSendingDevice(byte[],CommandStatus, boolean,StringHolder) : boolean+getConfiguration(token):BridgeCircuitConfig+setConfiguration(token,BridgeCircuitConfig)+getID():byte[]getIdentifier():Identifier+getName():StringgetSvcApp():ServiceApplication+getBridgeCircuitConfig(byte[] token):BridgeCircuitConfiggetBridgeCircuitName():String+getBridgeCircuitStatus():VideoTourStatuslog (String flags, String method, String txt):void-logLockDone(String lock):void-logLockRcvd(String lock):void-logLockRqst(String lock):void-logProd (String method, String txt):void-logStackProd (String method, String txt, Exception e):void#pushStatus(String desc, StringBuffer warnTxt):boolean+remove(byte[] token, CommandStatus cmdStat):void+setBridgeCircuitConfig(byte[] token, BridgeCircuitConfig config, CommandStatus cmdStat):void#verifyAccess(byte[] token, int[] rightIDs, String descPrefix, String descSuffix, CommandStatus cmdStat):void-verifyAccess(byte[] token, int rightID, String descPrefix, String descSuffix, CommandStatus cmdStat):booleanm_config:BridgeCircuitConfigm_createLogFlag:Stringm_db:DBConnectionManager2m_factory:BridgeCircuitFactoryImplm_idObj:Identifierm_lockConfig:Object[]m_lockName:Object[]m_lockStatus:Object[]m_logFlags:boolean[]m_props:RouterControlModulePropertiesm_status:BridgeCircuitStatusm_svcApp:ServiceApplicationm_bridgeCircuitPushEventSupplier:PushEventSupplier#createBridgeCircuitImpl(Identifier bridgeCircuitID, BridgeCircuitConfig config, BridgeCircuitStatus status):BridgeCircuitImpl+deletebridgeCircuit(Identifier bridgeCircuitID, BridgeCircuitConfig config):void+getConfiguration(Identifier bridgeCircuitID):BridgeCircuitConfig+getStatus(Identifier bridgeCircuitID):BridgeCircuitStatus+getBridgeCircuitList():BridgeCircuitImpl[]+insertBridgeCircuit(Identifier bridgeCircuitID, BridgeCircuitConfig config:void+saveStatus(Identifier BridgeCircuitID, BridgeCircuitStatus status):void+setConfiguration(Identifier bridgeCircuitID, BridgeCircuitConfig config):Identifier+setBridgeCircuitFactoryImpl(BridgeCircuitFactoryImpl c2BridgeCircuitFactoryImpl):voidm_c2BridgeCircuitFactoryImpl:BridgeCircuitFactoryImpm_dbConnMgr:DBConnectionManager2m_svcApp:ServiceApplicationm_bridgeCircuitPushEventSupplier:PushEventSupplier+getProviderStatus():VideoProviderStatus+getProviderConfig(token):VideoProviderConfig+setProviderConfig(token,VideoProviderConfig)+removeProvider(token)+AddDisplay(token,MonitorDisplayInfo):void+removeDisplay(token,displayID)+m_commMode:CommunicationMode+m_opStatus:OperationalStatus+m_controllingOpCenter:OpCenterInfo+m_monitorInfo:MonitorDisplayInfo+m_deviceStatusChangeTimeSecs:int+m_monitorStatusChangeTimeSecs:int+m_providerStatus;VideoProviderStatus+m_collectorStatus:VideoCollectorStatus+m_name:String+m_owningOrrgID:Identifier+m_networkConnectionSte:String+m_startProviderConfig:VideoProviderConfig+m_endCollectorConfig:VideoCollectorConfig#initCollectorStatus() : void+getCollectorStatusImpl() : VideoCollectorStatus#getCollectorConfigImpl() : VideoCollectorStatusImpl#debugPrintVideoCollectorConfig(String, String, VideoCollectorConfig) : void#debugPrintVideoCollectorStatus(String, String, VideoCollectorStatus) : void#isOnVideoFabric(byte[]) : boolean#getOwningOrgID() : byte []+getID() : byte []#getAllowSimulation() : boolean#setSimulationFlag() : booleangetIDString() : String+getIdentifier() : Identifier#getLogFlags() : boolean []+getName() : String+getCommMode() : CommunicationMode#commModeIs(CommunicationMode) : booleangetSvcApp() : ServiceApplication#initializeLogFlags(String) : void#opLog(byte[], String, int, String, String) : void#opLog(byte[], String, int, String, String, String, String) : void#logLockRqst(String) : void#logLockRcvd(String) : void#logLockDone(String) : void#logProd(String, String) : void#logStackProd(String, String, Exception) : void#log(String, String, String) : voidaddMyselfToProviderStatus(byte[], StringBuffer) : booleanremoveMyselfFromProviderStatus(byte[], StringBuffer) : boolean#cmdStatusCompleted(CommandStatus, String, boolean) : boolean#cmdStatusFailure(CommandStatus, String) : boolean#cmdStatusFailureMaybe(CommandStatus, String, boolean) : boolean#cmdStatusSuccess(CommandStatus, String) : boolean#cmdStatusSuccessMaybe(CommandStatus, String, boolean) : boolean#cmdStatusUpdate(CommandStatus, String) : boolean+getCollectorName() : String+getCollectorType() : VideoCollectorTypegetCollectorTypeName() : String+getCollectorInfo() : VideoCollectorInfo#isSimulated() : boolean#setOpStatus(OperationalStatus) : void#updateLastContactTime() : void#updateStatusChangeTime() : void#verifyAccess(byte[], int, String, String, CommandStatus) : void#verifyAccess(byte[], int[], String, String, CommandStatus) : void#verifyAccessAll(byte[], int[], String, String, CommandStatus) : void#verifyCommMode(CommunicationMode, String, CommandStatus,boolean) : void#verifyCommModeNot(CommunicationMode, CommandStatus, boolean) : void#verifyCommModeNotOffline(String, CommandStatus) : void#persistAndPushConfig(String, StringBuffer) : boolean#persistAndPushStatus(String, StringBuffer) : boolean#persistConfig(String, StringBuffer) : boolean#persistStatus(String, StringBuffer) : boolean#pushConfig(String, StringBuffer) : boolean#pushStatus(String, StringBuffer) : boolean#findVideoProvider(byte[]) : VideoProvider#findVideoSwitch(byte[]) : VideoSwitch+connectReceivingToSendingDevice(byte[], VideoProviderInfo, byte[], CommandStatus, boolean, StringHolder)#m_createLogFlag : String#m_collectorConfig : VideoCollectorConfig#m_dateFmtYYYYMMDDHHMMSS : SimpleDateFormat-m_idObj : Identifier#m_svcApp : ServiceApplication-m_networkConnectionSite : String#m_lockName : Object[]#m_lockConfig : Object[]#m_lockStatus : Object[]#m_collectorStatus : VideoCollectorStatus#m_props : MonitorControlModuleProperties-m_recvDevice : VideoReceivingDeviceOperations#m_logFlags : boolean[]-m_simulationAllowed : boolean-m_simulateComms : boolean-SIMULATE_MONITOR_COMMS_KEYWORD : String#m_systemRight : FunctionalRightType#m_systemToken : byte[]+m_componentType : VideoComponentType+m_name : String+m_networkConnectionSite : String+m_owningOrgID : byte[]+m_providerType : VideoProviderType+m_sendingDeviceConfig : VideoTransmissionDeviceConfig[]+m_sendingDeviceIDs : byte[][]

Figure 5‑69 BridgeCircuitManagement2 (Class Diagram)

5.5.1.1.1 BridgeCircuit (Class)

The BridgeCircuit interface is implemented by a objects which serve to bridge disparate switch fabrics within video routes. These switch fabrics would include the switch fabrics based around a V1500 switch and also the "null" switch fabric consisting of no switch and codec VideoTransmissionDevice objects. The BridgeCircuit interface includes both the VideoCollector interface (meaning the BridgeCircuit receives video from another VideoProvider, ultimately the VideoSource) and the VideoProvider interface (meaning the BridgeCircuit provides video to another VideoCollector, ultimately to one or more VideoSink objects).

5.5.1.1.2 BridgeCircuitConfig (Class)

This represents configuration information for a bridge circuit. This is the status of a BridgeCircuit object. It consists primarily of configuration of the VideoProvider side (input to the bridge circuit) and of the VideoCollector side (output of the bridge circuit).

5.5.1.1.3 BridgeCircuitFactory (Class)

The BridgeCircuitFactory is used to create bridge circuits bridging two switch fabrics.

5.5.1.1.4 BridgeCircuitFactoryImpl (Class)

The BridgeCircuitFactoryImpl class provides an implementation of the BridgeCircuitFactory interface as specified in the IDL. The BridgeCircuitFactoryImpl maintains a list of BridgeCircuitImpl objects and is responsible for publishing BridgeCircuit objects in the Trader on startup and as new bridge Circuit objects are created. Whenever a BridgeCircuit is created or removed, that information is persisted to the database.

5.5.1.1.5 BridgeCircuitImpl (Class)

The BridgeCircuitImpl class provides an implementation of the BridgeCircuit interface. Contained in this class are BridgeCircuitConfig and BridgeCircuitStatus objects (used to store the configuration and status of the bridge circuit).

5.5.1.1.6 BridgeCircuitlDB (Class)

The BridgeCircuitDB class provides an interface between the SwitchControl service and the database used to persist the BridgeCircuit objects and their configuration and status in the database. It contains a collection of methods that perform database operations on tables pertinent to Bridge Circuits. The class is constructed with a DBConnectionManager object, which manages database connections. Methods exist to insert and delete Bridge Circuit objects from the database, and to get and set their configuration and status information.

5.5.1.1.7 BridgeCircuitProviderImpl (Class)

This class extends the VideoProviderImpl class, a partial, abstract implementation of the VideoProvider interface.

5.5.1.1.8 BridgeCircuitStatus (Class)

This is the status of a BridgeCircuit object. It consists primarily of a status on the VideoProvider side (input to the bridge circuit) and on the VideoCollector side (output of the bridge circuit).

5.5.1.1.9 PushEventSupplier2 (Class)

This class is used to wrap a CORBA event channel so automatic reconnects can occur should the connection be lost.

5.5.1.1.10 RouterControlModule (Class)

This class is the top level module used to manage routing of video across switch fabrics within CHART II

5.5.1.1.11 RouterControlModuleProperties (Class)

The RouterControlModuleProperties class is used to provide access to properties used by the Router Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Router Control Module.

5.5.1.1.12 ServiceApplication2 (Class)
This interface is implemented by objects that can provide the basic services needed by a CHART service application. These services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA, Trader, and Event Service.

5.5.1.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.5.1.1.14 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects (e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects collect video from a VideoProvider, but only VideoSink objects are true destination endpoints for video feeds which a typical user would have direct interaction with. BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute which eventually provides video ultimately to the VideoSink object(s) at the end of the route(s).

5.5.1.1.15 VideoCollectorConfig (Class)
This structure defines configuration data common to all video collectors.

5.5.1.1.16 VideoCollectorImpl (Class)

The VideoCollectorImpl class provides an implementation of the VideoCollector interface.

This class contains a CommandQueue object that is used to sequentially execute long running operations related to display in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are VideoCollectorConfig and VideoCollectorStatus objects (used to store the configuration and status of the video receiving device).

The VideoCollectorImpl contains *Impl methods that map to methods specified in the IDL, including requests to connect and disconnect video receiving devices to video sending devices (an actual camera or a video switch port). Some of these requests are long running, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The queueable command objects simply call the appropriate VideoCollectorImpl method as the command is executed by the CommandQueue in its thread of execution.

5.5.1.1.17 VideoCollectorStatus (Class)
This structure defines the data included in the status of a video collector.

5.5.1.1.18 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects (e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit objects provide video to a VideoCollector, but only VideoSource objects are true origins of video which a typical user would have direct interaction with. BridgeCircuit VideoProvider objects merely pass on video provided from elsewhere in a VideoRoute.

5.5.1.1.19 VideoProviderConfig (Class)
This structure defines configuration data common to all video sources.

5.5.1.1.20 VideoProviderImpl (Class)
This class implements the VideoProvider interface as an abstract class. Subclasses for this class are the VideoCameraImpl and BridgeCircuitProviderImpl class.

5.5.1.1.21 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about VideoProvider objects at the VideoProvider level. Further details about lower-level VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

5.5.1.2 Router (Class Diagram)

This class diagram shows the VideoRouteManager and associated classes comprising the routing part of the RouterControlModule, which builds, manages, and drops video display routes across video fabrics. The RouterImpl, which implements the VideoRouteManager, makes use of the AVCMRouterRequestManager, which is existing C++ code from AVCM 3.0, to do the bulk of the routing work. After the router is initialized, all routing connect and disconnect requests are passed down into the AVCMRouterRequestManager for processing. The AVCMRouterRequestManager makes calls back out to the Java environment to make the actual connections to and from the necessary bridge circuits. The RouterControlModule receives notification of the addition of devices (cameras, monitors, bridge circuits, fabrics, switches, etc.) added to the system by users, and also runs a discovery task in the background to detect any devices (which were inaccessible at the time of initialization.

[image: image102.emf]*We'll get the cameras,monitors, switches, switch fabrics, and the bridge circuits from the traders.RouterControlModule1java.util.Timer1111RouterJNIDLL11java.util.TimerTask111111VideoRouteManager«interface»AVCMRouterRequestManagerImplR5Modifies getBridgeCircuitsFromTrader()and getVideoSourcesFromTrader() to handlevideo sending device ID and config arrays.ServiceApplicationModule«interface»1RouterControlModuleProperties1RouterImplAVCMRouterRequestManager11reason is an output parameter forconnect() and disconnect() to returnthe reason for failure if failure occurs.1RouteRouterControlDBRouterJNI1CheckForNewDevicesTask+connect(token,VideoProviderInfo,VideoProviderConfig, VideoCollectorInfo, VideoCollectorConfig, overrideRequested,reason):boolean+disconnect(token,VideoProviderInfo,VideoProviderConfig, VideoCollectorInfo, VideoCollectorConfig, reason):boolean+initialize(token)+initializeRouter() : boolean+shutdown() : boolean+getRoute(camID, MonID) : RouteList+logMsgJNI(string)+loadCameras()+loadMonitors()+loadSwitches()+loadSwitchFabrics()+loadBridgeCircuits()+loadRoutes()+setCameraControlled()+setCameraNotControlled()+nonlockingRemoveForOverrideOnly()+display()+removeDisplay()+localDisplay()+localRemoveDisplay()+localNonlockingRemoveForOverrideOnly()+localSetCameraControlled()+localSetCameraNotControlled()+localReinitialize()+localLogActiveRoutes()+localLogAllRoutes()+addCamera()+addMonitor()+addBridgeCircuit()+addSwitch()initializeRouter():booleangetBridgeCircuitsFromTrader(String[][], String[][], String[][], String[][], String[][], String[][])getVideoSourcesFromTrader(String[][], String[][], String[][], String[][])initialize(ServiceApplication app):booleangetVersion() : ComponentVersiontraderGroupUpdated() : voidshutdown(ServiceApplication app):booleanServiceApplication m_svcApp;DefaultServiceApplicationProperties m_props;+initializeRouter() : boolean+logEvent(string, ...)+display()+reinitialize()+setCameraControlled()+setCameraNotControlled()+nonlockingRemoveForOverrideOnly()+removeDisplay()+localDisplay()+localRemoveDisplay()+localNonlockingRemoveForOverrideOnly()+localSetCameraControlled()+localSetCameraNotControlled()+localReinitialize()+localLogActiveRoutes()+localLogAllRoutes()+addCamera()+addMonitor()+addBridgeCircuit()+addSwitch()+getRoutes()+deleteRoute()+addRoute()+initialize(ServiceApplication svcApp) : boolean+shutdown(ServiceApplication svcApp) : boolean-createEventChannel(String name) : PushEventSupplier-createNotificationChannel(String name) : PushNotifySupplier-addRouterTypeToTrader() : voidServiceApplication m_svcApp;RouterDB m_db;RouterControlModuleProperties m_props;+Display(CameraID, MonitorID, bTestOnly, bOverrideRequested, pbRouteCreated, pNumOverrideMonitors, pvarOverrideMonitorNames, pvarOverrideCameraNames)+Reinitialize()+LogEvent(string, ...)+SetCameraControlled(CameraID, SiteID)+SetCameraNotControlled (CameraID)+NonlockingRemoveForOverrideOnly(CameraID, MonitorID)+RemoveDisplay(CameraID, MonitorID)+LocalDisplay(CameraID, MonitorID, bTestOnly, bOverrideRequested, pbRouteCreated, pNumOverrideMonitors, pvarOverrideMonitorNames, pvarOverrideCameraNames)+LocalRemoveDisplay(CameraID, MonitorID)+LocalNonlockingRemoveForOverrideOnly(CameraID, MonitorID)+LocalSetCameraControlled(CameraID, SiteID)+LocalSetCameraNotControlled(CameraID)+LocalReinitialize()+LocalLogActiveRoutes()+LocalLogAllRoutes()+AddCamera()+AddMonitor()+AddBridgeCircuit()+AddSwitch()schedule() : voidcancel() : void+Display(CameraID, MonitorID, bTestOnly, bOverrideRequested, pbRouteCreated, pNumOverrideMonitors, pvarOverrideMonitorNames, pvarOverrideCameraNames)+Initialize() : boolean+Reinitialize()+LogEvent(string, ...)run()+run()+addCameraTask()+addMonitorTask()+addBridgeCircuitTask()+addSwitchTask()+WriteToDB(simulationFlag)

Figure 5‑70 Router (Class Diagram)

5.5.1.2.1 AVCMRouterRequestManager (Class)

This is the C++ DCOM interface class for managing routes between switch fabrics. This class receives incoming DCOM calls on the public IAVCMRouterRequestManager interface methods and passes them off to the implementation class.

5.5.1.2.2 AVCMRouterRequestManagerImpl (Class)

The implementation of the AVCMRouterRequestManager DCOM interface. This class manages routes between switch fabrics.

5.5.1.2.3 CheckForNewDevicesTask (Class)

This class will respond to adding a new device to the system by periodically checking the event channel for "add" events. It will then call the appropriate method to handle adding the new device to the router.

5.5.1.2.4 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.5.1.2.5 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.5.1.2.6 Route (Class)

Keeps track of one route between switch fabrics. A "route" is a collection of bridge circuits that interconnect two switch fabrics. All possible routes between any two switch fabrics are stored as separate instances.

5.5.1.2.7 RouterControlDB (Class)

The database code used by the Router to manage the active routes.

5.5.1.2.8 RouterControlModule (Class)

This class is the top level module used to manage routing of video across switch fabrics within CHART II

5.5.1.2.9 RouterControlModuleProperties (Class)

The RouterControlModuleProperties class is used to provide access to properties used by the Router Control Module. This class wraps properties that are passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the Router Control Module.

5.5.1.2.10 RouterImpl (Class)

The CORBA interface used by CHART II to handle display requests across switch fabrics.

5.5.1.2.11 RouterJNI (Class)

The JAVA class used by CHART II to interface with the C++ Router via the RouterJNIDLL.

5.5.1.2.12 RouterJNIDLL (Class)

This is the C++ DLL that will bridge between CHART II (JAVA) and the heavily modified version of the AVCMDBServer (C++) that will only retain the Router code.

5.5.1.2.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host service is initialized and when it is shutdown. The implementing class can use these notifications along with the services provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.5.1.2.14 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing capabilities within CHART II. This router does not need to be used (in fact, cannot be used) when the VideoSource and VideoSink are on the same switch fabric -- it is used only to make video routes across switch fabrics.

5.5.2 Sequence Diagrams

5.5.2.1 Router:Connect (Sequence Diagram)

This sequence diagram shows the process of using the wrapped C++ router (called AVCMRouterRequestManager) to make a route across switch fabrics to connect a video source (sending device) to a video sink (receiving device). The router will select the sending device that requires the fewest hops if the video source has more than one sending device configured. The router figures out the route to be made, invoking an override if necessary, and calls back out to the RouterImpl in the Java environment to connect a sending device to a receiving device for each hop of the route. Depending on the state of the video network, 1 to 3 connect calls may be necessary to complete the route.

Before a route is made. the Router can be called in a test-only mode, to test whether a route would be able to be made or not, before the old image is dropped off the monitor. If called in test-only mode, the route is computed, but no other work is done. The return code indicates whether a route would have been made.

[image: image103.emf][fail or none][fail]reason='Could not find source, or provider chosen for route'[fail][success]provider[fail]reason='Could not contact source, or provider chosen for route'[success]providerConfiggetUniquelIdentifiableCorbaObject(collectorID)[fail or none][fail]
reason='Could not find monitor, or collector chosen for route'[success]collector[fail]providerInfo down below is built from provider found where pointed to above.m_wkgToken & m_wkgCmdStat were saved from initial call at the top of this diagram.R5Add to C++ code most likely (CAVCMRouterRequestManagerImpl::FindCxnForCamera and Display) to get mutiple connections and processthem for the best routeREMEMBER:m_inUse must be cleared in a finallyblock so we neverexit (by return or bythrow) with it set![failure][success]RouterWrapperIf on synchronouscall (doNotBlock true), return right away if cannot getlock right away. The "true" returnedindicates (perhapsfalsely) that the routewould work, so wecan go on and checkfor sure in async partof call.Called from three places in VideoSinkImpl -1. from displayImage() (synchronous call), with doNotBlock true to perform quick test (only if router available);2. from displayImageImpl() (asynch), with doNotBlock false to perform test for sure (waiting as necessary); and3. from displayImageIImpl() (asynch) to do the actual route, with testOnly false (and of course doNotBlock false).Java codeC++ code (legacy)C++ code (new)CRITICAL:m_inUsemust be cleared in afinally blockso that we can neverreturn orthrow withm_inUsestill true!Save cmdStat and token for use below.Token is original requesting user's token + system right.[failure and built no circuits that now have to be dropped]connect(...)check for router lock[did not get lock &&doNotBlock true]truetruewait for router lockconnect(...)build(...)build(...)drop(...)drop(...)Should never happen,just being defensive.[timeout]falseAll calls between RouterJNI & RouterJNIDLL use JNI for argument translation.AVCMRouterRequestManager call was originally to anAVCMVirtualCircuitRequestManager, which is now a call back out to the Java environment and back to the calling RouterImpl object in Java to drop a circuit. Original call in AVCMRouterRequestManager::DropVirtCkt()was:pVirtCktReqMgr->Drop(bstrSrcCxnStr, srcCxnType, bstrDestCxnStr, destCxnType, bstrCktIdStr);Adding a reason string (String[0]) to get back a reason string to return to the inital VideoSinkImpl caller on any failure.save cmdStat asm_wkgCmdStat,token as m_wkgTokenreturnedRouteCreatedResult=falsepopulate returnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams[failure][success]connect() and disconnect() are synchronized through this mechanism,so that only one connect/disconnect action can be ongoing at any one time."check for router lock" sets m_inUse and iHaveRouter under synchronized(m_inUse)."wait for router lock" does "check for router lock" in a loop until iHaveRouter (or time out).See RouterControlModule'sRouter:Disconnect for details.[failure building any circuit and other circut(s) already built]Drop(providerID,collectorID,virtCktID, forOverride=false, reason)[failure]clean up[success][whilevirtual circuitsadded notdropped yet,if route wasnot fullybuilt]The double-barredin-scope region ispart of pre-existingC++ code in theAVCMRouterRequestManager.It will be used in its existing form as much as possible, except for the calls out to the Router class for Build and Drop as shown.false[testOnly]true or false, reason if false[testOnly]true or false,reason if falseconnectReceivingToSendingDevice(m_wkgToken, providerInfo, sourceID, m_wkgCmdStat, completeCmdStat=false, reasonHolder)[fail][fail]
reason=reason from reasonHolder or 'Could not contact monitor, or bridge circuit chosen for route'[success]All these failure returns are diagramed in short-hand. Really the return goes through theRouterJNIDLL, RouterJNI, Router, & RouterWrapper before reaching the callingVideoCollectorImpl, as shown in the success caseand failure case below.[success]returnedRouteCreatedResult=truepopulate returnedNumOverrideMons, returnedOverrideMons, returnedOverrideCamsAVCMRouterRequestManager.Display()has error logic that attempts to undo thework started to create a route if it cannotbe finished. If any "virtual circuits" are created, and then another "virtual circuit"cannot be created (in loop iteration 2 or 3), the virtual circuits created are undone in the loop below this one, belowthe success return.connect(...)Called with testOnly = true to testwhether a route would be made. - If it returns success, we know to drop the old route or virt ckt to the monitor and call Display() again with bTestOnly = false.- If it returns failure, we know not to bother dropping the old route or virt ckt, it would be for no purpose.Called with testOnly = false to actually attempt to make a route.providerID is the ID of the ultimate VideoSource if providerType is CAMERA_CONNECTION,else it is the ID of the provider end (output) of a bridge circuit.collectorID is the ID of the ultimate Monitor if collectorType is MONITOR_CONNECTION,else it is the ID of the collector end (input) of a bridge circuit.[success]reason=empty string, returnedVirtCktID=IdentifierGenerator.createIdentifier()returnedVirtCktID is supposed to be the ID of the created virt ckt, but in CHARTvirt ckts don't have IDs. It may be okay to just return a freshly created unique IDthat isn't an ID of anything. Need to be able to completely regenerate routes on re-init.[fail][fail]VideoSinkImplRouter(RouterImpl)RouterJNIRouterJNIDLLAVCMRouterRequestManager call was originallyto a AVCMVirtualCircuitRequestManager, which is now a call back out to the Java environment andback to the calling RouterImpl object in Java tobuild the circuit. The original call in AVCMRouterRequestManager::BuildVirtCkt() is:pVirtCktReqMgr->Build(bstrSrcCxnStr, srcCxnType, bstrDestCxnStr, destCxnType, &bstrVirtCktIdStr, bstrRealCameraName, bstrRealMonitorName);Need to add a &bstrReasonStr to get back a reason string toreturn to the inital VideoCollectorImpl caller on any failure.connect(...)AVCMRouterRequestManagerCall may be made 1 to 3 timesin this loop.provider:VideoProviderDeviceUtilitycollector:VideoCollectorconnect(token, VideoProviderInfo,VideoProviderConfig,VideoCollectorInfo,VideoCollectorConfig,overrideRequested,testOnly,doNotBlock, cmdStat)Display(providerID, collectorID, testOnly, overrideRequested, returnedRouteCreatedResult,returnedNumOverrideMons, returnedOverrideMons, returnedOverrideCams)Build(providerID,collectorID,returnedVirtCktID, reason,providerName,collectorName, sourceID)[whilevirtual circuitsneed to bebuilt]getProviderConfiggetUniquelyIdentifiableCorbaObject(providerID)

Figure 5‑71 Router:Connect (Sequence Diagram)

5.6 Utility Package

5.6.1 Class Diagrams

5.6.1.1 UtilityClasses2 (Class Diagram)

This Class Diagram shows various utility classes related to log entries that are used by GUI and servers.

[image: image104.emf]ObjectLocationUtilityGeoLocation*11MultiConverter*1DBUtilityBucketSetTokenManipulator1TravelTimeScheduleUtilTravelTimeRangeDef*1TravelTimeRange*1ObjectLocatorTraderGroupObjectCacheProxyObject1111GeoAreaUtilConstructor sets m_refCount to 1.Additional references recorded by LogEntryCachewith incdRefCount() and decrRefCount()1*1*1OpLogQueue11LogFilter«struct»LogEntry«struct»LogIteratorImplCachedLogEntrym_keys is an ordered array ofslots in the cache for the LogEntrieswhich match the filter. Each keyis used to extract the appropriateLogEntry from the LogEntryCache.m_nextEntry indexes into arrayof m_entrySlots, pointing to thenext entry to extract.MultiParseListener«interface»FunctionalRightType1OpLogMessage1MultiFormatter*logs messageusing*LogIterator«interface»1LogFile1DatabaseLoggerLogEntryCache*OperationsLogLogEntryCache deletes a CachedLogEntry fromhashtable when its refCount hits 0.*DMSHardwarePageLogCorbaUtilities1Source sourceboolean sourceIsUsedstring authorTimeStamp startDateTimeStamp endDateIdentifier eventIDIdentifier logEntryIDstring opCenterNamestring containsTextboolean isCaseSensitiveLogFilterMessageType messageTypeDatabaseLogger(tableName)addEntry(logEntry) : voidcheclExpiredEntries() : voidgetEntries(filter, maxCount) : LogIteratorshutdown() : voidgetMoreEntries(long maxCount) : LogEntryListdestroy():voidlong m_timeOfLastUseescapeSingleQuotes(string):stringexecuteSQLStatement(conn, query, string, int):voidOperationsLog(DBConnectionManager db)log()flushLog()shutdown()addEntry(LogEntry entry)Object[] m_keysint m_nextEntryOpLogQueue()put()flush()getFirstMessage()removeFirstMessage()m_logQueueTimemultiToPlainText(multi)plainTextToMulti(text, formatter)parseMulti(multi, listener)hardwareMsgToMulti(DMSHardwarePage[] msg):StringIdentifier IDTimeStamp timeStampIdentifier eventIDstring textstring authorstring opCenterNamestring hostNameSource sourceLogEntryMessageType messageTypecopyOLData(src : ObjectLocation, dest : ObjectLocation) : voidcreateChangedOLDataString(oldOL : ObjectLocation, newOL : ObjectLocation) : StringcreateInsertStringForOL(ol : ObjectLocation, colBuf : StringBuffer, valBuf : StringBuffer) : voidcreateUpdateStringForOL(ol : ObjectLocation) : StringgetObjectLocationData(idStr : String, ol : ObjectLocation, conn : Connection) : voidinitEmptyObjectLocation(ol : ObjectLocation) : voidpersistOLData(idStr : String, ol : ObjectLocation, type : ObjectType, conn : Connection) : voidremoveOLData(idStr : String, conn : Connection) : voidString m_actionDescString m_actionTypeString m_opCenterDate m_timeStampString m_useraddEntry(LogEntry entry) : ObjectgetEntry (Object key) : LogEntryjava.util.Hashtable hashTablefindAllObjectsOfType(ORB, lookup, type):Object[]plainTextToMulti(text)messageTxt(text)lineJustification(justify)newLine(pixelSkip)newPage()pageDisplayTime(timeOn, timeOff)unknownTag(tag)parseComplete()char[][] m_pageTextint m_pageOnTimeint m_pageOffTimedecrRefCount() : voidequals() : booleangetEntry() : LogEntrygetRefCount() : inthashCode() : intincrRefCount() : voidm_logEntrym_refCountgetLatitudeDegrees():doublegetLongitudeDegrees():doublelog(Object obj, String message, int level)logStack(Object obj, String message, int level, Throwable th)setKeepDays(int days)setLogFileName(String fileName)getKeepDays()getLogFileName()OpenLogFile()setLogLevel(int level)getLogLevel()deleteLogFiles(Date presentTime)m_logFileNamem_keepDaysm_logFilem_creationDatem_defFileNamem_logLeveladd(comparable)remove(comparable)removeAll()getElements(int)size()isEmpty()m_comparablesget():Log;log()logStack()m_instanceTokenManipulator()createToken(userName, opCenterID, opCenterName)optimize(operation, orgFilter)add(userToken, operation, orgFilter)add(userToken, operation)remove(userToken, operation, orgFilter)remove(userToken, operation)getOpCenterName(userToken)getOpCenterID(userToken)getHostName(userToken)getUserName(userToken)checkAccess(userToken, operation, orgFilter)checkAccess(userToken, operation)hasRight(userToken, operation, orgFilter)validateToken(userToken)calcCheckSum(userToken)printToken(userToken)printNybble(nybble)$createPolygonsFromGeoAreas(area : GeoArea[]) : java.awt.Polygon[]$isPointinGeoArea(PointLocationProfile, areas : GeoArea[]) : boolean$isLatLonInGeoArea(lat : int, lon : int, areas : GeoArea[])boolean()$isPointInPolygon(PointLocationProfile, areas : Polygon[]) : boolean$isLatLonInPolygon(lat : int, lon : int, areas : Polygon[]) : booleantimeRangesFromJSON(json:String):HHMMRange[]timeRangesToJSON(ranges:HHMMRange[]):Stringinit(id:Identifier, name:String, objRef:org.omg.CORBA.Object):voidgetID():IdentifiergetName():StringgetObjectReference():org.omg.CORBA.ObjectisLocal():booleanabstract update():voidm_id:Identiferm_name:Stringm_objRef:org.omg.CORBA.Objectdescription()enumerate()fromInt()name()value()ConfigureDMSConfigureSelfConfigureUsersForceDMSPollManageDeviceCommsManageDictionaryManageUserLoginsModifyMessageLibraryModifyPlansResetDMSGroupSetDMSMessageTransferAnySharedResourceUsePlansViewDictionaryViewUserConfigViewUserLoginsTravelTimeRange(json:String)convertToRange(travelTime:int):int[2]getRangeDefs():TravelTimeRangeDef[]setRangeDefs(defs:TravelTimeRangeDef[])getJSONString():String-m_travelTime:int-m_subtractAmt:int-m_addAmt:intgetObject(id:Identifier, traderSearchType:String, proxyClass:Class):ProxyObjectgetObjectsOfType():ProxyObject[]+ObjectCache(orb : ORB, poa : POA, dataModel : DataModel, ecg : EventConsumerGroup, contextProvider : SystemContextProvider, discoveryDriver : DiscoveryDriverClass, cmds : QueueableCommand[]) : ctor+getDataModel() : DataModel+getObject(key : Object) : Object+getObjectsOfType(classCheck : Class) : Object[]+getAllObjects() : Object[]+getNameFilteredObjectsOfType(type : Class, filter : NameFilterClass) : Object[]+isDuplicated(type : Class, other : Duplicatable) : boolean+getDuplicates(type : Class, other : Duplicatable) : Duplicatable[]+search(criteria : string, caseSensitive : boolean, fromClasses : Class[]) : Object[]m_orb : ORBm_poa : POAm_dataModel : DataModelm_ecg : EventConsumerGroupm_traderGroup : TraderGroupm_discoveryToken : AccessTokenm_sysProfileProps : SystemProfilePropertiesm_sysContextProvider : SystemContextProvider

Figure 5‑72 UtilityClasses2 (Class Diagram)

5.6.1.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects added to this collection must be of the same concrete type. Each element in the collection has an associated counter which tracks how many times this element has been added. It is then possible to get only the elements which have been added to the collection n times where n is a positive integer value. This class is very useful for creating GUI menu's for multiple objects as it allows all objects to insert their menu items and then allows the user to get only those items which all objects inserted.

5.6.1.1.2 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient LogEntryCache. The object of this class encapsulates the stored log entry and adds a reference count.

5.6.1.1.3 CorbaUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server and GUI for CORBA Trader service transactions.

5.6.1.1.4 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

5.6.1.1.5 DBUtility (Class)

This class contains methods that allow interaction with the database.

5.6.1.1.6 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS hardware. A two dimensional array that is the same size as the sign's display (rows and columns) specifies the character displayed in each cell, including blank if the cell has no character. This format maps well to the way DMS protocols return the current message being displayed in a status query. This class can then be passed to a MultiConverter object to convert the message into MULTI format.

5.6.1.1.7 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the CHART2 system. It contains a static member for each possible functional right.

5.6.1.1.8 GeoAreaUtil (Class)

This class contains static methods used for searching GeoAreas for specific Lat/Lons. The actual search of a GeoArea is done by converting a chart GeoArea to a java.awt.Polygon then using that object's contains(lat,lon) method to make the determination. Serveral helper methods front the Polygon based methods for flexibility.

5.6.1.1.9 GeoLocation (Class)

This class represents a location on the Earth's surface in geographic (latitude, longitude) coordinates.

5.6.1.1.10 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for system trace messages.

5.6.1.1.11 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic Event actions (opening, closing, etc.) are logged in the Communications Log as well as in the history of the specific Traffic Event.

5.6.1.1.12 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess of the requestor-specified maximum number of entries to return at one time. The LogIterator stores references to the LogEntry objects thus cached, and requests additional objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate copies of LogEntry objects, and it deletes LogEntry objects when they are no longer needed.

5.6.1.1.13 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user specified interval. The log files created by this class are used for system debugging and maintenance only and are not to be confused with the system operations log which is modeled by the OperationsLog class.

5.6.1.1.14 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the Communications Log. The caller would create an object of this type specifying the criteria that each log entry must match in order to be returned.

5.6.1.1.15 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval request results in more data than is reasonable to transmit all at once, one clump of entries is returned at first, together with a LogIterator from which additional data can be requested, repeatedly, until all entries are returned or the user cancels the operation.

5.6.1.1.16 LogIteratorImpl (Class)

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work which clients can request via the LogIterator interface. The LogIteratorImpl stores data relating to cached LogEvents for a single retrieval request, and implements the client request to get additional clumps of data pertaining to that request.

5.6.1.1.17 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up language and plain text. It also provides a method which will parse a MULTI message and inform a MultiParseListener of elements found in the message.

5.6.1.1.18 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to MULTI formatted messages.

5.6.1.1.19 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing class to be notified as parsing of a MULTI message occurs. An exemplary use of a MultiParseListener would be the MessageView window which will need to have the MULTI message parsed in order to display it as a pixmap.

5.6.1.1.20 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.6.1.1.21 ObjectLocationUtility (Class)

This class contains utility functionality for dealing with ObjectLocation objects.

5.6.1.1.22 ObjectLocator (Class)

This class is used to provide access to proxy objects stored in the CHART object cache (which have been discovered by the DiscoveryDriver tasks).

5.6.1.1.23 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time of instantiation of this class, it creates a queue for log entries. When a user of this class provides a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to the OpLogQueue. Once queued, the messages are written to the database by the queue driver thread in the order they were queued.

5.6.1.1.24 OpLogMessage (Class)

This class holds data for a message to be stored in the system's Operations Log.

5.6.1.1.25 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system's Operations Log. Messages added to the queue can be removed in FIFO order.

5.6.1.1.26 ProxyObject (Class)

This class is a base class for many types of proxy objects store in the CHART object cache (which have been discovered by the DiscoveryDriver tasks), used to provide a standard set of access methods for the proxy objects.

5.6.1.1.27 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should use the check access method to verify access and optimize to reduce reduce the size of the sequence to only those rights which are necessary to invoke the secure method. The token contains the following information. Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

5.6.1.1.28 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.6.1.1.29 TravelTimeRange (Class)

This class is a utility that can convert a travel time into a travel time range. It is constructed using the travel time range definitions as specified by a JSON string stored in the system profile. The convertToRange method can then be called get the low and high range values for a specific travel time.

5.6.1.1.30 TravelTimeRangeDef (Class)

This class holds data for a travel time range definition. It has methods that can convert this object to a JSON object for persistence in the system profile, and to allow its data to be loaded from a JSON object when depersisting from the system profile.

5.6.1.1.31 TravelTimeScheduleUtil (Class)

This class provides utility methods related to travel time schedules.

5.7 GUI - servlet (chartlite/servlet)

5.7.1 Class Diagrams

5.7.1.1 ServletBaseClasses (Class Diagram)

This diagram shows classes related to the base CHART GUI servlet.

[image: image105.emf]HomePageReqHdlr UserLoginSessionImpl AlertFilterAdded AlertFilter to login session for R5 11 1 1 MaintenancePortalContentMapping 0..1 PortalContentMapping «interface» FullView doesn't need a mapping - it always uses the orignal pages. 1 Added for R5 New for R5 Maint GUIPortalType«enumeration»11RequestAction 1 1 NavLinkRights chartlite.servlet.UserLoginSessionImplServletDB11ServletProperties * 1 1 1 MainServlet RequestHandlerSupporter«interface»RequestHandlerMapping 11 11 1 RequestHandler «interface» 1 org.apache.velocity. VelocityServlet UserLoggedOutPolicy «enumeration» getProperties():ServletPropertiesgetDB():ServletDBgetCachedObject(objID:Identifer):ObjectgetCachedObjectsOfType(type:Class):Object[]getSysProfileProps():SystemProfilePropertiesgetORB():ORBgetRootPOA():POAgetPersistentPOA():POAgetTraderGroup():TraderGroupgetEnclosingTemplate():StringgetPopupTemplate():StringuseHomePage():booleanusePopups():booleangetLoginAction():StringgetContentMapping():PortalContentMappingFullViewDeviceMaintenancehandleRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context):Template getUserLoggedOutPolicy():UserLoggedOutPolicy getAction():String getLocalMonitorGroupID():IdentifiergetNavLinkRights():NavLinkRightsgetCurrentAlertFilter():AlertFiltersetAlertFilter(filter : AlertFilter) : voidinitialWorkingPageShown() : booleansetInitialWorkingPageShown(shown : boolean) : voidgetInitialWorkingPageURL() : StringgetHomeMonitorID() : IdentifiersetHomeMonitorID(id:Identifier) : voidgetMRUTrafficEventNotificationGroups() : WebNotificationGroup[]

getMRUTrafficEventNotificationIndividuals() : WebNotificationIndividual[]

getMRUStandaloneNotificationGroups() : WebNotificationGroup[]

getMRUStandaloneNotificationIndividuals() : WebNotificationIndividual[]

updateNotificationMRULists(recipients:WebNotificationRecipient[], isForEvent:boolean) : void

getEventCloseDevicesRadiusTenths(eventID : Identifier) : int

setEventCloseDevicesRadiusTenths(eventID : Identifier, tenths : int) : void

setPortalType(type:PortalType):void

m_initializedNotificationMRULists : booleanm_eventCloseDevicesRadiusTenthsTable : HashTable<Identifier; Integer>getPortalContentTemplate(String origingalTemplate):String alwaysPopup(String originalContent):boolean getRequestAction():RequestAction getRequestHandler():RequestHandlerDisplayLoginPage DisplayError DisplayNoContent XMLError -m_mapping:Hashtable<String String> init(supporter:RequestHandlerSupporter) : void getActions() : ArrayList<RequestAction> processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String shutdown(supporter:RequestHandlerSupporter) : void isAllowAll():boolean passesFilter(alert:WebAlert, user:String, opCenterID:Identifier):boolean getFilterType():String getOpCenter() getUsername() ping()forceLogout() getAccessToken() setAccessToken() getCORBAID() m_accessToken getFramingTemplate():String getNavBarTemplate():String getErrorTemplate():String trapUserEnabled():boolean getXMLGeneralResultTemplate():String isViewOnly():boolean canManageEvents():boolean canViewEventDetails():boolean canHandleUncontrolledRes():boolean canViewAlert(alert:WebAlert):boolean canManageAlert(alert:WebAlert):boolean canManageDictionary():boolean getHomePageJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

Figure 5‑73 ServletBaseClasses (Class Diagram)

5.7.1.1.1 AlertFilter (Class)

This class is used to filter WebAlert objects.

5.7.1.1.2 chartlite.servlet.UserLoginSessionImpl (Class)

This class is used to store information about the logged in user. It is also the implementation of the UserLoginSession CORBA interface that can be called from the server to ensure the user is still logged in, send them an instant message, or force the user to become logged out.

5.7.1.1.3 HomePageReqHdlr (Class)

This class supports requests for data that are needed by the home page.

5.7.1.1.4 MainServlet (Class)

This class is the main class of the servlet. It handles all requests and dispatches them to the appropriate request handler. It also acts as a RequestHandlerSupporter, which is passed to each request handler to help them process requests.

5.7.1.1.5 MaintenancePortalContentMapping (Class)

This class is a PortalContentMapping for the device maintenance portal. It has a hashtable that provides a mapping of standard GUI content templates to custom versions for use when the user is logged into the device maintenance portal. Note that not all CHART pages are customized for the maintenance portal - when no customized page exists, this mapping returns the original page.

5.7.1.1.6 NavLinkRights (Class)

This class provides user rights checking for the servlet. It contains a user's token and provides easy to use methods that can check the presence of functional rights, combinations of rights, or even rights that are specific to the object the user wishes to use.

5.7.1.1.7 org.apache.velocity. VelocityServlet (Class)

The base class for the Velocity template engine. This template engine is used to provide dynamic content from the CHART GUI Servlet. The web pages are code in templates using velocity specific macros. The code in the servlet loads data that will be shown on the page into a velocity Context, and this VelocityServlet class is used to merge the content with the template to create HTML for the browser to display.

5.7.1.1.8 PortalContentMapping (Class)

This interface specifies a method to be implemented by classes that provide a mapping of standard CHART web pages to versions that are customized for a portal which provides a different view of the system. It also specifies a method that allows portals to specify content that is always to be displayed in a popup, even if the portal prefers to not use popups. This feature exists for special content such as pages that allow the user to listen to audio via a browser plugin.

5.7.1.1.9 PortalType (Class)

This enumeration defines the portal type the user has logged into. FullView represents the full versioned GUI. DeviceMaintenance represents the device maintenance portal, which is tailored to use by device maintenance personnel.

5.7.1.1.10 RequestAction (Class)

This class contains information about an action that can be invoked via a request handler. The action parameter is specified in the URL as the "action" parameter, or as the last part of the servlet path. The user logged out policy specifies what the servlet should do if this action is requested when the user is logged out.

5.7.1.1.11 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.7.1.1.12 RequestHandlerMapping (Class)

This class provides a mapping between an action and the request handler used to process a request for that action.

5.7.1.1.13 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods that are helpful to request handlers.

5.7.1.1.14 ServletDB (Class)

This class is used by the CHART GUI servlet to access CHART GUI specific data that is stored in the database.

5.7.1.1.15 ServletProperties (Class)

This class provides access to properties defined in the chart gui's properties file.

5.7.1.1.16 UserLoggedOutPolicy (Class)

This enumeration specifies the types of actions that may be specified for responding to a request that is received when the user is logged out.

5.7.1.1.17 UserLoginSessionImpl (Class)

This class is the implementation of the CORBA UserLoginSession interface. It will be served from the GUI and will be passed to the OperationsCenter on login. It will also store the access token returned from the OperationsCenter.

5.7.1.2 ServletMiscClasses (Class Diagram)

This diagram shows miscellaneous classes used within the servlet.

[image: image106.emf]In TempObjectStore

In DataModel

RequestParameterSupplier«interface»DynImageCleanupTask

DynamicImageFileKeeper

«interface»1

In TempObjectStore

1

UserFormDataExtendedCommandStatusImpl

FormUtil

java.util.TimerTask

*

In DataModel

*

CommandStatusMgr HttpServletRequestParameterSupplier 1

*

addParamValue(name:String, value:String) : voidaddParamValuesFromRequest(req:HttpServletRequest) : voidappendErrorMessage(errMsg:String) : voidclearAllParameters() : voidclearAutoErrorMsg() : voidclearParamValues(name:String) : voidcontainsValue(name:String, value:String) : booleangetAutoErrorMsg() : StringgetBooleanParm(name:String, displayName:String, required:boolean) : booleangetDateParm(name:String, displayName:String, required:boolean) : DategetDoubleParm(name:String, displayName:String, required:boolean) : doublegetErrorMessage() : StringgetID() : String

getIdentifierParm(name:String, displayName:String, required:boolean) : Identifier

getIdentifierParms(name:String, displayName:String, required:boolean) : ArrayList<Identifier>

getIntegerParm(name:String, displayName:String, required:boolean) : Integer

getIntParm(name:String, displayName:String, required:boolean) : int

getRequiredValue(name:String) : String

getStringParm(name:String, displayName:String, required:boolean) : String

getTotalErrorLength() : int

getValue(name:String) : String

getValue(name:String, trim:boolean) : String

getValues(name:String) : String[]

hasAutoErrorMsg() : boolean

hasError() : boolean

isParmPresent(name:String) : boolean

populateFromRequest(req : HttpServletRequest) : void

prefixErrorMessage(str : String) : void

setErrorMessage(str : String) : void

setID(id:String) : void

setParameterValue(name:String, value:String) : void

setParameterValues(name:String, values : ArrayList<String>) : void

setParameterValues(name:String, values : String[]) : void

getParameter(name:String) : Stringm_req : HttpServletRequest getDynamicImageFilenamesToKeep() : ArrayList<String>

parseVideoTransmissionDeviceConfigList(UserFormData formData, Boolean isSendingDevice, DataModel dm)

populateFormData(WebVideoTransmissionDeviceConfig[] sendingDeviceConfig, UserFormData formData)

DynImageCleanupTask(

 dynImageDir : File, dm : DataModel,

 tempObjStore : TempObjectStore,

 olderThanMinutes : int)

run()

Figure 5‑74 ServletMiscClasses (Class Diagram)

5.7.1.2.1 CommandStatusMgr (Class)

This class manages command status objects served by the GUI.

5.7.1.2.2 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the DynImageCleanupTask, which periodically deletes files that are no longer needed.

5.7.1.2.3 DynImageCleanupTask (Class)

This class periodically cleans up dynamic image files in the dynamic images directory that are no longer needed. The files to keep are maintained by objects in the DataModel and TempObjectStore that implement the DynamicImageFileKeeper interface.

5.7.1.2.4 ExtendedCommandStatusImpl (Class)

This is an abstract class that is extended by classes that implement the ExtendedCommandStatus CORBA interface. It handles the basic implementation required of a command status, and leaves the implementation of updateAny() and completedAny() to the derived classes.

5.7.1.2.5 FormUtil (Class)

This class contains methods for handling form processing.

5.7.1.2.6 HttpServletRequestParameterSupplier (Class)

This class implements the RequestParameterSupplier interface to provide parameters from the HttpsServletRequest.

5.7.1.2.7 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.7.1.2.8 RequestParameterSupplier (Class)

This interface allows parameter values to be queried. It is used to provide a common interface for getting parameters from the HttpServletRequest or from the UserFormData.

5.7.1.2.9 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex form, and provides convenience methods for parsing the values from the request.

5.7.2 Sequence Diagrams

5.7.2.1 FormUtil:populateFormData (Sequence Diagram)

This diagram shows the procesing that occurs when editing or copying a video source and an array of VideoSendingDeviceConfig objects is read from a VideoSourceConfiguration and populated into a UserFormData object.

[image: image107.emf][for each

VideoSendingDeviceConfig]

keep a counter of switches

and encoder sending devices

VideoSourceConfigReqHdlr

FormUtil

This diagram shows the processing that occurs when editing or copying a video source and an array of VideoSendingDeviceConfig objects is read from a VideoSourceConfiguration and populated into a UserFormData object. UserFormData

Populate the formdata with the appropriate sending device config

fields. See: FormUtil.populateFormData(VideoSendingDeviceConfig, UserFormData)

populateFormData(VideoSendingDeviceConfig[] sendingDeviceCfg,UserFormData formData)

setParameterValue(sendingDeviceConfigValue + ctr)

setParameterValue("numEncoderSendingDevices")

setParameterValue("numSwitchSendingDevices")

Figure 5‑75 FormUtil:populateFormData (Sequence Diagram)

5.7.2.2 chartlite.servlet.HomePageReqHdlr:getHomePageJSON (Sequence Diagram)

This diagram shows how the JSON is built for the status on the Home Page. The current alert filter is retrieved from the login session. The cached WebAlerts are retrieved and of those, the new alerts that also pass the filter are added to a list. The list is sorted and JSONObjects are created to represent each WebAlert, and these are put into a JSONArray. The WebTrafficEvent objects are retrieved from the cache and filtered to only include the open events belonging to the user's op center. The traffic event counts per event type, and the total number of open events belonging to the user's op center, are put into the high level JSON object. The JSON object is then sent back in the response.
[image: image108.emf]The size is also added to an openEventsCount

counter for return in the JSON..

sendJSONObject

TrafficEventUtility WebTrafficEventCollection getOpenTrafficEvents(allEvents, opCenterID, userLoginSession, external = false, minOpenedTime = 0)

getCachedObjectsOfType(WebTrafficEvent)

WebTrafficEventCollection

getEventsOfType(WebTrafficEventType.ActionEvent, includeNonExternal = true, includeExternal = false)

put("actionEventsCount", list.size())

put("openEventsCount", openEventsCount)

Similar processing

for other 7 event

types not shown.

JSONArray

create

add(alertJSONObj)

add("alerts", alertsJSONArray)

HomePageReqHdlrcreate ServletUtil UserLoginSessionImpl RequestHandlerSupporter WebAlert AlertFilter ArrayList

JSONObject Call Collection.sort() to sort

the ArrayList on alert creation

time in descending order.

JSONObject

processRequest getHomePageJSON getLoginSession(req) ArrayList<WebTrafficEvent>

getCurrentAlertFilter() getWebOpCenter() getUsername()

getCachedObjectsOfType(WebAlert)

*for each WebAlert

isNew()

passesFilter(webAlert, userName, opCenterID)

if(isNew && passesFilter)

add

create

create sort

*for each WebAlert

in the ArrayList

create

getID()

getDescription()

getTypeStr()

getCreationTimeSecs()

getCreationTimeStr()

put("id", idStr)

put("desc", desc)

put("typeStr", typeStr)

put("creationTimeSecs", creationTimeSecs)

put("creationTimeStr", creationTimeStr)

Figure 5‑76 chartlite.servlet.HomePageReqHdlr:getHomePageJSON (Sequence Diagram)

5.7.2.3 chartlite.servlet.MainServlet:customizeResponseForPortal (Sequence Diagram)

This diagram shows the processing performed by the customizeResponseForPortal method of the MainServlet class. This is called during MainServlet.handleRequest at the point where the request has been handled by a request handler and the system is about to load the template that will be used to display a web page to the user. The purpose of this method is to allow customization of the web page that is about to be displayed to the user. This customization takes part on 2 levels; the main enclosing template, which contains the web page elements present on every page (header, quick links, footer, etc.) and the pageContent template, which is used to display content specific to the user's request within the enclosing template. This method begins by setting the return value to be the exact page template that the servlet would return had this method not been called. This results in the default action being no customization. Next, the name of the template is compared to see if it is one of 3 special "enclosing" templates that may require customization. If the template is the standard GUI enclosing template, then the customization will be to return the enclosing template specific to the portal. If the template name is the standard popup template, then the returned template depends on whether or not the portal uses popups. If the portal doesn't use popups this method will return the portal's enclosing template instead of the popup template. If the portal does use popups, the popup template specified for the portal will be returned. The last "enclosing" template that requires special handling is the PopupSubmissionCloser. This template is returned when the user has submitted a request that is normally submitted from a popup window (even if the portal didn't display that page in a popup). The popup submission closer is a template that closes the popup window and redirects the parent window to a target URL. If the portal doesn't use popups, this method custom handles this situation by simply performing the redirect that the popup submission closer would normally handle. After processing the customization for the "enclosing" template, if a customization took place AND a redirect didn't occur, the pageContent template is retrieved from the context. This is the name of the template that will provide the content of the page inside the "enclosing" template that is specific to the request being processed. If such a template name was loaded into the context, a call is made to obtain the portal specific mapping object that maps original content templates to customized versions for the portal, if any. If a customized version of the page exists for the portal, it is loaded into the context in place of the original pageContent template. If a popup was eliminated earlier due to the portal's preference to not use templates, a check is made if the content is to always appear in a popup. If so, the return value is set to be the name of the portal's popup template. Next, the method returns its return value, which is the name of the template to be loaded and displayed to the user, or null if the request was redirected.

[image: image109.emf][popup eliminated above] alwaysPopup(pageContent)

[popup eliminated and alwaysPopup is true]

set return to portal's popup template

PortalContentMapping

Default action is no customization

[pageContent not null]

set("pageContent")

set return value = templateName

String or null

If one of the above cases was met AND return value not null

get("pageContent")

String

if templateName == m_props.getEnclosingTemplate()

(indicates that the servlet is about to return a normal

non-popup web page)

set return value =

enclosing template from PortalType

boolean

if templateName == m_props.getPopupTemplate()

AND PortalType usePopups() is true

(indicates that the servlet is about to return content

in a popup window, and the portal uses popups.

get("targetURL")

[targetURL != null]

sendRedirect(targetURL)

MainServlet.handleRequest

UserLoginSessionImpl HttpServletResponse

customizeResponseForPortal(loginSession, templateName, context, resp)

PortalType

String

String

[portal content maping not null] getPortalContentTemplate(originalTemplate)

PortalContentMapping or null

custom template or originalTemplate

[pageContent not null]

getContentMapping()

if templateName == m_props.getPopupTemplate()

AND PortalType usePopups() == false

(indicates that the servlet is about to return content

in a popup window, and the portal does not use

popups)

set return value =

enclosing template from PortalType

set return value =

popup template from PortalType

if templateName == "PopupSubmissionCloser.vm"

AND PortalType usePopups() is false

(indicates the user submitted a popup and the system is

about to close the popup and redirect the parent page

to a target, AND the portal does not use popups)

String or null

[redirected]

set return value = null

MainServlet Context PortalType

getPortalType()

getEnclosingTemplate()

getPopupTemplate()

Figure 5‑77 chartlite.servlet.MainServlet:customizeResponseForPortal (Sequence Diagram)

5.7.2.4 chartlite.servlet.MainServlet:handleRequest (Sequence Diagram)

This diagram shows the processing that occurs when a request is received by the servlet. The action to be performed is retrieved either from the servlet path, or from a request parameter named "action". A check is made to determine if the user is logged in. If the user is not logged in, a "logged out" policy is retrieved based on the requested action to determine how to reply to the request. Either the login page is shown, an HTTP "no content" response code is passed to the browser, the logged out error page is shown, or an error is returned in an XML document. If the user is logged in, the request handler for the requested action is found and the request is dispatched to the request handler. The request handler returns the name of the velocity template to load (or null if there was a redirect). If the user is logged into a portal other than the standard GUI the customizeResponseForPortal() method is called (see separate sequence diagram). This method can result in a different page template name being loaded in the pageContent variable in the Context to customize the page for the portal, and can also result in the request being redirected, returning a null template name. Following the call to customize the response for a portal, several commonly used objects are added to the velocity context, including a variable named "usePopups" that is based on the setting for the PortalType the user has logged into. The template (if any) is loaded and during this process the Velocity tool merges the dynamic content from the Context object into the template, dynamically creating an HTML page to return to the browser.

[image: image110.emf][user logged in AND not logged into standard GUI] customizeResponseForPortal() [action not found on servlet path] getParameter("action") MainServlet HttpServletRequest HttpSession handleRequest getSession getAttribute(SESSION_ATTR_LOGIN_SESSION) template name new for maint gui A number of objects that will be needed by almost every page are put into the context at this point. NEW Maint GUI: usesPopups boolean variable is placed in the context, based on the value of usesPopups() from the PortalType from the login session. put RequestHandlerMapping RequestActionHttpServletResponse ServletPropertiesContextRequestHandler [user not logged in] getRequestHandlerMapping [user not logged in] getRequestAction [user not logged in] getUserLoggedOutPolicy [user not logged in && policy == no content] [user not logged in && policy == no content] setStatus [user not logged in && policy == display login form] action == getLoginForm [user not logged in && policy == XMLError] getXMLGeneralResultTemplate [user not logged in && policy == XMLError] put("success", false) [user not logged in && policy == XMLError] put("errMsg", "User is not logged in") [user not logged in && policy == XMLError] put("userLoggedIn", false) [user not logged in && policy == XMLError] loadTemplate [user not logged in && policy == XMLError] getRequestHandler getRequestHandlerMapping processRequest loadTemplate return template Determine the requested action. This could be passed as part of the servlet path as in charlite/app/action.chart or could be specified as a request parameter with name "action". getServletPath

Figure 5‑78 chartlite.servlet.MainServlet:handleRequest (Sequence Diagram)

5.8 GUI - Servlet - User Management (chartlite/servlet/usermgmt)
5.8.1 Class Diagrams

5.8.1.1 chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to the system profile.

[image: image111.emf]In R5 added methods to support configuration of streaming flash servers in the system profile SystemProfileReqHdlr

RequestHandler «interface» init(supporter:RequestHandlerSupporter) : void getActions() : ArrayList<RequestAction>

processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

shutdown(supporter:RequestHandlerSupporter) : void

processConfigAlertTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getConfigAlertTimeOutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

processConfigAlertEscalateTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

processConfigAlertArchiveTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getConfigAlertEscalateArchiveTimeOutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setNotificationSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getNotificationSettingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getTravelTimeRangesForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setTravelTimeRanges(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getTravelTimeScheduleForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setTravelTimeSchedule(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getTravelTimeMiscSettingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setTravelTimeMiscSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getTSSSpeedSummaryRangesForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setTSSSpeedSummaryRanges(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getExternalConnectionsNotificationAndAlertsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setExternalConnectionsNotificationAndAlerts(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getExternalOrgToAgencyMappingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setExternalOrgToAgencyMappingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getStreamingFlashServerConfigurationsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

setStreamingFlashServerConfigurations(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

Figure 5‑79 chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)

5.8.1.1.1 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.8.1.1.2 SystemProfileReqHdlr (Class)

This class is a request handler that processes requests related to the system profile.

5.8.1.2 chartlite.servlet.usermgmt_classes (Class Diagram)

This diagram shows classes used within the CHART GUI servlet related to user management.

[image: image112.emf]New for Maint GUI: processMaintLogout * * OpCenterAlertTypeData LogoutReqHdlr LoginReqHdlr RequestHandler«interface»OpCenterAlertData «datatype» createPreLoginNavLinkRights(usrMgrWrapper:UserManagerWrapper, username:String, viewOnlyRights:FunctionalRightType[]) : NavLinkRightsinitHomeMonitorID(req:HttpServletRequest, loginSession:UserLoginSessionImpl) : voidinitLocalMonitorGroupID(req:HttpServletRequest, loginSession:UserLoginSessionImpl) : voidlocateOpCenter(supporter:RequestHandlerSupporter, opCtrID:String, rights:NavLinkRights) : WebOpCenterprocessChangeUser(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessGetChangeUserForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessGetHomePage(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessLaunchAppWindow(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessLogin(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringredirToInitialLoggedInPage(loginSession:UserLoginSessionImpl, supporter:RequestHandlerSupporter, req:HttpServletRequest, resp:HttpServletResponse) : booleanshowLoginError(supporter:RequestHandlerSupporter, ctx:Context, errMsg:String, userName:String, opCtrID:String) : StringshowLoginForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringsetInitialWorkingPageShownXML((req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringCOOKIE_NAME_HOME_MONITOR_ID : StringCOOKIE_NAME_LOCAL_MONITOR_ID : StringCOOKIE_NAME_OP_CTR_ID : StringalertTypeData:OpCenterAlertTypeData[] processLogout(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringprocessMaintLogout(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringAlertType:type backupList:Identifier[] forCenterFlag:boolean escalationFlag:boolean ignorePolicy: boolean

Figure 5‑80 chartlite.servlet.usermgmt_classes (Class Diagram)

5.8.1.2.1 LoginReqHdlr (Class)

This request handler handles functionality related to Login and Change User.

5.8.1.2.2 LogoutReqHdlr (Class)

This request handler handles functionality related to Logout.

5.8.1.2.3 OpCenterAlertData (Class)

This corba datatype sequence contains alert related configuration data for an operations center

5.8.1.2.4 OpCenterAlertTypeData (Class)

This datatype holds operations center alert configuration data for a specific alert type.

5.8.1.2.5 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.8.2 Sequence Diagrams

5.8.2.1 LoginReqHdlr:processLogin (Sequence Diagram)

This shows the processing performed when a user logs in. After checking the protocol and making sure the user is not already logged in, the login credential parameters are retrieved from the request in addition to the operations center and home monitor IDs and the portalName (if any). The operations center is found, taking into account whether the user has only view only rights (in which case the View Only op center is used). A UserLoginSessionImpl object is created and activated in the POA, and the OperationsCenter is called to log in the user. If successful, the login session is set into the HttpSession as an attribute. The cookies for local monitor group ID and home monitor group ID are retrieved from the request (if the cookies exist) and these values are set into the login session. The operations center from the request and the portalName are used to set cookies in the response. The home monitor ID, if specified in the request and if it is different than the monitor ID specified in the cookie, is set into the login session and a cookie is added for the new monitor ID. This allows the login page to pre-select the same home monitor the next time the user logs in with that workstation. A PortalType the corresponds to the portal name specified in the request parameter is obtained and stored in the login session. This will be used to allow alternative views of the system to be provided based on the portal the user logs into.

Finally the user is redirected to appropriate start page for their portal, which is the AppLauncher.vm page for the standard GUI (and is set in the PortalType enum for other portals). The app launcher page used for the standard GUI (full view portal) will automatically launch the Home Page via javascript and then attempt to close itself. If the user has selected a home monitor, it will appear on the user's Home Page as an easy to access link to that monitor's details page.

[image: image113.emf]new for maint gui

getParameter("portalName")

addCookie(new Cookie(COOKIE_NAME_PORTAL_NAME, portalName))

PortalType

New for maint gui

valueOf(portalName)

PortalType.FullView or PortalType.DeviceMaintenance

setPortalType()

This helper method will redirect to the application launcher if

the portal is the FullView GUI, or the login action as specified

in the PortalType.

new for maint gui

getProperties

requireHttps

sendRedirect(resp.encodeRedirectURL("app?action=launchAppWindow"))

redirToInitialLoggedInPage

HttpServletResponse

addCookie(new Cookie(COOKIE_NAME_OP_CENTER_ID, opCtrID))

addCookie(new Cookie(COOKIE_NAME_HOME_MONITOR_ID))

[home monitor

not specified in request,

or is specified

but unchanged]

setHomeMonitorID(monitorID)

WebOpCtr OperationsCenter SystemProfileProperties

getSession

getAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION)

UserLoginSession or null

[login session

already exists]

redirToInitialLoggedInPage()

[login session

exists]

return

getParameter("username")

getParameter("password")

getParameter("opCtrID")

getParameter("homeMonitorID")

[username or

password or

op center

not specified]

return error

getSysProfileProps()

getAllowableViewOnlyRights()

FunctionalRightType[]

createPreLoginNavLinkRights(userMgrWrapper, username, viewOnlyRights)

getUserManagerWrapper()

These will get the cookies from the HttpRequest

and if the corresponding cookie is found,

it will call the UserLoginSessionImpl to set the

local monitor group or home monitor ID.

getOpCenterRef()

loginUser(loginSession, username, pw, hostname)

Initialize

[not successful]

return error

setAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION, userLoginSessionImpl)

setMaxInactiveInterval(interval)

initLocalMonitorGroupID(req, loginSession)

initHomeMonitorID(req, loginSession)

User

LoginReqHdlr RequestHandlerSupporter HttpServletRequest ServletProperties HttpSession

processLogin

loginUser(poa, cmdStatusMgr, userMgrWrapper, viewOnlyRights)

activate(poa)

UserLoginSessionImpl

create

Returns a WebOpCenter corresponding

to the requested ID unless the user has only

a subset of View Only rights, in which case the

View Only op center will be returned.

Creates an object for accessing user rights, or a

default View Only user rights object if no roles are

assigned to the user.

locateOpCenter(supporter, opCtrID, navLinkRights)

getScheme

[https required

and scheme

is not https]

return error

Figure 5‑81 LoginReqHdlr:processLogin (Sequence Diagram)

5.8.2.2 LogoutReqHdlr:processMaintLogout (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to log out of the maintenance GUI. The system first checks to see if the user is logged in, based on the presence of a login session (it could have timed out earlier). If the user is not logged in, most of the processing is skipped, except for the final step where the user's browser is redirected to the login page. If the user is logged in, a parameter is read to determine if the system should check for maintenance mode devices controlled by the user's center. If the parameter indicates the check should be done, the maintenance mode devices controlled by the user's operations center are retrieved from the WebOpCenter object, and if any exist, a warning page is returned to the user listing the maintenance mode devices. If there are no maintenance mode devices controlled by the user's center or the parameter existed to cause the maint mode device check to be skipped, the user login session is called to log out the user. Special processing in the processLogout() method in the user login session will cause a logout performed from the maintenance GUI to use the "force" option in the existing code, which causes cleanup to be done even if the user logging out would leave uncontrolled resources for the center. The HttpSession is called to release the user login session object, and finally the user is redirected to the login page.

[image: image114.emf]HttpSession removeAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION)

invalidate()

redirect to Login page

UserLogoutReqHdlrRequestHandlerSupporter UserLoginSessionImplWebOpCenter ServletUtil Context user login session not null

noMaintDevWarning == false (want maint dev warning)

have 1 or more devs in maint mode and controlled by the user's center

When logging out of maint GUI, the user login

session uses the "force" flag which causes

it to cleanup even if uncontrolled shared

resources will exist for the user's center

after the logout.

processMaintLogout()getUserLoginSession() UserLoginSesionImpl or null getBooleanParam("noMaintDevWarning")

boolean

getWebOpCenter()

WebOpCenter

getMaintModeDevicesForCenter()

ArrayList<WebSharedResource>

put("maintModeDevices", ArrayList<WebSharedResource>)

put("pageContent", "LogoutWarningMaintDevs.vm")

framing template

terminateCameraControlSessionsOnLogout()

logoutUser()

[User logged into maint portal]

logoutUser(true)

Figure 5‑82 LogoutReqHdlr:processMaintLogout (Sequence Diagram)

5.8.2.3 SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm (Sequence Diagram)

This diagram shows the processing that occurs when viewing the streaming flash server configurations page or choosing to remove a flash configuration. Flash configurations are stored using the system profile in JSON formatted strings. A UserFormData object is used to keep state while making changes to configurations or removal before saving to the system profile.

[image: image115.emf]Operator SystemProfileReqHdlr RequestHandlerSupporter ServletUtil getStreamingFlashServerConfigurationsForm()

getSysProfileProps()

getStringParam(req,"formDataID",null)

formDataID or null

[formID !=null]

display form showing flash configurations

Retrieve name, address,port,password from form, and add

to the formdata

[row flagged

for removal]

getParam("parameters")

This request was reached on a request

to remove a configuration. Read the data

from the form, removing the flagged configuration.

addParameterValue("flashConfiguration[x]")

[while more

configurations]

clearAllParameters()

SystemProfileProperties

UserFormData JSONObject

Retrieve the following variables

name,address,port,password and add

to the formdata

Create new formdata and

 populate with flash configuration

 fields from the system profile

TempObjectStore

ServletUtil

[while more

configurations

getProperty('StreamingFlashConfiguration[x]')

addParameterValue("flashConfiguration[x]")

create

parse(flashConfigurationProperty)

JSONObject

get(variable)

add(formDataID, formData)

getIntParam("removeRowID")

getIntParam("numFlashConfigurations")

Figure 5‑83 SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm (Sequence Diagram)

5.8.2.4 SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm (Sequence Diagram)

This diagram shows the processing that occurs when the form to set flash streaming server configurations is submitted. Each field is read from the request and placed in a JSON object. A JSON string is stored in the system profile for each configuration. If the number of configurations on the form doesn't add up to the number of configurations before the submission, the configurations are removed from the system profile.

[image: image116.emf][configurations need to be removed]

deleteProps(token,configurationsToRemove)

Add deleted configurations for removal

add(flashConfigurationJSONString)

SystemProfilePropertiesArrayList

ArrayList

[while numConfigurations <

numPreviousConfiguration]

create

set("port",port)

set("password",password)

setProps(token,configurationsToAdd)

toString()

[numConfigurations < numPreviousConfiguraitons]

create

OperatorSystemProfileReqHdlr ServletUtil JSONObject

setStreamingFlashServerConfigurationsForm

getIntParam("numConfigurations")

getIntParam("numPreviousConfigurations")

[for each

configuration]

getStringParam("name")

getStringParam("address")

getIntParam("port")

getStringParam("password")

create

set("name",name)

add(flashConfiguration)

set("address", address)

Figure 5‑84 SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm (Sequence Diagram)

5.9 GUI – servlet – DMS (chartlite/servlet/dms)

5.9.1 Class Diagrams

5.9.1.1 GUIDMSServletClasses (Class Diagram)

This diagram shows CHART GUI servlet classes related to dynamic message signs.

[image: image117.emf]New for Maint GUI:

displayDMSTestMessage

RequestHandler «interface» DMSEditorData EditObjectLocationSupporter

«interface»

AddDMSFormData

EditDMSLocationSupporter

DMSReqHdlr init(supporter:RequestHandlerSupporter) : void getActions() : ArrayList<RequestAction> processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String shutdown(supporter:RequestHandlerSupporter) : void setDMSConfigBasicSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : StringviewDMSMessageEditorForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : StringprepareDMSEditorFormData(req:HttpServletRequest, ctx:Context, supporter:RequestHandlerSupporter) : StringcreateDMSEditorData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorDatacreateDMSTravInfoMsgTemplateEditorData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorDatasaveDMSEditorDataFromForm(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorDatasubmitDMSTravInfoMsgTemplateEditorForm(editorData : DMSTravInfoMsgTemplateEditorData, req : HttpServletRequest) : StringcreateOrUpdateDMSTravInfoMsgTemplate(token : byte[], editorData : DMSTravInfoMsgTemplateEditorData) : StringgetEditDMSLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : StringgetAddEditDMSTravelerInfoMsgForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : StringgetDMSTravelerInfoMsgTemplateDataJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String-parseTravelerInfoMsg(req:HttpServletRequest, supporter:RequestHandlerSupporter) : WebDMSTravInfoMsggetDMSTravelerInfoMsgImageJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : StringsubmitDMSTravelerInfoMsgForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

displayDMSTestMessage(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

getName() : String

getObjectLocation() : WebObjectLocation

getUpdateParentPageURLParamStr() : String

hideGeoLocationFields() : boolean

allowComboDirections() : boolean

allowNoneDirection() : boolean

setObjectLocation(location:ObjectLocation,

 supporter : RequestHandlerSupporter,

 req : HttpServletRequest) : String

DMSEditorData(editorDataID:String, geometries : DMSDisplayInfo[], manualEditor : boolean, submitAction : String) beaconsEnabled() : boolean getCurrentGeometry() : DMSDisplayInfo getCurrentGeometryIdx() : int getFormattedMulti() : String getFormTitle() : String getGeometries() : DMSDisplayInfo[] getGeometry(idx : int) : DMSDisplayInfo getID() : String getLastValidEditorImageFilename() : String getMaxCharCols() : int getMaxCharRows() : int getMaxPages() : int getMinMaxHalfSecondPageTimeValue() : int getMsgDescPrefix() : String getMulti() : String getNativeOrConvertedMulti() : String getNumGeometries() : int getPagesFromMulti() : DMSMessagePageInfo[] getPlanTextMessage() : String getSubmitFormAction() : String hasBeacons() : boolean

hasCommonGeomtery() : boolean

hasEditRights(loginSession : UserLoginSessionImpl) : boolean

isManualEditor() : boolean

isMessageEdited() : boolean

isMessageTextRequired() : boolean

needsSpellCheck() : boolean

setBeaconsEnabled(enabled : boolean) : void

setCurrentGeometryIdx(idx : int) : void

setLastValidEditorImageFilename(filename : String) : void

setMessageEdited(edited : boolean) : void

setMsgDescPrefix(prefix : String) : void

setMulti(multi : String) : void

setNeedsSpellCheck(needsSpellCheck : boolean) : void

setPlanTextMsg(msg : String) : void

setShowAdvancedEditor(showAdv : boolean) : void

showAdvancedEditor() : boolean

supportsCategory() : boolean

supportsDescription() : boolean

m_editorDataID : String m_submitFormAction : String m_geometries : DMSDisplayInfo[] m_isManualEditor : boolean m_isManualAdvancedEditor : boolean m_hasBeacons : boolean m_beaconsEnabled : boolean m_multiMsg : String m_plainTextMsg : String m_lastValidTrueDisplayImageFilename : String m_currentGeometryIdx : int m_isMessageEdited : boolean m_needsSpellCheck : boolean m_msgDescPrefix : String m_hasCommonGeometry : boolean EditDMSLocationSupporter(

 dms : WebDMS)

EditDMSLocationSupporter(

 formData : AddDMSFormData)

m_dms : WebDMS

m_formData : AddDMSFormData getConfig() : WebDMSConfiguration

getLastErrorMessage() : String

getSelectedFactoryID() : Identifier

setLastErrorMessage(errMsg : String) : void

setSelectedFactoryID(id : Identifier) : void

m_dmsConfig : WebDMSConfiguration

m_lastErrorMsg : String

m_selectedFactoryID : Identifier

Figure 5‑85 GUIDMSServletClasses (Class Diagram)

5.9.1.1.1 AddDMSFormData (Class)

This class represents the data in the Add DMS and Copy DMS forms.

5.9.1.1.2 DMSEditorData (Class)

This class represents an instance of a DMS message being edited in an editor. It provides storage so that the message and editor state can be preserved during interim requests before the form is submitted. It also has logic for manipulating the editor session. This is a base class and will be extended for specific editor types.

5.9.1.1.3 DMSReqHdlr (Class)

This class is a request handler used to process requests related to dynamic message signs (DMS).

5.9.1.1.4 EditDMSLocationSupporter (Class)

This class is used to support editing the location of an existing or new DMS.

5.9.1.1.5 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example, the target of the edited location may be an existing object, or it may be a form data object for creating a new object).

5.9.1.1.6 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.9.2 Sequence Diagrams

5.9.2.1 chartlite.servlet.dms:displayDMSTestMessage (Sequence Diagram)

This diagram shows the processing that takes place when a user chooses to display a test message on a DMS in maintenance mode. The ID of the DMS is retrieved from the request and the id is used to find the DMS in the data model. Once found, a check is made to see if the DMS is in maintenance mode, and if the user has rights to maintain the DMS. Any errors found are reported back to the user. Next, the settings that specify the canned text and beacon state for the test message are retrieved from the system profile. Various settings are retrieved from the DMS configuration and are used to construct a MultiDefaults object and an SHAMultiFormatter. The multi formatter is called to convert the plain text message into MULTI specific to the sign size being used. If the test message text cannot fit on the sign, an exception is thrown and an error will be returned to the user. A DMSMessageImpl is created with the MULTI, and a command status impl is obtained from the command status manager. The reference to the server side DMS CORBA object is then used to set the message on the DMS. This is an asynchronous command and if it throws an exception then we must complete the command status object ourselves (as the server didn't successfully process our request). Otherwise, the server will update the command status object as it performs the steps to display the test message. This method therfore redirects to the user to the command status page so they can see the updates being made by the server.

[image: image118.emf]String or MultiFormatPageException or MultiFormatRowException

MultiDefaults

SHAMultiFormatter

getCharWidthPixels()

getCharHeightPixels()

getDefaultLineJustification()

getDefaultPageOnTime()

getDefaultPageOffTime()

create

create

boolean

setMessage(token, msg, beacons)

getDMSTestMessageUseBeacons()

WebDMSConfiguration WebDMSConfiguration

getDMSTestMessageText()

getPixelCols()

isInMaintMode()

UserNavLinkRights CommandStatusManager

createCommandStatusImpl()

getDMSRef()

WebDMS or null

[cannot maintain dms]

Error

DataModel displayDMSTestMessage()Identifier or null boolean

[dms == null]

Error

void or Exception

[Exception]

complete(failure)

[Exception]

Error

DMSMessageImpl

plainTextToMulti(test message text)

create

boolean

getConfig()

SystemProfileProperties String

getPixelRows()

getMaxPages()

[Exception]]

Error - test message

 too big for sign

[not in maint mode]

Error

DMSReqHdlr redirect to

command status page

DMS CommandStatusImpl

DMS

canMaintainDMS(webDMS)

ServletUtil WebDMS getIdentifierParam(req, "dmsID") [dmsID == null]Error getObject(dmsID)

Figure 5‑86 chartlite.servlet.dms:displayDMSTestMessage (Sequence Diagram)

5.10 GUI – Servlet – HAR (chartlite/servlet/har)

5.10.1 Class Diagrams

5.10.1.1 GUIHARServletClasses (Class Diagram)

This diagram shows classes used by the servlet to process requests related to HAR devices.

[image: image119.emf]if used to edit location of existing HAR

if used during add HAR

New for Maint GUI: broadcastHARTestMessage 1 1

DynListSubject

«interface»

DynListDelegateSupporter

«interface»

1 1

HARDynListSubject

HARListSupporter

DynListReqHdlrDelegate

EditHARLocationSupporter

WebHAR

1

if used to edit location of existing HAR

1

AddHARFormData

AddSyncHARFormData

HARReqHdlr AP55HARReqHdlr RequestHandler «interface» EditObjectLocationSupporter «interface» if used during add HAR

1

1

AddAP55HARFormData AddDR1500HARFormData

SyncHARReqHdlr DR1500HARReqHdlr broadcastHARTestMessage():String createDynList():DynList

getDynListSubjects():DynListSubject[]

getFilterValue():Object

PROP_NAME

PROP_LOCATION

PROP_CURRENT_MSG

PROP_STATUS

PROP_ACTIVE_NOTIFIERS

PROP_USED_BY

PROP_ROUTE

PROP_DIRECTION

PROP_COUNTY

PROP_PORT_MGRS

PROP_CONN_SITE

PROP_OWNING_ORG

PROP_MILE_POST

getName() : String getObjectLocation() : WebObjectLocation getUpdateParentPageURLParamStr() : String hideGeoLocationFields() : boolean allowComboDirections() : boolean allowNoneDirection() : boolean setObjectLocation(location:ObjectLocation, supporter : RequestHandlerSupporter, req : HttpServletRequest) : String EditHARLocationSupporter(har:WebHAR)

EditHARLocationSupporter(formData:AddHARFormData)

Figure 5‑87 GUIHARServletClasses (Class Diagram)

5.10.1.1.1 AddAP55HARFormData (Class)

This class holds data specific to the AP55 HAR when adding an AP55 HAR to the system.

5.10.1.1.2 AddDR1500HARFormData (Class)

This class holds data specific to a DR1500 HAR when adding a DR1500 HAR to the system.

5.10.1.1.3 AddHARFormData (Class)

This class is used to store configuration data for a HAR during an Add operation, as the operation can require several web pages to complete and the data from each form must be stored between requests.

5.10.1.1.4 AddSyncHARFormData (Class)

This class holds data specific to a Sync HAR when adding a Sync HAR to the system.

5.10.1.1.5 AP55HARReqHdlr (Class)

This class handles requests that are specific to the AP55 HAR model.

5.10.1.1.6 DR1500HARReqHdlr (Class)

This class handles requests that are specific to the DR1500 HAR model.

5.10.1.1.7 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.10.1.1.8 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.10.1.1.9 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.10.1.1.10 EditHARLocationSupporter (Class)

This class implements the EditObjectLocationSupporter interface for HARs. It can be constructed with an AddHARFormData object so it can be used during the Add HAR operation, in which case all location changes are stored in the AddHARFormData object. It can also be constructed using a WebHAR, for use when editing the location of an existing HAR. When this is done, the new location gets set into the actual HAR object (via a CORBA call).

5.10.1.1.11 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example, the target of the edited location may be an existing object, or it may be a form data object for creating a new object).

5.10.1.1.12 HARDynListSubject (Class)

This class is a dyn list subject that holds a WebHAR. It also defines the property names for each column that will be shown in the list. The following columns are added in R3B3: route, direction, port managers, connection site, owning org, and mile post.

5.10.1.1.13 HARListSupporter (Class)

This class is a dyn list delegate supporter for the HAR list. It provides methods to create a dynamic list, get the subjects included in the list, and to get the value for a filter.

5.10.1.1.14 HARReqHdlr (Class)

This class handles requests that are valid for any HAR model.

5.10.1.1.15 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.10.1.1.16 SyncHARReqHdlr (Class)

This class handles requests that are specific to the Sync HAR model.

5.10.1.1.17 WebHAR (Class)

This class is a GUI wrapper for a CORBA HAR object.

5.10.2 Sequence Diagrams

5.10.2.1 HARReqHdlr:broadcastCHARTestMessage (Sequence Diagram)

This diagram shows the processing that occurs when the user chooses to broadcast a test message on a HAR. The id of the HAR is obtained from the request and the ID is used to find the HAR in the data model. The HAR must be in maintenance mode and the user must have the maintain HAR right for the HAR's owning organization or an error is displayed. The test HAR message text is obtained from the system profile and is trimmed and changed to uppercase. A text message clip is created, using a description based on the text of the message. A HAR message object is created using the text clip as the body, and setting options to tell the message to use the default header and trailer as stored on the HAR. A command status object is created and passed with the message to the HAR in a request to set the HAR's message. If an exception is thrown, the GUI must complete the command status, otherwise the server will provide updates as it processes the request asynchronously. The request is then redirected to the command status page where the user can monitor the status of the command.

[image: image120.emf]HARMessageTextClipImpl

HARMessageImpl

CommandStatusImpl

create(messageText, description)

create

setUseDefaultHeader(true)

setUseDefaultTrailer(true)

setBody(bodyTextClip)

create

WebHARMessage messageText.trim().toUpper()

makeTextClipDesc(messageText)

String

UserHARReqHdlr ServletUtil DataModel NavLinkRights WebHAR SystemProfileProperties [Exception]

complete(failure)

HAR CommandStatusManager

isInMaintMode()

boolean

[not in maint mode]

Error

broadcastHARTestMessage()getIdentifierParam(req, "harID") Identifier or null [harID == null] Error getObject(dmsID)

WebHAR or null

[har == null]

Error

canMaintainHAR(webHAR)

boolean

[cannot maintain dms]

Error

createCommandStatusImpl()

CommandStatusImpl

String

getHARRef()

HAR

setMessage(token, msg, byte[0][0], cmdStatus)

void or Exception

[Exception]

Error

redirect to

command status page

getHARTestMessageText()

Figure 5‑88 HARReqHdlr:broadcastCHARTestMessage (Sequence Diagram)

5.11 GUI –Servlet – Map (chartlite/servlet/map)
5.11.1 Class Diagrams

5.11.1.1 MapClasses (Class Diagram)

This diagram shows classes related to handling map-related requests.

[image: image121.emf]MapFeatureJSONSupporter

«interface»

MapFeatureJSONSupporterImpl

MapReqHdlr RequestHandler «interface» getHomePageMapDataJSON(req : HttpServletRequest, resp : HttpServletResponse, supporter : RequestHandlerSupporter) : StringgetCloseDevicesMapDataJSON(req : HttpServletRequest, resp : HttpServletResponse, supporter : RequestHandlerSupporter) : StringgetResponseDeviceIDToTEAndRPIMap(supporter : RequestHandlerSupporter) : HashMap[Identifier, HashSet[Pair[Identifier,Identifier]]]getFeatures(supporter : RequestHandlerSupporter, featureClasses : ArrayList, referencePoint : GeoLocation, radius : double) : HashMap[Class, ArrayList[MapFeature]]getDefaultFeatureClassLayerMap() : HashMap[Class, String]getFeatures(supporter : RequestHandlerSupporter, featureClasses : ArrayList):MapFeature[]userCanViewTrafficEventSensitiveDetails() : boolean

getEventAndResponsePlanItemIDsForDevice(deviceID:Identifier) :

 Collection[Pair[Identifier, Identifier]]

getTrafficEvent() : WebTrafficEvent

m_session : UserLoginSessionImpl

m_deviceIDToEventAndResponsePlanItemIDsMap :

 HashMap[Identifier HashSet[Pair[Identifier][Identifier]]]

m_trafficEvent : WebTrafficEvent

Figure 5‑92 MapClasses (Class Diagram)

5.11.1.1.1 MapFeatureJSONSupporter (Class)

This interface supplies information necessary for MapFeatures to build JSON for the map.

5.11.1.1.2 MapFeatureJSONSupporterImpl (Class)

This class implements the MapFeatureJSONSupporter interface to supply data necessary for map features to build JSON necessary to represent their data.

5.11.1.1.3 MapReqHdlr (Class)

This class handles requests related to map functionality.

5.11.1.1.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.11.2 Sequence Diagrams

5.11.2.1 MapReqHdlr:getCloseDevicesMapDataJSON (Sequence Diagram)

This diagram shows how the request for the Close Devices Map JSON data is handled. The traffic event ID is used to retrieve the WebTrafficEvent, and the radius parameter is also parsed. An Envelope object is created to represent the extent of the traffic event and device locations. A HashMap is created to map the feature classes to layer names. Another HashMap is built for looking up the traffic events and response plan items for a given response device (DMS or HAR), which are displayed in the DMS/HAR callout. A call is made to get all MapFeature objects that are devices and are within the specified radius from the traffic event. For each device class, the features of that class are retrieved from the HashMap and each feature is called to build a JSONObject, passing a context object that features may use to query necessary information. The JSONObject is then added to the list for the layer, and the envelope is expanded for the device's location. The traffic event is added on its own layer in the JSON data. Finally the layer data and other information are added to the JSON object representing all of the map data, and the JSON object is sent via the response.

[image: image122.emf]WebTrafficEvent or null

[not found]

return null

getDoubleParam("radius", 5)

User

getCloseDevicesMapDataJSON(

req, resp, supporter)

create

expand(featureCoordinates)

add(jsonObject)

[* for each

feature

of class]

create

HashMap

get(deviceClass)

Envelope

This is a mapping from feature

class to output layer name.

getGeoLocation()

create(eventLocation)

getDefaultFeatureClassLayerMap()

WebTrafficEvent String (layer name)

ServletUtil RequestHandler Supporter MapFeature put("layerID", layerName)

add(jsonLayer)

getIdentifierParam(

"trafficEventID")

getCachedObject(trafficEventID)

get(trafficEvent.getClass())

String (layer name)

put("layerID", layerName)

put("features", trafficEventFeatures)

[* for each

device class]

Builds a lookup table of traffic

event / RPI ID pairs for each

response device in the system.

This is used to display the extra

usage information in the

DMS / HAR popups, even if

the device is only in the

response plan and the response

plan item is not executed

(i.e., on the device's arbitration

queue).

MapFeatureJSON

SupporterImpl

This is a mapping from requested feature classes

to a list of MapFeatures for that class.

featuresByClass:

HashMap

jsonFeaturesOnLayer:

JSONArray

featureClassLayerMap :

HashMap

jsonLayers:

JSONArray

jsonLayer :

JSONObject

getResponseDeviceIDToTEAndRPIMap()

create

getFeatures(supporter, deviceClasses, geoLocation, radius)

create

HashMap

get(deviceClass)

ArrayList<Feature>

getJSONForMap(mapFeatureJSONSupporterImpl)

JSONObject

create

getGeoLocation()

mapJSON :

JSONObject

create

put("mapID", "closeDevicesMap")

put("layers", jsonLayers)

add(jsonLayer)

put("trafficEventID", teID.toString())

put("radiusMiles", radius)

put("minLat", envelope.getMinY())

put("maxLat", envelope.getMaxY())

put("minLon", envelope.getMinX())

put("maxLon", envelope.getMaxX())

sendJSONObject(

resp, mapJSON)

null

NOTE - currently there

is only one traffic event

in the close device map,

which is why the traffic

event is handled

outside of the above loop.

create

getJSONForMap(mapFeatureJSONSupporterImpl)

JSONObject

add(trafficEventJSONObject)

create

create

MapReqHdlr put("features", jsonFeaturesOnLayer)

Figure 5‑93 MapReqHdlr:getCloseDevicesMapDataJSON (Sequence Diagram)

5.11.2.2 MapReqHdlr:getHomePageMapDataJSON (Sequence Diagram)

This diagram shows how the request for the Home Page Map JSON data is handled. A HashMap is created to map the feature classes to layer names. A call is made to get all MapFeature objects that are devices or traffic events. For each feature class, the features of that class are retrieved from the HashMap and each feature is called to build a JSONObject, passing a context object that features may use to query necessary information. The JSONObject is then added to the list for the layer. Finally the layer data and other information are added to the JSON object representing all of the map data, and the JSON object is sent via the response.

[image: image123.emf]RequestHandlerSupporter WebTrafficEvent

If the map is showing center

events only and the feature is

a WebTrafficEvent, only get the

JSON for the object and add it to the

layer if its controlling op center

matches the Operations Center the

user is currently logged in at.

getBooleanParam("centerEventsOnly")

getUserLoginSession()

[centerEventsOnly && feature instanceof WebTrafficEvent]

getControllingOpCenter()

Builds a lookup table of traffic

event / RPI ID pairs for each

response device in the system.

This is used to display the extra

usage information in the

DMS / HAR popups, even if

the device is only in the

response plan and the response

plan item is not executed

(i.e., on the device's arbitration

queue).

getResponseIDtoTEAndRPIMap()

User

MapReqHdlr ServletUtil MapFeature This is a mapping from feature

class to output layer name.

MapFeatureJSON

SupporterImpl

This is a mapping from requested feature classes

to a list of MapFeatures for that class.

featuresByClass:

HashMap

featureClassLayerMap :

HashMap

mapJSON :

JSONObject

jsonFeaturesOnLayer:

JSONArray

jsonLayers:

JSONArray

jsonLayer :

JSONObject

getHomePageMapDataJSON(

req, resp, supporter)

JSONObject

create

getGeoLocation()

[location != null]

add(jsonObject)

[* for each

feature

of class]

create

get(featureClass)

String (layer name)

create

put("layerID", layerName)

getDefaultFeatureClassLayerMap()

put("features", jsonFeaturesOnLayer)

add(jsonLayer)

create

put("mapID", "homePageMap")

put("layers", jsonLayers)

sendJSONObject(

resp, mapJSON)

null

create

[* for each

feature class]

create

getFeatures(supporter, featureClasses)

create

HashMap

get(featureClass)

MapFeature[]

[not TE || TE controlled by user's center]

getJSONForMap(mapFeatureJSONSupporterImpl)

Figure 5‑94 MapReqHdlr:getHomePageMapDataJSON (Sequence Diagram)

5.12 GUI – Servlet – Alias Management (chartlite/servlet/aliasmgmt)
5.12.1 Class Diagrams

5.12.1.1 GUIAliasServletClasses (Class Diagram)

This diagram shows the classes used by the AliasReqHdlr to manage location aliases.

[image: image124.emf]1

1

1

WebRoadwayLocationLookup DiscoverLocationsCommand

ObjectLocationAliasInfo1

1

1

1

DynListSubject «interface» 1

1

WebObjectLocationAliasInfo

1 EditAliasLocationSupporter

EditObjectLocationSupporter

«interface»

1

1

1

1

AliasXMLHelper

RequestHandler «interface» DiscoverLocationAliasesCommand

1

1

1

1

AddAliasFormData

1 1

DynListReqHdlrDelegate

1

1

1

1

AliasListSupporter

DynListDelegateSupporter

«interface»

AliasReqHdlr

XMLHTTPService

QueueableCommand

«interface»

ObjectLocationAliasInfo()

ObjectLocationAliasInfo(id:byte[],

 aliasNames:ObjectLocationAliasNameInfo,

 location:ObjectLocation)

id:byte[]

aliasNames:ObjectLocationAliasNameInfo

location:ObjectLocation

getID():Identifier

getInternalAliasName():String

getPublicAliasName():String

getLocation():WebObjectLocation

m_id:Identifier

m_aliasInfo:ObjectLocationAliasInfo

m_location:WebObjectLocation

PROP_INTERNAL_NAME:String

PROP_PUBLIC_NAME:String

PROP_SEARCH_KEYS:String

PROP_LOCATION_DESC:String

PROP_COUNTY:String

PROP_ROUTE:String

PROP_DIRECTION:String

EditAliasLocationSupporter(alias:WebObjectLocationAliasInfo)

EditAliasLocationSupporter(formData:AddAliasFormData)

m_alias:WebObjectLocationAliasInfo

m_formData:AddAliasFormData

AddAliasFormData(formDataID:String, aliasInfo:WebObjectLocationAliasInfo)

getAliasInfo():WebObjectLocationAliasInfo

m_aliasInfo:WebObjectLocationAliasInfo

init(supporter:RequestHandlerSupporter):void

getAddAliasForm(req:HttpServletRequest, resp:HttpServletResponse,

 ctx:Context, supporter:RequestHandlerSupporter):String

processAddAlias(req:HttpServletRequest, resp:HttpServletResponse,

 ctx:Context, supporter:RequestHandlerSupporter)String()

processEditAlias(req:HttpServletRequest, resp:HttpServletResponse,

 ctx:Context, supporter:RequestHandlerSupporter)String()

processRemoveAlias(req:HttpServletRequest, resp:HttpServletResponse,

 ctx:Context, supporter:RequestHandlerSupporter)String()

getRemoveAliasConf(req:HttpServletRequest, resp:HttpServletResponse,

 ctx:Context, supporter:RequestHandlerSupporter)String()

processViewAliasList(req:HttpServletRequest, resp:HttpServletResponse,

 ctx:Context, supporter:RequestHandlerSupporter):String

m_dynListDelegate:DynListReqHdlrDelegate

m_aliasHelper:AliasXMLHelper

createDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter,

 dynListID:Identifier):DynList

getDynListSubjects(req:HttpServletRequest, supporter:RequestHandlerSupporter,

 dynList:DynList):DynListSubject[]

getFilterValue(col:DynListCol, filterValueStr:String):String

discoverAliasClasses():void

discoverAliasEventChannels():void

m_xmlHTTPService: XMLHTTPService

m_aliasHelper:AliasXMLHelper

post(req:XMLHTTPRequest):XMLHTTPResponse

get(req:XMLHTTPRequest):XMLHTTPResponse

m_baseURL:String

getAlias(XMLDocument):WebObjectLocationAliasInfo

getAlias(WebObjectLocationAliasInfo):XMLDocument

getAliases(XMLDocument):WebObjectLocationAliasInfo[]

m_jaxbContext:JAXBContext

m_objectFactory:ObjectFactory

m_marshaller:Marshaller

Figure 5‑95 GUIAliasServletClasses (Class Diagram)

5.12.1.1.1 AddAliasFormData (Class)

This class contains data for adding a new Alias to the system, including the alias name information and the location information.

5.12.1.1.2 AliasListSupporter (Class)

This class provides functionality required by the DynListReqHdlrDelegate object for the Alias List page.

5.12.1.1.3 AliasReqHdlr (Class)

This class is the request handler that is responsible for handling location alias requests.

5.12.1.1.4 AliasXMLHelper (Class)

This class is responsible for converting WebObjectLocationAliasInfo objects to XML for posting to the GIS Web Service and for converting XML received from the GIS Web Service back to WebObjectLocationAliasInfo objects.

5.12.1.1.5 DiscoverLocationAliasesCommand (Class)

This class is responsible for the discovery of all Alias related classes.

5.12.1.1.6 DiscoverLocationsCommand (Class)

This class will perform discovery processing related to locations.

5.12.1.1.7 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.12.1.1.8 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.12.1.1.9 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.12.1.1.10 EditAliasLocationSupporter (Class)

This class allows editing the location information for a location alias.

5.12.1.1.11 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example, the target of the edited location may be an existing object, or it may be a form data object for creating a new object).

5.12.1.1.12 ObjectLocationAliasInfo (Class)

This class represents information about an object location alias as defined in the IDL.

5.12.1.1.13 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.12.1.1.14 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.12.1.1.15 WebObjectLocationAliasInfo (Class)

This class represents information about an object location alias. It wraps an ObjectLocationAliasInfo structure defined in the IDL.

5.12.1.1.16 WebRoadwayLocationLookup (Class)

This class wraps the RoadwayLocationLookup interface and provides default values, data caching, and other auxiliary functionality.

5.12.1.1.17 XMLHTTPService (Class)

This class represents a remote XML/HTTP based web service at a specified URL. It supports operations to perform HTTP get and post operations on the remote service.
5.12.2 Sequence Diagrams

5.12.2.1 chartlite.servlet.aliasmgmt:AliasReqHdlr.getAddAliasForm (Sequence Diagram)

This diagram shows the processing that is performed when a user chooses to add a location alias to the system. This processing is also performed if an add is already in progress and the Add form is being redisplayed after navigating away from the add form to set the location data. If this is an Add Alias operation that was already in progress (i.e. the formDataID is present in the request), a formDataID parameter will be used to retrieve the form data object from the temp object store and the form data will be parsed. If this is an Add Alias operation that was not already in progress (i.e. the formDataID is not present in the request), a new AddAliasFormData object is created. The empty form data is then stored in the temp object store. The Add Alias form is then displayed to the user.

[image: image125.emf]put("formData", formData)

formData

getTempObjectStore()

ret

getAddAliasForm()

getObject(formDataID)

[Exception]

put("errMsg", errStr)

getTrimmedParameter()

getFramingTemplate()

createDefaultAliasInfo()

formDataID:String

formDataID:String

The following processing is performed if a formDataID is present in the request, indicating an Add operation is already in progress.

System

RequestHandlerSupporter ServletUtil AddAliasFormData

AddAliasFormData

getTempObjectStore()

parseFormData()

getTempObjectStore()

AliasReqHdlr ServletProperties TempObjectStore WebObjectLocationAliasInfo Context

[Exception]

put("pageContent", errorTemplate)

getProperties()

put("pageContent", AddAlias.vm)

processRequest()

create()

createTempObjectID()

The following processing is performed if a formDataID is not present in the request, indicating a new Add operation.

add(formDataID, formData)

Figure 5‑96 chartlite.servlet.aliasmgmt:AliasReqHdlr.getAddAliasForm (Sequence Diagram)

5.12.2.2 chartlite.servlet.aliasmgmt:AliasReqHdlr.initialize (Sequence Diagram)

This diagram shows the processing that is performed by the AliasReqHdlr class during initialization. First, the URL of the CHART GIS Web Service is obtained. Next, a DiscoverLocationAliasesCommand object is created and added to the list of commands that should execute with each discovery cycle via the DiscoveryManager. Next, an AliasListSupporter object is created that will provide functionality for the View Alias List page. Then a DynListReqHdlrDelegate object is created which will allow the AliasReqHdlr to provide functionality to view, sort, or filter the alias dynamic list.

[image: image126.emf]DynListReqHdlrDelegate

create

add(command:DiscoverAliasesCommand)

ServletProperties

getCHARTGISServiceURL()

DiscoverLocationAliasesCommand

System

RequestHandlerSupporter

init(supporter:RequestHandlerSupporter)

AliasReqHdlr

AliasListSupporter

create

create

DiscoveryDriver

getProperties()

Figure 5‑97 chartlite.servlet.aliasmgmt:AliasReqHdlr.initialize (Sequence Diagram)

5.12.2.3 chartlite.servlet.aliasmgmt:AliasReqHdlr.processAddAlias (Sequence Diagram)

This diagram shows the processing performed when the AliasReqHdlr class receives a request to add a new location alias. First, the AliasReqHdlr class invokes the processAddAlias method on itself. The name of the framing template is obtained from the ServletProperties class and the formDataID value is obtained from the request. The AliasReqHdlr class then uses the formDataID to obtain the form data from the TempObjectStore class. The AliasReqHdlr class then invokes the parseFormData method on the AddAliasFormData class to parse the form data and check for invalid data. If the form data is valid, the AliasReqHdlr class then invokes the checkAccess method of the TokenManipulator to see if the user has the rights to add a new location alias. If the user has the required rights, the AliasReqHdlr class then invokes the isAliasNameUnique method on itself to determine if an alias with the same internal and public names already exists in the object cache. If the alias name information is unique, the AliasReqHdlr class then passes the WebObjectLocationAliasInfo object to the AliasHelper class through the getAlias method which returns an XMLDocument representing the alias information. The XML is then posted to the CHART GIS Web Service to create the new alias. If the XML returned by the CHART GIS Web Service contains a status of success, the AliasHelper class is used to convert the XML back to a WebObjectLocationAliasInfo object which is then added to the DataModel by invoking the objectAdded method. The request is then redirected to the view alias list page to display all existing aliases including the one just added. If the XML returned by the CHART GIS Web Service contains a status of failure or an Exception is thrown, the Error template will be returned in the response.

[image: image127.emf]alias:WebObjectLocationAliasInfo

[isAliasNameUnique() == true]

getAlias(WebObjectLocationAliasInfo)

post("createAlias.do")

AliasHelper

XMLHTTPService

System

AliasReqHdlr RequestHandlerSupporterServletProperties

ServletUtil

TempObjectStore

AddAliasFormData

TokenManipulator

getAlias(XMLDocument)

WebRoadwayLocationLookup

Context

HttpServletResponse

[success]

objectAdded(alias:WebObjectLocationAliasInfo)

[success]

sendRedirectURL()

formData

processRequest()

getTempObjectStore()

getFramingTemplate()

ret

[success]

get()

xml:String

[!Exception]

isAliasNameUnique()

processAddAlias()

xmlDoc:XMLDocument

getObject(formDataID)

checkAccess()

[failure or Exception]

put(errMsg, errStr)

formDataID:String

[failure or Exception]

put("pageContent", errorTemplate)

parseFormData()

getProperties()

[!Exception]

getTrimmedParameter()

Figure 5‑98 chartlite.servlet.aliasmgmt:AliasReqHdlr.processAddAlias (Sequence Diagram)

5.12.2.4 chartlite.servlet.aliasmgmt:AliasReqHdlr.processViewAliasList (Sequence Diagram)

This diagram shows the processing performed when the AliasReqHdlr class receives a request to view the list of location aliases. First, the AliasReqHdlr class invokes the processViewAliasList method on itself. The name of the framing template is obtained from the ServletProperties class. The AliasReqHdlr class then invokes the viewDynList method on the DynListReqHdlrDelegate class which in turn invokes the getDynList method on itself. If the returned DynList is null, the DynListReqHdlrDelegate class invokes the createDynList method on itself to create a new DynList object. The DynListReqHdlrDelegate class then invokes the getDynListSubjects method on the AliasListSupporter class. The AliasListSupporter class obtains the data used to populate the DynList from the WebRoadwayLocationLookup class. If no errors have occurred, the DynList, page content, and refresh interval are added to the Context and returned in the response. If an error has occurred, the error message and Error template are added to the Context and returned in the response.

[image: image128.emf]ServletProperties

put(refreshInterval)

WebRoadwayLocationLookup

get()

AliasListSupporter

[dynList == null]

createDynList

getDynList()

Context

errMsg

DynListReqHdlrDelegate

viewDynlist()

getProperties()

getFramingTemplate()

AliasReqHdlr

processViewAliasList()

ret

System

processRequest()

getAliases()

getDynListSubjects()

put(dynList)

RequestHandlerSupporter

put(pageContent)

[errMsg != null]

put(errMsg)

[errMsg != null]

put("pageContent", errorTemplate)

Figure 5‑99 chartlite.servlet.aliasmgmt:AliasReqHdlr.processViewAliasList (Sequence Diagram)

5.12.2.5 chartlite.servlet.aliasmgmt:DiscoverLocationAliasesCommand.execute (Sequence Diagram)

This diagram shows the processing that is performed by the DiscoverLocationAliasesCommand class when the execute method is called. First, the DiscoverLocationAliasesCommand class invokes the discoverAliasEventChannels method on itself. The DiscoverLocationAliasesCommand class then invokes the discoverEventChannelsOfName method on the TraderGroup class to query the trading service and find event channels with a given name and add them to the EventConsumerGroup. The DiscoverLocationAliasesCommand class then invokes the discoverAliasClasses method on itself. Next, the DiscoverLocationAliasesCommand class invokes the post method of the XMLHTTPService to request an XML document from the CHART GIS Web Service containing a list of all existing location aliases. The resulting XML is passed to the AliasXMLHelper class which returns a list of WebObjectLocationAliasInfo objects. The updateCache method of the WebRoadwayLocationLookup class is invoked to update the cache with the new list of WebObjectLocationAliasInfo objects.

[image: image129.emf]WebRoadwayLocationLookup

get()

getAliases()

WebObjectLocationAliasInfo[]

post("getLocationAliases.do")

xmlResult:String

XMLHttpService AliasXMLHelper

discoverAliasClasses()

discoverAliasEventChannels()

discoverEventChannelsOfName()

execute()

DiscoverLocationAliasesCommand TraderGroup

System

updateCache(aliases:WebObjectLocationAliasInfo[])

Figure 5‑100 chartlite.servlet.aliasmgmt:DiscoverLocationAliasesCommand.execute (Sequence Diagram)

5.13 GUI – Servlet – Alerts (chartlite/servlet/alerts)
5.13.1 Class Diagrams

5.13.1.1 AlertsClasses (Class Diagram)

This diagram shows CHART GUI servlet classes related to alerts.

[image: image130.emf]1 FirstAvailableOfferWrapper

Used to locate AlertFactory where

a manual alert will be added.

RequestHandlerSupporter «interface» RequestHandler«interface»1 1

1

AlertReqHdlr createGenericAlert(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetAlertOpCenters(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetAlerts(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetAudioCue(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringperformAlertAction(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringresolveAlert(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringviewAlertDetails(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

+FirstAvailableOfferWrapper(ORB, TraderGroup, className : string,

 serviceType : string, constraint : string,

 minDiscoveryIntervalSeconds : int,

 maxRemoteServiceUseMins : int) : ctor

+createIterator() : Iterator

Figure 5‑101 AlertsClasses (Class Diagram)

5.13.1.1.1 AlertReqHdlr (Class)

This class is a request handler used to process requests related to alerts.

5.13.1.1.2 FirstAvailableOfferWrapper (Class)

This class is a generic wrapper that provides the ability to find the first available reference to a service that may have multiple instances within the system.

5.13.1.1.3 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.13.1.1.4 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods that are helpful to request handlers.

5.13.2 Sequence Diagrams

5.13.2.1 chartlite.serlet.alerts:AlertReqHdlr.getAlerts (Sequence Diagram)

This diagram shows how the getAlerts request is handled. The "filter" parameter is used to construct an AlertFilter object to perform the filtering. (This AlertFilter stored in the UserLoginSessionImpl for later use.) All WebAlert objects are retrieved from the cache, and for those types of alerts that the user has rights to view, the alerts that pass the username / op center filter are added to one of the lists depending on the alert state (new, accepted, delayed, or closed). The lists are sorted and added to the Velocity context, and the name of the AlertsListXML template is returned. This template will be used to dynamically generate the XML to return in the response.

[image: image131.emf]isNew()

isAccepted()

isDelayed()

isClosed()

[* for each alert]

put("newAlerts", newAlerts)

put("delayedAlerts", delayedAlerts)

put("filter", filter.getFilterType())

UserAlertReqHdlr HttpServletRequest RequestHandlerSupporter ServletUtil AlertFilter

UserLoginSessionImplNavLinkRights WebAlert Context New for R5:

Store the filter in

the user login session

for later use by

HomePageReqHdlr.getHomePageJSON()

getAlerts()

[not logged in]

throw GeneralException

getParameter(filter)

getLoginSession(req)

UserLoginSessionImpl

create(filterStr)

isAllowAll()

getNavLinkRights()

passesFilter(alert, username, opCenterID)

[doesn't

pass

filter]

[is new]

Add To New List

[is accepted]

Add To Accepted List

[is delayed]

Add To Delayed List

[is closed]

Add To Closed List

Sort Lists

put("acceptedAlerts", acceptedAlerts)

put("closedAlerts", closedAlerts)

"\alerts\xml\AlertsListXML.vm"

canViewAllAlerts()

[filter is All and

user doesn't have

View All rights]

throw GeneralException

setAlertFilter(filter)

getCachedObjectsOfType(WebAlert.class)

WebAlert[]

Create Lists For New, Accepted, Delayed, Closed States

getType() [no rights to

view this type]

Figure 5‑102 chartlite.serlet.alerts:AlertReqHdlr.getAlerts (Sequence Diagram)

5.14 GUI – Servlet – Location (chartlite/servlet/location)
5.14.1 Class Diagrams

5.14.1.1 chartlite.servlet.location_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to locations.

[image: image132.emf]EditTrafficEventLocationSupporterEditObjectLocationSupporter«interface»SpecifyLocationReqHdlrLocationReqUtilRequestHandler«interface»WebRoadwayLocationLookup 1 1 uses getIntersectingFeaturesXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetRouteListXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetSpecifyLocationCombinedListDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetSpecifyLocationInitialFormDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetStateLocationInfoXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringdisplayEditObjectLocationDataForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetEditObjectLocationDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringsetObjectLocationDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetLocationInfoXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringgetIntersectingFeaturesOfTypeXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):StringparseObjectLocation(supplier : ParamSupplier) : ObjectLocation-parseIntersectingFeatureLocationInfo(supplier : ParamSupplier) : IntersectingFeatureLocationInfo-parseRoadwayLocation(supplier : ParamSupplier) : RoadwayLocation-parseRouteSpecification(supplier : ParamSupplier, routeTypeValueParamName : String, freeformRouteDescParamName : String, routePrefixParamName : String, routeNumberParamName : String, routeSuffixParamName : String, roadNameParamName : String) : RouteSpecificationsetLocationFormDataParameterValues(formData : UserFormData, loc : WebObjectLocation) : voidgetName() : StringgetObjectLocation() : WebObjectLocationgetUpdateParentPageURLParamStr() : StringhideGeoLocationFields() : booleanallowComboDirections() : booleanallowNoneDirection() : booleansetObjectLocation(location:ObjectLocation, supporter : RequestHandlerSupporter, req : HttpServletRequest) : StringEditTrafficEventLocationSupporter(event : WebTrafficEvent)EditTrafficEventLocationSupporter(formData : CopyEventFormData)isForTrafficEvent() : boolean {true}isNameOverridden() : booleanhasLanes() : booleangetEventTypeDesc() : StringgetIncidentTypeName() : StringgetActionTypeDesc() : Stringm_event : WebTrafficEventm_formData : CopyEventFormDataget() : WebRoadwayLocationLookup init(mappingURL:String, chartGISURL:String):void getInitialData():void getCountyRegionStateDesc(countyInfo : WebCountyInfo, regionInfo WebRegionInfo, stateInfo : WebStateInfo) : String getAliases() : WebRoadwayLocationAliasInfo[] getCounties(stateCode : String) : WebCountyInfo[] getCountyRegionStateDescs() : String[] getDefaultStateCode() : String getInternalAliasNames() : String[] getRegions(stateCode : String) : WebRegionInfo[] getRoutesByRouteType(stateCode : String, countyCode : String, routeType : RouteType) : WebRouteInfo[] getStates() : WebStateInfo[] getState(stateCode:String):WebStateInfo -updateCachedCountyData(stateInfo:WebStateInfo):void -updateCachedRegionData(stateInfo:WebStateInfo):void lookupLocationInfo(lat:double, lon:double):LocationLookupResults lookupIntersectingFeatures(stateCode:String, countyCode:string, routeID:String, types:IntersectingFeatureType[]):IntersectingFeatureLookupResults -getCachedIntersectingFeatures(MainRouteHashKey):IntersectingFeatureLookupResults -queueCommand(cmd:QueueableCommand):void m_cachedStates : WebStateInfo[] m_cachedRegions : HashMap<String; WebRegionInfo[]> m_cachedAliases : WebRoadwayLocationAliasInfo[] m_cachedRoutes : HashMap<MainRouteHashKey; WebRouteInfo[]> m_cachedIntersectingFeatures<MainRouteHashKey; IntersectingFeaureLookupResults> m_defaultStates : WebStateInfo[] m_defaultStateCode : String m_defaultCounties : HashMap<String; WebCountyInfo[]> m_defaultRegions : HashMap<String; WebRegionInfo[]> m_timeAfterFailureToAllowCallsSec : int m_lastCallFailureTime : long

Figure 5‑103 chartlite.servlet.location_classes (Class Diagram)

5.14.1.1.1 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example, the target of the edited location may be an existing object, or it may be a form data object for creating a new object).

5.14.1.1.2 EditTrafficEventLocationSupporter (Class)

This class provides functionality for editing the location of an existing traffic event, or one that is being copied.

5.14.1.1.3 LocationReqUtil (Class)

This class provides functionality for location-related requests.

5.14.1.1.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.14.1.1.5 SpecifyLocationReqHdlr (Class)

This handles requests related to specifying the location of CHART objects (such as traffic events and devices).

5.14.1.1.6 WebRoadwayLocationLookup (Class)

This class wraps the RoadwayLocationLookup interface and provides default values, data caching, and other auxiliary functionality.

5.14.2 Sequence Diagrams

5.14.2.1 SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML (Sequence Diagram)

This diagram shows the processing performed when a user requests the XML that describes features that intersect a particular route in a specified state and county. The system gets the incoming parameters from the HttpServletRequest, then calls the WebRoadwayLocationLookup to get the set of intersecting features of the specified types. The call to the WebRoadwayLocationLookup will not return until it has retrieved intersecting features for all specified types. The intersecting features that were requested are then placed in the context and the IntersectingFeaturesXML.vm is returned.

[image: image133.emf]User

SpecifyLocationReqHdlr

HttpServletRequest

getIntersectingFeaturesOfTypeXML

getParameter("countyCode")

getParameter("stateCode")

getParameterValues("type")

getParameter("routeID")

This call gets any previously cached results (routes, exits, or mileposts) and, if needed, calls synchronously

to remote web services to retrieve any data not previously cached prior to returning.

See WebRoadwayLocationLookup.lookupIntersectingFeatures sequence diagram for details.

IntersectingFeaturesXML.vm

Context

IntersectingFeatureLookupResults

IntersectingFeatureLookupResults

[caller requested exits]

getIntersectingExits()

WebExitInfo[]

[caller requested exits]

put("intersectingExits", exits)

[caller requested mileposts]

getIntersectingMileposts()

WebMilepostInfo[]

[caller requested mileposts]

put("intersectingMileposts", mileposts)

[caller requested routes]

getIntersectingRoutes()

WebIntersectingRouteInfo[]

[caller requested routes]

put("intersectingRoutes", routes)

WebRoadwayLocationLookup

lookupIntersectingFeatures(stateCode, countyCode, routeID, types)

Figure 5‑104 SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML (Sequence Diagram)

5.14.2.2 SpecifyLocationReqHdlr:getLocationInfoXML (Sequence Diagram)

This diagram shows the processing performed when a client requests information about a particular location specified by a latitude and longitude. The request handler reads the incoming latitude and longitude then does a local check against each WebStateInfo cached in the WebRoadwayLocationLookup. If any known state contains the specified point, the known counties for that state are checked to see if any of them contain the point location. If no cached state contained the point location, a call to the GIS web service is needed. This is done by calling the WebRoadwayLocationLookup lookupLocationInfo() method. The results of the lookup are checked to see if a state and county were found. If a state was found (either locally or via a GIS service lookup), it is placed in the context. If a county was found (either locally or via a GIS service lookup), it is also placed in the context. If an error occurred, the error information is placed in the context. Finally the LocationInfo.vm velocity template is returned to format the results into XML for the client.

[image: image134.emf][county containing point found]

put("county", WebCountyInfo)

User

SpecifyLocationReqHdlr

HttpServletRequest

WebRoadwayLocationLookup WebStateInfo WebCountyInfo Context LocationLookupResults

getLocationInfo()

getParam("lat")

getParam("lon")

getStates()

WebStateInfo[]

[while WebStateInfo

containing point

not found]]

containsPoint(lat, lon)

boolean

[WebStateInfo contains point]

getCounties()

WebCountyInfo[]

containsPoint(lat, lon)

[while WebCountyInfo

containing point

not found]

boolean

[No state contains point]

lookupLocationInfo(lat, lon)

LocationLookupResults

[lookup was performed]

getState()

WebStateInfo

[lookup was performed]

getCounty()

WebCountyInfo

[state containing point found]

put("state", WebStateInfo)

put("success", Boolean)

[Error getting location info]

put("errMsg", String)

LocationInfo.vm

Figure 5‑105 SpecifyLocationReqHdlr:getLocationInfoXML (Sequence Diagram)

5.15 GUI – Servlet – Video (chartlite/servlet/video)
5.15.1 Class Diagrams

5.15.1.1 GUIVideoServletClasses (Class Diagram)

This diagram shows GUI classes involved in processing video-related requests.

[image: image135.emf]FormUtil SelectMonitorsListSupporter SelectVideoSourcesList VideoSourceSelectListSupporter This class is updated in R5 to add support for multiple vidoe sending devices and flash streaming configurations. MonitorListSupporter 1 VideoSourceListSupporter11 DynListDelegateSupporter «interface» DynListReqHdlrDelegate 11 VideoSinkReqHdlr 1 VideoSourceConfigReqHdlr EditVideoCameraLocationSupporterControlVideoSourceReqHdlr EditObjectLocationSupporter«interface» SelectMonitorsList These classes are updated in R5 to add support for multiple video sending devices getAddVideoSourceForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter): StringgetEditCameraLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : StringparseWebVideoSourceConfig(formData:UserFormData, dataModel:DataModel, existingSource:WebVideoSource,isCamera:Boolean,supporter:RequestHandlerSupporter):WebVideoSourceConfigpopulateFormData(formData:UserFormData, config:WebVideoSourceConfig):voidcopyEditableFields(dest:VideoSourceConfig, src:VideoSourceConfig, videoSource:WebVideoSource):voidgetName() : StringgetObjectLocation() : WebObjectLocationgetUpdateParentPageURLParamStr() : StringhideGeoLocationFields() : booleanallowComboDirections() : booleanallowNoneDirection() : booleansetObjectLocation(location:ObjectLocation, supporter : RequestHandlerSupporter, req : HttpServletRequest) : StringEditCameraLocationSupporter(camera : WebCamera)EditCameraLocationSupporter(formData : UserFormData, supporter : RequestHandlerSupporter)m_camera : WebCameram_addCameraFormData : UserFormDatam_supporter : RequestHandlerSupportersetRoutingInfo(req:HttpServletRequest,supporter:HttpRequestHandlerSupporter,dynList SelectVIdeoSourcesList)setRoutingInfo(req:HttpServletRequest,supporter:HttpRequestHandlerSupporter,dynList SelectVIdeoSourcesList)createDynList():DynList getDynListSubjects():DynListSubject[] getFilterValue():String createDynList():DynList getDynListSubjects():DynListSubject[] getFilterValue():String isSinkLocalToSource(): boolean setRoutingInfo(sourceFabricIDs:Identifier[],routedFabricList:HashTable):void m_sourceFabricIDs: HashMap parseVideoTransmissionDeviceConfigList(UserFormData formData, Boolean isSendingDevice, DataModel dm)

populateFormData(WebVideoTransmissionDeviceConfig[] sendingDeviceConfig, UserFormData formData)

isSourceLocalToTarget(WebVideoSource):boolean m_sourceFabricIDs: HashMap

Figure 5‑106 GUIVideoServletClasses (Class Diagram)

5.15.1.1.1 ControlVideoSourceReqHdlr (Class)

This class handles all requests to control video devices.

5.15.1.1.2 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.15.1.1.3 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id of the list, the property name, and/or the filter value.

5.15.1.1.4 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example, the target of the edited location may be an existing object, or it may be a form data object for creating a new object).

5.15.1.1.5 EditVideoCameraLocationSupporter (Class)

This class is used to support editing the location of an existing or new VideoCamera.

5.15.1.1.6 FormUtil (Class)

This class contains methods for handling form processing.

5.15.1.1.7 MonitorListSupporter (Class)

This class is a DynListDelegateSupporter that provides Monitor specific functionality to the generic DynListReqHdlrDelegate.

5.15.1.1.8 SelectMonitorsList (Class)

This class represents the select monitors dynamic list

5.15.1.1.9 SelectMonitorsListSupporter (Class)

This class provides functionality required by the DynListReqHdlrDelegate object for the Select Monitors page.

5.15.1.1.10 SelectVideoSourcesList (Class)

This class is a DynList used to select video sources. It supports single or multiple select models. The caller specifies a target action that should be invoked when the selection is complete and a caller ID that should be passed back to the caller. After selection is complete, a request url of the following format will be created.

5.15.1.1.11 VideoSinkReqHdlr (Class)

This class is a request handler that processes requests related to video sinks such as Monitors.

5.15.1.1.12 VideoSourceConfigReqHdlr (Class)

This class handles requests related to video source configuration.

5.15.1.1.13 VideoSourceListSupporter (Class)

This class is a DynListDelegateSupporter that provides Video Source specific functionality to the generic DynListReqHdlrDelegate.

5.15.1.1.14 VideoSourceSelectListSupporter (Class)

This class provides functionality required by the DynListReqHdlrDelegate object for the Video Source Selection List page.

5.15.2 Sequence Diagrams

5.15.2.1 EditVideoCameraLocationSupporter:setObjectLocation (Sequence Diagram)

This diagram shows the processing to save the camera location when the user submits the Edit Location form. The SpecifyLocationReqHdlr calls the EditVideoCameraLocationSupporter with the location parsed from the request. If the location is being edited while adding / copying a camera, a utility method is called to store the location in the TempObjectStore using a location ID that has already been stored in the UserFormData which is also in the TempObjectStore. When the Add/Copy form is redisplayed, the location ID in the UserFormData will be used to get the location object and populate the location hidden form parameters in the Add/Copy form. If the location is being saved for an existing camera, the WebCamera is called to get the VideoCamera reference, the server is called to set the location (after checking rights), the configuration is queried from the camera, and the cached location is updated.

[image: image136.emf]UserFormData TempObjectStore Check User's amera Configuration Rights [no rights] throw exception getCameraConfig()

WebCameraConfig

updateCachedLocation(config.m_location)

getStringParam("locationID") getTempObjectStore() add(locationID, objectLocation) The user form data has already been stored in the TempObjectStore and will be retrieved when the Add/Copy camera form is redisplayed. The location ID parameter will then be carried in that form using hidden form parameters. [WebCamera] getVideoCameraRef()getCameraConfig(token) getUserLoginSession(req) getAccessToken() VideoCameraConfig SpecifyLocationReqHdlr EditVideoCameraLocation Supporter RequestHandler Supporter WebCameraConfig setObjectLocation(objectLocation, reqHdlrSupporter, req) WebCamera UserLogin SessionImpl VideoCamera setLocation(token, location)

Figure 5‑107 EditVideoCameraLocationSupporter:setObjectLocation (Sequence Diagram)

5.15.2.2 SelectMonitorListSupporter:setRoutingInfo (Sequence Diagram)

This method shows the processing that occurs when determining local/remote routing info for display in a list of monitors when choosing the display for a camera. This method isupports cameras with multiple sending devices. When a camera has mutliple sending devices, each one is included in the dynList's routing info.

[image: image137.emf]DynList [src has

no video

fabric]

setRoutingInfo(sourceFabricID,endFabricID)

[for each

VideoFabric]

HashTable [routedSrc != null &&routedSrcID == sourceID)

put(endFabricID, endFabricID)

create WebBridgeCircuit getCollectorVideoSource()

SelectMonitorsListSupporter setRoutingInfo(req, supporter, dynList) WebVideoFabric[] This method shows the processing that occurs when determining local/remoterouting info for display in a list of monitors when choosing the display for a camera. This methodis modified for R5 to support cameras with multiple sending devices. When a camera has mutliple sendingdevices, each one is included in the dynList's routing info.R5

Multiple sending

devices supported

System [for each

WebBridgeCircuit

<WebVideoSource>routedSource

WebVideoSource getVideoFabrics()

Figure 5‑108 SelectMonitorListSupporter:setRoutingInfo (Sequence Diagram)

5.15.2.3 VideoSourceConfigReqHdlr:parseWebVideoSourceConfig (Sequence Diagram)

This diagrams shows the processing that occurs when the sending devices are read from the request. The process supports multiple video sending devices in a video source configuration. Configuration parameters for a Streaming Flash Server are also supported.

[image: image138.emf]VideoControlFlashConfig[]

add(new VideoTransmissionDeviceConfig())

ArrayList<VideoTransmissionDeviceConfig>

VideoSourceConfigReqHdlr

parseWebVideoSourceConfig(UserFormData formData, DataModel dataModel,

 WebVideoSource existingSource, boolean isCamera,

RequestHandlerSupporter supporter)

parseVideoTransmissionSendingDeviceConfigList(

formData,true,DataModel)

return WebVideoSourceConfig

[numSwitches && numEncoders == 0)

appendErrMessage("No Video Transmission Devices")

getParameterValue("SFSIpAddress")

getParameterValue("SFSPassword")

Add to switch or encoder specific

arraylist in formdata object. Read all fields from

the formData

VideoTransmissionDeviceConfig[]

[while encoderCnt <=

numEncoders]

[while switchCt <=

numSwitches]

add(new VideoTransmissionDeviceConfig())

FormUtil

This diagrams shows the processing that occurs when the sending devices are read from the request to add or edit a video source. In R5support is added to allow multiple video sending devices in a video source configuration. Configuration parameters for a Streaming Flash Server

are also added.

int

new

UserFormData

getParameterValue("numSwitches")

getParameterValue("numEncoders")

parseVideoControlFlashConfig(formData)

getParameterValue("SFSPort")

Figure 5‑109 VideoSourceConfigReqHdlr:parseWebVideoSourceConfig (Sequence Diagram)

5.15.2.4 VideoSourceConfigReqHdlr:populateFormData (Sequence Diagram)

This method shows the processing that occurs when a VideoSourceConfiguration is used to populate a UserFormData object in preparation for displaying the add or copy video source form. During the process the function sets Streaming Flash Server configuration fields.

[image: image139.emf]populateFormData(sendingDeviceConfigAry, formData)

setParameterValue("StreamingFlashServerPort")

R5

Added flash

stream config

VideoSourceConfig

[for each flash

stream configuration

in the config]

setParameterValue("streamingFlashServerIP")

setParameterValue("streamingFlashServerSecret")

System

This method shows the processing that occurs when a VideoSourceConfiguration is usedto populate a UserFormData object in preparation for displaying the add or copy video source form.In R5, support was added to set Streaming Flash Server configuration fields and multiple video sending devices.UserFormData

populateFormData(UserFormData formData, WebVideoSourceConfig config

FormUtil

getVideoSourceconfig()

VideoSourceConfigReqHdlr WebVideoSourceConfig

Figure 5‑110 VideoSourceConfigReqHdlr:populateFormData (Sequence Diagram)

5.16 GUI – Javascript – Open Layers (chartlite/javascript/OpenLayers)
5.16.1 Class Diagrams

5.16.1.1 OpenLayersClasses (Class Diagram)

This diagram shows a subset of the OpenLayers functionality. OpenLayers is an open source class library that is implemented in Javascript that provides interactive map viewer capabilities.

[image: image140.emf]*

1 1 1 1 This diagram shows a subset of the OpenLayers (version 2.8) class relationships, paying special attention to references and commonly used fields. The classes shown on this diagram are all JavaScript. OpenLayers.LonLat

NOTE - OpenLayers code in

the Map and/or Layer classes

often uses LonLat to

represent projected coordinates,

not true longitude / latitude as the

name implies.

1 1

1

1 *

OpenLayers.Projection

1 1

NOTE - In OpenLayers 2.8 , the Markers

layer type contains Markers but does not own

them (i.e., destroy them when the layer is destroyed).

The Feature class owns both a Marker and a Popup,

but but nothing owns the Feature. (Although the

Layer reference in Feature indicates a 1-to-many

relationship between Layer and Feature,

the Layer class does not contain Features,

nor does the Markers layer subclass.)

Feature serves as a base class for Vector features

but the Vector layer type owns (and destroys)

its Features. So it seems that the Markers layer really

SHOULD own (and clean up) its marker-based

Features, but it doesn't.

Also note that there is no reference from a Marker or

Popup to the Feature that owns it, so there is no way

to iterate through the Markers to properly clean up

any of the Markers, Features, or Popups using the

current OpenLayers API / implementation.

1

OpenLayers.Icon

1

OpenLayers.Map OpenLayers.Layer.

ArcGIS93Rest

OpenLayers.Layer.

XYZ

OpenLayers.Control.

Panel

OpenLayers. Control OpenLayers.Marker

* * *

1

OpenLayers.Layer OpenLayers.Layer.

Markers

OpenLayers.Control.

LayerSwitcher

OpenLayers.Control.

Button

OpenLayers.Popup

OpenLayers.Feature

1 1 1

1

1

1

name : String isBaseLayer : Boolean visible : Boolean alwaysInRange : Boolean projection : Projection map : Map markers : Marker[]

baseLayer : Layer layers : Layer[] controls : Control[] popups : Popup[] projection : Projection displayProjection : Projection icon : Icon

lonlat : LonLat

map : Map

map : Map layer : Layer

lonlat : LonLat

marker : Marker

popup : Popup

data : Object

map : Map

lonlat : LonLat

lon : double

lat : double

Figure 5‑111 OpenLayersClasses (Class Diagram)

5.16.1.1.1 OpenLayers. Control (Class)

This class represents a way of controlling the map via user input. A control may or may not have a visual component that is overlaid on the map.

5.16.1.1.2 OpenLayers.Control. Button (Class)

This class represents a button in a panel (toolbar), which invokes the trigger() method when clicked. The button does not become active or inactive like toggle controls: it remains inactive.

5.16.1.1.3 OpenLayers.Control. LayerSwitcher (Class)

This class represents an overlay on the map that allows the user to choose which layers are visible. It does not support groups of layers.

5.16.1.1.4 OpenLayers.Control. Panel (Class)

This class represents a toolbar-style overlay on the map that contains other controls such as buttons and toggle controls. Only one toggle control can be active on a panel at one time.

5.16.1.1.5 OpenLayers.Feature (Class)

This class combines geometry and attributes for an object in a layer. It has a marker, a point location, and a popup.

5.16.1.1.6 OpenLayers.Icon (Class)

This class represents an icon image, backed by a transparent HTML DIV element.

5.16.1.1.7 OpenLayers.Layer (Class)

This class represents a collection of map information that has the same visibility. A layer can be a base layer or an overlay layer. A base layer serves as a background, while an overlay layer is in the foreground. Only one background layer is active at a time in the Map.

5.16.1.1.8 OpenLayers.Layer. ArcGIS93Rest (Class)

This class represents a base layer that uses ArcGIS Rest functionality.

5.16.1.1.9 OpenLayers.Layer. Markers (Class)

This class represents an overlay layer which has a collection of marker objects, each of which has a point location and an icon.

5.16.1.1.10 OpenLayers.Layer. XYZ (Class)

This class represents a cached tile background layer where the tile images are cached on the map server and the URL to retrieve them contains the X, Y, and Z (zoom) index values. This class assumes that tile X=0, Y=0 is within the layer's extents.

5.16.1.1.11 OpenLayers.LonLat (Class)

This class is intended to represent a longitude, latitude coordinate pair. However in the OpenLayers code, this often represents coordinates in the base layer projection, which is not necessarily longitude/latitude.

5.16.1.1.12 OpenLayers.Map (Class)

This class represents a map displayed on a web page. It contains layers and may contain controls and popups.

5.16.1.1.13 OpenLayers.Marker (Class)

This class represents a marker object. It has a location and an icon.

5.16.1.1.14 OpenLayers.Popup (Class)

This class represents a "popup" on the map, otherwise known as an "overlay" or "callout".

5.16.1.1.15 OpenLayers.Projection (Class)

This class is a representation of the mapping of a coordinate space to 2D Cartesian X/Y coordinates.

5.17 GUI – Javascript – CHART Layers (chartlite/javascript/CHARTLayers)

5.17.1 Class Diagrams

5.17.1.1 CHARTLayersClasses (Class Diagram)

This diagram shows map-related Javascript classes, most of which extend classes in the OpenLayers library.

[image: image141.emf]The classes on this daigram

are all JavaScript.

OpenLayers.Feature

The most recent JSON CHART object

reference will be stored in Feature's

"data" field with with the sub field

name "chartObj".

This object contains type-specific

data to represent the object in the map,

as built by the servlet.

OpenLayers.Control

OpenLayers.Control.

LayerSwitcher

CHARTLayers.Control.

GroupSupportingLayerSwitcher

OpenLayers.Control.

Panel

CHARTLayers.Control.

Panel

OpenLayers.Control.

Button

CHARTLayers.Control.

PushButton

CHARTLayers.Control.

Tooltips

Subclasses wishing to perform custom

processing on the JSON response data

may want to override handleMapDataJSON(),

calling the base class first.

To exclude some objects in the response

from appearing on the map, the subclass can

override jsonResponseObjectsFiltered() and

includeJSONResponseObject(). By default

CHARTMap will not perform any filtering.

CHARTLayers.Layer.

XYZWithOffset

CHARTLayers.Layer.

ArcGIS93Rest

OpenLayers.Map

CHARTLayers.CHARTMap

OpenLayers.Layer

OpenLayers.Layer.

Markers

OpenLayers.Layer.

XYZ

OpenLayers.Layer.

ArcGIS93Rest

CHARTLayers.Layer.

Markers

* 1

initialize(name, url, tileOrigin, options) : void

getURL(bounds) : String

tileOrigin : OpenLayers.LonLat

initialize(name, url, params, options)

initialize(name, options, addFeatureFunc, updateFeatureFunc) : void

destroy() : void

registerEventHandlers() : void

getFeatureByCHARTID(chartObjID) : OpenLayers.Feature

queryFeatures(extents) : OpenLayers.Feature[]

querySelectedFeatures() : OpenLayers.Feature[]

adjustPopupVisibility() : void

updateFeatures(chartObjArr) : void

createFeaturePopup(feature, hideIfVisible) : OpenLayers.Popup

addFeature(lonlat, icon, initialPopupHTML,

 closeBox, overflow, chartObj) : OpenLayers.Feature

updateFeature(feature, newChartObj) : void

updateFeaturePosition(feature, chartObj) : void

removeFeature(feature) : void

removeFeatureByCHARTID(chartObjID) : void

removeAllFeatures() : void

updateFeatureSelection(feature, ctrlKey, shiftKey) : void

isFeatureSelected(feature) : Boolean

setFeatureSelectionState(feature, selected) : void

setProjection(projection) : void

addFeatureFunc : function

updateFeatureFunc : function

selectedMarkerCSSClassName : String

features : OpenLayers.Feature[]

featureLookupTable : Object

layer : Layer

lonlat : LonLat

marker : Marker

popup : Popup

data : Object

initialize(div, options) : void

destroy() : void

addDefaultBaseLayers() : void

createCHARTBGTileLayer() : CHARTLayers.Layer.XYZWithOffset

calculateTileExtents(leftTileIdx, topTileIdx, rightTileIdx,

 bottomTileIdx, tileOrigin, tileSize, resolution) : OpenLayers.Bounds

createGoogleStreetsLayer() : OpenLayers.Layer.Google

createGoogleHybridLayer() : OpenLayers.Layer.Google

createESRILayer() : OpenLayers.Layer.ArcGIS93Rest

createMilepostsLayer() : OpenLayers.Layer.ArgGIS93Rest

trueLonLatToBaseLayerProjection(lonlat) : OpenLayers.LonLat

getViewportTrueLonLat() : OpenLayers.Bounds

zoomToTrueLonLatExtent(extent : OpenLayers.Bounds) : void

showFeatureWithCHARTID(chartObjID, minRadiusMiles,

 additionalTrueLonLatExtent, showPopup) : void

getCHARTMarkerLayers(layerNames) : CHARTLayers.Layer.Markers[]

getCHARTMarkerLayer(layerName) : CHARTLayers.Layer.Markers

getCHARTMarkerLayerOrLayers(layerName) :

 CHARTLayers.Layer.Markers[]

setBaseLayer(newBaseLayer) : void

adjustForBaseLayerChange(lastProj, newProg) : void

addCHARTMarkerLayer(groupName, layerName,

 addFeatureFunc, updateFeatureFunc, maxRes) :

 CHARTLayers.Layer.Markers

getFeatureByCHARTID(objID, optLayerName) : OpenLayers.Feature

getFeaturesAtViewportPx(viewportPx) : OpenLayers.Feature[]

queryFeaturesOnMarkerLayers(layerNames, extents,

 includeNonVisibleLayers) : OpenLayers.Feature[]

buildHTMLForChooseFeaturePopup(features) : String

displayPopupForFeatureWithCHARTID(layerName, chartObjID) : void

featureClosePopupCallback(evt) : void

closeAllPopups() : void

chooseFeaturePopupCloseCallback(evt) : void

removePopup(popup) : void

checkForFeaturesClicked(evt) : boolean

filterSelectableFeatures(features) : OpenLayers.Feature[]

isFeatureSelectable(feature) : boolean

featureChoiceMade(layerName, chartObjID) : void

setFeatureSelectionState(feature, selected) : void

querySelectedFeatures(layerName) : OpenLayers.Feature[]

clearFeatureSelections(layerName) : void

addTooltipsControl() : void

displayTooltipControl(evt) : void

hideTooltipControl(evt) : void

updateOrHideVisibleTooltipControl(evt) : void

buildTooltipHTML(evt) : String

getFeatureTooltipHTML(feature, isInList) : string

startJSONUpdates(url, intervalSec, errMsgHdlr) : void

stopJSONUpdates() : void

issueJSONUpdateRequestIfUpdatesStarted() : void

issueJSONUpdateRequest(url, errMsgHdlr) : void

handleRawJSONResponse(jsonObj, attemptedAction, errMsgHdlr) : void

handleMapDataJSON(jsonObj) : void

jsonResponseObjectsFiltered(layerName) : boolean

includeJSONResponseObject(layerName, chartObj) : boolean

lonLatProjection : OpenLayers.Projection

chooseFeaturePopup : OpenLayers.Popup

tooltipsControl : CHARTLayers.Control.Tooltips

encodedApp : String

displayURLInWorkingWindowFuncName : String

jsonUpdateExecuter : PeriodicalExecuter

jsonUpdateURL : String

jsonUpdateHandler : function

jsonUpdateErrMsgHdlr : function

destroyCalled : boolean

Figure 5‑112 CHARTLayersClasses (Class Diagram)

5.17.1.1.1 CHARTLayers.CHARTMap (Class)

This provides common functionality for all maps used in the CHART GUI, beyond the map functionality supported by OpenLayers.

5.17.1.1.2 CHARTLayers.Control. GroupSupportingLayerSwitcher (Class)

This class extends the OpenLayers LayerSwitcher control to support groups of layers.

5.17.1.1.3 CHARTLayers.Control. Panel (Class)

This class extends the OpenLayers Panel control class to add support for CHARTLayers.Control.PushButton objects to support pushbutton styles.

5.17.1.1.4 CHARTLayers.Control. PushButton (Class)

This class extends the OpenLayers Button class to add support for button up / down styles for visual feedback to the user when the button is clicked.

5.17.1.1.5 CHARTLayers.Control. Tooltips (Class)

This class adds tooltip functionality to the map.

5.17.1.1.6 CHARTLayers.Layer. ArcGIS93Rest (Class)

This class extends the OpenLayers ArcGIS93Rest class to support projection changes. It is used for the CHART mileposts layer, as this mostly transparent layer is overlaid on base layers with different projections.

5.17.1.1.7 CHARTLayers.Layer. Markers (Class)

This class adds CHART-specific functionality to the OpenLayers Markers layer class.

5.17.1.1.8 CHARTLayers.Layer. XYZWithOffset (Class)

This layer extends the OpenLayers XYZ layer to add support for tile systems where the tile origin is outside tile extents (i.e., where the bottom left tile is tile M,N instead of 0,0).

5.17.1.1.9 OpenLayers.Control (Class)

This class represents a way of controlling the map via user input. A control may or may not have a visual component that is overlaid on the map.

5.17.1.1.10 OpenLayers.Control. Button (Class)

This class represents a button in a panel (toolbar), which invokes the trigger() method when clicked. The button does not become active or inactive like toggle controls: it remains inactive.

5.17.1.1.11 OpenLayers.Control. LayerSwitcher (Class)

This class represents an overlay on the map that allows the user to choose which layers are visible. It does not support groups of layers.

5.17.1.1.12 OpenLayers.Control. Panel (Class)

This class represents a toolbar-style overlay on the map that contains other controls such as buttons and toggle controls. Only one toggle control can be active on a panel at one time.

5.17.1.1.13 OpenLayers.Feature (Class)

This class combines geometry and attributes for an object in a layer. It has a marker, a point location, and a popup.

5.17.1.1.14 OpenLayers.Layer (Class)

This class represents a collection of map information that has the same visibility. A layer can be a base layer or an overlay layer. A base layer serves as a background, while an overlay layer is in the foreground. Only one background layer is active at a time in the Map.

5.17.1.1.15 OpenLayers.Layer. ArcGIS93Rest (Class)

This class represents a base layer that uses ArcGIS Rest functionality.

5.17.1.1.16 OpenLayers.Layer. Markers (Class)

This class represents an overlay layer which has a collection of marker objects, each of which has a point location and an icon.

5.17.1.1.17 OpenLayers.Layer. XYZ (Class)

This class represents a cached tile background layer where the tile images are cached on the map server and the URL to retrieve them contains the X, Y, and Z (zoom) index values. This class assumes that tile X=0, Y=0 is within the layer's extents.

5.17.1.1.18 OpenLayers.Map (Class)

This class represents a map displayed on a web page. It contains layers and may contain controls and popups.

5.17.1.2 MapViewSpecificClasses (Class Diagram)

This diagram shows classes related to specific views of the map. This includes extensions of the CHARTLayers.CHARTMap class.

[image: image142.emf]SpecifyLocationComponent.vm (used by EditObjectLocationDataForm.vm) and EventLauncherComponent.vm (used by HomePage.vm and EventLauncher.vm) will contain the following global methods which are called from the Flex EditLocation application: jsUpdateMapGeoLocInfo(lonStr, latStr, isUserSpecified, locSourceDesc, locDesc) jsClearMapGeoLocInfo() jsZoomMapToExtent(minLon, maxLon, minLat, maxLat) CHARTLayers. SpecifyLocationMap EventLauncherMap CHARTLayers. CHARTMap CHARTLayers. HomePageMap CHARTLayers. CloseDevicesMap initialize(divID, userOpCenterIDStr : string) : voidallEventsTriggered(evt) : voidcenterEventsTriggered(evt) : voidshowEvents(buttonToActivate : OpenLayers.Button, buttonToDeactivate : OpenLayers.Button) : voidhandleMapDataJSON(jsonObj) : voidisTrafficEventLayer(markerLayer : CHARTLayer.Layer.Markers) : booleanfilterNonCenterTrafficEvents(jsonFeatureArr : Array) : Arraydestroy() : voiduserOpCenterIDStr : stringeventLayers : CHARTLayers.Layer.Marker[]allEventsButton : OpenLayers.Control.ButtoncenterEventsButton : OpenLayers.Control.ButtonzoomToTrafficEventsPending : booleaninitialize(divID, initialLonLat, radiusMiles, objectsSelectedDescEltID, selectionInstructionsEltID, objectsSelectedEltID) : void destroy() : void getFeatureTooltipHTML(feature, isInList) : String isFeatureSelectable(feature) : boolean featureSelectionChanged() : void handleMapDataJSON(jsonObj) : void dmsLayer : CHARTLayers.Layer.Markers harLayer : CHARTLayers.Layer.Markers objectsSelectedDescEltID : string selectionInstructionsEltID : string objectsSelectedEltID : string initialize(divID, flexAppName, eventLayersVisible, newLocationThresholdMiles) : void destroy() : void mapSingleClicked(evt) : void mapDoubleClicked(evt) : void setLonLatViaFlex(lonLat) : void updateMapGeoLocInfo(lonStr, latStr, isGeoLocUserSpecified, sourceDesc, locDesc) : void getSpecifyLocationFeature() : OpenLayers.Feature getSpecifyLocationFeaturePopupHTML(lonStr, latStr, isGeoLocUserSpecified, sourceDesc, locDesc) : string updateSpecifyLocationFeatureLonLatInfo(lonLat, popupHTML, tooltipHTML) : void addSpecifyLocationFeature(markerLayer, specifyLocationObj) : void updateSpecifyLocationFeature(feature, newSpecifyLocationObj) : void handlers : Object specifiedLocationMarkerLayer : CHARTLayers.Layer.Markers specifyLocationFeatureID : string flexAppName : string lastLonLatSpecifiedViaMapClick : OpenLayers.LonLat newLocationThresholdMiles : Number initialize(divID, flexAppName) : void destroy() : void mapSingleClicked(evt) : void

Figure 5‑113 MapViewSpecificClasses (Class Diagram)

5.17.1.2.1 CHARTLayers. CHARTMap (Class)

This provides common functionality for all maps used in the CHART GUI, beyond the map functionality supported by OpenLayers.

5.17.1.2.2 CHARTLayers. CloseDevicesMap (Class)

This class represents the Close Devices Map that is shown on the Traffic Event Details page.

5.17.1.2.3 CHARTLayers. HomePageMap (Class)

This class represents the map on the Home Page.

5.17.1.2.4 CHARTLayers. SpecifyLocationMap (Class)

This class is used for specifying the location of an object. It supports a feature (and marker) to represent the location specified by the user. It interacts with a Flex application containing a Specify Location form in both directions, to allow the map to update the form and vice versa. This map will support panning and zooming.

5.17.1.2.5 EventLauncherMap (Class)

This map extends the SpecifyLocationMap to add functionality specific to the Event Launcher.

5.17.2 Sequence Diagrams

5.17.2.1 CHARTMap:handleRawJSONResponse (Sequence Diagram)

This diagram shows how the map object update JSON response is handled. The JSON response object contains all raw ID and status information for the CHART objects to be shown on the map, and the data is contained in an array of logical "layers" that match the layers in the map. If the JSON object contains a "layers" field, it is map data (as opposed to an error result) so handleMapDataJSON() is called. For each logical layer, the CHART marker layer is retrieved and updateFeautes() is called, passing in the fresh set of CHART object data for that layer. A lookup table is built for the new array. For each existing OpenLayers.Feature object in the layer, if the object is not in the new array, the Feature is removed from the layer. Then for each new JSON object, if the corresponding feature is not already in the Layer the addFeatureFunc() callback is called to add the feature; otherwise, the updateFeatureFunc() callback is called to update the existing feature.

[image: image143.emf][jsonObj.result not null]

Call errMsgHdlr

The "features" array here is is an array of JSON CHART objects, not OpenLayers.Feature objects as the name might suggest. Call the type-specific callback assigned to the layer

for adding or updating the feature.

handleRawJSONResponse(jsonObj, actionDesc, errMsgHdlr)getCHARTMarkerLayer(jsonObj.layers[i].layerID) updateFeatures(jsonObj.layers[i].features) Build Lookup Table For Fresh JSON Objects [feature ID Not In Fresh Objects Lookup Table] removeFeature(feature) [* for each feature in existing Markers.features array]getFeatureByCHARTID(chartObj.featureID) [* for each CHART Object in fresh objects array] [feature is null] addFeatureFunc(this, chartObj) OpenLayers.Feature or null [jsonObj.layers not null] handleMapDataJSON(json) [* for each layerin jsonObj.layers]][feature not null]

updateFeatureFunc(feature, chartObj)

CHARTLayers.CHARTMapCHARTLayers.Layer. Markers ajax_json.jsreturn from handleMapDataJSON()

Figure 5‑114 CHARTMap:handleRawJSONResponse (Sequence Diagram)

5.17.2.2 CHARTMap:startJSONUpdates (Sequence Diagram)

This diagram shows how JSON updates are started for the map. (The JSON response object contains all CHART object data to represent in the map.) The startJSONUpdates() method is called, and the URL and error handler are saved for future use. The first JSON request is issued immediately via a call to issueJSONUpdateRequest() which calls issueJSONRequest() to send the request. Then, a new PeriodicalExecuter object is created to begin the periodic updates and its reference is stored in the map for later use. When the PeriodicalExecuter fires, it calls issueJSONRequestIfUpdatesStarted(), which calls issueJSONRequest() using the URL and error handler that were stored when updates were started.

[image: image144.emf]PeriodicalExecuter

issueJSONRequest(this.jsonUpdateURL, this.jsonUpdateErrMsgHdlr)

This is a call to the global function which is defined in the script file: ajax_json.js. UserCHARTLayers. CHARTMap jsonUpdateExecuter: PeriodicalExecuter Issue the first JSON update request immediately, followed by periodic updates. The first request is shown in detail here Save these parameters as member variables for later use. This starts the timer

that will call the update

method periodically.

Save the PeriodicalExecuter

for later use when the updates

need to be stopped.

startJSONUpdates(url, intervalSec, errMsgHdlr)[jsonUpdateExecuternot null]create(issueJSONUpdateRequestIfUpdatesStarted,

intervalSec)

issueJSONUpdateRequest(url, errMsgHdlr) this.jsonUpdateURL = url this.jsonUpdateErrMsgHdlr = errMsgHdlr issueJSONRequest(url, this.handleRawJSONResponse, "getting map data" errMsgHdlr) issueJSONUpdateRequest() this.jsonUpdateExecuter = jsonUpdateExecuter

issueJSONRequestIfUpdatesStarted()

Figure 5‑115 CHARTMap:startJSONUpdates (Sequence Diagram)

5.17.2.3 CHARTMap:stopJSONUpdates (Sequence Diagram)

This diagram shows how JSON updates are stopped. If the jsonUpdateExecuter member variable is null it means no updates have been started, so there is nothing to do but return. If it is not null the PeriodicalExecuter is called to stop, and the related member variables are set to null.

[image: image145.emf]this.jsonUpdateExecuter = null

this.jsonUpdateURL = null

this.jsonUpdateErrMsgHdlr = null

[this.jsonUpdateExecuter == null]UserCHARTLayers. CHARTMap PeriodicalExecuter stopJSONUpdates()stop()

Figure 5‑116 CHARTMap:stopJSONUpdates (Sequence Diagram)

5.17.2.4 CloseDevicesMap:handleMapDataJSON (Sequence Diagram)

This diagram shows how a JSON object update is handled by the Close Devices Map. CHARTMap calls handleMapDataJSON() to process the data, and it provides a default implementation of this method. CloseDevicesMap, which overrides this, first calls the base class (CHARTMap) to update the object markers, popups, etc. A Bounds object is then created based on the bounds stored in the JSON object. The bounds and a minimum radius are passed to showFeatureWithCHARTID() which shows the area around the traffic event and devices.

[image: image146.emf]This ensures that the traffic event is included in the bounds (including a radius around the traffic event) in union with the close devices bounds in the JSON response. This updates the map features, popups, etc. CHARTLayers. CHARTMap CHARTLayers. CloseDevicesMap OpenLayers. Bounds handleMapDataJSON(json)Call handleMapDataJSON() In Base Class [json.minLat && json.maxLat && json.minLon && json.maxLon] create() showFeatureWithCHARTID(json.trafficEventID, minRadiusMiles = 1.0, bounds, showPopup = false)

Figure 5‑117 CloseDevicesMap:handleMapDataJSON (Sequence Diagram)

5.17.2.5 CloseDevicesMap:initialize (Sequence Diagram)

This shows how the Close Devices Map is initialized. The base class is called first to initialize the map's basic functionality. The base layers are added, and the device and traffic event marker layers are also added. The map is initially zoomed to an extent containing a circle around the traffic event (until the JSON response object comes back, when the extent from the JSON data will be used). The controls are added, including tooltips but not including the Navigation control. Event handlers are registered for the mousedown and featureselectionchanged events, to check for clicks on a feature and selection changes. The push button controls are also added to the map.

[image: image147.emf]Note - TSSs and possibly cameras

are not supported in Release 5.

Calculate Default Extents Based On

Traffic Event Location and Close Devices Radius

UserCHARTLayers. CloseDevicesMap Traffic Event layer names:

Action Events

Congestion Events

Disabled Vehicle Events

Incidents

Planned Closures

Safety Message Events

Special Events

Weather Service Events

This adds the background layers such as

CHART BG tile layer, Google layers, etc.

initialize(divID, initialLonLat, radiusMiles,

objectsSelectedDescEltID,

selectionInstructionsEltID,

 objectsSelectedEltID) Call CHARTLayers.CHARTMap

(Base Class) initialize()

this.displayURLInWorkingWindowFuncName = "setLocation"

this.addDefaultBaseLayers()

this.addCHARTMarkerLayer(null, "DMSs", DMS.addFeatureCB, DMS.updateFeatureCB, -1)

this.addCHARTMarkerLayer(null, "HARs", HAR.addFeatureCB, HAR.updateFeatureCB, -1)

this.addCHARTMarkerLayer(null, "SHAZAMs", SHAZAM.addFeatureCB, SHAZAM.updateFeatureCB, -1)

this.addCHARTMarkerLayer("CHART Events", layerName, TrafficEvent.addFeatureCB, TrafficEvent.updateFeatureCB, -1)

Basic Controls include GroupSupportingLayerSwitcher, MousePosition,

Scal, ArgParser, Attribution. NOTE - Navigation (pan/zoom) control is NOT

added.

[* for each traffic event

layer name]

CHARTLayers.Control.

Panel

Add Basic Controls

this.getFeatureTooltipHTMLCB = this.getFeatureTooltipHTML

this.events.register("featureselectionchanged", this, this.featureSelectionChanged)

create()

create()

addControl(panel)

This allows us to check to see if the user

clicked on one or more features in the map.

refreshNowButton :

CHARTLayers.Control.

PushButton

zoomToTrueLonLatExtent(extent)

addTooltipsControl()

this.events.registerPriority("mousedown", this, this.checkForFeaturesClicked)

this.isFeatureSelectableCB = this.isFeatureSelectable

create()

addButtons([closePopupsButton, refreshNowButton])

Add CSS Class Name To Panel DIV

closePopupsButton :

CHARTLayers.Control.

PushButton

Figure 5‑118 CloseDevicesMap:initialize (Sequence Diagram)

5.17.2.6 HomePageMap:handleMapDataJSON (Sequence Diagram)

This shows the processing when the Home Page Map receives the JSON response. For each layer name in the JSON object, the map marker layer is retrieved. If it is a traffic event layer, and if the Center Events button is active, a call is made to filterNonCenterTrafficEvents(), which returns only those traffic events controlled by the user's op center. If it is not a traffic event layer, or if the Center Events button is not active (i.e., if All Events is active), no filtering is done. The layer's updateFeatures() is called to update the icons and popups. If it is a traffic event layer, the layer is queried to find the extents, and the extents of all traffic event layers are used to find the bounds of all traffic events in the map. After processing the layers in the JSON, it iterates over the map layers and if a layer is in the map but is not represented in the JSON object, all features on that layer are removed. Finally, if the flag is set for a pending zoom, and the traffic event extents are valid, the map is zoomed to those extents. The pending zoom flag is set to false so it happens only once per traffic event filter button press.

[image: image148.emf]Bounds extend(teLayerBounds) [not traffic event layer] [* for each layer in JSON response] [markerLayer null] [this.zoomToTrafficEvents

Pending == false]

zoomToTrafficEventsPending = false

[teExtent valid]

zoomToExtent(teExtent, false)

Execute the pending zoom

for the flag that was set when

the user clicked on All Events or

Center Events.

removeAllFeatures()

[* for each existing map

feature layer not represented

in JSON object]

Iterates through the existing

map layers, finding any that are missing

from the JSON response, and removes

the features for those layers. The processing

above would leave objects in the map

indefinitely if the JSON was missing the

layer (perhaps due to the layer being empty

and the servlet not including it). While

it may be unnecessary if the servlet always

returns empty layers, this guards

against that possible bug.

CHARTLayers.CHARTMapCHARTLayers. HomePageMap CHARTLayers.Layer. Markers teExtent : OpenLayers.Bounds handleMapDataJSON(json) getCHARTMarkerLayer(layer.layerID) isTrafficEventLayer(markerLayer) [centerEventsButton.active] filterNonCenterTrafficEvents(layer.features) Filtered JSON traffic events updateFeatures(jsonFeatureObjArr) [teExtent null] create getDataExtent()

Figure 5‑119 HomePageMap:handleMapDataJSON (Sequence Diagram)

5.17.2.7 HomePageMap:showEvents (Sequence Diagram)

This diagram shows the processing when the Center Events or All Events filter button is pressed on the Home Page map. The appropriate button handler calls showEvents(), passing its own button and the other button (to activate / deactivate). Each traffic event layer is set to visible, if it was not already visible. If the button to activate is already active, the map is zoomed to the extent of the data in all traffic event layers. (This allows the user to get back to the initial view by clicking the button again, if they've panned or zoomed since clicking it the first time). If the button is not active, the old button is deactivated and the new one is activated. A flag is set for a pending zoom when the response is processed (the extent of the data is not known until then), and a JSON update request is sent to update the feature data. See the HomePageMap:handleMapDataJSON() diagram for details.

[image: image149.emf]buttonToDeactivate : OpenLayers.Control.Button buttonToActivate : OpenLayers.Control.Button This causes a JSON request for Home Page map data to be issued, as the updates were started when the map was made visible. The filtering will be done based on the whether the Center Events button is active when the response is returned, and the zooming will be done at that time also, as the extent of the data may not be known yet, but will be known when the response is processed. See handleMapDataJSON() for more details. If the button to activate is already active, then we just zoom to the extent of the traffic events already in memory. This provides a useful feature in case the user wishes to return to the original extents after panning / zooming somewhere else. [Button To Activate Already Active] deactivate() activate() This will be called fromcenterEventsTriggered()or allEventsTriggered(),passing the two buttonsin the appropriate order.zoomToTrafficEventExtentsPending = true issueJSONUpdateRequestIfUpdatesStarted() User HomePageMap OpenLayers. Bounds CHARTLayer.Layer. Markers showEvents(buttonToActivate, buttonToDeactivate) createsetVisibility(true) getDataExtent() OpenLayers.Bounds extend(bounds) [* for each Traffic Event layer] [Button To Activate Already Active and extent is valid] zoomToExtent(extent)

Figure 5‑120 HomePageMap:showEvents (Sequence Diagram)

5.17.2.8 SpecifyLocation:jsUpdateMapGeoLocInfo (Sequence Diagram)

This diagram shows how a location specified in the EditLocation Flex application is used to update the Specify Location Map or Event Launcher map. The EditLocation Flex application calls jsUpdateMapGeoLocInfo() via external interface. (This Javascript method will be defined in the SpecifyLocationComponent and EventLauncherComponent Velocity template files.) The SpecifyLocationMap object is called to update the location info. This builds HTML for the Specify Location feature's tooltip and popup, and calls updateSpecifyLocationFeatureLonLatInfo() which creates an object containing the data for the Specify Location feature, and calls the marker layer's updateFeatures() method to create / update the Specify Location feature and marker. Then, if the location is changed from the previous map click, the map is panned / zoomed (otherwise this is feedback from a map click, so the map is not panned / zoomed). The feature's popup is hidden or shown depending on whether the popup HTML is empty.

[image: image150.emf]OpenLayers.Popup [popup HTML not empty] createFeaturePopup(feature, false) getSpecifyLocationFeature() [feature.popup != null && popup HTML empty] hide() updateSpecifyLocationFeatureLonLatInfo(lonLat, popupHTML, tooltipHTML) Create Object To Represent Via Marker updateFeatures([specifiedLocationObj]) This condition avoids recentering / zooming the map if the user clicks a point on the map to specify a location. (i.e., the map is only panned and zoomed if triggered by a form change). [lonLat not same as prior map click] showCHARTObject(specifyLocationFeatureID, 1.0, false, false) EditLocationFlex AppJavascript (global scope) CHARTLayers. SpecifyLocationMap This javascript is in SpecifyLocationComponent.vm and EventLauncherComponent.vm, which both use a SpecifyLocationMap. jsUpdateMapGeoLocInfo(lonStr, latStr, isUserSpecified, locSourceDesc, locDesc)updateMapGeoLocInfo(lonStr, latStr, isUserSpecified, locSourceDesc, locDesc) specifiedLocationMarkerLayer : CHARTLayers.Layer. Markers To be used by updateFeatures(), this object has the fields: featureID name latitude longitude popupHTML getSpecifyLocationFeatureTooltipHTML(lonStr, latStr, isUserSpecified, geoSourceDesc, locDesc) getSpecifyLocationFeaturePopupHTML(lonStr, latStr, isUserSpecified, geoSourceDesc, locDesc) updateSpecifyLocationFeatureLonLatInfo

Figure 5‑121 SpecifyLocation:jsUpdateMapGeoLocInfo (Sequence Diagram)

5.17.2.9 SpecifyLocationMap:specifyLonLatViaMapClick (Sequence Diagram)

This diagram shows what happens when the user specifies coordinates by clicking on the map. The double click causes an event which is converted to latitude / longitude. The coordinates are stored to avoid automatically panning / zooming the map when the Specify Location form calls back to update the map. The Flex application containing the Specify Location form is called to set the user-specified coordinates. See the SpecifyLocation.setUserSpecifiedLonLatStr sequence diagram for more details.

[image: image151.emf]User

SpecifyLocationMap

Flex app containing

SpecifyLocation

mapDoubleClicked(evt)

 events.getMousePosition(evt)

getLonLatFromPixel(viewportPos)

baseLayerProjectionToTrueLonLat(baseLayerLonLat)

Store LonLat Of Click For Later Use

specifyLocationForm_

setUserSpecifiedLonLatStr(lonStr, LatStr,

newLocationThresholdMiles)

setLonLatViaFlex(lonLat)

Gets coordinates in terms of

the current base layer projection.

The longitude / latitude are stored

for later use so we can avoid

automatic panning / zooming

of the map as a result of changes

in the Specify Location form

triggering a call back into javascript

to update the map.

setLonLatViaFlex

This causes SpecifyLocation.

setUserSpecifiedLonLatStr() to be

invoked. See that sequence diagram

for details.

Gets viewport coordinates

of the mouse click.

Convert to longitude / latitude.

Get Flex App

Figure 5‑122 SpecifyLocationMap:specifyLonLatViaMapClick (Sequence Diagram)

5.18 GUI – Flex – Edit Location (chartlite/Flex/editlocation)
5.18.1 Class Diagrams

5.18.1.1 GUIFlexEditLocationClasses (Class Diagram)

This diagram shows classes used in the Edit Location Flex application.

[image: image152.emf]EditLocation 1 SpecifyLocationComponent.vm (used by EditObjectLocationDataForm.vm) and

EventLauncherComponent.vm (used by HomePage.vm and EventLauncher.vm)

will contain the following global methods which are called from the EditLocation

Flex application:

jsUpdateMapGeoLocInfo(lonStr, latStr, isUserSpecified, locSourceDesc, locDesc)

jsClearMapGeoLocInfo()

jsZoomMapToExtent(minLon, maxLon, minLat, maxLat)

SpecifyLocation 1 -init() : void -initAsEditObjectLocationForm() : void -initAsEventLauncherEditLocationForm() : void -handleGetEditObjectLocationDataXMLResult(event:ResultEvent) : void -handleTouchLocationSupporterObjectTimer(event:Event) : void -sendTouchTempObjectXMLRequest() : void -handleTouchTempObjectXMLResult(event:ResultEvent) : void +locationDescChangeListener(event:Event) : void +latitudeChanged(event:Event) : void +longitudeChanged(event:Event) : void -updateMapGeoLocInfo() : void -updateObjectLocation() : void

-updateTrafficEventNameAndLocation() : void

-showErrorMsg(msg : String) : void

-showStatusMsg(msg : String) : void

-setObjectLocation() : void

-displayOverrideConfirmationDialog() : void

-confirmOverrideLocationDescHandler(event:Event) : void

-checkIfLaneConfigWillBeCleared() : void

-displayClearLaneConfigConfirmationDialog() : void

-confirmClearLaneConfigHandler(event:Event) : void

-setObjectLocationNow() : void

-handleSetObjectLocationDataXMLResult(event:ResultEvent) : void

-closeWindow(updateParent:Boolean) : void

+setUserSpecifiedGeoLocation(latDegreesStr:String, lonDegreesStr:String) : void

-zoomMapOnCountyOrStateSelectionChanged(event:Event) : void

getEditObjectLocationDataXMLReq : HTTPService touchTempObjectXMLReq : HTTPService setObjectLocationDataXMLReq : HTTPService m_sessionID : String m_locationSupporterDataID : String m_isForTrafficEvent: Boolean m_trafficEventName : String m_trafficEventTypeDesc : String m_incidentTypeName : String m_actionTypeDesc : String m_trafficEventHasLanes : Boolean m_stdXMLReqTimeoutSecs : int m_locXMLReqTimeoutSecs : int m_touchLocationSupporterObjectTimer : Timer

Figure 5‑123 GUIFlexEditLocationClasses (Class Diagram)

5.18.1.1.1 EditLocation (Class)

This class is a Flex application that allows the user to edit the location for a new or existing object that is backed by a EditObjectLocationSupporter object in the servlet (which includes adding new devices, or editing the location of any object, but does not include creating new traffic events). It is being enhanced in R5 to also support editing the location of new traffic events, when used in conjunction with the EventLauncher Flex application.

5.18.1.1.2 SpecifyLocation (Class)

This is a Flex control that allows the location fields to be specified.
5.18.2 Sequence Diagrams

5.18.2.1 EditLocation:latitudeChanged (Sequence Diagram)

This diagram shows what happens in the Edit Location form to update the map when the text in the latitude field is changed. The latitudeChanged() method is registered as an event listener and is called when the user changes text in the latitude field. It calls updateMapGeoLocInfo(), which gets the current latitude and longitude text from the text fields. If either latitude or longitude are empty, a call to jsClearMapGeoLocInfo() is made via the ExternalInterface into javascript. This will clear any location marker that is set in the map. If the lat/long values are specified, a call to jsUpdateMapGeoLocInfo() is made via the ExternalInterface into javascript. The current latitude / longitude, metadata describing the source of the lat/long values, and the current location description are passed to javascript. This information is used to update the specify location marker in the map.

[image: image153.emf]UserEditLocationSpecifyLocation ExternalInterface [changed text in Latitude field]latitudeChanged(event)updateMapGeoLocInfo() Get Longitude String from longitudeTextInput FieldgetGeoLocSourceDesc() call("jsUpdateMapGeoLocInfo", lonStr, latStr, isGeoLocUserSpecified, sourceDesc, locDesc)call("jsClearMapGeoLocInfo")

Get Latitude String From latitudeTextInput FieldisGeoLocUserSpecified() getObjectLocationDesc() [latStr == "" || lonStr == ""]'

Figure 5‑124 EditLocation:latitudeChanged (Sequence Diagram)

5.18.2.2 EditLocation:zoomMapOnCountyOrStateSelectionChanged (Sequence Diagram)

This diagram shows what happens in the Edit Location form to initiate zooming of the map when the user selects a State or County. Flex calls zoomMapOnCountyOrStateSelectionChanged(), which is registered as an event handler for both the State and County lists. The selected state and county objects are queried from the SpecifyLocation form, although either may be null if no state or county is selected. If a county is selected, the county's extent (if available) will be used. If a county is not selected but a state is selected, the state's extent (if available) will be used. If the extent was obtained from the county or state object, a call is made via ExternalInterface into Javascript to zoom the map to the given extent.

[image: image154.emf]SpecifyLocationThis makes an external call to a Javascript method, which will interact with the map. getSelectedState() getSelectedCounty() [county != null] extent = county.extent [extent != null && ExternalInterface.available] call("jsZoomMapToExtent", extent.minLon, extent.minLat, extent.minLat, extent.maxLat) EditLocationExternalInterface [selects State or County]zoomMapOnCountyOrStateSelectionChangedObject or null Object or null [county == null && state != null] extent = state.extent User

Figure 5‑125 EditLocation:zoomMapOnCountyOrStateSelectionChanged (Sequence Diagram)

5.19 GUI – Flex – Home Page (chartlite/Flex/homepage)
5.19.1 Class Diagrams
5.19.1.1 HomePageClasses (Class Diagram)

This diagram shows classes that are defined within the Flex2 HomePage application.

[image: image155.emf]For R5 the EventLauncher is being removed from the HomePage Flex application and replaced by a pair of Flex applications (EventLauncherApp and EditObjectLocation), which will allow the map to be displayed on the Home Page with a reasonable layout. HomePage1AlertsView1init():voidhandleAlertsUpdated():voidinit():void

handleAlertsUpdated():void

addAlertComment():void

addManualAlert():void

performAlertAction():void

Figure 5‑126 HomePageClasses (Class Diagram)

5.19.1.1.1 AlertsView (Class)

This class is a panel used display alerts and allow them to be managed by the user. It contains methods to handle interaction with the chart gui servlet.

5.19.1.1.2 HomePage (Class)

This class is a Flex2 application. It contains panels for managing alerts, viewing traffic events, and creating new traffic events.

5.20 GUI – Flex – Event Launcher (chartlite/Flex/eventlauncherapp)

5.20.1 Class Diagrams

5.20.1.1 EventLauncherApp (Class Diagram)

This diagram shows classes involved in the EventLauncher Flex application, which is used on the Home Page (new for R5) and from the Add Pending Event and Add Event From Comm Log pages.

[image: image156.emf]EventLauncherAppEventLauncher 1 1The major change for R5 is that the SpecifyLocation component is being removed from the EventLauncher and will reside in a separate Flex application, which allows better layout of the location fields and map. Because of this, the following Javascript methods need to be defined to allow the EventLauncher to interact with the SpecifyLocation form : jsIsLocationDescriptionOverridden() : boolean jsGetLocationParametersForRequest() : Object jsClearLocationFormControls() : void jsGetDefaultStateCode() : String jsSetDefaultStateMRUCountyCodes(mruCountyCodes : Array) : void init() : voidhandleAddTrafficEventXMLResult(event:ResultEvent) : voidopenURL(url:String) : voidm_sessionID : Stringm_jsOpenURLFuncName : Stringm_jsDisplayErrMsgFuncName : Stringm_jsDisplayStatusMsgFuncName : StringeventLauncher : EventLauncherinit(sessionID:String, userName:String, commLogEventLauncherDataID:String, stdXMLReqTimeout:int, locXMLReqTimeout:int, pendingEvent:Boolean) : void addTrafficEvent(eventType:String, eventTypeDisplayName:String) : void addTrafficEventNow(eventType:String, eventTypeDisplayName:String) : void clearControls() : void confirmCreateEventWithoutCoordsHandler(event:Event) : void confirmOverrideLocationDescHandler(event:Event) : void displayConfirmCreateEventWithoutCoordsDialog() : void displayOverrideConfirmationDialog() : void handleAddTrafficEventResult(event:ResultEvent) : void handleGetAddEventNonLocationInfoXMLResult(evt:ResultEvent) : void handleShow(event:ResultEvent) : void updateDefaultStateMRUCounties() : void m_sessionID : String m_sourceTypes : ArrayCollection m_incidentTypes : ArrayCollection m_defaultIncidentType : Object m_commLogEntries : ArrayCollection m_overrideLocationParams : Object m_pendingEvent : Boolean m_requestParamsForCreatingEventWithoutLonLat : Object

Figure 5‑127 EventLauncherApp (Class Diagram)

5.20.1.1.1 EventLauncher (Class)

This class is a panel that allows a user to create a new traffic event.

5.20.1.1.2 EventLauncherApp (Class)

This class represents the Flex application that contains the EventLauncher component.

5.20.2 Sequence Diagrams

5.20.2.1 EventLauncher:addTrafficEvent (Sequence Diagram)

This diagram shows how the Event Launcher requests a new traffic event to be created. The user triggers addTrafficEvent() with a button click on the selected event type button. The EventLauncher calls the SpecifyLocation form (in another flex app) by calling a Javascript method via external interface to get a flag indicating whether the traffic event location description is overridden. If it is, a confirmation dialog is displayed. Once the user confirms (or if no confirmation is needed) addTrafficEventNow() is called. This calls the SpecifyLocation form to get the request parameters object for the location parameters, using the external interface. It then populates the other parameters from the EventLauncher form. If the event type is incident, planned closure, action event, or disabled vehicle, a confirmation dialog is displayed if the longitude and/or latitude were not specified by the user. Finally if the user confirms this (or no confirmation was necessary) the request is sent.

[image: image157.emf]send(params)

params : Object

jsGetLocationParametersForRequest()

specifyLocationForm_

getLocationParametersForRequest()

create

User

EventLauncher ExternalInterface Javascript SpecifyLocation addTrafficEvent(eventType,

eventTypeDisplayName)

call("jsIsLocationDescriptionOverridden")

Boolean

[location desc overridden]

displayOverrideConfirmationDialog()

confirmOverrideLocation

DescHandler(event)

addTrafficEventNow(eventTypeName, eventTypeDisplayName)

call("jsGetLocationParametersForRequest")

jsIsLocationDescriptionOverridden()

specifyLocationForm_

isLocationDescriptionOverridden()

Boolean

Boolean

See the handleAddTrafficEventResult diagram for details

about the handling of the response for this request.

confirmCreateEventWIthoutCoordsHandler(event)

LonLat LonLat values are expected for these

event types:

incident

plannedClosure

actionEvent

disabledVehicle"

addTrafficEventXMLReq: HTTPService [lonLat expected for eventType]

parse(params.longitude, params.latittude)

[lonLat expected but not specified]

displayConfirmCreateEventWithoutCoordsDialog()

[lonLat not expected for type or lonLat specified (parsed)]

send(params)

Other parameters include:

incidentTypeValue

eventName

description

sourceTypeValue

sourceDesc

vehicleMakeColor

vehicleTagInfo

confirmed

pending

logEntryID

action

Populate Location Parameters

Object

Object

Object

Populate Other Parameters

[location desc

not overridden]

Figure 5‑128 EventLauncher:addTrafficEvent (Sequence Diagram)

5.20.2.2 EventLauncher:handleAddTrafficEventResult (Sequence Diagram)

This diagram shows the processing when the response from the Add Traffic Event request is processed. If no error occurred, the duplicate events panel is called to update its recent open events. The EventLauncher then updates the default state MRU (most recently used) counties. It does this by calling the SpecifyLocation form (which is in another Flex application) via the external interface to get the default state, and then parsing the MRU counties from the response for that state. Then it calls again to the SpecifyLocation form to set the MRU counties. The EventLauncher then clears its controls (form fields) and part of doing this involves calling the SpecifyLocation form (via the external interface) to also clear its controls.

[image: image158.emf]Clear Other Form Fields

clearControls

updateDefaultStateMRUCounties

Flex

EventLauncher DuplicateEventsPanel ExternalInterface SpecifyLocation handleAddTrafficEventResult(event)

[error]

showErrorMsg(errMsg)

[error]

updateRecentOpenEvents()

updateDefaultStateMRUCounties()

call("jsGetDefaultStateCode")

JavaScript LocationXMLUtil jsGetDefaultStateCode()

specifyLocationForm_

getDefaultStateCode()

String

String

String

parseMRUCountyCodeList(defaultStateCode, addTrafficEventReq.lastResult)

Array

call("jsSetDefaultStateMRUCountyCodes")

jsSetDefaultStateMRUCountyCodes(

countyCodes) specifyLocationForm_

setDefaultStateMRUCountyCodes(countyCodes)

clearControls()

call("jsClearLocationFormControls")

jsClearLocationFormControls()

specifyLocationForm_

clearControls()

Figure 5‑129 EventLauncher:handleAddTrafficEventResult (Sequence Diagram)

5.21 GUI – Flex – Components (chartlite/Flex/shared/components-flex)
5.21.1 Class Diagrams

5.21.1.1 GUIFlexComponentsClasses (Class Diagram)

This diagram shows common Flex components.

[image: image159.emf]As of R5 / Map, the EventLauncher form will

no longer contain a SpecifyLocation form.

The SpecifyLocation form will

be contained in the EditObjectLocation

Flex app on the page, and the two will

communicate with each other to pass data.

Due to the large size

of this existing class, only

the changes for R5 / Map

are shown here.

SpecifyLocationEventLauncher

filterIntersectingRoutes(item:Object) : Boolean

filterExits(item:Object):Boolean

updateIntersectingRouteList() : void

updateIntersectingExitList() : void

updateIntersectingMilepostList() : void

intersectingExitChanged(event:Event) : void

rampSelectionChanged(event:Event) : void

onExitFocusIn() : void

onExitFocusOut() : void

findExitCompletionFunction(control:CompletionInput, prefix:String) : int

getItemsMatchingString(list:ArrayCollection, matchStr:String) : Array

getLocationParametersForRequest() : Object

-isIntersectingFeatureTypeExit() : Boolean

-isIntersectingFeatureTypeRamp() : Boolean

displayConfirmOverwriteUserCoordsDialog() : void

overwriteUserCoordsHandler(event:Event) : void

displayClearUserCoordsDialog() : void

clearUserCoordsHandler(event:Event) : void

isGeoLocUserSpecified() : Boolean

getGeoLocSourceDesc() : String

getLonLat() : LonLat

setUserSpecifiedLonLat(newLonLat : LonLat,

 newLocationThresholdMiles : Number) : void

setUserSpecifiedLonLatStr(lon : String, lat : String,

 newLocationThresholdMiles : Number) : void

displayIsNewLocationDailog() : void

isNewLocationHandler(event : Event) : void

-selectSpecifiedValuesFromNewLocationLonLat() : void

-getStateContainingLonLat(lonLat : LonLat) : Object

-getCountyContainingLonLat(lonLat : LonLat) : Object

+clearGeoLocationFields() : void

-clearGeoLocationFieldsUnlessUserSetLonLatForNewLocation() : Boolean

-setGeoLocationFeidlsUnlessUserSetLonLatForNewLocation(

 lonStr : String, latStr : String) : Boolean

handleGetLocationInfoXMLResult(event:ResultEvent) : void

updateIntersectingRouteList() : void

updateExits() : void

updateMileposts() : void

sendGetIntersectingFeaturesOfTypeXMLRequest(

 stateCode : String, countyCode : String, routePrefix : String,

 routeNumber : String, routeSuffix : String, typeNames : Array) : void

handleGetIntersectingFeaturesOfTypeXMLResult(event:ResultEvent) : void

fillIntersectingRouteListFromXML(result:Object) : void

fillExitListFromXML(result : Object) : void

m_exits : ArrayCollectionm_mileposts : ArrayCollectionm_potentialNewLocationLonLat : LonLatm_lastNewLocationLonLat : LonLatgetLocationInfoXMLReq : HTTPService

getIntersectingFeaturesOfTypeXMLReq : HTTPService

init(sessionID:String, userName:String, commLogEventLauncherDataID:String,

 stdXMLReqTimeout:int, locXMLReqTimeout:int, pendingEvent:Boolean) : void

addTrafficEvent(eventType:String, eventTypeDisplayName:String) : void

addTrafficEventNow(eventType:String, eventTypeDisplayName:String) : void

clearControls() : void

confirmCreateEventWithoutCoordsHandler(event:Event) : void

confirmOverrideLocationDescHandler(event:Event) : void

displayConfirmCreateEventWithoutCoordsDialog() : void

displayOverrideConfirmationDialog() : void

handleAddTrafficEventResult(event:ResultEvent) : void

handleGetAddEventNonLocationInfoXMLResult(evt:ResultEvent) : void

handleShow(event:ResultEvent) : void

updateDefaultStateMRUCounties() : void

m_sessionID : String

m_sourceTypes : ArrayCollection

m_incidentTypes : ArrayCollection

m_defaultIncidentType : Object

m_commLogEntries : ArrayCollection

m_overrideLocationParams : Object

m_pendingEvent : Boolean

m_requestParamsForCreatingEventWithoutLonLat : Object

Figure 5‑130 GUIFlexComponentsClasses (Class Diagram)

5.21.1.1.1 EventLauncher (Class)

This class is a panel that allows a user to create a new traffic event.

5.21.1.1.2 SpecifyLocation (Class)

This is a Flex control that allows the location fields to be specified.

5.21.2 Sequence Diagrams

5.21.2.1 SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult (Sequence Diagram)

This diagram shows how the response is handled for the request to get the intersecting features of the specified type(s). After checking for errors in the response (and displaying the error if found), calls are made to parse each of the possible feature types from the XML: intersecting routes, exits, and mileposts. If the feature type is present in the response, the list will be filled; otherwise, it will be cleared. NOTE - the longitude / latitude will be parsed as part of this, and stored in memory for later use.

[image: image160.emf]FlexSpecifyLocationGeneralResult handleGetIntersectingFeaturesOfTypeXMLResult(event)[error][error] showErrorMsg(msg)showStatusMsg("") fillIntersectingRouteListFromXML(result)fromHTTPServiceLastResult(getIntersectingFeaturesOfTypeXMLReq)GeneralResult fillExitListFromXML(result) The first of these methods already exists in R3B3 and will only need to be modified to parse the longitude / latitude for R5. These methods will each parse the XML for the appropriate type of feature, and if not found their list will be cleared, which is not undesirable. fillMilepostsListFromXML(result)

Figure 5‑131 SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult (Sequence Diagram)

5.21.2.2 SpecifyLocation:handleGetLocationInfoXMLResult (Sequence Diagram)

This diagram shows what happens when the response is received for the Get Location Info request. The state and county information is parsed from the response XML and it stored in a Location object in the SpecifyLocation class so that the values can be selected later. Then a request is sent to get the combined list data for the state / county. The combined list data is an existing request that returns the counties for the given state, and the routes for the given county, etc. After that response is handled, it will use the stored values to select the state and county from the lists.

[image: image161.emf]SpecifyLocation handleGetLocationXMLResult(event)Parse County Info From XML sendGetSpecifyLocationCombinedListDataXMLRequest(stateCode,

countyCode, routeTypeValue, "", "" "")

Flexcreate

Store the state and county values returned in the response, because we need to send a request to get the list data (i.e., counties for the given state and routes for the given county and route type) and after the response for that request comes back, we need to be able to select the

county after populating the county

list.

(NOTE - in R3B3 similar logic exists in

startPopulatingFormFromObjectLocationOrAliasXML()

but it is currently storing the raw XML. By

storing in a Location object instead, it

will allow common handling even with the

different XML formats returned in these response

objects - only the population of the Location

object will be different)

Parse State Info From XML Store Values In Location Object

For Later Selection

Location

Figure 5‑132 SpecifyLocation:handleGetLocationInfoXMLResult (Sequence Diagram)

5.21.2.3 SpecifyLocation:intersectingFeatureTypeChanged (Sequence Diagram)

This shows what happens when the intersecting feature type is changed. The proximity field is set to its default value if necessary, and the intersecting feature form fields are hidden or shown as appropriate for the feature type. A call is then made to update the intersecting features of the appropriate type, which causes a request to be sent to the servlet to get the features of the specified feature type. The location description, lon/lat fields, intersecting feature fields, and alias fields are cleared or updated as necessary.

[image: image162.emf]Clear Alias Field

Hide Form Fields For Other Feature Types

[featureType == "Road"]

updateIntersectingRouteList()

[featureType == "Milepost"]

updateMileposts()

Clear LonLat Fields Unless

User Set LonLat For New Location

Flex

SpecifyLocation

This method already exists in R3B3,

but is called only when the main

route is changed.

In R5, there are 3 types of intersecting

features, but rather than requesting all

3 lists when the main route changes,

we'll only get one list (the selected

feature type) and will request another

feature list only if or when another

feature type is selected.

See the sequence diagrams for

these methods for details.

intersectingFeatureTypeChanged(event)

Select Default Proximity Type If Not Selected

Show Form Fields For Selected Feature Type

[featureType == "Exit"]

updateExits()

updateObjectLocationDesc()

Clear Intersecting Route, Exit, and Milepost Fields

Figure 5‑133 SpecifyLocation:intersectingFeatureTypeChanged (Sequence Diagram)

5.21.2.4 SpecifyLocation:routeSelectionChanged (Sequence Diagram)

This diagram shows the processing when the route selection is changed. The currently selected intersecting feature type (if any) is used to determine whether to update the intersecting routes, exits, or mileposts, and a call is made to initiate the update. The location description is then updated, and the alias field is cleared unless the route was changed as a result of an alias being set. Finally a call is made to JavaScript to report the route selection change, to support the Potential Duplicate Events list in the Event Launcher (if applicable).

[image: image163.emf]Clear the alias field unless the route is being selected as a result of an alias being set. Makes a call to Javascript, so that the event launcher can be called (if applicable) to support duplicate event checking in the event launcher. routeSelectionChanged()Get Selected Intersecting Feature Type[featureType == "Road"]updateIntersectingRouteList()[featureType == "Exit"]updateExits()[featureType == "Milepost"]updateMileposts()updateObjectLocationDesc()clearAliasFieldIfNecessary()call("jsRouteSelectionChanged")ExternalInterface User orSpecifyLocation formSpecifyLocationThis will have update the location desc to reflect the new route name and the cleared intersecting feature name. This populates the appropriate intersecting features list based on the feature type that is already selected. When the type is changed to something else, the appropriate list will be updated at that time also.

Figure 5‑134 SpecifyLocation:routeSelectionChanged (Sequence Diagram)

5.21.2.5 SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest (Sequence Diagram)

This diagram shows how the request is made to get the intersecting features of the specified type(s). The parameters are populated and the HTTPService object is called. See the handleGetIntersectingFeaturesOfTypeXMLResult diagram for details.

[image: image164.emf]SpecifyLocationSpecifyLocation Parameters will include: action=getIntersectingFeaturesOfType type stateCode countyCode routePrefix routeNumber routeSuffix getIntersectingFeaturesOfTypeXMLReq : HTTPService sendGetIntersectingFeaturesOfTypeXMLRequest(stateCode, countyCode, routePrefix, routeNumber, routeSuffix, types) Populate Parameters send(params)

Figure 5‑135 SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest (Sequence Diagram)

5.21.2.6 SpecifyLocation:setUserSpecifiedLonLatStr (Sequence Diagram)

This diagram shows how the SpecifyLocation Flex form allows the user-specified latitude/longitude to be set. A call is made from javascript to set the location. After parsing the coordinates from strings, the previous values are retrieved from the form fields, then the new values are set into the form. If the previous coordinates existed, and if the new coordinates are within a given radius, no further action is needed. Otherwise, a dialog is displayed asking the user whether the coordinates are for a new location. If the user says "Yes" the coordinates are saved (to allow later comparisons to avoid clearing or overwriting them if the form fields are cleared, etc). These user-specified coordinates will remain unchanged in the lon/lat fields and will be saved when the form is submitted. Finally a request is sent to the servlet to query the state / county for the given coordinates. See the SpecifyLocation.handleGetLocationInfoXMLResult diagram for details for the response handling.

[image: image165.emf]getLocationInfoXMLReq :

HTTPService

The request parameters

will be:

action=getLocationInfo

lat

lon

send(params)

params : Object

create

Populate Request Parameters

If the previous location

is just being adjusted

(i.e., moved slightly)

return without

prompting the user.

User

(via javascript)

SpecifyLocation LonLat

Returns LonLat from the form fields,

which we'll refer to as previousLonLat

below.

See SpecifyLocationMap.

specifyLonLatViaMapClick

sequence diagram.

The user will have to confirm

that this is a "new location" to

reset the fields and select the

State / County etc. using the

given LonLat. Before confirmation,

it is only *potentially* a new location.

The purpose of storing this lon / lat

 (now that the user has confirmed

it to be a new location) is to avoid

clearing or overwriting these coordinates

for some kinds of form selections that

would otherwise clear / overwrite them.

[previousLonLat != null

and distance < threshold]

[previousLonLat != null]

distanceMiles(newLonLat)

Store LonLat For Potentially New Location

displayIsNewLocationDialog()

[clicks Yes on Is New Location dialog]

isNewLocationHandler(event)

Set Last New Location LonLat

setUserSpecifiedLonLatStr(lonStr, LatStr,

newLocationThresholdMiles)

parse(lonStr, latStr)

LonLat

setUserSpecifiedLonLat(newLonLat)

getLonLat()

Set Longitude And Latitude

 Fields To New LonLat

[previous LonLat != null

and distance < threshold]

Figure 5‑136 SpecifyLocation:setUserSpecifiedLonLatStr (Sequence Diagram)

5.21.2.7 SpecifyLocation:updateExits (Sequence Diagram)

This diagram shows how the exits list is refilled. The exit field is cleared, and the cached list is also cleared. The currently selected state, county, and route from the form are passed to sendGetIntersectingFeaturesOfTypeXMLRequest(). See that diagram for more details. If state, county, or route are not specified, no request is sent.

[image: image166.emf]SpecifyLocation(form)SpecifyLocation sendGetIntersectingFeaturesOfTypeXMLRequest(

state.stateCode, county.countyCode,

route.prefix, route.number, route.suffix, "exit")

[state, county, or route null]

updateExits()Clear Exit Field Clear Exit List

getSelectedState()

getSelectedCounty()

getSelectedRoute()

Figure 5‑137 SpecifyLocation:updateExits (Sequence Diagram)

5.21.2.8 SpecifyLocation:updateIntersectingRouteList (Sequence Diagram)

This diagram shows how the intersecting route list is refilled. The intersecting route field is cleared, and the cached list is also cleared. The currently selected state, county, and route from the form are passed to sendGetIntersectingFeaturesOfTypeXMLRequest(). See that diagram for more details. If state, county, or route are not specified, no request is sent.

[image: image167.emf]SpecifyLocation updateIntersectingRouteList()Clear Intersecting Route Field Clear Intersecting Route List

getSelectedState()

getSelectedCounty()

sendGetIntersectingFeaturesOfTypeXMLRequest(

state.stateCode, county.countyCode,

route.prefix, route.number, route.suffix, "route")

getSelectedRoute()

[state, county, or route null]

SpecifyLocation(form)

Figure 5‑138 SpecifyLocation:updateIntersectingRouteList (Sequence Diagram)

5.21.2.9 SpecifyLocation:updateMileposts (Sequence Diagram)

This diagram shows how the mileposts list is refilled. The milepost field is cleared, and the cached list is also cleared. The currently selected state, county, and route from the form are passed to sendGetIntersectingFeaturesOfTypeXMLRequest(). See that diagram for more details. If state, county, or route are not specified, no request is sent.

[image: image168.emf]SpecifyLocation(form)SpecifyLocation sendGetIntersectingFeaturesOfTypeXMLRequest(

state.stateCode, county.countyCode,

route.prefix, route.number, route.suffix, "milepost")

[state, county, or route null]

updateMileposts()Clear Milepost Field Clear Milepost List

getSelectedState()

getSelectedCounty()

getSelectedRoute()

Figure 5‑139 SpecifyLocation:updateMileposts (Sequence Diagram)

5.22 GUI – Flex – Utility (chartlite/Flex/shared/util-flex)

5.22.1 Class Diagrams

5.22.1.1 util_classes (Class Diagram)

This diagram contains utility classes used within a Flex application.

[image: image169.emf]Flex.util.Extent

Flex.util.LonLat

TrafficEventUtil suggestEventName(eventTypeDesc:String, locationDesc:String, incidentTypeDesc:String) : Stringparse(lonStr : String,

 latStr : String) : LonLat

distanceMiles(other : LonLat) : Number

m_lon : Number

m_lat : Number

m_minX : Number

m_minY : Number

m_maxX : Number

m_maxY : Number

Figure 5‑140 util_classes (Class Diagram)

5.22.1.1.1 Flex.util.Extent (Class)

Represents a bounding rectangle for X and Y.

5.22.1.1.2 Flex.util.LonLat (Class)

This class represents a longitude / latitude pair.

5.22.1.1.3 TrafficEventUtil (Class)

This class contains utility methods for traffic events.

5.23 GUI – Flex –Data (chartlite/Flex/shared/data-flex)

5.23.1 Class Diagrams

5.23.1.1 FlexLocationClasses (Class Diagram)

This diagram shows location-related classes.

[image: image170.emf]Flex.data. StateInfo Flex.util.Extent

Flex.data.CountyInfo

1

0..1

1

0..1

0..1

0..1

0..1

Flex.data.Exit

Flex.data.IntersectingFeature

Flex.data.Milepost

Flex.data.

IntersectingFeatureLocationInfo

In the future when the "between"

proximity is added, a second

IntersectingFeatureInfo will be

needed to specify the other

endpoint of the interval along

the roadway. The second feature

is shown here for illustration but

will not be implemented in R5.

0..1

1

1..2 1

1 1

main route

0..11

1

1

point location

1

Flex.data.

RoadwayLocation

0..1

1

Flex.data.

IntersectingRoute

Flex.util.LonLat

1

1

1

1

Flex.data.

Location

Flex.data.

RouteSpecification

Flex.data.LonLatInfo

m_desc : String

m_descOverridden : String

m_internalAliasName : String

m_publicAliasName : String

m_state : StateInfo

m_county : CountyInfo

m_regionName : String

m_lonLatInfo : LonLatInfo

m_showRouteName : boolean

m_showIntRouteName : boolean

m_roadwayLoc : RoadwayLocation

m_stateCode : String

m_stateName : String

m_stateFIPSCode : String

m_isDefaultState : boolean

m_extent : Extent

m_routeSpecification : RouteSpecification

m_directionValue : int

m_directionName : String

m_intFeatureLocationInfo : IntersectingFeatureLocationInfo

m_countyCode : String

m_countyName : String

m_countyFIPSCode : String

m_extent : Extent

m_lonLat : LonLat

m_sourceTypeName : String

m_sourceTypeValue

m_sourceDesc : String

m_intFeatureProximityTypeValue : int

m_intFeatureProximityTypeDescShort : String

m_intFeatureProximityTypeDescLong : String

m_intFeatureDistanceFromFeatureMilliMiles : int

m_intFeature : IntersectingFeature

m_intFeature2 : IntersectingFeature

m_minX : Number

m_minY : Number

m_maxX : Number

m_maxY : Number

m_type : String {formal|freeform}

m_routeTypeName : String

m_routeTypeValue : int

m_roadName : String

m_routeNumber : String

m_routeNumberPrefix : String

m_routeNumberSuffix : String

m_routeDesc : String

parse(lonStr : String,

 latStr : String) : LonLat

distanceMiles(other : LonLat) : Number

m_lon : Number

m_lat : Number

typeValue() : int

typeDesc() : String

m_queriedLonLat : LonLat

m_milepostTypeValue : int

m_milepostTypeName : String

m_milepostMilliMiles : int

m_desc : String

m_prefix : String

m_number : String

m_suffix : String

m_intRoute : RouteSpecification

Figure 5‑141 FlexLocationClasses (Class Diagram)

5.23.1.1.1 Flex.data. IntersectingFeatureLocationInfo (Class)

This class contains information about a location along a roadway relative to an intersecting feature (or two features, if the location is between two points on the roadway). Note that in R5, the "between" proximity (and the corresponding extra intersecting feature) are not used.

5.23.1.1.2 Flex.data. IntersectingRoute (Class)

This class represents an intersection of the main route with an intersecting route. The intersection may or may not be "at grade" - it can be a stop sign, stop light, or overpass.

5.23.1.1.3 Flex.data. Location (Class)

This class contains data describing a single location. The location may be a wide area (such as an entire state, county, or region) or it may be an entire route or some portion of a route (one or both directions, a single point relative to a feature along the roadway, or in the future, an interval along the roadway). Most or all fields are optional, and are blank or null if not applicable.

5.23.1.1.4 Flex.data. RoadwayLocation (Class)

This class represents a location along a roadway / route. It may represent the entire route, one direction of the route, or a specific point (or in the future, interval) along the roadway.

5.23.1.1.5 Flex.data. RouteSpecification (Class)

This class contains information identifying a route.

5.23.1.1.6 Flex.data. StateInfo (Class)

This contains information about a U.S. state. The extent and isDefaultState may be set to null/false if not known or applicable.

5.23.1.1.7 Flex.data.CountyInfo (Class)

This class contains information about a county. The extent may be null if not known or applicable.

5.23.1.1.8 Flex.data.Exit (Class)

This class represents an exit along a route.

5.23.1.1.9 Flex.data.IntersectingFeature (Class)

This class represents an intersecting feature along a roadway. It may contain a longitude / latitude pair queried from the roadway database if the data is available; otherwise the coordinates will be null.

5.23.1.1.10 Flex.data.LonLatInfo (Class)

This class contains information about a longitude / latitude pair and the source of the coordinates.

5.23.1.1.11 Flex.data.Milepost (Class)

This class represents a state or county milepost.

5.23.1.1.12 Flex.util.Extent (Class)

Represents a bounding rectangle for X and Y.

5.23.1.1.13 Flex.util.LonLat (Class)

This class represents a longitude / latitude pair.

5.24 GUI – Data (chartlite/data)
5.24.1 Class Diagrams

5.24.1.1 MapFeatures (Class Diagram)

This diagram shows classes related to map feature data.

[image: image171.emf]1 creates JSON using context of MapFeatureJSONSupporter «interface» MapFeature«interface»WebTrafficEventWebDMSWebHARWebCamera WebTSS TSSs will not be added until Release 6. WebSHAZAM For Release 5, external traffic events andExternal DMSs will be excluded from the map.1 getGeoLocation() : GeoLocationgetJSONForMap(supporter : MapFeatureJSONSupporter) : JSONObjectgetMapFeatureID() : StringhasLocation() : booleanuserCanViewTrafficEventSensitiveDetails() : boolean getEventAndResponsePlanItemIDsForDevice(deviceID:Identifier) : Collection[Pair[Identifier, Identifier]] getTrafficEvent() : WebTrafficEvent

Figure 5‑142 MapFeatures (Class Diagram)

5.24.1.1.1 MapFeature (Class)

This interface provides data necessary for displaying a feature on a map.

5.24.1.1.2 MapFeatureJSONSupporter (Class)

This interface supplies information necessary for MapFeatures to build JSON for the map.

5.24.1.1.3 WebCamera (Class)

This class is a wrapper for a VideoCamera CORBA object, used to cache data in the GUI object cache and provide access to the VideoCamera configuration and status data on web pages.

5.24.1.1.4 WebDMS (Class)

This class represents a dynamic message sign.

5.24.1.1.5 WebHAR (Class)

This class is a GUI wrapper for a CORBA HAR object.

5.24.1.1.6 WebSHAZAM (Class)

This class is a wrapper for a SHAZAM CORBA object, used to cache data in the GUI object cache and provide access to the SHAZAM configuration and status data on web pages.

5.24.1.1.7 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access. It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.24.1.1.8 WebTSS (Class)

This class wraps the TransportationSystemSensor CORBA interface, caches data, and provides access to the cached data.

5.24.1.2 chartlite.data_location_classes (Class Diagram)

This diagram shows classes used by the CHART GUI servlet related to location information that is cached in the data model.

[image: image172.emf]1

WebRegionInfo

WebStateInfo

WebCountyInfo

1

1

1

R5Map: Added extent to WebStateInfo

and WebCountyInfo using the Envelope

class provided by JTS.

WebObjectLocationSupporter

«interface»

WebMilePostIntersecting

FeatureData

0..1 1

WebRoadwayLocationAliasInfo

0..1 1

0..1

1

0..1

1

0..1

1

WebObjectLocation

1

1

1

1

*

WebIntersectingFeatureLocationInfo

WebRouteType

«enumeration»

0..1

1

WebIntersectingFeatureType

«enumeration»

WebIntersectingFeatureProximity

WebIntersectingFeatureProximityType

«enumeration»

0..1 1

0..1 1

0..1 1

0..1

1

0..1

1

0..1

1

1 1

1 1 WebRouteNumber

WebRoadwayLocation

WebRouteInfo

WebFreeformRouteInfo

0..1 1

0..1

R5Map Added support for exits

0..1

WebExitInfo

1

areAliasNamesSpecified() : boolean

getCountyInfo() : WebCountyInfo

getGeoLocation() : GeoLocation

getGeoLocationSourceDesc() : String

getInternalAliasName() : String

getLocationDesc() : String

getNotificationSuggestedLocationDesc(

 props : SystemProfileNotificationProperties) : String

getPublicAliasName() : String

getRegionInfo() : WebRegionInfo

getRoadwayLocation() : WebRoadwayLocation

getStateInfo() : WebStateInfo

isCountySpecified() : boolean

isGeoLocationSpecified() : boolean

isLocationDescOverridden() : boolean

isRegionSpecified() : boolean

isRoadwayLocationSpecified() : boolean

isStateSpecified() : boolean

showIntRouteName() : boolean

showRouteName() : boolean

m_location : ObjectLocation

getStateCode() : String

getStateFIPSCode() : String

getStateName() : String

getExtent():Envelope

setExtent(extent:Envelope):void

setCounties(counties:WebCountyInfo[]):void

getCounties():WebCountyInfo[]

getRegions():WebRegionInfo[]

setRegions(regions:WebRegionInfo[]):void

getBoundary():Geometry

m_stateInfo : StateInfo

getDirection() : int

getDirectionName() : String

getFormalRouteInfo() : WebRouteInfo

getFreeformRouteInfo() : WebFreeformRouteInfo

getIntersectingFeature() : WebIntersectingFeatureLocationInfo

getNotificationSuggestedLocationDesc(

 stateCode : String, showRouteName : String,

 showIntRouteName : String) : String

getRouteType() : RouteType

getRouteTypeDesc() : String

isDirectionDefined() : boolean

isDirectionNone() : boolean

isFormalRouteSpecification() : boolean

isFreeformRouteSpecification() : boolean

m_location : RoadwayLocation

getRegionDesc(stateInfo : WebStateInfo) : String

getRegionName() : String

m_regionInfo : RegionInfo

getCountyCode() : String

getCountyDesc(stateInfo : WebStateInfo) : String

getCountyFIPSCode() : String

getCountyName() : String

getExtent():Envelope

setExtent(extent:Envelope):void

getBoundaryGeometry():Geometry

setBoundaryPoints(points:Point[]):void

getBoundaryPoints():Point[]

m_countyInfo : CountyInfo

getFeatureType(): WebIntersectingFeatureType

getFormalRouteInfo() : WebRouteInfo

getFreeformRouteInfo() : WebFreeformRouteInfo

getMilePostInfo() : WebMilePostIntersectingFeatureData

getExitInfo() : WebExitInfo

getProximity() : WebIntersectingFeatureProximity

hasFormalRouteSpecification() : boolean

hasFreeformRouteSpecification() : boolean

isMilePost() : boolean

isRoad() : boolean

isExit() : boolean

m_info : IntersectingFeatureLocationInfo

getNotificationSuggestedRouteDesc(

 stateCode:String, showName:boolean) : String

getRoadName() : String

getRouteNumber() : WebRouteNumber

getRouteType() : RouteType

getRouteTypeDesc() : String

getRouteTypeValue() : int

getWebRouteType() : WebRouteType

m_routeInfo : RouteInfo

getCountyInfo() : WebCountyInfo

getInternalAliasName() : String

getPublicAliasName() : String

getRegionInfo() : WebRegionInfo

getRoadwayLocation() : WebRoadwayLocation

getStateInfo() : WebStateInfo

isCountySpecified() : boolean

isRegionSpecified() : boolean

isRoadwayLocationSpecified() : boolean

isStateSpecified() : boolean

m_aliasInfo : RoadwayLocationAliasInfo

getRouteDescription() : String

getRouteType() : RouteType

getRouteTypeDesc() : String

getRouteTypeValue() : int

getWebRouteType() : WebRouteType

m_routeInfo : FreeformRouteInfo

MilePost

Road

Exit

getNumber():int

getSuffix():String

getExitToRoadName():String

getLocation():GeoLocation

getAbbreviatedDirectionDesc() : String

getAbbreviatedProximityDesc() : String

getDirectionDesc(abbreviateDirName : boolean) : String

getDistanceFromFeatureMilesStr() : String

getDistanceFromFeatureMilliMiles() : int

getLongDirectionDesc() : String

getLongProximityDesc() : String

getProximityDesc(abbreviate : boolean) : String

getProximityTypeValue() : int

isAt() : boolean

isEastOf() : boolean

isNorthOf() : boolean

isPast() : boolean

isPrior() : boolean

isSouthOf() : boolean

isWestOf() : boolean

m_proximity : IntersectingFeatureProximity

Interstate

State

US

County

Government

Municipal

OtherPublic

OtherStateRoad

Other

Unknown

getDesc(stateCode : String,

 routeType : WebRouteType) : String

getNumber() : String

getPrefix() : String

getSuffix() : String

m_routeNumber : RouteNumber

getMilePostMilliMiles() : int

getMilePostTypeName() : String

getMilePostTypeValue() : int

getMilesStr() : String

isCountyMilePost() : boolean

isStateMilePost() : boolean

m_data : MilePostIntersectingFeatureData

At

EastOf

NorthOf

Past

Prior

SouthOf

WestOf

getLocation() : WebObjectLocation

Figure 5‑143 chartlite.data_location_classes (Class Diagram)

5.24.1.2.1 WebCountyInfo (Class)

This class provides access to the CountyInfo struct which contains information about a county.

5.24.1.2.2 WebExitInfo (Class)

This class represents an exit from a primary route to another route.

5.24.1.2.3 WebFreeformRouteInfo (Class)

This class provides access to the FreeformRouteInfo struct which contains information about a route where only the route description is known (not the formal route number).

5.24.1.2.4 WebIntersectingFeatureLocationInfo (Class)

This class provides access to the IntersectingFeatureLocationInfo struct which contains information about a point along a roadway.

5.24.1.2.5 WebIntersectingFeatureProximity (Class)

This class provides access to the IntersectingFeatureProximity struct which contains information about the proximity (direction and distance) of a point relative to an intersecting feature.

5.24.1.2.6 WebIntersectingFeatureProximityType (Class)

The enumeration contains the supported proximity values to describe a point relative to an intersecting feature.

5.24.1.2.7 WebIntersectingFeatureType (Class)

The enumeration contains the supported types of intersecting features.

5.24.1.2.8 WebMilePostIntersecting FeatureData (Class)

This class contains data describing a mile post intersecting feature, which can be a state or county milepost.

5.24.1.2.9 WebObjectLocation (Class)

This class provides access to the ObjectLocation struct which contains information about the location of an object in the system.

5.24.1.2.10 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the WebObjectLocation wrapper class.

5.24.1.2.11 WebRegionInfo (Class)

This class provides access to the RegionInfo struct which contains information about a region.

5.24.1.2.12 WebRoadwayLocation (Class)

This class provides access to the RoadwayLocation struct which contains information about a location on a roadway.

5.24.1.2.13 WebRoadwayLocationAliasInfo (Class)

This class provides access to the RoadwayLocationAliasInfo struct which contains information about a location alias.

5.24.1.2.14 WebRouteInfo (Class)

This class provides access to the RouteInfo struct which contains information about a formal route specification (i.e., one where the route prefix, number, and suffix are used).

5.24.1.2.15 WebRouteNumber (Class)

This class provides access to the RouteNumber struct which contains information about a formal route number, where the prefix, number, and suffix are known.

5.24.1.2.16 WebRouteType (Class)

This enumeration contains the allowable route types.

5.24.1.2.17 WebStateInfo (Class)

This class provides access to the StateInfo struct which contains information about a state.

5.25 GUI – Data – Alerts (chartlite/data/alerts-data)

5.25.1 Class Diagrams

5.25.1.1 data.alerts.classes (Class Diagram)

This diagram shows classes related to alerts that are used to store alerts in the data model. For R3B2, one new alert type is being added, as annotated on the diagram. The remainder of the classes shown on this diagram existed prior to R3B2.

[image: image173.emf]AlertFilter WebExternalConnectionAlert

ExecuteScheduledActionsAlertData

1

WebExecuteScheduledActionsAlert 1

1 1 1 Alert «interface» UnhandledResourcesAlertData «datatype» EventStillOpenAlertData «struct» 1 11 DuplicateEventAlertData «struct» DeviceFailureAlertData «struct» 1 1 1 AlertData «datatype» 1 WebEventStillOpenAlert WebUnhandledResourcesAlert WebDeviceFailureAlert 1 WebAlert WebAlertHistory WebDuplicateEventAlert WebGenericAlert * 1 1 WebAlertType«enumeration»WebTravelTimeAlert

TravelTimeAlertData

«struct»

1

1

ExternalConnectionAlertData

«struct»

WebExternalEventAlert

ExternalEventAlertData

«struct»

WebTollRateAlert

TollRateAlertData

«struct»

1

1

1

1

1

1

1 1 m_alertTypem_namem_systemProfilePrefixm_defaultDefaultAcceptTimeMinutesm_defaultMaxAcceptTimeMinutesm_defaultDefaultDelayTimeMinutesm_defaultEscalationTimeMinutesm_defaultEnabledFlagm_defaultAutoEscalateDisabledDeviceFailureDuplicateEventEventStillOpenGenericUnhandledResourcesExecuteScheduledActionsExternalConnectionExternalEventTollRateTravelTimegetID():Identifier getAlertRef():Alert getDescription():String isAccepted() : boolean isClosed() : boolean isDelayed() : boolean isNew() : boolean getCreationTime() : long getClosedTime() : long getNextActionTime():long getResponsibleUser():String getResponsibleCenter():WebOpCenter getOpCenterVisibility():WebOpCenter[] getNextOpCenterVisibility():WebOpCenter[] getDetailsPage() : String getAlertHistory() : WebAlertHistory[] getWebAlertType():WebAlertType getDetailsPage():String isDMS():boolean isTSS():boolean getDevice():WebDevice getDMS():WebDMS getTSS():WebTSS isCommFailure():boolean isHWFailure():boolean WebAlertHistory(hist:AlertHistory) getTimestamp() : long getOpCenterName() : String getOperatorName() : String getDescriptiveText():String m_descriptiveText:String m_timestamp:long m_operatorName:String m_opCenterName:String getDetailsPage():String getNewerEvent():WebTrafficEvent getOlderEvent():WebTrafficEvent getDetailsPage():String

getResolveAction():String

getExternalConnectionID():String

isWarning():boolean

getAlertStatusChangeTime():Date

getAlertStatusConfirmTime():Date

isAllowAll():boolean passesFilter(alert:WebAlert, user:String, opCenterID:Identifier):boolean getFilterType():String getDetailsPage():String getDetailsPage():String getResolveAction():String getActions():WebActionData[] getActionData():ActionData[] getSchedule():WebSchedule getDetailsPage():String getOpCenter():WebOpCenter getDetailsPage():String

getResolveAction():String

getExternalEvent():WebTrafficEvent

getTrafficEventRule():WebTrafficEventRule

getDetailsPage():String getEvent():WebTrafficEvent getDetailsPage():String

getResolveAction():String

getTravelRoute():WebTravelRoute

getDetailsPage():String

getResolveAction():String

getTravelRoute():WebTravelRoute

getAlertedTravelTimeStr():String

getAlertedTravelTimeEffTime():Date

getTravelTimeAlertLimitStr():String

Figure 5‑144 data.alerts.classes (Class Diagram)

5.25.1.1.1 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage an alert.

5.25.1.1.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.25.1.1.3 AlertFilter (Class)

This class is used to filter WebAlert objects.

5.25.1.1.4 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure type.

5.25.1.1.5 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate traffic events.

5.25.1.1.6 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.25.1.1.7 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an ExecuteScheduledActionsAlert.

5.25.1.1.8 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the interface which is having trouble and a flag indicating whether the connection is in failure or warning status, the timestamp it transitioned. (The GUI displays additional data which is best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a textual description and alert management data.)

5.25.1.1.9 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the event and the ID of the first rule found that requested an alert be sent. (Text in the base AlertData structure provides a textual description and alert management data.)

5.25.1.1.10 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no longer has data for its toll rate. (Text in the base AlertData structure provides a textual description and alert management data.)

5.25.1.1.11 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit and the travel time which exceeded the limit. (Text in the base AlertData structure provides a textual description and alert management data.)

5.25.1.1.12 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

5.25.1.1.13 WebAlert (Class)

This class is used to wrap a CORBA Alert object so that its data may be cached in the CHART GUI servlet and to allow its data to be accessed from within a Velocity template.

5.25.1.1.14 WebAlertHistory (Class)

This class is used to wrap AlertHistory data to allow it to be accessed from within a Velocity template.

5.25.1.1.15 WebAlertType (Class)

This enumeration indentifies the alert types supported by the system along with information specific to each alert type that helps in using generic code to process all alert types. For R3B2 the ExecuteScheduledActions alert type is added.

5.25.1.1.16 WebDeviceFailureAlert (Class)

This class is used to wrap a DeviceFailureAlert CORBA object and provide access to data that is specific to this type of alert.

5.25.1.1.17 WebDuplicateEventAlert (Class)

This class is used to wrap a DuplicatEventAlert and provide access to its type specific data.

5.25.1.1.18 WebEventStillOpenAlert (Class)

This class is used to wrap an EventStillOpenAlert and provide access to its type specific data.

5.25.1.1.19 WebExecuteScheduledActionsAlert (Class)

This class is used to cache data for an ExecuteScheduledActionsAlert in the GUI. It provides access to the alert data and overrides the abstract methods of WebAlert to provide a details page and resolve action specific to this alert type.

5.25.1.1.20 WebExternalConnectionAlert (Class)

This class is a GUI wrapper for an ExternalConnection alert. It provides access to data contained in an ExternalConnectionAlertData object.

5.25.1.1.21 WebExternalEventAlert (Class)

This class is a GUI wrapper for an ExternalEventAlert. It provides access to data contained in an ExternalEventAlertData object.

5.25.1.1.22 WebGenericAlert (Class)

This class is used to wrap a GenericAlert (manual alert).

5.25.1.1.23 WebTollRateAlert (Class)

This class is a GUI wrapper for a TollRateAlert. It provides access to data contained in a TollRateAlertData object.

5.25.1.1.24 WebTravelTimeAlert (Class)

This class is a GUI wrapper for a TravelTimeAlert. It provides access to data contained in an TravelTimeAlertData object.

5.25.1.1.25 WebUnhandledResourcesAlert (Class)

This class is used to wrap an UnhandledResourcesAlert and provide access to its type specific data.
5.26 GUI – Data – Location (chartlite/data/location-data)

5.26.1 Class Diagrams

5.26.1.1 GUILocationDataClasses (Class Diagram)

This diagram shows data classes related to location data. Most location classes can be found in the parent data package.

[image: image174.emf]MilepostType

«enumeration»

1

1

1 1

WebExitInfo

IntersectingFeatureLookupResults

1

1

1

GeoLocation

1

WebRouteInfo WebMilepostInfo

*

*

*

1

CommandQueue

QueueableCommand

«interface»

GetIntersectingRoutesCmd

GetIntersectingFeaturesCmd

1

1 WebIntersectingRouteInfo

1 1

1

1

executes commands using

1

1 looks up data using

java.util.TimerTask 1 Timer1 1 R5Map: Data is obtained from two web services. One that maintains aliases and other CHART data, the other is a read only interface for map data. WebStateInfo WebCountyInfo * 1 XMLHTTPService 11 GetInitialLocationDataTimerTask 1 1 * R5Map: States maintain their county collection. getBoundary() API on states and counties. This will be used for local hit testing when the user clicks the map to avoid delays inherent in calling a remote service. WebRegionInfo * 1 2 WebRoadwayLocationLookupLocationLookupResults

0..1 1 0..1 1

MaintainCacheTimerTask 1 get() : WebRoadwayLocationLookup init(mappingURL:String, chartGISURL:String):void getInitialData():void getCountyRegionStateDesc(countyInfo : WebCountyInfo, regionInfo WebRegionInfo, stateInfo : WebStateInfo) : String getAliases() : WebRoadwayLocationAliasInfo[] getCounties(stateCode : String) : WebCountyInfo[] getCountyRegionStateDescs() : String[] getDefaultStateCode() : String getInternalAliasNames() : String[] getRegions(stateCode : String) : WebRegionInfo[] getRoutesByRouteType(stateCode : String, countyCode : String, routeType : RouteType) : WebRouteInfo[] getStates() : WebStateInfo[] getState(stateCode:String):WebStateInfo -updateCachedCountyData(stateInfo:WebStateInfo):void -updateCachedRegionData(stateInfo:WebStateInfo):void lookupLocationInfo(lat:double, lon:double):LocationLookupResults lookupIntersectingFeatures(stateCode:String, countyCode:string, routeID:String, types:IntersectingFeatureType[]):IntersectingFeatureLookupResults -getCachedIntersectingFeatures(MainRouteHashKey):IntersectingFeatureLookupResults -queueCommand(cmd:QueueableCommand):void m_cachedStates : WebStateInfo[] m_cachedRegions : HashMap<String; WebRegionInfo[]> m_cachedAliases : WebRoadwayLocationAliasInfo[] m_cachedRoutes : HashMap<MainRouteHashKey; WebRouteInfo[]> m_cachedIntersectingFeatures<MainRouteHashKey; IntersectingFeaureLookupResults> m_defaultStates : WebStateInfo[] m_defaultStateCode : String m_defaultCounties : HashMap<String; WebCountyInfo[]> m_defaultRegions : HashMap<String; WebRegionInfo[]> m_timeAfterFailureToAllowCallsSec : int m_lastCallFailureTime : long setRouteData(state:String, county:String, routeID:String):void

setMuxWaitSem(sem:MuxWaitSem):void

getRoutes():WebIntersectingRouteInfo[]

post(req:XMLHTTPRequest):XMLHTTPResponse get(req:XMLHTTPRequest):XMLHTTPResponse m_baseURL:String getStateCode() : String getStateFIPSCode() : String getStateName() : String getExtent():Envelope setExtent(extent:Envelope):void setCounties(counties:WebCountyInfo[]):void getCounties():WebCountyInfo[] getRegions():WebRegionInfo[] setRegions(regions:WebRegionInfo[]):void getBoundary():Geometry m_stateInfo : StateInfo getCounty():webCountyInfo

getState():WebStateInfo

setRouteData(state:String, county:String, routeID:String):void

setMuxWaitSem(sem:MuxWaitSem):void

setTypes(types:IntersectingFeatureType):void

getIntersectingExits():WebExitInfo[]

getIntersectingMileposts():WebMilepostInfo[]

getCountyCode() : String getCountyDesc(stateInfo : WebStateInfo) : String getCountyFIPSCode() : String getCountyName() : String getExtent():Envelope setExtent(extent:Envelope):void

getBoundaryGeometry():Geometry

setBoundaryPoints(points:Point[]):void

getBoundaryPoints():Point[]

m_countyInfo : CountyInfo getRouteKey():String

hasCurrentDataOfType(type:IntersectingFeatureType):boolean

setRouteKey(key:String):void

getIntersectingRoutes():WebIntersectingRouteInfo[]

getIntersectionRoutesLookupTime():long

setIntersectingRoutes(roiutes:WebIntersectingRoute[], lookupTime:long):void

getIntersectingExits():WebExitInfo[]

getIntersectingExitsLookupTime():long

setIntersectingExits(exits:WebExitInfo[], lookupTime:long):void

getIntersectingMileposts():WebMilepostInfo[]

getIntersectingMilepostsLookupTime():long

setIntersectingMileposts(mileposts:WebMileposttInfo[], lookupTime:long):void

getRegionDesc(stateInfo : WebStateInfo) : String getRegionName() : String m_regionInfo : RegionInfo getIntersectingRoute():WebRouteInfo

getLocation():GeoLocation

getNumber():int

getSuffix():String

getExitToRoadName():String

getLocation():GeoLocation

getNotificationSuggestedRouteDesc(

 stateCode:String, showName:boolean) : String

getRoadName() : String

getRouteNumber() : WebRouteNumber

getRouteType() : RouteType

getRouteTypeDesc() : String

getRouteTypeValue() : int

getWebRouteType() : WebRouteType

m_routeInfo : RouteInfo

getType():MilepostType

getLocation():GeoLocation

getLatitudeDegrees():double

getLongitudeDegrees():double

COUNTY_MILEPOST

STATE_MILEPOST

Figure 5‑145 GUILocationDataClasses (Class Diagram)

5.26.1.1.1 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

5.26.1.1.2 GeoLocation (Class)

This class represents a location on the Earth's surface in geographic (latitude, longitude) coordinates.

5.26.1.1.3 GetInitialLocationDataTimerTask (Class)

This class is used to ensure that the Maryland location information is available to the GUI via the WebRoadwayLocationLookup cache.

5.26.1.1.4 GetIntersectingFeaturesCmd (Class)

This class is used to get the Intersecting Exits and Mileposts information from the Mapping web service for the WebRoadwayLocationLookup cache.

5.26.1.1.5 GetIntersectingRoutesCmd (Class)

This class is used to get the Intersecting Routes information from the GIS web service for the WebRoadwayLocationLookup cache.

5.26.1.1.6 IntersectingFeatureLookupResults (Class)

This class is used to store intersecting feature information for a particular route. Each type of data that can be retrieved is stored and timestamped in order to facilitate caching of the data for subsequent queries. A route key is created for the primary route by appending the state code, county code, and route id. This key is used to store the data in a cache.

5.26.1.1.7 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.26.1.1.8 LocationLookupResults (Class)

This class is used to store the results of a point location lookup.

5.26.1.1.9 MaintainCacheTimerTask (Class)

This timer task is scheduled to periodically clean cached intersecting feature lookup results that are too old.

5.26.1.1.10 MilepostType (Class)

Enumeration that defines the possible milepost types.

5.26.1.1.11 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.26.1.1.12 Timer (Class)

This class is a timer that calls a callback function on a specified interval.

5.26.1.1.13 WebCountyInfo (Class)

This class provides access to the CountyInfo struct which contains information about a county.

5.26.1.1.14 WebExitInfo (Class)

This class represents an exit from a primary route to another route.

5.26.1.1.15 WebIntersectingRouteInfo (Class)

This class represents a route that intersects a primary route at a location.

5.26.1.1.16 WebMilepostInfo (Class)

This class represents a milepost along a route.

5.26.1.1.17 WebRegionInfo (Class)

This class provides access to the RegionInfo struct which contains information about a region.

5.26.1.1.18 WebRoadwayLocationLookup (Class)

This class wraps the RoadwayLocationLookup interface and provides default values, data caching, and other auxiliary functionality.

5.26.1.1.19 WebRouteInfo (Class)

This class provides access to the RouteInfo struct which contains information about a formal route specification (i.e., one where the route prefix, number, and suffix are used).

5.26.1.1.20 WebStateInfo (Class)

This class provides access to the StateInfo struct which contains information about a state.

5.26.1.1.21 XMLHTTPService (Class)

This class represents a remote XML/HTTP based web service at a specified URL. It supports operations to perform HTTP get and post operations on the remote service.
5.26.2 Sequence Diagrams
5.26.2.1 chartlite.data.location:InitializeRoadwayLocationLookup (Sequence Diagram)

This diagram shows the processing performed in order to initialize the WebRoadwayLocationLookup class. A Timer is created and a GetInitialLocationDataTimerTask is scheduled to run periodically until cancelled. Each time the Timer fires it will call the run method of the GetInitialLocationDataTimerTask. First a check is made to see if the list of states has already been cached. If not, a call to update the states cache is made. Once the list of states is cached, a call is made to see if a WebStateInfo object that represents Maryland is available in the cache . If it is, and if the cached data has no counties a call is made to update the cached county data for the state of Maryland. Next a check is made to see if regions have already been cached for Maryland. If they have not, a call is made to update the cached regions for Maryland. Once it is found that we have cached the list of states and the counties and regions for Maryland, the timer is cancelled so no further initialization occurs.

[image: image175.emf]run()

Timer

create

create

schedule

initialize

[!regions.length > 0]

updateCachedRegionData(mdStateInfo)

[States, Maryland Counties and Maryland Regions cached]

cancel()

getCounties()

Hashtable WebStateInfo

[states cache empty]

updateStatesCache()

get("MD")

WebStateInfo for Maryland

WebCountyInfo[]

[!counties.length > 0]

updateCachedCountyData(mdStateInfo)

getRegions()

WebRegionInfo[]

[!MD state available]

WebRoadwayLocationLookup

getInitialData()

MainServlet

GetInitialLocationDataTimerTask

Figure 5‑146 chartlite.data.location:InitializeRoadwayLocationLookup (Sequence Diagram)

5.26.2.2 WebRoadwayLocationLookup:lookupIntersectingFeatures (Sequence Diagram)

This diagram shows the processing performed when the lookupIntersectingFeatures() method is called. First a check is made to determine if IntersectingFeatureLookupResults exist in the cache for the desired primary route. If they do not a new empty result is used. Next the IntersectingFeatureLookupResults object is checked to see if it has current intersecting routes. If they are not found a new GetIntersectingRoutesCmd is created and stored in an ArrayList so it can later be added to a MuxWaitSem. The GetIntersectingRoutesCmd is then queued for execution. Next a check is made to see if the cached results have a current list of exits and mileposts. If either is missing a new GetIntersectingFeaturesCmd is created, stored, and queued for execution. If either of the data retrieval commands was created it is added to a new MuxWaitSem and a call is made to waitForAll(). That call does not return until all commands have completed. After all commands have completed the data is obtained in each and is stored in the lookup results object for return.

[image: image176.emf][does not have exits || does not have mileposts]

add(GetIntersectingFeaturesCmd)

[does not have routes]

queueCommand(GetIntersectingRoutesCmd)

[does not have exits || does not have milepost]

queueCommand(GetIntersectingFeaturesCmd)

getIntersectingMileposts()

Caller WebRoadwayLocationLookup IntersectingFeatureLookupResults

ArrayList

MuxWaitSem

lookupIntersectingFeatures()

getCachedIntersectingFeatures(routeHashKey)

create

hasCurrentDataOfType(ROUTE)

boolean

create(QueueableCmd[])

This call will not return

until all commands

have completed or a timeout

has expired. Either way it

is best to get all data we

did retrieve and update the

lookup results.

[if not already cached]

create

setIntersectingMileposts(WebMilepostInfo[])

IntersectingFeatureLookupResults

waitForAll()

getIntersectingRoutes()

WebRouteInfo[]

setIntersectingRoutes(WebRouteInfo[])

getIntersectingExits()

WebExitInfo[]

setIntersectingExits[WebExitInfo[])

WebMilepostInfo[]

GetIntersectingFeaturesCmd

[does not have routes]

add(GetIntersectingRoutesCmd)

[does not have routes]

create

hasCurrentDataOfType(EXIT)

hasCurrentDataOfType(MILEPOST)

[does not have exits || does not have mileposts]

create

GetIntersectingRoutesCmd

Figure 5‑147 WebRoadwayLocationLookup:lookupIntersectingFeatures (Sequence Diagram)

5.27 GUI – Data – Video (chartlite/data/video-data)

5.27.1 Class Diagrams

5.27.1.1 GUIVideoDataClasses (Class Diagram)

This diagram shows GUI data classes related to video management.

[image: image177.emf]In R5 this class is updated to support a

provider on multiple video fabrics

WebVideoSource

WebDevice

«interface»

1

WebCameraConfig

NOTE: only the portions of the video classesrelevant to the location changes in R3B3 and later are shown here, as all existing GUI video

data classes would fill more than one class diagram.

In R5 this class is updated

to contain get methods for

streaming flash fields

Updated in R5 to suport

multiple transmission devices

Added in R5

1

WebCamera

WebVideoSink

WebVideoSourceConfig

WebObjectLocationSupporter

«interface»

WebVideoProviderConfig

1

*

WebVideoControlFlashConfig

DynListSubject

«interface»

WebVideoProvider

WebUniquelyIdentifiable

«interface»

getID() : Identifier

getName() : String

isOffline() : boolean

isOnline() : boolean

isInMaintMode() : boolean

isHardwareFailed() : boolean

isCommFailed() : boolean

isCommMarginal() : boolean

getLocation() : WebObjectLocation

getVideoFabrics():[]WebVideoFabric

PROPERTY_NAME

PROPERTY_DESCRIPTION

PROPERTY_REGION

PROPERTY_LOCATION

PROPERTY_LOCAL_DISPLAYS

PROPERTY_STATUS

PROPERTY_OWNER

PROPERTY_CONTROLLED_BY

PROPERTY_ROUTE

PROPERTY_DIRECTION

PROPERTY_COUNTY

PROPERTY_MILE_POST

PROPERTY_CONN_SITE

PROP_NAME

PROP_OWNER

PROP_GROUPS

PROP_STATUS

PROP_CURRENT_DISPLAY

PROP_CONN_SITE

getVideoCameraRef() : VideoCamera

getCameraConfig() : WebCameraConfig

updateConfig(config : VideoCameraConfig) : void

getLocationString() : String

m_camera : VideoCamera

getSendingDeviceConfigAry():WebVideoTransmissionDeviceConfig[]

copyVideoProviderConfig(src:VideoProviderConfig):VideoProviderConfig

getWebVideoStreamConfig(); WebVideControlFlashConfig()

m_config: VideoSourceConfig

getLocation() : WebObjectLocation

getLocationString() : String

setConfig(config : VideoCameraConfig) : void

m_config : VideoCameraConfig

getHostnameOrIPAddress():String

getPort():Int

getPassword():String

m_flashConfig:VideoControlFlashConfig

Figure 5‑148 GUIVideoDataClasses (Class Diagram)

5.27.1.1.1 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.27.1.1.2 WebCamera (Class)

This class is a wrapper for a VideoCamera CORBA object, used to cache data in the GUI object cache and provide access to the VideoCamera configuration and status data on web pages.

5.27.1.1.3 WebCameraConfig (Class)

This class wraps the VideoCameraConfig structure defined in the IDL and provides accessor methods.

5.27.1.1.4 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.27.1.1.5 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the WebObjectLocation wrapper class.

5.27.1.1.6 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable objects as defined in the IDL.

5.27.1.1.7 WebVideoControlFlashConfig (Class)

This class wraps a VideoControlFlashConfig struct for display on a web page.

5.27.1.1.8 WebVideoProvider (Class)

This class wraps the VideoProvider CORBA reference and stores cached configuration and status for fast local access.

5.27.1.1.9 WebVideoProviderConfig (Class)

This class wraps the VideoProviderConfig structure defined in the IDL and provides accessor methods.

5.27.1.1.10 WebVideoSink (Class)

This class wraps the VideoSink CORBA reference and stores cached configuration and status for fast local access.

5.27.1.1.11 WebVideoSource (Class)

This class wraps the VideoSource CORBA reference and stores cached configuration and status for fast local access.

5.27.1.1.12 WebVideoSourceConfig (Class)

This class wraps the VideoSourceConfig structure defined in the IDL and provides accessor methods.
5.28 GUI – Vivid Solutions (chartlite/com.vividsolutions.jts.geom.sys)
5.28.1 Class Diagrams

5.28.1.1 GeometryClasses (Class Diagram)

This diagram shows geometry classes provided by the geometry package of the JTS COTS product.

[image: image178.emf]Envelope Coordinate 2 1 GeometryFactory MultiPoint Geometry * 1 creates convexHull():Geometry getBoundary():Geometrycontains(p:Coordinate):boolean

countains(x:double, y:double):boolean

getWidth():double

getHeight():double

getMinX():double

getMinY():double

getMaxX():double

getMaxY():double

intersects(other:Envelope):boolean

overlaps(other:Envelope):boolean

createMultiPoint(coords:Coordinate[]):MultiPoint getX():double

getY():double

getZ():double

x:double

y:double

z:double

Figure 5‑149 GeometryClasses (Class Diagram)

5.28.1.1.1 Coordinate (Class)

A two dimensional point with an additional z-oridnate. JTS does not support any operations on the z-ordinate except the basic accessor functions.

5.28.1.1.2 Envelope (Class)

Defines a rectangular region of the 2D coordinate plane. This class is often used to represent the bounding box of a Geometry e.g. the minimum and maximum x and y values of the Coordinates.

5.28.1.1.3 Geometry (Class)

Base class for all geometric objects.

5.28.1.1.4 GeometryFactory (Class)

This class is used to create Geometry objects.

5.28.1.1.5 MultiPoint (Class)

This class models a collection of points.

5.29 Data Export Utility (webservices/dataexportUtility)

5.29.1 Class Diagrams

5.29.1.1 DataExporterUtilityClasses (Class Diagram)

This class diagram shows subscription utility classes that are being used by the data exporter application.

[image: image179.emf]ExportSubscriptionManager

PushSource

java.util.Timer

Timer used for removing expired subscriptions.

PushEngine

ExportSubscriptionDataType

«enumeration»

Chart PushFramework

classes (existing).

DBConnectionManager

ExportSubscriptionDB

Pusher

«interface»

QueuedPusher

ExportSubscription

ExpirationSupporter

«interface»

ExportSubscriptionInfo

1

1

1

1

1

1

1

1

1

1

+ctor(ExportSubscriptionDataType, DBConnectionManager,

 subscriptionLengthMins : long, expTimerIntervalMins :short)

+getSubscriptions() : ExportSubscriptionInfo[]

+removeSubscription(clientId : String)

-removeExpiredSubscriptions()

+cleanup()

-m_pushEngine : PushEngine

-m_subscriptionDB : ExportSubscriptionDB

-m_subscriptionLifetimeMins : long

-m_expirationTimer : java.util.Timer

+addPusher(Pusher)

+removePusher(Pusher)

+pushData(Pushable

DMS

DETECTOR

HAR

SHAZAM

TRAFFIC_EVENT

+ctor(ExportSubscriptionDataType,

 DBConnectionManager)

+getSubscriptions() :

 ExportSubscriptionInfo[]

+setSubscription(ExportSubscriptionInfo)

+removeSubscription(clientId : String)

+cleanup()

-m_dbConnMgr : DBConnectionManager

-m_dataType : ExportSubscriptionDataType

+getID() : String

+getName() : String

+push(Pushable)

+ctor(ExportSubscriptionInfo,

 optionalExtSysConn : ExtSystemConn)

+getClientID() : String

+getId() : String

+getname() : String

+getType() : ExportSubscriptionDataType

+getDataType() : ExportSubscriptionDataType

+getURL() : String

+getExpDate() : long

+sendDataToSubscriber(xml : String)

+updateTargetURL(url : String)

+updateExpDate(Date)

+updateExtSysConn(status : SimpleStatus, statusTxt : String)

-m_data : ExportSubscriptionData

-m_targetService : XMLHTTPService

-m_lastCommFailed : boolean

-m_extSysConn : ExternalSystemConn

+getExpDate() : Date

+m_clientID : String

+m_type : ExportSubscriptionDataType

+m_targetURL : String

+m_expDate : Date

Figure 5‑150 DataExporterUtilityClasses (Class Diagram)

5.29.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.29.1.1.2 ExpirationSupporter (Class)

This interface is implemented by objects that support the concept of an expiration date.

5.29.1.1.3 ExportSubscription (Class)

This abstract class represents an exporter subscription for a specific client ID and data type (DMS, TSS, TrafficEvents, etc......) and provides generic functionality that is used by derived classes. It extends the QueuePusher class which is part of the chart PushFramework package. It takes an ExportSubscriptionInfo object at creation and provides mehtods for the subsequent update of the target URL and expiration DateTime. An XMLHTTPService object is create at construction using the provided URL and maintained thru subsequent updateTargetURL() calls. The sendDataToSubscriber() method uses this object to post data to the target system.

5.29.1.1.4 ExportSubscriptionDataType (Class)

This public enumerations represents the types of data the is supported by the Char Data Exporter.

5.29.1.1.5 ExportSubscriptionDB (Class)

This class provides support for persistence and de-persistence for ExportSubriptions of a specific data type which is defined during constructions.

5.29.1.1.6 ExportSubscriptionInfo (Class)

This simple class contains public data members. It is used as a utility class that wraps subscription data in one object.

5.29.1.1.7 ExportSubscriptionManager (Class)

This abstract class provides functionality used to manage ExportSubsriptions. Internally this class uses the CHART PushFramework classes to push data to a list of subscribers (I.E. Pushers). A private Timer/Timer task is used to remove expired subscriptions at configurable intervals. Expired subscriptions are also removed from the DB at startup.

5.29.1.1.8 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.29.1.1.9 PushEngine (Class)

Engine that manages the pushing of Pushable data to consumers via all registered Pushers. All data pushed into the engine will be pushed to all registered Pushers.

5.29.1.1.10 Pusher (Class)

This interface must be implemented by any class that intends to push data to an end consumer. The PushEngine will call the checkPush() and push() methods at the appropriate times.

5.29.1.1.11 PushSource (Class)

This interface must be implemented by any class that wants to use the PushEngine to push data.

5.29.1.1.12 QueuedPusher (Class)

An abstract base class that provides a thread per client implementation of the Pusher interface. This implementation queues up to a specified number of events max, then refuses to queue additional. Events are pushed FIFO and not retried.

5.29.2 Sequence Diagrams

5.29.2.1 ExportSubscription:sendDataToSubscriber (Sequence Diagram)

This method of the ExportSubscriptionManger abstract class send and xml string to the URL for a specific export data subscriber.

[image: image180.emf]ExportSubscriptionSuccessfully sent

data.

Update ExtSysConn for this

subscription.

Error sending

data. Do detailed

error logging.

request: XMLHTTPRequest m_targetService: XMLHTTPServiceExisting functionality. Log response: XMLHTTPResponse updateExtSystemConn(

SimpleStatus.OK, ""))

updateExtSystemConn(

SimpleStatus.FAILED, errMsg)

m_lastCommFailed = false

response : XMLHTTPResponse = post(request)create() responseresponseCode : int = getResponseCode()[responseCode ==

HttpUrlConnection.HTTP_OK]

else

m_lastCommFailed = true

log(this, "data sent to client successfully....", DEBUG)

log(this, "....", PRODUCTION)

create("")setXML(XML)sendDataToSubscriber(XML : String)

Figure 5‑151 ExportSubscription:sendDataToSubscriber (Sequence Diagram)

5.29.2.2 ExportSubscriptionManager:creation (Sequence Diagram)

This diagram depicts the class constructor of the ExportSubscriptionManager Abstract class. The PushFramework is used by the class to provide the mechanism used push data to external clients of the exporter. An ExportSubscriptionDB class is created to handled export subscription of specific data type (DMS, TSS, TrafficEvents, etc...) A timer is them created to handle automatic expiration of subscriptions.

[image: image181.emf]ExportSubscriptionManager Create a timer task to periodically call

the removeExpiredSubscriptions()

method.

m_subscriptionDB:

ExportSubscriptionDB

m_timer:

java.util.Timer

m_pushEngine:

PushEngine

m_subscriptionLifeTimeMins =

subLifetimeMins

create(type, dbConnMgr)

create()

create(true)

schedule(expirationTask,

subsExpTimerIntervalMins * 60 * 1000,

subsExpTimerIntervalMins * 60 * 1000)

ctor(type:ExpSubscriptionDataType,

dbConnMgr:DBConnMgr,

subsLifetimeMins:long,

subsExpTimerIntervalMins:int)

Figure 5‑152 ExportSubscriptionManager:creation (Sequence Diagram)

5.29.2.3 ExportSubscriptionManager:removeExpiredSubscriptions (Sequence Diagram)

This method is used to remove epired subscriptions from the ExportSubscriptionManager. ExportSubscriptions are PushFramework Pushers. Each Pusher returned from the PushEngine is cast to an ExpirationSupporter. The expiration date is then checked, and the Subscritpion is removed by calling the removeSubscription() method.

[image: image182.emf]Loop on current list ofsubscriptions and remove expired ones.ExportSubscriptionManager This logic involves casting a Pusher to anExpirationSupporter toget the expirationDate.m_pushEngine: PushEngineExpirationSupporter [expDate < now]

removeSubscription(

subscription.getClientId())

[sub instanceof ExpirationSupporter] removedExpiredSubscriptions()expDate : Date = getExpirationDate() now:Date = new Date() subscriptions : Pusher[] = getPushers() [*subs]

Figure 5‑153 ExportSubscriptionManager:removeExpiredSubscriptions (Sequence Diagram)

5.29.2.4 ExportSubscriptionManager:removeSubscription (Sequence Diagram)

This diagram depicts the removal of subscriptions from the ExportSubscriptionManager. ExportSubscriptions are removed from the PushEnging which acts as the cache for Subscriptions, which are Pushable objects. The ExportSubscription is then removed from database persistence.

[image: image183.emf]ExportSubscriptionManager m_pushEngine: PushEngine m_subscriptionDB: ExportSubscriptionDB removePusher(clientId) removeSubscription(subscription.getClientId()) removeSubscriptions(clientId : String)

Figure 5‑154 ExportSubscriptionManager:removeSubscription (Sequence Diagram)

5.30 Web Services Utility (webservices/wsutil)
5.30.1 Class Diagrams

5.30.1.1 webservices.util-classes (Class Diagram)

This diagram shows utility classes that are used when calling a remote REST based web service (XML over HTTP).

[image: image184.emf]XMLHTTPServiceXMLHTTPResponse

11

creates and returns1 posts or gets1XMLHTTPRequest post(req:XMLHTTPRequest):XMLHTTPResponseget(req:XMLHTTPRequest):XMLHTTPResponsem_baseURL:StringsetXML(xml:String):void getXML():String m_relativeURL:String getContent():String

getResponseCode():int

getResponseInputStream():InputStream

writeToFile(file:File):void

Figure 5‑155 webservices.util-classes (Class Diagram)

5.30.1.1.1 XMLHTTPRequest (Class)

This class represents an HTTP request that can be sent (get or post) to an XMLHTTPService. The request has a relative URL that will be combined with the base URL of the service it is sent to and also has a method to set the request body String.

5.30.1.1.2 XMLHTTPResponse (Class)

This class represents a response that is returned from a get or post operation performed on an XMLHTTPService. It provides accessor methods for checking the response code and getting the returned response data.

5.30.1.1.3 XMLHTTPService (Class)

This class represents a remote XML/HTTP based web service at a specified URL. It supports operations to perform HTTP get and post operations on the remote service.

5.31 Web Services Client Module (webservices/wsclientmodule)

5.31.1 Class Diagrams

5.31.1.1 wsclientmoduleclasses (Class Diagram)

This diagram shows the classes that compose the webservices.wsclientmodule module.

[image: image185.emf]BaseHelper

XMLHTTPService

*

Posts ClientRequest data to

WSClientModule

WebServiceModule

«interface»

WebService

WSClientModuleProperties

WebServiceModuleProperties

RequestLooper

XMLHandler

«interface»

* 1

1

1

1

1

*

1

XMLArchiveHandler

PostedDataRequestHandler

BasicRequestHandler RequestLooperHelper

«interface»

*

1

1 1

java.lang.Runnable

«interface»

This RequestHandler can be configured

to handle many request keys (actions). Each request

key has configurable XSD validation and conifgurable

velocity templates that it returns.

1

*

loads from

request directory

1 1

creates and registers

1

1

1

* 1

ClientRequest

0..1

*

initalize(service:WebService):void

shutdown():void

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String getXMLHandlers():XMLHandler[]

getXMLConfigurationFile():String

getXMLHandlers():XMLHandler[]

getArchivedXMLFileMaxAgeHours():int

getArchiveBaseDir():String

processRequestFile(reqFile:File):void

shutdown():void

m_requestDir:File

m_requestFileNameBase:String

m_interRequestDelayMillis:int

m_interLoopDelayMillis:int

init(props:WSClientModuleProperties):void

handleXML(clientID:String, root:Element, isPost:boolean):void

m_baseDir:File

m_pulledDir:File

m_postedDir:File

m_maxFileAgeHours:int

preprocessRequest(rootEl:Element):Element

handleError(req:XMLHTTPRequest, resp:XMLHTTPResponse):void

getService():String

getURL():String

getXML():String

getPrivateKeyFile():File

getClientID():String

Figure 5‑156 wsclientmoduleclasses (Class Diagram)

5.31.1.1.1 BaseHelper (Class)

This class provides a base implementation of the RequestLooperHelper interface. Derived implementations can override only the methods that they wish to provide an implemnetation for.

5.31.1.1.2 BasicRequestHandler (Class)

This abstract base class provides an implementation of the WSRequestHandler.processRequest() method that provides optional XML validation against specified XSD files and optional digital signature verification as well. It is intended to be used by request handlers that plan to take XML in and return XML to the calling client.

5.31.1.1.3 ClientRequest (Class)

A ClientRequest represents a single HTTP request that can be posted to a remote web service. As such it has a URL, body XML, an optional client ID to post as a parameter and an optional private key file that, if present, can be used to digitally sign the request.

5.31.1.1.4 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading mechanism.

5.31.1.1.5 PostedDataRequestHandler (Class)

This request handler can be configured to accept multiple request keys, each of which can be configured to perform optional XSD validation, doptional igital signature checking, and can be configured to return request specific Velocity template files. All XML posted to this request handler is passed to all XMLHandler instances installed in the module.

5.31.1.1.6 RequestLooper (Class)

A RequestLooper periodically reads ClientRequest (saved request) objects from a directory and posts them to a XMLHTTPService. The RequestLooper will post all saved requests found in the directory a configurable number of times, delaying a configurable amount of time between each request. The XML returned from each remote service post is passed to each configured XMLHandler for processing.

5.31.1.1.7 RequestLooperHelper (Class)

Classes that implement the RequestPreprocessor interface are provided an opportunity to pre-process XML elements before they are posted to a remote web service.

5.31.1.1.8 WebService (Class)

This class is the core of each Web Service. It extends the VelocityServlet base class and implements the Service CORBA interface so that Web Service servlets can be administered in the same manner as other CHART service applications.

5.31.1.1.9 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within the web service framework.

5.31.1.1.10 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to extend in order to get access to their configuration properties.

5.31.1.1.11 WSClientModule (Class)

A WebServiceModule that can be configured to handle XML data posted to it and post XML/HTTP requests to remote services.

5.31.1.1.12 WSClientModuleProperties (Class)

This class provides accessors for getting WSClientModule specific properties from the web service properties file.

5.31.1.1.13 XMLArchiveHandler (Class)

Implementation of an XMLHandler that archives all XML that is passed to it in a self-cleaning flat file archive. The archive keeps XML that was pulled from remote services in a separate directory from XML that was posted to this service. Posted XML is further split by the ID of the client that posted it if a client ID is available.

5.31.1.1.14 XMLHandler (Class)

The XMLHandler interface should be implemented by classes that will handle XML data posted to this service or returned from a remote service in response to a request posted to it from this service.

5.31.1.1.15 XMLHTTPService (Class)

This class represents a remote XML/HTTP based web service at a specified URL. It supports operations to perform HTTP get and post operations on the remote service.

5.31.2 Sequence Diagrams

5.31.2.1 wsclientmodule:PostedDataRequestHandler.processRequest (Sequence Diagram)

This diagram shows the processing performed when a request is posted to the PostedDataRequesthandler. Core processing in the BaseRequestHandler base class performs optional authentication and optional XSD validation depending on the configuration of the posted request key. If either of those checks fail the BasicRequestHandler will return the configured error template for the request. If all checks pass or are not enabled the BasicRequestHandler calls the PostedDataRequestHandler procesSRequest method. This method reads the request body from the BasicRequest and attempts to creates XML from it. If the request body does not contain valid XML the error template is returned. If the request body contained valid XML the WSClientModule is called in order to obtain all configured XMLHandler instances. The posted XML is passed to each XMLHandler. If any errors occur the configured error template is returned. If there are no errors the configured success template is returned.

[image: image186.emf]The request body must contain XML or a processing error exception is thrown and the error template is returned. WebServiceBasicRequestHandler At this point the incoming request has already been validated against the XSD and has had its digital signature verified by the BasicRequestHandler base class if necessary. PostedDataRequestHandler processRequest [error]

Error template

[success]

Success

Template

BasicRequest WSClientModule XMLHandler processRequest getRequestBody getXMLHandlershandleXML(xml) [* for each configured XMLHandler]

Figure 5‑157 wsclientmodule:PostedDataRequestHandler.processRequest (Sequence Diagram)

5.31.2.2 wsclientmodule:RequestLooper.processRequestFile (Sequence Diagram)

This diagram shows the processing performed when the RequestLooper is ready to post a saved request to a remote service. The RequestLooper creates a ClientRequest object passing it the XML found in the saved request file. The ClientRequest configures its member variables by parsing the XML (not shown). The RequestLooper then queries the information from the ClientRequest by calling accessor methods. The XML from the saved request is passed to the optional configured RequestPreprocessor to provide it the opportunity to modify the XML prior to it being posted to the remote service. The RequestLooper then creates and XMLHTTPService for the service found in the saved request and posts the XML data to it. If the XMLHTTPResponse returned from the post operation has a successful error code the RequestLooper gets the response XML and passes it to each configured XMLHandler.

[image: image187.emf]getResponseCode()

[response code not OK]

handleError(req, resp)

[* for each

configured

XMLHandler]

ClientRequest RequestLooperHelperXMLHTTPService

XMLHTTPResponse

XMLHandler create(xml) getService() getURL() getClientID() getPrivateKeyFile()

getXML()

[preprocessor configured]

preprocessRequest(xml)

create

post

create

[response code OK]

getContent()

handleXML(element)

System(RequestLooper)RequestLooper processRequestFile(file) [response code not OK]

Figure 5‑158 wsclientmodule:RequestLooper.processRequestFile (Sequence Diagram)

5.32 Web Services Base (webservices/base)
5.32.1 Class Diagrams

5.32.1.1 WebServicesBaseClasses (Class Diagram)

This diagram shows the classes and interfaces that comprise the Web Service framework. Each WebService reads a properties file to determine which implementations of the WebServiceModule interface should be created and initialized at startup. Each implementation of the WebServiceModule interface can create implementations of the WSRequestHandler interface and install them into the RequestManager.

[image: image188.emf]1

0..*

1

This diagram is new for R3B3

NotificationManagerWrapper

1

AlertFactoryWrapper

1

1

1

ProcessingException

AuthenticationException

ValidationException

BasicRequest

1

*

BasicRequestInfo

0..1 *

0..1

DiscoveryHost

«interface»

DiscoveryManager

Service

«interface»

BasicRequestHandler

1

1

* *

1

RequestManager RequestInfo

1

1

* 1

1 1

WSRequestHandler

«interface»

DBConnectionManager

1

WebServiceProperties

WebServiceModuleProperties

*

1

1

org.apache.velocity.VelocityServlet TraderGroup

WebServiceModule

«interface»

WebService

WSRequestHandlerSupporter

«interface»

1

1

0..*

WebServiceDBConnectionProperties

+getConnection() : java.sql.Connection

+getCurrentOpenCursors() : int

+releaseConnection() : void

+shutdown() : void

+verifyDBInitialized() : boolean

registerRequestHandler(info:RequestInfo):void

getRequestInfo(key:String):RequestInfo

getDBConnectionID():String

getDBConnectString():String

getDBUsername():String

getDBPassword():String

getDBDriverClass():String

isDBRequired():boolean

getDBConnectionManager(connID:String):DBConnectionManager

getProps():WebServiceProperties

getORB():ORB

getPOA(poaName:String):POA

getTraderGroup():TraderGroup

getRequestManager():RequestManager

getObjectLocator():ObjectLocator

getIDGenerator():IdentifierGenerator

getDiscoveryManager():DiscoveryManager

getDiscoveryDriver():DiscoveryDriver

handleRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context):Template

getNotificationWrapper():NotificationManagerWrapper

getAlertWrapper():AlertFactoryWrapper

registerObject(obj:org.omg.CORBA.Object obj, id:Identifier, name:String,objectServiceType:String,

 boolean alwaysPublish)

WebServiceProperties(props:Properties)

getIntProperty(prop:String, default:int):int

getBooleanProperty(prop:String, default:boolean):boolean

getFloatProperty(prop:String, default:float):float

getNetConnectionSite():String

getServiceName():String

requiresObjectCache():boolean

getNumDiscoveryThreads():int

getDiscoveryIntervalMins():int

getArbQueuePollIntervalSecs():int

getEORSPollIntervalMins():int

getObjectCacheLogFlags():String

getNetConnectionSite():String

getFirstAvailableServiceRemoteUseMins():int

getModuleClasses():Class[]

getDBConnProps():WebServiceDBConnectionProperties[]

getTraderGroup():TraderGroup

getORB():ORB

verifySignedData(clientID:String, signature:String, data:byte[]):void

getAccessToken(clientID:String):byte[]

getObjectCache():ObjectCache

getObjectLocator():ObjectLocator

getServletContext():ServletContext

getVelocityTemplate(path:String):Template

getClientCredentials(clientID):ClientCredentials

clearCachedCredentials(clientID):void

validateXML(schema:File, xml:String):void

getNotificationWrapper():NotificationFactoryWrapper

getAlertWrapper():AlertFactoryWrapper

getErrorType():AuthenticationErrorType

getMessage():String

getRootCause():Exception

getKey():String

getRequestHandler():WSRequestHandler

+getDataModel() : DataModel

+getObjectCache() : ObjectCache

+getDiscoveryDriver() : DiscoveryDriver

m_traderGroup : TraderGroup

m_discoveryDriver : DiscoveryDriver

m_dataModel : DataModel

m_ecg : EventConsumerGroup

m_objectCache : ObjectCacheClass

m_processingQueue : CommandQueue

WebServiceModuleProperties(props:WebServiceProperties)

getWebServiceProperties():WebServiceProperties

getIntProperty(prop:String, default:int):int

getBooleanProperty(prop:String, default:boolean):boolean

getFloatProperty(prop:String, default:float):float

getErrorType():ValidationErrorType

getMessage():String

getRootCause():Exception

init(supporter:WSRequestHandlerSupporter):void

processRequest(supporter:WSRequestHandlerSupporter, info:RequestInfo, req:HttpServletRequest, resp:HttpServletResponse, ctx:Context):String

shutdown(supporter:WSRequestHandlerSupporter):void

getInboundXSD():File

getOutboundXSD():File

getClientIDParamName():String

getSignatureParamName():String

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String

handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String

handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

initalize(service:WebService):void

shutdown():void

getMessage():String

getRootCause():Exception

getRequest():HttpServletRequest

getclientID():String

getRequestInfo():BasicRequestInfo

getResponse():HttpServletResponse

getRequestBody():String

getKey():String

Figure 5‑159 WebServicesBaseClasses (Class Diagram)

5.32.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic location of an Alert Factory and automatic re-discovery should the Alert Factory reference return an error. This class also allows for built-in fault tolerance by automatically failing over to a "working" Alert Factory without the user of this class being aware that this being done. In addition, this class defers the discovery of the Alert Factory until its first use, thus eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently known good reference to an AlertFactory. If the current reference returns a CORBA failure in the delegated call, this class automatically switches to another reference. When there are no good references (as is true the first time the object is used), this class issues a trader query to (re)discover the published Alert Factory objects in the system. During a method call, the trader will be queried at most one time and under normal circumstances, not at all.

5.32.1.1.2 AuthenticationException (Class)

An instance of this class will be provided to a BasicRequestHandler if the handler has requested digital signature verification but an incoming request does not contain a valid signature.

5.32.1.1.3 BasicRequest (Class)

This class contains data used during requst processing.

5.32.1.1.4 BasicRequestHandler (Class)

This abstract base class provides an implementation of the WSRequestHandler.processRequest() method that provides optional XML validation against specified XSD files and optional digital signature verification as well. It is intended to be used by request handlers that plan to take XML in and return XML to the calling client.

5.32.1.1.5 BasicRequestInfo (Class)

This class provides the request specific data that is required by the BasicRequestHandler implementation of the WSRequestHandler interface.

5.32.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system thread requiring database access gets a database connection from the pool of connections maintained by this manager class. The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

5.32.1.1.7 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be implemented by any class that will create a DiscoveryManager.

5.32.1.1.8 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class which provides discovery services for CHART services. It is used by both the CHART GUI and the CHART backend services. A class which implements this interface must provide "get" accessor methods for the system profile properties, the data model, and the main processing queue for a service, for instance. It also provides access to the root deployment path and dynamic image path, which is used only by the CHART GUI. For the CHART GUI, this interface is known to be implemented by the MainServlet; for the back end CHART services, this interface is known to be implemented by the Discovery Manager.

5.32.1.1.9 NotificationManagerWrapper (Class)

This singleton class presents the same interface as the NotificationManager, but uses a FirstAvailableOfferWrapper to provide fault tolerant access to the methods.

5.32.1.1.10 org.apache.velocity.VelocityServlet (Class)

The base class for the Velocity template engine. This template engine is used to provide dynamic content from the CHART GUI Servlet. The web pages are code in templates using velocity specific macros. The code in the servlet loads data that will be shown on the page into a velocity Context, and this VelocityServlet class is used to merge the content with the template to create HTML for the browser to display.

5.32.1.1.11 ProcessingException (Class)

An instance of this class will be provided to a BasicRequestHandler if an unexpected exception is encountered during processing.

5.32.1.1.12 RequestInfo (Class)

THis class stores information about a request that the framework will handle. WSRequestHandler instances will register RequestInfo objects to provide the framework information about each request they handle. The framework will pass the registered request information back to the registered WSRequestHandler when the request is being processed.

5.32.1.1.13 RequestManager (Class)

This class provides a mapping from a request key to all information that a particular request handler has registered for the request.

5.32.1.1.14 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown externally. All implementing classes provide a means to be cleanly shutdown and can be pinged to detect if they are alive.

5.32.1.1.15 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be unaware of the number of CORBA trading services that the application is using or the details of the linkage between those services.

5.32.1.1.16 ValidationException (Class)

An instance of this class will be provided to a BasicRequestHandler if the handler has requested XSD validation of their incoming or outgoing XML and the XML is found to be not valid. It will contain a ValidationErrorType member that will allow the request handler to determine if the invalid XML was inbound or outbound.

5.32.1.1.17 WebService (Class)

This class is the core of each Web Service. It extends the VelocityServlet base class and implements the Service CORBA interface so that Web Service servlets can be administered in the same manner as other CHART service applications.

5.32.1.1.18 WebServiceDBConnectionProperties (Class)

This class provides methods for accessing configuration file properties specific to each database connection required for the WebService.

5.32.1.1.19 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within the web service framework.

5.32.1.1.20 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to extend in order to get access to their configuration properties.

5.32.1.1.21 WebServiceProperties (Class)

This class provides convenient access to the java Properties object that contains configuration data for the web service and its modules.

5.32.1.1.22 WSRequestHandler (Class)

This interface defines the methods that every class that wants to handle web service requests must implement.

5.32.1.1.23 WSRequestHandlerSupporter (Class)

This interface defines the methods that will be available to every WSRequestHandler when it is invoked by the framework. It defines the services that the framework will make available to the handlers.

5.32.2 Sequence Diagrams
5.32.2.1 CHART2.webservices.base:BasicRequestHandler.processRequest (Sequence Diagram)

This diagram shows the processing that is performed when a BasicRequest is received by the WebService base. The base calls processRequest on the registered BasicRequestHandler. The BasicRequestHandler base class then gets the client id parameter name and signature parameter names from the registered BasicRequestInfo. It then reads the request body from the request input stream and creates the BasicRequest object which will contain all of the request related data. If the request is registered with a client ID and signature parameter name the base class then calls the WSRequestHandlerSupporter to verify that the digital dignature provided is correct for the data contained in the request body and the calling client ID. It it is not, the abstract handleAuthorizationException() method is called to allow the derived request handler class to handle the exception. The velocity template returned by the handler is then returned to the web service so that the error may be returned to the calling client. If no verification was required, or the digital signature was correct, the base class processing then obtains the inbound XSD file from the request info and, performs the optional XML validation. If the inbounds XML is not valid the abstract handleValidationException method is invoked to allow the derived request handler to format an error response for the caller. The error response is then returned to the WebService and sent to the calling client. If the inbound XML is valid, or XSD validation was not required the base processing the calls the processRequest() method of the derived request handler to allow it to perform request specific processing. If the processRequest() method throws an unexpected exception the base processing will call the abstract handleProcessingException() method to allow the derived handler an opportunity to format the error response and returns it to the WebService base for return to the calling client. Once the abstract processRequest() method returns, the base processing will check if a response Velocity template has been provided for the creation of the outbound XML. If no template has been returned the derived handler is indicating that they have already responded to the client appropriately and no further processing is required by the base, so a null template path is returned to the WebService and no response is sent to the calling client. If a template path has been returned, the base processing will get the template and merge it with the objects in the Velocity context in order to create the outbound response XML. The registered BasicRequestInfo is then checked to see if outbound XML validation is required. If it is, the XML created by the merge operation is validated. If the outbound XML is not valid the abstract handleValidationException() method is invoked to allow the derived handler to create an appropriate response and that response is returned to the WebSevice for return to the calling client. If the response XML is valid, or if no validation was required, the response XML is then written to the output stream of the HttpServletResponse and null is returned to the WebService to let it know that the response has already been sent to the calling client.

[image: image189.emf]HttpServletResponse merge()

Template [uncaught exception from processRequest]

handleProcessingException()

[uncaught exception from

processRequest]

[Error validating XML]

handleValidationException

getOutboundXSD()

BasicRequest

[Error verifying signature]

[Error verifying signature]

handleAuthorizationException

return null

OutputStream getOutputStream()

write()

flush()

close()

[process request returned

null template path]

[outbound XSD file not null]

validateXML()

[Error validating XML]

handleValidationException

[Error validating XML]

getTemplate()

getSignatureParamName()

[signature param name not null]

getParameter()

[clientID and signature not null]

verifySignedData()

getInputStream()

readRequestBody()

[inbound xsd file not null]

validateXML()

processRequest(req, supporter, context)

WebServiceBasicRequestHandler BasicRequestInfo WSRequestHandlerSupporter HttpServletRequest processRequest

getInboundXSD()

getClientIDParamName()

[client id param not null]

getParameter()

[Error validating XML]

create

Figure 5‑160 CHART2.webservices.base:BasicRequestHandler.processRequest (Sequence Diagram)

5.32.2.2 CHART2.webservices.base:WebService.handleRequest (Sequence Diagram)

This diagram shows the processing performed for each request received by a web service. The request key is determined by parsing the requset URL that was received. The key is then used to find the registered RequestInfo which includes the specific implementation of the WSRequestHandler interface that will handle the request. If no RequestInfo can be found about the request key that was received a default XML error response will be returned. If RequestInfo was found, the content type of the response is set to XML and the no-cache header is added to the response. The WSRequestHandler.processRequest() method is then invoked to allow the request handler to perform request specific processing. If the request handler thows an exception the default error XML will be returned to the calling client. Next a check is made to determine if the request handler has already responded to the client. If so, they return null from the process request invocation and the WebService returns null indicating that no response should be sent to the calling client. If the request handler returned a path to a Velocity template that template will be loaded and returned to Velocity where it will be merged with any Java objects placed in the context in order to create the XML response that is returned to the calling client.

[image: image190.emf]WSRequestHandler

String (path to template or null)

content type is set to application/xml

here, but can be overridden by instance

of WSRequestHandler if desired.

RequestInfo

HttpServletResponse setContentType()

addHeader()

A handler may return a path to a velocity template

that should be loaded, or it may return null indicating

that the response has already been sent. If a template

path is returned the appropriate template will be loaded

and returned as the response to this request. In this case the

response type will be set to application/xml and the response

headers will be set to prevent cacheing.

[Handler returned null]

null

Velocity

WSRequestHandler processRequest()

Every request will have the no-cache

header set to direct clients not to

cache our response documents.

RequestInfo WebServiceHttpServletRequest handleRequest()

getRequestInfo(requestKey)

[no handler registered]

Default Error XML

[Unhandled exception]

getDefaultErrorTemplate()

getTemplate()

RequestManager The request key is taken

from the request URL. And used

to lookup the registered information

for the request.

getServletPath()

[no handler registered]

getDefaultErrorTemplate()

Template

[Unhandled exception]

Default Error XML

getRequestHandler()

Figure 5‑161 CHART2.webservices.base:WebService.handleRequest (Sequence Diagram)

5.32.2.3 CHART2.webservices.base:WebService.init (Sequence Diagram)

This diagram shows the processing performed when the base WebService Servlet is initialized. The WebService first creates a WebServiceProperties to read configuration values from. It then creates a DBConnectionManager if one is required. Next a RequestManager is created and the CORBA ORB is initialized if necessary. Finally, all configured WebServiceModule instances are constructed and initialized.

[image: image191.emf]The WSRequestHandler instances

that a module installs will be specific

to the types of requests that the

handler needs to handle. When the

request handler is registered it is registered

for a specific action. When the servlet

receives a request with the specified action

the registered handler will be invoked. The

method used to invoke the request handler

depends on the type of handler registered.

[error initializing module]

ServletException

WSRequestHandler

create

registerRequestHandler

RequestManager

create

for each request

a handler handles

QueueableCommand

for each module

initialize

getDiscoveryManager

create

add

getRequestManager

WebServiceModule

getModuleClasses

create

ServletContainer

WebService

WebServiceProperties

DatabaseConnectionManager

TraderGroup

DiscoveryManager

requiresObjectCache

[requires object cache]

create

initCORBA()

create

create

init

isDBRequired()

[requires db]

create

The module constructed will implement the

WebServiceModule interface. But will add module

specific functionality. During initialization they will be

provided the opportunity to register their request handlers

and/or add discovery commands to the DiscoveryManager.

for each module

class in properties file

If the module wants to do discovery and

place objects in the ObjectCache it will create

instances of QueueableCommand that do the work and

add them to the DiscoveryManager.

[requires cache &&

error creating

DiscoveryManager]

ServletException

[error construcing module]

ServletException

[requires DB

&& failure creating

connection manager]

ServletException

for each connection

manager in properties file

Figure 5‑162 CHART2.webservices.base:WebService.init (Sequence Diagram)

5.33 GIS Module (webservices/gismodule)
5.33.1 Class Diagrams

5.33.1.1 GISModuleClasses (Class Diagram)

This diagram shows the classes used by the webservices.GISModule.

[image: image192.emf]PushEventSupplier

1

1

GISModuleProperties WebServiceModule «interface» 1 1

1

1

1

1 1

GISModuleHelper

GISLocationAliasRequestHandler

1 1

1

BasicRequestHandler

WebServiceModuleProperties GISLocationRequestHandler

GISModuleDB GISModule

GISModuleDB(chart_db_connMgr:DBConnectionManager,

 chart_bg_db_connMgr:DBConnectionManager,

 chart_mapping_db_connMgr:DBConnectionManager)

createLocationAlias(aliasNameInfo:LocationAliasNameInfo,

 aliasLocation:Location):AliasInfo

getLocationAliases():AliasInfo[]

updateLocationAlias(aliasID:byte[], aliasNameInfo:LocationAliasNameInfo,

 aliasLocation:Location):AliasInfo

deleteLocationAlias(aliasID:byte[]):boolean

getStates():StateInfo[]

getCountiesByState(state:String):CountyInfo[]

getRegionsByState(state:String):RegionInfo[]

getRoutes(state:String, county:String, routeType:int):RouteInfo[]

getIntersectingRoutes(state:String,

 county:String,

 routeNumber:RouteNumber):RouteIntersectionInfo[]

getIntersectionLatLon(state:String,

 county:String,

 primRouteNumber:RouteNumber,

 interRouteNumber:RouteNumber):PointLocationProfile[]

getIntersectingFeaturesOfType()(state:String,

 county:String,

 routeNumber:RouteNumber,

 featureType:int):IntersectingFeatureInfo[]

m_chart_db_connMgr:DBConnectionManagerm_chart_bg_db_connMgr:DBConnectionManagerm_chart_mapping_db_connMgr:DBConnectionManagerprocessRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processCreateLocationAlias(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processGetLocationAliases(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processUpdateLocationAlias(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processDeleteLocationAlias(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

m_module:GISModule

initalize(service:WebService):void

shutdown():void

getProperties():GISModuleProperties

getDB():GISModuleDB

getHelper():GISModuleHelper

m_aliasPushEventSupplier:PushEventSupplier

getIntersectionPointsAllowableRadiusMiles():double getSchemaLocation():String

getCreateLocationAliasParams(XMLDocument):CreateLocationAlias

getUpdateLocationAliasParams(XMLDocument):UpdateLocationAlias

getDeleteLocationAliasParams(XMLDocument):DeleteLocationAlias

getCountiesByStateParams(XMLDocument):GetCountiesByState

getRegionsByStateParams(XMLDocument):GetRegionsByState

getRoutesParams(XMLDocument):GetRoutes

getIntersectingFeaturesOfTypeParams(XMLDocument):GetIntersectingRoutes

getCreateLocationAliasResultXML(boolean, AliasInfo):String

getLocationAliasesResultXML(AliasInfo[]):String

getUpdateLocationAliasResultXML(String, AliasInfo):String

getDeleteLocationAliasResultXML(String):String

getStatesResultXML(StatesInfo[]):String

getCountiesByStateResultXML(CountyInfo[]):String

getRegionsByStateResultXML(RegionInfo[]):String

getRoutesResultXML(RouteInfo[]):String

getIntersectingFeaturesOfTypeResultXML(RouteIntersectionInfo[]):String

m_jaxbContext:JAXBContext

m_objectFactory:ObjectFactory

m_marshaller:Marshaller

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processGetStates(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processGetCountiesByState(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processRegionsByState(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processGetRoutes(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

processGetIntersectingFeaturesOfType(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

m_module:GISModule

Figure 5‑163 GISModuleClasses (Class Diagram)

5.33.1.1.1 BasicRequestHandler (Class)

This abstract base class provides an implementation of the WSRequestHandler.processRequest() method that provides optional XML validation against specified XSD files and optional digital signature verification as well. It is intended to be used by request handlers that plan to take XML in and return XML to the calling client.

5.33.1.1.2 GISLocationAliasRequestHandler (Class)

This class is the request handler that is responsible for handling GIS location alias management requests and providing XML location alias documents.

5.33.1.1.3 GISLocationRequestHandler (Class)

This class is the request handler that is responsible for handling GIS location lookup requests and providing XML location lookup documents.

5.33.1.1.4 GISModule (Class)

This class is the pluggable web service module that provides GIS location lookup and alias management functionality.

5.33.1.1.5 GISModuleDB (Class)

This class manages the GIS location lookup data for this service. It provides location information and manages (creates, gets, updates, and deletes) location aliases.

5.33.1.1.6 GISModuleHelper (Class)

This class is responsible for converting posted XML location lookup and location alias documents to JAXB objects used internally by the webservices.GISModuleDB class and converting the objects returned by the webservices.GISModuleDB class back to XML.

5.33.1.1.7 GISModuleProperties (Class)

This class provides convenience methods for accessing configuration file properties specific to the webservices.GISModule.

5.33.1.1.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a supplier's push rate.

5.33.1.1.9 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within the web service framework.

5.33.1.1.10 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to extend in order to get access to their configuration properties.

5.33.2 Sequence Diagrams
5.33.2.1 CHART2.webservices.gismodule:GISLocationAliasRequestHandler.processCreateLocationAliasRequest (Sequence Diagram)

This diagram shows the processing performed when the GIS module receives a web service request to create a location alias. The BasicRequestHandler abstract base class is invoked by the WebService core. Before calling the GISLocationAliasRequestHandler class, the base class will verify the digital signature used to sign the request and will validate the XML against the XSD. If the signature and XML are valid, the base class will invoke the processRequest method of the GISLocationAliasRequestHandler class which in turn invokes the processCreateLocationAliasRequest method on itself. The client token and client ID are used to verify that the caller has the rights to create a new location alias. The request body XML string is obtained, converted to an XMLDocument containing the alias name information (and optional location information), and passed to the getCreateLocationAliasParams method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the XMLDocument to a JAXB CreateLocationAlias object and return it to the GISAliasLocationRequestHandler class. The alias name information and location information are retrieved from the CreateLocationAlias object and passed to the the createLocationAlias method of the GISModuleDB class (as LocationAliasNameInfo and Location objects respectively). The GISModuleDB class creates the new location alias and returns an AliasInfo object describing the new alias to the GISAliasLocationRequestHandler class. The AliasInfo object is passed to the getCreateLocationAliasResultXML method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the alias information to an XML response string and return it to the GISLocationAliasRequestHandler class. The XML response string (containing a success/failure element) is placed in the context, and the Preformatted XML Response template is returned.

[image: image193.emf]WebService

At this point, the BasicRequestHandler base class has

verified the digital signature used to sign the request

and validated the incoming XML against the XSD.

BasicRequestHandler GISLocationAliasRequestHandler BasicRequest

The Velocity template will call the toString() method

on the xmlResult string to obtain the response XML.

TokenManipulator

GISModule

GISModuleHelper

CreateLocationAlias

GISModuleDB

PushEventSupplier

Context

checkAccess checkAccess

canAddAlias:boolean canAddAlias:boolean

push() push()

pushAliasAdded() pushAliasAdded()

checkAccess() checkAccess()

getHelper() getHelper()

processRequest() processRequest()

processRequest() processRequest()

getClientToken() getClientToken()

getClientID() getClientID()

Preformatted XML Template Preformatted XML Template

Preformatted XML Response Template Preformatted XML Response Template

getUpdateLocationAliasResultXML(String, AliasInfo) getUpdateLocationAliasResultXML(String, AliasInfo)

xmlResult:String xmlResult:String

put(xmlResult:String) put(xmlResult:String)

getHelper() getHelper()

GISModuleHelper GISModuleHelper

AliasInfo AliasInfo

createLocationAlias(LocationAliasNameInfo, Location) createLocationAlias(LocationAliasNameInfo, Location)

getDB() getDB()

GISModuleDB GISModuleDB

getCreateLocationAliasParams(xmlInputDoc:XMLDocument) getCreateLocationAliasParams(xmlInputDoc:XMLDocument)

CreateLocationAlias CreateLocationAlias

getLocationAliasNameInfo() getLocationAliasNameInfo()

LocationAliasNameInfo LocationAliasNameInfo

getLocation() getLocation()

Location Location

getRequestBody() getRequestBody()

xmlInput:String xmlInput:String

GISModuleHelper GISModuleHelper

processCreateLocationAliasRequest() processCreateLocationAliasRequest()

Figure 5‑164 CHART2.webservices.gismodule:GISLocationAliasRequestHandler.processCreateLocationAliasRequest (Sequence Diagram)
5.33.2.2 CHART2.webservices.gismodule:GISLocationAliasRequestHandler.processGetAliasesRequest (Sequence Diagram)

This diagram shows the processing performed when the GIS module receives a web service request to obtain a list of the location aliases in the database. The BasicRequestHandler abstract base class is invoked by the WebService core. The base class invokes the processRequest method of the GISLocationAliasRequestHandler class which in turn invokes the processGetLocationAliasesRequest method on itself. The GISLocationAliasRequestHandler class invokes the getLocationAliases method of the GISModuleDB class and obtains a list of aliases from the database. The list of aliases is passed to the getLocationAliasesResultXML method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the list of aliases to an XML response string and return it to the GISLocationAliasRequestHandler class. The XML response string (containing a success/failure element) is placed in the context, and the Preformatted XML Response template is returned.

[image: image194.emf]WebService

BasicRequestHandler

The Velocity template will call the toString() method

on the xmlResult string to obtain the response XML.

GISLocationAliasRequestHandler GISModule GISModuleDB GISModuleHelper Context

put(xmlResult:String) put(xmlResult:String)

getLocationAliasesResultXML(aliasInfoList:AliasInfo[]) getLocationAliasesResultXML(aliasInfoList:AliasInfo[])

xmlResult:String xmlResult:String

getHelper() getHelper()

getDB() getDB()

getLocationAliases() getLocationAliases()

processGetLocationAliasesRequest() processGetLocationAliasesRequest()

processRequest() processRequest()

Preformatted XML Template Preformatted XML Template

GISModuleHelper GISModuleHelper

processRequest() processRequest()

GISModuleDB GISModuleDB

AliasInfo[] AliasInfo[]

Preformatted XML Response Template Preformatted XML Response Template

Figure 5‑165 CHART2.webservices.gismodule:GISLocationAliasRequestHandler.processGetAliasesRequest (Sequence Diagram)

5.33.2.3 CHART2.webservices.gismodule:GISLocationRequestHandler.processGetCountiesByStateRequest (Sequence Diagram)

This diagram shows the processing performed when the GIS module receives a web service request to obtain a list of the counties for a specified state. The BasicRequestHandler abstract base class is invoked by the WebService core. Before calling the GISLocationRequestHandler class, the base class will validate the XML against the XSD. If the XML is valid, the base class will invoke the processRequest method of the GISLocationRequestHandler class which in turn invokes the processGetCountiesByStateRequest method on itself. The request body XML string is obtained, converted to an XMLDocument containing the USPS state code, and passed to the getCountiesByStateParams method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the XMLDocument to a JAXB GetCountiesByState object and return it to the GISLocationRequestHandler class. The USPS state code is retrieved from the GetCountiesByState object and passed to the getCountiesByState method of the GISModuleDB class to obtain a list of counties for the specified state. The resulting list of counties is passed to the getCountiesByStateResultXML method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the list of counties to an XML response string and return it to the GISLocationRequestHandler class. The XML response string (containing a success/failure element) is placed in the context, and the Preformatted XML Response template is returned.

[image: image195.emf]WebService

At this point, the BasicRequestHandler base class

has validated the incoming XML against the XSD.

BasicRequestHandler

The Velocity template will call the toString() method

on the xmlResult string to obtain the response XML.

GISLocationRequestHandler BasicRequest

GISModule

GISModuleResultHelper

GetCountiesByState

GISModuleDB Context

processRequest() processRequest()

processGetCoutiesByStateRequest() processGetCoutiesByStateRequest()

xmlInput:String xmlInput:String

GISModuleDB GISModuleDB

CountyInfo[] CountyInfo[]

processRequest() processRequest()

getRequestBody() getRequestBody()

getDB() getDB()

getCountiesByState(state:String) getCountiesByState(state:String)

put(xmlResult:String) put(xmlResult:String)

Preformatted XML Response Template Preformatted XML Response Template

state:String state:String

GISModuleHelper GISModuleHelper

getCountiesByStateParams(xmlInputDoc:XMLDocument) getCountiesByStateParams(xmlInputDoc:XMLDocument)

xmlResult:String xmlResult:String

GISModuleHelper GISModuleHelper

getState() getState()

getCountiesByStateResultXML(countyInfoList:CountyInfo[]) getCountiesByStateResultXML(countyInfoList:CountyInfo[])

getHelper() getHelper()

GetCountiesByState GetCountiesByState

Preformatted XML Template Preformatted XML Template

getHelper() getHelper()

Figure 5‑166 CHART2.webservices.gismodule:GISLocationRequestHandler.processGetCountiesByStateRequest (Sequence Diagram)

5.33.2.4 CHART2.webservices.gismodule:GISLocationRequestHandler.processGetIntersectingFeaturesOfType (Sequence Diagram)

This diagram shows the processing performed when the GIS module receives a web service request to obtain a list of the features of a specified type that intersect a specified route. The BasicRequestHandler abstract base class is invoked by the WebService core. Before calling the GISLocationRequestHandler class, the base class will validate the XML against the XSD. If the XML is valid, the base class will invoke the processRequest method of the GISLocationRequestHandler class which in turn invokes the processGetIntersectingFeaturesOfTypeRequest method on itself. The request body XML string is obtained, converted to an XMLDocument (containing the USPS state code, the county code, the route number information, and the intersecting feature types), and passed to the getIntersectingFeaturesOfTypeParams method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the XMLDocument to a JAXB GetIntersectingFeaturesOfType object and return it to the GISLocationRequestHandler class. The USPS state code, county code, route number information, and intersecting feature types are retrieved from the GetIntersectingFeaturesOfType object and passed to the the getIntersectingFeaturesOfType method of the GISModuleDB class to obtain a list of the intersecting features. The resulting list of intersecting features is passed to the getIntersectingFeaturesOfTypeResultXML method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the list of intersecting features to an XML response string and return it to the GISLocationRequestHandler class. The XML response string (containing a success/failure element) is placed in the context, and the Preformatted XML Response template is returned.
[image: image196.emf]WebService

At this point, the BasicRequestHandler base class

has validated the incoming XML against the XSD.

BasicRequestHandler

The Velocity template will call the toString() method

on the xmlResult string to obtain the response XML.

GISLocationRequestHandler BasicRequest

GISModule

GISModuleResultHelper

GetIntersectingFeaturesOfType

GISModuleDB Context

getRouteNumber() getRouteNumber()

county:String county:String

featureType:int featureType:int

processGetIntersectingFeaturesOfTypeRequest() processGetIntersectingFeaturesOfTypeRequest()

GISModuleDB GISModuleDB

getRequestBody() getRequestBody()

getIntersectingFeaturesOfType() getIntersectingFeaturesOfType()

Preformatted XML Response Template Preformatted XML Response Template

GISModuleHelper GISModuleHelper

xmlResult:String xmlResult:String

getState() getState()

getHelper() getHelper()

Preformatted XML Template Preformatted XML Template

getFeatureType() getFeatureType()

routeNumber:RouteNumber routeNumber:RouteNumber

getCounty() getCounty()

processRequest() processRequest()

xmlInput:String xmlInput:String

getHelper() getHelper()

state:String state:String

getIntersectingFeaturesOfTypeParams(xmlInputDoc:XMLDocument) getIntersectingFeaturesOfTypeParams(xmlInputDoc:XMLDocument)

GISModuleHelper GISModuleHelper

getIntersectingFeaturesOfTypeResultXML() getIntersectingFeaturesOfTypeResultXML()

GetIntersectingFeaturesOfType GetIntersectingFeaturesOfType

processRequest() processRequest()

getDB() getDB()

put(xmlResult:String) put(xmlResult:String)

Figure 5‑167 CHART2.webservices.gismodule:GISLocationRequestHandler.processGetIntersectingFeaturesOfType (Sequence Diagram)
5.33.2.5 CHART2.webservices.gismodule:GISLocationRequestHandler.processGetStatesRequest (Sequence Diagram)

This diagram shows the processing performed when the GIS module receives a web service request to obtain a list of the states in the database. The BasicRequestHandler abstract base class is invoked by the WebService core. The base class invokes the processRequest method of the GISLocationRequestHandler class which in turn invokes the processGetStatesRequest method on itself. The GISLocationRequestHandler class invokes the getStates method of the GISModuleDB class and obtains a list of states from the database. The list of states is passed to the getStatesResultXML method of the GISModuleHelper class. The GISModuleHelper class uses the JAXBContext class to convert the list of states to an XML response string and return it to the GISLocationRequestHandler class. The XML response string (containing a success/failure element) is placed in the context, and the Preformatted XML Response template is returned.

[image: image197.emf]WebService

The Velocity template will call the toString() method

on the xmlResult string to obtain the response XML.

BasicRequestHandler

getHelper()

getStatesResultXML(stateInfoList:StateInfo[])

StateInfo[]

GISModuleResultHelper

GISModuleDB

GISModuleHelper

xmlResult:String

Preformatted XML Response Template

Preformatted XML Template

Context

processGetStatesRequest()

getStates()

put(xmlResult:String)

getDB()

processRequest()

processRequest()

GISModule GISModuleDB GISLocationRequestHandler

Figure 5‑168 CHART2.webservices.gismodule:GISLocationRequestHandler.processGetStatesRequest (Sequence Diagram)

5.33.2.6 CHART2.webservices.gismodule:GISModule.initialize (Sequence Diagram)

This diagram shows the processing that is performed by the webservices.GISModule during initialization. First a GISModuleProperties object is created. Next, the required connection manager objects for each database (Chart, Chart BG, and Chart Mapping) are obtained from the base WebService. Next, the GISModuleDB is created and stores a reference to each database connection manager. Next, the GISModuleResultHelper is created and instantiates a JAXBContext that will be used for transforming XML to objects for the database and transforming objects from the database to XML. Then the GISLocationRequestHandler and GISLocationAliasRequestHandler handlers are created and registered with the RequestManager. Then the GISLocationModule class invokes the createEventChannel method on itself. Then the CorbaUtilities class is used to create and publish the new event channel. A new PushEventSupplier is created and used to obtain an EventChannel object. The GISLocationModule class then invokes the registerEventChannel method and passes the EventChannel object to the method to register the event channel.

[image: image198.emf]CorbaUtilities [isConnected == true]

getChannel()

PushEventSupplier

createEventChannel()

create

GISLocationRequestHandler

create

registerRequestHandler()

getRequestManager()

create

WebService GISModuleDB

GISLocationAliasRequestHandler

initialize

getConnectionManager("chart_db")

WebService

GISModule RequestManager GISModuleProperties

create

getConnectionManager("chart_mapping_db")

getConnectionManager("chart_bg_db")

GISModuleResultHelper

getRequestManager()

registerRequestHandler()

create

RequestManager

isConnected()

[isConnected == true]

registerEventChannel()

createAndPublishEventChannel()

The call to register a request handler passes information about the request,

such as the XSD that should be used to validate the incoming XML.

Figure 5‑169 CHART2.webservices.gismodule:GISModule.initialize (Sequence Diagram)

5.34 Export Listener (webservices/exportlistener)
5.34.1 Class Diagrams

5.34.1.1 ExportListenerModuleClasses (Class Diagram)

This class diagram shows the classes that comprise the Data Exporter Client Service.
[image: image199.emf]1 1

ExportListenerModule TrafficEventXMLHandlerXMLHandler «interface» HARHXMLHandler SHAZAMNXLHandler 11ExportHARDB

ExportSHAZAMDB

1

1 1 11 11 1 1 1 ExportTrafficEventUtility

WSClientModuleExportListenerModuleProperies ExportTrafficEventDB

DMSXMLHandler TSSXMLHandler 11ExportDMSDB

ExportTSSDB

ExportListenerDbHelper 1

1 1 11 1 1 1

1 1

1

1

getXMLHandlers():XMLHandler[]init(props:WSClientModuleProperties):voidhandleXML(clientID:String, root:Element, isPost:boolean):voidgetDBCatalog(): String getMapServerUrl(): String getOfflineThresholdHours():int getSharedResourceMonitorInterval()int() initialize(WSClientModule) : voidhandleXML(String, XMLDocument, boolean) : voidm_db: TrafficEventDBHelperinitialize(): void getDBCatalog() : String postInventoryRequest(String): void m_props: ExportListenerModuleProperties clearParticipants(String): void

addTrafficEvent(Object, short): void

addTrafficIncident(IncidentInformation, int):void

addWeatherServiceEvent(IncidentInformation, int) : void

clearLanes(String) : void

updateLane(LaneConfigCHARTLocal, String) : void

addResourceParticipation(String, ParticipantCHARTLocal) : void

initialize(WSClientModule) : void handleXML(String,XMLDocument, boolean): void m_db:DmsDBHelper initDBConnManager(DBConnectionManager, String):void execSQL(Object caller, String sql) convertStrToSQL(String):String initIncidentTypeHashTable() : void

short getIncidentType(String)

initialize(WSClientModule) : void handleXML(String, XMLDocument, boolean): void m_db: HarDBHelper clearDMSDevices():void

addUpdateDMSConfig(DMSInventoryCHART):void

updateDMSMessage(DMSDeviceStatusCHART): void

updateDMSStatus(DMSDeviceStatusCHART):void

removeDMSDevice(Identifier):void

initialize(WSClientModule) : void handleXMLs(String, XMLDocument, boolean): void m_db: TssDBHelper clearHARDevices():void

addUpdateHARConfig(HARInventoryCHART):void

updateHARMessage(HARStatusCHART):void

updateHARStatus(HARStatusCHART): void

removeHARDevice(Identifier):void

initialize(WSClientModule) : void handleXML(String,XMLDocument, boolean): void m_db: ShazamDBHelper clearTSSDevices():void

addUpdateTSSConfig(DetectorInventoryCHART):void

updateDetectorStatus(DetectorStatusCHART): void

updateTSSTrafficData(String, int, long, TrafficParamsCHART) : void

removeTSSDevice(Identifier):void1

clearSHAZAMDevices():void

addUpdateSHAZAMConfig(IShazamInventoryCHART):void

updateSHAZAMBeacons(ShazamStatusCHART):void

updateSHAZAMStatus(ShazamStatusCHART):void

removeSHAZAMDevice(Identifier):void

Figure 170. ExportListenerModuleClasses (Class Diagram)

5.34.1.1.1 DMSXMLHandler (Class)

This class is responsible for handling DMS XML data received from the CHART data exporter.

5.34.1.1.2 ExportDMSDB (Class)

This class provides access to DMS related data that is stored in the database.

5.34.1.1.3 ExportHARDB (Class)

This class provides access to HAR related data that is stored in the database.

5.34.1.1.4 ExportListenerDbHelper (Class)

An abstract class that provides updates to the CHARTWeb database.

5.34.1.1.5 ExportListenerModule (Class)

Module that is responsible for setting up the classes that will handle XML pulled from the CHART data exporter and handling XML data updates posted by the exporter.

5.34.1.1.6 ExportListenerModuleProperies (Class)

This Class provides access to properties for the Export Listener web module.

5.34.1.1.7 ExportSHAZAMDB (Class)

This class provides access to SHAZAM related data that is stored in the database.

5.34.1.1.8 ExportTrafficEventDB (Class)

This class provides access to traffic event related data that is stored in the database.

5.34.1.1.9 ExportTrafficEventUtility (Class)

A utility class used to translate incident types.
5.34.1.1.10 ExportTSSDB (Class)

This class provides access to TSS related data that is stored in the database.

5.34.1.1.11 HARHXMLHandler (Class)

This class is responsible for handling HAR XML data received from the CHART data exporter.

5.34.1.1.12 SHAZAMNXLHandler (Class)

This class is responsible for handling shazam XML data received from the CHART data exporter.

5.34.1.1.13 TrafficEventXMLHandler (Class)

This class is responsible for handling traffic event XML data received from the CHART data exporter.

5.34.1.1.14 TSSXMLHandler (Class)

This class is responsible for handling TSS XML data received from the CHART data exporter.

5.34.1.1.15 WSClientModule (Class)

A WebServiceModule that can be configured to handle XML data posted to it and post XML/HTTP requests to remote services.

5.34.1.1.16 XMLHandler (Class)

The XMLHandler interface should be implemented by classes that will handle XML data posted to this service or returned from a remote service in response to a request posted to it from this service.

5.35 DMS Export Module (webservices/WSDMSExportModulePkg)
5.35.1 Class Diagrams

5.35.1.1 DMSSubscriptionSupportClasses (Class Diagram)

This diagram shows the classes and interfaces that comprise the DMS Subscription framework.

[image: image200.emf]DMSSubscriptionMgr ExportSubscriptionManager Pushable «interface» Pusher «interface» ExportSubscription 1 DMSPushable ModelObserver «interface» QueuedPusher ExportSubscriptionInfo 1 DMSSubscription +ctor(ExportSubscriptionDataType, DBConnectionManager, subscriptionLengthMins : long, expTimerIntervalMins :short)+getSubscriptions() : ExportSubscriptionInfo[]+removeSubscription(clientId : String)-removeExpiredSubscriptions()+cleanup()-m_pushEngine : PushEngine-m_subscriptionDB : ExportSubscriptionDB-m_subscriptionLifetimeMins : long-m_expirationTimer : java.util.Timer+ctor(DBConnectionManager, subscriptionLengthMins : long, expTimerIntervalMins :short, module :WSDMSExportModule)+initialize()+updateSubscription(ExportSubscriptionInfo) : DMSSubscription+sendUpdateToSubscribers(updateData :DMSPushable)+getVelocityTemplatePath() : String+getVelocityErrorTemplatePath() : String+cleanup()-m_pushEngine : PushEngine-m_exportHandler : DMSExportHandler-m_module : WSDMSExportModule-m_props : WSDMSExportModulePropertiesupdate(ModelChanges changes) +getID() : String +getName() : String +push(Pushable) +getType() : String +ctor(ExportSubscriptionInfo, optionalExtSysConn : ExtSystemConn) +getClientID() : String +getId() : String +getname() : String +getType() : ExportSubscriptionDataType +getDataType() : ExportSubscriptionDataType +getURL() : String +getExpDate() : long +sendDataToSubscriber(xml : String) +updateTargetURL(url : String) +updateExpDate(Date) +updateExtSysConn(status : SimpleStatus, statusTxt : String) -m_data : ExportSubscriptionData -m_targetService : XMLHTTPService -m_lastCommFailed : boolean -m_extSysConn : ExternalSystemConn +getDMSs() : ProxyDMS[] -m_updatedDMSs : ProxyDMS[] +ctor(ExportSubscriptionInfo, DMSExportHandler, DMSSubscriptionMgr, optionalExtSysConn : ExtSystemCon) +doPush(DMSPushable) -m_exportHandler : DMSExportHandler -m_subscriptionMgr : DMSSubscriptionMgr +m_clientID : String +m_type : ExportSubscriptionDataType +m_targetURL : String +m_expDate : Date

Figure 5‑171 DMSSubscriptionSupportClasses (Class Diagram)

5.35.1.1.1 DMSPushable (Class)

This class implements the Pushable interface and represents updates for a list of DMSs that will be delivered to all DMS export subscribers.

5.35.1.1.2 DMSSubscription (Class)

This class derives from the ExportSubscription abstract base class and implements methods used specifically for processing data for DMS subscribers. The doPush() method implements the QueuedPusher.doPush() abstract method and does the DMS specific processing needed to send realtime DMS inventory or status updates to a subscriber.

5.35.1.1.3 DMSSubscriptionMgr (Class)

This Class derives from the ExportSubscriptionManger abstract base class and is responsible for maintaining subscribers for DMS data and delivering real time DMS inventory and status updates to those subscribers. Note : this class is a ModelObserver and as such, it will receive updates about DMSs from the DataModel.

5.35.1.2 WSDMSExportModuleClasses (Class Diagram)

This class diagram defines a WebServiceModule used for providing a web service interface for Exporting DMS data. It utilized the Chart WebService framework. The DMSExportHandler is the main class responsible for maintaining a cache of DMS related objects and providing methods to retrieve information in an exportable form. Note: the DMSExportHandler is not WebService specific and could be used in the context of the Chart ServiceApplication framework if needed.

[image: image201.emf]DMSSubscriptionRequestHandler

*

1

ExternalSystemConnectionImpl

java.lang.Runnable

1

1

QueueableCommand

WSRequestHandlerSupporter

«interface»

Java

Objects

referenced

by velocity

templates.

DiscoveryManager ObjectCache DataModel

ProxyDMS

ProxyObject

DiscoverDMSClassesCmd

1

1

1 1 1

1

1

1

1

1

*

discovers

and maintains

cache of

DMS Proxy objects

DMSInventoryExpView

DMSStatusExpView

BasicRequestHandler

DMSRequestHandler

1

1

1

1

1

1

1

1

DiscoveryHost

«interface»

WebServiceProperties

1

1

1

1

WSDMSExportModule

WebServiceModule

«interface» WebService

WebServiceModuleProperties

*

1

DMSExportModuleProperties

DMSExportHandler

*

initalize(service:WebService):void

shutdown():void

WebServiceModuleProperties(props:WebServiceProperties)

getWebServiceProperties():WebServiceProperties

getIntProperty(prop:String, default:int):int

getBooleanProperty(prop:String, default:boolean):boolean

getFloatProperty(prop:String, default:float):float

initalize(service:WebService):void

shutdown():void

updateExtSysStatus(clientId : String)

-m_discoveryMgr : DiscoveryManager

-m_dmsListReqHdlr : DMSRequestHandler

-m_props : DMSExportModulePropts

-m_dmsExportHandler : DMSExportHandler

-m_requestManager : RequestManager

-m_initialized : boolean

-m_extSysConnList : Hashtable

+getDataModel() : DataModel

+getObjectCache() : ObjectCache

+getDiscoveryDriver() : DiscoveryDriver

m_traderGroup : TraderGroup

m_discoveryDriver : DiscoveryDriver

m_dataModel : DataModel

m_ecg : EventConsumerGroup

m_objectCache : ObjectCacheClass

m_processingQueue : CommandQueue

+requireDigitalSignaturesOnRequests() : boolean

+getDMSInvVelocityTemplatePath() : String

+getDMSStatusVelocityTemplatePath() : String

+getDMSErrorVelocityTemplatePath() : String

+getRequestXSDPath() : String

+getResponseXSDPath() : String

+getExtSysNameClientIdPairs() : ExtSysClientIdProperty

+getDataModelUpdatePriorityLevel() : int

+getExportSubscriberQueueSize() : int

+ctor(discMgr : DiscoveryManager)

+initialize()

+getDMSInventoryList(token : byte[], updateWindowMins : int)

 : DMSInventoryExpView[]

+getDMSStatusList(token : byte[], updateWindowMins : int)

 : DMSStatusExpView[]

+run()

+shutdown()

-m_discoveryManager : DiscoveryManager

-m_startupThread : Thread

-m_initialized = boolean

+ctor(proxy : ProxyDMS,

 provideSensitivedata : boolean)

+getName() : String

+getId() : String

+getLat() : int

+getLon() : int

+getPhoneNumber() : String

+canProvideSensitiveData() : boolean

.....()

-m_proxyDMS : ProxyDMS

-m_provideSensitiveData : boolean

ctor(dmsExpHander:DMSExportHandler, props : DMSExportModuleProperties, module: WSDMSExportModule)

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String

handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String

handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

-m_dmsExportHander : DMSExportHandlerr

-m_dmsInvVelocityTmpFilename : String

-m_dmsStatusVelocityTmpFilename : String

-m_dmsErrorVelocityTmpFilename : String

-m_module : WSDMSExportModule

...()

-m_dmsId : byte[]

-m_dms :Chart2DMS

-m_config : Chart2DMSConfig

-m_status : DMSStatus

+getId() : String

+getCurrentMessage() : String

+getOrganizationInfo() : String

....()

-m_proxyDMS : ProxyDMS

DiscoverChart2DMSClassesCommand(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataModel : DataModel, ecg : EventConsumerGroup,

 discoveryToken : AccessToken,

 contextProvider : SystemContextProvider) : ctor

-discoverDMSChannels() : void

-discoverChart2DMSClasses() : void

m_poa : POA

m_traderGroup : TraderGroup

m_dataModel : DataModel

m_discoveryToken : AccessToken

m_dpc : Chart2DMSPushConsumer

m_sysContextProvider : SystemContextProvider

ctor(dmssubscriptionMgr:DMSSubscriptionMgr, props:DMSExportModuleProperties, module: WSDMSExportModule)

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String

handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String

handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

-m_dmsSubscriptionMgr : DMSSubscriptionMgrr

-m_subscriptionRespVelocityTmpFilename : String

-m_dmsErrorVelocityTmpFilename : String

-m_module : WSDMSExportModule

Figure 5‑172 WSDMSExportModuleClasses (Class Diagram)

5.35.1.2.1 BasicRequestHandler (Class)

This abstract base class provides an implementation of the WSRequestHandler.processRequest() method that provides optional XML validation against specified XSD files and optional digital signature verification as well. It is intended to be used by request handlers that plan to take XML in and return XML to the calling client.

5.35.1.2.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.35.1.2.3 DiscoverDMSClassesCmd (Class)

The DiscoverChart2DMSClassesCmd class is responsible for discovering Chart2DMS and Chart2DMSFactory corba objects, wrapping those objects in proxy classes and adding those objects to the DiscoveryManager's Object Cache. This class also listens to appropriate corba events and updates the Object cache accordingly.

5.35.1.2.4 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be implemented by any class that will create a DiscoveryManager.

5.35.1.2.5 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class which provides discovery services for CHART services. It is used by both the CHART GUI and the CHART backend services. A class which implements this interface must provide "get" accessor methods for the system profile properties, the data model, and the main processing queue for a service, for instance. It also provides access to the root deployment path and dynamic image path, which is used only by the CHART GUI. For the CHART GUI, this interface is known to be implemented by the MainServlet; for the back end CHART services, this interface is known to be implemented by the Discovery Manager.

5.35.1.2.6 DMSExportHandler (Class)

The DMSExportHandler class is responsible for maintaining up to date Chart DMS information in the ObjectCache. This data is used to support the class methods which provide data in response to web service requests for exporting DMS data.

5.35.1.2.7 DMSExportModuleProperties (Class)

The DMSExportModuleProperties class provides access methods for properties used by the WSDMSExportModule. It Extends the WebServiceModuleProperties class which allows access to other properties available from the WebService Framework.

5.35.1.2.8 DMSInventoryExpView (Class)

The DMSInventoryExpView class wraps a ProxyChart2DMS object and provides a view of the proxy object specific to DMS Inventory requests. These objects are used by the Velocity Engine which is made available by the WebService Framework. Velocity will apply a defined DMS Inventory velocity template to a collection of these objects to generate the XML response to DMS Inventory export requests.

5.35.1.2.9 DMSRequestHandler (Class)

The DMSRequestHandler extends the BasicRequestHandler abstract class and implements abstract methods used to handle web service requests for exporting DMS information.

5.35.1.2.10 DMSStatusExpView (Class)

The DMSStatusExpView class wraps a ProxyChart2DMS object and provides a view of the proxy object specific to DMS Status requests. These objects are used by the Velocity Engine which is made available by the WebService Framework. Velocity will apply a defined DMS Status velocity template to a collection of these objects to generate the XML response to DMS Status export requests.

5.35.1.2.11 DMSSubscriptionRequestHandler (Class)

The DMSSubscriptionRequestHandler extends the BasicRequestHandler and defines process required to handler DMS export subscription requests made available by the CHART Export Web service. Subscriptions allow clients to receive “real time” updates to DMS as opposed to “on demand” updates which the client has to initiate.
5.35.1.2.12 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as configured by the admin.

5.35.1.2.13 java.lang.Runnable (Interface)

This interface allows the run method to be called from another thread using Java's threading mechanism.

5.35.1.2.14 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.35.1.2.15 ProxyDMS (Class)

The ProxyChart2DMS object is a proxy for a Chart2DMS corba object which is used to by the DiscoveryManager / ObjectCache. The objects are used to maintain an up to date cache of Chart2DMS data in the object cache for application use.

5.35.1.2.16 ProxyObject (Class)

This class is a base class for many types of proxy objects store in the CHART object cache (which have been discovered by the DiscoveryDriver tasks), used to provide a standard set of access methods for the proxy objects.

5.35.1.2.17 QueueableCommand (Interface)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.35.1.2.18 WebService (Class)

This class is the core of each Web Service. It extends the VelocityServlet base class and implements the Service CORBA interface so that Web Service servlets can be administered in the same manner as other CHART service applications.

5.35.1.2.19 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within the web service framework.

5.35.1.2.20 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to extend in order to get access to their configuration properties.

5.35.1.2.21 WebServiceProperties (Class)

This class provides convenient access to the java Properties object that contains configuration data for the web service and its modules.

5.35.1.2.22 WSDMSExportModule (Class)

The WSDMSExportModule implements the WebServiceModule interface and provides DMS export functionality via the WebService framework.

5.35.1.2.23 WSRequestHandlerSupporter (Class)

This interface defines the methods that will be available to every WSRequestHandler when it is invoked by the framework. It defines the services that the framework will make available to the handlers.

5.35.2 Sequence Diagrams
5.35.2.1 DMSExportHandler:getDMSInventoryList (Sequence Diagram)

This diagram depicts the processing needed to retrieve DMS Inventory data in response to a specific DMS Inventory export request. If no ProxyDMSFactories are found in the data model this method throws a GeneralException. This in turn will trigger the WebService framework to call the handler's handleProcessingException() method. ProxyDMS objects are retrieved from the ObjectCache. Based on the optional update window parameter, the functional rights of the client specific token passed in and the owning organization of each proxy object, a collection of appropriate export data is created and returned to the caller.

[image: image202.emf]DMSExpViewContainer

setInventoryFlag(Boolean.TRUE)

dmsList:ProxyDMS[]=optionalDMSList

[optionalDMSList==null]

retDMSList:

ArrayList

[*dmsList]

create()

Loop thru ProxyDMS

objects in the list returned

from the DataModel.

Apply update

window check

if needed.

TokenManipulator

List of objects to

return to

caller.

dmsToExport:

DMSInventoryExpView

[updateWindowMins > 0 &&

optionalDMSList==NULL]

[proxyDMS.lastDmsConfigUpdate

timestamp outside updateWindow

skip this DMS]

create(proxyDMS)

add(dmsToExport)

toArray()

DMSInventoryExpView[]

DMSRequestHandler

m_discoveryMgr:

DiscoveryManager

DataModule DMSExportHandler

getDMSInventoryList(token:byte[],

updateWIndowMins:int,

optionalDMSList : ProxyTrafficEvent[])

DMSExpViewContainer

dmsList:ProxyDMS[] =

getObjectsOfType(ProxyDMS.class)

getDataModel()

[no ProxyDMSFacotry objects

found in DataModel]

GeneralException

If optionalDMSList is null,

get array of ProxyDMS

from the data model. Else,

use the array of ProxyDMS

passed in

create(DMSInventoryExpView[])

Figure 5‑173 DMSExportHandler:getDMSInventoryList (Sequence Diagram)

5.35.2.2 DMSExportHandler:getDMSStatusList (Sequence Diagram)

This diagram depicts the processing needed to retrieve DMS Status data in response to a specific DMS Status export request. If no ProxyDMSFactories are found in the data model this method throws a GeneralException. This in turn will trigger the WebService framework to call the handler's handleProcessingException() method. ProxyDMS objects are retrieved from the ObjectCache. Based on the optional update window parameter, the functional rights of the client specific token passed in and the owning organization of each proxy object, a collection of appropriate export data is created and returned to the caller.

[image: image203.emf]If optionalDMSList is null,get array of ProxyDMSfrom the data model. Else,use the array of ProxyDMSpassed in[optionalDMSList==null] dmsList:ProxyDMS=optionalDMSList DMSStatusRequestHandlerLoop thru ProxyDMSobjects in the list returned from the DataModel.DMSExportHandler m_discoveryMgr: DiscoveryManager DataModule Apply update window check if needed. dmsStatusToExport:

DMSStatusExpView

List of objects to return to caller. retDMSStatusList: ArrayList getDMSIStatusList(token:byte[], updateWIndowMins:int) [*dmsList] create() [updateWindowMins > 0] create(proxyDMS)

toArray()

DMSStatusExpView[]

getDataModel() throw GeneralException[proxyDMS.lastDmsStatusUpdate timestamp outside updateWindow skip this DMS] add(dmsStatusToExport)

DMSStatusExpView[]

dmsList:ProxyDMS[] = getObjectsOfType(ProxyDMS.class) [no ProxyDMSFactory objects found in DataModel]

Figure 5‑174 DMSExportHandler:getDMSStatusList (Sequence Diagram)

5.35.2.3 DMSRequestHandler:handleExceptions (Sequence Diagram)

This sequence diagram depicts Exception handling done as part of the WebService framework. The DMSRequestHandler derives from the BasicRequestHandler class and implements 3 abstract methods (handleValidationException(), handleAuthenticationException() and handleProcessingException()). These methods are called from the WebService frame work when exceptions are encountered. Each method retrieves information as need from the arguments passed in and creates a response using a Velocity Context object and a predefine Velocity template. Note: for handleValidationException() if inbound xml validation fails, pass the invalid XML string back in the XML response defined as CDATA so it will not be parsed.

[image: image204.emf]Other types of export request handlers will do similar exception handling.

errorType:ValidationErrorType = getErrorType()

[errorType ==

INBOUND_XML_INVALID]

[errorType ==

OUTBOUND_XML_INVALID]

supporter: WSRequestHandlerSupporter

clientID:String = getClientID()

e:

AuthenticationException

put("errorString", errorStr)

Note: it the velocity template

for error messages encounters

an "invalidXML" object in the

context it will defined as CDATA

in the generated XML for the

error response.

invalidXml:String = getRequestBody()

msg:String = getMessage()

errorStr: String =

"XML Validation Error : ClientID:" + clientID

"Details: " + msg

put("errorString", errorStr)

put("invalidXML", invalidXML)

errorStr:String =

"Authentication Error: ClientID: " + clientID +

" Details: " + msg;

clientID:String = getClientID()

msg:String = getMessage()

clientID:String = getClientID()

errorStr:String =

"Error during request processin : ClientID: " +

 clientID +

" Details: " + msg

e:

ProcessingException

m_dmsErrorVelocityTmpFIleName

m_dmsErrorVelocityTmpFIleName

m_dmsErrorVelocityTmpFIleName

BasicRequestHandler

e:

ValidationException

DMSRequestHandler

ctx: Context

request: BasicRequest

handleValidationException(

supporter,request, ctx, e)

put("errorString", errorStr)

msg:String = getMessage()

handleAuthenticationException(

supporter,request, ctx, e)

errorStr:String =

"Request Processing Error.

handleProcessingException(

supporter,request, ctx, e)

Figure 5‑175 DMSRequestHandler:handleExceptions (Sequence Diagram)

5.35.2.4 DMSRequestHandler:processRequest (Sequence Diagram)

This diagram depicts the processing of DMS Export Requests for on demand updates and realtime updates (Subscriptions). The processRequest() method of the DMSequestHandler is called by the WebService RequestManger. An "on demand" request for dms data is handled by getting the appropriate data to export from the DMSExportHandler, adding that data to the Velocity Context passed in and finally returning the path to the correct Velocity Template for the request. A request for realtime updates of DMS Data (Subscriptions) is handled by call the appropriate method of the DMSSubscriptionManger for new/renewed subscriptions or canceled subscriptions. In both cases the appropriate information is loaded into the velocity context and the correct velocity template file path is returned to the caller.

[image: image205.emf]The container encapsulates

all traffic events that will be

exported. It also encapsulates the

translation of the DMS data from

CHART to TMDD standard.

unknown request

for this handler

else

Return Velocity Template file

used to generate XML.

throw GeneralException

m_module: WSDMSExportModule Update the ExtSysConn

for this client ID if applicable.

Note: Set to OK. Last argument

determines whether FAILED state

is overriden. In this case, NOT.

Exception handling will set status

to WARNING but will not override

FAILED states.

Put DMSStatusExpViewContainer

in the velocityContext to return to

the web serviceframework. This

method returns the velocity template

file path to apply to the Context.

updateExtSysConnStatus(reqeust.getClientId(), SimpleStatus.OK, "", FALSE)

put("dmsStautsData", dmsStatusData)

dmsStatusData:DMSStatusExpViewContainer =

getDMSStatusList(token,

updateWIndowMins)

The xmlBody will indicate either a

DMSInventoryList request or a

DMSStatusList request.

velocityTemplateName:String =

m_dmsInvVelocityTmpName

xmlBody:String = getBody()

Put DMSInventoryExpViewContainter

in the velocity Context to return to the

web service framework. This method

returns the velocity templay file path to

apply to theContext.

velocityTemplateName:String =

m_dmsStatusVelocityTmpName

RequestManagerImplements abstract base class method. ctx: Context The xml body may contain an optional

update window in minutes. This will return

that value if present or a -1 if not. The

update window represents a number of

mintues to look back for DMS objects that

have been updated. Only DMS objects

updated in this timeframe will be returned

in the response.

put("dmsInvData", dmsInvData)

updateWindowMins:int =

getUpdateWIndowFromBody

(xmlBody)

DMSRequestHandler processRequest(request,

supporter, ctx)

getRequestTypeFromBody

(xmlBody)

DMSExportHandler request: BasicRequest vmFileName

token:byte[] = getClientToken(request.getClientId)

[request ==

DMSStatusListRequest]

dmsInvData:DMSInventoryExpContainer =

getDMSInventoryList(token,

updateWindowMins)

[request ==

DMSInventoryListRequest]

Figure 5‑176 DMSRequestHandler:processRequest (Sequence Diagram)

5.35.2.5 DMSSubscription:doPush (Sequence Diagram)

This method is used by each subscription to push dms updates to the subscribers URL. Data is retrieved from the DMSExportHandler for the updated DMSs. Data is loaded into a VelocityContext and XML is generated for the DMS by merging the data with the appropriate velocity template. The XML data is then passed to the sendDataToSubscriber method to actually send the message to the remote service.

[image: image206.emf]QueuePushCommandDMSSubscription DMSExportHandlerWebService creds: ClientCredentials ExtApplicationDatam_subscriptionMgr: DMSSubscriptionMg dmsUpdate: DMSPushable Cast pushable object to DMSUpdate object.token is a public data member of ctx: VelocityContext doPush(data : Pushable)[update instanceof DMSPushable] creds : ClientCredentials = getClientCredentials(getClientID()) extAppData : ExternalApplicationData = getApplicationData() token : byte[] = token [ConfigChanged] dmsData :DMSExpContainer = getDMSList(token, 0, dmsUpdate.getDMSs()) create() put("exportData", dmsData) vmTemplatePath : String = getVelocityTemplatePath()

dmsUpdateXML : String = mergeVelocityTemplate(vmTemplatePath, ctx)

sendDataToSubscriber(

dmsUpdateXML)

true

[StatusChanged] dmsData:DMSStatusExpContainer = getDMSStatusList(token, 0, dmsUpdate.getDMSs())

Figure 5‑177 DMSSubscription:doPush (Sequence Diagram)

5.35.2.6 DMSSubscriptionMgr:creation (Sequence Diagram)

This diagram depicts the class constructor of the ExportSubscriptionManager abstract class. The PushFramework is used by the class to provide the mechanism used push data to external clients of the exporter. An ExportSubscriptionDB class is created to handle export subscription of specific data type (DMS, TSS, TrafficEvents, etc...). A timer is then created to handle automatic expiration of subscriptions.

[image: image207.emf]DMSSubscriptionMgr ctor(dbConnMgr:DBConnectionMgr,subsLifetimeMins:long, subsExpTimerIntvlMins:int)Calls base class constructor with DMS data type.super.ctor(ExportDataType.DMS, dbConnMgr, subsLifetimeMins, subsExpTimerIntvlMins)

Figure 5‑178 DMSSubscriptionMgr:creation (Sequence Diagram)

5.35.2.7 DMSSubscriptionMgr:initialize (Sequence Diagram)

This diagram depicts the initialization of the DMSSubscriptionMgr. Previously created subscriptions are read from the DB and used to create DMSSubscription objects. These objects implement the Pusher interface and are added as Pushers to the PushEngine.

[image: image208.emf]DMSSubscriptionMgr m_pushEngine: PushEngine DMSSubscription

Note: Get ExtSysConn for the subscription id from the module. Could be null if ExtSysConn is not configured for this id. This method returns subscription info from the data base. Note: this method will remove expired subscriptions from the DB before returning only non-expired ones. Loop thru

subscriptions

creating the pusher

objects that

wrap them.

initialize()subs : ExportSubscriptionInfo[] = getSubscriptions() [*subs]

addPusher(pusher)

pusher:DMSSubscription =

create(

subscriptionInfo, m_exportHandler,

this, extSysConn)

Figure 5‑179 DMSSubscriptionMgr:initialize (Sequence Diagram)

5.35.2.8 DMSSubscriptionMgr:modelObserverUpdate (Sequence Diagram)

This method, part of the ModelObserver interface, is called when the DataModel needs to make observers aware of DMS updates, given the observers update interval. A DMSUpdate object is created. Objects of this type implement the Pushable interface. The update object is passed to the sendDataToSubscriber() method which used the PushFramework to push the update to all current Pushers (i.e. Subscribers).

[image: image209.emf]DataModelDMSSubscriptionMgr changes: ModelChange Method called as part of the ModelObserver interface when data notifies objects based on configurable intervals.. proxies: ArrayList<ProxyTrafficEvent> PushEngine dmsChange: ObjectChange Proxy: ProxyDMS updateData:

DMSPushable

Loop of OjbectChangesretrieved from the ModelChange object.Only interested in objectAdded and objectUpdatedchanges. IgnoeObjectRemoved at this time.This logic pushes the data to all registered Pushers. In this case

QueuePushers, which

threads off the processing

and returns.

A "Pushable" object.

update(changes : ModelChange)create() dmsChanges : ObjectChange[] getChanges(ProxyDMS.class) [*dmsChanges] [dmsChange instanceOf ObjectAdded || dmsChange instanceOf ObjectUpdated] obj : Object = getObject() cast obj to ProxyDMS add(proxy) create(proxies)

sendUpdateToSubscribers(

updateData)

pushData(

updateData)

Figure 5‑180 DMSSubscriptionMgr:modelObserverUpdate (Sequence Diagram)

5.35.2.9 DMSSubscriptionMgr:updateSubscription (Sequence Diagram)

This method is used to update or add subscriptions to the DMSSubscriptionManager.

[image: image210.emf]DMSSubscriptionMgr m_pushEngine: PushEngine m_subscriptionDB: ExportSubscriptionDB updateSubscription(info : ExportSubscriptionInfo)This method imlements an abstract method from the base class. It replaces a subscription when updated and updates the db accordingly. DMSSubscriptionDMSSubscription

pusherExists = hasPusher(info.m_clientId) [pusherExists == TRUE] getPusher(info.m_clientId) updateTargetURL(info.m_targetURL) updateExpirationDate(newExpDate) pusher : DMSSubscriptionPusher =

create(info,

m_exportHandler)

If pushed with given ID existsretreive it from the PushEngine (new functionality) and cast toDMSSubscription. Update the target URL andregenerate new expirationdate.addPusher(pusher)

setSubscription(info)

Figure 5‑181 DMSSubscriptionMgr:updateSubscription (Sequence Diagram)

5.35.2.10 DMSSubscriptionRequestHandler:processRequest (Sequence Diagram)

[image: image211.emf]vmFileName

RequestManagerDMSSubscriptionRequestHandler Implements abstractbase class method.DMSSubscriptionMgr ctx: Context request: BasicRequest m_module: WSDMSExportModule processRequest(request, supporter, ctx)Verify that xml containstrafficEventSubscriptionReuest. If not throw GeneralExceptionback to web service.Populate expiration date and any other values need to generate subscription response in the velocity context. If subscription req type is a NEW_RENEW call updateSubscription() method ofthe DMSSubsriptionMgr usingvalues pulled from the xml. If subscription req type is a cancel call removeSubscription() method of the DMSSubsriptionMgr usingclient id pulled from the xml. Unknow request for this

handler.

Return Velocity Template file

used to generate XML.

Update the ExtSysConn

for this client ID.

token:byte[] = getClientToken(request.getClientId()) xmlBody:String = getBody() [request == DMSSubscriptionReq] [subscriptionReqType == new_reNew]put("expirationDate", expDate) [subscriptionReqType == cancel put(...) vmFilename = m_dmsSubscriptionRespVMFilename

else

GeneralException

updateExtSysConnStatus(reqeust.getClientId(), SimpleStatus.OK, "")

Figure 5‑182 DMSSubscriptionRequestHandler:processRequest (Sequence Diagram)

5.35.2.11 WSDMSExportModule:initialize (Sequence Diagram)

This diagram depicts the initialization of the WSDMSExportModule class. A module properties class is created followed by the creation of the DMSExportHander class. This class is responsible for maintaining DMS data in the ObjectCache and providing methods to retrieve dms export data in response to dms export web service requests as well as supporting subscription functionality. Next the DMSReqeustHandler and TrafficEventReqeustSubscriptionHandlers are created and registered with the WebService framework to allow the web service URL to start responding to requests.

[image: image212.emf]Create ExtSysConnImpl objects

base on the Ext Sys Name /

Client ID pairs returned from the

props file. Register in CORBA

trader. Event channel required

for ExtSysConnImpl creation. This

is left for implementation detail.

m_dmsExportHandler = create()

create(m_dmsExportHandler)

getRequestManager()

registerRequestHandler(dmsRequesterBRI)

dmsRequesterBRI:

BasicRequestInfo

create("dmsIDataReq", m_dmsReqHandler,.....)

m_dmsSubscriptionReqHandler:

DMSSubscriptionRequestHandler

dmsSubscReguesterBRI:

BasicRequestinfo

createSubscriptionMgr()

create(m_dmsSubscriptionMgr)

create("doSubscribeToDMSData", m_dmsSubscriptionReqHandler)

registerRequestHandler

(dmsSubsRequesterBRI)

getExtSysNameClientIdPairs()

The creation / initialization of the DMSExportHandler will also create a DiscoverChart2DMSClassesCmd

and add it to the DiscoveryManager.

m_props: DMSExportModuleProperties Data used to

register the

DMSRequestHandler

with the framework.

create(service.getProps()) WebServiceWSDMSExportModule m_discoveryMgr: DiscoveryManager DMSExportHandler

m_dmsReqHandler:

DMSRequestHandler

RequestManager Create/Register the

 DMSRequestHandler.

The handler handles

2 requests:

DMS Inventory Requests,

DMS Status Requests.

initialize(service:WebService))m_discoveryMgr:Discoveryanager =getDicsoveryManager()

Figure 5‑183 WSDMSExportModule:initialize (Sequence Diagram)

5.35.2.12 WSDMSExportModule:shutdown (Sequence Diagram)

The diagram depicts shutdown processing for the WSDMSExportModule. Currently shutdown of the module initiates the DMSExportHandler.shutdown() which cleans up the startupThread if still running. Other cleanup may be determined during implementaion.

[image: image213.emf]Clean up

ExtSysConnImpl

created during

initialization.

cleanup()

WebService

WSDMSExportModule

m_dmsExportHandler:

DMSExportHandler

shutdown()

shutdown()

m_startupThread:

Thread

[m_startupThread != NULL]

interrupt()

sleep 50 mls

[m_startupThread.isAlive()

Figure 5‑184 WSDMSExportModule:shutdown (Sequence Diagram)

5.36 Traffic Event Export Module (webservices/WSTrafficEventExportModule)
5.36.1 Class Diagrams

5.36.1.1 TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)

This diagram depicts the processing needed to retrieve TrafficEvent data in response to either a TrafficEvent export request for on demand data or a realtime update for a specific traffic event. If no ProxyTrafficEventFactories are found in the data model this method throws a GeneralException. This in turn will trigger the WebService framework to call the handler's handleProcessingException() method. ProxyTrafficEvent objects are retrieved from the ObjectCache based on the arguments passed in or are specified as the optionsEventList argument. . Based on the optional update window parameter, the functional rights of the client specific token passed in and the owning organization of each proxy object, a collection of appropriate export data is created and returned to the caller. Note: he TrafficEventExpView objects returned are to be used in conjunction with a defined TrafficEventVelocity Template at a later point in the process to generate traffic event data in xml form.

[image: image214.emf]If optionalEventList is null,get array of ProxyTrafficEvent

from the data model. Else,

use the array of

ProxyTrafficEvents passed

in.

TrafficEventExportHandlerLoop thru ProxyTrafficEvents.

m_discoveryMgr: DiscoveryManager DataModule TokenManipulator Apply update

window check

if needed.

Only export Internal

TrafficEvents.

List of objects to

return to caller.

Determine if AccessToken has

ViewTrafficEventSensitiveIncidentDetails

 right.

eventToExport:

TrafficEventExpView

Determine if AccessToken has

ViewTrafficEventLog right for the

proxy events owning organization.

eventList:

ArrayList

Create object that knows whether it

can provide sensitive incident details and

traffic event log entries t and add it to list

of events to export.

If the number of traders is the

same as the number of traffic event

factories discovered, then the

flag is set to TRUE.

TrafficEventExpViewContainer

create(TrafficEventExpView[])

setInventoryComplete(discoveryComplete)

provideSensitiveIncidentData:boolean =

checkAccess(token, FunctionalRightType.ViewTrafficEventSensitiveIncidentDetails)

create(proxyEvent,

provideSensitiveIncidentData,

provideEventLogData)

add(eventToExport)

toArray()

TrafficEventyExpView[]

TrafficEventExpContainer

eventList : ProxyTrafficEvent[]] = getObjectsOfType(ProxyTrafficEvent.class) getDataModel()provideEventLogData:boolean =

checkAccess(token, FunctionalRightType.ViewTrafficEventLog, proxyEvent.getOwningOrg())

[proxyEvent.isExternal ==

 false]

getTrafficEventList(token:byte[], updateWIndowMins:int,optionalEventList : ProxyTrafficEvent[]) [*eventList]

create()

eventList : ProxyTrafficEvent[] = optionalEventList

[optionalEventList == null) [no ProxyTrafficEventFacotry objectsfound in DataModel] throw GeneralException[updateWindowMins > 0 &&

optionalEventList == NULL]

[proxyEvent .lastUpdate

timestamp outside updateWindow

skip this TrafficEvent]

Figure 5‑185 TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)

5.36.1.2 TrafficEventRequestHandler:processRequest (Sequence Diagram)

This diagram depicts the processing of Traffic Event Export Requests for on demand updates. The processRequest() method of the TrafficEventRequestHandler is called by the WebService RequestManger. An "on demand" request for traffic event data is handled by getting the appropriate data to export from the TrafficEventExportHandler, adding that data to the Velocity Context passed in and finally returning the path to the correct Velocity Template for the request. The appropriate information is loaded into the velocity context and the correct velocity template file path is returned to the caller.

[image: image215.emf]Implementsabstractbase class method.RequestManagerThe xml body may contain an optionalupdate window in minutes. This will return that value if present or a -1 if not. Theupdate window represents a number ofmintues to look back for TrafficEvents that have have been updated OnlyTrafficEvents updated in this timeframe willbe returned in the response.Verify that xml containstrafficEventReuest. If notthrow GeneralExceptionback to web service.Note: This method thowsexcpetions thrown bygetTrafficEventList().TrafficEventRequestHandlerUpdate the ExtSysConnfor this client ID if applicable. Note: Set to OK. Last argument determines whether FAILED stateis overriden. In this case, NOT.Exception handling will set status

to WARNING but will not override

FAILED states.

TrafficEventExportHandlerThe container encapsulates all traffic events that will be exported. It also encapsulates the translation of the event data from CHART to SAE ATIS J2354 standard. Return Velocity Template file

used to generate XML.

Unknow request for this handler. request: BasicRequest m_module WSTrafficEventExportModule GeneralExceptionupdateExtSysConnStatus(reqeust.getClientId(), SimpleStatus.OK, "", FALSE)

else vmFileName = m_trafficEventVMFilename [request == TrafficEventExportReq] eventList:TrafficEventExpView[] = getTrafficEventList(token, updateWindowMins) updateWindowMins:int = getUpdateWIndowFromBody (xmlBody) xmlBody:String = getBody() TrafficEventExpViewContainer vmFileName

processRequest(request, supporter, ctx)token:byte[] = getClientToken(request.getClientId())

Figure 5‑186 TrafficEventRequestHandler:processRequest (Sequence Diagram)

5.36.1.3 TrafficEventSubscription:doPush (Sequence Diagram)

This method is used by each subscription to push traffic event updates to the subscribers URL. Data is retrieved from the TrafficEventExportManager for the updated traffic events. Data is loaded into a VelocityContext and XML is generated for the traffic event by merging the data with the appropriate velocity template. The XML data is then passed to the sendDataToSubscriber method to actually send the message to the remote service.

[image: image216.emf]ctx: VelocityContext ExtApplicationData m_subscriptionMgr: TrafficEventSubscriptionMgr vmTemplatePath : String = getVelocityTemplatePath()

[data instanceof TrafficEventPushable] token : byte[] = token eventData : TrafficEventExpView[] = getTrafficEventList(token, 0, eventUpdate.getEvents()) true

put("TrafficEventData", eventData) creds: ClientCredentials Add as ArrayList. eventUpdate: TrafficEventPushable eventUpdateXML : String = mergeVelocityTemplate(vmTemplatePath, ctx)

extAppData : ExternalApplicationData = getApplicationData() doPush(data : Pushable) create() QueuePushCommandCast pushable object to TrafficEventUpdate object. token is a public data member of ExternalApplicationData TrafficEventSubscription WebService creds : ClientCredentials = getCachedCredentials(getClientID()) sendDataToSubscriber(

eventUpdateXML)

This method actually returns array of TrafficEventExpView objects based on the ProxyTrafficEvent[] passed in. TrafficEventExportHandler

Figure 5‑187 TrafficEventSubscription:doPush (Sequence Diagram)

5.36.1.4 TrafficEventSubscriptionMgr:creation (Sequence Diagram)

This diagram depicts the class constructor of the ExportSubscriptionManager abstract class. The PushFramework is used by the class to provide the mechanism used push data to external clients of the exporter. An ExportSubscriptionDB class is created to handle export subscription of specific data type (DMS, TSS, TrafficEvents, etc...). A timer is then created to handle automatic expiration of subscriptions.

[image: image217.emf]TrafficEventSubscriptionMgrCalls base class constructor with Traffic

Event data type.

super.ctor(ExportDataType.TRAFFIC_EVENT,

dbConnMgr, subsLifetimeMins,

subsExpTimerIntvlMins)

ctor(dbConnMgr:DBConnectionMgr,subsLifetimeMins:long,subsExpTimerIntvlMins:int)

Figure 5‑188 TrafficEventSubscriptionMgr:creation (Sequence Diagram)

5.36.1.5 TrafficEventSubscriptionMgr:initialize (Sequence Diagram)

This diagram depicts the initialization of the TrafficEventSubscriptionMgr. Previously created subscriptions are read from the DB and used to create TrafficEventSubscription objects. These objects implement the Pusher interface and are added as Pushers to the PushEngine.

[image: image218.emf]TrafficEventSubscriptionMgrLoop thru

subscriptions

creating the pusher

objects that

wrap them.

This method returns subscription info from the data base. Note: this method will remove expired subscriptions from the DB before returning only non-expired ones. m_pushEngine: PushEngine Note: Get ExtSysConn for

the subscription id from the

module. Could be null if

ExtSysConn is not configured

for this id.

TrafficEventSubscription

initialize()subs : ExportSubscriptionInfo[] =

getSubscriptions()

pusher: TrafficEventSubscription =

create(

subscriptionInfo, m_exportHandler,

this, extSysConn)

[* subs]

addPusher(pusher)

Figure 5‑189 TrafficEventSubscriptionMgr:initialize (Sequence Diagram)

5.36.1.6 TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)

This method, part of the ModelObserver interface, is called when the DataModel needs to make observers aware of TrafficEvent updates, given the observers update interval. A TrafficEventUpdate object is created. Objects of this type implement the Pushable interface. The update object is passed to the sendDataToSubscriber() method which used the PushFramework to push the update to all current Pushers (I.E. SUbscribers).

[image: image219.emf]DataModelLoop of OjbectChangesretrieved from the ModelChange object.Only interested in objectAdded and objectUpdatedchanges. IgnoeObjectRemoved at this time.TrafficEventSubscriptionMgrMethod called as part of the ModelObserver interface when data notifies objects based on configurableintervals..changes: ModelChangeeventChange: ObjectChange proxies: ArrayList<ProxyTrafficEvent> proxy: TrafficEventProxy This logic pushes the data to all registered Pushers. In this case QueuePushers, which threads off the processing and returns. updateData: TrafficEventPushable PushEngine A "Pushable" object. [eventChange instanceOf ObjectAdded ||eventChange instanceOf ObjectUpdated]obj : Object = getObject()cast obj to ProxyTrafficEventadd(proxy) create() eventChanges : ObjectChange[]getChanges(ProxyTrafficEvent.class)[* eventChanges]create(proxies)pushData(

updateData)

update(changes : ModelChange)sendUpdateToSubscribers(

updateData)

Figure 5‑190 TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)

5.36.1.7 TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)

This method is used to update or add subscriptions to the TrafficEventSubscriptionManager.

[image: image220.emf]If pushed with given ID existsretreive it from the PushEngine (new functionality) and cast toTrafficEventSubscription. Update the target URL andregenerate new expirationdate.TrafficEventSubscriptionMgrm_pushEngine: PushEngine This method imlements an abstract method from the base class. It replaces a subscription when updated and updates the db accordingly. TrafficEventSubscription m_subscriptionDB: ExportSubscriptionDB TrafficEventSubscription

[pusherExists == TRUE] pusherExists = hasPusher(info.m_clientId) pusher : TrafficEventSubscriptionPusher =

create(info,

m_exportHandler)

addPusher(pusher)

getPusher(info.m_clientId) updateSubscription(info : ExportSubscriptionInfo)updateExpirationDate(newExpDate)

updateTargetURL(info.m_targetURL) setSubscription(info)

Figure 5‑191 TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)

5.36.1.8 TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)

This diagram depicts the processing of Traffic Event Export Subscription Requests for realtime updates. The processRequest() method of the TrafficEventRequestHandler is called by the WebService RequestManger. A request for realtime updates of Traffic Event Data (Subscriptions) is handled by call the appropriate method of the TrafficEventSubscriptionManger for new/renewed subscriptions or canceled subscriptions. The appropriate information is loaded into the velocity context and the correct velocity template file path is returned to the caller.

[image: image221.emf]Implementsabstractbase class method.RequestManagerVerify that xml contains trafficEventSubscriptionReuest. If not throw GeneralException back to web service. If subscription req type is a

NEW_RENEW call

updateSubscription() method of

the TrafficEventSubsriptionMgr using

values pulled from the xml.

If subscription req type is a

cancel call removeSubscription() method

of the TrafficEventSubsriptionMgr using

client id pulled from the xml.

TrafficEventSubscriptionRequestHandler Update the ExtSysConn

for this client ID.

TrafficEventSubscriptionMgrPopulate expiration date and any other values need to generate subscription response in the velocity

context.

Unknow request for this

handler.

ctx: Context Return Velocity Template file

used to generate XML.

request: BasicRequest m_module WSTrafficEventExportModule put(...)

vmFilename =

m_teSubscriptionRespVMFilename

[subscriptionReqType ==

new_reNew]

xmlBody:String = getBody() processRequest(request, supporter, ctx) GeneralException

updateExtSysConnStatus(reqeust.getClientId(), SimpleStatus.OK, "")

put("expirationDate", expDate)

[request == TrafficEventSubscriptionReq] [subscriptionReqType ==

cancel

vmFileName

token:byte[] = getClientToken(request.getClientId()) else

Figure 5‑192 TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)

5.36.1.9 TrafficEventSubscriptionSupportClasses (Class Diagram)

This diagram shows the classes and interfaces that comprise the traffic event subscription framework.

[image: image222.emf]TrafficEventSubscriptionMgr

Pusher

«interface»

QueuedPusher

TrafficEventPushable

TrafficEventSubscription

1

ExportSubscriptionManager

ModelObserver

«interface»

Pushable

«interface»

ExportSubscription

ExpirationSupporter

«interface»

ExportSubscriptionInfo

1

+ctor(ExportSubscriptionDataType, DBConnectionManager,

 subscriptionLengthMins : long, expTimerIntervalMins :short)

+getSubscriptions() : ExportSubscriptionInfo[]

+removeSubscription(clientId : String)

-removeExpiredSubscriptions()

+cleanup()

-m_pushEngine : PushEngine

-m_subscriptionDB : ExportSubscriptionDB

-m_subscriptionLifetimeMins : long

-m_expirationTimer : java.util.Timer

+ctor(DBConnectionManager, subscriptionLengthMins : long,

 expTimerIntervalMins :short, module : TrafficEventExportModule)

+initialize()

+updateSubscription(ExportSubscriptionInfo) : TrafficEventSubscription

+sendUpdateToSubscribers(updateData : TrafficEventPushable)

+getVelocityTemplatePath() : String

+getVelocityErrorTemplatePath() : String

+cleanup()

-m_pushEngine : PushEngine

-m_exportHandler : TrafficEventExportHandler

-m_module : TrafficEventExportModule

-m_props : TrafficEventExportModuleProperties

update(ModelChanges changes)

+getID() : String

+getName() : String

+push(Pushable)

+getType() : String

+ctor(ExportSubscriptionInfo,

 optionalExtSysConn : ExtSystemConn)

+getClientID() : String

+getId() : String

+getname() : String

+getType() : ExportSubscriptionDataType

+getDataType() : ExportSubscriptionDataType

+getURL() : String

+getExpDate() : long

+sendDataToSubscriber(xml : String)

+updateTargetURL(url : String)

+updateExpDate(Date)

+updateExtSysConn(status : SimpleStatus, statusTxt : String)

-m_data : ExportSubscriptionData

-m_targetService : XMLHTTPService

-m_lastCommFailed : boolean

-m_extSysConn : ExternalSystemConn

+getTrafficEvents() :

 ProxyTrafficEvents[]

-m_updatedEvents :

 ProxyTrafficEvent[]

+getExpDate() : Date

+ctor(ExportSubscriptionInfo, TrafficEventExportHandler,

 TrafficEventSubscriptionMg, optionalExtSysConn : ExtSystemCon)

+doPush(TrafficEventPushable)

-m_exportHandler : TrafficEventExportHandler

-m_subscriptionMgr : TrafficEventSubscriptionMg

+m_clientID : String

+m_type : ExportSubscriptionDataType

+m_targetURL : String

+m_expDate : Date

Figure 5‑193 TrafficEventSubscriptionSupportClasses (Class Diagram)

5.36.1.9.1 ExpirationSupporter (Class)

This interface is implemented by objects that support the concept of an expiration date.

5.36.1.9.2 ExportSubscription (Class)

This abstract class represents an exporter subscription for a specific client ID and data type (DMS, TSS, TrafficEvents, etc......) and provides generic functionality that is used by derived classes. It extends the QueuePusher class which is part of the chart PushFramework package. It takes an ExportSubscriptionInfo object at creation and provides mehtods for the subsequent update of the target URL and expiration DateTime. An XMLHTTPService object is create at construction using the provided URL and maintained thru subsequent updateTargetURL() calls. The sendDataToSubscriber() method uses this object to post data to the target system.

5.36.1.9.3 ExportSubscriptionInfo (Class)

This simple class contains public data members. It is used as a utility class that wraps subscription data in one object.

5.36.1.9.4 ExportSubscriptionManager (Class)

This abstract class provides functionality used to manage ExportSubsriptions. Internally this class uses the CHART PushFramework classes to push data to a list of subscribers (I.E. Pushers). A private Timer/Timer task is used to remove expired subscriptions at configurable intervals. Expired subscriptions are also removed from the DB at startup.

5.36.1.9.5 ModelObserver (Class)

This interface must be implemented by any object which would like to attach to the DataModel as an observer and get updated as system objects are added, deleted or changed.

5.36.1.9.6 Pushable (Class)

This interface must be implemented by any data object that can be pushed to subscribed clients.

5.36.1.9.7 Pusher (Class)

This interface must be implemented by any class that intends to push data to an end consumer. The PushEngine will call the checkPush() and push() methods at the appropriate times.

5.36.1.9.8 QueuedPusher (Class)

An abstract base class that provides a thread per client implementation of the Pusher interface. This implementation queues up to a specified number of events max, then refuses to queue additional. Events are pushed FIFO and not retried.

5.36.1.9.9 TrafficEventPushable (Class)

This class implements the Pushable interface and represents updates for a list of traffic events that will be delivered to all traffic event export subscribers.

5.36.1.9.10 TrafficEventSubscription (Class)

This class derives from the ExportSubscription abstract base class and implements methods used specifically for processing data for Traffic Event subscribers. The doPush() method implements the QueuedPusher.doPush() abstract method and does the traffic event specific processing needed to send realtime traffic event updates to a subscriber.

5.36.1.9.11 TrafficEventSubscriptionMgr (Class)

This Class derives from the ExportSubscriptionManger abstract base class and is responsible for maintaining subscribers for traffic event data and delivering real time traffic event updates to those subscribers. Note : this class is a ModelObserver and as such, it will receive updates about TrafficEvents from the DataModel.

5.36.1.10 WSTrafficEventExportModule:initialize (Sequence Diagram)

This diagram depicts the initialization of the WSTrafficEventExportModule class. A module properties class is created followed by the creation of the TrafficEventExportHander class. This class is responsible for maintaining TrafficEvent data in the ObjectCache and providing methods to retrieve traffic event export data in response to export web service requests as well as supporting subscription functionality. Next the TrafficEventReqeustHandler and TrafficEventReqeustSubscriptionHandlers are created and registered with the WebService framework to allow the web service URL to start responding to requests.

[image: image223.emf]WebServiceCreate ExtSysConnImpl objectsbase on the Ext Sys Name /Client ID pairs returned from the props file. Register in CORBAtrader. Event channel requiredfor ExtSysConnImpl creation. Thisis left for implementation detail.This method creates and initializes the

TrafficEventSubscriptionMgr

object. This should be done

before discovery so that

when discovery is finished,

the TrafficEventSubscriptionMgr

is ready to push out data to

all known subscribers. Note:

The SubscriptionManager is

a DataModel Observer, so it

needs to be attached as an

observer to the DataModel.

WSTrafficEventExportModule m_discoveryMgr: DiscoveryManager RequestManager The creation of the TrafficEventExportHandler will also create a DiscoverTrafficEventClassesCmd and add it to the DiscoveryManager. TrafficEventExportHandlerm_trafficEventReqHandler:

TrafficEventRequestHandler

Create/Register the TrafficRequestHandler. The handler handles 1 request: Get TrafficEvent data Requests. m_props: TrafficEventExportModuleProperties m_trafficEventSubscriptionReqHandler:

TrafficEventSubscriptionRequestHandler

trafficEventRequesterBRI:

BasicRequestInfo

trafficEventSubscReguesterBRI:

BasicRequestinfo

create(m_trafficEventSubscriptionMgr)

create("doSubscribeToTrafficEventData", m_trafficEventSubscriptionReqHandler)

registerRequestHandler

(trafficEventSubsRequesterBRI)

createSubsriptionMgr() create(service.getProps()) create("doGetTrafficEventData", m_trafficEventReqHandler)

initialize(service:WebService)) m_discoveryMgr:DiscoveryManager = getDiscoveryManager() m_trafficEventExportHandler = create() create(m_trafficEventExportHandler)

getRequestManager()

registerRequestHandler

(trafficEventIRequesterBRI)

Figure 5‑194 WSTrafficEventExportModule:initialize (Sequence Diagram)

5.36.1.11 WSTrafficEventExportModule:shutdown (Sequence Diagram)

The diagram depicts shutdown processing for the WSTrafficEventExportModule. Currently shutdown of the module initiates the TrafficEventExportHandler.shutdown() which cleans up the startupThread if still running. Other cleanup may be determined during implementaion.

[image: image224.emf]Clean up ExtSysConnImpl created during initialization.cleanup() m_evevntExportHandler: TrafficEventExportHandler shutdown()sleep 50 mls m_startupThread: Thread shutdown() [m_startupThread != NULL] [m_startupThread.isAlive() interrupt() WebServiceWSTrafficEventExportModule

Figure 5‑195 WSTrafficEventExportModule:shutdown (Sequence Diagram)

5.36.1.12 WSTrafficEventExportModuleClasses (Class Diagram)

This class diagram defines a WebServiceModule used for providing a web service interface for Exporting TrafficEvent data. It utilized the Chart WebService framework. The TrafficEventExportHandler is the main class responsible for maintaining a cache of TrafficEvent related objects and providing methods to retrieve information in an exportable form. Note: the TrafficEventExportHandler is not WebService specific and could be used in the context of the Chart ServiceApplication framework if needed.

[image: image225.emf]WSRequestHandlerSupporter

«interface»

WebService

DiscoveryHost

«interface»

ExternalSystemConnectionImpl

WebServiceModule

«interface»

TrafficEventSubscriptionMgr

WebServiceProperties

WebServiceModuleProperties

WSTrafficEventExportModule

TrafficEventExportModuleProperties

DiscoveryManager

ObjectCache

TrafficEventExpView

TrafficEventExportHandler

DataModel

QueueableCommand

«interface»

ProxyBasicTrafficEvent

TrafficEventRequestHandler

ProxyTrafficEvvent

Java

Objects

referenced

by velocity

templates.

DiscoverTrafficEventClassesCmd

Note: BasicEventData

and LaneConfig will

be deep copies here.

TrafficEventSubsriptionRequestHandler

Note: This class also

discovers and maintains

cache of ProxyTrafficEventFactory

objects.

BasicRequestHandler

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

*

discovers

and maintains

cache of

TrafficEvent Proxy objects

*

1

1

1

1

1

1 1

1

1

1

1

* 1

1

1

1

1

1

1

initalize(service:WebService):void

shutdown():void

WebServiceModuleProperties(props:WebServiceProperties)

getWebServiceProperties():WebServiceProperties

getIntProperty(prop:String, default:int):int

getBooleanProperty(prop:String, default:boolean):boolean

getFloatProperty(prop:String, default:float):float

initalize(service:WebService):void

shutdown():void

updateExtSysConnStatus(clientId : String,

 status : Simple Status, statusTxt: String)

-m_discoveryMgr : DiscoveryManager

-m_trafficEventListReqHdlr : DMSInvRequestHandler

-m_trafficEventSubscriptionReqHdl:

 TrafficEventSubscriptionHandler

-m_props : TrafficEventExportModulePropts

-m_teExportHander : TrafficEventExportHandler

-m_initialized : boolean

-m_extSysConnList : Hashtable

+requireDigitalSignaturesOnRequests() : boolean

+getTrafficVelocityTemplatePath() : String

+getTrafficEventErrorVelocityTemplatePath() : String

+getRequestXSDPath String()

+getResponseXSDPath String()

+getExtSysConnNameClientIdPairs() : ExtSysConnClientIdProp

+ctor(proxy : ProxyTrafficEvent,

 provideSensitiveData : boolean,

 provideEventLogData : boolean)

+getName() : String

+getId() : String

+getLat() : int

+getLon() : in

+canProvideSensitiveData() : boolean

+canProvideEventLodData() : boolean

.....()

-m_proxyEvent : ProxyTrafficEvent

-m_provideSensitiveData : boolean

-m_provideEventLogData : boolean

+ctor(discHost :DiscoveryManager)

+initialize() : void

+getTrafficEventList(token : byte[], updateWIndowMins:int)

 : TrafficEventExpView[]

+run()

+shutdown() : void

-m_discoveryManager : DiscoveryManager

-m_startupThread : Thread

-m_initialized = boolean

ctor(trafficEventExpHander:TrafficEventExportHandler, props:TrafficEventExportModuleProperties, module: WSTrafficEventExportModule)

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String

handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String

handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

-m_trafficEventExportHander : TrafficEventExportHandlerr

-m_trafficEventVelocityTmpFilename : String

-m_trafficEventErrorVelocityTmpFilename : String

-m_module : WSTrafficEventExportModule

isExternalEvent() : boolean

getOwningOrg(): byte[]

-m_teId : byte[]

-m_event : TrafficEvent

-m_bed : BasicEventData

....

DiscoverTrafficEventClassesCommand(orb : ORB,

 poa : POA, traderGroup : TraderGroup,

 dataModel : DataModel, ecg : EventConsumerGroup,

 discoveryToken : AccessToken,

 contextProvider : SystemContextProvider) : ctor

-discoverTrafficEventChannels() : void

-discoverTrafficEventClasses() : void

m_poa : POA

m_traderGroup : TraderGroup

m_dataModel : DataModel

m_discoveryToken : AccessToken

m_tepc : TrafficEventPushConsumer

m_sysContextProvider : SystemContextProvider

ctor(trafficEventsubscriptionMgr:TrafficEventSubscriptionMgr, props:TrafficEventExportModuleProperties, module: WSTrafficEventExportModule)

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String

handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String

handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String

handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

-m_trafficEvenSubscriptionMfg : TrafficEventSubscriptionMgrr

-m_subscriptionRespVelocityTmpFilename : String

-m_trafficEventErrorVelocityTmpFilename : String

-m_module : WSTrafficEventExportModule

Figure 5‑196 WSTrafficEventExportModuleClasses (Class Diagram)

5.36.1.12.1 BasicRequestHandler (Class)

This abstract base class provides an implementation of the WSRequestHandler.processRequest() method that provides optional XML validation against specified XSD files and optional digital signature verification as well. It is intended to be used by request handlers that plan to take XML in and return XML to the calling client.

5.36.1.12.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism for locating any object, and methods which allow for the retrieval of all objects of a particular type. Additionally, this class provides the ability to attach observer objects which are notified when objects are added to or removed from the model. Objects may also notify the DataModel that they have been modified. The model will periodically notify all attached observers of the changes to objects in the model.

5.36.1.12.3 DiscoverTrafficEventClassesCmd (Class)

The DiscoverTrafficEventClassesCmd class is responsible for discovering TrafficEvent and TrafficEventFactory corba objects, wrapping those objects in proxy classes and adding those classes to the DiscoveryManager's Object Cache. This class also listens to appropriate corba event channels and updates the Object cache accordingly.

5.36.1.12.4 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be implemented by any class that will create a DiscoveryManager.

5.36.1.12.5 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class which provides discovery services for CHART services. It is used by both the CHART GUI and the CHART backend services. A class which implements this interface must provide "get" accessor methods for the system profile properties, the data model, and the main processing queue for a service, for instance. It also provides access to the root deployment path and dynamic image path, which is used only by the CHART GUI. For the CHART GUI, this interface is known to be implemented by the MainServlet; for the back end CHART services, this interface is known to be implemented by the Discovery Manager.

5.36.1.12.6 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as configured by the admin.

5.36.1.12.7 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel methods to find objects in the data model, delegating those methods to the DataModel itself. It also provides additional methods of finding name filtered objects and discovering "duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.36.1.12.8 ProxyBasicTrafficEvent (Class)

This class is used as a proxy for traffic events existing in all traffic event services (including the local service). The proxy traffic events cached are not complete copies of the traffic events, because the full range of data is not needed. The ProxyBasicTrafficEvent data consists of BasicEventData and associated events only (this is why the names of these objects contain the word "Basic", e.g., DiscoverBasicTrafficEventClassesCommand. These proxy traffic events allow every traffic event service in the system to have some knowledge of every traffic event in the entire system, for the purpose of detecting duplicate traffic events.

5.36.1.12.9 ProxyTrafficEvvent (Class)

The ProxyTrafficEvent object is a proxy for a TrafficEvent corba object which is used to by the DiscoveryManager / ObjectCache. The objects are used to maintain an up to date cache of TrafficEvent data in the object cache for application use.

5.36.1.12.10 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed. This interface must be implemented by any device command in order that it may be queued on a CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the interrupted method is made when a CommandQueue is shut down.

5.36.1.12.11 TrafficEventExportHandler (Class)

The TrafficEventExportHandler class is responsible for maintaining up to date Chart TrafficEvent information in the ObjectCache. This data is used to support the class methods which provide data in response to web service requests for exporting Traffic Event data.

5.36.1.12.12 TrafficEventExportModuleProperties (Class)

The TrafficEventExportModuleProperties class provides access methods for properties used by the WSTrafficEventExportModule. It Extends the WebServiceModuleProperties class which allows access to other properties available from the WebService Framework.

5.36.1.12.13 TrafficEventExpView (Class)

The TrafficEventExpView class wraps a ProxyTraffic object and provides a view of the proxy object specific to Traffic Event requests. These objects are used by the Velocity Engine which is made available by the WebService Framework. Velocity will apply a defined Traffic Event velocity template to a collection of these objects to generate the XML response to TrafficEvent export requests.

5.36.1.12.14 TrafficEventRequestHandler (Class)

The TrafficEventRequestHandler extends the BasicRequestHandler and defines process required to handle TrafficEvent export requests made available by the Chart Export Web Service.

5.36.1.12.15 TrafficEventSubscriptionMgr (Class)

This Class derives from the ExportSubscriptionManger abstract base class and is responsible for maintaining subscribers for traffic event data and delivering real time traffic event updates to those subscribers. Note : this class is a ModelObserver and as such, it will receive updates about TrafficEvents from the DataModel.

5.36.1.12.16 TrafficEventSubsriptionRequestHandler (Class)

The TrafficEventSubscriptionRequestHandler extends the BasicRequestHandler and defines process required to handle TrafficEvent export Subscription requests made available by the Chart Export Web Service. Subscriptions allow clients to receive "real time" updates to events as opposed to "on demand" updates which the client has to initiate.

5.36.1.12.17 WebService (Class)

This class is the core of each Web Service. It extends the VelocityServlet base class and implements the Service CORBA interface so that Web Service servlets can be administered in the same manner as other CHART service applications.

5.36.1.12.18 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within the web service framework.

5.36.1.12.19 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to extend in order to get access to their configuration properties.

5.36.1.12.20 WebServiceProperties (Class)

This class provides convenient access to the java Properties object that contains configuration data for the web service and its modules.

5.36.1.12.21 WSRequestHandlerSupporter (Class)

This interface defines the methods that will be available to every WSRequestHandler when it is invoked by the framework. It defines the services that the framework will make available to the handlers.

5.36.1.12.22 WSTrafficEventExportModule (Class)

The WSTrafficEventExportModule implements the WebServiceModule interface and provides TrafficEvent export functionality via the WebService framework.
5.36.2 Sequence Diagrams

5.36.2.1 TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)

This diagram depicts the processing needed to retrieve TrafficEvent data in response to either a TrafficEvent export request for on demand data or a realtime update for a specific traffic event. If no ProxyTrafficEventFactories are found in the data model this method throws a GeneralException. This in turn will trigger the WebService framework to call the handler's handleProcessingException() method. ProxyTrafficEvent objects are retrieved from the ObjectCache based on the arguments passed in or are specified as the optionsEventList argument. . Based on the optional update window parameter, the functional rights of the client specific token passed in and the owning organization of each proxy object, a collection of appropriate export data is created and returned to the caller. Note: he TrafficEventExpView objects returned are to be used in conjunction with a defined TrafficEventVelocity Template at a later point in the process to generate traffic event data in xml form.

[image: image226.emf]If optionalEventList is null,get array of ProxyTrafficEvent

from the data model. Else,

use the array of

ProxyTrafficEvents passed

in.

TrafficEventExportHandlerLoop thru ProxyTrafficEvents.

m_discoveryMgr: DiscoveryManager DataModule TokenManipulator Apply update

window check

if needed.

Only export Internal

TrafficEvents.

List of objects to

return to caller.

Determine if AccessToken has

ViewTrafficEventSensitiveIncidentDetails

 right.

eventToExport:

TrafficEventExpView

Determine if AccessToken has

ViewTrafficEventLog right for the

proxy events owning organization.

eventList:

ArrayList

Create object that knows whether it

can provide sensitive incident details and

traffic event log entries t and add it to list

of events to export.

If the number of traders is the

same as the number of traffic event

factories discovered, then the

flag is set to TRUE.

TrafficEventExpViewContainer

create(TrafficEventExpView[])

setInventoryComplete(discoveryComplete)

provideSensitiveIncidentData:boolean =

checkAccess(token, FunctionalRightType.ViewTrafficEventSensitiveIncidentDetails)

create(proxyEvent,

provideSensitiveIncidentData,

provideEventLogData)

add(eventToExport)

toArray()

TrafficEventyExpView[]

TrafficEventExpContainer

eventList : ProxyTrafficEvent[]] = getObjectsOfType(ProxyTrafficEvent.class) getDataModel()provideEventLogData:boolean =

checkAccess(token, FunctionalRightType.ViewTrafficEventLog, proxyEvent.getOwningOrg())

[proxyEvent.isExternal ==

 false]

getTrafficEventList(token:byte[], updateWIndowMins:int,optionalEventList : ProxyTrafficEvent[]) [*eventList]

create()

eventList : ProxyTrafficEvent[] = optionalEventList

[optionalEventList == null) [no ProxyTrafficEventFacotry objectsfound in DataModel] throw GeneralException[updateWindowMins > 0 &&

optionalEventList == NULL]

[proxyEvent .lastUpdate

timestamp outside updateWindow

skip this TrafficEvent]

Figure 5‑197 TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)

5.36.2.2 TrafficEventRequestHandler:processRequest (Sequence Diagram)

This diagram depicts the processing of Traffic Event Export Requests for on demand updates. The processRequest() method of the TrafficEventRequestHandler is called by the WebService RequestManger. An "on demand" request for traffic event data is handled by getting the appropriate data to export from the TrafficEventExportHandler, adding that data to the Velocity Context passed in and finally returning the path to the correct Velocity Template for the request. The appropriate information is loaded into the velocity context and the correct velocity template file path is returned to the caller.

[image: image227.emf]Implementsabstractbase class method.RequestManagerThe xml body may contain an optionalupdate window in minutes. This will return that value if present or a -1 if not. Theupdate window represents a number ofmintues to look back for TrafficEvents that have have been updated OnlyTrafficEvents updated in this timeframe willbe returned in the response.Verify that xml containstrafficEventReuest. If notthrow GeneralExceptionback to web service.Note: This method thowsexcpetions thrown bygetTrafficEventList().TrafficEventRequestHandlerUpdate the ExtSysConnfor this client ID if applicable. Note: Set to OK. Last argument determines whether FAILED stateis overriden. In this case, NOT.Exception handling will set status

to WARNING but will not override

FAILED states.

TrafficEventExportHandlerThe container encapsulates all traffic events that will be exported. It also encapsulates the translation of the event data from CHART to SAE ATIS J2354 standard. Return Velocity Template file

used to generate XML.

Unknow request for this handler. request: BasicRequest m_module WSTrafficEventExportModule GeneralExceptionupdateExtSysConnStatus(reqeust.getClientId(), SimpleStatus.OK, "", FALSE)

else vmFileName = m_trafficEventVMFilename [request == TrafficEventExportReq] eventList:TrafficEventExpView[] = getTrafficEventList(token, updateWindowMins) updateWindowMins:int = getUpdateWIndowFromBody (xmlBody) xmlBody:String = getBody() TrafficEventExpViewContainer vmFileName

processRequest(request, supporter, ctx)token:byte[] = getClientToken(request.getClientId())

Figure 5‑198 TrafficEventRequestHandler:processRequest (Sequence Diagram)

5.36.2.3 TrafficEventSubscription:doPush (Sequence Diagram)

This method is used by each subscription to push traffic event updates to the subscribers URL. Data is retrieved from the TrafficEventExportManager for the updated traffic events. Data is loaded into a VelocityContext and XML is generated for the traffic event by merging the data with the appropriate velocity template. The XML data is then passed to the sendDataToSubscriber method to actually send the message to the remote service.

[image: image228.emf]ctx: VelocityContext ExtApplicationData m_subscriptionMgr: TrafficEventSubscriptionMgr vmTemplatePath : String = getVelocityTemplatePath()

[data instanceof TrafficEventPushable] token : byte[] = token eventData : TrafficEventExpView[] = getTrafficEventList(token, 0, eventUpdate.getEvents()) true

put("TrafficEventData", eventData) creds: ClientCredentials Add as ArrayList. eventUpdate: TrafficEventPushable eventUpdateXML : String = mergeVelocityTemplate(vmTemplatePath, ctx)

extAppData : ExternalApplicationData = getApplicationData() doPush(data : Pushable) create() QueuePushCommandCast pushable object to TrafficEventUpdate object. token is a public data member of ExternalApplicationData TrafficEventSubscription WebService creds : ClientCredentials = getCachedCredentials(getClientID()) sendDataToSubscriber(

eventUpdateXML)

This method actually returns array of TrafficEventExpView objects based on the ProxyTrafficEvent[] passed in. TrafficEventExportHandler

Figure 5‑199 TrafficEventSubscription:doPush (Sequence Diagram)

5.36.2.4 TrafficEventSubscriptionMgr:creation (Sequence Diagram)

This diagram depicts the class constructor of the ExportSubscriptionManager abstract class. The PushFramework is used by the class to provide the mechanism used push data to external clients of the exporter. An ExportSubscriptionDB class is created to handle export subscription of specific data type (DMS, TSS, TrafficEvents, etc...). A timer is then created to handle automatic expiration of subscriptions.

[image: image229.emf]TrafficEventSubscriptionMgrCalls base class constructor with Traffic

Event data type.

super.ctor(ExportDataType.TRAFFIC_EVENT,

dbConnMgr, subsLifetimeMins,

subsExpTimerIntvlMins)

ctor(dbConnMgr:DBConnectionMgr,subsLifetimeMins:long,subsExpTimerIntvlMins:int)

Figure 5‑200 TrafficEventSubscriptionMgr:creation (Sequence Diagram)

5.36.2.5 TrafficEventSubscriptionMgr:initialize (Sequence Diagram)

This diagram depicts the initialization of the TrafficEventSubscriptionMgr. Previously created subscriptions are read from the DB and used to create TrafficEventSubscription objects. These objects implement the Pusher interface and are added as Pushers to the PushEngine.

[image: image230.emf]TrafficEventSubscriptionMgrLoop thru

subscriptions

creating the pusher

objects that

wrap them.

This method returns subscription info from the data base. Note: this method will remove expired subscriptions from the DB before returning only non-expired ones. m_pushEngine: PushEngine Note: Get ExtSysConn for

the subscription id from the

module. Could be null if

ExtSysConn is not configured

for this id.

TrafficEventSubscription

initialize()subs : ExportSubscriptionInfo[] =

getSubscriptions()

pusher: TrafficEventSubscription =

create(

subscriptionInfo, m_exportHandler,

this, extSysConn)

[* subs]

addPusher(pusher)

Figure 5‑201 TrafficEventSubscriptionMgr:initialize (Sequence Diagram)

5.36.2.6 TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)

This method, part of the ModelObserver interface, is called when the DataModel needs to make observers aware of TrafficEvent updates, given the observers update interval. A TrafficEventUpdate object is created. Objects of this type implement the Pushable interface. The update object is passed to the sendDataToSubscriber() method which used the PushFramework to push the update to all current Pushers (I.E. SUbscribers).

[image: image231.emf]DataModelLoop of OjbectChangesretrieved from the ModelChange object.Only interested in objectAdded and objectUpdatedchanges. IgnoeObjectRemoved at this time.TrafficEventSubscriptionMgrMethod called as part of the ModelObserver interface when data notifies objects based on configurableintervals..changes: ModelChangeeventChange: ObjectChange proxies: ArrayList<ProxyTrafficEvent> proxy: TrafficEventProxy This logic pushes the data to all registered Pushers. In this case QueuePushers, which threads off the processing and returns. updateData: TrafficEventPushable PushEngine A "Pushable" object. [eventChange instanceOf ObjectAdded ||eventChange instanceOf ObjectUpdated]obj : Object = getObject()cast obj to ProxyTrafficEventadd(proxy) create() eventChanges : ObjectChange[]getChanges(ProxyTrafficEvent.class)[* eventChanges]create(proxies)pushData(

updateData)

update(changes : ModelChange)sendUpdateToSubscribers(

updateData)

Figure 5‑202 TrafficEventSubscriptionMgr:ModelObserverUpdate (Sequence Diagram)

5.36.2.7 TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)

This method is used to update or add subscriptions to the TrafficEventSubscriptionManager.

[image: image232.emf]If pushed with given ID existsretreive it from the PushEngine (new functionality) and cast toTrafficEventSubscription. Update the target URL andregenerate new expirationdate.TrafficEventSubscriptionMgrm_pushEngine: PushEngine This method imlements an abstract method from the base class. It replaces a subscription when updated and updates the db accordingly. TrafficEventSubscription m_subscriptionDB: ExportSubscriptionDB TrafficEventSubscription

[pusherExists == TRUE] pusherExists = hasPusher(info.m_clientId) pusher : TrafficEventSubscriptionPusher =

create(info,

m_exportHandler)

addPusher(pusher)

getPusher(info.m_clientId) updateSubscription(info : ExportSubscriptionInfo)updateExpirationDate(newExpDate)

updateTargetURL(info.m_targetURL) setSubscription(info)

Figure 5‑203 TrafficEventSubscriptionMgr:updateSubscription (Sequence Diagram)

5.36.2.8 TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)

This diagram depicts the processing of Traffic Event Export Subscription Requests for realtime updates. The processRequest() method of the TrafficEventRequestHandler is called by the WebService RequestManger. A request for realtime updates of Traffic Event Data (Subscriptions) is handled by call the appropriate method of the TrafficEventSubscriptionManger for new/renewed subscriptions or canceled subscriptions. The appropriate information is loaded into the velocity context and the correct velocity template file path is returned to the caller.

[image: image233.emf]Implementsabstractbase class method.RequestManagerVerify that xml contains trafficEventSubscriptionReuest. If not throw GeneralException back to web service. If subscription req type is a

NEW_RENEW call

updateSubscription() method of

the TrafficEventSubsriptionMgr using

values pulled from the xml.

If subscription req type is a

cancel call removeSubscription() method

of the TrafficEventSubsriptionMgr using

client id pulled from the xml.

TrafficEventSubscriptionRequestHandler Update the ExtSysConn

for this client ID.

TrafficEventSubscriptionMgrPopulate expiration date and any other values need to generate subscription response in the velocity

context.

Unknow request for this

handler.

ctx: Context Return Velocity Template file

used to generate XML.

request: BasicRequest m_module WSTrafficEventExportModule put(...)

vmFilename =

m_teSubscriptionRespVMFilename

[subscriptionReqType ==

new_reNew]

xmlBody:String = getBody() processRequest(request, supporter, ctx) GeneralException

updateExtSysConnStatus(reqeust.getClientId(), SimpleStatus.OK, "")

put("expirationDate", expDate)

[request == TrafficEventSubscriptionReq] [subscriptionReqType ==

cancel

vmFileName

token:byte[] = getClientToken(request.getClientId()) else

Figure 5‑204 TrafficEventSubscriptionRequestHandler:processRequest (Sequence Diagram)

5.36.2.9 WSTrafficEventExportModule:initialize (Sequence Diagram)

This diagram depicts the initialization of the WSTrafficEventExportModule class. A module properties class is created followed by the creation of the TrafficEventExportHander class. This class is responsible for maintaining TrafficEvent data in the ObjectCache and providing methods to retrieve traffic event export data in response to export web service requests as well as supporting subscription functionality. Next the TrafficEventReqeustHandler and TrafficEventReqeustSubscriptionHandlers are created and registered with the WebService framework to allow the web service URL to start responding to requests.

[image: image234.emf]WebServiceCreate ExtSysConnImpl objectsbase on the Ext Sys Name /Client ID pairs returned from the props file. Register in CORBAtrader. Event channel requiredfor ExtSysConnImpl creation. Thisis left for implementation detail.This method creates and initializes the

TrafficEventSubscriptionMgr

object. This should be done

before discovery so that

when discovery is finished,

the TrafficEventSubscriptionMgr

is ready to push out data to

all known subscribers. Note:

The SubscriptionManager is

a DataModel Observer, so it

needs to be attached as an

observer to the DataModel.

WSTrafficEventExportModule m_discoveryMgr: DiscoveryManager RequestManager The creation of the TrafficEventExportHandler will also create a DiscoverTrafficEventClassesCmd and add it to the DiscoveryManager. TrafficEventExportHandlerm_trafficEventReqHandler:

TrafficEventRequestHandler

Create/Register the TrafficRequestHandler. The handler handles 1 request: Get TrafficEvent data Requests. m_props: TrafficEventExportModuleProperties m_trafficEventSubscriptionReqHandler:

TrafficEventSubscriptionRequestHandler

trafficEventRequesterBRI:

BasicRequestInfo

trafficEventSubscReguesterBRI:

BasicRequestinfo

create(m_trafficEventSubscriptionMgr)

create("doSubscribeToTrafficEventData", m_trafficEventSubscriptionReqHandler)

registerRequestHandler

(trafficEventSubsRequesterBRI)

createSubsriptionMgr() create(service.getProps()) create("doGetTrafficEventData", m_trafficEventReqHandler)

initialize(service:WebService)) m_discoveryMgr:DiscoveryManager = getDiscoveryManager() m_trafficEventExportHandler = create() create(m_trafficEventExportHandler)

getRequestManager()

registerRequestHandler

(trafficEventIRequesterBRI)

Figure 5‑205 WSTrafficEventExportModule:initialize (Sequence Diagram)

5.36.2.10 WSTrafficEventExportModule:shutdown (Sequence Diagram)

The diagram depicts shutdown processing for the WSTrafficEventExportModule. Currently shutdown of the module initiates the TrafficEventExportHandler.shutdown() which cleans up the startupThread if still running. Other cleanup may be determined during implementaion.

[image: image235.emf]Clean up ExtSysConnImpl created during initialization.cleanup() m_evevntExportHandler: TrafficEventExportHandler shutdown()sleep 50 mls m_startupThread: Thread shutdown() [m_startupThread != NULL] [m_startupThread.isAlive() interrupt() WebServiceWSTrafficEventExportModule

Figure 5‑206 WSTrafficEventExportModule:shutdown (Sequence Diagram)

5.37 CHART Mapping – Data Synchronization
5.37.1 Class Diagrams

5.37.1.1 CHARTInventoryHandler (Class Diagram)

The following class diagram covers all the functionalities of each class that supports the entire inventory update operation.

[image: image236.emf]CHARTMap. Handlers.SHAZAMInventoryHandler

CHARTMap. Handlers.HARInventoryHandler

CHARTMap. Handlers.DMSInventoryHandler

<<enumeration>>

eMode

<<datatype>>

DataRow

<<datatype>>

CHARTMap.Lib.WebSiteConfig

<<datatype>>

ESRI.MapObject2.Core.DataConnection

<<datatype>>

ESRI.MapObject2.Core.MapLayer

CHARTMap. Handlers.CHARTEventInventoryHandler

CHARTMap. Handlers.CHARTClosureInventoryHandler

CHARTMap. Handlers.CHARTInventoryHandler

This Diagram shows the CHARTInventoryHandler classes Codes are written in vb.net +Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean

#Save(in oDataRow : DataRow , in eMode : eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

-GetPermitByTrackingNum(in EORSTrackingNum : String) : String

+UpdateByMode(in eMode : eMode, in oDataRow : DataRow, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer,

in optional tIdentifier : String "" , in optional tID : String "") : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean

#Save(in oDataRow : DataRow , in eMode: eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

#Remove(in tIdentifier : String , in tID : String , in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+eMode :eMode

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean

#Save(in oDataRow : DataRow , in eMode: eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean

#Save(in oDataRow : DataRow , in eMode: eMode ,

in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean

#Save(in oDataRow : DataRow , in eMode: eMode , in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Compare(in oDataRowNew :DataRow , in oDataRowOld :DataRow) : Boolean

#Save(in oDataRow : DataRow , in eMode: eMode, in m_oPtLayer : ESRI.MapObjects2.Core.MapLayer) : Boolean

+Add = Add

+Update = Update

+Remove = Remove

Figure 5‑207 CHARTInventoryHandler (Class Diagram)

5.37.1.1.1 <<datatype>> CHARTMap.Lib.WebSiteConfig (Class)

Custom class which handles the serialization of the configuration file.

5.37.1.1.2 <<datatype>> DataRow (Class)

.NET Framework class which represents a row of data in a DataTable.

5.37.1.1.3 <<datatype>> ESRI.MapObject2.Core.DataConnection (Class)

MapObject class which handles SDE connection.

5.37.1.1.4 <<datatype>> ESRI.MapObject2.Core.MapLayer (Class)

MapObject class which represents a spatial layer.

5.37.1.1.5 <<enumeration>> eMode (Class)

Enumeration object which represents current update status. The possible enumeration type are “Add”, “Update” and “Remove”.
5.37.1.1.6 CHARTMap. Handlers.CHARTClosureInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implemented the Compare() and Save() methods. This class is used to compare CHART Closure records between the spatial and non-spatial table. This class is also used to update or add new record(s) to the CHART Closure spatial table.

5.37.1.1.7 CHARTMap. Handlers.CHARTEventInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implemented the Compare() and Save() methods. This class is used to compare CHART Event records between the spatial and non-spatial table. This class is also used to update or add new record(s) to the CHART Event spatial table.

5.37.1.1.8 CHARTMap. Handlers.CHARTInventoryHandler (Class)

This is a base class for inventory update. This class contains method -to determine the update status (add, update, or remove). In addition, this class contains method to remove device from the spatial table. Derived classes must implement Compare() and Save().

5.37.1.1.9 CHARTMap. Handlers.DMSInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implemented the Compare() and Save() methods. This class is used to compare DMS records between the spatial and non-spatial table. This class is also used to update or add new record(s) to the DMS spatial table.

5.37.1.1.10 CHARTMap. Handlers.HARInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implemented the Compare() and Save() methods. This class is used to compare HAR records between the spatial and non-spatial table. This class is also used to update or add new record(s) to the HAR spatial table.

5.37.1.1.11 CHARTMap. Handlers.SHAZAMInventoryHandler (Class)

This class extends the CHARTInventoryHandler class and implemented the Compare() and Save() methods. This class is used to compare SHAZAM records between the spatial and non-spatial table. This class is also used to update or add new record(s) to the SHAZAM spatial table.
5.37.2 Sequence Diagrams

5.37.2.1 DataSynchronization:ParseRequest (Sequence Diagram)

This diagram shows the processing that occurs when a request to synchronize CHART Events or Devices. The process starts by parsing the incoming query string and determines which object to be synchronized. The process also writes each process events into the log file in the local machine. An associated object is created once the process deteremines which object to be synchronized. It then starts by comparing each column of the spatial and the non-spatial tables based on the distinct identifier. Update of the spatial record occurs if the process finds a difference between the two tables. In exception, recond will be recomved if the non-spatial table contains a 0 or Null value for both Latitutde and Longitude columns which indicates the Events or Device has been um-mapped from the integrated map. If a record existed in the non-spatial table but it does not exit in the spatial table, the process will then add a new record to the spatial table unless the value of the Latitude and Longitude columns is 0 or Null. The process will remove the record form the spatial table if the record only existed in the spatial table. The process finished by writing the to the log file to indicated process completion.

[image: image237.emf]Main

Compare Spatial

and Non-Spatial

table

[Found Match Identifier]

UpdateByMode

[Not Match]

ConfigureDataConnection

[Identifer Not Found]

Compare

Remove Records from the Spatial Table,

if record doesn't exist in the non-spatial table

Save Remove

Configure Spatial Connection Configure Spatial Connection

Request to UpdateByMode Request to UpdateByMode

Return Compare Result Return Compare Result

WriteToLog() WriteToLog()

Parse Request() Parse Request()

Request to UpdateByMode Request to UpdateByMode

Update Spatial Records Update Spatial Records

WriteToLog() WriteToLog()

UpdateInventory() UpdateInventory()

Add Spatial Records Add Spatial Records

Configure Spatial Connection Configure Spatial Connection

Configure Spatial Connection Configure Spatial Connection

Remove Spatial Records Remove Spatial Records

Request to UpdateByMode Request to UpdateByMode

Figure 5‑208 DataSynchronization:ParseRequest (Sequence Diagram)

5.38 CHART Mapping – GIS Web Service

5.38.1 Class Diagrams

5.38.1.1 CHART.Lib.IdentifyFeatureHandler (Class Diagram)

This class diagram covers the database related functionalities that supports the spatial operations to query county and state information.

[image: image238.emf]<<datatype>>

XmlTextWriter

<<datatype>> CHARTMap.Lib.WebSiteConfig CHART.Lib.IdentifyFeatureHandler

<<datatype>>

XmlTextWriter

+New(in ext_oWebSiteConfig : CHARTMap.Lib.WebSiteConfig)

-ConfigureDataConnection(in tDBName :String)

+LocateCountyByLatLon(in dLat : Double ,in dLon : Double, in tDbName : String,in tTableName : String) : Integer

+LocateStateByLatLon(n dLat : Double ,in dLon : Double, in tDbName : String,in tTableName : String) : Integer

#oWebSiteConfig : CHARTMap.Lib.WebSiteConfig

#oDC : ESRI.MapObjects2.Core.DataConnection

#m_oPtLayer : ESRI.MapObjects2.Core.MapLayer

Figure 5‑209 CHART.Lib.IdentifyFeatureHandler (Class Diagram)

5.38.1.1.1 <<datatype>> CHARTMap.Lib.WebSiteConfig (Class)

Custom class which handles the serialization of the configuration file.

5.38.1.1.2 <<datatype>> XmlTextWriter (Class)

.NET Framework class which represents a writer that provides a fast, non-cache, forward only way of generating streams or files containing XML data that conforms to the W3C Extensible Markup Language (XML) 1.0 and the Namespaces in XML recommendations.

5.38.1.1.3 CHART.Lib.IdentifyFeatureHandler (Class)

Custom class which handles the identification of county and state with the given point location information (latitude and longitude).

5.38.1.2 CHARTWebServiceHandler (Class Diagram)

The following diagram covers all the functionalities of each class that supports the entire web service operation.
[image: image239.emf]CHARTMap.Handlers.StateWebServiceHandler

CHARTMap.Handlers.ExitWebServiceHandler

<<datatype>>

DataSet

<<datatype>>

XmlTextWriter

CHARTMap.Handlers.MilePointWebServiceHandler

1

1

CHARTMap.Handlers.CHARTWebServiceHandler

CHARTMap.Handlers.CountyWebServiceHandler

This Diagram shows the CHARTWebServiceHandler Classes. Codes are written in vb.net #GetXML(in xmlTextWriter : XmlTextWriter, in oDataset: Dataset)

+GetCountyInfoByStateCode(in xmlTextWriter : XmltextWriter, in tSQL : String,

intDBConnection : String, in tCountyCode : Integer)

-GetCountyInfoXML(in xmlTextWriter : XmlTextWriter, in oDataset: Dataset)

-GetCountyBoundaryXML(in xmlTextWriter : XmlTextWriter, in tCountyCode : String)

- iBoundaryDisplay : Integer = 0

+GetXMLResult(in xmlTextWriter : XmlTextWriter, in tSQL : String,

in DBConnectionString : String, in tEmptyNodeName : String) : Integer

#GetXML(in xmlTextWriter : XmlTextWriter, in oDataset: Dataset)

-

+GetXMLResult2(in xmlTextWriter : XmlTextWriter, in tSQL : String,

in DBConnectionString : String, in tEmptyNodeName : String) : Integer

#GetXML(in xmlTextWriter : XmlTextWriter, in oDataset: Dataset)

-GetDetailXML(in xmlTextWriter : XmlTextWriter,in oDataset: Dataset)

-

#GetXML(in xmlTextWriter : XmlTextWriter, in oDataset : Dataset)

-

#GetXML(in xmlTextWriter : XmlTextWriter, in oDataset: Dataset)

+GetStateInfoByStateCode(in xmlTextWriter : XmlTextWriter, in tSQL : String,

in DBConnectionString : String)

-GetStateInfoXML(in xmlTextWriter : XmlTextWriter, in oDataset: Dataset)

-

Figure 5‑210 CHARTWebServiceHandler (Class Diagram)

5.38.1.2.1 <<datatype>> DataSet (Class)

.NET Framework class which represents an in-memory cache of data.

5.38.1.2.2 <<datatype>> XmlTextWriter (Class)

.NET Framework class which represents a writer that provides a fast, non-cache, forward only way of generating streams or files containing XML data that conforms to the W3C Extensible Markup Language (XML) 1.0 and the Namespaces in XML recommendations.
5.38.1.2.3 CHARTMap.Handlers.CHARTWebServiceHandler (Class)

This is a base class for spatial web service. This class is implemented to handle query. Derived classes must implement GetXML().

5.38.1.2.4 CHARTMap.Handlers.CountyWebServiceHandler (Class)

This class extends the CHARTWebServiceHandler class and implements the GetXML() method. This class is used to generate the xml result(s) for county related request.

5.38.1.2.5 CHARTMap.Handlers.ExitWebServiceHandler (Class)

This class extends the CHARTWebServiceHandler class and implements the GetXML() method. This class is used to generate the xml result(s) for exit information.

5.38.1.2.6 CHARTMap.Handlers.MilePointWebServiceHandler (Class)

This class extends the CHARTWebServiceHandler class and implemented the GetXML() method. This class is used to generate the xml result(s) for milepoint information.

5.38.1.2.7 CHARTMap.Handlers.StateWebServiceHandler (Class)

This class extends the CHARTWebServiceHandler class and implements the GetXML() method. This class is used to generate the xml result(s) for state related request.

5.38.2 Sequence Diagrams

5.38.2.1 CHARTWebService:ParseRequest (Sequence Diagram)
The following diagram covers the sequence of events when a web service request is made by the integrated map.
[image: image240.emf]GetXMLResultGetXML GetXMLResult2 GetDetailXMLGetCountyInfoByCountyCode County Code

 <> -1

County Code = -1

and State <> ""

GetCountyInfoXMLGetStateInfoByNameGetStateInfoXML Return XML

Text Writer Object

[Feature = Exit]

Retrieve Exit XML

Retrieve County XML

Retrun XML Text Writer Object

[Feature = All or MilePoint]

Retrieve Mile Point XML

Retrieve XML

Error Handling

Return XML Text Writer Object

Parse Request()

Retrieve XML

GetFeaturesByRouteResult()

Retrieve XML

Return XML Text Writer Object

Retrun XML Text Writer Object

Retrieve XML

Main Return XML Text Writer Object

[Feature = All]

Retrieve Exit XML

Return XML Text Writer Object

Retrieve XML

GetCountyByStateCodeResult()

Retrieve XML

GetLocationByLatLongResult()

Retrieve State XML

Return XML Text Writer Object

GetStateResult()

Figure 5‑211 CHARTWebService:ParseRequest (Sequence Diagram)

6 Mapping To Requirements

The following table shows how the requirements in the CHART R5 Requirements document map to design elements contained in this design.
	Tag
	Text
	Feature
	Use Cases
	Other Design Elements

	SR1.1.8.1.1
	Specify Object Location Using Form
	Map
	N/A
	

	SR1.1.8.1.1.1
	The system shall allow the user to select the U.S. state where an object is located.
	Map
	MapAndGISUses.SelectState
	UNCHANGED

	SR1.1.8.1.1.1.1
	The system shall default the state selection to MD.
	Map
	MapAndGISUses.SelectState
	UNCHANGED

	SR1.1.8.1.1.2
	The system shall allow the user to specify the county in which the object is located.
	Map
	MapAndGISUses.SelectCounty
	UNCHANGED

	SR1.1.8.1.1.2.1
	The system shall require the user to select a valid county from a list when specifying a county using the location form, if the selected state is MD.
	Map
	MapAndGISUses.SelectCounty
	UNCHANGED

	SR1.1.8.1.1.2.1.1
	The system shall display the user’s most recently used counties at the top of the counties list, if the state is MD.
	Map
	MapAndGISUses.SelectCounty
	UNCHANGED

	SR1.1.8.1.1.2.1.2
	The system shall display all counties in MD, if the selected state is MD.
	Map
	MapAndGISUses.SelectCounty
	UNCHANGED

	SR1.1.8.1.1.2.2
	The system shall allow the user to enter the county name as freeform text, if the selected state is not MD.
	Map
	MapAndGISUses.SelectCounty
	UNCHANGED

	SR1.1.8.1.1.3
	The system shall allow the user to specify the region in which the object is located.
	Map
	MapAndGISUses.SelectRegion
	UNCHANGED

	SR1.1.8.1.1.3.1
	The system shall require the user to select a predefined region from a list when specifying a region using the location form, if the selected state is MD.
	Map
	MapAndGISUses.SelectRegion
	UNCHANGED

	SR1.1.8.1.1.3.1.1
	The system shall include the following regions in the list, if the selected state is MD: Statewide, Baltimore Region, Washington Region, Western Maryland, Eastern Shore, Northern Maryland, and Southern Maryland.
	Map
	MapAndGISUses.SelectRegion
	UNCHANGED

	SR1.1.8.1.1.3.2
	The system shall allow the user to enter the region name as freeform text, if the selected state is not MD.
	Map
	MapAndGISUses.SelectRegion
	UNCHANGED

	SR1.1.8.1.1.4
	The system shall not allow both a region and a county to be specified at the same time.
	Map
	MapAndGISUses.SelectRegion
	UNCHANGED

	SR1.1.8.1.1.5
	The system shall allow the user to specify the type of route on which an object is located, such as interstate or state route.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6
	The system shall allow the user to specify the route on which the object is located.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6.1
	The system shall provide a list of known routes from a GIS database for user selection if the user has selected a state, county, and route type, if known routes exist for the selections made.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6.1.1
	The system shall require the user to select a route from the list of known routes, or select no route, if the selected state is MD and the list of known routes is available for the current selections.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6.1.2
	The system shall allow the user to enter the route description as free form text, if the selected state is MD but the list of known routes could not be obtained from the GIS database.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6.1.3
	The system shall allow the user to specify whether to display the route number or the local road name when displaying the known route that came from the GIS database.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6.2
	The system shall allow the user to specify the route description using free form text if the selected state is not MD.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6.3
	The system shall allow the user to select the direction(s) of the route describing the side(s) of the roadway on which the object is located. (Some objects, such as traffic events, may be located on both sides of the roadway).
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.6.3.1
	The available directions shall include: None, North, South, East, West, Inner Loop, Outer Loop, South/North, East/West and Inner Loop/Outer Loop.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.7
	The system shall allow the user to specify that the object's location is relative to a single feature on the route.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.7.1
	The system shall allow the user to specify a feature on the route relative to which the object is located, as described in the Specify Feature On Route requirements.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.7.1.1
	The system shall automatically populate the geographic location of the object if a single intersection with another route is specified and the geographic location of the intersection is available from the GIS database.
	Map
	MapAndGISUses.SelectIntersectingRoute
	chartlite.data.location-data.GUILocationDataClasses CD FlexLocationClasses CD SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML SD

	SR1.1.8.1.1.7.1.2
	The system shall automatically populate the geographic location of the object if a single exit is specified and the geographic location of the exit is available from the GIS database.
	Map
	MapAndGISUses.SelectIntersectingExit
	chartlite.data.location-data.GUILocationDataClasses CD FlexLocationClasses CD SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML SD

	SR1.1.8.1.1.7.1.3
	The system shall automatically populate the geographic location of the object if a single milepost is specified and the geographic location of the milepost is available from the GIS database.
	Map
	MapAndGISUses.SelectIntersectingMilepost
	chartlite.data.location-data.GUILocationDataClasses CD SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML SD FlexLocationClasses CD (Note - the intersecting route and exit feature types have reqs to display lists to the user, so the diagrams for getting those features are mapped to the corresponding "list" reqs. But since mileposts are not displayed in a list, the diagrams for getting the mileposts are mapped here): SpecifyLocation:routeSelectionChanged SpecifyLocation:intersectingFeatureTypeChanged SpecifyLocation:updateMileposts SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult

	SR1.1.8.1.1.7.1.3.1
	The system shall use interpolation to find the approximate coordinates for a milepost that is between two mileposts with known coordinates that are within some threshold distance of each other, if the milepost does not match a known milepost from the GIS database. (This location will likely be off the road to some extent, but the user can manually adjust the coordinates, as described in one of the requirements under Specify Object Location Using Map and Form).
	Map
	MapAndGISUses.SelectIntersectingMilepost
	chartlite.data.location-data.GUILocationDataClasses CD SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML SD FlexLocationClasses CD (Note - the intersecting route and exit feature types have reqs to display lists to the user, so the diagrams for getting those features are mapped to the corresponding "list" reqs. But since mileposts are not displayed in a list, the diagrams for getting the mileposts are mapped here): SpecifyLocation:routeSelectionChanged SpecifyLocation:intersectingFeatureTypeChanged SpecifyLocation:updateMileposts SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult

	SR1.1.8.1.1.7.2
	The system shall allow the user to specify the object's proximity to the specified feature on the route.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.7.2.1
	The proximity values for describing the object's position relative to a single feature on the route shall include: AT, PAST, PRIOR TO, WEST OF, NORTH OF, EAST OF, and SOUTH OF.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.7.2.2
	The system shall use a proximity value of ‘AT' if the user does not specify a value.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.9
	Specify Feature On Route
	Map
	N/A
	

	SR1.1.8.1.1.9.1
	The system shall allow a user to specify a state milepost number as a feature on a route.
	Map
	MapAndGISUses.SelectIntersectingMilepost
	UNCHANGED

	SR1.1.8.1.1.9.1.1
	The system shall allow the user to specify a state milepost value using a freeform numerical value.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.9.2
	The system shall allow a user to specify a county milepost number as a feature on a route.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.9.2.1
	The system shall allow the user to specify a county milepost value using a freeform numerical value.
	Map
	MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.9.3
	The system shall allow the user to specify an intersection with another route as a feature on a route.
	Map
	MapAndGISUses.SelectIntersectingRoute
	UNCHANGED

	SR1.1.8.1.1.9.3.1
	The system shall provide a list of known intersecting routes from a GIS database for user selection if the user has selected a state, county, route type, and main route, if intersecting routes exist in the GIS database for the selections made.
	Map
	MapAndGISUses.SelectIntersectingRoute
	GISModuleClasses CD GISLocationRequestHandler:processGetIntersectingFeaturesOfType SD SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML SD SpecifyLocation:routeSelectionChanged SpecifyLocation:intersectingFeatureTypeChanged SpecifyLocation:updateIntersectingRouteList SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult

	SR1.1.8.1.1.9.3.1.1
	The system shall allow the user to select an intersecting route, if the selected state is MD and the list of intersecting routes is available from the GIS database for the current selections.
	Map
	MapAndGISUses.SelectIntersectingRoute
	UNCHANGED

	SR1.1.8.1.1.9.3.1.2
	The system shall allow the user to specify whether to display the route number or the local road name when displaying the known intersecting route that came from the GIS database.
	Map
	MapAndGISUses.SelectIntersectingRoute
	UNCHANGED

	SR1.1.8.1.1.9.3.2
	The system shall allow the user to specify the intersecting route description using free form text if the text does not match the route number (or name, if displaying known routes by name) of a known intersecting route retrieved from the GIS database.
	Map
	MapAndGISUses.SelectIntersectingRoute
	UNCHANGED

	SR1.1.8.1.1.9.4
	The system shall allow the user to specify an exit number as a feature on the route.
	Map
	MapAndGISUses.SelectIntersectingExit
	Screenshot: SpecifyLocationFormWithExitList.png chartlite.data.location-data.GUILocationDataClasses CD WebRoadwayLocationLookup:LookupIntersectingFeatures SD

	SR1.1.8.1.1.9.4.1
	The system shall provide a list of known exit numbers from a GIS database for user selection if the user has selected a state, county, route type, and main route, if exit numbers exist in the GIS database for the selections made.
	Map
	MapAndGISUses.SelectIntersectingExit
	chartlite.data.location-data.GUILocationDataClasses CD SpecifyLocationReqHdlr:getIntersectingFeaturesOfTypeXML SD WebRoadwayLocationLookup:LookupIntersectingFeatures SD GISModuleClasses CD GISLocationRequestHandler:processGetIntersectingFeaturesOfType SD SpecifyLocation:routeSelectionChanged SpecifyLocation:intersectingFeatureTypeChanged SpecifyLocation:updateExits SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult Screenshot: SpecifyLocationFormWithExitList.png

	SR1.1.8.1.1.9.4.2
	The system shall allow the user to enter an exit number as free form text.
	Map
	MapAndGISUses.SelectIntersectingExit
	Screenshot: SpecifyLocationFormWithExitFreeform.png

	SR1.1.8.1.1.9.5
	The system shall allow a user to specify a ramp as an intersecting feature along the route.
	Map
	MapAndGISUses.SelectIntersectingRoute
	Screenshot: SpecifyLocationFormWithRamp.png

	SR1.1.8.1.1.9.5.1
	The system shall provide a list of known ramps from a GIS database for user selection if the user has selected a state, county, route type, and main route, if ramps exist in the GIS database for the selections made.
	Map
	MapAndGISUses.SelectIntersectingRoute
	GISModuleClasses CD GISLocationRequestHandler:processGetIntersectingFeaturesOfType SD GUIFlexComponentsClasses CD SpecifyLocation:routeSelectionChanged SpecifyLocation:intersectingFeatureTypeChanged SpecifyLocation:updateIntersectingRouteList SpecifyLocation:sendGetIntersectingFeaturesOfTypeXMLRequest SpecifyLocation:handleGetIntersectingFeaturesOfTypeXMLResult Screenshot: SpecifyLocationFormWithRamp.png

	SR1.1.8.1.1.10
	The system shall allow the user to specify a textual location description.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.1
	The system shall generate the object location description based on the values specified in the location fields, unless the location description has been overridden by the user.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.1.1
	If no location information is specified, the textual location shall indicate the location is unknown.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.1.2
	If a main route is specified, the textual location shall be the main route, with further identifying information as available.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.1.2.1
	The textual description shall include the route number or name, as specified by the "show name" option for the main route, if it is a known route from the GIS database.
	Map
	MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.10.1.2.2
	The textual description shall include the route description, if the main route was entered as free form text.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.10.1.2.3
	The textual description based on the main route shall include direction if the user has specified a direction.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectPrimaryRoute
	UNCHANGED

	SR1.1.8.1.1.10.1.2.4
	If the object location is relative to a feature (or features) on the route, the textual description shall include the object's location relative to the feature(s).
	Map
	
	

	SR1.1.8.1.1.10.1.2.4.1
	The textual description shall include the proximity of the object to the specified feature(s).
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.10.1.2.4.2
	The textual description shall include a description of the specified feature(s) on the route.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectIntersectingFeature
	UNCHANGED

	SR1.1.8.1.1.10.1.2.4.2.1
	If a feature on the route is an intersecting route, the feature description shall consist of the route number or name, as specified by the show name option for the intersecting route, if it is a known intersecting route from the GIS database.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectIntersectingRoute
	UNCHANGED

	SR1.1.8.1.1.10.1.2.4.2.2
	If a feature on the route is an intersecting route, the feature description shall consist of the route description, if the intersecting route was entered as free form text.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectIntersectingRoute
	UNCHANGED

	SR1.1.8.1.1.10.1.2.4.2.3
	If a feature on the route is an exit, the feature description shall consist of the exit number (and suffix, if applicable) followed by the name of the road to which the exit leads if a name is available from the GIS Service.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectIntersectingExit
	Screenshot: SpecifyLocationFormWithExitList.png chartlite.data.location-data.GUILocationDataClasses CD

	SR1.1.8.1.1.10.1.3
	If the object location was specified using a location alias, the system shall append the public name of the alias in parenthesis to the textual description of the location, if the public alias name is not the empty string.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectAliasLocation
	UNCHANGED

	SR1.1.8.1.1.10.1.4
	If a main route is not specified, the textual description shall include the county if the user has specified a county.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.1.5
	If a main route is not specified, the textual description shall include the region if the user has specified a region.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.1.6
	If a main route is not specified, the textual description shall include the state if the user has specified a state.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.2
	The system shall allow the user to override the generated object location description and specify free form text as the location description.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.2.1
	The system shall prompt for confirmation before allowing the user to override the location description, warning the user that overriding the location description is discouraged.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.2.2
	The system shall warn the user again before allowing the overridden location description to be used.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.10.3
	The system shall require the location description to be specified and contain at least one non-blank character.
	Map
	MapAndGISUses.SpecifyObjectLocation
	UNCHANGED

	SR1.1.8.1.1.11
	The system shall allow the user to pre-populate the location fields by selecting a named location known as a "location alias". (See the Manage Location Aliases requirements).
	Map
	MapAndGISUses.SelectAliasLocation
	GUIAliasServletClasses CD GISModuleClasses CD DiscoverLocationAliasesCommand:execute SD UNCHANGED (Flex)

	SR1.1.8.1.2
	Specify Object Location Using Map and Form
	Map
	
	

	SR1.1.8.1.2.2
	The system shall allow the user to specify an object's geographic location by clicking on the map in an appropriate way.
	Map
	MapAndGISUses.SelectTargetLocationOnMap
	SpecifyLocationMap:specifyLonLatViaMapClick SpcifyLocationReqHdlr:getLocationInfoXML SD

	SR1.1.8.1.2.2.1
	The system shall use the specified geographic location to perform a GIS query to obtain other location information for the object, if the user has chosen to initiate a new location from the map (and is not just adjusting the coordinates for an existing location).
	Map
	MapAndGISUses.SelectTargetLocationOnMap MapAndGISUses.SelectState MapAndGISUses.SelectCounty
	SpecifyLocationMap:specifyLonLatViaMapClick SpecifyLocation:setUserSpecifiedLonLatStr SpecifyLocation:handleGetLocationInfoXMLResult SpcifyLocationReqHdlr:getLocationInfoXML SD

	SR1.1.8.1.2.2.1.1
	The system shall look up the U.S. state containing the specified geographic location for the object, if the location is within a state of interest which has a boundary defined in the GIS database.
	Map
	MapAndGISUses.SelectTargetLocationOnMap MapAndGISUses.SelectState
	SpecifyLocationReqHdlr:getLocationInfoXML SD

	SR1.1.8.1.2.2.1.1.1
	The system shall update the State field in the associated object location form, if the state returned from the GIS query is different than the current selection.
	Map
	MapAndGISUses.SelectTargetLocationOnMap MapAndGISUses.SelectState
	SpecifyLocation:handleGetLocationInfoXMLResult

	SR1.1.8.1.2.2.1.2
	The system shall look up the county within a U.S. state containing the specified geographic location for the object, if the location is within a county of interest which has a boundary defined in the GIS database.
	Map
	MapAndGISUses.SelectTargetLocationOnMap MapAndGISUses.SelectCounty
	SpcifyLocationReqHdlr:getLocationInfoXML SD

	SR1.1.8.1.2.2.1.2.1
	The system shall update the County field in the associated object location form, if the county or state returned from the GIS query are different than the current selections.
	Map
	MapAndGISUses.SelectTargetLocationOnMap MapAndGISUses.SelectCounty
	SpecifyLocation:handleGetLocationInfoXMLResult

	SR1.1.8.1.2.2.2
	The system shall use the specified geographic location when the object's location information is saved.
	Map
	MapAndGISUses.SpecifyObjectLocation
	SpecifyLocation:setUserSpecifiedLonLatStr

	SR1.1.8.1.2.2.3
	The system shall allow the user to adjust the coordinates of a previously specified location without modifying the data in the other location fields in the form.
	Map
	MapAndGISUses.SelectTargetLocationOnMap
	SpecifyLocationMap:specifyLonLatViaMapClick SpecifyLocation:setUserSpecifiedLonLatStr

	SR1.1.8.1.2.2.4
	The system shall ask the user whether the coordinates specified via map click are for an adjustment of an existing location, or are for a new location, if the new coordinates are more than a configurable threshold distance from the previous coordinates.
	Map
	MapAndGISUses.SelectTargetLocationOnMap
	SpecifyLocationMap:specifyLonLatViaMapClick SpecifyLocation:setUserSpecifiedLonLatStr Screenshot: ResetLocationFieldsDialog.png

	SR1.1.8.1.2.3
	The system shall pan and/or zoom the map used for specifying an object's location when the user makes selections on the associated location form.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectState MapAndGISUses.SelectCounty MapAndGISUses.SelectIntersectingFeature
	SpecifyLocation[Map]:jsUpdateMapGeoLocInfo EditLocation:zoomMapOnCountyOrStateSelectionChanged

	SR1.1.8.1.2.3.1
	The system shall pan and/or zoom the map when the State selection is changed on the Object Location form to show the selected state, if the extents of the state are known.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectState
	EditLocation:zoomMapOnCountyOrStateSelectionChanged

	SR1.1.8.1.2.3.2
	The system shall pan and/or zoom the map when the County selection is changed on the Object Location form to show the selected county, if the extents of the county are known.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectCounty
	EditLocation:zoomMapOnCountyOrStateSelectionChanged

	SR1.1.8.1.2.3.4
	The system shall pan and/or zoom the map when the Intersecting Feature selection is changed on the Object Location form to include an area around the intersecting feature, if the location of the intersecting feature is known.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.SelectIntersectingFeature
	EditLocation:latitudeChanged SpecifyLocation[Map]:jsUpdateMapGeoLocInfo

	SR1.1.8.1.2.3.4.3
	The system shall ask the user whether to replace the previous coordinates, if the previous coordinates were specified by the user and the new location is more than a configurable threshold distance from the old location.
	Map
	MapAndGISUses.SelectTargetLocationOnMap
	Screenshot: OverwriteUserCoordinates.png

	SR1.1.8.1.2.4
	The system shall display a map that can be used when specifying an object's location.
	Map
	MapAndGISUses.SelectTargetLocationOnMap
	MapViewSpecificClasses CD

	SR1.1.8.1.2.5
	The system shall allow the user to zoom in or out when using the map to specify an object location.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.NavigateMap MapAndGISUses.SelectTargetLocationOnMap
	MapViewSpecificClasses CD

	SR1.1.8.1.2.6
	The system shall allow the user to pan the map when using a map to specify an object's location.
	Map
	MapAndGISUses.SpecifyObjectLocation MapAndGISUses.NavigateMap MapAndGISUses.SelectTargetLocationOnMap
	MapViewSpecificClasses CD

	SR1.1.8.1.2.7
	The system shall display a marker at the coordinates to indicate the currently specified location. The location of this marker will be updated as necessary to reflect changes in the specified location.
	Map
	MapAndGISUses.SelectTargetLocationOnMap
	EditLocation:latitudeChanged SpecifyLocation[Map]:jsUpdateMapGeoLocInfo MapViewSpecificClasses CD

	SR1.1.8.2.1.1
	The system shall allow the user to specify the internal name for a location alias.
	Map
	MapAndGISUses.AddAlias, MapAndGISUses.EditAlias
	GUIAliasServletClasses CD GISModuleClasses CD AliasReqHdlr:processAddAlias SD GISLocationRequestHandler:processCreateLocationAliasRequest SD Screenshot: AddAlias.png

	SR1.1.8.2.1.2
	The system shall allow the user to specify the public name for a location alias.
	Map
	MapAndGISUses.AddAlias, MapAndGISUses.EditAlias
	GUIAliasServletClasses CD GISModuleClasses CD AliasReqHdlr:processAddAlias SD GISLocationRequestHandler:processCreateLocationAliasRequest SD Screenshot: AddAlias.png

	SR1.1.8.2.1.4
	The system shall allow the user to specify the location of the alias as defined by the Specify Object Location requirements.
	Map
	MapAndGISUses.AddAlias, MapAndGISUses.EditAlias
	GUIAliasServletClasses CD GISModuleClasses CD AliasReqHdlr:processAddAlias SD GISLocationRequestHandler:processCreateLocationAliasRequest SD Screenshot: AddAlias.png

	SR1.1.8.2.2.1
	The system shall allow a suitably privileged user to add a location alias to the system.
	Map
	MapAndGISUses.AddAlias
	GUIAliasServletClasses CD GISModuleClasses CD AliasReqHdlr:getAddAliasForm SD AliasReqHdlr:processAddAlias SD GISLocationRequestHandler:processCreateLocationAliasRequest SD Screenshot: AddAlias.png

	SR1.1.8.2.2.2
	The system shall allow the user to specify data for the new location alias, as defined in the Specify Location Alias Properties requirements.
	Map
	MapAndGISUses.AddAlias
	GUIAliasServletClasses CD GISModuleClasses CD Screenshot: AddAlias.png

	SR1.1.8.2.3.1
	The system shall allow a suitably privileged user to edit the information for an existing location alias.
	Map
	MapAndGISUses.EditAlias
	GUIAliasServletClasses CD GISModuleClasses CD Screenshot: EditAliasNames.png Screenshot: EditAliasLocation.png

	SR1.1.8.2.3.2
	The system shall allow the user to specify data for the location alias, as defined in the Specify Location Alias Properties requirements.
	Map
	MapAndGISUses.EditAlias
	GUIAliasServletClasses CD GISModuleClasses CD Screenshot: EditAliasNames.png Screenshot: EditAliasLocation.png

	SR1.1.8.2.4.1
	The system shall allow a suitably privileged user to remove a location alias from the system.
	Map
	MapAndGISUses.RemoveAlias
	GUIAliasServletClasses CD GISModuleClasses CD Screenshot: AliasDetails.png Screenshot: DeleteAliasConfirmation.png

	SR1.1.8.2.4.2
	The system shall prompt the user for confirmation before removing the location alias.
	Map
	MapAndGISUses.RemoveAlias
	GUIAliasServletClasses CD Screenshot: DeleteAliasConfirmation.png

	SR1.1.8.2.4.3
	Removing a location alias shall not impact the location information for traffic events and/or devices that had previously had their location set using the alias that is being removed.
	Map
	 MapAndGISUses.Remove Alias
	

	SR1.1.8.2.5.1
	The system shall allow a suitably privileged user to view the list of location aliases in the system.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD GISModuleClasses CD AliasReqHdlr:processViewAliasList SD GISLocationAliasRequestHandler:processGetAliasesRequest SD Screenshot: AliasList.png

	SR1.1.8.2.5.2
	The system shall allow the user to view detailed data for each location alias in the list.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.2.1
	The detailed data displayed for a location alias shall include the Internal Name.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.2.2
	The detailed data displayed for a location alias shall include the Public Name.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.2.4
	The detailed data displayed for a location alias shall include the Location Description.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.2.5
	The detailed data displayed for a location alias shall include the County.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.2.6
	The detailed data displayed for a location alias shall include the Route.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.2.7
	The detailed data displayed for a location alias shall include the Direction.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.3
	The system shall allow the user to sort the list of aliases.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.3.1
	The system shall allow the user to sort the list of location aliases by Internal Name.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.3.2
	The system shall allow the user to sort the list of location aliases by Public Name.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.3.3
	The system shall allow the user to sort the list of location aliases by Location Description.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.3.4
	The system shall allow the user to sort the list of location aliases by County.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.3.5
	The system shall allow the user to sort the list of location aliases by Route.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.4
	The system shall allow the user to filter the list of aliases.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.4.2
	The system shall allow the user to filter the list of aliases by County.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.4.3
	The system shall allow the user to filter the list of aliases by Route.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.4.4
	The system shall allow the user to filter the list of aliases by Direction.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasList.png

	SR1.1.8.2.5.5
	The system shall allow the user to choose the columns to display in the alias list.
	Map
	MapAndGISUses.ViewAliasList
	GUIAliasServletClasses CD Screenshot: AliasListSelectColumns.png

	SR1.4.2.12.2.1
	The system shall allow the user to view a map on the Home Page.
	Map
	MapAndGISUses.ViewHomePageMap
	MapViewSpecificClasses CD Screenshot: HomePageMap1.png

	SR1.4.2.12.2.2
	The system shall allow the user to invoke a Center Events Only filter on the home page map to view only the open traffic events with geographic locations for which the user's operations center is responsible.
	Map
	MapAndGISUses.ViewCentersEventsOnMap
	MapViewSpecificClasses CD HomePageMap : showEvents HomePageMap : handleMapDataJSON Screenshot: HomePageMap1.png

	SR1.4.2.12.2.2.3
	The system shall display a "filtered" text when the Center Events Only filter is active.
	Map
	MapAndGISUses.ViewCentersEventsOnMap
	Screenshot: HomePageMap1.png

	SR1.4.2.12.2.2.4
	The system shall zoom the home page map when the Center Events Only filter is invoked to an extent that includes all open traffic events with geographic locations that are controlled by the user's operations center.
	Map
	MapAndGISUses.ViewCentersEventsOnMap
	MapViewSpecificClasses CD HomePageMap : showEvents HomePageMap : handleMapDataJSON

	SR1.4.2.12.2.2.5
	The system shall make the traffic event layers on the home page map visible when the Center Events Only filter is invoked, if they are not already visible.
	Map
	MapAndGISUses.ViewCentersEventsOnMap
	HomePageMap : showEvents

	SR1.4.2.12.2.4
	The system shall allow the user to invoke an All Events filter on the home page map to view all open traffic events in the system with geographic locations.
	Map
	MapAndGISUses.ViewOpenEventsOnMap
	MapViewSpecificClasses CD HomePageMap : showEvents HomePageMap : handleMapDataJSON Screenshot: HomePageMap1.png

	SR1.4.2.12.2.4.2
	The system shall zoom the home page map when the All Events filter is invoked to an extent that includes all open traffic events with geographic locations in the system.
	Map
	MapAndGISUses.ViewOpenEventsOnMap
	MapViewSpecificClasses CD HomePageMap : showEvents HomePageMap : handleMapDataJSON

	SR1.4.2.12.2.4.3
	The system shall make the traffic event layers on the home page map visible when the All Events filter is invoked, if they are not already visible.
	Map
	MapAndGISUses.ViewOpenEventsOnMap
	HomePageMap : showEvents

	SR1.4.2.12.2.5
	The system shall allow the user to view any layer(s) containing devices in the home page map view, including device types specified in the View Devices On Map requirements.
	Map
	MapAndGISUses.SelectMapLayers MapAndGISUses.UseDevicesFromMap
	Screenshot: MilepostsExitsAndLayers.png (All except HAR and SHAZAM layers, which were not prototyped)

	SR1.4.2.12.2.5.1
	The system shall initially show the home page map with the device layers turned off (not visible).
	Map
	MapAndGISUses.ViewHomePageMap
	

	SR1.4.2.12.2.6
	The system shall allow the user to choose the map layers to be displayed on the home page map from a list of applicable layers.
	Map
	MapAndGISUses.SelectMapLayers
	Screenshot: MilepostsExitsAndLayers.png (All except HAR and SHAZAM layers, which were not prototyped)

	SR1.4.2.12.2.7
	The system shall allow the user to zoom in and out on the home page map.
	Map
	MapAndGISUses.NavigateMap
	Screenshot: HomePageMap1.png

	SR1.4.2.12.2.8
	The system shall allow the user to pan the home page map.
	Map
	MapAndGISUses.NavigateMap
	Screenshot: HomePageMap1.png

	SR1.4.2.12.2.10
	The system shall initially show (on the home page map) only the open traffic events with geographic locations for which the user's operations center is responsible.
	Map
	MapAndGISUses.ViewHomePageMap MapAndGISUses.ViewCentersEventsOnMap
	MapReqHdlr:getHomePagerMapDataJSON SD

	SR1.4.2.12.2.10.1
	The system shall initially show the map zoomed to an extent that includes all of the traffic events controlled by the user's operations center.
	Map
	MapAndGISUses.ViewHomePageMap MapAndGISUses.ViewCentersEventsOnMap
	MapReqHdlr:getHomePagerMapDataJSON SD

	SR1.4.2.12.2.13
	The system shall use marker icons and popups anchored to the marker icons to convey CHART data visually on the home page map.
	Map
	MapAndGISUses.NavigateMap
	Screenshot: HomePageMap1.png

	SR1.4.2.12.2.13.1
	The system shall allow the user to close all open popups (overlays) on the home page map with one action.
	Map
	MapAndGISUses.NavigateMap
	Screenshot: HomePageMap1.png

	SR1.4.2.12.2.13.2
	The system shall allow the user to trigger an immediate refresh of the object data in the home page map
	Map
	MapAndGISUses.NavigateMap
	Screenshot: HomePageMap1.png MapReqHdlr:getHomePagerMapDataJSON SD

	SR1.4.2.12.4
	The system shall display an indication to the user on the Home Page when alerts matching the currently selected filter in the Alerts View are in the New state.
	Map
	MapAndGISUses.ViewHomePage
	HomePageReqHdlr:getHomePageJSON SD Screenshot: HomePageMapAlerts.png

	SR1.4.2.12.4.1
	The system shall allow the user to display a summary of the most recently created alerts matching the currently selected filter in the Alerts View that are in the New state, while viewing any view in the home page.
	Map
	MapAndGISUses.ViewHomePage
	Screenshot: HomePageMapAlerts.png HomePageReqHdlr:getHomePageJSON SD

	SR1.4.2.12.4.1.1
	The alert summary shall include the alert type, description, and creation time for each alert.
	Map
	MapAndGISUses.ViewHomePage
	Screenshot: HomePageMapAlerts.png HomePageReqHdlr:getHomePageJSON SD

	SR1.4.2.12.4.2
	The system shall display the number of alerts matching the currently selected filter in the Alerts View that are in the New state.
	Map
	MapAndGISUses.ViewHomePage
	Screenshot: HomePageMapAlerts.png HomePageReqHdlr:getHomePageJSON SD

	SR1.4.9.1.1
	The system shall be capable of displaying CHART application objects over an ESRI base map.
	Map
	MapAndGISUses.SelectMapLayers
	Screenshot: HomePageMap1.png Screenshot: MilepostsExitsAndLayers.png

	SR1.4.9.1.1.1
	The system shall be capable of displaying CHART application objects over a CHART base map.
	Map
	MapAndGISUses.SelectMapLayers
	Screenshot: HomePageMap1.png Screenshot: MilepostsExitsAndLayers.png

	SR1.4.9.1.1.1.1
	The system shall allow the user to view milepost information on a separate layer over the CHART base map.
	Map
	MapAndGISUses.SelectMapLayers
	Screenshot: MilepostsExitsAndLayers.png

	SR1.4.9.1.1.1.2
	The system shall allow the user to view exit numbers on a separate layer over the CHART base map.
	Map
	MapAndGISUses.SelectMapLayers
	Screenshot: MilepostsExitsAndLayers.png

	SR1.4.9.2
	The system shall allow the user to choose the intended object, if clicking on objects that are overlapping in the map.
	Map
	MapAndGISUses.UseDevicesAndTrafficEventsFromMap
	Screenshot: ChooseFeature.png

	SR1.4.9.3
	The system shall display object identification information for multiple objects when the mouse cursor hovers over multiple overlapping objects in the home page map.
	Map
	MapAndGISUses.UseDevicesAndTrafficEventsFromMap
	Screenshot: MultipleObjectTooltips.png

	SR1.5.2.1.8.17
	The system shall allow a suitably privileged user to specify the frequency data for a HAR
	Map
	(No use case, requirement added after design completed)
	

	SR1.5.2.1.8.17.1
	The system shall support a minimum HAR frequency of 530 and a maximum HAR frequency of 1710 inclusive.
	Map
	 (No use case, requirement added after design completed)
	

	SR1.5.2.1.8.17.1.1
	The system shall reject any HAR frequency value that is not evenly divisibly by 10 (530, 540, ... 1710)
	Map
	 (No use case, requirement added after design completed)
	

	SR1.5.2.1.8.17.2
	The system shall support an optional call sign of up to 16 (sixteen) characters for the HAR frequency (example: "WPCT 627", "WPEW-742")
	Map
	 (No use case, requirement added after design completed)
	

	SR1.5.2.1.18.8.11
	The system shall allow the user to specify multiple (one or more) video sending devices for use by a single video source.
	Video
	Configure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Switches Configure Encoders
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig SelectMonitorListSupporter:setRoutingInfo VideoSourceConfigReqHdlr:populateFormData

	SR1.5.2.1.18.8.11.1
	The system shall allow the user to specify at least five video sending devices for use by a single video source.
	Video
	Configure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Switches Configure Encoders
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig SelectMonitorListSupporter:setRoutingInfo VideoSourceConfigReqHdlr:populateFormData

	SR1.5.2.1.18.8.11.2
	The system shall require that at least one sending device (encoder or switch port connection) is specified for use by each video source.
	Video
	Configure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Switches Configure Encoders
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration

	SR1.5.2.1.18.8.12
	The system shall allow the user to specify a flash video stream control for the video source. (This is the system which manages the "red button", also known as the flash "kill switch".)
	Video
	Configure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Flash Video Streaming
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig SelectMonitorListSupporter:setRoutingInfo VideoSourceConfigReqHdlr:populateFormData SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm systemProfile_classes

	SR1.5.2.1.18.8.12.1
	The system shall allow the user to specify the Name, IP address, or URL of the flash video stream server when configuring a flash video stream control.
	Video
	Configure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Flash Video Streaming
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData systemProfile_classes SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm

	SR1.5.2.1.18.8.12.2
	The system shall allow the user to specify the port of the flash video stream server when configuring a flash video stream control.
	Video
	Configure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Flash Video Streaming
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData systemProfile_classes SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm

	SR1.5.2.1.18.8.12.3
	The system shall allow the user to specify the password of the flash video stream server when configuring a flash video stream control. (The password will be used to validate CHART's request to the flash video stream server to enable or disable flash video streaming.)
	Video
	onfigure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Flash Streaming
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData systemProfile_classes SystemProfileReqHdlr:getStreamingFlashServerConfigurationsForm SystemProfileReqHdlr:setStreamingFlashServerConfigurationsForm

	SR1.5.2.1.18.8.12.4
	The system shall automatically consider any flash video stream control specified for a video source to be a public flash video stream control. (This will cause CHART to disable/re-enable the flash video stream as the video source is blocked/unblocked to public.)
	Video
	onfigure Cameras Add Camera Update Camera Copy Camera Configure Multiple Video Sending Devices Configure Flash Streaming
	CameraControlModule CameraControlModule:AddCamera CameraControlModule:SetCameraConfiguration

	SR1.5.2.4.14
	The system shall allow the user to specify the location of the equipment, as defined in the Specify Object Location requirements.
	Map
	MapAndGISUses.SpecifyDeviceLocation
	Screenshot: EditLocationForNewDevice.png Screenshot: EditDeviceLocation.png

	SR1.5.3.1.1.12
	The system shall allow a user with the Manage DMS right for the DMS's owning organization to send a pre-configured test message to a DMS that is in Maintenance Mode.
	MaintGUI
	Display DMS Test Message
	displayDMSTestMessage SD

	SR1.5.3.1.1.12.1
	The pre-configured test message that is to be displayed on a DMS shall be globally configurable by a system administrator and shall include the message text, and desired beacon state.
	MaintGUI
	Display DMS Test Message
	displayDMSTestMessage SD

	SR1.5.3.1.1.12.5
	The system shall use automatic DMS formatting to format the pre-configured test message text for the DMS where it is being displayed.
	MaintGUI
	Display DMS Test Message
	displayDMSTestMessage SD

	SR1.5.3.1.2.11
	The system shall allow a user with the Maintain HAR right for the HAR's owning organization to send a pre-configured test message to a HAR that is in Maintenance Mode.
	MaintGUI
	Send HAR Test Message
	broadcastHARTestMessage SD

	SR1.5.3.1.2.11.1
	The pre-configured test message that is to be broadcast on a HAR shall be globally configurable by a system administrator and shall include the message text that the system is to convert to speech for broadcast on the HAR.
	MaintGUI
	Send HAR Test Message
	broadcastHARTestMessage SD

	SR1.5.6
	The system shall provide a device maintenance portal; a view of the system tailored to device maintenance personnel.
	MaintGUI
	Login
	ServletBaseClasses CD

	SR1.5.6.1
	The system shall limit access to the device maintenance portal to users who specifically choose to access CHART via the portal.
	MaintGUI
	Login
	processLogin SD

	SR1.5.6.1.1
	Users that do not specifically choose to access the device maintenance portal shall be provided access to the standard CHART GUI.
	MaintGUI
	Login
	processLogin SD

	SR1.5.6.2
	The system shall default the user’s choice for accessing the device maintenance portal to the choice made the last time the user accessed CHART on the same computer using the same operating system user account. (e.g., via a cookie)
	MaintGUI
	Login
	processLogin SD

	SR1.5.6.2.1
	The default selection shall be to log into the standard CHART GUI if the user has not previously logged into CHART (or if the user has cleared their browser cache).
	MaintGUI
	Login
	processLogin SD

	SR1.5.6.3
	The login credentials utilized to access the device maintenance portal shall be the same login credentials utilized to access the standard CHART GUI.
	MaintGUI
	Login
	processLogin SD

	SR1.5.6.3.1
	The roles assigned to the user via the standard CHART GUI shall be used within the device maintenance portal to determine the functionality the user may access within the device maintenance portal.
	MaintGUI
	Login
	processLogin SD

	SR1.5.6.4
	After login to the device maintenance portal, the system shall display the portal content within the browser window used to log into the system.
	MaintGUI
	Login
	

	SR1.5.6.4.1
	The device maintenance portal shall not pop up a separate home page window after login.
	MaintGUI
	Login
	

	SR1.5.6.4.2
	The device maintenance portal shall not pop up a separate working window after login.
	MaintGUI
	Login
	

	SR1.5.6.4.3
	The device maintenance portal shall not ask the user to close the window they used to log into the system.
	MaintGUI
	Login
	

	SR1.5.6.4.4
	Upon login, the device maintenance portal shall not strip the browser of its standard navigation controls that were present prior to login.
	MaintGUI
	Login
	

	SR1.5.6.4.5
	The device maintenance portal shall not prevent the user from navigating to web pages / sites external to the portal.
	MaintGUI
	Login
	

	SR1.5.6.4.6
	The device maintenance portal shall not attempt to prevent the user from closing their browser without logging out of the portal.
	MaintGUI
	Login
	

	SR1.5.6.5
	The device maintenance portal shall identify all pages in a way that reminds users that they are logged into the portal rather than the standard CHART GUI.
	MaintGUI
	Login
	handleRequest SD

	SR1.5.6.6
	The device maintenance portal shall display the name and operations center of the user at all times while the user is logged in.
	MaintGUI
	Login
	

	SR1.5.6.7
	After login to the device maintenance portal, the system shall show a home page tailored to device maintenance activities.
	MaintGUI
	Login
	processLogin SD

	SR1.5.6.7.1
	The device maintenance portal home page shall allow the user to search for a device.
	MaintGUI
	View Maintenance Home Page
	

	SR1.5.6.7.1.1
	The search feature on the device maintenance portal home page shall search only DMSs, HARs, SHAZAMs, Detectors, and Cameras.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.2
	The search feature on the device maintenance portal home page shall search data fields of each device to determine if a device matches the search string.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.2.1
	The search fields for DMS devices shall include device name, location description, controlling op center name, and current message text.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.2.2
	The search fields for HAR devices shall include device name, location description, controlling op center name, and current message description.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.2.3
	The search fields for SHAZAM devices shall include device name, location description, and controlling op center name.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.2.4
	The search fields for Detector devices shall include device name and location description.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.2.5
	The search fields for Camera devices shall include device name, device description, location description, owning organization, controlling op center name, and regions.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.3
	The search feature on the device maintenance portal home page shall use a case insensitive search.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.4
	The results from the search feature on the device maintenance portal home page shall show the devices that matched the search, organized by device type, with limited supporting data as specified in the requirements below.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.4.1
	The device maintenance portal search results shall show an icon for each device that indicates its type and status.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.4.2
	The device maintenance portal search results shall show the name of each matching device.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.4.3
	The device maintenance portal search results shall show the location description for each matching device (if any).
	MaintGUI
	Search for Device
	

	SR1.5.6.7.1.4.4
	The device maintenance portal search results shall provide access to the details page for each device shown.
	MaintGUI
	Search for Device
	

	SR1.5.6.7.2
	The device maintenance portal home page shall allow the user to view a list of devices.
	MaintGUI
	View Maintenance Home Page
	

	SR1.5.6.7.2.1
	The device maintenance portal shall allow the following types of devices to be listed: DMSs, HARs, SHAZAMs, Detectors, Cameras.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.2
	The device maintenance portal shall allow device lists to be pre-filtered when they are requested to be displayed.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.2.1
	The system shall allow the user to pre-filter a device list using system folders. (Only devices contained within system folders that are assigned to the user’s operations center are shown.)
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.2.2
	The system shall allow the lists of devices shown within the device maintenance portal to be pre-filtered based on device mode and status.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.2.3
	The system shall allow the list of cameras shown within the device maintenance portal to be pre-filtered by region.
	MaintGUI
	View Camera List For Maint
	

	SR1.5.6.7.2.2.4
	The system shall allow the user to bypass any pre-filtering of a device list shown within the device maintenance portal to view all devices of the selected type.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.3
	The system shall show the number of devices that appear in a device list shown within the device maintenance portal.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.4
	If a device list is filtered, the system shall show the number of devices that would appear in the list if the filtering is removed.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.5
	If a device list is filtered, the system shall show the filter(s) that are being used.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.6
	If a device list is filtered, the system shall allow the user to remove all filters that are being used.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.7
	Device lists shown within the device maintenance portal shall contain an icon for each device which identifies its type and current status.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.8
	Device lists shown within the device maintenance portal shall show the name of each device.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.9
	Device lists shown within the device maintenance portal shall show the location description (if any) for each device.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.10
	Device lists shown within the device maintenance portal shall not show external devices.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.7.2.11
	Device lists shown within the device maintenance portal shall allow the user to view a details page for each device.
	MaintGUI
	View Device List For Maint
	

	SR1.5.6.8
	The device maintenance portal shall allow the user to view a details page for each device of the following types: DMSs, HARs, SHAZAMs, Detectors, Cameras.
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.1
	The content of a device details page within the device maintenance portal shall be left justified.
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.2
	The details page for a device shown within the device maintenance portal shall show the name and location of the device at the top of the page, below the page header.
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.3
	The details page for a device shown within the device maintenance portal shall provide access to any actions that may be performed on the device by the user at the top of the page, below the device name/location.
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.3.1
	The actions that may be accessed by the user for a device within the device maintenance portal shall match the actions available to the same user within the standard CHART GUI, except for the deviations listed in the requirements below. (The actions available are based on the device status and the user’s rights)
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.3.4
	The HAR Set Message action (available when the HAR is in maintenance mode) shall utilize a simplified message editor when this action is used within the maintenance GUI.
	MaintGUI
	Set HAR Maint Mode Message
	

	SR1.5.6.8.3.4.1
	The HAR message editor used to set the message of a maintenance mode HAR shall include a single text entry field to allow the user to specify the text that is to be converted to speech for broadcast on the HAR as the body of a message that uses the default header and default trailer of the HAR.
	MaintGUI
	Set HAR Maint Mode Message
	

	SR1.5.6.8.3.4.2
	The HAR message editor provided within the maintenance GUI shall perform a banned word check and shall not allow a message containing any banned word to be sent to the HAR device.
	MaintGUI
	Set HAR Maint Mode Message
	

	SR1.5.6.8.3.5
	The actions that may be accessed by the user for a HAR within the device maintenance portal shall exclude the ability to edit a clip stored in the HAR controller.
	MaintGUI
	View HAR Details for Maint
	

	SR1.5.6.8.3.6
	The actions that may be accessed by the user for a device within the device maintenance portal shall exclude the ability to copy the device.
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.3.7
	The actions that may be accessed by the user for a device within the device maintenance portal shall exclude the ability to remove the device.
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.4
	The details page data for a device shown within the device maintenance portal shall match the details page data shown within the standard CHART GUI for the same device accessed by the same user, except as specified in the sub-requirements below.
	MaintGUI
	View Device Details For Maint
	

	SR1.5.6.8.4.1
	The details page for a DMS shown within the device maintenance portal shall exclude some fields that are shown for the device within the standard CHART GUI.
	MaintGUI
	View DMS Details for Maint
	

	SR1.5.6.8.4.1.2
	The DMS details page within the device maintenance portal shall not show the Message (MULTI) field.
	MaintGUI
	View DMS Details for Maint
	

	SR1.5.6.8.4.1.3
	The DMS details page within the device maintenance portal shall not show the Travel Time / Toll Messages section.
	MaintGUI
	View DMS Details for Maint
	

	SR1.5.6.8.4.1.4
	The DMS details page within the device maintenance portal shall not show the Associated Travel Routes section.
	MaintGUI
	View DMS Details for Maint
	

	SR1.5.6.8.4.1.5
	The DMS details page within the device maintenance portal shall not show the Travel Time Message Schedule section.
	MaintGUI
	View DMS Details for Maint
	

	SR1.5.6.9
	The device maintenance portal shall allow the user to return to the device maintenance portal home page from any other page that is displayed within the portal.
	MaintGUI
	Login
	

	SR1.5.6.10
	The device maintenance portal shall allow the user to attempt to logout from any page that is displayed within the portal.
	MaintGUI
	Logout
	processMaintLogout SD

	SR1.5.6.10.1
	When the user requests to log out from the device maintenance portal, the system shall warn the user of any devices that are in maintenance mode and controlled by the user's center.
	MaintGUI
	Logout
	processMaintLogout SD

	SR1.5.7.1.6
	The system shall allow the user viewing the details screen for a DMS with a known geographic location to show the location of the DMS on the home page map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: DMSDetailsActions.png

	SR1.5.7.2.2
	The system shall allow the user viewing the details screen for a HAR with a known geographic location to show the location of the HAR on the home page map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.7.3.14
	The system shall allow the user viewing the details screen for a camera with a known geographic location to show the location of the camera on the home page map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: CameraDetailsActions.png

	SR1.5.7.3.15
	The system shall show the configuration of all sending devices configured for a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.1
	The system shall show all attributes of all CODECs configured as the sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.1.2
	The system shall show the Video Fabric of a CODEC that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.1.3
	The system shall show the Transmission Medium of a CODEC that is configured as a sending device of a camera
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.1.4
	The system shall show the Encoder Model of a CODEC that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.1.5
	The system shall show the Encoder Hostname or IP Address of a CODEC that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.1.6
	The system shall show the Encoder Multicast Address and Port of a CODEC that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.1.7
	The system shall show the Video Compression Type of a CODEC that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.2
	The system shall show the configuration of all video switches configured as the video sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.2.1
	The system shall show the Video Fabric of a video switch that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.2.2
	The system shall show the Transmission Medium of a video switch that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.2.3
	The system shall show the Switch Name of a video switch that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.15.2.4
	The system shall show the Switch Input Port of a video switch that is configured as a sending device of a camera.
	Video
	View Camera Display Multiple Video Sending Devices
	CameraControlModule GUIVideoDataClasses GUIVIdeoServletClasses VideoSourceConfigReqHdlr:parseWebVideoSourceConfig VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.16
	The system shall show the flash video stream control configuration if one is specified.
	Video
	View Camera Display Flash Video Stream Controls
	CameraControlModule GUIVideoDataClasses VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.16.1
	The system shall show the flash video stream control server name, IP address, or URL.
	Video
	View Camera Display Flash Video Stream Controls
	CameraControlModule GUIVideoDataClasses VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.16.2
	The system shall show the port of the flash video stream control's server.
	Video
	View Camera Display Flash Video Stream Controls
	CameraControlModule GUIVideoDataClasses VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.3.16.3
	The system shall show the password of the flash video stream control's server.
	Video
	View Camera Display Flash Video Stream Controls
	CameraControlModule GUIVideoDataClasses VideoSourceConfigReqHdlr:populateFormData

	SR1.5.7.6.1
	The system shall allow the user viewing the details screen for a SHAZAM with a known geographic location to show the location of the SHAZAM on the home page map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.1
	The system shall allow a suitably privileged user to view DMSs on the map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.1
	The system shall display a DMS on the map in a layer that contains only DMSs.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: MilepostsExitsAndLayers.png

	SR1.5.9.1.2
	The system shall indicate on the map whether a DMS is currently displaying a message by displaying a different icon for the DMS.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSWithMsgAndPopup.png chartlite.data.MapFeatures CD

	SR1.5.9.1.3
	The system shall allow the user to click on a DMS in the map to display summary information.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.1
	The system shall display the name of the DMS in the DMS map popup.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.2
	The system shall allow the user to click on a link in the DMS map popup to invoke the DMS details page in the working window.
	Map
	MapDeviceAndTrafficEventUses.ViewDMSDetailsPage
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.3
	The system shall display a representation of the DMS's current message in the DMS map popup.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.4
	The system shall display a list of open traffic events that currently have the DMS in their response plans, in the DMS map popup.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.4.1
	The system shall indicate whether a traffic event owns a message that is active on the DMS's message queue, in the DMS map popup.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.4.2
	The system shall allow the user to click on a traffic event listed in the DMS map popup to invoke the Traffic Event Details page in the working window.
	Map
	MapDeviceAndTrafficEventUses.ViewTrafficEventDetailsPage
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.4.3
	The system shall allow a suitably privileged user to edit and execute a DMS response message from the DMS map popup.
	Map
	MapDeviceAndTrafficEventUses.EditDMSResponseMessage
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.4.3.1
	The system shall allow a suitably privileged user to invoke the DMS Response Message (Auto) Editor from the DMS map popup.
	Map
	MapDeviceAndTrafficEventUses.EditDMSResponseMessage
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.4.3.2
	The system shall allow a suitably privileged user to invoke the DMS Response Message (Manual) Editor from the DMS map popup.
	Map
	MapDeviceAndTrafficEventUses.EditDMSResponseMessage
	Screenshot: DMSWithMsgAndPopup.png

	SR1.5.9.1.3.4.3.3
	The system shall automatically execute the edited DMS response message when the editor form invoked from the DMS map popup is submitted.
	Map
	MapDeviceAndTrafficEventUses.EditDMSResponseMessage
	

	SR1.5.9.1.4
	The system shall display the name of the DMS when the mouse cursor hovers over a DMS icon in the map.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSTooltip.png

	SR1.5.9.1.5
	The system shall display a plain text representation of the DMS message when the mouse cursor hovers over the map icon of a DMS displaying a message.
	Map
	MapDeviceAndTrafficEventUses.UseDMSFromMap
	Screenshot: DMSTooltip.png

	SR1.5.9.2
	The system shall allow a suitably privileged user to view HARs on the map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.1
	The system shall display a HAR on the map in a layer that contains only HARs.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.2
	The system shall indicate on the map whether a HAR is currently displaying a non-default message by displaying a different icon for the HAR.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3
	The system shall allow the user to click on a HAR icon in the map to display summary information.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.1
	The system shall display the name of the HAR in the HAR map popup.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.2
	The system shall allow the user to click on a link in the HAR map popup to invoke the HAR details page in the working window.
	Map
	MapDeviceAndTrafficEventUses.ViewHARDetailsPage
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.3
	The system shall display a representation of the HAR's current message in the HAR map popup.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.4
	The system shall display a list of open traffic events that currently have the HAR in their response plans, in the HAR map popup.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.4.1
	The system shall indicate whether a traffic event owns a message that is active on the HAR's message queue, in the HAR map popup.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.4.2
	The system shall allow the user to click on a traffic event listed in the HAR map popup to invoke the Traffic Event Details page in the working window.
	Map
	MapDeviceAndTrafficEventUses.ViewTrafficEventDetailsPage
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.4.3
	The system shall allow a suitably privileged user to edit and execute a HAR response message from the HAR map popup.
	Map
	MapDeviceAndTrafficEventUses.EditHARResponseMessage
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.4.3.1
	The system shall allow a suitably privileged user to invoke the HAR Response Message Editor from the HAR map popup.
	Map
	MapDeviceAndTrafficEventUses.EditHARResponseMessage
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.3.4.3.2
	The system shall automatically execute the edited HAR response message when the editor form invoked from the HAR map popup is submitted.
	Map
	MapDeviceAndTrafficEventUses.EditHARResponseMessage
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.4
	The system shall display the name of the HAR when the mouse cursor hovers over a HAR icon in the map.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.2.5
	The system shall display a text representation of the HAR message when the mouse cursor hovers over the map icon of a HAR that is currently broadcasting a message other than its default message. The text displayed will be truncated if it is too long for reasonable display in a tooltip.
	Map
	MapDeviceAndTrafficEventUses.UseHARFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3
	The system shall allow a suitably privileged user to view SHAZAMs on the map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3.1
	The system shall display a SHAZAM on the map in a layer that contains only SHAZAMs.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3.2
	The system shall indicate on the map whether a SHAZAM's beacons are on by displaying a different icon for the SHAZAM.
	Map
	MapDeviceAndTrafficEventUses.UseSHAZAMFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3.3
	The system shall allow the user to click on a SHAZAM icon in the map to display summary information.
	Map
	MapDeviceAndTrafficEventUses.UseSHAZAMFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3.3.1
	The system shall display the name of the SHAZAM in the SHAZAM map popup.
	Map
	MapDeviceAndTrafficEventUses.UseSHAZAMFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3.3.2
	The system shall allow the user to click on a link in the SHAZAM map popup to invoke the SHAZAM details page in the working window.
	Map
	MapDeviceAndTrafficEventUses.ViewSHAZAMDetailsPage
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3.4
	The system shall display the name of the SHAZAM when the mouse cursor hovers over a SHAZAM icon in the map.
	Map
	MapDeviceAndTrafficEventUses.UseSHAZAMFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.3.5
	The system shall display a text representation of the current beacon state (ON/OFF) when the mouse cursor hovers over the map icon of a SHAZAM.
	Map
	MapDeviceAndTrafficEventUses.UseSHAZAMFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.4
	The system shall allow a suitably privileged user to view cameras on the map.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: CameraPopup.png

	SR1.5.9.4.1
	The system shall display a camera on the map in a layer that contains only cameras.
	Map
	MapAndGISUses.ViewDevicesOnMap
	Screenshot: MilepostsExitsAndLayers.png

	SR1.5.9.4.2
	The system shall allow the user to click on a camera icon in the map to display summary information.
	Map
	MapDeviceAndTrafficEventUses.UseCameraFromMap
	Screenshot: CameraPopup.png

	SR1.5.9.4.2.1
	The system shall display the name or location of the Camera (as configured in the system profile) in the Camera map popup.
	Map
	MapDeviceAndTrafficEventUses.UseCameraFromMap
	Screenshot: CameraPopup.png

	SR1.5.9.4.2.2
	The system shall allow the user to click on a link in the Camera map popup to invoke the Camera details page in the working window.
	Map
	MapDeviceAndTrafficEventUses.UseCameraFromMap
	Screenshot: CameraPopup.png

	SR1.5.9.4.2.3
	The system shall display on the camera map popup the name and operations center of the user controlling a camera, if the camera has a control session open.
	Map
	MapDeviceAndTrafficEventUses.UseCameraFromMap
	Screenshot: ControlledCameraPopup.png

	SR1.5.9.4.2.4
	The system shall allow a suitably privileged user to request control of a controllable camera from the camera map popup.
	Map
	MapDeviceAndTrafficEventUses.RequestControlOfCamera
	Screenshot: CameraPopup.png

	SR1.5.9.4.2.4.1
	The system shall allow a suitably privileged user to override control of a camera from the map.
	Map
	MapDeviceAndTrafficEventUses.OverrideCameraControl
	Screenshot: NONE (NOT PROTOTYPED)

	SR1.5.9.4.2.5
	The system shall allow a suitably privileged user to release control of a camera that is currently being controlled, from the camera map popup.
	Map
	MapDeviceAndTrafficEventUses.ReleaseControlOfCamera
	Screenshot: ControlledCameraPopup.png

	SR1.5.9.4.2.6
	The system shall allow the user to click on a link in the camera map popup to display the camera on the user's home monitor, if a home monitor has been assigned.
	Map
	MapDeviceAndTrafficEventUses.DisplayCameraOnHomeMonitor
	Screenshot: CameraPopup.png

	SR1.5.9.4.2.7
	The system shall allow the user to click on a link in the camera map popup to display the camera on a monitor in the user's local monitor group (if a group has been assigned) to bring up the list of local monitors in the working window.
	Map
	MapDeviceAndTrafficEventUses.DisplayCameraOnLocalHMonitor
	Screenshot: CameraPopup.png

	SR1.5.9.4.3
	The system shall display the name or location of the camera (as specified in the system profile) when the mouse cursor hovers over a camera icon in the map.
	Map
	MapDeviceAndTrafficEventUses.UseCameraFromMap
	Screenshot: CameraTooltip.png

	SR3.6.1.1.3.1
	The system shall automatically disable flash video streaming as a camera image is blocked from public viewing if the camera has a public flash video stream control configured.
	Video
	Control Flash Video Streams Block Flash Video to Public
	CameraControlModule CameraControlModule:BlockToPublic

	SR3.6.1.1.4.1
	The system shall automatically enable the flash video stream as a camera image is unblocked from public viewing if the camera has a public flash video stream control configured.
	Video
	Control Flash Video Streams Eable Flash Video to Public
	CameraControlModule

	SR3.6.1.4.1.1
	The system shall allow an operator to request control of a camera from the map.
	Map
	MapDeviceAndTrafficEventUses.RequestControlOfCamera
	Screenshot: CameraPopup.png (NOTE - this req may be a duplicate of 1.5.9.4.2.4)

	SR3.6.1.12.2
	The system shall allow a user to release control of a camera from the map.
	Map
	MapDeviceAndTrafficEventUses.ReleaseControlOfCamera
	Screenshot: ControlledCameraPopup.png (NOTE - this may be a duplicate of 1.5.9.4.2.5)

	SR3.6.3.11.5
	The system shall allow the user to select the video sending device when displaying video on a monitor.
	Video
	Display Video Display Camera Image Configure Multiple Video Sending Devices
	MonitorControlModule MonitorControlModule:ConnectRecToSend MonitorControlModule:DisplayImage MonitorControlModule:DisplayImageImpl MonitorControlModule:Initialize RouterContorlModule BridgeCircuitManagement2

	SR3.6.3.11.6.2
	The system shall automatically enable flash video streaming when a camera image is enabled for public viewing and the camera has a public flash video stream control configured.
	Video
	Control Flash Video Streams Eable Flash Video to Public
	CameraControlModule MonitorControlModule

	SR3.6.3.11.6.2.1
	The system shall indicate if an attempt to enable a public flash video stream is successful or fails.
	Video
	Control Flash Video Streams EableFlash Video to Public
	MonitorControlModule

	SR3.6.3.13.2.1
	The system shall automatically disable flash video streaming when a camera image is removed from public viewing and the camera has a flash video stream control configured.
	Video
	Control Flash Video Streams Block Flash Video to Public
	CameraControlModule MonitorControlModule

	SR3.6.3.13.2.1.1
	The system shall indicate if an attempt to disable a public flash video stream is successful or fails.
	Video
	Control Flash Video Streams Block Flash Video to Public
	CameraControlModule:BlockToPublic MonitorControlModule

	SR3.6.3.13.2.1.1.3
	The system shall periodically repeat the disable flash video action on the camera until the disable action is successful.
	Video
	Control Flash Video Streams Block Flash Video to Public
	CameraControlModule:BlockToPublic MonitorControlModule

	SR4.2.1.6.12.1
	The system shall allow the user to initiate the opening of a new traffic event by clicking on the map to specify the location of the traffic event.
	Map
	 MapAndGISUses.Select Target Location on Map
	Screenshot: EventLauncherComponent.png

	SR4.2.1.6.12.4
	The system shall allow the user to specify location information for the new traffic event according to the Specify Object Location Using Map requirements.
	Map
	MapAndGISUses.SpecifyTrafficEventLocation
	Screenshot: EventLauncherComponent.png

	SR4.2.1.6.13
	The system shall allow the user to clear the form fields (and map marker, if displayed) with a single action on the Create Event form.
	Map
	MapAndGISUses.SpecifyObjectLocation
	Screenshot: EventLauncherComponent.png

	SR4.2.2.2.5
	The system shall allow the user to enter the location and direction data, as described in the Specify Object Location requirements.
	Map
	MapAndGISUses.CreateTrafficEvent MapAndGISUses.SpecifyTrafficEventLocation MapAndGISUses.SpecifyObjectLocation
	Screenshot: EventLauncherComponent.png Screenshot: EditEventLocation.png

	SR4.2.2.2.12
	The system shall allow the user viewing the detailed data for a traffic event with a known geographic location to show the location of a traffic event on the home page map.
	Map
	MapAndGISUses.ViewOpenEventsOnMap
	Screenshot: TrafficEventDetailsShowOnMapLink.png

	SR4.2.3.2.1.2.8.1
	The system shall allow the user to view the devices near the traffic event on a map while viewing the traffic event details.
	Map
	MapAndGISUses.ViewCloseDevicesOnMap
	Screenshot: CloseDevicesMapAndDMSStates.png

	SR4.2.3.2.1.2.8.1.1
	The system shall initially pan and zoom the nearby devices map to show an extent containing the locations of all devices within the specified radius from the traffic event.
	Map
	MapAndGISUses.ViewCloseDevicesOnMap
	MapReqHdlr:getCloseDevicesMapDataJSON CloseDevicesMap:handleMapDataJSON

	SR4.2.3.2.1.2.8.1.2
	The system shall pan and zoom the nearby devices map to show an extent containing the locations of all devices within the specified radius from the traffic event, when the user changes the radius selection.
	Map
	MapAndGISUses.ViewCloseDevicesOnMap
	MapReqHdlr:getCloseDevicesMapDataJSON CloseDevicesMap:handleMapDataJSON

	SR4.2.3.2.1.2.8.1.3
	The system shall allow the user to choose the map layers to be displayed on the nearby devices map.
	Map
	MapAndGISUses.ViewCloseDevicesOnMap, MapAndGISUses.SelectMapLayers
	Screenshot: CloseDevicesMapLayers.png

	SR4.2.3.2.1.2.8.1.3.1
	The system shall allow the user to choose whether to display DMSs on the nearby devices map.
	Map
	MapAndGISUses.ViewCloseDevicesOnMap MapAndGISUses.SelectMapLayers
	Screenshot: CloseDevicesMapLayers.png

	SR4.2.3.2.1.2.8.1.3.2
	The system shall allow the user to choose whether to display HARs on the nearby devices map.
	Map
	MapAndGISUses.ViewCloseDevicesOnMap MapAndGISUses.SelectMapLayers
	Screenshot: NONE (NOT PROTOTYPED)

	SR4.2.3.2.1.2.8.1.3.4
	The system shall allow the user to choose whether to display cameras on the nearby devices map.
	Map
	MapAndGISUses.ViewCloseDevicesOnMap MapAndGISUses.SelectMapLayers
	Screenshot: CloseDevicesMapLayers.png

	SR4.2.3.2.1.2.8.1.6
	The system shall allow the user to add devices to the traffic event's response plan from the nearby devices map.
	Map
	MapAndGISUses.AddCloseDevicesToResponseFromMap
	Screenshot: CloseDevicesMapAndDMSStates.png

	SR4.2.3.2.1.2.8.1.6.1
	The system shall allow the user to select DMSs to be added to the response plan using the nearby devices map.
	Map
	MapAndGISUses.AddCloseDevicesToResponseFromMap
	Screenshot: CloseDevicesMapAndDMSStates.png

	SR4.2.3.2.1.2.8.1.6.2
	The system shall allow the user to select HARs to be added to the response plan using the nearby devices map.
	Map
	MapAndGISUses.AddCloseDevicesToResponseFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR4.2.3.2.1.2.8.1.6.3
	The system shall allow the user to clear the selection of devices that are selected in the nearby devices map.
	Map
	MapAndGISUses.AddCloseDevicesToResponseFromMap
	Screenshot: CloseDevicesMapAndDMSStates.png

	SR4.2.3.2.1.2.8.1.6.4
	The system shall indicate whether a DMS is already in the traffic event's response plan on the nearby devices map, using a modification to the DMS icon.
	Map
	MapAndGISUses.AddCloseDevicesToResponseFromMap
	Screenshot: CloseDevicesMapAndDMSStates.png

	SR4.2.3.2.1.2.8.1.6.5
	The system shall indicate whether a HAR is already in the traffic event's response plan on the nearby devices map, using a modification to the HAR icon.
	Map
	MapAndGISUses.AddCloseDevicesToResponseFromMap
	Screenshot: NONE (NOT PROTOTYPED)

	SR4.2.3.2.1.2.8.1.7
	The system shall allow the user to close all object popups displayed on the nearby devices map with a single action.
	Map
	MapAndGISUses.AddCloseDevicesToResponseFromMap
	Screenshot: CloseDevicesMapAndDMSStates.png

	SR4.2.3.2.1.2.8.1.8
	The system shall allow the user to trigger an immediate refresh of the object data on the nearby devices map (without refreshing the entire traffic event details page).
	Map
	MapAndGISUses.NavigateMap
	Screenshot: CloseDevicesMapAndDMSStates.png

	SR4.3.6.1
	The system shall allow a suitably privileged user to view traffic events on the map.
	Map
	 MapAndGISUses.View Center's Events on Map, MapAndGISUses.View Open Events on Map
	

	SR4.3.6.1.1
	The system shall display a traffic event on the map in a layer that contains only traffic events of the same type.
	Map
	MapAndGISUses.SelectMapLayers
	Screenshot: MilepostsExitsAndLayer.png

	SR4.3.6.1.2
	The system shall indicate on the map whether a traffic event has lane closures by displaying a different icon for the traffic event.
	Map
	MapDeviceAndTrafficEventUses.UseTrafficEventFromMap
	Screenshot: TrafficEventWIthLaneClosuresAndPopup.png

	SR4.3.6.1.3
	The system shall allow the user to click on a traffic event icon in the map to display summary information.
	Map
	MapDeviceAndTrafficEventUses.UseTrafficEventFromMap
	Screenshot: TrafficEventWIthLaneClosuresAndPopup.png

	SR4.3.6.1.3.1
	The system shall display the name of the traffic event in the traffic event map popup.
	Map
	MapDeviceAndTrafficEventUses.UseTrafficEventFromMap
	Screenshot: TrafficEventWIthLaneClosuresAndPopup.png

	SR4.3.6.1.3.2
	The system shall allow the user to click on a link in the traffic event map popup to invoke the traffic event details page in the working window.
	Map
	MapDeviceAndTrafficEventUses.ViewTrafficEventDetailsPage
	Screenshot: TrafficEventWIthLaneClosuresAndPopup.png

	SR4.3.6.1.3.3
	The system shall display a graphical representation of the current lane closures in the traffic event map popup if the traffic event has a defined roadway configuration.
	Map
	MapDeviceAndTrafficEventUses.UseTrafficEventFromMap
	Screenshot: TrafficEventWIthLaneClosuresAndPopup.png

	SR4.3.6.1.3.4
	The system shall allow the user to click on a link to invoke the roadway conditions editor from the traffic event map popup.
	Map
	MapDeviceAndTrafficEventUses.EditTrafficEventRoadwayConditions
	Screenshot: TrafficEventWIthLaneClosuresAndPopup.png

	SR4.3.6.1.4
	The system shall display the name of the traffic event when the mouse cursor hovers over a traffic event icon in the map.
	Map
	MapDeviceAndTrafficEventUses.UseTrafficEventFromMap
	Screenshot: MultipleObjectTooltips.png

	SR4.3.6.1.5
	The system shall display a description of the lane closures when the mouse cursor hovers over the icon of a traffic event with lane closures in the home page map.
	Map
	MapDeviceAndTrafficEventUses.UseTrafficEventFromMap
	Screenshot: MultipleObjectTooltips.png

	SR9.4.2.10.6
	Sensitive configuration data for a Camera with a Flash Video Stream control includes: server name, IP address, URL, port, and password.
	Video
	View Camera Display Flash Video Stream
	

	SR10.1.1.2
	The system shall export event data to external systems using the SAE ATIS J2354 standard.
	Exporter
	Provide Traffic Event Data to External Systems
	webservices.base.BasicRequestHandler.processRequest

	SR10.1.1.2.1
	The system shall translate CHART event data into SAE ATIS J2354 standard formatted event data with CHART extensions.
	Exporter
	 Provide Traffic Event Data to External Systems
	TrafficEventRequestHandler:processRequest

	SR10.1.1.2.2
	The system shall support a method for external systems to obtain an inventory of CHART events.
	Exporter
	 Provide Traffic Event Data to External Systems
	TrafficEventRequestHander:processRequest

	SR10.1.1.2.3
	The system shall support a method for external systems to receive updates to the inventory of CHART events.
	Exporter
	 Provide Traffic Event Data to External Systems
	 TrafficEventRequestHandler:processRequest, TrafficEventExportHandler:getTrafficEventList

	SR10.1.1.2.3.1
	The system shall support an on-demand method for external systems to receive updates to the CHART event inventory.
	Exporter
	 Provide Traffic Event Data to External Systems
	TrafficEventRequestHandler:processRequest, TrafficEventExportHandler:getTrafficEventList

	SR10.1.1.2.3.1.1
	The on-demand method for receiving event inventory updates shall allow the external system to optionally specify a look-back time period. Event inventory updates made that far in the past until 'now' are returned to the external system.
	Exporter
	 Provide Traffic Event Data to External Systems
	TrafficEventRequestHandler:processRequest, TrafficEventExportHandler:getTrafficEventList

	SR10.1.1.2.3.2
	The system shall support a real-time method for external systems to receive updates to the CHART event inventory.
	Exporter
	 Provide Traffic Event Data to External Systems
	TrafficEventSubscriptionSupportClasses, TrafficEventSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.3.2
	The system shall support the export of DMS data to external systems using the TMDD standard.
	Exporter
	Provide DMS Data to External Systems
	webservices.base.BasicRequestHandler.processRequest

	SR10.1.3.2.1
	The system shall translate CHART DMS formatted data into TMDD standard formatted DMS data with CHART extensions.
	 Exporter
	 Provide DMS Data to External Systems
	

	SR10.1.3.2.2
	The system shall support a method for external systems to obtain an inventory of CHART DMSs.
	Exporter
	 Provide DMS Data to External Systems
	

	SR10.1.3.2.3
	The system shall support a method for external systems to receive updates to the CHART DMS inventory.
	Exporter
	 Provide DMS Data to External Systems
	

	SR10.1.3.2.3.1
	The system shall support an on-demand method for external systems to receive updates to the CHART DMS inventory.
	Exporter
	 Provide DMS Data to External Systems
	DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.3.2.3.1.1
	The on-demand method for receiving DMS inventory updates shall allow the external system to optionally specify a look-back time period. DMS inventory updates made that far in the past until 'now' are returned to the external system.
	Exporter
	 Provide DMS Data to External Systems
	DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.3.2.3.2
	The system shall support a real-time method for external systems to receive updates to the CHART DMS inventory.
	Exporter
	 Provide DMS Data to External Systems
	DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.3.2.4
	The system shall support a method for external systems to obtain the status of CHART DMSs.
	Exporter
	 Provide DMS Data to External Systems
	DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.3.2.5
	The system shall support a method for external systems to receive updates to the status of CHART DMS's.
	Exporter
	 Provide DMS Data to External Systems
	

	SR10.1.3.2.5.1
	The system shall support an on-demand method for external systems to receive updates to the status of CHART DMSs.
	Exporter
	 Provide DMS Data to External Systems
	DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.3.2.5.1.1
	The on-demand method for receiving DMS status updates shall allow the external system to optionally specify a look-back time period. DMS status updates made that far in the past until ‘now’ are returned to the external system.
	Exporter
	 Provide DMS Data to External Systems
	DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.3.2.5.2
	The system shall support a real-time method for external systems to receive updates to the status of CHART DMSs.
	Exporter
	 Provide DMS Data to External Systems
	DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.4.2
	The system shall support the export of TSS data to external systems using the TMDD standard.
	Exporter
	Provide Detector Data to External Systems
	webservices.base.BasicRequestHandler.processRequest

	SR10.1.4.2.1
	The system shall translate CHART TSS formatted data into TMDD standard formatted TSS data with CHART extensions.
	Exporter
	 Provide Detector Data to External Systems
	similar to DMSRequestHandler:processRequest

	SR10.1.4.2.2
	The system shall support a method for external systems to obtain an inventory of CHART TSSs.
	Exporter
	 Provide Detector Data to External Systems
	

	SR10.1.4.2.3
	The system shall support a method for external systems to receive updates to the status of CHART TSSs.
	Exporter
	 Provide Detector Data to External Systems
	

	SR10.1.4.2.3.1
	The system shall support an on-demand method for external systems to receive updates to the CHART TSS inventory.
	Exporter
	 Provide Detector Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.4.2.3.1.1
	The on-demand method for receiving TSS inventory updates shall allow the external system to optionally specify a look-back time period. TSS inventory updates made that far in the past until ‘now’ are returned to the external system.
	Exporter
	 Provide Detector Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.4.2.3.2
	The system shall support a real-time method for external systems to receive updates to the CHART TSS inventory.
	Exporter
	 Provide Detector Data to External Systems
	Similar to DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.4.2.4
	The system shall support a method for external systems to obtain the status of CHART TSSs.
	Exporter
	 Provide Detector Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.4.2.5
	The system shall support a method for external systems to receive updates to the status of CHART TSSs.
	Exporter
	 Provide Detector Data to External Systems
	

	SR10.1.4.2.5.1
	The system shall support an on-demand method for external systems to receive updates to the status of CHART TSSs.
	Exporter
	 Provide Detector Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.4.2.5.1.1
	The on-demand method for receiving TSS status updates shall allow the external system to optionally specify a look-back time period. TSS status updates made that far in the past until ‘now’ are returned to the external system.
	Exporter
	 Provide Detector Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.4.2.5.2
	The system shall support a real-time method for external systems to receive updates to the status of CHART TSSs.
	Exporter
	 Provide Detector Data to External Systems
	Similar to DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.5.2
	The system shall support the export of HAR data to external systems using the TMDD standard.
	Exporter
	Provide HAR Data to External Systems
	webservices.base.BasicRequestHandler.processRequest

	SR10.1.5.2.1
	The system shall translate CHART HAR formatted data into TMDD standard formatted HAR data with CHART extensions.
	Exporter
	 Provide HAR Data to External Systems
	

	SR10.1.5.2.2
	The system shall support a method for external systems to obtain an inventory of CHART HARs.
	Exporter
	 Provide HAR Data to External Systems
	

	SR10.1.5.2.3
	The system shall support a method for external system to receive updates to the CHART HAR inventory.
	Exporter
	 Provide HAR Data to External Systems
	

	SR10.1.5.2.3.1
	The system shall support an on-demand method for external systems to receive updates to the CHART HAR inventory.
	Exporter
	 Provide HAR Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.5.2.3.1.1
	The on-demand method for receiving HAR inventory updates shall allow the external system to optionally specify a look-back time period. HAR inventory updates made that far in the past until ‘now’ are returned to the external system.
	Exporter
	 Provide HAR Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.5.2.3.2
	The system shall support a real-time method for external systems to receive updates to the CHART HAR inventory.
	Exporter
	 Provide HAR Data to External Systems
	Similar to DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.5.2.4
	The system shall support a method for external systems to obtain the status of CHART HARs.
	Exporter
	 Provide HAR Data to External Systems
	

	SR10.1.5.2.5
	The system shall support a method for external system to receive updates to the status of CHART HARs.
	Exporter
	 Provide HAR Data to External Systems
	

	SR10.1.5.2.5.1
	The system shall support an on-demand method for external systems to receive updates to the status of CHART HARs.
	Exporter
	 Provide HAR Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.5.2.5.1.1
	The on-demand method for receiving HAR status updates shall allow the external system to optionally specify a look-back time period. HAR status updates made that far in the past until ‘now’ are returned to the external system.
	Exporter
	 Provide HAR Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.5.2.5.2
	The system shall support a real-time method for external systems to receive updates to the status of CHART HARs.
	Exporter
	 Provide HAR Data to External Systems
	Similar to DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.6.2
	The system shall support the export of SHAZAM data to external systems using the TMDD standard for beacons.
	Exporter
	Provide SHAZAM Data to External Systems
	webservices.base.BasicRequestHandler.processRequest

	SR10.1.6.2.1
	The system shall translate CHART SHAZAM formatted data into TMDD standard formatted beacon data with CHART extensions.
	Exporter
	 Provide SHAZAM Data to External Systems
	

	SR10.1.6.2.2
	The system shall support a method for external systems to obtain an inventory of CHART SHAZAMS.
	Exporter
	 Provide SHAZAM Data to External Systems
	

	SR10.1.6.2.3
	The system shall support a method for external system to receive updates to the CHART SHAZAM inventory.
	Exporter
	 Provide SHAZAM Data to External Systems
	

	SR10.1.6.2.3.1
	The system shall support an on-demand method for external systems to receive updates to the CHART SHAZAM inventory.
	Exporter
	 Provide SHAZAM Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.6.2.3.1.1
	The on-demand method for receiving SHAZAM inventory updates shall allow the external system to optionally specify a look-back time period. SHAZAM inventory updates made that far in the past until ‘now’ are returned to the external system.
	Exporter
	 Provide SHAZAM Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSInventoryList

	SR10.1.6.2.3.2
	The system shall support a real-time method for external systems to receive updates to the CHART SHAZAM inventory.
	Exporter
	 Provide SHAZAM Data to External Systems
	Similar to DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.1.6.2.4
	The system shall support a method for external systems to obtain the status of CHART SHAZAMs.
	Exporter
	 Provide SHAZAM Data to External Systems
	

	SR10.1.6.2.5
	The system shall support a method for external system to receive updates to the status of CHART SHAZAMs.
	Exporter
	 Provide SHAZAM Data to External Systems
	

	SR10.1.6.2.5.1
	The system shall support an on-demand method for external systems to receive updates to the status of CHART SHAZAMs.
	Exporter
	 Provide SHAZAM Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.6.2.5.1.1
	The on-demand method for receiving SHAZAM status updates shall allow the external system to optionally specify a look-back time period. SHAZAM status updates made that far in the past until ‘now’ are returned to the external system.
	Exporter
	 Provide SHAZAM Data to External Systems
	Similar to DMSRequestHandler:processRequest, DMSExportHandler:getDMSStatusList

	SR10.1.6.2.5.2
	The system shall support a real-time method for external systems to receive updates to the status of CHART SHAZAMs.
	Exporter
	 Provide SHAZAM Data to External Systems
	Similar to DMSSubscriptionSupportClasses, DMSSubscriptionRequestHandler:processRequest, ExportSubscription:sendDataToSubscriber

	SR10.13
	CHART Export Service. The system shall provide a service for the purpose of providing CHART information to authorized third-party clients.
	Exporter
	Provide Data to External Systems
	WebServicesBaseClasses, WSTrafficEventExportModuleClasses, DMSExportModuleClasses

	SR10.13.1
	The external export service shall export data for CHART devices and Traffic Events.
	Exporter
	 Provide Data to External Systems
	

	SR10.13.1.1
	The external export service shall export data on CHART DMSs to authorized third-party clients who request it based on the client’s functional rights (see CHART DMS Export Interface Control Document).
	Exporter
	Authenticate External System
	webservices.base.BasicRequestHandler.processRequest

	SR10.13.1.2
	The external export service shall export data on CHART TSSs to authorized third-party clients who request it based on the client’s functional rights (see CHART TSS Export Interface Control Document).
	Exporter
	Authenticate External System
	webservices.base.BasicRequestHandler.processRequest

	SR10.13.1.3
	The external export service shall export data on CHART HARs to authorized third-party clients who request it based on the client’s functional rights (see CHART HAR Export Interface Control Document).
	Exporter
	Authenticate External System
	webservices.base.BasicRequestHandler.processRequest

	SR10.13.1.4
	The external export service shall export data on CHART SHAZAMs to authorized third-party clients who request it based on the client’s functional rights (see CHART SHAZAM Export Interface Control Document).
	Exporter
	Authenticate External System
	webservices.base.BasicRequestHandler.processRequest

	SR10.13.1.6
	The external export service shall export data on CHART Traffic Events to authorized third-party clients who request it based on the client’s functional rights (see CHART Traffic Event Export Interface Control Document).
	Exporter
	Authenticate External System
	webservices.base.BasicRequestHandler.processRequest, TrafficEventExportHandler:getTrafficEventList

	SR10.14
	The system shall integrate with external applications to share GIS data.
	Map
	
	

	SR10.14.1
	The system shall provide an API for management of location aliases to client applications.
	Map
	MapAndGISUses.PerformGISQuery
	GISModuleClasses CD GISModule:initialize SD

	SR10.14.1.1
	The system shall allow a client application to obtain a list of all location aliases in the database as defined by the GISService ICD.
	Map
	MapAndGISUses.GetAliases
	GISModuleClasses CD GISLocationAliasRequestHandler:processGetAliasesRequest SD

	SR10.14.1.2
	The system shall allow a client application to add a new location alias as defined by the GISService ICD.
	Map
	MapAndGISUses.AddAlias
	GISModuleClasses CD GISLocationAliasRequestHandler:processCreateLocationAliasRequest SD

	SR10.14.1.3
	The system shall allow a client application to edit an existing location alias as defined by the GISService ICD.
	Map
	MapAndGISUses.EditAlias
	GISModuleClasses CD

	SR10.14.1.4
	The system shall allow a client application to delete an existing location alias as defined by the GISService ICD.
	Map
	MapAndGISUses.RemoveAlias
	GISModuleClasses CD

	SR10.14.2
	The system shall provide an API for lookup of Roadway Location Information to client applications.
	Map
	MapAndGISUses.PerformGISQuery
	GISModuleClasses CD GISModule:initialize SD

	SR10.14.2.1
	The system shall allow a client application to obtain a list of all U.S. states previously entered into the system by an administrator as defined by the GISService ICD.
	Map
	MapAndGISUses.GetStates
	GISModuleClasses CD GISLocationRequestHandler:processGetStatesRequest SD

	SR10.14.2.2
	The system shall allow a client application to obtain a list of counties for a specified U.S. state as defined by the GISService ICD.
	Map
	MapAndGISUses.GetCountiesByState
	GISModuleClasses CD GISLocationRequestHandler:processGetCountiesByStateRequest SD

	SR10.14.2.3
	The system shall allow a client application to obtain a list of regions for a specified U.S. state as defined by the GISService ICD.
	Map
	MapAndGISUses.GetRegionsByState
	GISModuleClasses CD

	SR10.14.2.4
	The system shall allow a client application to obtain a list of routes for a specified U.S. state, county, and route type as defined by the GISService ICD.
	Map
	MapAndGISUses.GetRoutes
	GISModuleClasses CD

	SR10.14.2.5
	The system shall allow a client application to obtain a list of routes that intersect a specified route for a specified U.S. state, county, and route number as defined by the GISService ICD.
	Map
	MapAndGISUses.GetIntersectingRoutes
	GISModuleClasses CD GISLocationRequestHandler:processGetIntersectingFeatureOfType SD

	SR14
	OPERATIONAL ENVIRONMENT
	Map
	 (Not a functional requirement)
	

	SR14.1
	The system shall support Internet Explorer Versions 7.x
	Map
	 (Not a functional requirement)
	

	SR14.2
	All GUI screens shall support a minimum resolution of 1024x768
	Map
	 (Not a functional requirement)
	

7 Acronyms/Glossary

	GIS
	Geographic Information System (GIS) is any system that captures, stores, analyzes, manages, and presents data that are linked to location

	Home Page Map
	The map component shown on the home page of the CHART user interface.

	Integrated Map
	The mapping components that are being built into the CHART user interface as part of release 5 of the CHART application.

	Intranet Map
	The CHART Mapping application that is not integrated into the CHART user interface.

	Location Alias
	A pre-defined location (lat/lon) that has been stored with some name attributes to allow operators to utilize the location repeatedly.

	Maintenance Portal
	A customized version of the CHART GUI tailored to device maintenance personnel.

	Nearby Devices Map
	Map shown on the details page for a traffic event that shows only the target traffic event and the devices that are near it.

	Object Location Map
	Map component that is used in conjunction with the object location form when setting the location of a traffic event or device.

	Open Layers
	Open source JavaScript mapping API utilized by the integrated map components in the CHART GUI.

	REST
	Representational State Transfer - a web services architecture style used in CHART that leverages web technologies such as http and XML

	Standard GUI
	The CHART GUI when not accessed via the maintenance portal.

	WMS
	A Web Map Service (WMS) is a standard protocol for serving georeferenced map images over the Internet that are generated by a map server using data from a GIS database.

� EMBED Unknown ���

� PAGE * MERGEFORMAT �2-2�

R5 Exporter High Level Design Review

Exporter Design Network�(supports Exporter and UMD Listener)

911

State Police Barracks

911

State Police Barracks

� EMBED PBrush ���

CHART R5 Detailed Design
xv
03/26/2010

_1329634229.vsd
External Consumers

HTTP, XML

CHART Servers

_1330257667.vsd
Cloud

­

Radio tower

CHART

DMS

EORS

Baltimore Media
Washington Media

Broadcast
Television

_1230309699

